xref: /dpdk/drivers/net/mlx5/mlx5_rxtx.c (revision 250c9eb3ca895127f21a729caf4a928eb2f04d2c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2015 6WIND S.A.
3  * Copyright 2015 Mellanox Technologies, Ltd
4  */
5 
6 #include <assert.h>
7 #include <stdint.h>
8 #include <string.h>
9 #include <stdlib.h>
10 
11 /* Verbs header. */
12 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
13 #ifdef PEDANTIC
14 #pragma GCC diagnostic ignored "-Wpedantic"
15 #endif
16 #include <infiniband/verbs.h>
17 #include <infiniband/mlx5dv.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21 
22 #include <rte_mbuf.h>
23 #include <rte_mempool.h>
24 #include <rte_prefetch.h>
25 #include <rte_common.h>
26 #include <rte_branch_prediction.h>
27 #include <rte_ether.h>
28 
29 #include "mlx5.h"
30 #include "mlx5_utils.h"
31 #include "mlx5_rxtx.h"
32 #include "mlx5_autoconf.h"
33 #include "mlx5_defs.h"
34 #include "mlx5_prm.h"
35 
36 static __rte_always_inline uint32_t
37 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe);
38 
39 static __rte_always_inline int
40 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
41 		 uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe);
42 
43 static __rte_always_inline uint32_t
44 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe);
45 
46 static __rte_always_inline void
47 rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
48 	       volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res);
49 
50 static __rte_always_inline void
51 mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx);
52 
53 uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
54 	[0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
55 };
56 
57 uint8_t mlx5_cksum_table[1 << 10] __rte_cache_aligned;
58 uint8_t mlx5_swp_types_table[1 << 10] __rte_cache_aligned;
59 
60 /**
61  * Build a table to translate Rx completion flags to packet type.
62  *
63  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
64  */
65 void
66 mlx5_set_ptype_table(void)
67 {
68 	unsigned int i;
69 	uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;
70 
71 	/* Last entry must not be overwritten, reserved for errored packet. */
72 	for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i)
73 		(*p)[i] = RTE_PTYPE_UNKNOWN;
74 	/*
75 	 * The index to the array should have:
76 	 * bit[1:0] = l3_hdr_type
77 	 * bit[4:2] = l4_hdr_type
78 	 * bit[5] = ip_frag
79 	 * bit[6] = tunneled
80 	 * bit[7] = outer_l3_type
81 	 */
82 	/* L2 */
83 	(*p)[0x00] = RTE_PTYPE_L2_ETHER;
84 	/* L3 */
85 	(*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
86 		     RTE_PTYPE_L4_NONFRAG;
87 	(*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
88 		     RTE_PTYPE_L4_NONFRAG;
89 	/* Fragmented */
90 	(*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
91 		     RTE_PTYPE_L4_FRAG;
92 	(*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
93 		     RTE_PTYPE_L4_FRAG;
94 	/* TCP */
95 	(*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
96 		     RTE_PTYPE_L4_TCP;
97 	(*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
98 		     RTE_PTYPE_L4_TCP;
99 	(*p)[0x0d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
100 		     RTE_PTYPE_L4_TCP;
101 	(*p)[0x0e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
102 		     RTE_PTYPE_L4_TCP;
103 	(*p)[0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
104 		     RTE_PTYPE_L4_TCP;
105 	(*p)[0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
106 		     RTE_PTYPE_L4_TCP;
107 	/* UDP */
108 	(*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
109 		     RTE_PTYPE_L4_UDP;
110 	(*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
111 		     RTE_PTYPE_L4_UDP;
112 	/* Repeat with outer_l3_type being set. Just in case. */
113 	(*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
114 		     RTE_PTYPE_L4_NONFRAG;
115 	(*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
116 		     RTE_PTYPE_L4_NONFRAG;
117 	(*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
118 		     RTE_PTYPE_L4_FRAG;
119 	(*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
120 		     RTE_PTYPE_L4_FRAG;
121 	(*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
122 		     RTE_PTYPE_L4_TCP;
123 	(*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
124 		     RTE_PTYPE_L4_TCP;
125 	(*p)[0x8d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
126 		     RTE_PTYPE_L4_TCP;
127 	(*p)[0x8e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
128 		     RTE_PTYPE_L4_TCP;
129 	(*p)[0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
130 		     RTE_PTYPE_L4_TCP;
131 	(*p)[0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
132 		     RTE_PTYPE_L4_TCP;
133 	(*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
134 		     RTE_PTYPE_L4_UDP;
135 	(*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
136 		     RTE_PTYPE_L4_UDP;
137 	/* Tunneled - L3 */
138 	(*p)[0x40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
139 	(*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
140 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
141 		     RTE_PTYPE_INNER_L4_NONFRAG;
142 	(*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
143 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
144 		     RTE_PTYPE_INNER_L4_NONFRAG;
145 	(*p)[0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
146 	(*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
147 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
148 		     RTE_PTYPE_INNER_L4_NONFRAG;
149 	(*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
150 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
151 		     RTE_PTYPE_INNER_L4_NONFRAG;
152 	/* Tunneled - Fragmented */
153 	(*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
154 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
155 		     RTE_PTYPE_INNER_L4_FRAG;
156 	(*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
157 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
158 		     RTE_PTYPE_INNER_L4_FRAG;
159 	(*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
160 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
161 		     RTE_PTYPE_INNER_L4_FRAG;
162 	(*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
163 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
164 		     RTE_PTYPE_INNER_L4_FRAG;
165 	/* Tunneled - TCP */
166 	(*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
167 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
168 		     RTE_PTYPE_INNER_L4_TCP;
169 	(*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
170 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
171 		     RTE_PTYPE_INNER_L4_TCP;
172 	(*p)[0x4d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
173 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
174 		     RTE_PTYPE_INNER_L4_TCP;
175 	(*p)[0x4e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
176 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
177 		     RTE_PTYPE_INNER_L4_TCP;
178 	(*p)[0x51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
179 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
180 		     RTE_PTYPE_INNER_L4_TCP;
181 	(*p)[0x52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
182 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
183 		     RTE_PTYPE_INNER_L4_TCP;
184 	(*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
185 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
186 		     RTE_PTYPE_INNER_L4_TCP;
187 	(*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
188 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
189 		     RTE_PTYPE_INNER_L4_TCP;
190 	(*p)[0xcd] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
191 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
192 		     RTE_PTYPE_INNER_L4_TCP;
193 	(*p)[0xce] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
194 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
195 		     RTE_PTYPE_INNER_L4_TCP;
196 	(*p)[0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
197 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
198 		     RTE_PTYPE_INNER_L4_TCP;
199 	(*p)[0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
200 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
201 		     RTE_PTYPE_INNER_L4_TCP;
202 	/* Tunneled - UDP */
203 	(*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
204 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
205 		     RTE_PTYPE_INNER_L4_UDP;
206 	(*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
207 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
208 		     RTE_PTYPE_INNER_L4_UDP;
209 	(*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
210 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
211 		     RTE_PTYPE_INNER_L4_UDP;
212 	(*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
213 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
214 		     RTE_PTYPE_INNER_L4_UDP;
215 }
216 
217 /**
218  * Build a table to translate packet to checksum type of Verbs.
219  */
220 void
221 mlx5_set_cksum_table(void)
222 {
223 	unsigned int i;
224 	uint8_t v;
225 
226 	/*
227 	 * The index should have:
228 	 * bit[0] = PKT_TX_TCP_SEG
229 	 * bit[2:3] = PKT_TX_UDP_CKSUM, PKT_TX_TCP_CKSUM
230 	 * bit[4] = PKT_TX_IP_CKSUM
231 	 * bit[8] = PKT_TX_OUTER_IP_CKSUM
232 	 * bit[9] = tunnel
233 	 */
234 	for (i = 0; i < RTE_DIM(mlx5_cksum_table); ++i) {
235 		v = 0;
236 		if (i & (1 << 9)) {
237 			/* Tunneled packet. */
238 			if (i & (1 << 8)) /* Outer IP. */
239 				v |= MLX5_ETH_WQE_L3_CSUM;
240 			if (i & (1 << 4)) /* Inner IP. */
241 				v |= MLX5_ETH_WQE_L3_INNER_CSUM;
242 			if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
243 				v |= MLX5_ETH_WQE_L4_INNER_CSUM;
244 		} else {
245 			/* No tunnel. */
246 			if (i & (1 << 4)) /* IP. */
247 				v |= MLX5_ETH_WQE_L3_CSUM;
248 			if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
249 				v |= MLX5_ETH_WQE_L4_CSUM;
250 		}
251 		mlx5_cksum_table[i] = v;
252 	}
253 }
254 
255 /**
256  * Build a table to translate packet type of mbuf to SWP type of Verbs.
257  */
258 void
259 mlx5_set_swp_types_table(void)
260 {
261 	unsigned int i;
262 	uint8_t v;
263 
264 	/*
265 	 * The index should have:
266 	 * bit[0:1] = PKT_TX_L4_MASK
267 	 * bit[4] = PKT_TX_IPV6
268 	 * bit[8] = PKT_TX_OUTER_IPV6
269 	 * bit[9] = PKT_TX_OUTER_UDP
270 	 */
271 	for (i = 0; i < RTE_DIM(mlx5_swp_types_table); ++i) {
272 		v = 0;
273 		if (i & (1 << 8))
274 			v |= MLX5_ETH_WQE_L3_OUTER_IPV6;
275 		if (i & (1 << 9))
276 			v |= MLX5_ETH_WQE_L4_OUTER_UDP;
277 		if (i & (1 << 4))
278 			v |= MLX5_ETH_WQE_L3_INNER_IPV6;
279 		if ((i & 3) == (PKT_TX_UDP_CKSUM >> 52))
280 			v |= MLX5_ETH_WQE_L4_INNER_UDP;
281 		mlx5_swp_types_table[i] = v;
282 	}
283 }
284 
285 /**
286  * Return the size of tailroom of WQ.
287  *
288  * @param txq
289  *   Pointer to TX queue structure.
290  * @param addr
291  *   Pointer to tail of WQ.
292  *
293  * @return
294  *   Size of tailroom.
295  */
296 static inline size_t
297 tx_mlx5_wq_tailroom(struct mlx5_txq_data *txq, void *addr)
298 {
299 	size_t tailroom;
300 	tailroom = (uintptr_t)(txq->wqes) +
301 		   (1 << txq->wqe_n) * MLX5_WQE_SIZE -
302 		   (uintptr_t)addr;
303 	return tailroom;
304 }
305 
306 /**
307  * Copy data to tailroom of circular queue.
308  *
309  * @param dst
310  *   Pointer to destination.
311  * @param src
312  *   Pointer to source.
313  * @param n
314  *   Number of bytes to copy.
315  * @param base
316  *   Pointer to head of queue.
317  * @param tailroom
318  *   Size of tailroom from dst.
319  *
320  * @return
321  *   Pointer after copied data.
322  */
323 static inline void *
324 mlx5_copy_to_wq(void *dst, const void *src, size_t n,
325 		void *base, size_t tailroom)
326 {
327 	void *ret;
328 
329 	if (n > tailroom) {
330 		rte_memcpy(dst, src, tailroom);
331 		rte_memcpy(base, (void *)((uintptr_t)src + tailroom),
332 			   n - tailroom);
333 		ret = (uint8_t *)base + n - tailroom;
334 	} else {
335 		rte_memcpy(dst, src, n);
336 		ret = (n == tailroom) ? base : (uint8_t *)dst + n;
337 	}
338 	return ret;
339 }
340 
341 /**
342  * Inline TSO headers into WQE.
343  *
344  * @return
345  *   0 on success, negative errno value on failure.
346  */
347 static int
348 inline_tso(struct mlx5_txq_data *txq, struct rte_mbuf *buf,
349 	   uint32_t *length,
350 	   uintptr_t *addr,
351 	   uint16_t *pkt_inline_sz,
352 	   uint8_t **raw,
353 	   uint16_t *max_wqe,
354 	   uint16_t *tso_segsz,
355 	   uint16_t *tso_header_sz)
356 {
357 	uintptr_t end = (uintptr_t)(((uintptr_t)txq->wqes) +
358 				    (1 << txq->wqe_n) * MLX5_WQE_SIZE);
359 	unsigned int copy_b;
360 	uint8_t vlan_sz = (buf->ol_flags & PKT_TX_VLAN_PKT) ? 4 : 0;
361 	const uint8_t tunneled = txq->tunnel_en && (buf->ol_flags &
362 				 PKT_TX_TUNNEL_MASK);
363 	uint16_t n_wqe;
364 
365 	*tso_segsz = buf->tso_segsz;
366 	*tso_header_sz = buf->l2_len + vlan_sz + buf->l3_len + buf->l4_len;
367 	if (unlikely(*tso_segsz == 0 || *tso_header_sz == 0)) {
368 		txq->stats.oerrors++;
369 		return -EINVAL;
370 	}
371 	if (tunneled)
372 		*tso_header_sz += buf->outer_l2_len + buf->outer_l3_len;
373 	/* First seg must contain all TSO headers. */
374 	if (unlikely(*tso_header_sz > MLX5_MAX_TSO_HEADER) ||
375 		     *tso_header_sz > DATA_LEN(buf)) {
376 		txq->stats.oerrors++;
377 		return -EINVAL;
378 	}
379 	copy_b = *tso_header_sz - *pkt_inline_sz;
380 	if (!copy_b || ((end - (uintptr_t)*raw) < copy_b))
381 		return -EAGAIN;
382 	n_wqe = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
383 	if (unlikely(*max_wqe < n_wqe))
384 		return -EINVAL;
385 	*max_wqe -= n_wqe;
386 	rte_memcpy((void *)*raw, (void *)*addr, copy_b);
387 	*length -= copy_b;
388 	*addr += copy_b;
389 	copy_b = MLX5_WQE_DS(copy_b) * MLX5_WQE_DWORD_SIZE;
390 	*pkt_inline_sz += copy_b;
391 	*raw += copy_b;
392 	return 0;
393 }
394 
395 /**
396  * DPDK callback to check the status of a tx descriptor.
397  *
398  * @param tx_queue
399  *   The tx queue.
400  * @param[in] offset
401  *   The index of the descriptor in the ring.
402  *
403  * @return
404  *   The status of the tx descriptor.
405  */
406 int
407 mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
408 {
409 	struct mlx5_txq_data *txq = tx_queue;
410 	uint16_t used;
411 
412 	mlx5_tx_complete(txq);
413 	used = txq->elts_head - txq->elts_tail;
414 	if (offset < used)
415 		return RTE_ETH_TX_DESC_FULL;
416 	return RTE_ETH_TX_DESC_DONE;
417 }
418 
419 /**
420  * DPDK callback to check the status of a rx descriptor.
421  *
422  * @param rx_queue
423  *   The rx queue.
424  * @param[in] offset
425  *   The index of the descriptor in the ring.
426  *
427  * @return
428  *   The status of the tx descriptor.
429  */
430 int
431 mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
432 {
433 	struct mlx5_rxq_data *rxq = rx_queue;
434 	struct rxq_zip *zip = &rxq->zip;
435 	volatile struct mlx5_cqe *cqe;
436 	const unsigned int cqe_n = (1 << rxq->cqe_n);
437 	const unsigned int cqe_cnt = cqe_n - 1;
438 	unsigned int cq_ci;
439 	unsigned int used;
440 
441 	/* if we are processing a compressed cqe */
442 	if (zip->ai) {
443 		used = zip->cqe_cnt - zip->ca;
444 		cq_ci = zip->cq_ci;
445 	} else {
446 		used = 0;
447 		cq_ci = rxq->cq_ci;
448 	}
449 	cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
450 	while (check_cqe(cqe, cqe_n, cq_ci) == 0) {
451 		int8_t op_own;
452 		unsigned int n;
453 
454 		op_own = cqe->op_own;
455 		if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
456 			n = rte_be_to_cpu_32(cqe->byte_cnt);
457 		else
458 			n = 1;
459 		cq_ci += n;
460 		used += n;
461 		cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
462 	}
463 	used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
464 	if (offset < used)
465 		return RTE_ETH_RX_DESC_DONE;
466 	return RTE_ETH_RX_DESC_AVAIL;
467 }
468 
469 /**
470  * DPDK callback for TX.
471  *
472  * @param dpdk_txq
473  *   Generic pointer to TX queue structure.
474  * @param[in] pkts
475  *   Packets to transmit.
476  * @param pkts_n
477  *   Number of packets in array.
478  *
479  * @return
480  *   Number of packets successfully transmitted (<= pkts_n).
481  */
482 uint16_t
483 mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
484 {
485 	struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
486 	uint16_t elts_head = txq->elts_head;
487 	const uint16_t elts_n = 1 << txq->elts_n;
488 	const uint16_t elts_m = elts_n - 1;
489 	unsigned int i = 0;
490 	unsigned int j = 0;
491 	unsigned int k = 0;
492 	uint16_t max_elts;
493 	uint16_t max_wqe;
494 	unsigned int comp;
495 	volatile struct mlx5_wqe_ctrl *last_wqe = NULL;
496 	unsigned int segs_n = 0;
497 	const unsigned int max_inline = txq->max_inline;
498 
499 	if (unlikely(!pkts_n))
500 		return 0;
501 	/* Prefetch first packet cacheline. */
502 	rte_prefetch0(*pkts);
503 	/* Start processing. */
504 	mlx5_tx_complete(txq);
505 	max_elts = (elts_n - (elts_head - txq->elts_tail));
506 	/* A CQE slot must always be available. */
507 	assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
508 	max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
509 	if (unlikely(!max_wqe))
510 		return 0;
511 	do {
512 		struct rte_mbuf *buf = *pkts; /* First_seg. */
513 		uint8_t *raw;
514 		volatile struct mlx5_wqe_v *wqe = NULL;
515 		volatile rte_v128u32_t *dseg = NULL;
516 		uint32_t length;
517 		unsigned int ds = 0;
518 		unsigned int sg = 0; /* counter of additional segs attached. */
519 		uintptr_t addr;
520 		uint16_t pkt_inline_sz = MLX5_WQE_DWORD_SIZE + 2;
521 		uint16_t tso_header_sz = 0;
522 		uint16_t ehdr;
523 		uint8_t cs_flags;
524 		uint8_t tso = txq->tso_en && (buf->ol_flags & PKT_TX_TCP_SEG);
525 		uint32_t swp_offsets = 0;
526 		uint8_t swp_types = 0;
527 		uint16_t tso_segsz = 0;
528 #ifdef MLX5_PMD_SOFT_COUNTERS
529 		uint32_t total_length = 0;
530 #endif
531 		int ret;
532 
533 		segs_n = buf->nb_segs;
534 		/*
535 		 * Make sure there is enough room to store this packet and
536 		 * that one ring entry remains unused.
537 		 */
538 		assert(segs_n);
539 		if (max_elts < segs_n)
540 			break;
541 		max_elts -= segs_n;
542 		sg = --segs_n;
543 		if (unlikely(--max_wqe == 0))
544 			break;
545 		wqe = (volatile struct mlx5_wqe_v *)
546 			tx_mlx5_wqe(txq, txq->wqe_ci);
547 		rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
548 		if (pkts_n - i > 1)
549 			rte_prefetch0(*(pkts + 1));
550 		addr = rte_pktmbuf_mtod(buf, uintptr_t);
551 		length = DATA_LEN(buf);
552 		ehdr = (((uint8_t *)addr)[1] << 8) |
553 		       ((uint8_t *)addr)[0];
554 #ifdef MLX5_PMD_SOFT_COUNTERS
555 		total_length = length;
556 #endif
557 		if (length < (MLX5_WQE_DWORD_SIZE + 2)) {
558 			txq->stats.oerrors++;
559 			break;
560 		}
561 		/* Update element. */
562 		(*txq->elts)[elts_head & elts_m] = buf;
563 		/* Prefetch next buffer data. */
564 		if (pkts_n - i > 1)
565 			rte_prefetch0(
566 			    rte_pktmbuf_mtod(*(pkts + 1), volatile void *));
567 		cs_flags = txq_ol_cksum_to_cs(buf);
568 		txq_mbuf_to_swp(txq, buf, (uint8_t *)&swp_offsets, &swp_types);
569 		raw = ((uint8_t *)(uintptr_t)wqe) + 2 * MLX5_WQE_DWORD_SIZE;
570 		/* Replace the Ethernet type by the VLAN if necessary. */
571 		if (buf->ol_flags & PKT_TX_VLAN_PKT) {
572 			uint32_t vlan = rte_cpu_to_be_32(0x81000000 |
573 							 buf->vlan_tci);
574 			unsigned int len = 2 * ETHER_ADDR_LEN - 2;
575 
576 			addr += 2;
577 			length -= 2;
578 			/* Copy Destination and source mac address. */
579 			memcpy((uint8_t *)raw, ((uint8_t *)addr), len);
580 			/* Copy VLAN. */
581 			memcpy((uint8_t *)raw + len, &vlan, sizeof(vlan));
582 			/* Copy missing two bytes to end the DSeg. */
583 			memcpy((uint8_t *)raw + len + sizeof(vlan),
584 			       ((uint8_t *)addr) + len, 2);
585 			addr += len + 2;
586 			length -= (len + 2);
587 		} else {
588 			memcpy((uint8_t *)raw, ((uint8_t *)addr) + 2,
589 			       MLX5_WQE_DWORD_SIZE);
590 			length -= pkt_inline_sz;
591 			addr += pkt_inline_sz;
592 		}
593 		raw += MLX5_WQE_DWORD_SIZE;
594 		if (tso) {
595 			ret = inline_tso(txq, buf, &length,
596 					 &addr, &pkt_inline_sz,
597 					 &raw, &max_wqe,
598 					 &tso_segsz, &tso_header_sz);
599 			if (ret == -EINVAL) {
600 				break;
601 			} else if (ret == -EAGAIN) {
602 				/* NOP WQE. */
603 				wqe->ctrl = (rte_v128u32_t){
604 					rte_cpu_to_be_32(txq->wqe_ci << 8),
605 					rte_cpu_to_be_32(txq->qp_num_8s | 1),
606 					0,
607 					0,
608 				};
609 				ds = 1;
610 #ifdef MLX5_PMD_SOFT_COUNTERS
611 				total_length = 0;
612 #endif
613 				k++;
614 				goto next_wqe;
615 			}
616 		}
617 		/* Inline if enough room. */
618 		if (max_inline || tso) {
619 			uint32_t inl = 0;
620 			uintptr_t end = (uintptr_t)
621 				(((uintptr_t)txq->wqes) +
622 				 (1 << txq->wqe_n) * MLX5_WQE_SIZE);
623 			unsigned int inline_room = max_inline *
624 						   RTE_CACHE_LINE_SIZE -
625 						   (pkt_inline_sz - 2) -
626 						   !!tso * sizeof(inl);
627 			uintptr_t addr_end;
628 			unsigned int copy_b;
629 
630 pkt_inline:
631 			addr_end = RTE_ALIGN_FLOOR(addr + inline_room,
632 						   RTE_CACHE_LINE_SIZE);
633 			copy_b = (addr_end > addr) ?
634 				 RTE_MIN((addr_end - addr), length) : 0;
635 			if (copy_b && ((end - (uintptr_t)raw) > copy_b)) {
636 				/*
637 				 * One Dseg remains in the current WQE.  To
638 				 * keep the computation positive, it is
639 				 * removed after the bytes to Dseg conversion.
640 				 */
641 				uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
642 
643 				if (unlikely(max_wqe < n))
644 					break;
645 				max_wqe -= n;
646 				if (tso) {
647 					assert(inl == 0);
648 					inl = rte_cpu_to_be_32(copy_b |
649 							       MLX5_INLINE_SEG);
650 					rte_memcpy((void *)raw,
651 						   (void *)&inl, sizeof(inl));
652 					raw += sizeof(inl);
653 					pkt_inline_sz += sizeof(inl);
654 				}
655 				rte_memcpy((void *)raw, (void *)addr, copy_b);
656 				addr += copy_b;
657 				length -= copy_b;
658 				pkt_inline_sz += copy_b;
659 			}
660 			/*
661 			 * 2 DWORDs consumed by the WQE header + ETH segment +
662 			 * the size of the inline part of the packet.
663 			 */
664 			ds = 2 + MLX5_WQE_DS(pkt_inline_sz - 2);
665 			if (length > 0) {
666 				if (ds % (MLX5_WQE_SIZE /
667 					  MLX5_WQE_DWORD_SIZE) == 0) {
668 					if (unlikely(--max_wqe == 0))
669 						break;
670 					dseg = (volatile rte_v128u32_t *)
671 					       tx_mlx5_wqe(txq, txq->wqe_ci +
672 							   ds / 4);
673 				} else {
674 					dseg = (volatile rte_v128u32_t *)
675 						((uintptr_t)wqe +
676 						 (ds * MLX5_WQE_DWORD_SIZE));
677 				}
678 				goto use_dseg;
679 			} else if (!segs_n) {
680 				goto next_pkt;
681 			} else {
682 				/*
683 				 * Further inline the next segment only for
684 				 * non-TSO packets.
685 				 */
686 				if (!tso) {
687 					raw += copy_b;
688 					inline_room -= copy_b;
689 				} else {
690 					inline_room = 0;
691 				}
692 				/* Move to the next segment. */
693 				--segs_n;
694 				buf = buf->next;
695 				assert(buf);
696 				addr = rte_pktmbuf_mtod(buf, uintptr_t);
697 				length = DATA_LEN(buf);
698 #ifdef MLX5_PMD_SOFT_COUNTERS
699 				total_length += length;
700 #endif
701 				(*txq->elts)[++elts_head & elts_m] = buf;
702 				goto pkt_inline;
703 			}
704 		} else {
705 			/*
706 			 * No inline has been done in the packet, only the
707 			 * Ethernet Header as been stored.
708 			 */
709 			dseg = (volatile rte_v128u32_t *)
710 				((uintptr_t)wqe + (3 * MLX5_WQE_DWORD_SIZE));
711 			ds = 3;
712 use_dseg:
713 			/* Add the remaining packet as a simple ds. */
714 			addr = rte_cpu_to_be_64(addr);
715 			*dseg = (rte_v128u32_t){
716 				rte_cpu_to_be_32(length),
717 				mlx5_tx_mb2mr(txq, buf),
718 				addr,
719 				addr >> 32,
720 			};
721 			++ds;
722 			if (!segs_n)
723 				goto next_pkt;
724 		}
725 next_seg:
726 		assert(buf);
727 		assert(ds);
728 		assert(wqe);
729 		/*
730 		 * Spill on next WQE when the current one does not have
731 		 * enough room left. Size of WQE must a be a multiple
732 		 * of data segment size.
733 		 */
734 		assert(!(MLX5_WQE_SIZE % MLX5_WQE_DWORD_SIZE));
735 		if (!(ds % (MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE))) {
736 			if (unlikely(--max_wqe == 0))
737 				break;
738 			dseg = (volatile rte_v128u32_t *)
739 			       tx_mlx5_wqe(txq, txq->wqe_ci + ds / 4);
740 			rte_prefetch0(tx_mlx5_wqe(txq,
741 						  txq->wqe_ci + ds / 4 + 1));
742 		} else {
743 			++dseg;
744 		}
745 		++ds;
746 		buf = buf->next;
747 		assert(buf);
748 		length = DATA_LEN(buf);
749 #ifdef MLX5_PMD_SOFT_COUNTERS
750 		total_length += length;
751 #endif
752 		/* Store segment information. */
753 		addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf, uintptr_t));
754 		*dseg = (rte_v128u32_t){
755 			rte_cpu_to_be_32(length),
756 			mlx5_tx_mb2mr(txq, buf),
757 			addr,
758 			addr >> 32,
759 		};
760 		(*txq->elts)[++elts_head & elts_m] = buf;
761 		if (--segs_n)
762 			goto next_seg;
763 next_pkt:
764 		if (ds > MLX5_DSEG_MAX) {
765 			txq->stats.oerrors++;
766 			break;
767 		}
768 		++elts_head;
769 		++pkts;
770 		++i;
771 		j += sg;
772 		/* Initialize known and common part of the WQE structure. */
773 		if (tso) {
774 			wqe->ctrl = (rte_v128u32_t){
775 				rte_cpu_to_be_32((txq->wqe_ci << 8) |
776 						 MLX5_OPCODE_TSO),
777 				rte_cpu_to_be_32(txq->qp_num_8s | ds),
778 				0,
779 				0,
780 			};
781 			wqe->eseg = (rte_v128u32_t){
782 				swp_offsets,
783 				cs_flags | (swp_types << 8) |
784 				(rte_cpu_to_be_16(tso_segsz) << 16),
785 				0,
786 				(ehdr << 16) | rte_cpu_to_be_16(tso_header_sz),
787 			};
788 		} else {
789 			wqe->ctrl = (rte_v128u32_t){
790 				rte_cpu_to_be_32((txq->wqe_ci << 8) |
791 						 MLX5_OPCODE_SEND),
792 				rte_cpu_to_be_32(txq->qp_num_8s | ds),
793 				0,
794 				0,
795 			};
796 			wqe->eseg = (rte_v128u32_t){
797 				swp_offsets,
798 				cs_flags | (swp_types << 8),
799 				0,
800 				(ehdr << 16) | rte_cpu_to_be_16(pkt_inline_sz),
801 			};
802 		}
803 next_wqe:
804 		txq->wqe_ci += (ds + 3) / 4;
805 		/* Save the last successful WQE for completion request */
806 		last_wqe = (volatile struct mlx5_wqe_ctrl *)wqe;
807 #ifdef MLX5_PMD_SOFT_COUNTERS
808 		/* Increment sent bytes counter. */
809 		txq->stats.obytes += total_length;
810 #endif
811 	} while (i < pkts_n);
812 	/* Take a shortcut if nothing must be sent. */
813 	if (unlikely((i + k) == 0))
814 		return 0;
815 	txq->elts_head += (i + j);
816 	/* Check whether completion threshold has been reached. */
817 	comp = txq->elts_comp + i + j + k;
818 	if (comp >= MLX5_TX_COMP_THRESH) {
819 		/* Request completion on last WQE. */
820 		last_wqe->ctrl2 = rte_cpu_to_be_32(8);
821 		/* Save elts_head in unused "immediate" field of WQE. */
822 		last_wqe->ctrl3 = txq->elts_head;
823 		txq->elts_comp = 0;
824 #ifndef NDEBUG
825 		++txq->cq_pi;
826 #endif
827 	} else {
828 		txq->elts_comp = comp;
829 	}
830 #ifdef MLX5_PMD_SOFT_COUNTERS
831 	/* Increment sent packets counter. */
832 	txq->stats.opackets += i;
833 #endif
834 	/* Ring QP doorbell. */
835 	mlx5_tx_dbrec(txq, (volatile struct mlx5_wqe *)last_wqe);
836 	return i;
837 }
838 
839 /**
840  * Open a MPW session.
841  *
842  * @param txq
843  *   Pointer to TX queue structure.
844  * @param mpw
845  *   Pointer to MPW session structure.
846  * @param length
847  *   Packet length.
848  */
849 static inline void
850 mlx5_mpw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, uint32_t length)
851 {
852 	uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
853 	volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
854 		(volatile struct mlx5_wqe_data_seg (*)[])
855 		tx_mlx5_wqe(txq, idx + 1);
856 
857 	mpw->state = MLX5_MPW_STATE_OPENED;
858 	mpw->pkts_n = 0;
859 	mpw->len = length;
860 	mpw->total_len = 0;
861 	mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
862 	mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
863 	mpw->wqe->eseg.inline_hdr_sz = 0;
864 	mpw->wqe->eseg.rsvd0 = 0;
865 	mpw->wqe->eseg.rsvd1 = 0;
866 	mpw->wqe->eseg.rsvd2 = 0;
867 	mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
868 					     (txq->wqe_ci << 8) |
869 					     MLX5_OPCODE_TSO);
870 	mpw->wqe->ctrl[2] = 0;
871 	mpw->wqe->ctrl[3] = 0;
872 	mpw->data.dseg[0] = (volatile struct mlx5_wqe_data_seg *)
873 		(((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
874 	mpw->data.dseg[1] = (volatile struct mlx5_wqe_data_seg *)
875 		(((uintptr_t)mpw->wqe) + (3 * MLX5_WQE_DWORD_SIZE));
876 	mpw->data.dseg[2] = &(*dseg)[0];
877 	mpw->data.dseg[3] = &(*dseg)[1];
878 	mpw->data.dseg[4] = &(*dseg)[2];
879 }
880 
881 /**
882  * Close a MPW session.
883  *
884  * @param txq
885  *   Pointer to TX queue structure.
886  * @param mpw
887  *   Pointer to MPW session structure.
888  */
889 static inline void
890 mlx5_mpw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
891 {
892 	unsigned int num = mpw->pkts_n;
893 
894 	/*
895 	 * Store size in multiple of 16 bytes. Control and Ethernet segments
896 	 * count as 2.
897 	 */
898 	mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s | (2 + num));
899 	mpw->state = MLX5_MPW_STATE_CLOSED;
900 	if (num < 3)
901 		++txq->wqe_ci;
902 	else
903 		txq->wqe_ci += 2;
904 	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
905 	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
906 }
907 
908 /**
909  * DPDK callback for TX with MPW support.
910  *
911  * @param dpdk_txq
912  *   Generic pointer to TX queue structure.
913  * @param[in] pkts
914  *   Packets to transmit.
915  * @param pkts_n
916  *   Number of packets in array.
917  *
918  * @return
919  *   Number of packets successfully transmitted (<= pkts_n).
920  */
921 uint16_t
922 mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
923 {
924 	struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
925 	uint16_t elts_head = txq->elts_head;
926 	const uint16_t elts_n = 1 << txq->elts_n;
927 	const uint16_t elts_m = elts_n - 1;
928 	unsigned int i = 0;
929 	unsigned int j = 0;
930 	uint16_t max_elts;
931 	uint16_t max_wqe;
932 	unsigned int comp;
933 	struct mlx5_mpw mpw = {
934 		.state = MLX5_MPW_STATE_CLOSED,
935 	};
936 
937 	if (unlikely(!pkts_n))
938 		return 0;
939 	/* Prefetch first packet cacheline. */
940 	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
941 	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
942 	/* Start processing. */
943 	mlx5_tx_complete(txq);
944 	max_elts = (elts_n - (elts_head - txq->elts_tail));
945 	/* A CQE slot must always be available. */
946 	assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
947 	max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
948 	if (unlikely(!max_wqe))
949 		return 0;
950 	do {
951 		struct rte_mbuf *buf = *(pkts++);
952 		uint32_t length;
953 		unsigned int segs_n = buf->nb_segs;
954 		uint32_t cs_flags;
955 
956 		/*
957 		 * Make sure there is enough room to store this packet and
958 		 * that one ring entry remains unused.
959 		 */
960 		assert(segs_n);
961 		if (max_elts < segs_n)
962 			break;
963 		/* Do not bother with large packets MPW cannot handle. */
964 		if (segs_n > MLX5_MPW_DSEG_MAX) {
965 			txq->stats.oerrors++;
966 			break;
967 		}
968 		max_elts -= segs_n;
969 		--pkts_n;
970 		cs_flags = txq_ol_cksum_to_cs(buf);
971 		/* Retrieve packet information. */
972 		length = PKT_LEN(buf);
973 		assert(length);
974 		/* Start new session if packet differs. */
975 		if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
976 		    ((mpw.len != length) ||
977 		     (segs_n != 1) ||
978 		     (mpw.wqe->eseg.cs_flags != cs_flags)))
979 			mlx5_mpw_close(txq, &mpw);
980 		if (mpw.state == MLX5_MPW_STATE_CLOSED) {
981 			/*
982 			 * Multi-Packet WQE consumes at most two WQE.
983 			 * mlx5_mpw_new() expects to be able to use such
984 			 * resources.
985 			 */
986 			if (unlikely(max_wqe < 2))
987 				break;
988 			max_wqe -= 2;
989 			mlx5_mpw_new(txq, &mpw, length);
990 			mpw.wqe->eseg.cs_flags = cs_flags;
991 		}
992 		/* Multi-segment packets must be alone in their MPW. */
993 		assert((segs_n == 1) || (mpw.pkts_n == 0));
994 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
995 		length = 0;
996 #endif
997 		do {
998 			volatile struct mlx5_wqe_data_seg *dseg;
999 			uintptr_t addr;
1000 
1001 			assert(buf);
1002 			(*txq->elts)[elts_head++ & elts_m] = buf;
1003 			dseg = mpw.data.dseg[mpw.pkts_n];
1004 			addr = rte_pktmbuf_mtod(buf, uintptr_t);
1005 			*dseg = (struct mlx5_wqe_data_seg){
1006 				.byte_count = rte_cpu_to_be_32(DATA_LEN(buf)),
1007 				.lkey = mlx5_tx_mb2mr(txq, buf),
1008 				.addr = rte_cpu_to_be_64(addr),
1009 			};
1010 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1011 			length += DATA_LEN(buf);
1012 #endif
1013 			buf = buf->next;
1014 			++mpw.pkts_n;
1015 			++j;
1016 		} while (--segs_n);
1017 		assert(length == mpw.len);
1018 		if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1019 			mlx5_mpw_close(txq, &mpw);
1020 #ifdef MLX5_PMD_SOFT_COUNTERS
1021 		/* Increment sent bytes counter. */
1022 		txq->stats.obytes += length;
1023 #endif
1024 		++i;
1025 	} while (pkts_n);
1026 	/* Take a shortcut if nothing must be sent. */
1027 	if (unlikely(i == 0))
1028 		return 0;
1029 	/* Check whether completion threshold has been reached. */
1030 	/* "j" includes both packets and segments. */
1031 	comp = txq->elts_comp + j;
1032 	if (comp >= MLX5_TX_COMP_THRESH) {
1033 		volatile struct mlx5_wqe *wqe = mpw.wqe;
1034 
1035 		/* Request completion on last WQE. */
1036 		wqe->ctrl[2] = rte_cpu_to_be_32(8);
1037 		/* Save elts_head in unused "immediate" field of WQE. */
1038 		wqe->ctrl[3] = elts_head;
1039 		txq->elts_comp = 0;
1040 #ifndef NDEBUG
1041 		++txq->cq_pi;
1042 #endif
1043 	} else {
1044 		txq->elts_comp = comp;
1045 	}
1046 #ifdef MLX5_PMD_SOFT_COUNTERS
1047 	/* Increment sent packets counter. */
1048 	txq->stats.opackets += i;
1049 #endif
1050 	/* Ring QP doorbell. */
1051 	if (mpw.state == MLX5_MPW_STATE_OPENED)
1052 		mlx5_mpw_close(txq, &mpw);
1053 	mlx5_tx_dbrec(txq, mpw.wqe);
1054 	txq->elts_head = elts_head;
1055 	return i;
1056 }
1057 
1058 /**
1059  * Open a MPW inline session.
1060  *
1061  * @param txq
1062  *   Pointer to TX queue structure.
1063  * @param mpw
1064  *   Pointer to MPW session structure.
1065  * @param length
1066  *   Packet length.
1067  */
1068 static inline void
1069 mlx5_mpw_inline_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw,
1070 		    uint32_t length)
1071 {
1072 	uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1073 	struct mlx5_wqe_inl_small *inl;
1074 
1075 	mpw->state = MLX5_MPW_INL_STATE_OPENED;
1076 	mpw->pkts_n = 0;
1077 	mpw->len = length;
1078 	mpw->total_len = 0;
1079 	mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1080 	mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
1081 					     (txq->wqe_ci << 8) |
1082 					     MLX5_OPCODE_TSO);
1083 	mpw->wqe->ctrl[2] = 0;
1084 	mpw->wqe->ctrl[3] = 0;
1085 	mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
1086 	mpw->wqe->eseg.inline_hdr_sz = 0;
1087 	mpw->wqe->eseg.cs_flags = 0;
1088 	mpw->wqe->eseg.rsvd0 = 0;
1089 	mpw->wqe->eseg.rsvd1 = 0;
1090 	mpw->wqe->eseg.rsvd2 = 0;
1091 	inl = (struct mlx5_wqe_inl_small *)
1092 		(((uintptr_t)mpw->wqe) + 2 * MLX5_WQE_DWORD_SIZE);
1093 	mpw->data.raw = (uint8_t *)&inl->raw;
1094 }
1095 
1096 /**
1097  * Close a MPW inline session.
1098  *
1099  * @param txq
1100  *   Pointer to TX queue structure.
1101  * @param mpw
1102  *   Pointer to MPW session structure.
1103  */
1104 static inline void
1105 mlx5_mpw_inline_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1106 {
1107 	unsigned int size;
1108 	struct mlx5_wqe_inl_small *inl = (struct mlx5_wqe_inl_small *)
1109 		(((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
1110 
1111 	size = MLX5_WQE_SIZE - MLX5_MWQE64_INL_DATA + mpw->total_len;
1112 	/*
1113 	 * Store size in multiple of 16 bytes. Control and Ethernet segments
1114 	 * count as 2.
1115 	 */
1116 	mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1117 					     MLX5_WQE_DS(size));
1118 	mpw->state = MLX5_MPW_STATE_CLOSED;
1119 	inl->byte_cnt = rte_cpu_to_be_32(mpw->total_len | MLX5_INLINE_SEG);
1120 	txq->wqe_ci += (size + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1121 }
1122 
1123 /**
1124  * DPDK callback for TX with MPW inline support.
1125  *
1126  * @param dpdk_txq
1127  *   Generic pointer to TX queue structure.
1128  * @param[in] pkts
1129  *   Packets to transmit.
1130  * @param pkts_n
1131  *   Number of packets in array.
1132  *
1133  * @return
1134  *   Number of packets successfully transmitted (<= pkts_n).
1135  */
1136 uint16_t
1137 mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
1138 			 uint16_t pkts_n)
1139 {
1140 	struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1141 	uint16_t elts_head = txq->elts_head;
1142 	const uint16_t elts_n = 1 << txq->elts_n;
1143 	const uint16_t elts_m = elts_n - 1;
1144 	unsigned int i = 0;
1145 	unsigned int j = 0;
1146 	uint16_t max_elts;
1147 	uint16_t max_wqe;
1148 	unsigned int comp;
1149 	unsigned int inline_room = txq->max_inline * RTE_CACHE_LINE_SIZE;
1150 	struct mlx5_mpw mpw = {
1151 		.state = MLX5_MPW_STATE_CLOSED,
1152 	};
1153 	/*
1154 	 * Compute the maximum number of WQE which can be consumed by inline
1155 	 * code.
1156 	 * - 2 DSEG for:
1157 	 *   - 1 control segment,
1158 	 *   - 1 Ethernet segment,
1159 	 * - N Dseg from the inline request.
1160 	 */
1161 	const unsigned int wqe_inl_n =
1162 		((2 * MLX5_WQE_DWORD_SIZE +
1163 		  txq->max_inline * RTE_CACHE_LINE_SIZE) +
1164 		 RTE_CACHE_LINE_SIZE - 1) / RTE_CACHE_LINE_SIZE;
1165 
1166 	if (unlikely(!pkts_n))
1167 		return 0;
1168 	/* Prefetch first packet cacheline. */
1169 	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
1170 	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
1171 	/* Start processing. */
1172 	mlx5_tx_complete(txq);
1173 	max_elts = (elts_n - (elts_head - txq->elts_tail));
1174 	/* A CQE slot must always be available. */
1175 	assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
1176 	do {
1177 		struct rte_mbuf *buf = *(pkts++);
1178 		uintptr_t addr;
1179 		uint32_t length;
1180 		unsigned int segs_n = buf->nb_segs;
1181 		uint8_t cs_flags;
1182 
1183 		/*
1184 		 * Make sure there is enough room to store this packet and
1185 		 * that one ring entry remains unused.
1186 		 */
1187 		assert(segs_n);
1188 		if (max_elts < segs_n)
1189 			break;
1190 		/* Do not bother with large packets MPW cannot handle. */
1191 		if (segs_n > MLX5_MPW_DSEG_MAX) {
1192 			txq->stats.oerrors++;
1193 			break;
1194 		}
1195 		max_elts -= segs_n;
1196 		--pkts_n;
1197 		/*
1198 		 * Compute max_wqe in case less WQE were consumed in previous
1199 		 * iteration.
1200 		 */
1201 		max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1202 		cs_flags = txq_ol_cksum_to_cs(buf);
1203 		/* Retrieve packet information. */
1204 		length = PKT_LEN(buf);
1205 		/* Start new session if packet differs. */
1206 		if (mpw.state == MLX5_MPW_STATE_OPENED) {
1207 			if ((mpw.len != length) ||
1208 			    (segs_n != 1) ||
1209 			    (mpw.wqe->eseg.cs_flags != cs_flags))
1210 				mlx5_mpw_close(txq, &mpw);
1211 		} else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
1212 			if ((mpw.len != length) ||
1213 			    (segs_n != 1) ||
1214 			    (length > inline_room) ||
1215 			    (mpw.wqe->eseg.cs_flags != cs_flags)) {
1216 				mlx5_mpw_inline_close(txq, &mpw);
1217 				inline_room =
1218 					txq->max_inline * RTE_CACHE_LINE_SIZE;
1219 			}
1220 		}
1221 		if (mpw.state == MLX5_MPW_STATE_CLOSED) {
1222 			if ((segs_n != 1) ||
1223 			    (length > inline_room)) {
1224 				/*
1225 				 * Multi-Packet WQE consumes at most two WQE.
1226 				 * mlx5_mpw_new() expects to be able to use
1227 				 * such resources.
1228 				 */
1229 				if (unlikely(max_wqe < 2))
1230 					break;
1231 				max_wqe -= 2;
1232 				mlx5_mpw_new(txq, &mpw, length);
1233 				mpw.wqe->eseg.cs_flags = cs_flags;
1234 			} else {
1235 				if (unlikely(max_wqe < wqe_inl_n))
1236 					break;
1237 				max_wqe -= wqe_inl_n;
1238 				mlx5_mpw_inline_new(txq, &mpw, length);
1239 				mpw.wqe->eseg.cs_flags = cs_flags;
1240 			}
1241 		}
1242 		/* Multi-segment packets must be alone in their MPW. */
1243 		assert((segs_n == 1) || (mpw.pkts_n == 0));
1244 		if (mpw.state == MLX5_MPW_STATE_OPENED) {
1245 			assert(inline_room ==
1246 			       txq->max_inline * RTE_CACHE_LINE_SIZE);
1247 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1248 			length = 0;
1249 #endif
1250 			do {
1251 				volatile struct mlx5_wqe_data_seg *dseg;
1252 
1253 				assert(buf);
1254 				(*txq->elts)[elts_head++ & elts_m] = buf;
1255 				dseg = mpw.data.dseg[mpw.pkts_n];
1256 				addr = rte_pktmbuf_mtod(buf, uintptr_t);
1257 				*dseg = (struct mlx5_wqe_data_seg){
1258 					.byte_count =
1259 					       rte_cpu_to_be_32(DATA_LEN(buf)),
1260 					.lkey = mlx5_tx_mb2mr(txq, buf),
1261 					.addr = rte_cpu_to_be_64(addr),
1262 				};
1263 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1264 				length += DATA_LEN(buf);
1265 #endif
1266 				buf = buf->next;
1267 				++mpw.pkts_n;
1268 				++j;
1269 			} while (--segs_n);
1270 			assert(length == mpw.len);
1271 			if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1272 				mlx5_mpw_close(txq, &mpw);
1273 		} else {
1274 			unsigned int max;
1275 
1276 			assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
1277 			assert(length <= inline_room);
1278 			assert(length == DATA_LEN(buf));
1279 			addr = rte_pktmbuf_mtod(buf, uintptr_t);
1280 			(*txq->elts)[elts_head++ & elts_m] = buf;
1281 			/* Maximum number of bytes before wrapping. */
1282 			max = ((((uintptr_t)(txq->wqes)) +
1283 				(1 << txq->wqe_n) *
1284 				MLX5_WQE_SIZE) -
1285 			       (uintptr_t)mpw.data.raw);
1286 			if (length > max) {
1287 				rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1288 					   (void *)addr,
1289 					   max);
1290 				mpw.data.raw = (volatile void *)txq->wqes;
1291 				rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1292 					   (void *)(addr + max),
1293 					   length - max);
1294 				mpw.data.raw += length - max;
1295 			} else {
1296 				rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1297 					   (void *)addr,
1298 					   length);
1299 
1300 				if (length == max)
1301 					mpw.data.raw =
1302 						(volatile void *)txq->wqes;
1303 				else
1304 					mpw.data.raw += length;
1305 			}
1306 			++mpw.pkts_n;
1307 			mpw.total_len += length;
1308 			++j;
1309 			if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
1310 				mlx5_mpw_inline_close(txq, &mpw);
1311 				inline_room =
1312 					txq->max_inline * RTE_CACHE_LINE_SIZE;
1313 			} else {
1314 				inline_room -= length;
1315 			}
1316 		}
1317 #ifdef MLX5_PMD_SOFT_COUNTERS
1318 		/* Increment sent bytes counter. */
1319 		txq->stats.obytes += length;
1320 #endif
1321 		++i;
1322 	} while (pkts_n);
1323 	/* Take a shortcut if nothing must be sent. */
1324 	if (unlikely(i == 0))
1325 		return 0;
1326 	/* Check whether completion threshold has been reached. */
1327 	/* "j" includes both packets and segments. */
1328 	comp = txq->elts_comp + j;
1329 	if (comp >= MLX5_TX_COMP_THRESH) {
1330 		volatile struct mlx5_wqe *wqe = mpw.wqe;
1331 
1332 		/* Request completion on last WQE. */
1333 		wqe->ctrl[2] = rte_cpu_to_be_32(8);
1334 		/* Save elts_head in unused "immediate" field of WQE. */
1335 		wqe->ctrl[3] = elts_head;
1336 		txq->elts_comp = 0;
1337 #ifndef NDEBUG
1338 		++txq->cq_pi;
1339 #endif
1340 	} else {
1341 		txq->elts_comp = comp;
1342 	}
1343 #ifdef MLX5_PMD_SOFT_COUNTERS
1344 	/* Increment sent packets counter. */
1345 	txq->stats.opackets += i;
1346 #endif
1347 	/* Ring QP doorbell. */
1348 	if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
1349 		mlx5_mpw_inline_close(txq, &mpw);
1350 	else if (mpw.state == MLX5_MPW_STATE_OPENED)
1351 		mlx5_mpw_close(txq, &mpw);
1352 	mlx5_tx_dbrec(txq, mpw.wqe);
1353 	txq->elts_head = elts_head;
1354 	return i;
1355 }
1356 
1357 /**
1358  * Open an Enhanced MPW session.
1359  *
1360  * @param txq
1361  *   Pointer to TX queue structure.
1362  * @param mpw
1363  *   Pointer to MPW session structure.
1364  * @param length
1365  *   Packet length.
1366  */
1367 static inline void
1368 mlx5_empw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, int padding)
1369 {
1370 	uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1371 
1372 	mpw->state = MLX5_MPW_ENHANCED_STATE_OPENED;
1373 	mpw->pkts_n = 0;
1374 	mpw->total_len = sizeof(struct mlx5_wqe);
1375 	mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1376 	mpw->wqe->ctrl[0] =
1377 		rte_cpu_to_be_32((MLX5_OPC_MOD_ENHANCED_MPSW << 24) |
1378 				 (txq->wqe_ci << 8) |
1379 				 MLX5_OPCODE_ENHANCED_MPSW);
1380 	mpw->wqe->ctrl[2] = 0;
1381 	mpw->wqe->ctrl[3] = 0;
1382 	memset((void *)(uintptr_t)&mpw->wqe->eseg, 0, MLX5_WQE_DWORD_SIZE);
1383 	if (unlikely(padding)) {
1384 		uintptr_t addr = (uintptr_t)(mpw->wqe + 1);
1385 
1386 		/* Pad the first 2 DWORDs with zero-length inline header. */
1387 		*(volatile uint32_t *)addr = rte_cpu_to_be_32(MLX5_INLINE_SEG);
1388 		*(volatile uint32_t *)(addr + MLX5_WQE_DWORD_SIZE) =
1389 			rte_cpu_to_be_32(MLX5_INLINE_SEG);
1390 		mpw->total_len += 2 * MLX5_WQE_DWORD_SIZE;
1391 		/* Start from the next WQEBB. */
1392 		mpw->data.raw = (volatile void *)(tx_mlx5_wqe(txq, idx + 1));
1393 	} else {
1394 		mpw->data.raw = (volatile void *)(mpw->wqe + 1);
1395 	}
1396 }
1397 
1398 /**
1399  * Close an Enhanced MPW session.
1400  *
1401  * @param txq
1402  *   Pointer to TX queue structure.
1403  * @param mpw
1404  *   Pointer to MPW session structure.
1405  *
1406  * @return
1407  *   Number of consumed WQEs.
1408  */
1409 static inline uint16_t
1410 mlx5_empw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1411 {
1412 	uint16_t ret;
1413 
1414 	/* Store size in multiple of 16 bytes. Control and Ethernet segments
1415 	 * count as 2.
1416 	 */
1417 	mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1418 					     MLX5_WQE_DS(mpw->total_len));
1419 	mpw->state = MLX5_MPW_STATE_CLOSED;
1420 	ret = (mpw->total_len + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1421 	txq->wqe_ci += ret;
1422 	return ret;
1423 }
1424 
1425 /**
1426  * TX with Enhanced MPW support.
1427  *
1428  * @param txq
1429  *   Pointer to TX queue structure.
1430  * @param[in] pkts
1431  *   Packets to transmit.
1432  * @param pkts_n
1433  *   Number of packets in array.
1434  *
1435  * @return
1436  *   Number of packets successfully transmitted (<= pkts_n).
1437  */
1438 static inline uint16_t
1439 txq_burst_empw(struct mlx5_txq_data *txq, struct rte_mbuf **pkts,
1440 	       uint16_t pkts_n)
1441 {
1442 	uint16_t elts_head = txq->elts_head;
1443 	const uint16_t elts_n = 1 << txq->elts_n;
1444 	const uint16_t elts_m = elts_n - 1;
1445 	unsigned int i = 0;
1446 	unsigned int j = 0;
1447 	uint16_t max_elts;
1448 	uint16_t max_wqe;
1449 	unsigned int max_inline = txq->max_inline * RTE_CACHE_LINE_SIZE;
1450 	unsigned int mpw_room = 0;
1451 	unsigned int inl_pad = 0;
1452 	uint32_t inl_hdr;
1453 	struct mlx5_mpw mpw = {
1454 		.state = MLX5_MPW_STATE_CLOSED,
1455 	};
1456 
1457 	if (unlikely(!pkts_n))
1458 		return 0;
1459 	/* Start processing. */
1460 	mlx5_tx_complete(txq);
1461 	max_elts = (elts_n - (elts_head - txq->elts_tail));
1462 	/* A CQE slot must always be available. */
1463 	assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
1464 	max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1465 	if (unlikely(!max_wqe))
1466 		return 0;
1467 	do {
1468 		struct rte_mbuf *buf = *(pkts++);
1469 		uintptr_t addr;
1470 		unsigned int do_inline = 0; /* Whether inline is possible. */
1471 		uint32_t length;
1472 		uint8_t cs_flags;
1473 
1474 		/* Multi-segmented packet is handled in slow-path outside. */
1475 		assert(NB_SEGS(buf) == 1);
1476 		/* Make sure there is enough room to store this packet. */
1477 		if (max_elts - j == 0)
1478 			break;
1479 		cs_flags = txq_ol_cksum_to_cs(buf);
1480 		/* Retrieve packet information. */
1481 		length = PKT_LEN(buf);
1482 		/* Start new session if:
1483 		 * - multi-segment packet
1484 		 * - no space left even for a dseg
1485 		 * - next packet can be inlined with a new WQE
1486 		 * - cs_flag differs
1487 		 */
1488 		if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED) {
1489 			if ((inl_pad + sizeof(struct mlx5_wqe_data_seg) >
1490 			     mpw_room) ||
1491 			    (length <= txq->inline_max_packet_sz &&
1492 			     inl_pad + sizeof(inl_hdr) + length >
1493 			     mpw_room) ||
1494 			    (mpw.wqe->eseg.cs_flags != cs_flags))
1495 				max_wqe -= mlx5_empw_close(txq, &mpw);
1496 		}
1497 		if (unlikely(mpw.state == MLX5_MPW_STATE_CLOSED)) {
1498 			/* In Enhanced MPW, inline as much as the budget is
1499 			 * allowed. The remaining space is to be filled with
1500 			 * dsegs. If the title WQEBB isn't padded, it will have
1501 			 * 2 dsegs there.
1502 			 */
1503 			mpw_room = RTE_MIN(MLX5_WQE_SIZE_MAX,
1504 					   (max_inline ? max_inline :
1505 					    pkts_n * MLX5_WQE_DWORD_SIZE) +
1506 					   MLX5_WQE_SIZE);
1507 			if (unlikely(max_wqe * MLX5_WQE_SIZE < mpw_room))
1508 				break;
1509 			/* Don't pad the title WQEBB to not waste WQ. */
1510 			mlx5_empw_new(txq, &mpw, 0);
1511 			mpw_room -= mpw.total_len;
1512 			inl_pad = 0;
1513 			do_inline = length <= txq->inline_max_packet_sz &&
1514 				    sizeof(inl_hdr) + length <= mpw_room &&
1515 				    !txq->mpw_hdr_dseg;
1516 			mpw.wqe->eseg.cs_flags = cs_flags;
1517 		} else {
1518 			/* Evaluate whether the next packet can be inlined.
1519 			 * Inlininig is possible when:
1520 			 * - length is less than configured value
1521 			 * - length fits for remaining space
1522 			 * - not required to fill the title WQEBB with dsegs
1523 			 */
1524 			do_inline =
1525 				length <= txq->inline_max_packet_sz &&
1526 				inl_pad + sizeof(inl_hdr) + length <=
1527 				 mpw_room &&
1528 				(!txq->mpw_hdr_dseg ||
1529 				 mpw.total_len >= MLX5_WQE_SIZE);
1530 		}
1531 		if (max_inline && do_inline) {
1532 			/* Inline packet into WQE. */
1533 			unsigned int max;
1534 
1535 			assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1536 			assert(length == DATA_LEN(buf));
1537 			inl_hdr = rte_cpu_to_be_32(length | MLX5_INLINE_SEG);
1538 			addr = rte_pktmbuf_mtod(buf, uintptr_t);
1539 			mpw.data.raw = (volatile void *)
1540 				((uintptr_t)mpw.data.raw + inl_pad);
1541 			max = tx_mlx5_wq_tailroom(txq,
1542 					(void *)(uintptr_t)mpw.data.raw);
1543 			/* Copy inline header. */
1544 			mpw.data.raw = (volatile void *)
1545 				mlx5_copy_to_wq(
1546 					  (void *)(uintptr_t)mpw.data.raw,
1547 					  &inl_hdr,
1548 					  sizeof(inl_hdr),
1549 					  (void *)(uintptr_t)txq->wqes,
1550 					  max);
1551 			max = tx_mlx5_wq_tailroom(txq,
1552 					(void *)(uintptr_t)mpw.data.raw);
1553 			/* Copy packet data. */
1554 			mpw.data.raw = (volatile void *)
1555 				mlx5_copy_to_wq(
1556 					  (void *)(uintptr_t)mpw.data.raw,
1557 					  (void *)addr,
1558 					  length,
1559 					  (void *)(uintptr_t)txq->wqes,
1560 					  max);
1561 			++mpw.pkts_n;
1562 			mpw.total_len += (inl_pad + sizeof(inl_hdr) + length);
1563 			/* No need to get completion as the entire packet is
1564 			 * copied to WQ. Free the buf right away.
1565 			 */
1566 			rte_pktmbuf_free_seg(buf);
1567 			mpw_room -= (inl_pad + sizeof(inl_hdr) + length);
1568 			/* Add pad in the next packet if any. */
1569 			inl_pad = (((uintptr_t)mpw.data.raw +
1570 					(MLX5_WQE_DWORD_SIZE - 1)) &
1571 					~(MLX5_WQE_DWORD_SIZE - 1)) -
1572 				  (uintptr_t)mpw.data.raw;
1573 		} else {
1574 			/* No inline. Load a dseg of packet pointer. */
1575 			volatile rte_v128u32_t *dseg;
1576 
1577 			assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1578 			assert((inl_pad + sizeof(*dseg)) <= mpw_room);
1579 			assert(length == DATA_LEN(buf));
1580 			if (!tx_mlx5_wq_tailroom(txq,
1581 					(void *)((uintptr_t)mpw.data.raw
1582 						+ inl_pad)))
1583 				dseg = (volatile void *)txq->wqes;
1584 			else
1585 				dseg = (volatile void *)
1586 					((uintptr_t)mpw.data.raw +
1587 					 inl_pad);
1588 			(*txq->elts)[elts_head++ & elts_m] = buf;
1589 			addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf,
1590 								 uintptr_t));
1591 			*dseg = (rte_v128u32_t) {
1592 				rte_cpu_to_be_32(length),
1593 				mlx5_tx_mb2mr(txq, buf),
1594 				addr,
1595 				addr >> 32,
1596 			};
1597 			mpw.data.raw = (volatile void *)(dseg + 1);
1598 			mpw.total_len += (inl_pad + sizeof(*dseg));
1599 			++j;
1600 			++mpw.pkts_n;
1601 			mpw_room -= (inl_pad + sizeof(*dseg));
1602 			inl_pad = 0;
1603 		}
1604 #ifdef MLX5_PMD_SOFT_COUNTERS
1605 		/* Increment sent bytes counter. */
1606 		txq->stats.obytes += length;
1607 #endif
1608 		++i;
1609 	} while (i < pkts_n);
1610 	/* Take a shortcut if nothing must be sent. */
1611 	if (unlikely(i == 0))
1612 		return 0;
1613 	/* Check whether completion threshold has been reached. */
1614 	if (txq->elts_comp + j >= MLX5_TX_COMP_THRESH ||
1615 			(uint16_t)(txq->wqe_ci - txq->mpw_comp) >=
1616 			 (1 << txq->wqe_n) / MLX5_TX_COMP_THRESH_INLINE_DIV) {
1617 		volatile struct mlx5_wqe *wqe = mpw.wqe;
1618 
1619 		/* Request completion on last WQE. */
1620 		wqe->ctrl[2] = rte_cpu_to_be_32(8);
1621 		/* Save elts_head in unused "immediate" field of WQE. */
1622 		wqe->ctrl[3] = elts_head;
1623 		txq->elts_comp = 0;
1624 		txq->mpw_comp = txq->wqe_ci;
1625 #ifndef NDEBUG
1626 		++txq->cq_pi;
1627 #endif
1628 	} else {
1629 		txq->elts_comp += j;
1630 	}
1631 #ifdef MLX5_PMD_SOFT_COUNTERS
1632 	/* Increment sent packets counter. */
1633 	txq->stats.opackets += i;
1634 #endif
1635 	if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED)
1636 		mlx5_empw_close(txq, &mpw);
1637 	/* Ring QP doorbell. */
1638 	mlx5_tx_dbrec(txq, mpw.wqe);
1639 	txq->elts_head = elts_head;
1640 	return i;
1641 }
1642 
1643 /**
1644  * DPDK callback for TX with Enhanced MPW support.
1645  *
1646  * @param dpdk_txq
1647  *   Generic pointer to TX queue structure.
1648  * @param[in] pkts
1649  *   Packets to transmit.
1650  * @param pkts_n
1651  *   Number of packets in array.
1652  *
1653  * @return
1654  *   Number of packets successfully transmitted (<= pkts_n).
1655  */
1656 uint16_t
1657 mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1658 {
1659 	struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1660 	uint16_t nb_tx = 0;
1661 
1662 	while (pkts_n > nb_tx) {
1663 		uint16_t n;
1664 		uint16_t ret;
1665 
1666 		n = txq_count_contig_multi_seg(&pkts[nb_tx], pkts_n - nb_tx);
1667 		if (n) {
1668 			ret = mlx5_tx_burst(dpdk_txq, &pkts[nb_tx], n);
1669 			if (!ret)
1670 				break;
1671 			nb_tx += ret;
1672 		}
1673 		n = txq_count_contig_single_seg(&pkts[nb_tx], pkts_n - nb_tx);
1674 		if (n) {
1675 			ret = txq_burst_empw(txq, &pkts[nb_tx], n);
1676 			if (!ret)
1677 				break;
1678 			nb_tx += ret;
1679 		}
1680 	}
1681 	return nb_tx;
1682 }
1683 
1684 /**
1685  * Translate RX completion flags to packet type.
1686  *
1687  * @param[in] rxq
1688  *   Pointer to RX queue structure.
1689  * @param[in] cqe
1690  *   Pointer to CQE.
1691  *
1692  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
1693  *
1694  * @return
1695  *   Packet type for struct rte_mbuf.
1696  */
1697 static inline uint32_t
1698 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe)
1699 {
1700 	uint8_t idx;
1701 	uint8_t pinfo = cqe->pkt_info;
1702 	uint16_t ptype = cqe->hdr_type_etc;
1703 
1704 	/*
1705 	 * The index to the array should have:
1706 	 * bit[1:0] = l3_hdr_type
1707 	 * bit[4:2] = l4_hdr_type
1708 	 * bit[5] = ip_frag
1709 	 * bit[6] = tunneled
1710 	 * bit[7] = outer_l3_type
1711 	 */
1712 	idx = ((pinfo & 0x3) << 6) | ((ptype & 0xfc00) >> 10);
1713 	return mlx5_ptype_table[idx] | rxq->tunnel * !!(idx & (1 << 6));
1714 }
1715 
1716 /**
1717  * Get size of the next packet for a given CQE. For compressed CQEs, the
1718  * consumer index is updated only once all packets of the current one have
1719  * been processed.
1720  *
1721  * @param rxq
1722  *   Pointer to RX queue.
1723  * @param cqe
1724  *   CQE to process.
1725  * @param[out] mcqe
1726  *   Store pointer to mini-CQE if compressed. Otherwise, the pointer is not
1727  *   written.
1728  *
1729  * @return
1730  *   Packet size in bytes (0 if there is none), -1 in case of completion
1731  *   with error.
1732  */
1733 static inline int
1734 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
1735 		 uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe)
1736 {
1737 	struct rxq_zip *zip = &rxq->zip;
1738 	uint16_t cqe_n = cqe_cnt + 1;
1739 	int len = 0;
1740 	uint16_t idx, end;
1741 
1742 	/* Process compressed data in the CQE and mini arrays. */
1743 	if (zip->ai) {
1744 		volatile struct mlx5_mini_cqe8 (*mc)[8] =
1745 			(volatile struct mlx5_mini_cqe8 (*)[8])
1746 			(uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt].pkt_info);
1747 
1748 		len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt);
1749 		*mcqe = &(*mc)[zip->ai & 7];
1750 		if ((++zip->ai & 7) == 0) {
1751 			/* Invalidate consumed CQEs */
1752 			idx = zip->ca;
1753 			end = zip->na;
1754 			while (idx != end) {
1755 				(*rxq->cqes)[idx & cqe_cnt].op_own =
1756 					MLX5_CQE_INVALIDATE;
1757 				++idx;
1758 			}
1759 			/*
1760 			 * Increment consumer index to skip the number of
1761 			 * CQEs consumed. Hardware leaves holes in the CQ
1762 			 * ring for software use.
1763 			 */
1764 			zip->ca = zip->na;
1765 			zip->na += 8;
1766 		}
1767 		if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
1768 			/* Invalidate the rest */
1769 			idx = zip->ca;
1770 			end = zip->cq_ci;
1771 
1772 			while (idx != end) {
1773 				(*rxq->cqes)[idx & cqe_cnt].op_own =
1774 					MLX5_CQE_INVALIDATE;
1775 				++idx;
1776 			}
1777 			rxq->cq_ci = zip->cq_ci;
1778 			zip->ai = 0;
1779 		}
1780 	/* No compressed data, get next CQE and verify if it is compressed. */
1781 	} else {
1782 		int ret;
1783 		int8_t op_own;
1784 
1785 		ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
1786 		if (unlikely(ret == 1))
1787 			return 0;
1788 		++rxq->cq_ci;
1789 		op_own = cqe->op_own;
1790 		rte_cio_rmb();
1791 		if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
1792 			volatile struct mlx5_mini_cqe8 (*mc)[8] =
1793 				(volatile struct mlx5_mini_cqe8 (*)[8])
1794 				(uintptr_t)(&(*rxq->cqes)[rxq->cq_ci &
1795 							  cqe_cnt].pkt_info);
1796 
1797 			/* Fix endianness. */
1798 			zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt);
1799 			/*
1800 			 * Current mini array position is the one returned by
1801 			 * check_cqe64().
1802 			 *
1803 			 * If completion comprises several mini arrays, as a
1804 			 * special case the second one is located 7 CQEs after
1805 			 * the initial CQE instead of 8 for subsequent ones.
1806 			 */
1807 			zip->ca = rxq->cq_ci;
1808 			zip->na = zip->ca + 7;
1809 			/* Compute the next non compressed CQE. */
1810 			--rxq->cq_ci;
1811 			zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
1812 			/* Get packet size to return. */
1813 			len = rte_be_to_cpu_32((*mc)[0].byte_cnt);
1814 			*mcqe = &(*mc)[0];
1815 			zip->ai = 1;
1816 			/* Prefetch all the entries to be invalidated */
1817 			idx = zip->ca;
1818 			end = zip->cq_ci;
1819 			while (idx != end) {
1820 				rte_prefetch0(&(*rxq->cqes)[(idx) & cqe_cnt]);
1821 				++idx;
1822 			}
1823 		} else {
1824 			len = rte_be_to_cpu_32(cqe->byte_cnt);
1825 		}
1826 		/* Error while receiving packet. */
1827 		if (unlikely(MLX5_CQE_OPCODE(op_own) == MLX5_CQE_RESP_ERR))
1828 			return -1;
1829 	}
1830 	return len;
1831 }
1832 
1833 /**
1834  * Translate RX completion flags to offload flags.
1835  *
1836  * @param[in] cqe
1837  *   Pointer to CQE.
1838  *
1839  * @return
1840  *   Offload flags (ol_flags) for struct rte_mbuf.
1841  */
1842 static inline uint32_t
1843 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe)
1844 {
1845 	uint32_t ol_flags = 0;
1846 	uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc);
1847 
1848 	ol_flags =
1849 		TRANSPOSE(flags,
1850 			  MLX5_CQE_RX_L3_HDR_VALID,
1851 			  PKT_RX_IP_CKSUM_GOOD) |
1852 		TRANSPOSE(flags,
1853 			  MLX5_CQE_RX_L4_HDR_VALID,
1854 			  PKT_RX_L4_CKSUM_GOOD);
1855 	return ol_flags;
1856 }
1857 
1858 /**
1859  * Fill in mbuf fields from RX completion flags.
1860  * Note that pkt->ol_flags should be initialized outside of this function.
1861  *
1862  * @param rxq
1863  *   Pointer to RX queue.
1864  * @param pkt
1865  *   mbuf to fill.
1866  * @param cqe
1867  *   CQE to process.
1868  * @param rss_hash_res
1869  *   Packet RSS Hash result.
1870  */
1871 static inline void
1872 rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
1873 	       volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res)
1874 {
1875 	/* Update packet information. */
1876 	pkt->packet_type = rxq_cq_to_pkt_type(rxq, cqe);
1877 	if (rss_hash_res && rxq->rss_hash) {
1878 		pkt->hash.rss = rss_hash_res;
1879 		pkt->ol_flags |= PKT_RX_RSS_HASH;
1880 	}
1881 	if (rxq->mark && MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
1882 		pkt->ol_flags |= PKT_RX_FDIR;
1883 		if (cqe->sop_drop_qpn !=
1884 		    rte_cpu_to_be_32(MLX5_FLOW_MARK_DEFAULT)) {
1885 			uint32_t mark = cqe->sop_drop_qpn;
1886 
1887 			pkt->ol_flags |= PKT_RX_FDIR_ID;
1888 			pkt->hash.fdir.hi = mlx5_flow_mark_get(mark);
1889 		}
1890 	}
1891 	if (rxq->csum)
1892 		pkt->ol_flags |= rxq_cq_to_ol_flags(cqe);
1893 	if (rxq->vlan_strip &&
1894 	    (cqe->hdr_type_etc & rte_cpu_to_be_16(MLX5_CQE_VLAN_STRIPPED))) {
1895 		pkt->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
1896 		pkt->vlan_tci = rte_be_to_cpu_16(cqe->vlan_info);
1897 	}
1898 	if (rxq->hw_timestamp) {
1899 		pkt->timestamp = rte_be_to_cpu_64(cqe->timestamp);
1900 		pkt->ol_flags |= PKT_RX_TIMESTAMP;
1901 	}
1902 }
1903 
1904 /**
1905  * DPDK callback for RX.
1906  *
1907  * @param dpdk_rxq
1908  *   Generic pointer to RX queue structure.
1909  * @param[out] pkts
1910  *   Array to store received packets.
1911  * @param pkts_n
1912  *   Maximum number of packets in array.
1913  *
1914  * @return
1915  *   Number of packets successfully received (<= pkts_n).
1916  */
1917 uint16_t
1918 mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1919 {
1920 	struct mlx5_rxq_data *rxq = dpdk_rxq;
1921 	const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
1922 	const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
1923 	const unsigned int sges_n = rxq->sges_n;
1924 	struct rte_mbuf *pkt = NULL;
1925 	struct rte_mbuf *seg = NULL;
1926 	volatile struct mlx5_cqe *cqe =
1927 		&(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1928 	unsigned int i = 0;
1929 	unsigned int rq_ci = rxq->rq_ci << sges_n;
1930 	int len = 0; /* keep its value across iterations. */
1931 
1932 	while (pkts_n) {
1933 		unsigned int idx = rq_ci & wqe_cnt;
1934 		volatile struct mlx5_wqe_data_seg *wqe =
1935 			&((volatile struct mlx5_wqe_data_seg *)rxq->wqes)[idx];
1936 		struct rte_mbuf *rep = (*rxq->elts)[idx];
1937 		volatile struct mlx5_mini_cqe8 *mcqe = NULL;
1938 		uint32_t rss_hash_res;
1939 
1940 		if (pkt)
1941 			NEXT(seg) = rep;
1942 		seg = rep;
1943 		rte_prefetch0(seg);
1944 		rte_prefetch0(cqe);
1945 		rte_prefetch0(wqe);
1946 		rep = rte_mbuf_raw_alloc(rxq->mp);
1947 		if (unlikely(rep == NULL)) {
1948 			++rxq->stats.rx_nombuf;
1949 			if (!pkt) {
1950 				/*
1951 				 * no buffers before we even started,
1952 				 * bail out silently.
1953 				 */
1954 				break;
1955 			}
1956 			while (pkt != seg) {
1957 				assert(pkt != (*rxq->elts)[idx]);
1958 				rep = NEXT(pkt);
1959 				NEXT(pkt) = NULL;
1960 				NB_SEGS(pkt) = 1;
1961 				rte_mbuf_raw_free(pkt);
1962 				pkt = rep;
1963 			}
1964 			break;
1965 		}
1966 		if (!pkt) {
1967 			cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1968 			len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt, &mcqe);
1969 			if (!len) {
1970 				rte_mbuf_raw_free(rep);
1971 				break;
1972 			}
1973 			if (unlikely(len == -1)) {
1974 				/* RX error, packet is likely too large. */
1975 				rte_mbuf_raw_free(rep);
1976 				++rxq->stats.idropped;
1977 				goto skip;
1978 			}
1979 			pkt = seg;
1980 			assert(len >= (rxq->crc_present << 2));
1981 			pkt->ol_flags = 0;
1982 			/* If compressed, take hash result from mini-CQE. */
1983 			rss_hash_res = rte_be_to_cpu_32(mcqe == NULL ?
1984 							cqe->rx_hash_res :
1985 							mcqe->rx_hash_result);
1986 			rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res);
1987 			if (rxq->crc_present)
1988 				len -= ETHER_CRC_LEN;
1989 			PKT_LEN(pkt) = len;
1990 		}
1991 		DATA_LEN(rep) = DATA_LEN(seg);
1992 		PKT_LEN(rep) = PKT_LEN(seg);
1993 		SET_DATA_OFF(rep, DATA_OFF(seg));
1994 		PORT(rep) = PORT(seg);
1995 		(*rxq->elts)[idx] = rep;
1996 		/*
1997 		 * Fill NIC descriptor with the new buffer.  The lkey and size
1998 		 * of the buffers are already known, only the buffer address
1999 		 * changes.
2000 		 */
2001 		wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
2002 		/* If there's only one MR, no need to replace LKey in WQE. */
2003 		if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
2004 			wqe->lkey = mlx5_rx_mb2mr(rxq, rep);
2005 		if (len > DATA_LEN(seg)) {
2006 			len -= DATA_LEN(seg);
2007 			++NB_SEGS(pkt);
2008 			++rq_ci;
2009 			continue;
2010 		}
2011 		DATA_LEN(seg) = len;
2012 #ifdef MLX5_PMD_SOFT_COUNTERS
2013 		/* Increment bytes counter. */
2014 		rxq->stats.ibytes += PKT_LEN(pkt);
2015 #endif
2016 		/* Return packet. */
2017 		*(pkts++) = pkt;
2018 		pkt = NULL;
2019 		--pkts_n;
2020 		++i;
2021 skip:
2022 		/* Align consumer index to the next stride. */
2023 		rq_ci >>= sges_n;
2024 		++rq_ci;
2025 		rq_ci <<= sges_n;
2026 	}
2027 	if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
2028 		return 0;
2029 	/* Update the consumer index. */
2030 	rxq->rq_ci = rq_ci >> sges_n;
2031 	rte_cio_wmb();
2032 	*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
2033 	rte_cio_wmb();
2034 	*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
2035 #ifdef MLX5_PMD_SOFT_COUNTERS
2036 	/* Increment packets counter. */
2037 	rxq->stats.ipackets += i;
2038 #endif
2039 	return i;
2040 }
2041 
2042 void
2043 mlx5_mprq_buf_free_cb(void *addr __rte_unused, void *opaque)
2044 {
2045 	struct mlx5_mprq_buf *buf = opaque;
2046 
2047 	if (rte_atomic16_read(&buf->refcnt) == 1) {
2048 		rte_mempool_put(buf->mp, buf);
2049 	} else if (rte_atomic16_add_return(&buf->refcnt, -1) == 0) {
2050 		rte_atomic16_set(&buf->refcnt, 1);
2051 		rte_mempool_put(buf->mp, buf);
2052 	}
2053 }
2054 
2055 void
2056 mlx5_mprq_buf_free(struct mlx5_mprq_buf *buf)
2057 {
2058 	mlx5_mprq_buf_free_cb(NULL, buf);
2059 }
2060 
2061 static inline void
2062 mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx)
2063 {
2064 	struct mlx5_mprq_buf *rep = rxq->mprq_repl;
2065 	volatile struct mlx5_wqe_data_seg *wqe =
2066 		&((volatile struct mlx5_wqe_mprq *)rxq->wqes)[rq_idx].dseg;
2067 	void *addr;
2068 
2069 	assert(rep != NULL);
2070 	/* Replace MPRQ buf. */
2071 	(*rxq->mprq_bufs)[rq_idx] = rep;
2072 	/* Replace WQE. */
2073 	addr = mlx5_mprq_buf_addr(rep);
2074 	wqe->addr = rte_cpu_to_be_64((uintptr_t)addr);
2075 	/* If there's only one MR, no need to replace LKey in WQE. */
2076 	if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
2077 		wqe->lkey = mlx5_rx_addr2mr(rxq, (uintptr_t)addr);
2078 	/* Stash a mbuf for next replacement. */
2079 	if (likely(!rte_mempool_get(rxq->mprq_mp, (void **)&rep)))
2080 		rxq->mprq_repl = rep;
2081 	else
2082 		rxq->mprq_repl = NULL;
2083 }
2084 
2085 /**
2086  * DPDK callback for RX with Multi-Packet RQ support.
2087  *
2088  * @param dpdk_rxq
2089  *   Generic pointer to RX queue structure.
2090  * @param[out] pkts
2091  *   Array to store received packets.
2092  * @param pkts_n
2093  *   Maximum number of packets in array.
2094  *
2095  * @return
2096  *   Number of packets successfully received (<= pkts_n).
2097  */
2098 uint16_t
2099 mlx5_rx_burst_mprq(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
2100 {
2101 	struct mlx5_rxq_data *rxq = dpdk_rxq;
2102 	const unsigned int strd_n = 1 << rxq->strd_num_n;
2103 	const unsigned int strd_sz = 1 << rxq->strd_sz_n;
2104 	const unsigned int strd_shift =
2105 		MLX5_MPRQ_STRIDE_SHIFT_BYTE * rxq->strd_shift_en;
2106 	const unsigned int cq_mask = (1 << rxq->cqe_n) - 1;
2107 	const unsigned int wq_mask = (1 << rxq->elts_n) - 1;
2108 	volatile struct mlx5_cqe *cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
2109 	unsigned int i = 0;
2110 	uint16_t rq_ci = rxq->rq_ci;
2111 	uint16_t consumed_strd = rxq->consumed_strd;
2112 	struct mlx5_mprq_buf *buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
2113 
2114 	while (i < pkts_n) {
2115 		struct rte_mbuf *pkt;
2116 		void *addr;
2117 		int ret;
2118 		unsigned int len;
2119 		uint16_t strd_cnt;
2120 		uint16_t strd_idx;
2121 		uint32_t offset;
2122 		uint32_t byte_cnt;
2123 		volatile struct mlx5_mini_cqe8 *mcqe = NULL;
2124 		uint32_t rss_hash_res = 0;
2125 
2126 		if (consumed_strd == strd_n) {
2127 			/* Replace WQE only if the buffer is still in use. */
2128 			if (rte_atomic16_read(&buf->refcnt) > 1) {
2129 				mprq_buf_replace(rxq, rq_ci & wq_mask);
2130 				/* Release the old buffer. */
2131 				mlx5_mprq_buf_free(buf);
2132 			} else if (unlikely(rxq->mprq_repl == NULL)) {
2133 				struct mlx5_mprq_buf *rep;
2134 
2135 				/*
2136 				 * Currently, the MPRQ mempool is out of buffer
2137 				 * and doing memcpy regardless of the size of Rx
2138 				 * packet. Retry allocation to get back to
2139 				 * normal.
2140 				 */
2141 				if (!rte_mempool_get(rxq->mprq_mp,
2142 						     (void **)&rep))
2143 					rxq->mprq_repl = rep;
2144 			}
2145 			/* Advance to the next WQE. */
2146 			consumed_strd = 0;
2147 			++rq_ci;
2148 			buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
2149 		}
2150 		cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
2151 		ret = mlx5_rx_poll_len(rxq, cqe, cq_mask, &mcqe);
2152 		if (!ret)
2153 			break;
2154 		if (unlikely(ret == -1)) {
2155 			/* RX error, packet is likely too large. */
2156 			++rxq->stats.idropped;
2157 			continue;
2158 		}
2159 		byte_cnt = ret;
2160 		strd_cnt = (byte_cnt & MLX5_MPRQ_STRIDE_NUM_MASK) >>
2161 			   MLX5_MPRQ_STRIDE_NUM_SHIFT;
2162 		assert(strd_cnt);
2163 		consumed_strd += strd_cnt;
2164 		if (byte_cnt & MLX5_MPRQ_FILLER_MASK)
2165 			continue;
2166 		if (mcqe == NULL) {
2167 			rss_hash_res = rte_be_to_cpu_32(cqe->rx_hash_res);
2168 			strd_idx = rte_be_to_cpu_16(cqe->wqe_counter);
2169 		} else {
2170 			/* mini-CQE for MPRQ doesn't have hash result. */
2171 			strd_idx = rte_be_to_cpu_16(mcqe->stride_idx);
2172 		}
2173 		assert(strd_idx < strd_n);
2174 		assert(!((rte_be_to_cpu_16(cqe->wqe_id) ^ rq_ci) & wq_mask));
2175 		/*
2176 		 * Currently configured to receive a packet per a stride. But if
2177 		 * MTU is adjusted through kernel interface, device could
2178 		 * consume multiple strides without raising an error. In this
2179 		 * case, the packet should be dropped because it is bigger than
2180 		 * the max_rx_pkt_len.
2181 		 */
2182 		if (unlikely(strd_cnt > 1)) {
2183 			++rxq->stats.idropped;
2184 			continue;
2185 		}
2186 		pkt = rte_pktmbuf_alloc(rxq->mp);
2187 		if (unlikely(pkt == NULL)) {
2188 			++rxq->stats.rx_nombuf;
2189 			break;
2190 		}
2191 		len = (byte_cnt & MLX5_MPRQ_LEN_MASK) >> MLX5_MPRQ_LEN_SHIFT;
2192 		assert((int)len >= (rxq->crc_present << 2));
2193 		if (rxq->crc_present)
2194 			len -= ETHER_CRC_LEN;
2195 		offset = strd_idx * strd_sz + strd_shift;
2196 		addr = RTE_PTR_ADD(mlx5_mprq_buf_addr(buf), offset);
2197 		/* Initialize the offload flag. */
2198 		pkt->ol_flags = 0;
2199 		/*
2200 		 * Memcpy packets to the target mbuf if:
2201 		 * - The size of packet is smaller than mprq_max_memcpy_len.
2202 		 * - Out of buffer in the Mempool for Multi-Packet RQ.
2203 		 */
2204 		if (len <= rxq->mprq_max_memcpy_len || rxq->mprq_repl == NULL) {
2205 			/*
2206 			 * When memcpy'ing packet due to out-of-buffer, the
2207 			 * packet must be smaller than the target mbuf.
2208 			 */
2209 			if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) {
2210 				rte_pktmbuf_free_seg(pkt);
2211 				++rxq->stats.idropped;
2212 				continue;
2213 			}
2214 			rte_memcpy(rte_pktmbuf_mtod(pkt, void *), addr, len);
2215 		} else {
2216 			rte_iova_t buf_iova;
2217 			struct rte_mbuf_ext_shared_info *shinfo;
2218 			uint16_t buf_len = strd_cnt * strd_sz;
2219 
2220 			/* Increment the refcnt of the whole chunk. */
2221 			rte_atomic16_add_return(&buf->refcnt, 1);
2222 			assert((uint16_t)rte_atomic16_read(&buf->refcnt) <=
2223 			       strd_n + 1);
2224 			addr = RTE_PTR_SUB(addr, RTE_PKTMBUF_HEADROOM);
2225 			/*
2226 			 * MLX5 device doesn't use iova but it is necessary in a
2227 			 * case where the Rx packet is transmitted via a
2228 			 * different PMD.
2229 			 */
2230 			buf_iova = rte_mempool_virt2iova(buf) +
2231 				   RTE_PTR_DIFF(addr, buf);
2232 			shinfo = rte_pktmbuf_ext_shinfo_init_helper(addr,
2233 					&buf_len, mlx5_mprq_buf_free_cb, buf);
2234 			/*
2235 			 * EXT_ATTACHED_MBUF will be set to pkt->ol_flags when
2236 			 * attaching the stride to mbuf and more offload flags
2237 			 * will be added below by calling rxq_cq_to_mbuf().
2238 			 * Other fields will be overwritten.
2239 			 */
2240 			rte_pktmbuf_attach_extbuf(pkt, addr, buf_iova, buf_len,
2241 						  shinfo);
2242 			rte_pktmbuf_reset_headroom(pkt);
2243 			assert(pkt->ol_flags == EXT_ATTACHED_MBUF);
2244 			/*
2245 			 * Prevent potential overflow due to MTU change through
2246 			 * kernel interface.
2247 			 */
2248 			if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) {
2249 				rte_pktmbuf_free_seg(pkt);
2250 				++rxq->stats.idropped;
2251 				continue;
2252 			}
2253 		}
2254 		rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res);
2255 		PKT_LEN(pkt) = len;
2256 		DATA_LEN(pkt) = len;
2257 		PORT(pkt) = rxq->port_id;
2258 #ifdef MLX5_PMD_SOFT_COUNTERS
2259 		/* Increment bytes counter. */
2260 		rxq->stats.ibytes += PKT_LEN(pkt);
2261 #endif
2262 		/* Return packet. */
2263 		*(pkts++) = pkt;
2264 		++i;
2265 	}
2266 	/* Update the consumer indexes. */
2267 	rxq->consumed_strd = consumed_strd;
2268 	rte_cio_wmb();
2269 	*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
2270 	if (rq_ci != rxq->rq_ci) {
2271 		rxq->rq_ci = rq_ci;
2272 		rte_cio_wmb();
2273 		*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
2274 	}
2275 #ifdef MLX5_PMD_SOFT_COUNTERS
2276 	/* Increment packets counter. */
2277 	rxq->stats.ipackets += i;
2278 #endif
2279 	return i;
2280 }
2281 
2282 /**
2283  * Dummy DPDK callback for TX.
2284  *
2285  * This function is used to temporarily replace the real callback during
2286  * unsafe control operations on the queue, or in case of error.
2287  *
2288  * @param dpdk_txq
2289  *   Generic pointer to TX queue structure.
2290  * @param[in] pkts
2291  *   Packets to transmit.
2292  * @param pkts_n
2293  *   Number of packets in array.
2294  *
2295  * @return
2296  *   Number of packets successfully transmitted (<= pkts_n).
2297  */
2298 uint16_t
2299 removed_tx_burst(void *dpdk_txq __rte_unused,
2300 		 struct rte_mbuf **pkts __rte_unused,
2301 		 uint16_t pkts_n __rte_unused)
2302 {
2303 	return 0;
2304 }
2305 
2306 /**
2307  * Dummy DPDK callback for RX.
2308  *
2309  * This function is used to temporarily replace the real callback during
2310  * unsafe control operations on the queue, or in case of error.
2311  *
2312  * @param dpdk_rxq
2313  *   Generic pointer to RX queue structure.
2314  * @param[out] pkts
2315  *   Array to store received packets.
2316  * @param pkts_n
2317  *   Maximum number of packets in array.
2318  *
2319  * @return
2320  *   Number of packets successfully received (<= pkts_n).
2321  */
2322 uint16_t
2323 removed_rx_burst(void *dpdk_txq __rte_unused,
2324 		 struct rte_mbuf **pkts __rte_unused,
2325 		 uint16_t pkts_n __rte_unused)
2326 {
2327 	return 0;
2328 }
2329 
2330 /*
2331  * Vectorized Rx/Tx routines are not compiled in when required vector
2332  * instructions are not supported on a target architecture. The following null
2333  * stubs are needed for linkage when those are not included outside of this file
2334  * (e.g.  mlx5_rxtx_vec_sse.c for x86).
2335  */
2336 
2337 uint16_t __attribute__((weak))
2338 mlx5_tx_burst_raw_vec(void *dpdk_txq __rte_unused,
2339 		      struct rte_mbuf **pkts __rte_unused,
2340 		      uint16_t pkts_n __rte_unused)
2341 {
2342 	return 0;
2343 }
2344 
2345 uint16_t __attribute__((weak))
2346 mlx5_tx_burst_vec(void *dpdk_txq __rte_unused,
2347 		  struct rte_mbuf **pkts __rte_unused,
2348 		  uint16_t pkts_n __rte_unused)
2349 {
2350 	return 0;
2351 }
2352 
2353 uint16_t __attribute__((weak))
2354 mlx5_rx_burst_vec(void *dpdk_txq __rte_unused,
2355 		  struct rte_mbuf **pkts __rte_unused,
2356 		  uint16_t pkts_n __rte_unused)
2357 {
2358 	return 0;
2359 }
2360 
2361 int __attribute__((weak))
2362 mlx5_check_raw_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
2363 {
2364 	return -ENOTSUP;
2365 }
2366 
2367 int __attribute__((weak))
2368 mlx5_check_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
2369 {
2370 	return -ENOTSUP;
2371 }
2372 
2373 int __attribute__((weak))
2374 mlx5_rxq_check_vec_support(struct mlx5_rxq_data *rxq __rte_unused)
2375 {
2376 	return -ENOTSUP;
2377 }
2378 
2379 int __attribute__((weak))
2380 mlx5_check_vec_rx_support(struct rte_eth_dev *dev __rte_unused)
2381 {
2382 	return -ENOTSUP;
2383 }
2384