xref: /dpdk/drivers/net/mlx5/mlx5_rx.c (revision 99f9d799ce21ab22e922ffec8aad51d56e24d04d)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2021 6WIND S.A.
3  * Copyright 2021 Mellanox Technologies, Ltd
4  */
5 
6 #include <stdint.h>
7 #include <string.h>
8 #include <stdlib.h>
9 
10 #include <rte_mbuf.h>
11 #include <rte_mempool.h>
12 #include <rte_prefetch.h>
13 #include <rte_common.h>
14 #include <rte_branch_prediction.h>
15 #include <rte_ether.h>
16 #include <rte_cycles.h>
17 #include <rte_flow.h>
18 
19 #include <mlx5_prm.h>
20 #include <mlx5_common.h>
21 
22 #include "mlx5_autoconf.h"
23 #include "mlx5_defs.h"
24 #include "mlx5.h"
25 #include "mlx5_mr.h"
26 #include "mlx5_utils.h"
27 #include "mlx5_rxtx.h"
28 #include "mlx5_rx.h"
29 
30 
31 static __rte_always_inline uint32_t
32 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
33 		   volatile struct mlx5_mini_cqe8 *mcqe);
34 
35 static __rte_always_inline int
36 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
37 		 uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe);
38 
39 static __rte_always_inline uint32_t
40 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe);
41 
42 static __rte_always_inline void
43 rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
44 	       volatile struct mlx5_cqe *cqe,
45 	       volatile struct mlx5_mini_cqe8 *mcqe);
46 
47 static inline void
48 mlx5_lro_update_tcp_hdr(struct rte_tcp_hdr *__rte_restrict tcp,
49 			volatile struct mlx5_cqe *__rte_restrict cqe,
50 			uint32_t phcsum, uint8_t l4_type);
51 
52 static inline void
53 mlx5_lro_update_hdr(uint8_t *__rte_restrict padd,
54 		    volatile struct mlx5_cqe *__rte_restrict cqe,
55 		    volatile struct mlx5_mini_cqe8 *mcqe,
56 		    struct mlx5_rxq_data *rxq, uint32_t len);
57 
58 
59 /**
60  * Internal function to compute the number of used descriptors in an RX queue.
61  *
62  * @param rxq
63  *   The Rx queue.
64  *
65  * @return
66  *   The number of used Rx descriptor.
67  */
68 static uint32_t
69 rx_queue_count(struct mlx5_rxq_data *rxq)
70 {
71 	struct rxq_zip *zip = &rxq->zip;
72 	volatile struct mlx5_cqe *cqe;
73 	const unsigned int cqe_n = (1 << rxq->cqe_n);
74 	const unsigned int sges_n = (1 << rxq->sges_n);
75 	const unsigned int elts_n = (1 << rxq->elts_n);
76 	const unsigned int strd_n = (1 << rxq->strd_num_n);
77 	const unsigned int cqe_cnt = cqe_n - 1;
78 	unsigned int cq_ci, used;
79 
80 	/* if we are processing a compressed cqe */
81 	if (zip->ai) {
82 		used = zip->cqe_cnt - zip->ai;
83 		cq_ci = zip->cq_ci;
84 	} else {
85 		used = 0;
86 		cq_ci = rxq->cq_ci;
87 	}
88 	cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
89 	while (check_cqe(cqe, cqe_n, cq_ci) != MLX5_CQE_STATUS_HW_OWN) {
90 		int8_t op_own;
91 		unsigned int n;
92 
93 		op_own = cqe->op_own;
94 		if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
95 			n = rte_be_to_cpu_32(cqe->byte_cnt);
96 		else
97 			n = 1;
98 		cq_ci += n;
99 		used += n;
100 		cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
101 	}
102 	used = RTE_MIN(used * sges_n, elts_n * strd_n);
103 	return used;
104 }
105 
106 /**
107  * DPDK callback to check the status of a Rx descriptor.
108  *
109  * @param rx_queue
110  *   The Rx queue.
111  * @param[in] offset
112  *   The index of the descriptor in the ring.
113  *
114  * @return
115  *   The status of the Rx descriptor.
116  */
117 int
118 mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
119 {
120 	struct mlx5_rxq_data *rxq = rx_queue;
121 	struct mlx5_rxq_ctrl *rxq_ctrl =
122 			container_of(rxq, struct mlx5_rxq_ctrl, rxq);
123 	struct rte_eth_dev *dev = ETH_DEV(rxq_ctrl->priv);
124 
125 	if (dev->rx_pkt_burst == NULL ||
126 	    dev->rx_pkt_burst == removed_rx_burst) {
127 		rte_errno = ENOTSUP;
128 		return -rte_errno;
129 	}
130 	if (offset >= (1 << rxq->cqe_n)) {
131 		rte_errno = EINVAL;
132 		return -rte_errno;
133 	}
134 	if (offset < rx_queue_count(rxq))
135 		return RTE_ETH_RX_DESC_DONE;
136 	return RTE_ETH_RX_DESC_AVAIL;
137 }
138 
139 /**
140  * DPDK callback to get the RX queue information.
141  *
142  * @param dev
143  *   Pointer to the device structure.
144  *
145  * @param rx_queue_id
146  *   Rx queue identificator.
147  *
148  * @param qinfo
149  *   Pointer to the RX queue information structure.
150  *
151  * @return
152  *   None.
153  */
154 
155 void
156 mlx5_rxq_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id,
157 		  struct rte_eth_rxq_info *qinfo)
158 {
159 	struct mlx5_priv *priv = dev->data->dev_private;
160 	struct mlx5_rxq_data *rxq = (*priv->rxqs)[rx_queue_id];
161 	struct mlx5_rxq_ctrl *rxq_ctrl =
162 		container_of(rxq, struct mlx5_rxq_ctrl, rxq);
163 
164 	if (!rxq)
165 		return;
166 	qinfo->mp = mlx5_rxq_mprq_enabled(rxq) ?
167 					rxq->mprq_mp : rxq->mp;
168 	qinfo->conf.rx_thresh.pthresh = 0;
169 	qinfo->conf.rx_thresh.hthresh = 0;
170 	qinfo->conf.rx_thresh.wthresh = 0;
171 	qinfo->conf.rx_free_thresh = rxq->rq_repl_thresh;
172 	qinfo->conf.rx_drop_en = 1;
173 	qinfo->conf.rx_deferred_start = rxq_ctrl ? 0 : 1;
174 	qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
175 	qinfo->scattered_rx = dev->data->scattered_rx;
176 	qinfo->nb_desc = mlx5_rxq_mprq_enabled(rxq) ?
177 		(1 << rxq->elts_n) * (1 << rxq->strd_num_n) :
178 		(1 << rxq->elts_n);
179 }
180 
181 /**
182  * DPDK callback to get the RX packet burst mode information.
183  *
184  * @param dev
185  *   Pointer to the device structure.
186  *
187  * @param rx_queue_id
188  *   Rx queue identificatior.
189  *
190  * @param mode
191  *   Pointer to the burts mode information.
192  *
193  * @return
194  *   0 as success, -EINVAL as failure.
195  */
196 int
197 mlx5_rx_burst_mode_get(struct rte_eth_dev *dev,
198 		       uint16_t rx_queue_id __rte_unused,
199 		       struct rte_eth_burst_mode *mode)
200 {
201 	eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
202 	struct mlx5_priv *priv = dev->data->dev_private;
203 	struct mlx5_rxq_data *rxq;
204 
205 	rxq = (*priv->rxqs)[rx_queue_id];
206 	if (!rxq) {
207 		rte_errno = EINVAL;
208 		return -rte_errno;
209 	}
210 	if (pkt_burst == mlx5_rx_burst) {
211 		snprintf(mode->info, sizeof(mode->info), "%s", "Scalar");
212 	} else if (pkt_burst == mlx5_rx_burst_mprq) {
213 		snprintf(mode->info, sizeof(mode->info), "%s", "Multi-Packet RQ");
214 	} else if (pkt_burst == mlx5_rx_burst_vec) {
215 #if defined RTE_ARCH_X86_64
216 		snprintf(mode->info, sizeof(mode->info), "%s", "Vector SSE");
217 #elif defined RTE_ARCH_ARM64
218 		snprintf(mode->info, sizeof(mode->info), "%s", "Vector Neon");
219 #elif defined RTE_ARCH_PPC_64
220 		snprintf(mode->info, sizeof(mode->info), "%s", "Vector AltiVec");
221 #else
222 		return -EINVAL;
223 #endif
224 	} else if (pkt_burst == mlx5_rx_burst_mprq_vec) {
225 #if defined RTE_ARCH_X86_64
226 		snprintf(mode->info, sizeof(mode->info), "%s", "MPRQ Vector SSE");
227 #elif defined RTE_ARCH_ARM64
228 		snprintf(mode->info, sizeof(mode->info), "%s", "MPRQ Vector Neon");
229 #elif defined RTE_ARCH_PPC_64
230 		snprintf(mode->info, sizeof(mode->info), "%s", "MPRQ Vector AltiVec");
231 #else
232 		return -EINVAL;
233 #endif
234 	} else {
235 		return -EINVAL;
236 	}
237 	return 0;
238 }
239 
240 /**
241  * DPDK callback to get the number of used descriptors in a RX queue.
242  *
243  * @param dev
244  *   Pointer to the device structure.
245  *
246  * @param rx_queue_id
247  *   The Rx queue.
248  *
249  * @return
250  *   The number of used rx descriptor.
251  *   -EINVAL if the queue is invalid
252  */
253 uint32_t
254 mlx5_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
255 {
256 	struct mlx5_priv *priv = dev->data->dev_private;
257 	struct mlx5_rxq_data *rxq;
258 
259 	if (dev->rx_pkt_burst == NULL ||
260 	    dev->rx_pkt_burst == removed_rx_burst) {
261 		rte_errno = ENOTSUP;
262 		return -rte_errno;
263 	}
264 	rxq = (*priv->rxqs)[rx_queue_id];
265 	if (!rxq) {
266 		rte_errno = EINVAL;
267 		return -rte_errno;
268 	}
269 	return rx_queue_count(rxq);
270 }
271 
272 /**
273  * Translate RX completion flags to packet type.
274  *
275  * @param[in] rxq
276  *   Pointer to RX queue structure.
277  * @param[in] cqe
278  *   Pointer to CQE.
279  *
280  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
281  *
282  * @return
283  *   Packet type for struct rte_mbuf.
284  */
285 static inline uint32_t
286 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
287 				   volatile struct mlx5_mini_cqe8 *mcqe)
288 {
289 	uint8_t idx;
290 	uint8_t ptype;
291 	uint8_t pinfo = (cqe->pkt_info & 0x3) << 6;
292 
293 	/* Get l3/l4 header from mini-CQE in case L3/L4 format*/
294 	if (mcqe == NULL ||
295 	    rxq->mcqe_format != MLX5_CQE_RESP_FORMAT_L34H_STRIDX)
296 		ptype = (cqe->hdr_type_etc & 0xfc00) >> 10;
297 	else
298 		ptype = mcqe->hdr_type >> 2;
299 	/*
300 	 * The index to the array should have:
301 	 * bit[1:0] = l3_hdr_type
302 	 * bit[4:2] = l4_hdr_type
303 	 * bit[5] = ip_frag
304 	 * bit[6] = tunneled
305 	 * bit[7] = outer_l3_type
306 	 */
307 	idx = pinfo | ptype;
308 	return mlx5_ptype_table[idx] | rxq->tunnel * !!(idx & (1 << 6));
309 }
310 
311 /**
312  * Initialize Rx WQ and indexes.
313  *
314  * @param[in] rxq
315  *   Pointer to RX queue structure.
316  */
317 void
318 mlx5_rxq_initialize(struct mlx5_rxq_data *rxq)
319 {
320 	const unsigned int wqe_n = 1 << rxq->elts_n;
321 	unsigned int i;
322 
323 	for (i = 0; (i != wqe_n); ++i) {
324 		volatile struct mlx5_wqe_data_seg *scat;
325 		uintptr_t addr;
326 		uint32_t byte_count;
327 
328 		if (mlx5_rxq_mprq_enabled(rxq)) {
329 			struct mlx5_mprq_buf *buf = (*rxq->mprq_bufs)[i];
330 
331 			scat = &((volatile struct mlx5_wqe_mprq *)
332 				rxq->wqes)[i].dseg;
333 			addr = (uintptr_t)mlx5_mprq_buf_addr(buf,
334 							 1 << rxq->strd_num_n);
335 			byte_count = (1 << rxq->strd_sz_n) *
336 					(1 << rxq->strd_num_n);
337 		} else {
338 			struct rte_mbuf *buf = (*rxq->elts)[i];
339 
340 			scat = &((volatile struct mlx5_wqe_data_seg *)
341 					rxq->wqes)[i];
342 			addr = rte_pktmbuf_mtod(buf, uintptr_t);
343 			byte_count = DATA_LEN(buf);
344 		}
345 		/* scat->addr must be able to store a pointer. */
346 		MLX5_ASSERT(sizeof(scat->addr) >= sizeof(uintptr_t));
347 		*scat = (struct mlx5_wqe_data_seg){
348 			.addr = rte_cpu_to_be_64(addr),
349 			.byte_count = rte_cpu_to_be_32(byte_count),
350 			.lkey = mlx5_rx_addr2mr(rxq, addr),
351 		};
352 	}
353 	rxq->consumed_strd = 0;
354 	rxq->decompressed = 0;
355 	rxq->rq_pi = 0;
356 	rxq->zip = (struct rxq_zip){
357 		.ai = 0,
358 	};
359 	rxq->elts_ci = mlx5_rxq_mprq_enabled(rxq) ?
360 		(wqe_n >> rxq->sges_n) * (1 << rxq->strd_num_n) : 0;
361 	/* Update doorbell counter. */
362 	rxq->rq_ci = wqe_n >> rxq->sges_n;
363 	rte_io_wmb();
364 	*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
365 }
366 
367 /**
368  * Handle a Rx error.
369  * The function inserts the RQ state to reset when the first error CQE is
370  * shown, then drains the CQ by the caller function loop. When the CQ is empty,
371  * it moves the RQ state to ready and initializes the RQ.
372  * Next CQE identification and error counting are in the caller responsibility.
373  *
374  * @param[in] rxq
375  *   Pointer to RX queue structure.
376  * @param[in] vec
377  *   1 when called from vectorized Rx burst, need to prepare mbufs for the RQ.
378  *   0 when called from non-vectorized Rx burst.
379  *
380  * @return
381  *   -1 in case of recovery error, otherwise the CQE status.
382  */
383 int
384 mlx5_rx_err_handle(struct mlx5_rxq_data *rxq, uint8_t vec)
385 {
386 	const uint16_t cqe_n = 1 << rxq->cqe_n;
387 	const uint16_t cqe_mask = cqe_n - 1;
388 	const uint16_t wqe_n = 1 << rxq->elts_n;
389 	const uint16_t strd_n = 1 << rxq->strd_num_n;
390 	struct mlx5_rxq_ctrl *rxq_ctrl =
391 			container_of(rxq, struct mlx5_rxq_ctrl, rxq);
392 	union {
393 		volatile struct mlx5_cqe *cqe;
394 		volatile struct mlx5_err_cqe *err_cqe;
395 	} u = {
396 		.cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_mask],
397 	};
398 	struct mlx5_mp_arg_queue_state_modify sm;
399 	int ret;
400 
401 	switch (rxq->err_state) {
402 	case MLX5_RXQ_ERR_STATE_NO_ERROR:
403 		rxq->err_state = MLX5_RXQ_ERR_STATE_NEED_RESET;
404 		/* Fall-through */
405 	case MLX5_RXQ_ERR_STATE_NEED_RESET:
406 		sm.is_wq = 1;
407 		sm.queue_id = rxq->idx;
408 		sm.state = IBV_WQS_RESET;
409 		if (mlx5_queue_state_modify(ETH_DEV(rxq_ctrl->priv), &sm))
410 			return -1;
411 		if (rxq_ctrl->dump_file_n <
412 		    rxq_ctrl->priv->config.max_dump_files_num) {
413 			MKSTR(err_str, "Unexpected CQE error syndrome "
414 			      "0x%02x CQN = %u RQN = %u wqe_counter = %u"
415 			      " rq_ci = %u cq_ci = %u", u.err_cqe->syndrome,
416 			      rxq->cqn, rxq_ctrl->wqn,
417 			      rte_be_to_cpu_16(u.err_cqe->wqe_counter),
418 			      rxq->rq_ci << rxq->sges_n, rxq->cq_ci);
419 			MKSTR(name, "dpdk_mlx5_port_%u_rxq_%u_%u",
420 			      rxq->port_id, rxq->idx, (uint32_t)rte_rdtsc());
421 			mlx5_dump_debug_information(name, NULL, err_str, 0);
422 			mlx5_dump_debug_information(name, "MLX5 Error CQ:",
423 						    (const void *)((uintptr_t)
424 								    rxq->cqes),
425 						    sizeof(*u.cqe) * cqe_n);
426 			mlx5_dump_debug_information(name, "MLX5 Error RQ:",
427 						    (const void *)((uintptr_t)
428 								    rxq->wqes),
429 						    16 * wqe_n);
430 			rxq_ctrl->dump_file_n++;
431 		}
432 		rxq->err_state = MLX5_RXQ_ERR_STATE_NEED_READY;
433 		/* Fall-through */
434 	case MLX5_RXQ_ERR_STATE_NEED_READY:
435 		ret = check_cqe(u.cqe, cqe_n, rxq->cq_ci);
436 		if (ret == MLX5_CQE_STATUS_HW_OWN) {
437 			rte_io_wmb();
438 			*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
439 			rte_io_wmb();
440 			/*
441 			 * The RQ consumer index must be zeroed while moving
442 			 * from RESET state to RDY state.
443 			 */
444 			*rxq->rq_db = rte_cpu_to_be_32(0);
445 			rte_io_wmb();
446 			sm.is_wq = 1;
447 			sm.queue_id = rxq->idx;
448 			sm.state = IBV_WQS_RDY;
449 			if (mlx5_queue_state_modify(ETH_DEV(rxq_ctrl->priv),
450 						    &sm))
451 				return -1;
452 			if (vec) {
453 				const uint32_t elts_n =
454 					mlx5_rxq_mprq_enabled(rxq) ?
455 					wqe_n * strd_n : wqe_n;
456 				const uint32_t e_mask = elts_n - 1;
457 				uint32_t elts_ci =
458 					mlx5_rxq_mprq_enabled(rxq) ?
459 					rxq->elts_ci : rxq->rq_ci;
460 				uint32_t elt_idx;
461 				struct rte_mbuf **elt;
462 				int i;
463 				unsigned int n = elts_n - (elts_ci -
464 							  rxq->rq_pi);
465 
466 				for (i = 0; i < (int)n; ++i) {
467 					elt_idx = (elts_ci + i) & e_mask;
468 					elt = &(*rxq->elts)[elt_idx];
469 					*elt = rte_mbuf_raw_alloc(rxq->mp);
470 					if (!*elt) {
471 						for (i--; i >= 0; --i) {
472 							elt_idx = (elts_ci +
473 								   i) & elts_n;
474 							elt = &(*rxq->elts)
475 								[elt_idx];
476 							rte_pktmbuf_free_seg
477 								(*elt);
478 						}
479 						return -1;
480 					}
481 				}
482 				for (i = 0; i < (int)elts_n; ++i) {
483 					elt = &(*rxq->elts)[i];
484 					DATA_LEN(*elt) =
485 						(uint16_t)((*elt)->buf_len -
486 						rte_pktmbuf_headroom(*elt));
487 				}
488 				/* Padding with a fake mbuf for vec Rx. */
489 				for (i = 0; i < MLX5_VPMD_DESCS_PER_LOOP; ++i)
490 					(*rxq->elts)[elts_n + i] =
491 								&rxq->fake_mbuf;
492 			}
493 			mlx5_rxq_initialize(rxq);
494 			rxq->err_state = MLX5_RXQ_ERR_STATE_NO_ERROR;
495 		}
496 		return ret;
497 	default:
498 		return -1;
499 	}
500 }
501 
502 /**
503  * Get size of the next packet for a given CQE. For compressed CQEs, the
504  * consumer index is updated only once all packets of the current one have
505  * been processed.
506  *
507  * @param rxq
508  *   Pointer to RX queue.
509  * @param cqe
510  *   CQE to process.
511  * @param[out] mcqe
512  *   Store pointer to mini-CQE if compressed. Otherwise, the pointer is not
513  *   written.
514  *
515  * @return
516  *   0 in case of empty CQE, otherwise the packet size in bytes.
517  */
518 static inline int
519 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
520 		 uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe)
521 {
522 	struct rxq_zip *zip = &rxq->zip;
523 	uint16_t cqe_n = cqe_cnt + 1;
524 	int len;
525 	uint16_t idx, end;
526 
527 	do {
528 		len = 0;
529 		/* Process compressed data in the CQE and mini arrays. */
530 		if (zip->ai) {
531 			volatile struct mlx5_mini_cqe8 (*mc)[8] =
532 				(volatile struct mlx5_mini_cqe8 (*)[8])
533 				(uintptr_t)(&(*rxq->cqes)[zip->ca &
534 							  cqe_cnt].pkt_info);
535 			len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt &
536 					       rxq->byte_mask);
537 			*mcqe = &(*mc)[zip->ai & 7];
538 			if ((++zip->ai & 7) == 0) {
539 				/* Invalidate consumed CQEs */
540 				idx = zip->ca;
541 				end = zip->na;
542 				while (idx != end) {
543 					(*rxq->cqes)[idx & cqe_cnt].op_own =
544 						MLX5_CQE_INVALIDATE;
545 					++idx;
546 				}
547 				/*
548 				 * Increment consumer index to skip the number
549 				 * of CQEs consumed. Hardware leaves holes in
550 				 * the CQ ring for software use.
551 				 */
552 				zip->ca = zip->na;
553 				zip->na += 8;
554 			}
555 			if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
556 				/* Invalidate the rest */
557 				idx = zip->ca;
558 				end = zip->cq_ci;
559 
560 				while (idx != end) {
561 					(*rxq->cqes)[idx & cqe_cnt].op_own =
562 						MLX5_CQE_INVALIDATE;
563 					++idx;
564 				}
565 				rxq->cq_ci = zip->cq_ci;
566 				zip->ai = 0;
567 			}
568 		/*
569 		 * No compressed data, get next CQE and verify if it is
570 		 * compressed.
571 		 */
572 		} else {
573 			int ret;
574 			int8_t op_own;
575 			uint32_t cq_ci;
576 
577 			ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
578 			if (unlikely(ret != MLX5_CQE_STATUS_SW_OWN)) {
579 				if (unlikely(ret == MLX5_CQE_STATUS_ERR ||
580 					     rxq->err_state)) {
581 					ret = mlx5_rx_err_handle(rxq, 0);
582 					if (ret == MLX5_CQE_STATUS_HW_OWN ||
583 					    ret == -1)
584 						return 0;
585 				} else {
586 					return 0;
587 				}
588 			}
589 			/*
590 			 * Introduce the local variable to have queue cq_ci
591 			 * index in queue structure always consistent with
592 			 * actual CQE boundary (not pointing to the middle
593 			 * of compressed CQE session).
594 			 */
595 			cq_ci = rxq->cq_ci + 1;
596 			op_own = cqe->op_own;
597 			if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
598 				volatile struct mlx5_mini_cqe8 (*mc)[8] =
599 					(volatile struct mlx5_mini_cqe8 (*)[8])
600 					(uintptr_t)(&(*rxq->cqes)
601 						[cq_ci & cqe_cnt].pkt_info);
602 
603 				/* Fix endianness. */
604 				zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt);
605 				/*
606 				 * Current mini array position is the one
607 				 * returned by check_cqe64().
608 				 *
609 				 * If completion comprises several mini arrays,
610 				 * as a special case the second one is located
611 				 * 7 CQEs after the initial CQE instead of 8
612 				 * for subsequent ones.
613 				 */
614 				zip->ca = cq_ci;
615 				zip->na = zip->ca + 7;
616 				/* Compute the next non compressed CQE. */
617 				zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
618 				/* Get packet size to return. */
619 				len = rte_be_to_cpu_32((*mc)[0].byte_cnt &
620 						       rxq->byte_mask);
621 				*mcqe = &(*mc)[0];
622 				zip->ai = 1;
623 				/* Prefetch all to be invalidated */
624 				idx = zip->ca;
625 				end = zip->cq_ci;
626 				while (idx != end) {
627 					rte_prefetch0(&(*rxq->cqes)[(idx) &
628 								    cqe_cnt]);
629 					++idx;
630 				}
631 			} else {
632 				rxq->cq_ci = cq_ci;
633 				len = rte_be_to_cpu_32(cqe->byte_cnt);
634 			}
635 		}
636 		if (unlikely(rxq->err_state)) {
637 			cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
638 			++rxq->stats.idropped;
639 		} else {
640 			return len;
641 		}
642 	} while (1);
643 }
644 
645 /**
646  * Translate RX completion flags to offload flags.
647  *
648  * @param[in] cqe
649  *   Pointer to CQE.
650  *
651  * @return
652  *   Offload flags (ol_flags) for struct rte_mbuf.
653  */
654 static inline uint32_t
655 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe)
656 {
657 	uint32_t ol_flags = 0;
658 	uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc);
659 
660 	ol_flags =
661 		TRANSPOSE(flags,
662 			  MLX5_CQE_RX_L3_HDR_VALID,
663 			  PKT_RX_IP_CKSUM_GOOD) |
664 		TRANSPOSE(flags,
665 			  MLX5_CQE_RX_L4_HDR_VALID,
666 			  PKT_RX_L4_CKSUM_GOOD);
667 	return ol_flags;
668 }
669 
670 /**
671  * Fill in mbuf fields from RX completion flags.
672  * Note that pkt->ol_flags should be initialized outside of this function.
673  *
674  * @param rxq
675  *   Pointer to RX queue.
676  * @param pkt
677  *   mbuf to fill.
678  * @param cqe
679  *   CQE to process.
680  * @param rss_hash_res
681  *   Packet RSS Hash result.
682  */
683 static inline void
684 rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
685 	       volatile struct mlx5_cqe *cqe,
686 	       volatile struct mlx5_mini_cqe8 *mcqe)
687 {
688 	/* Update packet information. */
689 	pkt->packet_type = rxq_cq_to_pkt_type(rxq, cqe, mcqe);
690 
691 	if (rxq->rss_hash) {
692 		uint32_t rss_hash_res = 0;
693 
694 		/* If compressed, take hash result from mini-CQE. */
695 		if (mcqe == NULL ||
696 		    rxq->mcqe_format != MLX5_CQE_RESP_FORMAT_HASH)
697 			rss_hash_res = rte_be_to_cpu_32(cqe->rx_hash_res);
698 		else
699 			rss_hash_res = rte_be_to_cpu_32(mcqe->rx_hash_result);
700 		if (rss_hash_res) {
701 			pkt->hash.rss = rss_hash_res;
702 			pkt->ol_flags |= PKT_RX_RSS_HASH;
703 		}
704 	}
705 	if (rxq->mark) {
706 		uint32_t mark = 0;
707 
708 		/* If compressed, take flow tag from mini-CQE. */
709 		if (mcqe == NULL ||
710 		    rxq->mcqe_format != MLX5_CQE_RESP_FORMAT_FTAG_STRIDX)
711 			mark = cqe->sop_drop_qpn;
712 		else
713 			mark = ((mcqe->byte_cnt_flow & 0xff) << 8) |
714 				(mcqe->flow_tag_high << 16);
715 		if (MLX5_FLOW_MARK_IS_VALID(mark)) {
716 			pkt->ol_flags |= PKT_RX_FDIR;
717 			if (mark != RTE_BE32(MLX5_FLOW_MARK_DEFAULT)) {
718 				pkt->ol_flags |= PKT_RX_FDIR_ID;
719 				pkt->hash.fdir.hi = mlx5_flow_mark_get(mark);
720 			}
721 		}
722 	}
723 	if (rxq->dynf_meta) {
724 		uint32_t meta = cqe->flow_table_metadata &
725 				rxq->flow_meta_port_mask;
726 
727 		if (meta) {
728 			pkt->ol_flags |= rxq->flow_meta_mask;
729 			*RTE_MBUF_DYNFIELD(pkt, rxq->flow_meta_offset,
730 						uint32_t *) = meta;
731 		}
732 	}
733 	if (rxq->csum)
734 		pkt->ol_flags |= rxq_cq_to_ol_flags(cqe);
735 	if (rxq->vlan_strip) {
736 		bool vlan_strip;
737 
738 		if (mcqe == NULL ||
739 		    rxq->mcqe_format != MLX5_CQE_RESP_FORMAT_L34H_STRIDX)
740 			vlan_strip = cqe->hdr_type_etc &
741 				     RTE_BE16(MLX5_CQE_VLAN_STRIPPED);
742 		else
743 			vlan_strip = mcqe->hdr_type &
744 				     RTE_BE16(MLX5_CQE_VLAN_STRIPPED);
745 		if (vlan_strip) {
746 			pkt->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
747 			pkt->vlan_tci = rte_be_to_cpu_16(cqe->vlan_info);
748 		}
749 	}
750 	if (rxq->hw_timestamp) {
751 		uint64_t ts = rte_be_to_cpu_64(cqe->timestamp);
752 
753 		if (rxq->rt_timestamp)
754 			ts = mlx5_txpp_convert_rx_ts(rxq->sh, ts);
755 		mlx5_timestamp_set(pkt, rxq->timestamp_offset, ts);
756 		pkt->ol_flags |= rxq->timestamp_rx_flag;
757 	}
758 }
759 
760 /**
761  * DPDK callback for RX.
762  *
763  * @param dpdk_rxq
764  *   Generic pointer to RX queue structure.
765  * @param[out] pkts
766  *   Array to store received packets.
767  * @param pkts_n
768  *   Maximum number of packets in array.
769  *
770  * @return
771  *   Number of packets successfully received (<= pkts_n).
772  */
773 uint16_t
774 mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
775 {
776 	struct mlx5_rxq_data *rxq = dpdk_rxq;
777 	const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
778 	const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
779 	const unsigned int sges_n = rxq->sges_n;
780 	struct rte_mbuf *pkt = NULL;
781 	struct rte_mbuf *seg = NULL;
782 	volatile struct mlx5_cqe *cqe =
783 		&(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
784 	unsigned int i = 0;
785 	unsigned int rq_ci = rxq->rq_ci << sges_n;
786 	int len = 0; /* keep its value across iterations. */
787 
788 	while (pkts_n) {
789 		unsigned int idx = rq_ci & wqe_cnt;
790 		volatile struct mlx5_wqe_data_seg *wqe =
791 			&((volatile struct mlx5_wqe_data_seg *)rxq->wqes)[idx];
792 		struct rte_mbuf *rep = (*rxq->elts)[idx];
793 		volatile struct mlx5_mini_cqe8 *mcqe = NULL;
794 
795 		if (pkt)
796 			NEXT(seg) = rep;
797 		seg = rep;
798 		rte_prefetch0(seg);
799 		rte_prefetch0(cqe);
800 		rte_prefetch0(wqe);
801 		/* Allocate the buf from the same pool. */
802 		rep = rte_mbuf_raw_alloc(seg->pool);
803 		if (unlikely(rep == NULL)) {
804 			++rxq->stats.rx_nombuf;
805 			if (!pkt) {
806 				/*
807 				 * no buffers before we even started,
808 				 * bail out silently.
809 				 */
810 				break;
811 			}
812 			while (pkt != seg) {
813 				MLX5_ASSERT(pkt != (*rxq->elts)[idx]);
814 				rep = NEXT(pkt);
815 				NEXT(pkt) = NULL;
816 				NB_SEGS(pkt) = 1;
817 				rte_mbuf_raw_free(pkt);
818 				pkt = rep;
819 			}
820 			rq_ci >>= sges_n;
821 			++rq_ci;
822 			rq_ci <<= sges_n;
823 			break;
824 		}
825 		if (!pkt) {
826 			cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
827 			len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt, &mcqe);
828 			if (!len) {
829 				rte_mbuf_raw_free(rep);
830 				break;
831 			}
832 			pkt = seg;
833 			MLX5_ASSERT(len >= (rxq->crc_present << 2));
834 			pkt->ol_flags &= EXT_ATTACHED_MBUF;
835 			rxq_cq_to_mbuf(rxq, pkt, cqe, mcqe);
836 			if (rxq->crc_present)
837 				len -= RTE_ETHER_CRC_LEN;
838 			PKT_LEN(pkt) = len;
839 			if (cqe->lro_num_seg > 1) {
840 				mlx5_lro_update_hdr
841 					(rte_pktmbuf_mtod(pkt, uint8_t *), cqe,
842 					 mcqe, rxq, len);
843 				pkt->ol_flags |= PKT_RX_LRO;
844 				pkt->tso_segsz = len / cqe->lro_num_seg;
845 			}
846 		}
847 		DATA_LEN(rep) = DATA_LEN(seg);
848 		PKT_LEN(rep) = PKT_LEN(seg);
849 		SET_DATA_OFF(rep, DATA_OFF(seg));
850 		PORT(rep) = PORT(seg);
851 		(*rxq->elts)[idx] = rep;
852 		/*
853 		 * Fill NIC descriptor with the new buffer. The lkey and size
854 		 * of the buffers are already known, only the buffer address
855 		 * changes.
856 		 */
857 		wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
858 		/* If there's only one MR, no need to replace LKey in WQE. */
859 		if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
860 			wqe->lkey = mlx5_rx_mb2mr(rxq, rep);
861 		if (len > DATA_LEN(seg)) {
862 			len -= DATA_LEN(seg);
863 			++NB_SEGS(pkt);
864 			++rq_ci;
865 			continue;
866 		}
867 		DATA_LEN(seg) = len;
868 #ifdef MLX5_PMD_SOFT_COUNTERS
869 		/* Increment bytes counter. */
870 		rxq->stats.ibytes += PKT_LEN(pkt);
871 #endif
872 		/* Return packet. */
873 		*(pkts++) = pkt;
874 		pkt = NULL;
875 		--pkts_n;
876 		++i;
877 		/* Align consumer index to the next stride. */
878 		rq_ci >>= sges_n;
879 		++rq_ci;
880 		rq_ci <<= sges_n;
881 	}
882 	if (unlikely(i == 0 && ((rq_ci >> sges_n) == rxq->rq_ci)))
883 		return 0;
884 	/* Update the consumer index. */
885 	rxq->rq_ci = rq_ci >> sges_n;
886 	rte_io_wmb();
887 	*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
888 	rte_io_wmb();
889 	*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
890 #ifdef MLX5_PMD_SOFT_COUNTERS
891 	/* Increment packets counter. */
892 	rxq->stats.ipackets += i;
893 #endif
894 	return i;
895 }
896 
897 /**
898  * Update LRO packet TCP header.
899  * The HW LRO feature doesn't update the TCP header after coalescing the
900  * TCP segments but supplies information in CQE to fill it by SW.
901  *
902  * @param tcp
903  *   Pointer to the TCP header.
904  * @param cqe
905  *   Pointer to the completion entry.
906  * @param phcsum
907  *   The L3 pseudo-header checksum.
908  */
909 static inline void
910 mlx5_lro_update_tcp_hdr(struct rte_tcp_hdr *__rte_restrict tcp,
911 			volatile struct mlx5_cqe *__rte_restrict cqe,
912 			uint32_t phcsum, uint8_t l4_type)
913 {
914 	/*
915 	 * The HW calculates only the TCP payload checksum, need to complete
916 	 * the TCP header checksum and the L3 pseudo-header checksum.
917 	 */
918 	uint32_t csum = phcsum + cqe->csum;
919 
920 	if (l4_type == MLX5_L4_HDR_TYPE_TCP_EMPTY_ACK ||
921 	    l4_type == MLX5_L4_HDR_TYPE_TCP_WITH_ACL) {
922 		tcp->tcp_flags |= RTE_TCP_ACK_FLAG;
923 		tcp->recv_ack = cqe->lro_ack_seq_num;
924 		tcp->rx_win = cqe->lro_tcp_win;
925 	}
926 	if (cqe->lro_tcppsh_abort_dupack & MLX5_CQE_LRO_PUSH_MASK)
927 		tcp->tcp_flags |= RTE_TCP_PSH_FLAG;
928 	tcp->cksum = 0;
929 	csum += rte_raw_cksum(tcp, (tcp->data_off >> 4) * 4);
930 	csum = ((csum & 0xffff0000) >> 16) + (csum & 0xffff);
931 	csum = (~csum) & 0xffff;
932 	if (csum == 0)
933 		csum = 0xffff;
934 	tcp->cksum = csum;
935 }
936 
937 /**
938  * Update LRO packet headers.
939  * The HW LRO feature doesn't update the L3/TCP headers after coalescing the
940  * TCP segments but supply information in CQE to fill it by SW.
941  *
942  * @param padd
943  *   The packet address.
944  * @param cqe
945  *   Pointer to the completion entry.
946  * @param len
947  *   The packet length.
948  */
949 static inline void
950 mlx5_lro_update_hdr(uint8_t *__rte_restrict padd,
951 		    volatile struct mlx5_cqe *__rte_restrict cqe,
952 		    volatile struct mlx5_mini_cqe8 *mcqe,
953 		    struct mlx5_rxq_data *rxq, uint32_t len)
954 {
955 	union {
956 		struct rte_ether_hdr *eth;
957 		struct rte_vlan_hdr *vlan;
958 		struct rte_ipv4_hdr *ipv4;
959 		struct rte_ipv6_hdr *ipv6;
960 		struct rte_tcp_hdr *tcp;
961 		uint8_t *hdr;
962 	} h = {
963 		.hdr = padd,
964 	};
965 	uint16_t proto = h.eth->ether_type;
966 	uint32_t phcsum;
967 	uint8_t l4_type;
968 
969 	h.eth++;
970 	while (proto == RTE_BE16(RTE_ETHER_TYPE_VLAN) ||
971 	       proto == RTE_BE16(RTE_ETHER_TYPE_QINQ)) {
972 		proto = h.vlan->eth_proto;
973 		h.vlan++;
974 	}
975 	if (proto == RTE_BE16(RTE_ETHER_TYPE_IPV4)) {
976 		h.ipv4->time_to_live = cqe->lro_min_ttl;
977 		h.ipv4->total_length = rte_cpu_to_be_16(len - (h.hdr - padd));
978 		h.ipv4->hdr_checksum = 0;
979 		h.ipv4->hdr_checksum = rte_ipv4_cksum(h.ipv4);
980 		phcsum = rte_ipv4_phdr_cksum(h.ipv4, 0);
981 		h.ipv4++;
982 	} else {
983 		h.ipv6->hop_limits = cqe->lro_min_ttl;
984 		h.ipv6->payload_len = rte_cpu_to_be_16(len - (h.hdr - padd) -
985 						       sizeof(*h.ipv6));
986 		phcsum = rte_ipv6_phdr_cksum(h.ipv6, 0);
987 		h.ipv6++;
988 	}
989 	if (mcqe == NULL ||
990 	    rxq->mcqe_format != MLX5_CQE_RESP_FORMAT_L34H_STRIDX)
991 		l4_type = (rte_be_to_cpu_16(cqe->hdr_type_etc) &
992 			   MLX5_CQE_L4_TYPE_MASK) >> MLX5_CQE_L4_TYPE_SHIFT;
993 	else
994 		l4_type = (rte_be_to_cpu_16(mcqe->hdr_type) &
995 			   MLX5_CQE_L4_TYPE_MASK) >> MLX5_CQE_L4_TYPE_SHIFT;
996 	mlx5_lro_update_tcp_hdr(h.tcp, cqe, phcsum, l4_type);
997 }
998 
999 void
1000 mlx5_mprq_buf_free_cb(void *addr __rte_unused, void *opaque)
1001 {
1002 	struct mlx5_mprq_buf *buf = opaque;
1003 
1004 	if (__atomic_load_n(&buf->refcnt, __ATOMIC_RELAXED) == 1) {
1005 		rte_mempool_put(buf->mp, buf);
1006 	} else if (unlikely(__atomic_sub_fetch(&buf->refcnt, 1,
1007 					       __ATOMIC_RELAXED) == 0)) {
1008 		__atomic_store_n(&buf->refcnt, 1, __ATOMIC_RELAXED);
1009 		rte_mempool_put(buf->mp, buf);
1010 	}
1011 }
1012 
1013 void
1014 mlx5_mprq_buf_free(struct mlx5_mprq_buf *buf)
1015 {
1016 	mlx5_mprq_buf_free_cb(NULL, buf);
1017 }
1018 
1019 /**
1020  * DPDK callback for RX with Multi-Packet RQ support.
1021  *
1022  * @param dpdk_rxq
1023  *   Generic pointer to RX queue structure.
1024  * @param[out] pkts
1025  *   Array to store received packets.
1026  * @param pkts_n
1027  *   Maximum number of packets in array.
1028  *
1029  * @return
1030  *   Number of packets successfully received (<= pkts_n).
1031  */
1032 uint16_t
1033 mlx5_rx_burst_mprq(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1034 {
1035 	struct mlx5_rxq_data *rxq = dpdk_rxq;
1036 	const uint32_t strd_n = 1 << rxq->strd_num_n;
1037 	const uint32_t strd_sz = 1 << rxq->strd_sz_n;
1038 	const uint32_t cq_mask = (1 << rxq->cqe_n) - 1;
1039 	const uint32_t wq_mask = (1 << rxq->elts_n) - 1;
1040 	volatile struct mlx5_cqe *cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
1041 	unsigned int i = 0;
1042 	uint32_t rq_ci = rxq->rq_ci;
1043 	uint16_t consumed_strd = rxq->consumed_strd;
1044 	struct mlx5_mprq_buf *buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
1045 
1046 	while (i < pkts_n) {
1047 		struct rte_mbuf *pkt;
1048 		int ret;
1049 		uint32_t len;
1050 		uint16_t strd_cnt;
1051 		uint16_t strd_idx;
1052 		uint32_t byte_cnt;
1053 		volatile struct mlx5_mini_cqe8 *mcqe = NULL;
1054 		enum mlx5_rqx_code rxq_code;
1055 
1056 		if (consumed_strd == strd_n) {
1057 			/* Replace WQE if the buffer is still in use. */
1058 			mprq_buf_replace(rxq, rq_ci & wq_mask);
1059 			/* Advance to the next WQE. */
1060 			consumed_strd = 0;
1061 			++rq_ci;
1062 			buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
1063 		}
1064 		cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
1065 		ret = mlx5_rx_poll_len(rxq, cqe, cq_mask, &mcqe);
1066 		if (!ret)
1067 			break;
1068 		byte_cnt = ret;
1069 		len = (byte_cnt & MLX5_MPRQ_LEN_MASK) >> MLX5_MPRQ_LEN_SHIFT;
1070 		MLX5_ASSERT((int)len >= (rxq->crc_present << 2));
1071 		if (rxq->crc_present)
1072 			len -= RTE_ETHER_CRC_LEN;
1073 		if (mcqe &&
1074 		    rxq->mcqe_format == MLX5_CQE_RESP_FORMAT_FTAG_STRIDX)
1075 			strd_cnt = (len / strd_sz) + !!(len % strd_sz);
1076 		else
1077 			strd_cnt = (byte_cnt & MLX5_MPRQ_STRIDE_NUM_MASK) >>
1078 				   MLX5_MPRQ_STRIDE_NUM_SHIFT;
1079 		MLX5_ASSERT(strd_cnt);
1080 		consumed_strd += strd_cnt;
1081 		if (byte_cnt & MLX5_MPRQ_FILLER_MASK)
1082 			continue;
1083 		strd_idx = rte_be_to_cpu_16(mcqe == NULL ?
1084 					cqe->wqe_counter :
1085 					mcqe->stride_idx);
1086 		MLX5_ASSERT(strd_idx < strd_n);
1087 		MLX5_ASSERT(!((rte_be_to_cpu_16(cqe->wqe_id) ^ rq_ci) &
1088 			    wq_mask));
1089 		pkt = rte_pktmbuf_alloc(rxq->mp);
1090 		if (unlikely(pkt == NULL)) {
1091 			++rxq->stats.rx_nombuf;
1092 			break;
1093 		}
1094 		len = (byte_cnt & MLX5_MPRQ_LEN_MASK) >> MLX5_MPRQ_LEN_SHIFT;
1095 		MLX5_ASSERT((int)len >= (rxq->crc_present << 2));
1096 		if (rxq->crc_present)
1097 			len -= RTE_ETHER_CRC_LEN;
1098 		rxq_code = mprq_buf_to_pkt(rxq, pkt, len, buf,
1099 					   strd_idx, strd_cnt);
1100 		if (unlikely(rxq_code != MLX5_RXQ_CODE_EXIT)) {
1101 			rte_pktmbuf_free_seg(pkt);
1102 			if (rxq_code == MLX5_RXQ_CODE_DROPPED) {
1103 				++rxq->stats.idropped;
1104 				continue;
1105 			}
1106 			if (rxq_code == MLX5_RXQ_CODE_NOMBUF) {
1107 				++rxq->stats.rx_nombuf;
1108 				break;
1109 			}
1110 		}
1111 		rxq_cq_to_mbuf(rxq, pkt, cqe, mcqe);
1112 		if (cqe->lro_num_seg > 1) {
1113 			mlx5_lro_update_hdr(rte_pktmbuf_mtod(pkt, uint8_t *),
1114 					    cqe, mcqe, rxq, len);
1115 			pkt->ol_flags |= PKT_RX_LRO;
1116 			pkt->tso_segsz = len / cqe->lro_num_seg;
1117 		}
1118 		PKT_LEN(pkt) = len;
1119 		PORT(pkt) = rxq->port_id;
1120 #ifdef MLX5_PMD_SOFT_COUNTERS
1121 		/* Increment bytes counter. */
1122 		rxq->stats.ibytes += PKT_LEN(pkt);
1123 #endif
1124 		/* Return packet. */
1125 		*(pkts++) = pkt;
1126 		++i;
1127 	}
1128 	/* Update the consumer indexes. */
1129 	rxq->consumed_strd = consumed_strd;
1130 	rte_io_wmb();
1131 	*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
1132 	if (rq_ci != rxq->rq_ci) {
1133 		rxq->rq_ci = rq_ci;
1134 		rte_io_wmb();
1135 		*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
1136 	}
1137 #ifdef MLX5_PMD_SOFT_COUNTERS
1138 	/* Increment packets counter. */
1139 	rxq->stats.ipackets += i;
1140 #endif
1141 	return i;
1142 }
1143 
1144 /**
1145  * Dummy DPDK callback for RX.
1146  *
1147  * This function is used to temporarily replace the real callback during
1148  * unsafe control operations on the queue, or in case of error.
1149  *
1150  * @param dpdk_rxq
1151  *   Generic pointer to RX queue structure.
1152  * @param[out] pkts
1153  *   Array to store received packets.
1154  * @param pkts_n
1155  *   Maximum number of packets in array.
1156  *
1157  * @return
1158  *   Number of packets successfully received (<= pkts_n).
1159  */
1160 uint16_t
1161 removed_rx_burst(void *dpdk_rxq __rte_unused,
1162 		 struct rte_mbuf **pkts __rte_unused,
1163 		 uint16_t pkts_n __rte_unused)
1164 {
1165 	rte_mb();
1166 	return 0;
1167 }
1168 
1169 /*
1170  * Vectorized Rx routines are not compiled in when required vector instructions
1171  * are not supported on a target architecture.
1172  * The following null stubs are needed for linkage when those are not included
1173  * outside of this file (e.g. mlx5_rxtx_vec_sse.c for x86).
1174  */
1175 
1176 __rte_weak uint16_t
1177 mlx5_rx_burst_vec(void *dpdk_rxq __rte_unused,
1178 		  struct rte_mbuf **pkts __rte_unused,
1179 		  uint16_t pkts_n __rte_unused)
1180 {
1181 	return 0;
1182 }
1183 
1184 __rte_weak uint16_t
1185 mlx5_rx_burst_mprq_vec(void *dpdk_rxq __rte_unused,
1186 		       struct rte_mbuf **pkts __rte_unused,
1187 		       uint16_t pkts_n __rte_unused)
1188 {
1189 	return 0;
1190 }
1191 
1192 __rte_weak int
1193 mlx5_rxq_check_vec_support(struct mlx5_rxq_data *rxq __rte_unused)
1194 {
1195 	return -ENOTSUP;
1196 }
1197 
1198 __rte_weak int
1199 mlx5_check_vec_rx_support(struct rte_eth_dev *dev __rte_unused)
1200 {
1201 	return -ENOTSUP;
1202 }
1203 
1204