xref: /dpdk/drivers/net/mlx5/mlx5_rxtx.c (revision 25d11a86c56d50947af33d0b79ede622809bd8b9)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2015 6WIND S.A.
3  * Copyright 2015 Mellanox Technologies, Ltd
4  */
5 
6 #include <assert.h>
7 #include <stdint.h>
8 #include <string.h>
9 #include <stdlib.h>
10 
11 /* Verbs header. */
12 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
13 #ifdef PEDANTIC
14 #pragma GCC diagnostic ignored "-Wpedantic"
15 #endif
16 #include <infiniband/verbs.h>
17 #include <infiniband/mlx5dv.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21 
22 #include <rte_mbuf.h>
23 #include <rte_mempool.h>
24 #include <rte_prefetch.h>
25 #include <rte_common.h>
26 #include <rte_branch_prediction.h>
27 #include <rte_ether.h>
28 
29 #include "mlx5.h"
30 #include "mlx5_utils.h"
31 #include "mlx5_rxtx.h"
32 #include "mlx5_autoconf.h"
33 #include "mlx5_defs.h"
34 #include "mlx5_prm.h"
35 
36 static __rte_always_inline uint32_t
37 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe);
38 
39 static __rte_always_inline int
40 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
41 		 uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe);
42 
43 static __rte_always_inline uint32_t
44 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe);
45 
46 static __rte_always_inline void
47 rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
48 	       volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res);
49 
50 static __rte_always_inline void
51 mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx);
52 
53 uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
54 	[0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
55 };
56 
57 uint8_t mlx5_cksum_table[1 << 10] __rte_cache_aligned;
58 uint8_t mlx5_swp_types_table[1 << 10] __rte_cache_aligned;
59 
60 /**
61  * Build a table to translate Rx completion flags to packet type.
62  *
63  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
64  */
65 void
66 mlx5_set_ptype_table(void)
67 {
68 	unsigned int i;
69 	uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;
70 
71 	/* Last entry must not be overwritten, reserved for errored packet. */
72 	for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i)
73 		(*p)[i] = RTE_PTYPE_UNKNOWN;
74 	/*
75 	 * The index to the array should have:
76 	 * bit[1:0] = l3_hdr_type
77 	 * bit[4:2] = l4_hdr_type
78 	 * bit[5] = ip_frag
79 	 * bit[6] = tunneled
80 	 * bit[7] = outer_l3_type
81 	 */
82 	/* L2 */
83 	(*p)[0x00] = RTE_PTYPE_L2_ETHER;
84 	/* L3 */
85 	(*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
86 		     RTE_PTYPE_L4_NONFRAG;
87 	(*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
88 		     RTE_PTYPE_L4_NONFRAG;
89 	/* Fragmented */
90 	(*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
91 		     RTE_PTYPE_L4_FRAG;
92 	(*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
93 		     RTE_PTYPE_L4_FRAG;
94 	/* TCP */
95 	(*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
96 		     RTE_PTYPE_L4_TCP;
97 	(*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
98 		     RTE_PTYPE_L4_TCP;
99 	(*p)[0x0d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
100 		     RTE_PTYPE_L4_TCP;
101 	(*p)[0x0e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
102 		     RTE_PTYPE_L4_TCP;
103 	(*p)[0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
104 		     RTE_PTYPE_L4_TCP;
105 	(*p)[0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
106 		     RTE_PTYPE_L4_TCP;
107 	/* UDP */
108 	(*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
109 		     RTE_PTYPE_L4_UDP;
110 	(*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
111 		     RTE_PTYPE_L4_UDP;
112 	/* Repeat with outer_l3_type being set. Just in case. */
113 	(*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
114 		     RTE_PTYPE_L4_NONFRAG;
115 	(*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
116 		     RTE_PTYPE_L4_NONFRAG;
117 	(*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
118 		     RTE_PTYPE_L4_FRAG;
119 	(*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
120 		     RTE_PTYPE_L4_FRAG;
121 	(*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
122 		     RTE_PTYPE_L4_TCP;
123 	(*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
124 		     RTE_PTYPE_L4_TCP;
125 	(*p)[0x8d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
126 		     RTE_PTYPE_L4_TCP;
127 	(*p)[0x8e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
128 		     RTE_PTYPE_L4_TCP;
129 	(*p)[0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
130 		     RTE_PTYPE_L4_TCP;
131 	(*p)[0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
132 		     RTE_PTYPE_L4_TCP;
133 	(*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
134 		     RTE_PTYPE_L4_UDP;
135 	(*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
136 		     RTE_PTYPE_L4_UDP;
137 	/* Tunneled - L3 */
138 	(*p)[0x40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
139 	(*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
140 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
141 		     RTE_PTYPE_INNER_L4_NONFRAG;
142 	(*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
143 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
144 		     RTE_PTYPE_INNER_L4_NONFRAG;
145 	(*p)[0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
146 	(*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
147 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
148 		     RTE_PTYPE_INNER_L4_NONFRAG;
149 	(*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
150 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
151 		     RTE_PTYPE_INNER_L4_NONFRAG;
152 	/* Tunneled - Fragmented */
153 	(*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
154 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
155 		     RTE_PTYPE_INNER_L4_FRAG;
156 	(*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
157 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
158 		     RTE_PTYPE_INNER_L4_FRAG;
159 	(*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
160 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
161 		     RTE_PTYPE_INNER_L4_FRAG;
162 	(*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
163 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
164 		     RTE_PTYPE_INNER_L4_FRAG;
165 	/* Tunneled - TCP */
166 	(*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
167 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
168 		     RTE_PTYPE_INNER_L4_TCP;
169 	(*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
170 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
171 		     RTE_PTYPE_INNER_L4_TCP;
172 	(*p)[0x4d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
173 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
174 		     RTE_PTYPE_INNER_L4_TCP;
175 	(*p)[0x4e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
176 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
177 		     RTE_PTYPE_INNER_L4_TCP;
178 	(*p)[0x51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
179 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
180 		     RTE_PTYPE_INNER_L4_TCP;
181 	(*p)[0x52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
182 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
183 		     RTE_PTYPE_INNER_L4_TCP;
184 	(*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
185 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
186 		     RTE_PTYPE_INNER_L4_TCP;
187 	(*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
188 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
189 		     RTE_PTYPE_INNER_L4_TCP;
190 	(*p)[0xcd] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
191 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
192 		     RTE_PTYPE_INNER_L4_TCP;
193 	(*p)[0xce] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
194 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
195 		     RTE_PTYPE_INNER_L4_TCP;
196 	(*p)[0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
197 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
198 		     RTE_PTYPE_INNER_L4_TCP;
199 	(*p)[0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
200 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
201 		     RTE_PTYPE_INNER_L4_TCP;
202 	/* Tunneled - UDP */
203 	(*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
204 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
205 		     RTE_PTYPE_INNER_L4_UDP;
206 	(*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
207 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
208 		     RTE_PTYPE_INNER_L4_UDP;
209 	(*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
210 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
211 		     RTE_PTYPE_INNER_L4_UDP;
212 	(*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
213 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
214 		     RTE_PTYPE_INNER_L4_UDP;
215 }
216 
217 /**
218  * Build a table to translate packet to checksum type of Verbs.
219  */
220 void
221 mlx5_set_cksum_table(void)
222 {
223 	unsigned int i;
224 	uint8_t v;
225 
226 	/*
227 	 * The index should have:
228 	 * bit[0] = PKT_TX_TCP_SEG
229 	 * bit[2:3] = PKT_TX_UDP_CKSUM, PKT_TX_TCP_CKSUM
230 	 * bit[4] = PKT_TX_IP_CKSUM
231 	 * bit[8] = PKT_TX_OUTER_IP_CKSUM
232 	 * bit[9] = tunnel
233 	 */
234 	for (i = 0; i < RTE_DIM(mlx5_cksum_table); ++i) {
235 		v = 0;
236 		if (i & (1 << 9)) {
237 			/* Tunneled packet. */
238 			if (i & (1 << 8)) /* Outer IP. */
239 				v |= MLX5_ETH_WQE_L3_CSUM;
240 			if (i & (1 << 4)) /* Inner IP. */
241 				v |= MLX5_ETH_WQE_L3_INNER_CSUM;
242 			if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
243 				v |= MLX5_ETH_WQE_L4_INNER_CSUM;
244 		} else {
245 			/* No tunnel. */
246 			if (i & (1 << 4)) /* IP. */
247 				v |= MLX5_ETH_WQE_L3_CSUM;
248 			if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
249 				v |= MLX5_ETH_WQE_L4_CSUM;
250 		}
251 		mlx5_cksum_table[i] = v;
252 	}
253 }
254 
255 /**
256  * Build a table to translate packet type of mbuf to SWP type of Verbs.
257  */
258 void
259 mlx5_set_swp_types_table(void)
260 {
261 	unsigned int i;
262 	uint8_t v;
263 
264 	/*
265 	 * The index should have:
266 	 * bit[0:1] = PKT_TX_L4_MASK
267 	 * bit[4] = PKT_TX_IPV6
268 	 * bit[8] = PKT_TX_OUTER_IPV6
269 	 * bit[9] = PKT_TX_OUTER_UDP
270 	 */
271 	for (i = 0; i < RTE_DIM(mlx5_swp_types_table); ++i) {
272 		v = 0;
273 		if (i & (1 << 8))
274 			v |= MLX5_ETH_WQE_L3_OUTER_IPV6;
275 		if (i & (1 << 9))
276 			v |= MLX5_ETH_WQE_L4_OUTER_UDP;
277 		if (i & (1 << 4))
278 			v |= MLX5_ETH_WQE_L3_INNER_IPV6;
279 		if ((i & 3) == (PKT_TX_UDP_CKSUM >> 52))
280 			v |= MLX5_ETH_WQE_L4_INNER_UDP;
281 		mlx5_swp_types_table[i] = v;
282 	}
283 }
284 
285 /**
286  * Return the size of tailroom of WQ.
287  *
288  * @param txq
289  *   Pointer to TX queue structure.
290  * @param addr
291  *   Pointer to tail of WQ.
292  *
293  * @return
294  *   Size of tailroom.
295  */
296 static inline size_t
297 tx_mlx5_wq_tailroom(struct mlx5_txq_data *txq, void *addr)
298 {
299 	size_t tailroom;
300 	tailroom = (uintptr_t)(txq->wqes) +
301 		   (1 << txq->wqe_n) * MLX5_WQE_SIZE -
302 		   (uintptr_t)addr;
303 	return tailroom;
304 }
305 
306 /**
307  * Copy data to tailroom of circular queue.
308  *
309  * @param dst
310  *   Pointer to destination.
311  * @param src
312  *   Pointer to source.
313  * @param n
314  *   Number of bytes to copy.
315  * @param base
316  *   Pointer to head of queue.
317  * @param tailroom
318  *   Size of tailroom from dst.
319  *
320  * @return
321  *   Pointer after copied data.
322  */
323 static inline void *
324 mlx5_copy_to_wq(void *dst, const void *src, size_t n,
325 		void *base, size_t tailroom)
326 {
327 	void *ret;
328 
329 	if (n > tailroom) {
330 		rte_memcpy(dst, src, tailroom);
331 		rte_memcpy(base, (void *)((uintptr_t)src + tailroom),
332 			   n - tailroom);
333 		ret = (uint8_t *)base + n - tailroom;
334 	} else {
335 		rte_memcpy(dst, src, n);
336 		ret = (n == tailroom) ? base : (uint8_t *)dst + n;
337 	}
338 	return ret;
339 }
340 
341 /**
342  * Inline TSO headers into WQE.
343  *
344  * @return
345  *   0 on success, negative errno value on failure.
346  */
347 static int
348 inline_tso(struct mlx5_txq_data *txq, struct rte_mbuf *buf,
349 	   uint32_t *length,
350 	   uintptr_t *addr,
351 	   uint16_t *pkt_inline_sz,
352 	   uint8_t **raw,
353 	   uint16_t *max_wqe,
354 	   uint16_t *tso_segsz,
355 	   uint16_t *tso_header_sz)
356 {
357 	uintptr_t end = (uintptr_t)(((uintptr_t)txq->wqes) +
358 				    (1 << txq->wqe_n) * MLX5_WQE_SIZE);
359 	unsigned int copy_b;
360 	uint8_t vlan_sz = (buf->ol_flags & PKT_TX_VLAN_PKT) ? 4 : 0;
361 	const uint8_t tunneled = txq->tunnel_en && (buf->ol_flags &
362 				 PKT_TX_TUNNEL_MASK);
363 	uint16_t n_wqe;
364 
365 	*tso_segsz = buf->tso_segsz;
366 	*tso_header_sz = buf->l2_len + vlan_sz + buf->l3_len + buf->l4_len;
367 	if (unlikely(*tso_segsz == 0 || *tso_header_sz == 0)) {
368 		txq->stats.oerrors++;
369 		return -EINVAL;
370 	}
371 	if (tunneled)
372 		*tso_header_sz += buf->outer_l2_len + buf->outer_l3_len;
373 	/* First seg must contain all TSO headers. */
374 	if (unlikely(*tso_header_sz > MLX5_MAX_TSO_HEADER) ||
375 		     *tso_header_sz > DATA_LEN(buf)) {
376 		txq->stats.oerrors++;
377 		return -EINVAL;
378 	}
379 	copy_b = *tso_header_sz - *pkt_inline_sz;
380 	if (!copy_b || ((end - (uintptr_t)*raw) < copy_b))
381 		return -EAGAIN;
382 	n_wqe = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
383 	if (unlikely(*max_wqe < n_wqe))
384 		return -EINVAL;
385 	*max_wqe -= n_wqe;
386 	rte_memcpy((void *)*raw, (void *)*addr, copy_b);
387 	*length -= copy_b;
388 	*addr += copy_b;
389 	copy_b = MLX5_WQE_DS(copy_b) * MLX5_WQE_DWORD_SIZE;
390 	*pkt_inline_sz += copy_b;
391 	*raw += copy_b;
392 	return 0;
393 }
394 
395 /**
396  * DPDK callback to check the status of a tx descriptor.
397  *
398  * @param tx_queue
399  *   The tx queue.
400  * @param[in] offset
401  *   The index of the descriptor in the ring.
402  *
403  * @return
404  *   The status of the tx descriptor.
405  */
406 int
407 mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
408 {
409 	struct mlx5_txq_data *txq = tx_queue;
410 	uint16_t used;
411 
412 	mlx5_tx_complete(txq);
413 	used = txq->elts_head - txq->elts_tail;
414 	if (offset < used)
415 		return RTE_ETH_TX_DESC_FULL;
416 	return RTE_ETH_TX_DESC_DONE;
417 }
418 
419 /**
420  * Internal function to compute the number of used descriptors in an RX queue
421  *
422  * @param rxq
423  *   The Rx queue.
424  *
425  * @return
426  *   The number of used rx descriptor.
427  */
428 static uint32_t
429 rx_queue_count(struct mlx5_rxq_data *rxq)
430 {
431 	struct rxq_zip *zip = &rxq->zip;
432 	volatile struct mlx5_cqe *cqe;
433 	const unsigned int cqe_n = (1 << rxq->cqe_n);
434 	const unsigned int cqe_cnt = cqe_n - 1;
435 	unsigned int cq_ci;
436 	unsigned int used;
437 
438 	/* if we are processing a compressed cqe */
439 	if (zip->ai) {
440 		used = zip->cqe_cnt - zip->ca;
441 		cq_ci = zip->cq_ci;
442 	} else {
443 		used = 0;
444 		cq_ci = rxq->cq_ci;
445 	}
446 	cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
447 	while (check_cqe(cqe, cqe_n, cq_ci) == 0) {
448 		int8_t op_own;
449 		unsigned int n;
450 
451 		op_own = cqe->op_own;
452 		if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
453 			n = rte_be_to_cpu_32(cqe->byte_cnt);
454 		else
455 			n = 1;
456 		cq_ci += n;
457 		used += n;
458 		cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
459 	}
460 	used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
461 	return used;
462 }
463 
464 /**
465  * DPDK callback to check the status of a rx descriptor.
466  *
467  * @param rx_queue
468  *   The Rx queue.
469  * @param[in] offset
470  *   The index of the descriptor in the ring.
471  *
472  * @return
473  *   The status of the tx descriptor.
474  */
475 int
476 mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
477 {
478 	struct mlx5_rxq_data *rxq = rx_queue;
479 	struct mlx5_rxq_ctrl *rxq_ctrl =
480 			container_of(rxq, struct mlx5_rxq_ctrl, rxq);
481 	struct rte_eth_dev *dev = ETH_DEV(rxq_ctrl->priv);
482 
483 	if (dev->rx_pkt_burst != mlx5_rx_burst) {
484 		rte_errno = ENOTSUP;
485 		return -rte_errno;
486 	}
487 	if (offset >= (1 << rxq->elts_n)) {
488 		rte_errno = EINVAL;
489 		return -rte_errno;
490 	}
491 	if (offset < rx_queue_count(rxq))
492 		return RTE_ETH_RX_DESC_DONE;
493 	return RTE_ETH_RX_DESC_AVAIL;
494 }
495 
496 /**
497  * DPDK callback to get the number of used descriptors in a RX queue
498  *
499  * @param dev
500  *   Pointer to the device structure.
501  *
502  * @param rx_queue_id
503  *   The Rx queue.
504  *
505  * @return
506  *   The number of used rx descriptor.
507  *   -EINVAL if the queue is invalid
508  */
509 uint32_t
510 mlx5_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
511 {
512 	struct priv *priv = dev->data->dev_private;
513 	struct mlx5_rxq_data *rxq;
514 
515 	if (dev->rx_pkt_burst != mlx5_rx_burst) {
516 		rte_errno = ENOTSUP;
517 		return -rte_errno;
518 	}
519 	rxq = (*priv->rxqs)[rx_queue_id];
520 	if (!rxq) {
521 		rte_errno = EINVAL;
522 		return -rte_errno;
523 	}
524 	return rx_queue_count(rxq);
525 }
526 
527 /**
528  * DPDK callback for TX.
529  *
530  * @param dpdk_txq
531  *   Generic pointer to TX queue structure.
532  * @param[in] pkts
533  *   Packets to transmit.
534  * @param pkts_n
535  *   Number of packets in array.
536  *
537  * @return
538  *   Number of packets successfully transmitted (<= pkts_n).
539  */
540 uint16_t
541 mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
542 {
543 	struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
544 	uint16_t elts_head = txq->elts_head;
545 	const uint16_t elts_n = 1 << txq->elts_n;
546 	const uint16_t elts_m = elts_n - 1;
547 	unsigned int i = 0;
548 	unsigned int j = 0;
549 	unsigned int k = 0;
550 	uint16_t max_elts;
551 	uint16_t max_wqe;
552 	unsigned int comp;
553 	volatile struct mlx5_wqe_ctrl *last_wqe = NULL;
554 	unsigned int segs_n = 0;
555 	const unsigned int max_inline = txq->max_inline;
556 	uint64_t addr_64;
557 
558 	if (unlikely(!pkts_n))
559 		return 0;
560 	/* Prefetch first packet cacheline. */
561 	rte_prefetch0(*pkts);
562 	/* Start processing. */
563 	mlx5_tx_complete(txq);
564 	max_elts = (elts_n - (elts_head - txq->elts_tail));
565 	max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
566 	if (unlikely(!max_wqe))
567 		return 0;
568 	do {
569 		struct rte_mbuf *buf = *pkts; /* First_seg. */
570 		uint8_t *raw;
571 		volatile struct mlx5_wqe_v *wqe = NULL;
572 		volatile rte_v128u32_t *dseg = NULL;
573 		uint32_t length;
574 		unsigned int ds = 0;
575 		unsigned int sg = 0; /* counter of additional segs attached. */
576 		uintptr_t addr;
577 		uint16_t pkt_inline_sz = MLX5_WQE_DWORD_SIZE + 2;
578 		uint16_t tso_header_sz = 0;
579 		uint16_t ehdr;
580 		uint8_t cs_flags;
581 		uint8_t tso = txq->tso_en && (buf->ol_flags & PKT_TX_TCP_SEG);
582 		uint32_t swp_offsets = 0;
583 		uint8_t swp_types = 0;
584 		rte_be32_t metadata;
585 		uint16_t tso_segsz = 0;
586 #ifdef MLX5_PMD_SOFT_COUNTERS
587 		uint32_t total_length = 0;
588 #endif
589 		int ret;
590 
591 		segs_n = buf->nb_segs;
592 		/*
593 		 * Make sure there is enough room to store this packet and
594 		 * that one ring entry remains unused.
595 		 */
596 		assert(segs_n);
597 		if (max_elts < segs_n)
598 			break;
599 		max_elts -= segs_n;
600 		sg = --segs_n;
601 		if (unlikely(--max_wqe == 0))
602 			break;
603 		wqe = (volatile struct mlx5_wqe_v *)
604 			tx_mlx5_wqe(txq, txq->wqe_ci);
605 		rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
606 		if (pkts_n - i > 1)
607 			rte_prefetch0(*(pkts + 1));
608 		addr = rte_pktmbuf_mtod(buf, uintptr_t);
609 		length = DATA_LEN(buf);
610 		ehdr = (((uint8_t *)addr)[1] << 8) |
611 		       ((uint8_t *)addr)[0];
612 #ifdef MLX5_PMD_SOFT_COUNTERS
613 		total_length = length;
614 #endif
615 		if (length < (MLX5_WQE_DWORD_SIZE + 2)) {
616 			txq->stats.oerrors++;
617 			break;
618 		}
619 		/* Update element. */
620 		(*txq->elts)[elts_head & elts_m] = buf;
621 		/* Prefetch next buffer data. */
622 		if (pkts_n - i > 1)
623 			rte_prefetch0(
624 			    rte_pktmbuf_mtod(*(pkts + 1), volatile void *));
625 		cs_flags = txq_ol_cksum_to_cs(buf);
626 		txq_mbuf_to_swp(txq, buf, (uint8_t *)&swp_offsets, &swp_types);
627 		raw = ((uint8_t *)(uintptr_t)wqe) + 2 * MLX5_WQE_DWORD_SIZE;
628 		/* Copy metadata from mbuf if valid */
629 		metadata = buf->ol_flags & PKT_TX_METADATA ? buf->tx_metadata :
630 							     0;
631 		/* Replace the Ethernet type by the VLAN if necessary. */
632 		if (buf->ol_flags & PKT_TX_VLAN_PKT) {
633 			uint32_t vlan = rte_cpu_to_be_32(0x81000000 |
634 							 buf->vlan_tci);
635 			unsigned int len = 2 * ETHER_ADDR_LEN - 2;
636 
637 			addr += 2;
638 			length -= 2;
639 			/* Copy Destination and source mac address. */
640 			memcpy((uint8_t *)raw, ((uint8_t *)addr), len);
641 			/* Copy VLAN. */
642 			memcpy((uint8_t *)raw + len, &vlan, sizeof(vlan));
643 			/* Copy missing two bytes to end the DSeg. */
644 			memcpy((uint8_t *)raw + len + sizeof(vlan),
645 			       ((uint8_t *)addr) + len, 2);
646 			addr += len + 2;
647 			length -= (len + 2);
648 		} else {
649 			memcpy((uint8_t *)raw, ((uint8_t *)addr) + 2,
650 			       MLX5_WQE_DWORD_SIZE);
651 			length -= pkt_inline_sz;
652 			addr += pkt_inline_sz;
653 		}
654 		raw += MLX5_WQE_DWORD_SIZE;
655 		if (tso) {
656 			ret = inline_tso(txq, buf, &length,
657 					 &addr, &pkt_inline_sz,
658 					 &raw, &max_wqe,
659 					 &tso_segsz, &tso_header_sz);
660 			if (ret == -EINVAL) {
661 				break;
662 			} else if (ret == -EAGAIN) {
663 				/* NOP WQE. */
664 				wqe->ctrl = (rte_v128u32_t){
665 					rte_cpu_to_be_32(txq->wqe_ci << 8),
666 					rte_cpu_to_be_32(txq->qp_num_8s | 1),
667 					0,
668 					0,
669 				};
670 				ds = 1;
671 #ifdef MLX5_PMD_SOFT_COUNTERS
672 				total_length = 0;
673 #endif
674 				k++;
675 				goto next_wqe;
676 			}
677 		}
678 		/* Inline if enough room. */
679 		if (max_inline || tso) {
680 			uint32_t inl = 0;
681 			uintptr_t end = (uintptr_t)
682 				(((uintptr_t)txq->wqes) +
683 				 (1 << txq->wqe_n) * MLX5_WQE_SIZE);
684 			unsigned int inline_room = max_inline *
685 						   RTE_CACHE_LINE_SIZE -
686 						   (pkt_inline_sz - 2) -
687 						   !!tso * sizeof(inl);
688 			uintptr_t addr_end;
689 			unsigned int copy_b;
690 
691 pkt_inline:
692 			addr_end = RTE_ALIGN_FLOOR(addr + inline_room,
693 						   RTE_CACHE_LINE_SIZE);
694 			copy_b = (addr_end > addr) ?
695 				 RTE_MIN((addr_end - addr), length) : 0;
696 			if (copy_b && ((end - (uintptr_t)raw) > copy_b)) {
697 				/*
698 				 * One Dseg remains in the current WQE.  To
699 				 * keep the computation positive, it is
700 				 * removed after the bytes to Dseg conversion.
701 				 */
702 				uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
703 
704 				if (unlikely(max_wqe < n))
705 					break;
706 				max_wqe -= n;
707 				if (tso) {
708 					assert(inl == 0);
709 					inl = rte_cpu_to_be_32(copy_b |
710 							       MLX5_INLINE_SEG);
711 					rte_memcpy((void *)raw,
712 						   (void *)&inl, sizeof(inl));
713 					raw += sizeof(inl);
714 					pkt_inline_sz += sizeof(inl);
715 				}
716 				rte_memcpy((void *)raw, (void *)addr, copy_b);
717 				addr += copy_b;
718 				length -= copy_b;
719 				pkt_inline_sz += copy_b;
720 			}
721 			/*
722 			 * 2 DWORDs consumed by the WQE header + ETH segment +
723 			 * the size of the inline part of the packet.
724 			 */
725 			ds = 2 + MLX5_WQE_DS(pkt_inline_sz - 2);
726 			if (length > 0) {
727 				if (ds % (MLX5_WQE_SIZE /
728 					  MLX5_WQE_DWORD_SIZE) == 0) {
729 					if (unlikely(--max_wqe == 0))
730 						break;
731 					dseg = (volatile rte_v128u32_t *)
732 					       tx_mlx5_wqe(txq, txq->wqe_ci +
733 							   ds / 4);
734 				} else {
735 					dseg = (volatile rte_v128u32_t *)
736 						((uintptr_t)wqe +
737 						 (ds * MLX5_WQE_DWORD_SIZE));
738 				}
739 				goto use_dseg;
740 			} else if (!segs_n) {
741 				goto next_pkt;
742 			} else {
743 				/*
744 				 * Further inline the next segment only for
745 				 * non-TSO packets.
746 				 */
747 				if (!tso) {
748 					raw += copy_b;
749 					inline_room -= copy_b;
750 				} else {
751 					inline_room = 0;
752 				}
753 				/* Move to the next segment. */
754 				--segs_n;
755 				buf = buf->next;
756 				assert(buf);
757 				addr = rte_pktmbuf_mtod(buf, uintptr_t);
758 				length = DATA_LEN(buf);
759 #ifdef MLX5_PMD_SOFT_COUNTERS
760 				total_length += length;
761 #endif
762 				(*txq->elts)[++elts_head & elts_m] = buf;
763 				goto pkt_inline;
764 			}
765 		} else {
766 			/*
767 			 * No inline has been done in the packet, only the
768 			 * Ethernet Header as been stored.
769 			 */
770 			dseg = (volatile rte_v128u32_t *)
771 				((uintptr_t)wqe + (3 * MLX5_WQE_DWORD_SIZE));
772 			ds = 3;
773 use_dseg:
774 			/* Add the remaining packet as a simple ds. */
775 			addr_64 = rte_cpu_to_be_64(addr);
776 			*dseg = (rte_v128u32_t){
777 				rte_cpu_to_be_32(length),
778 				mlx5_tx_mb2mr(txq, buf),
779 				addr_64,
780 				addr_64 >> 32,
781 			};
782 			++ds;
783 			if (!segs_n)
784 				goto next_pkt;
785 		}
786 next_seg:
787 		assert(buf);
788 		assert(ds);
789 		assert(wqe);
790 		/*
791 		 * Spill on next WQE when the current one does not have
792 		 * enough room left. Size of WQE must a be a multiple
793 		 * of data segment size.
794 		 */
795 		assert(!(MLX5_WQE_SIZE % MLX5_WQE_DWORD_SIZE));
796 		if (!(ds % (MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE))) {
797 			if (unlikely(--max_wqe == 0))
798 				break;
799 			dseg = (volatile rte_v128u32_t *)
800 			       tx_mlx5_wqe(txq, txq->wqe_ci + ds / 4);
801 			rte_prefetch0(tx_mlx5_wqe(txq,
802 						  txq->wqe_ci + ds / 4 + 1));
803 		} else {
804 			++dseg;
805 		}
806 		++ds;
807 		buf = buf->next;
808 		assert(buf);
809 		length = DATA_LEN(buf);
810 #ifdef MLX5_PMD_SOFT_COUNTERS
811 		total_length += length;
812 #endif
813 		/* Store segment information. */
814 		addr_64 = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf, uintptr_t));
815 		*dseg = (rte_v128u32_t){
816 			rte_cpu_to_be_32(length),
817 			mlx5_tx_mb2mr(txq, buf),
818 			addr_64,
819 			addr_64 >> 32,
820 		};
821 		(*txq->elts)[++elts_head & elts_m] = buf;
822 		if (--segs_n)
823 			goto next_seg;
824 next_pkt:
825 		if (ds > MLX5_DSEG_MAX) {
826 			txq->stats.oerrors++;
827 			break;
828 		}
829 		++elts_head;
830 		++pkts;
831 		++i;
832 		j += sg;
833 		/* Initialize known and common part of the WQE structure. */
834 		if (tso) {
835 			wqe->ctrl = (rte_v128u32_t){
836 				rte_cpu_to_be_32((txq->wqe_ci << 8) |
837 						 MLX5_OPCODE_TSO),
838 				rte_cpu_to_be_32(txq->qp_num_8s | ds),
839 				0,
840 				0,
841 			};
842 			wqe->eseg = (rte_v128u32_t){
843 				swp_offsets,
844 				cs_flags | (swp_types << 8) |
845 				(rte_cpu_to_be_16(tso_segsz) << 16),
846 				metadata,
847 				(ehdr << 16) | rte_cpu_to_be_16(tso_header_sz),
848 			};
849 		} else {
850 			wqe->ctrl = (rte_v128u32_t){
851 				rte_cpu_to_be_32((txq->wqe_ci << 8) |
852 						 MLX5_OPCODE_SEND),
853 				rte_cpu_to_be_32(txq->qp_num_8s | ds),
854 				0,
855 				0,
856 			};
857 			wqe->eseg = (rte_v128u32_t){
858 				swp_offsets,
859 				cs_flags | (swp_types << 8),
860 				metadata,
861 				(ehdr << 16) | rte_cpu_to_be_16(pkt_inline_sz),
862 			};
863 		}
864 next_wqe:
865 		txq->wqe_ci += (ds + 3) / 4;
866 		/* Save the last successful WQE for completion request */
867 		last_wqe = (volatile struct mlx5_wqe_ctrl *)wqe;
868 #ifdef MLX5_PMD_SOFT_COUNTERS
869 		/* Increment sent bytes counter. */
870 		txq->stats.obytes += total_length;
871 #endif
872 	} while (i < pkts_n);
873 	/* Take a shortcut if nothing must be sent. */
874 	if (unlikely((i + k) == 0))
875 		return 0;
876 	txq->elts_head += (i + j);
877 	/* Check whether completion threshold has been reached. */
878 	comp = txq->elts_comp + i + j + k;
879 	if (comp >= MLX5_TX_COMP_THRESH) {
880 		/* A CQE slot must always be available. */
881 		assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
882 		/* Request completion on last WQE. */
883 		last_wqe->ctrl2 = rte_cpu_to_be_32(8);
884 		/* Save elts_head in unused "immediate" field of WQE. */
885 		last_wqe->ctrl3 = txq->elts_head;
886 		txq->elts_comp = 0;
887 	} else {
888 		txq->elts_comp = comp;
889 	}
890 #ifdef MLX5_PMD_SOFT_COUNTERS
891 	/* Increment sent packets counter. */
892 	txq->stats.opackets += i;
893 #endif
894 	/* Ring QP doorbell. */
895 	mlx5_tx_dbrec(txq, (volatile struct mlx5_wqe *)last_wqe);
896 	return i;
897 }
898 
899 /**
900  * Open a MPW session.
901  *
902  * @param txq
903  *   Pointer to TX queue structure.
904  * @param mpw
905  *   Pointer to MPW session structure.
906  * @param length
907  *   Packet length.
908  */
909 static inline void
910 mlx5_mpw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, uint32_t length)
911 {
912 	uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
913 	volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
914 		(volatile struct mlx5_wqe_data_seg (*)[])
915 		tx_mlx5_wqe(txq, idx + 1);
916 
917 	mpw->state = MLX5_MPW_STATE_OPENED;
918 	mpw->pkts_n = 0;
919 	mpw->len = length;
920 	mpw->total_len = 0;
921 	mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
922 	mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
923 	mpw->wqe->eseg.inline_hdr_sz = 0;
924 	mpw->wqe->eseg.rsvd0 = 0;
925 	mpw->wqe->eseg.rsvd1 = 0;
926 	mpw->wqe->eseg.flow_table_metadata = 0;
927 	mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
928 					     (txq->wqe_ci << 8) |
929 					     MLX5_OPCODE_TSO);
930 	mpw->wqe->ctrl[2] = 0;
931 	mpw->wqe->ctrl[3] = 0;
932 	mpw->data.dseg[0] = (volatile struct mlx5_wqe_data_seg *)
933 		(((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
934 	mpw->data.dseg[1] = (volatile struct mlx5_wqe_data_seg *)
935 		(((uintptr_t)mpw->wqe) + (3 * MLX5_WQE_DWORD_SIZE));
936 	mpw->data.dseg[2] = &(*dseg)[0];
937 	mpw->data.dseg[3] = &(*dseg)[1];
938 	mpw->data.dseg[4] = &(*dseg)[2];
939 }
940 
941 /**
942  * Close a MPW session.
943  *
944  * @param txq
945  *   Pointer to TX queue structure.
946  * @param mpw
947  *   Pointer to MPW session structure.
948  */
949 static inline void
950 mlx5_mpw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
951 {
952 	unsigned int num = mpw->pkts_n;
953 
954 	/*
955 	 * Store size in multiple of 16 bytes. Control and Ethernet segments
956 	 * count as 2.
957 	 */
958 	mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s | (2 + num));
959 	mpw->state = MLX5_MPW_STATE_CLOSED;
960 	if (num < 3)
961 		++txq->wqe_ci;
962 	else
963 		txq->wqe_ci += 2;
964 	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
965 	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
966 }
967 
968 /**
969  * DPDK callback for TX with MPW support.
970  *
971  * @param dpdk_txq
972  *   Generic pointer to TX queue structure.
973  * @param[in] pkts
974  *   Packets to transmit.
975  * @param pkts_n
976  *   Number of packets in array.
977  *
978  * @return
979  *   Number of packets successfully transmitted (<= pkts_n).
980  */
981 uint16_t
982 mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
983 {
984 	struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
985 	uint16_t elts_head = txq->elts_head;
986 	const uint16_t elts_n = 1 << txq->elts_n;
987 	const uint16_t elts_m = elts_n - 1;
988 	unsigned int i = 0;
989 	unsigned int j = 0;
990 	uint16_t max_elts;
991 	uint16_t max_wqe;
992 	unsigned int comp;
993 	struct mlx5_mpw mpw = {
994 		.state = MLX5_MPW_STATE_CLOSED,
995 	};
996 
997 	if (unlikely(!pkts_n))
998 		return 0;
999 	/* Prefetch first packet cacheline. */
1000 	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
1001 	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
1002 	/* Start processing. */
1003 	mlx5_tx_complete(txq);
1004 	max_elts = (elts_n - (elts_head - txq->elts_tail));
1005 	max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1006 	if (unlikely(!max_wqe))
1007 		return 0;
1008 	do {
1009 		struct rte_mbuf *buf = *(pkts++);
1010 		uint32_t length;
1011 		unsigned int segs_n = buf->nb_segs;
1012 		uint32_t cs_flags;
1013 		rte_be32_t metadata;
1014 
1015 		/*
1016 		 * Make sure there is enough room to store this packet and
1017 		 * that one ring entry remains unused.
1018 		 */
1019 		assert(segs_n);
1020 		if (max_elts < segs_n)
1021 			break;
1022 		/* Do not bother with large packets MPW cannot handle. */
1023 		if (segs_n > MLX5_MPW_DSEG_MAX) {
1024 			txq->stats.oerrors++;
1025 			break;
1026 		}
1027 		max_elts -= segs_n;
1028 		--pkts_n;
1029 		cs_flags = txq_ol_cksum_to_cs(buf);
1030 		/* Copy metadata from mbuf if valid */
1031 		metadata = buf->ol_flags & PKT_TX_METADATA ? buf->tx_metadata :
1032 							     0;
1033 		/* Retrieve packet information. */
1034 		length = PKT_LEN(buf);
1035 		assert(length);
1036 		/* Start new session if packet differs. */
1037 		if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
1038 		    ((mpw.len != length) ||
1039 		     (segs_n != 1) ||
1040 		     (mpw.wqe->eseg.flow_table_metadata != metadata) ||
1041 		     (mpw.wqe->eseg.cs_flags != cs_flags)))
1042 			mlx5_mpw_close(txq, &mpw);
1043 		if (mpw.state == MLX5_MPW_STATE_CLOSED) {
1044 			/*
1045 			 * Multi-Packet WQE consumes at most two WQE.
1046 			 * mlx5_mpw_new() expects to be able to use such
1047 			 * resources.
1048 			 */
1049 			if (unlikely(max_wqe < 2))
1050 				break;
1051 			max_wqe -= 2;
1052 			mlx5_mpw_new(txq, &mpw, length);
1053 			mpw.wqe->eseg.cs_flags = cs_flags;
1054 			mpw.wqe->eseg.flow_table_metadata = metadata;
1055 		}
1056 		/* Multi-segment packets must be alone in their MPW. */
1057 		assert((segs_n == 1) || (mpw.pkts_n == 0));
1058 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1059 		length = 0;
1060 #endif
1061 		do {
1062 			volatile struct mlx5_wqe_data_seg *dseg;
1063 			uintptr_t addr;
1064 
1065 			assert(buf);
1066 			(*txq->elts)[elts_head++ & elts_m] = buf;
1067 			dseg = mpw.data.dseg[mpw.pkts_n];
1068 			addr = rte_pktmbuf_mtod(buf, uintptr_t);
1069 			*dseg = (struct mlx5_wqe_data_seg){
1070 				.byte_count = rte_cpu_to_be_32(DATA_LEN(buf)),
1071 				.lkey = mlx5_tx_mb2mr(txq, buf),
1072 				.addr = rte_cpu_to_be_64(addr),
1073 			};
1074 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1075 			length += DATA_LEN(buf);
1076 #endif
1077 			buf = buf->next;
1078 			++mpw.pkts_n;
1079 			++j;
1080 		} while (--segs_n);
1081 		assert(length == mpw.len);
1082 		if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1083 			mlx5_mpw_close(txq, &mpw);
1084 #ifdef MLX5_PMD_SOFT_COUNTERS
1085 		/* Increment sent bytes counter. */
1086 		txq->stats.obytes += length;
1087 #endif
1088 		++i;
1089 	} while (pkts_n);
1090 	/* Take a shortcut if nothing must be sent. */
1091 	if (unlikely(i == 0))
1092 		return 0;
1093 	/* Check whether completion threshold has been reached. */
1094 	/* "j" includes both packets and segments. */
1095 	comp = txq->elts_comp + j;
1096 	if (comp >= MLX5_TX_COMP_THRESH) {
1097 		volatile struct mlx5_wqe *wqe = mpw.wqe;
1098 
1099 		/* A CQE slot must always be available. */
1100 		assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
1101 		/* Request completion on last WQE. */
1102 		wqe->ctrl[2] = rte_cpu_to_be_32(8);
1103 		/* Save elts_head in unused "immediate" field of WQE. */
1104 		wqe->ctrl[3] = elts_head;
1105 		txq->elts_comp = 0;
1106 	} else {
1107 		txq->elts_comp = comp;
1108 	}
1109 #ifdef MLX5_PMD_SOFT_COUNTERS
1110 	/* Increment sent packets counter. */
1111 	txq->stats.opackets += i;
1112 #endif
1113 	/* Ring QP doorbell. */
1114 	if (mpw.state == MLX5_MPW_STATE_OPENED)
1115 		mlx5_mpw_close(txq, &mpw);
1116 	mlx5_tx_dbrec(txq, mpw.wqe);
1117 	txq->elts_head = elts_head;
1118 	return i;
1119 }
1120 
1121 /**
1122  * Open a MPW inline session.
1123  *
1124  * @param txq
1125  *   Pointer to TX queue structure.
1126  * @param mpw
1127  *   Pointer to MPW session structure.
1128  * @param length
1129  *   Packet length.
1130  */
1131 static inline void
1132 mlx5_mpw_inline_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw,
1133 		    uint32_t length)
1134 {
1135 	uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1136 	struct mlx5_wqe_inl_small *inl;
1137 
1138 	mpw->state = MLX5_MPW_INL_STATE_OPENED;
1139 	mpw->pkts_n = 0;
1140 	mpw->len = length;
1141 	mpw->total_len = 0;
1142 	mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1143 	mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
1144 					     (txq->wqe_ci << 8) |
1145 					     MLX5_OPCODE_TSO);
1146 	mpw->wqe->ctrl[2] = 0;
1147 	mpw->wqe->ctrl[3] = 0;
1148 	mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
1149 	mpw->wqe->eseg.inline_hdr_sz = 0;
1150 	mpw->wqe->eseg.cs_flags = 0;
1151 	mpw->wqe->eseg.rsvd0 = 0;
1152 	mpw->wqe->eseg.rsvd1 = 0;
1153 	mpw->wqe->eseg.flow_table_metadata = 0;
1154 	inl = (struct mlx5_wqe_inl_small *)
1155 		(((uintptr_t)mpw->wqe) + 2 * MLX5_WQE_DWORD_SIZE);
1156 	mpw->data.raw = (uint8_t *)&inl->raw;
1157 }
1158 
1159 /**
1160  * Close a MPW inline session.
1161  *
1162  * @param txq
1163  *   Pointer to TX queue structure.
1164  * @param mpw
1165  *   Pointer to MPW session structure.
1166  */
1167 static inline void
1168 mlx5_mpw_inline_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1169 {
1170 	unsigned int size;
1171 	struct mlx5_wqe_inl_small *inl = (struct mlx5_wqe_inl_small *)
1172 		(((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
1173 
1174 	size = MLX5_WQE_SIZE - MLX5_MWQE64_INL_DATA + mpw->total_len;
1175 	/*
1176 	 * Store size in multiple of 16 bytes. Control and Ethernet segments
1177 	 * count as 2.
1178 	 */
1179 	mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1180 					     MLX5_WQE_DS(size));
1181 	mpw->state = MLX5_MPW_STATE_CLOSED;
1182 	inl->byte_cnt = rte_cpu_to_be_32(mpw->total_len | MLX5_INLINE_SEG);
1183 	txq->wqe_ci += (size + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1184 }
1185 
1186 /**
1187  * DPDK callback for TX with MPW inline support.
1188  *
1189  * @param dpdk_txq
1190  *   Generic pointer to TX queue structure.
1191  * @param[in] pkts
1192  *   Packets to transmit.
1193  * @param pkts_n
1194  *   Number of packets in array.
1195  *
1196  * @return
1197  *   Number of packets successfully transmitted (<= pkts_n).
1198  */
1199 uint16_t
1200 mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
1201 			 uint16_t pkts_n)
1202 {
1203 	struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1204 	uint16_t elts_head = txq->elts_head;
1205 	const uint16_t elts_n = 1 << txq->elts_n;
1206 	const uint16_t elts_m = elts_n - 1;
1207 	unsigned int i = 0;
1208 	unsigned int j = 0;
1209 	uint16_t max_elts;
1210 	uint16_t max_wqe;
1211 	unsigned int comp;
1212 	unsigned int inline_room = txq->max_inline * RTE_CACHE_LINE_SIZE;
1213 	struct mlx5_mpw mpw = {
1214 		.state = MLX5_MPW_STATE_CLOSED,
1215 	};
1216 	/*
1217 	 * Compute the maximum number of WQE which can be consumed by inline
1218 	 * code.
1219 	 * - 2 DSEG for:
1220 	 *   - 1 control segment,
1221 	 *   - 1 Ethernet segment,
1222 	 * - N Dseg from the inline request.
1223 	 */
1224 	const unsigned int wqe_inl_n =
1225 		((2 * MLX5_WQE_DWORD_SIZE +
1226 		  txq->max_inline * RTE_CACHE_LINE_SIZE) +
1227 		 RTE_CACHE_LINE_SIZE - 1) / RTE_CACHE_LINE_SIZE;
1228 
1229 	if (unlikely(!pkts_n))
1230 		return 0;
1231 	/* Prefetch first packet cacheline. */
1232 	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
1233 	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
1234 	/* Start processing. */
1235 	mlx5_tx_complete(txq);
1236 	max_elts = (elts_n - (elts_head - txq->elts_tail));
1237 	do {
1238 		struct rte_mbuf *buf = *(pkts++);
1239 		uintptr_t addr;
1240 		uint32_t length;
1241 		unsigned int segs_n = buf->nb_segs;
1242 		uint8_t cs_flags;
1243 		rte_be32_t metadata;
1244 
1245 		/*
1246 		 * Make sure there is enough room to store this packet and
1247 		 * that one ring entry remains unused.
1248 		 */
1249 		assert(segs_n);
1250 		if (max_elts < segs_n)
1251 			break;
1252 		/* Do not bother with large packets MPW cannot handle. */
1253 		if (segs_n > MLX5_MPW_DSEG_MAX) {
1254 			txq->stats.oerrors++;
1255 			break;
1256 		}
1257 		max_elts -= segs_n;
1258 		--pkts_n;
1259 		/*
1260 		 * Compute max_wqe in case less WQE were consumed in previous
1261 		 * iteration.
1262 		 */
1263 		max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1264 		cs_flags = txq_ol_cksum_to_cs(buf);
1265 		/* Copy metadata from mbuf if valid */
1266 		metadata = buf->ol_flags & PKT_TX_METADATA ? buf->tx_metadata :
1267 							     0;
1268 		/* Retrieve packet information. */
1269 		length = PKT_LEN(buf);
1270 		/* Start new session if packet differs. */
1271 		if (mpw.state == MLX5_MPW_STATE_OPENED) {
1272 			if ((mpw.len != length) ||
1273 			    (segs_n != 1) ||
1274 			    (mpw.wqe->eseg.flow_table_metadata != metadata) ||
1275 			    (mpw.wqe->eseg.cs_flags != cs_flags))
1276 				mlx5_mpw_close(txq, &mpw);
1277 		} else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
1278 			if ((mpw.len != length) ||
1279 			    (segs_n != 1) ||
1280 			    (length > inline_room) ||
1281 			    (mpw.wqe->eseg.flow_table_metadata != metadata) ||
1282 			    (mpw.wqe->eseg.cs_flags != cs_flags)) {
1283 				mlx5_mpw_inline_close(txq, &mpw);
1284 				inline_room =
1285 					txq->max_inline * RTE_CACHE_LINE_SIZE;
1286 			}
1287 		}
1288 		if (mpw.state == MLX5_MPW_STATE_CLOSED) {
1289 			if ((segs_n != 1) ||
1290 			    (length > inline_room)) {
1291 				/*
1292 				 * Multi-Packet WQE consumes at most two WQE.
1293 				 * mlx5_mpw_new() expects to be able to use
1294 				 * such resources.
1295 				 */
1296 				if (unlikely(max_wqe < 2))
1297 					break;
1298 				max_wqe -= 2;
1299 				mlx5_mpw_new(txq, &mpw, length);
1300 				mpw.wqe->eseg.cs_flags = cs_flags;
1301 				mpw.wqe->eseg.flow_table_metadata = metadata;
1302 			} else {
1303 				if (unlikely(max_wqe < wqe_inl_n))
1304 					break;
1305 				max_wqe -= wqe_inl_n;
1306 				mlx5_mpw_inline_new(txq, &mpw, length);
1307 				mpw.wqe->eseg.cs_flags = cs_flags;
1308 				mpw.wqe->eseg.flow_table_metadata = metadata;
1309 			}
1310 		}
1311 		/* Multi-segment packets must be alone in their MPW. */
1312 		assert((segs_n == 1) || (mpw.pkts_n == 0));
1313 		if (mpw.state == MLX5_MPW_STATE_OPENED) {
1314 			assert(inline_room ==
1315 			       txq->max_inline * RTE_CACHE_LINE_SIZE);
1316 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1317 			length = 0;
1318 #endif
1319 			do {
1320 				volatile struct mlx5_wqe_data_seg *dseg;
1321 
1322 				assert(buf);
1323 				(*txq->elts)[elts_head++ & elts_m] = buf;
1324 				dseg = mpw.data.dseg[mpw.pkts_n];
1325 				addr = rte_pktmbuf_mtod(buf, uintptr_t);
1326 				*dseg = (struct mlx5_wqe_data_seg){
1327 					.byte_count =
1328 					       rte_cpu_to_be_32(DATA_LEN(buf)),
1329 					.lkey = mlx5_tx_mb2mr(txq, buf),
1330 					.addr = rte_cpu_to_be_64(addr),
1331 				};
1332 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1333 				length += DATA_LEN(buf);
1334 #endif
1335 				buf = buf->next;
1336 				++mpw.pkts_n;
1337 				++j;
1338 			} while (--segs_n);
1339 			assert(length == mpw.len);
1340 			if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1341 				mlx5_mpw_close(txq, &mpw);
1342 		} else {
1343 			unsigned int max;
1344 
1345 			assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
1346 			assert(length <= inline_room);
1347 			assert(length == DATA_LEN(buf));
1348 			addr = rte_pktmbuf_mtod(buf, uintptr_t);
1349 			(*txq->elts)[elts_head++ & elts_m] = buf;
1350 			/* Maximum number of bytes before wrapping. */
1351 			max = ((((uintptr_t)(txq->wqes)) +
1352 				(1 << txq->wqe_n) *
1353 				MLX5_WQE_SIZE) -
1354 			       (uintptr_t)mpw.data.raw);
1355 			if (length > max) {
1356 				rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1357 					   (void *)addr,
1358 					   max);
1359 				mpw.data.raw = (volatile void *)txq->wqes;
1360 				rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1361 					   (void *)(addr + max),
1362 					   length - max);
1363 				mpw.data.raw += length - max;
1364 			} else {
1365 				rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1366 					   (void *)addr,
1367 					   length);
1368 
1369 				if (length == max)
1370 					mpw.data.raw =
1371 						(volatile void *)txq->wqes;
1372 				else
1373 					mpw.data.raw += length;
1374 			}
1375 			++mpw.pkts_n;
1376 			mpw.total_len += length;
1377 			++j;
1378 			if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
1379 				mlx5_mpw_inline_close(txq, &mpw);
1380 				inline_room =
1381 					txq->max_inline * RTE_CACHE_LINE_SIZE;
1382 			} else {
1383 				inline_room -= length;
1384 			}
1385 		}
1386 #ifdef MLX5_PMD_SOFT_COUNTERS
1387 		/* Increment sent bytes counter. */
1388 		txq->stats.obytes += length;
1389 #endif
1390 		++i;
1391 	} while (pkts_n);
1392 	/* Take a shortcut if nothing must be sent. */
1393 	if (unlikely(i == 0))
1394 		return 0;
1395 	/* Check whether completion threshold has been reached. */
1396 	/* "j" includes both packets and segments. */
1397 	comp = txq->elts_comp + j;
1398 	if (comp >= MLX5_TX_COMP_THRESH) {
1399 		volatile struct mlx5_wqe *wqe = mpw.wqe;
1400 
1401 		/* A CQE slot must always be available. */
1402 		assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
1403 		/* Request completion on last WQE. */
1404 		wqe->ctrl[2] = rte_cpu_to_be_32(8);
1405 		/* Save elts_head in unused "immediate" field of WQE. */
1406 		wqe->ctrl[3] = elts_head;
1407 		txq->elts_comp = 0;
1408 	} else {
1409 		txq->elts_comp = comp;
1410 	}
1411 #ifdef MLX5_PMD_SOFT_COUNTERS
1412 	/* Increment sent packets counter. */
1413 	txq->stats.opackets += i;
1414 #endif
1415 	/* Ring QP doorbell. */
1416 	if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
1417 		mlx5_mpw_inline_close(txq, &mpw);
1418 	else if (mpw.state == MLX5_MPW_STATE_OPENED)
1419 		mlx5_mpw_close(txq, &mpw);
1420 	mlx5_tx_dbrec(txq, mpw.wqe);
1421 	txq->elts_head = elts_head;
1422 	return i;
1423 }
1424 
1425 /**
1426  * Open an Enhanced MPW session.
1427  *
1428  * @param txq
1429  *   Pointer to TX queue structure.
1430  * @param mpw
1431  *   Pointer to MPW session structure.
1432  * @param length
1433  *   Packet length.
1434  */
1435 static inline void
1436 mlx5_empw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, int padding)
1437 {
1438 	uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1439 
1440 	mpw->state = MLX5_MPW_ENHANCED_STATE_OPENED;
1441 	mpw->pkts_n = 0;
1442 	mpw->total_len = sizeof(struct mlx5_wqe);
1443 	mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1444 	mpw->wqe->ctrl[0] =
1445 		rte_cpu_to_be_32((MLX5_OPC_MOD_ENHANCED_MPSW << 24) |
1446 				 (txq->wqe_ci << 8) |
1447 				 MLX5_OPCODE_ENHANCED_MPSW);
1448 	mpw->wqe->ctrl[2] = 0;
1449 	mpw->wqe->ctrl[3] = 0;
1450 	memset((void *)(uintptr_t)&mpw->wqe->eseg, 0, MLX5_WQE_DWORD_SIZE);
1451 	if (unlikely(padding)) {
1452 		uintptr_t addr = (uintptr_t)(mpw->wqe + 1);
1453 
1454 		/* Pad the first 2 DWORDs with zero-length inline header. */
1455 		*(volatile uint32_t *)addr = rte_cpu_to_be_32(MLX5_INLINE_SEG);
1456 		*(volatile uint32_t *)(addr + MLX5_WQE_DWORD_SIZE) =
1457 			rte_cpu_to_be_32(MLX5_INLINE_SEG);
1458 		mpw->total_len += 2 * MLX5_WQE_DWORD_SIZE;
1459 		/* Start from the next WQEBB. */
1460 		mpw->data.raw = (volatile void *)(tx_mlx5_wqe(txq, idx + 1));
1461 	} else {
1462 		mpw->data.raw = (volatile void *)(mpw->wqe + 1);
1463 	}
1464 }
1465 
1466 /**
1467  * Close an Enhanced MPW session.
1468  *
1469  * @param txq
1470  *   Pointer to TX queue structure.
1471  * @param mpw
1472  *   Pointer to MPW session structure.
1473  *
1474  * @return
1475  *   Number of consumed WQEs.
1476  */
1477 static inline uint16_t
1478 mlx5_empw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1479 {
1480 	uint16_t ret;
1481 
1482 	/* Store size in multiple of 16 bytes. Control and Ethernet segments
1483 	 * count as 2.
1484 	 */
1485 	mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1486 					     MLX5_WQE_DS(mpw->total_len));
1487 	mpw->state = MLX5_MPW_STATE_CLOSED;
1488 	ret = (mpw->total_len + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1489 	txq->wqe_ci += ret;
1490 	return ret;
1491 }
1492 
1493 /**
1494  * TX with Enhanced MPW support.
1495  *
1496  * @param txq
1497  *   Pointer to TX queue structure.
1498  * @param[in] pkts
1499  *   Packets to transmit.
1500  * @param pkts_n
1501  *   Number of packets in array.
1502  *
1503  * @return
1504  *   Number of packets successfully transmitted (<= pkts_n).
1505  */
1506 static inline uint16_t
1507 txq_burst_empw(struct mlx5_txq_data *txq, struct rte_mbuf **pkts,
1508 	       uint16_t pkts_n)
1509 {
1510 	uint16_t elts_head = txq->elts_head;
1511 	const uint16_t elts_n = 1 << txq->elts_n;
1512 	const uint16_t elts_m = elts_n - 1;
1513 	unsigned int i = 0;
1514 	unsigned int j = 0;
1515 	uint16_t max_elts;
1516 	uint16_t max_wqe;
1517 	unsigned int max_inline = txq->max_inline * RTE_CACHE_LINE_SIZE;
1518 	unsigned int mpw_room = 0;
1519 	unsigned int inl_pad = 0;
1520 	uint32_t inl_hdr;
1521 	uint64_t addr_64;
1522 	struct mlx5_mpw mpw = {
1523 		.state = MLX5_MPW_STATE_CLOSED,
1524 	};
1525 
1526 	if (unlikely(!pkts_n))
1527 		return 0;
1528 	/* Start processing. */
1529 	mlx5_tx_complete(txq);
1530 	max_elts = (elts_n - (elts_head - txq->elts_tail));
1531 	max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1532 	if (unlikely(!max_wqe))
1533 		return 0;
1534 	do {
1535 		struct rte_mbuf *buf = *(pkts++);
1536 		uintptr_t addr;
1537 		unsigned int do_inline = 0; /* Whether inline is possible. */
1538 		uint32_t length;
1539 		uint8_t cs_flags;
1540 		rte_be32_t metadata;
1541 
1542 		/* Multi-segmented packet is handled in slow-path outside. */
1543 		assert(NB_SEGS(buf) == 1);
1544 		/* Make sure there is enough room to store this packet. */
1545 		if (max_elts - j == 0)
1546 			break;
1547 		cs_flags = txq_ol_cksum_to_cs(buf);
1548 		/* Copy metadata from mbuf if valid */
1549 		metadata = buf->ol_flags & PKT_TX_METADATA ? buf->tx_metadata :
1550 							     0;
1551 		/* Retrieve packet information. */
1552 		length = PKT_LEN(buf);
1553 		/* Start new session if:
1554 		 * - multi-segment packet
1555 		 * - no space left even for a dseg
1556 		 * - next packet can be inlined with a new WQE
1557 		 * - cs_flag differs
1558 		 */
1559 		if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED) {
1560 			if ((inl_pad + sizeof(struct mlx5_wqe_data_seg) >
1561 			     mpw_room) ||
1562 			    (length <= txq->inline_max_packet_sz &&
1563 			     inl_pad + sizeof(inl_hdr) + length >
1564 			     mpw_room) ||
1565 			     (mpw.wqe->eseg.flow_table_metadata != metadata) ||
1566 			    (mpw.wqe->eseg.cs_flags != cs_flags))
1567 				max_wqe -= mlx5_empw_close(txq, &mpw);
1568 		}
1569 		if (unlikely(mpw.state == MLX5_MPW_STATE_CLOSED)) {
1570 			/* In Enhanced MPW, inline as much as the budget is
1571 			 * allowed. The remaining space is to be filled with
1572 			 * dsegs. If the title WQEBB isn't padded, it will have
1573 			 * 2 dsegs there.
1574 			 */
1575 			mpw_room = RTE_MIN(MLX5_WQE_SIZE_MAX,
1576 					   (max_inline ? max_inline :
1577 					    pkts_n * MLX5_WQE_DWORD_SIZE) +
1578 					   MLX5_WQE_SIZE);
1579 			if (unlikely(max_wqe * MLX5_WQE_SIZE < mpw_room))
1580 				break;
1581 			/* Don't pad the title WQEBB to not waste WQ. */
1582 			mlx5_empw_new(txq, &mpw, 0);
1583 			mpw_room -= mpw.total_len;
1584 			inl_pad = 0;
1585 			do_inline = length <= txq->inline_max_packet_sz &&
1586 				    sizeof(inl_hdr) + length <= mpw_room &&
1587 				    !txq->mpw_hdr_dseg;
1588 			mpw.wqe->eseg.cs_flags = cs_flags;
1589 			mpw.wqe->eseg.flow_table_metadata = metadata;
1590 		} else {
1591 			/* Evaluate whether the next packet can be inlined.
1592 			 * Inlininig is possible when:
1593 			 * - length is less than configured value
1594 			 * - length fits for remaining space
1595 			 * - not required to fill the title WQEBB with dsegs
1596 			 */
1597 			do_inline =
1598 				length <= txq->inline_max_packet_sz &&
1599 				inl_pad + sizeof(inl_hdr) + length <=
1600 				 mpw_room &&
1601 				(!txq->mpw_hdr_dseg ||
1602 				 mpw.total_len >= MLX5_WQE_SIZE);
1603 		}
1604 		if (max_inline && do_inline) {
1605 			/* Inline packet into WQE. */
1606 			unsigned int max;
1607 
1608 			assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1609 			assert(length == DATA_LEN(buf));
1610 			inl_hdr = rte_cpu_to_be_32(length | MLX5_INLINE_SEG);
1611 			addr = rte_pktmbuf_mtod(buf, uintptr_t);
1612 			mpw.data.raw = (volatile void *)
1613 				((uintptr_t)mpw.data.raw + inl_pad);
1614 			max = tx_mlx5_wq_tailroom(txq,
1615 					(void *)(uintptr_t)mpw.data.raw);
1616 			/* Copy inline header. */
1617 			mpw.data.raw = (volatile void *)
1618 				mlx5_copy_to_wq(
1619 					  (void *)(uintptr_t)mpw.data.raw,
1620 					  &inl_hdr,
1621 					  sizeof(inl_hdr),
1622 					  (void *)(uintptr_t)txq->wqes,
1623 					  max);
1624 			max = tx_mlx5_wq_tailroom(txq,
1625 					(void *)(uintptr_t)mpw.data.raw);
1626 			/* Copy packet data. */
1627 			mpw.data.raw = (volatile void *)
1628 				mlx5_copy_to_wq(
1629 					  (void *)(uintptr_t)mpw.data.raw,
1630 					  (void *)addr,
1631 					  length,
1632 					  (void *)(uintptr_t)txq->wqes,
1633 					  max);
1634 			++mpw.pkts_n;
1635 			mpw.total_len += (inl_pad + sizeof(inl_hdr) + length);
1636 			/* No need to get completion as the entire packet is
1637 			 * copied to WQ. Free the buf right away.
1638 			 */
1639 			rte_pktmbuf_free_seg(buf);
1640 			mpw_room -= (inl_pad + sizeof(inl_hdr) + length);
1641 			/* Add pad in the next packet if any. */
1642 			inl_pad = (((uintptr_t)mpw.data.raw +
1643 					(MLX5_WQE_DWORD_SIZE - 1)) &
1644 					~(MLX5_WQE_DWORD_SIZE - 1)) -
1645 				  (uintptr_t)mpw.data.raw;
1646 		} else {
1647 			/* No inline. Load a dseg of packet pointer. */
1648 			volatile rte_v128u32_t *dseg;
1649 
1650 			assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1651 			assert((inl_pad + sizeof(*dseg)) <= mpw_room);
1652 			assert(length == DATA_LEN(buf));
1653 			if (!tx_mlx5_wq_tailroom(txq,
1654 					(void *)((uintptr_t)mpw.data.raw
1655 						+ inl_pad)))
1656 				dseg = (volatile void *)txq->wqes;
1657 			else
1658 				dseg = (volatile void *)
1659 					((uintptr_t)mpw.data.raw +
1660 					 inl_pad);
1661 			(*txq->elts)[elts_head++ & elts_m] = buf;
1662 			addr_64 = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf,
1663 								    uintptr_t));
1664 			*dseg = (rte_v128u32_t) {
1665 				rte_cpu_to_be_32(length),
1666 				mlx5_tx_mb2mr(txq, buf),
1667 				addr_64,
1668 				addr_64 >> 32,
1669 			};
1670 			mpw.data.raw = (volatile void *)(dseg + 1);
1671 			mpw.total_len += (inl_pad + sizeof(*dseg));
1672 			++j;
1673 			++mpw.pkts_n;
1674 			mpw_room -= (inl_pad + sizeof(*dseg));
1675 			inl_pad = 0;
1676 		}
1677 #ifdef MLX5_PMD_SOFT_COUNTERS
1678 		/* Increment sent bytes counter. */
1679 		txq->stats.obytes += length;
1680 #endif
1681 		++i;
1682 	} while (i < pkts_n);
1683 	/* Take a shortcut if nothing must be sent. */
1684 	if (unlikely(i == 0))
1685 		return 0;
1686 	/* Check whether completion threshold has been reached. */
1687 	if (txq->elts_comp + j >= MLX5_TX_COMP_THRESH ||
1688 			(uint16_t)(txq->wqe_ci - txq->mpw_comp) >=
1689 			 (1 << txq->wqe_n) / MLX5_TX_COMP_THRESH_INLINE_DIV) {
1690 		volatile struct mlx5_wqe *wqe = mpw.wqe;
1691 
1692 		/* A CQE slot must always be available. */
1693 		assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
1694 		/* Request completion on last WQE. */
1695 		wqe->ctrl[2] = rte_cpu_to_be_32(8);
1696 		/* Save elts_head in unused "immediate" field of WQE. */
1697 		wqe->ctrl[3] = elts_head;
1698 		txq->elts_comp = 0;
1699 		txq->mpw_comp = txq->wqe_ci;
1700 	} else {
1701 		txq->elts_comp += j;
1702 	}
1703 #ifdef MLX5_PMD_SOFT_COUNTERS
1704 	/* Increment sent packets counter. */
1705 	txq->stats.opackets += i;
1706 #endif
1707 	if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED)
1708 		mlx5_empw_close(txq, &mpw);
1709 	/* Ring QP doorbell. */
1710 	mlx5_tx_dbrec(txq, mpw.wqe);
1711 	txq->elts_head = elts_head;
1712 	return i;
1713 }
1714 
1715 /**
1716  * DPDK callback for TX with Enhanced MPW support.
1717  *
1718  * @param dpdk_txq
1719  *   Generic pointer to TX queue structure.
1720  * @param[in] pkts
1721  *   Packets to transmit.
1722  * @param pkts_n
1723  *   Number of packets in array.
1724  *
1725  * @return
1726  *   Number of packets successfully transmitted (<= pkts_n).
1727  */
1728 uint16_t
1729 mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1730 {
1731 	struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1732 	uint16_t nb_tx = 0;
1733 
1734 	while (pkts_n > nb_tx) {
1735 		uint16_t n;
1736 		uint16_t ret;
1737 
1738 		n = txq_count_contig_multi_seg(&pkts[nb_tx], pkts_n - nb_tx);
1739 		if (n) {
1740 			ret = mlx5_tx_burst(dpdk_txq, &pkts[nb_tx], n);
1741 			if (!ret)
1742 				break;
1743 			nb_tx += ret;
1744 		}
1745 		n = txq_count_contig_single_seg(&pkts[nb_tx], pkts_n - nb_tx);
1746 		if (n) {
1747 			ret = txq_burst_empw(txq, &pkts[nb_tx], n);
1748 			if (!ret)
1749 				break;
1750 			nb_tx += ret;
1751 		}
1752 	}
1753 	return nb_tx;
1754 }
1755 
1756 /**
1757  * Translate RX completion flags to packet type.
1758  *
1759  * @param[in] rxq
1760  *   Pointer to RX queue structure.
1761  * @param[in] cqe
1762  *   Pointer to CQE.
1763  *
1764  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
1765  *
1766  * @return
1767  *   Packet type for struct rte_mbuf.
1768  */
1769 static inline uint32_t
1770 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe)
1771 {
1772 	uint8_t idx;
1773 	uint8_t pinfo = cqe->pkt_info;
1774 	uint16_t ptype = cqe->hdr_type_etc;
1775 
1776 	/*
1777 	 * The index to the array should have:
1778 	 * bit[1:0] = l3_hdr_type
1779 	 * bit[4:2] = l4_hdr_type
1780 	 * bit[5] = ip_frag
1781 	 * bit[6] = tunneled
1782 	 * bit[7] = outer_l3_type
1783 	 */
1784 	idx = ((pinfo & 0x3) << 6) | ((ptype & 0xfc00) >> 10);
1785 	return mlx5_ptype_table[idx] | rxq->tunnel * !!(idx & (1 << 6));
1786 }
1787 
1788 /**
1789  * Get size of the next packet for a given CQE. For compressed CQEs, the
1790  * consumer index is updated only once all packets of the current one have
1791  * been processed.
1792  *
1793  * @param rxq
1794  *   Pointer to RX queue.
1795  * @param cqe
1796  *   CQE to process.
1797  * @param[out] mcqe
1798  *   Store pointer to mini-CQE if compressed. Otherwise, the pointer is not
1799  *   written.
1800  *
1801  * @return
1802  *   Packet size in bytes (0 if there is none), -1 in case of completion
1803  *   with error.
1804  */
1805 static inline int
1806 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
1807 		 uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe)
1808 {
1809 	struct rxq_zip *zip = &rxq->zip;
1810 	uint16_t cqe_n = cqe_cnt + 1;
1811 	int len = 0;
1812 	uint16_t idx, end;
1813 
1814 	/* Process compressed data in the CQE and mini arrays. */
1815 	if (zip->ai) {
1816 		volatile struct mlx5_mini_cqe8 (*mc)[8] =
1817 			(volatile struct mlx5_mini_cqe8 (*)[8])
1818 			(uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt].pkt_info);
1819 
1820 		len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt);
1821 		*mcqe = &(*mc)[zip->ai & 7];
1822 		if ((++zip->ai & 7) == 0) {
1823 			/* Invalidate consumed CQEs */
1824 			idx = zip->ca;
1825 			end = zip->na;
1826 			while (idx != end) {
1827 				(*rxq->cqes)[idx & cqe_cnt].op_own =
1828 					MLX5_CQE_INVALIDATE;
1829 				++idx;
1830 			}
1831 			/*
1832 			 * Increment consumer index to skip the number of
1833 			 * CQEs consumed. Hardware leaves holes in the CQ
1834 			 * ring for software use.
1835 			 */
1836 			zip->ca = zip->na;
1837 			zip->na += 8;
1838 		}
1839 		if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
1840 			/* Invalidate the rest */
1841 			idx = zip->ca;
1842 			end = zip->cq_ci;
1843 
1844 			while (idx != end) {
1845 				(*rxq->cqes)[idx & cqe_cnt].op_own =
1846 					MLX5_CQE_INVALIDATE;
1847 				++idx;
1848 			}
1849 			rxq->cq_ci = zip->cq_ci;
1850 			zip->ai = 0;
1851 		}
1852 	/* No compressed data, get next CQE and verify if it is compressed. */
1853 	} else {
1854 		int ret;
1855 		int8_t op_own;
1856 
1857 		ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
1858 		if (unlikely(ret == 1))
1859 			return 0;
1860 		++rxq->cq_ci;
1861 		op_own = cqe->op_own;
1862 		rte_cio_rmb();
1863 		if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
1864 			volatile struct mlx5_mini_cqe8 (*mc)[8] =
1865 				(volatile struct mlx5_mini_cqe8 (*)[8])
1866 				(uintptr_t)(&(*rxq->cqes)[rxq->cq_ci &
1867 							  cqe_cnt].pkt_info);
1868 
1869 			/* Fix endianness. */
1870 			zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt);
1871 			/*
1872 			 * Current mini array position is the one returned by
1873 			 * check_cqe64().
1874 			 *
1875 			 * If completion comprises several mini arrays, as a
1876 			 * special case the second one is located 7 CQEs after
1877 			 * the initial CQE instead of 8 for subsequent ones.
1878 			 */
1879 			zip->ca = rxq->cq_ci;
1880 			zip->na = zip->ca + 7;
1881 			/* Compute the next non compressed CQE. */
1882 			--rxq->cq_ci;
1883 			zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
1884 			/* Get packet size to return. */
1885 			len = rte_be_to_cpu_32((*mc)[0].byte_cnt);
1886 			*mcqe = &(*mc)[0];
1887 			zip->ai = 1;
1888 			/* Prefetch all the entries to be invalidated */
1889 			idx = zip->ca;
1890 			end = zip->cq_ci;
1891 			while (idx != end) {
1892 				rte_prefetch0(&(*rxq->cqes)[(idx) & cqe_cnt]);
1893 				++idx;
1894 			}
1895 		} else {
1896 			len = rte_be_to_cpu_32(cqe->byte_cnt);
1897 		}
1898 		/* Error while receiving packet. */
1899 		if (unlikely(MLX5_CQE_OPCODE(op_own) == MLX5_CQE_RESP_ERR))
1900 			return -1;
1901 	}
1902 	return len;
1903 }
1904 
1905 /**
1906  * Translate RX completion flags to offload flags.
1907  *
1908  * @param[in] cqe
1909  *   Pointer to CQE.
1910  *
1911  * @return
1912  *   Offload flags (ol_flags) for struct rte_mbuf.
1913  */
1914 static inline uint32_t
1915 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe)
1916 {
1917 	uint32_t ol_flags = 0;
1918 	uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc);
1919 
1920 	ol_flags =
1921 		TRANSPOSE(flags,
1922 			  MLX5_CQE_RX_L3_HDR_VALID,
1923 			  PKT_RX_IP_CKSUM_GOOD) |
1924 		TRANSPOSE(flags,
1925 			  MLX5_CQE_RX_L4_HDR_VALID,
1926 			  PKT_RX_L4_CKSUM_GOOD);
1927 	return ol_flags;
1928 }
1929 
1930 /**
1931  * Fill in mbuf fields from RX completion flags.
1932  * Note that pkt->ol_flags should be initialized outside of this function.
1933  *
1934  * @param rxq
1935  *   Pointer to RX queue.
1936  * @param pkt
1937  *   mbuf to fill.
1938  * @param cqe
1939  *   CQE to process.
1940  * @param rss_hash_res
1941  *   Packet RSS Hash result.
1942  */
1943 static inline void
1944 rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
1945 	       volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res)
1946 {
1947 	/* Update packet information. */
1948 	pkt->packet_type = rxq_cq_to_pkt_type(rxq, cqe);
1949 	if (rss_hash_res && rxq->rss_hash) {
1950 		pkt->hash.rss = rss_hash_res;
1951 		pkt->ol_flags |= PKT_RX_RSS_HASH;
1952 	}
1953 	if (rxq->mark && MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
1954 		pkt->ol_flags |= PKT_RX_FDIR;
1955 		if (cqe->sop_drop_qpn !=
1956 		    rte_cpu_to_be_32(MLX5_FLOW_MARK_DEFAULT)) {
1957 			uint32_t mark = cqe->sop_drop_qpn;
1958 
1959 			pkt->ol_flags |= PKT_RX_FDIR_ID;
1960 			pkt->hash.fdir.hi = mlx5_flow_mark_get(mark);
1961 		}
1962 	}
1963 	if (rxq->csum)
1964 		pkt->ol_flags |= rxq_cq_to_ol_flags(cqe);
1965 	if (rxq->vlan_strip &&
1966 	    (cqe->hdr_type_etc & rte_cpu_to_be_16(MLX5_CQE_VLAN_STRIPPED))) {
1967 		pkt->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
1968 		pkt->vlan_tci = rte_be_to_cpu_16(cqe->vlan_info);
1969 	}
1970 	if (rxq->hw_timestamp) {
1971 		pkt->timestamp = rte_be_to_cpu_64(cqe->timestamp);
1972 		pkt->ol_flags |= PKT_RX_TIMESTAMP;
1973 	}
1974 }
1975 
1976 /**
1977  * DPDK callback for RX.
1978  *
1979  * @param dpdk_rxq
1980  *   Generic pointer to RX queue structure.
1981  * @param[out] pkts
1982  *   Array to store received packets.
1983  * @param pkts_n
1984  *   Maximum number of packets in array.
1985  *
1986  * @return
1987  *   Number of packets successfully received (<= pkts_n).
1988  */
1989 uint16_t
1990 mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1991 {
1992 	struct mlx5_rxq_data *rxq = dpdk_rxq;
1993 	const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
1994 	const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
1995 	const unsigned int sges_n = rxq->sges_n;
1996 	struct rte_mbuf *pkt = NULL;
1997 	struct rte_mbuf *seg = NULL;
1998 	volatile struct mlx5_cqe *cqe =
1999 		&(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
2000 	unsigned int i = 0;
2001 	unsigned int rq_ci = rxq->rq_ci << sges_n;
2002 	int len = 0; /* keep its value across iterations. */
2003 
2004 	while (pkts_n) {
2005 		unsigned int idx = rq_ci & wqe_cnt;
2006 		volatile struct mlx5_wqe_data_seg *wqe =
2007 			&((volatile struct mlx5_wqe_data_seg *)rxq->wqes)[idx];
2008 		struct rte_mbuf *rep = (*rxq->elts)[idx];
2009 		volatile struct mlx5_mini_cqe8 *mcqe = NULL;
2010 		uint32_t rss_hash_res;
2011 
2012 		if (pkt)
2013 			NEXT(seg) = rep;
2014 		seg = rep;
2015 		rte_prefetch0(seg);
2016 		rte_prefetch0(cqe);
2017 		rte_prefetch0(wqe);
2018 		rep = rte_mbuf_raw_alloc(rxq->mp);
2019 		if (unlikely(rep == NULL)) {
2020 			++rxq->stats.rx_nombuf;
2021 			if (!pkt) {
2022 				/*
2023 				 * no buffers before we even started,
2024 				 * bail out silently.
2025 				 */
2026 				break;
2027 			}
2028 			while (pkt != seg) {
2029 				assert(pkt != (*rxq->elts)[idx]);
2030 				rep = NEXT(pkt);
2031 				NEXT(pkt) = NULL;
2032 				NB_SEGS(pkt) = 1;
2033 				rte_mbuf_raw_free(pkt);
2034 				pkt = rep;
2035 			}
2036 			break;
2037 		}
2038 		if (!pkt) {
2039 			cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
2040 			len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt, &mcqe);
2041 			if (!len) {
2042 				rte_mbuf_raw_free(rep);
2043 				break;
2044 			}
2045 			if (unlikely(len == -1)) {
2046 				/* RX error, packet is likely too large. */
2047 				rte_mbuf_raw_free(rep);
2048 				++rxq->stats.idropped;
2049 				goto skip;
2050 			}
2051 			pkt = seg;
2052 			assert(len >= (rxq->crc_present << 2));
2053 			pkt->ol_flags = 0;
2054 			/* If compressed, take hash result from mini-CQE. */
2055 			rss_hash_res = rte_be_to_cpu_32(mcqe == NULL ?
2056 							cqe->rx_hash_res :
2057 							mcqe->rx_hash_result);
2058 			rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res);
2059 			if (rxq->crc_present)
2060 				len -= ETHER_CRC_LEN;
2061 			PKT_LEN(pkt) = len;
2062 		}
2063 		DATA_LEN(rep) = DATA_LEN(seg);
2064 		PKT_LEN(rep) = PKT_LEN(seg);
2065 		SET_DATA_OFF(rep, DATA_OFF(seg));
2066 		PORT(rep) = PORT(seg);
2067 		(*rxq->elts)[idx] = rep;
2068 		/*
2069 		 * Fill NIC descriptor with the new buffer.  The lkey and size
2070 		 * of the buffers are already known, only the buffer address
2071 		 * changes.
2072 		 */
2073 		wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
2074 		/* If there's only one MR, no need to replace LKey in WQE. */
2075 		if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
2076 			wqe->lkey = mlx5_rx_mb2mr(rxq, rep);
2077 		if (len > DATA_LEN(seg)) {
2078 			len -= DATA_LEN(seg);
2079 			++NB_SEGS(pkt);
2080 			++rq_ci;
2081 			continue;
2082 		}
2083 		DATA_LEN(seg) = len;
2084 #ifdef MLX5_PMD_SOFT_COUNTERS
2085 		/* Increment bytes counter. */
2086 		rxq->stats.ibytes += PKT_LEN(pkt);
2087 #endif
2088 		/* Return packet. */
2089 		*(pkts++) = pkt;
2090 		pkt = NULL;
2091 		--pkts_n;
2092 		++i;
2093 skip:
2094 		/* Align consumer index to the next stride. */
2095 		rq_ci >>= sges_n;
2096 		++rq_ci;
2097 		rq_ci <<= sges_n;
2098 	}
2099 	if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
2100 		return 0;
2101 	/* Update the consumer index. */
2102 	rxq->rq_ci = rq_ci >> sges_n;
2103 	rte_cio_wmb();
2104 	*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
2105 	rte_cio_wmb();
2106 	*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
2107 #ifdef MLX5_PMD_SOFT_COUNTERS
2108 	/* Increment packets counter. */
2109 	rxq->stats.ipackets += i;
2110 #endif
2111 	return i;
2112 }
2113 
2114 void
2115 mlx5_mprq_buf_free_cb(void *addr __rte_unused, void *opaque)
2116 {
2117 	struct mlx5_mprq_buf *buf = opaque;
2118 
2119 	if (rte_atomic16_read(&buf->refcnt) == 1) {
2120 		rte_mempool_put(buf->mp, buf);
2121 	} else if (rte_atomic16_add_return(&buf->refcnt, -1) == 0) {
2122 		rte_atomic16_set(&buf->refcnt, 1);
2123 		rte_mempool_put(buf->mp, buf);
2124 	}
2125 }
2126 
2127 void
2128 mlx5_mprq_buf_free(struct mlx5_mprq_buf *buf)
2129 {
2130 	mlx5_mprq_buf_free_cb(NULL, buf);
2131 }
2132 
2133 static inline void
2134 mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx)
2135 {
2136 	struct mlx5_mprq_buf *rep = rxq->mprq_repl;
2137 	volatile struct mlx5_wqe_data_seg *wqe =
2138 		&((volatile struct mlx5_wqe_mprq *)rxq->wqes)[rq_idx].dseg;
2139 	void *addr;
2140 
2141 	assert(rep != NULL);
2142 	/* Replace MPRQ buf. */
2143 	(*rxq->mprq_bufs)[rq_idx] = rep;
2144 	/* Replace WQE. */
2145 	addr = mlx5_mprq_buf_addr(rep);
2146 	wqe->addr = rte_cpu_to_be_64((uintptr_t)addr);
2147 	/* If there's only one MR, no need to replace LKey in WQE. */
2148 	if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
2149 		wqe->lkey = mlx5_rx_addr2mr(rxq, (uintptr_t)addr);
2150 	/* Stash a mbuf for next replacement. */
2151 	if (likely(!rte_mempool_get(rxq->mprq_mp, (void **)&rep)))
2152 		rxq->mprq_repl = rep;
2153 	else
2154 		rxq->mprq_repl = NULL;
2155 }
2156 
2157 /**
2158  * DPDK callback for RX with Multi-Packet RQ support.
2159  *
2160  * @param dpdk_rxq
2161  *   Generic pointer to RX queue structure.
2162  * @param[out] pkts
2163  *   Array to store received packets.
2164  * @param pkts_n
2165  *   Maximum number of packets in array.
2166  *
2167  * @return
2168  *   Number of packets successfully received (<= pkts_n).
2169  */
2170 uint16_t
2171 mlx5_rx_burst_mprq(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
2172 {
2173 	struct mlx5_rxq_data *rxq = dpdk_rxq;
2174 	const unsigned int strd_n = 1 << rxq->strd_num_n;
2175 	const unsigned int strd_sz = 1 << rxq->strd_sz_n;
2176 	const unsigned int strd_shift =
2177 		MLX5_MPRQ_STRIDE_SHIFT_BYTE * rxq->strd_shift_en;
2178 	const unsigned int cq_mask = (1 << rxq->cqe_n) - 1;
2179 	const unsigned int wq_mask = (1 << rxq->elts_n) - 1;
2180 	volatile struct mlx5_cqe *cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
2181 	unsigned int i = 0;
2182 	uint32_t rq_ci = rxq->rq_ci;
2183 	uint16_t consumed_strd = rxq->consumed_strd;
2184 	struct mlx5_mprq_buf *buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
2185 
2186 	while (i < pkts_n) {
2187 		struct rte_mbuf *pkt;
2188 		void *addr;
2189 		int ret;
2190 		unsigned int len;
2191 		uint16_t strd_cnt;
2192 		uint16_t strd_idx;
2193 		uint32_t offset;
2194 		uint32_t byte_cnt;
2195 		volatile struct mlx5_mini_cqe8 *mcqe = NULL;
2196 		uint32_t rss_hash_res = 0;
2197 
2198 		if (consumed_strd == strd_n) {
2199 			/* Replace WQE only if the buffer is still in use. */
2200 			if (rte_atomic16_read(&buf->refcnt) > 1) {
2201 				mprq_buf_replace(rxq, rq_ci & wq_mask);
2202 				/* Release the old buffer. */
2203 				mlx5_mprq_buf_free(buf);
2204 			} else if (unlikely(rxq->mprq_repl == NULL)) {
2205 				struct mlx5_mprq_buf *rep;
2206 
2207 				/*
2208 				 * Currently, the MPRQ mempool is out of buffer
2209 				 * and doing memcpy regardless of the size of Rx
2210 				 * packet. Retry allocation to get back to
2211 				 * normal.
2212 				 */
2213 				if (!rte_mempool_get(rxq->mprq_mp,
2214 						     (void **)&rep))
2215 					rxq->mprq_repl = rep;
2216 			}
2217 			/* Advance to the next WQE. */
2218 			consumed_strd = 0;
2219 			++rq_ci;
2220 			buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
2221 		}
2222 		cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
2223 		ret = mlx5_rx_poll_len(rxq, cqe, cq_mask, &mcqe);
2224 		if (!ret)
2225 			break;
2226 		if (unlikely(ret == -1)) {
2227 			/* RX error, packet is likely too large. */
2228 			++rxq->stats.idropped;
2229 			continue;
2230 		}
2231 		byte_cnt = ret;
2232 		strd_cnt = (byte_cnt & MLX5_MPRQ_STRIDE_NUM_MASK) >>
2233 			   MLX5_MPRQ_STRIDE_NUM_SHIFT;
2234 		assert(strd_cnt);
2235 		consumed_strd += strd_cnt;
2236 		if (byte_cnt & MLX5_MPRQ_FILLER_MASK)
2237 			continue;
2238 		if (mcqe == NULL) {
2239 			rss_hash_res = rte_be_to_cpu_32(cqe->rx_hash_res);
2240 			strd_idx = rte_be_to_cpu_16(cqe->wqe_counter);
2241 		} else {
2242 			/* mini-CQE for MPRQ doesn't have hash result. */
2243 			strd_idx = rte_be_to_cpu_16(mcqe->stride_idx);
2244 		}
2245 		assert(strd_idx < strd_n);
2246 		assert(!((rte_be_to_cpu_16(cqe->wqe_id) ^ rq_ci) & wq_mask));
2247 		/*
2248 		 * Currently configured to receive a packet per a stride. But if
2249 		 * MTU is adjusted through kernel interface, device could
2250 		 * consume multiple strides without raising an error. In this
2251 		 * case, the packet should be dropped because it is bigger than
2252 		 * the max_rx_pkt_len.
2253 		 */
2254 		if (unlikely(strd_cnt > 1)) {
2255 			++rxq->stats.idropped;
2256 			continue;
2257 		}
2258 		pkt = rte_pktmbuf_alloc(rxq->mp);
2259 		if (unlikely(pkt == NULL)) {
2260 			++rxq->stats.rx_nombuf;
2261 			break;
2262 		}
2263 		len = (byte_cnt & MLX5_MPRQ_LEN_MASK) >> MLX5_MPRQ_LEN_SHIFT;
2264 		assert((int)len >= (rxq->crc_present << 2));
2265 		if (rxq->crc_present)
2266 			len -= ETHER_CRC_LEN;
2267 		offset = strd_idx * strd_sz + strd_shift;
2268 		addr = RTE_PTR_ADD(mlx5_mprq_buf_addr(buf), offset);
2269 		/* Initialize the offload flag. */
2270 		pkt->ol_flags = 0;
2271 		/*
2272 		 * Memcpy packets to the target mbuf if:
2273 		 * - The size of packet is smaller than mprq_max_memcpy_len.
2274 		 * - Out of buffer in the Mempool for Multi-Packet RQ.
2275 		 */
2276 		if (len <= rxq->mprq_max_memcpy_len || rxq->mprq_repl == NULL) {
2277 			/*
2278 			 * When memcpy'ing packet due to out-of-buffer, the
2279 			 * packet must be smaller than the target mbuf.
2280 			 */
2281 			if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) {
2282 				rte_pktmbuf_free_seg(pkt);
2283 				++rxq->stats.idropped;
2284 				continue;
2285 			}
2286 			rte_memcpy(rte_pktmbuf_mtod(pkt, void *), addr, len);
2287 		} else {
2288 			rte_iova_t buf_iova;
2289 			struct rte_mbuf_ext_shared_info *shinfo;
2290 			uint16_t buf_len = strd_cnt * strd_sz;
2291 
2292 			/* Increment the refcnt of the whole chunk. */
2293 			rte_atomic16_add_return(&buf->refcnt, 1);
2294 			assert((uint16_t)rte_atomic16_read(&buf->refcnt) <=
2295 			       strd_n + 1);
2296 			addr = RTE_PTR_SUB(addr, RTE_PKTMBUF_HEADROOM);
2297 			/*
2298 			 * MLX5 device doesn't use iova but it is necessary in a
2299 			 * case where the Rx packet is transmitted via a
2300 			 * different PMD.
2301 			 */
2302 			buf_iova = rte_mempool_virt2iova(buf) +
2303 				   RTE_PTR_DIFF(addr, buf);
2304 			shinfo = rte_pktmbuf_ext_shinfo_init_helper(addr,
2305 					&buf_len, mlx5_mprq_buf_free_cb, buf);
2306 			/*
2307 			 * EXT_ATTACHED_MBUF will be set to pkt->ol_flags when
2308 			 * attaching the stride to mbuf and more offload flags
2309 			 * will be added below by calling rxq_cq_to_mbuf().
2310 			 * Other fields will be overwritten.
2311 			 */
2312 			rte_pktmbuf_attach_extbuf(pkt, addr, buf_iova, buf_len,
2313 						  shinfo);
2314 			rte_pktmbuf_reset_headroom(pkt);
2315 			assert(pkt->ol_flags == EXT_ATTACHED_MBUF);
2316 			/*
2317 			 * Prevent potential overflow due to MTU change through
2318 			 * kernel interface.
2319 			 */
2320 			if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) {
2321 				rte_pktmbuf_free_seg(pkt);
2322 				++rxq->stats.idropped;
2323 				continue;
2324 			}
2325 		}
2326 		rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res);
2327 		PKT_LEN(pkt) = len;
2328 		DATA_LEN(pkt) = len;
2329 		PORT(pkt) = rxq->port_id;
2330 #ifdef MLX5_PMD_SOFT_COUNTERS
2331 		/* Increment bytes counter. */
2332 		rxq->stats.ibytes += PKT_LEN(pkt);
2333 #endif
2334 		/* Return packet. */
2335 		*(pkts++) = pkt;
2336 		++i;
2337 	}
2338 	/* Update the consumer indexes. */
2339 	rxq->consumed_strd = consumed_strd;
2340 	rte_cio_wmb();
2341 	*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
2342 	if (rq_ci != rxq->rq_ci) {
2343 		rxq->rq_ci = rq_ci;
2344 		rte_cio_wmb();
2345 		*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
2346 	}
2347 #ifdef MLX5_PMD_SOFT_COUNTERS
2348 	/* Increment packets counter. */
2349 	rxq->stats.ipackets += i;
2350 #endif
2351 	return i;
2352 }
2353 
2354 /**
2355  * Dummy DPDK callback for TX.
2356  *
2357  * This function is used to temporarily replace the real callback during
2358  * unsafe control operations on the queue, or in case of error.
2359  *
2360  * @param dpdk_txq
2361  *   Generic pointer to TX queue structure.
2362  * @param[in] pkts
2363  *   Packets to transmit.
2364  * @param pkts_n
2365  *   Number of packets in array.
2366  *
2367  * @return
2368  *   Number of packets successfully transmitted (<= pkts_n).
2369  */
2370 uint16_t
2371 removed_tx_burst(void *dpdk_txq __rte_unused,
2372 		 struct rte_mbuf **pkts __rte_unused,
2373 		 uint16_t pkts_n __rte_unused)
2374 {
2375 	return 0;
2376 }
2377 
2378 /**
2379  * Dummy DPDK callback for RX.
2380  *
2381  * This function is used to temporarily replace the real callback during
2382  * unsafe control operations on the queue, or in case of error.
2383  *
2384  * @param dpdk_rxq
2385  *   Generic pointer to RX queue structure.
2386  * @param[out] pkts
2387  *   Array to store received packets.
2388  * @param pkts_n
2389  *   Maximum number of packets in array.
2390  *
2391  * @return
2392  *   Number of packets successfully received (<= pkts_n).
2393  */
2394 uint16_t
2395 removed_rx_burst(void *dpdk_txq __rte_unused,
2396 		 struct rte_mbuf **pkts __rte_unused,
2397 		 uint16_t pkts_n __rte_unused)
2398 {
2399 	return 0;
2400 }
2401 
2402 /*
2403  * Vectorized Rx/Tx routines are not compiled in when required vector
2404  * instructions are not supported on a target architecture. The following null
2405  * stubs are needed for linkage when those are not included outside of this file
2406  * (e.g.  mlx5_rxtx_vec_sse.c for x86).
2407  */
2408 
2409 __rte_weak uint16_t
2410 mlx5_tx_burst_raw_vec(void *dpdk_txq __rte_unused,
2411 		      struct rte_mbuf **pkts __rte_unused,
2412 		      uint16_t pkts_n __rte_unused)
2413 {
2414 	return 0;
2415 }
2416 
2417 __rte_weak uint16_t
2418 mlx5_tx_burst_vec(void *dpdk_txq __rte_unused,
2419 		  struct rte_mbuf **pkts __rte_unused,
2420 		  uint16_t pkts_n __rte_unused)
2421 {
2422 	return 0;
2423 }
2424 
2425 __rte_weak uint16_t
2426 mlx5_rx_burst_vec(void *dpdk_txq __rte_unused,
2427 		  struct rte_mbuf **pkts __rte_unused,
2428 		  uint16_t pkts_n __rte_unused)
2429 {
2430 	return 0;
2431 }
2432 
2433 __rte_weak int
2434 mlx5_check_raw_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
2435 {
2436 	return -ENOTSUP;
2437 }
2438 
2439 __rte_weak int
2440 mlx5_check_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
2441 {
2442 	return -ENOTSUP;
2443 }
2444 
2445 __rte_weak int
2446 mlx5_rxq_check_vec_support(struct mlx5_rxq_data *rxq __rte_unused)
2447 {
2448 	return -ENOTSUP;
2449 }
2450 
2451 __rte_weak int
2452 mlx5_check_vec_rx_support(struct rte_eth_dev *dev __rte_unused)
2453 {
2454 	return -ENOTSUP;
2455 }
2456