1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright 2018 Mellanox Technologies, Ltd 3 */ 4 5 #include <netinet/in.h> 6 #include <sys/queue.h> 7 #include <stdalign.h> 8 #include <stdint.h> 9 #include <string.h> 10 11 #include <rte_common.h> 12 #include <rte_ether.h> 13 #include <ethdev_driver.h> 14 #include <rte_flow.h> 15 #include <rte_flow_driver.h> 16 #include <rte_malloc.h> 17 #include <rte_ip.h> 18 19 #include <mlx5_glue.h> 20 #include <mlx5_prm.h> 21 #include <mlx5_malloc.h> 22 23 #include "mlx5_defs.h" 24 #include "mlx5.h" 25 #include "mlx5_flow.h" 26 #include "mlx5_rxtx.h" 27 28 #define VERBS_SPEC_INNER(item_flags) \ 29 (!!((item_flags) & MLX5_FLOW_LAYER_TUNNEL) ? IBV_FLOW_SPEC_INNER : 0) 30 31 /* Map of Verbs to Flow priority with 8 Verbs priorities. */ 32 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = { 33 { 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 }, 34 }; 35 36 /* Map of Verbs to Flow priority with 16 Verbs priorities. */ 37 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = { 38 { 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 }, 39 { 9, 10, 11 }, { 12, 13, 14 }, 40 }; 41 42 /* Verbs specification header. */ 43 struct ibv_spec_header { 44 enum ibv_flow_spec_type type; 45 uint16_t size; 46 }; 47 48 /** 49 * Discover the maximum number of priority available. 50 * 51 * @param[in] dev 52 * Pointer to the Ethernet device structure. 53 * 54 * @return 55 * number of supported flow priority on success, a negative errno 56 * value otherwise and rte_errno is set. 57 */ 58 int 59 mlx5_flow_discover_priorities(struct rte_eth_dev *dev) 60 { 61 struct mlx5_priv *priv = dev->data->dev_private; 62 struct { 63 struct ibv_flow_attr attr; 64 struct ibv_flow_spec_eth eth; 65 struct ibv_flow_spec_action_drop drop; 66 } flow_attr = { 67 .attr = { 68 .num_of_specs = 2, 69 .port = (uint8_t)priv->dev_port, 70 }, 71 .eth = { 72 .type = IBV_FLOW_SPEC_ETH, 73 .size = sizeof(struct ibv_flow_spec_eth), 74 }, 75 .drop = { 76 .size = sizeof(struct ibv_flow_spec_action_drop), 77 .type = IBV_FLOW_SPEC_ACTION_DROP, 78 }, 79 }; 80 struct ibv_flow *flow; 81 struct mlx5_hrxq *drop = priv->drop_queue.hrxq; 82 uint16_t vprio[] = { 8, 16 }; 83 int i; 84 int priority = 0; 85 86 if (!drop->qp) { 87 rte_errno = ENOTSUP; 88 return -rte_errno; 89 } 90 for (i = 0; i != RTE_DIM(vprio); i++) { 91 flow_attr.attr.priority = vprio[i] - 1; 92 flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr); 93 if (!flow) 94 break; 95 claim_zero(mlx5_glue->destroy_flow(flow)); 96 priority = vprio[i]; 97 } 98 switch (priority) { 99 case 8: 100 priority = RTE_DIM(priority_map_3); 101 break; 102 case 16: 103 priority = RTE_DIM(priority_map_5); 104 break; 105 default: 106 rte_errno = ENOTSUP; 107 DRV_LOG(ERR, 108 "port %u verbs maximum priority: %d expected 8/16", 109 dev->data->port_id, priority); 110 return -rte_errno; 111 } 112 DRV_LOG(INFO, "port %u supported flow priorities:" 113 " 0-%d for ingress or egress root table," 114 " 0-%d for non-root table or transfer root table.", 115 dev->data->port_id, priority - 2, 116 MLX5_NON_ROOT_FLOW_MAX_PRIO - 1); 117 return priority; 118 } 119 120 /** 121 * Adjust flow priority based on the highest layer and the request priority. 122 * 123 * @param[in] dev 124 * Pointer to the Ethernet device structure. 125 * @param[in] priority 126 * The rule base priority. 127 * @param[in] subpriority 128 * The priority based on the items. 129 * 130 * @return 131 * The new priority. 132 */ 133 uint32_t 134 mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority, 135 uint32_t subpriority) 136 { 137 uint32_t res = 0; 138 struct mlx5_priv *priv = dev->data->dev_private; 139 140 switch (priv->config.flow_prio) { 141 case RTE_DIM(priority_map_3): 142 res = priority_map_3[priority][subpriority]; 143 break; 144 case RTE_DIM(priority_map_5): 145 res = priority_map_5[priority][subpriority]; 146 break; 147 } 148 return res; 149 } 150 151 /** 152 * Get Verbs flow counter by index. 153 * 154 * @param[in] dev 155 * Pointer to the Ethernet device structure. 156 * @param[in] idx 157 * mlx5 flow counter index in the container. 158 * @param[out] ppool 159 * mlx5 flow counter pool in the container, 160 * 161 * @return 162 * A pointer to the counter, NULL otherwise. 163 */ 164 static struct mlx5_flow_counter * 165 flow_verbs_counter_get_by_idx(struct rte_eth_dev *dev, 166 uint32_t idx, 167 struct mlx5_flow_counter_pool **ppool) 168 { 169 struct mlx5_priv *priv = dev->data->dev_private; 170 struct mlx5_flow_counter_mng *cmng = &priv->sh->cmng; 171 struct mlx5_flow_counter_pool *pool; 172 173 idx = (idx - 1) & (MLX5_CNT_SHARED_OFFSET - 1); 174 pool = cmng->pools[idx / MLX5_COUNTERS_PER_POOL]; 175 MLX5_ASSERT(pool); 176 if (ppool) 177 *ppool = pool; 178 return MLX5_POOL_GET_CNT(pool, idx % MLX5_COUNTERS_PER_POOL); 179 } 180 181 /** 182 * Create Verbs flow counter with Verbs library. 183 * 184 * @param[in] dev 185 * Pointer to the Ethernet device structure. 186 * @param[in, out] counter 187 * mlx5 flow counter object, contains the counter id, 188 * handle of created Verbs flow counter is returned 189 * in cs field (if counters are supported). 190 * 191 * @return 192 * 0 On success else a negative errno value is returned 193 * and rte_errno is set. 194 */ 195 static int 196 flow_verbs_counter_create(struct rte_eth_dev *dev, 197 struct mlx5_flow_counter *counter) 198 { 199 #if defined(HAVE_IBV_DEVICE_COUNTERS_SET_V42) 200 struct mlx5_priv *priv = dev->data->dev_private; 201 struct ibv_context *ctx = priv->sh->ctx; 202 struct ibv_counter_set_init_attr init = { 203 .counter_set_id = counter->shared_info.id}; 204 205 counter->dcs_when_free = mlx5_glue->create_counter_set(ctx, &init); 206 if (!counter->dcs_when_free) { 207 rte_errno = ENOTSUP; 208 return -ENOTSUP; 209 } 210 return 0; 211 #elif defined(HAVE_IBV_DEVICE_COUNTERS_SET_V45) 212 struct mlx5_priv *priv = dev->data->dev_private; 213 struct ibv_context *ctx = priv->sh->ctx; 214 struct ibv_counters_init_attr init = {0}; 215 struct ibv_counter_attach_attr attach; 216 int ret; 217 218 memset(&attach, 0, sizeof(attach)); 219 counter->dcs_when_free = mlx5_glue->create_counters(ctx, &init); 220 if (!counter->dcs_when_free) { 221 rte_errno = ENOTSUP; 222 return -ENOTSUP; 223 } 224 attach.counter_desc = IBV_COUNTER_PACKETS; 225 attach.index = 0; 226 ret = mlx5_glue->attach_counters(counter->dcs_when_free, &attach, NULL); 227 if (!ret) { 228 attach.counter_desc = IBV_COUNTER_BYTES; 229 attach.index = 1; 230 ret = mlx5_glue->attach_counters 231 (counter->dcs_when_free, &attach, NULL); 232 } 233 if (ret) { 234 claim_zero(mlx5_glue->destroy_counters(counter->dcs_when_free)); 235 counter->dcs_when_free = NULL; 236 rte_errno = ret; 237 return -ret; 238 } 239 return 0; 240 #else 241 (void)dev; 242 (void)counter; 243 rte_errno = ENOTSUP; 244 return -ENOTSUP; 245 #endif 246 } 247 248 /** 249 * Get a flow counter. 250 * 251 * @param[in] dev 252 * Pointer to the Ethernet device structure. 253 * @param[in] shared 254 * Indicate if this counter is shared with other flows. 255 * @param[in] id 256 * Counter identifier. 257 * 258 * @return 259 * Index to the counter, 0 otherwise and rte_errno is set. 260 */ 261 static uint32_t 262 flow_verbs_counter_new(struct rte_eth_dev *dev, uint32_t shared, uint32_t id) 263 { 264 struct mlx5_priv *priv = dev->data->dev_private; 265 struct mlx5_flow_counter_mng *cmng = &priv->sh->cmng; 266 struct mlx5_flow_counter_pool *pool = NULL; 267 struct mlx5_flow_counter *cnt = NULL; 268 union mlx5_l3t_data data; 269 uint32_t n_valid = cmng->n_valid; 270 uint32_t pool_idx, cnt_idx; 271 uint32_t i; 272 int ret; 273 274 if (shared && !mlx5_l3t_get_entry(priv->sh->cnt_id_tbl, id, &data) && 275 data.dword) 276 return data.dword; 277 for (pool_idx = 0; pool_idx < n_valid; ++pool_idx) { 278 pool = cmng->pools[pool_idx]; 279 if (!pool) 280 continue; 281 cnt = TAILQ_FIRST(&pool->counters[0]); 282 if (cnt) 283 break; 284 } 285 if (!cnt) { 286 struct mlx5_flow_counter_pool **pools; 287 uint32_t size; 288 289 if (n_valid == cmng->n) { 290 /* Resize the container pool array. */ 291 size = sizeof(struct mlx5_flow_counter_pool *) * 292 (n_valid + MLX5_CNT_CONTAINER_RESIZE); 293 pools = mlx5_malloc(MLX5_MEM_ZERO, size, 0, 294 SOCKET_ID_ANY); 295 if (!pools) 296 return 0; 297 if (n_valid) { 298 memcpy(pools, cmng->pools, 299 sizeof(struct mlx5_flow_counter_pool *) * 300 n_valid); 301 mlx5_free(cmng->pools); 302 } 303 cmng->pools = pools; 304 cmng->n += MLX5_CNT_CONTAINER_RESIZE; 305 } 306 /* Allocate memory for new pool*/ 307 size = sizeof(*pool) + sizeof(*cnt) * MLX5_COUNTERS_PER_POOL; 308 pool = mlx5_malloc(MLX5_MEM_ZERO, size, 0, SOCKET_ID_ANY); 309 if (!pool) 310 return 0; 311 for (i = 0; i < MLX5_COUNTERS_PER_POOL; ++i) { 312 cnt = MLX5_POOL_GET_CNT(pool, i); 313 TAILQ_INSERT_HEAD(&pool->counters[0], cnt, next); 314 } 315 cnt = MLX5_POOL_GET_CNT(pool, 0); 316 cmng->pools[n_valid] = pool; 317 pool_idx = n_valid; 318 cmng->n_valid++; 319 } 320 TAILQ_REMOVE(&pool->counters[0], cnt, next); 321 i = MLX5_CNT_ARRAY_IDX(pool, cnt); 322 cnt_idx = MLX5_MAKE_CNT_IDX(pool_idx, i); 323 if (shared) { 324 data.dword = cnt_idx; 325 if (mlx5_l3t_set_entry(priv->sh->cnt_id_tbl, id, &data)) 326 return 0; 327 cnt->shared_info.id = id; 328 cnt_idx |= MLX5_CNT_SHARED_OFFSET; 329 } 330 /* Create counter with Verbs. */ 331 ret = flow_verbs_counter_create(dev, cnt); 332 if (!ret) { 333 cnt->dcs_when_active = cnt->dcs_when_free; 334 cnt->hits = 0; 335 cnt->bytes = 0; 336 return cnt_idx; 337 } 338 TAILQ_INSERT_HEAD(&pool->counters[0], cnt, next); 339 /* Some error occurred in Verbs library. */ 340 rte_errno = -ret; 341 return 0; 342 } 343 344 /** 345 * Release a flow counter. 346 * 347 * @param[in] dev 348 * Pointer to the Ethernet device structure. 349 * @param[in] counter 350 * Index to the counter handler. 351 */ 352 static void 353 flow_verbs_counter_release(struct rte_eth_dev *dev, uint32_t counter) 354 { 355 struct mlx5_priv *priv = dev->data->dev_private; 356 struct mlx5_flow_counter_pool *pool; 357 struct mlx5_flow_counter *cnt; 358 359 cnt = flow_verbs_counter_get_by_idx(dev, counter, &pool); 360 if (IS_SHARED_CNT(counter) && 361 mlx5_l3t_clear_entry(priv->sh->cnt_id_tbl, cnt->shared_info.id)) 362 return; 363 #if defined(HAVE_IBV_DEVICE_COUNTERS_SET_V42) 364 claim_zero(mlx5_glue->destroy_counter_set 365 ((struct ibv_counter_set *)cnt->dcs_when_active)); 366 #elif defined(HAVE_IBV_DEVICE_COUNTERS_SET_V45) 367 claim_zero(mlx5_glue->destroy_counters 368 ((struct ibv_counters *)cnt->dcs_when_active)); 369 #endif 370 TAILQ_INSERT_HEAD(&pool->counters[0], cnt, next); 371 } 372 373 /** 374 * Query a flow counter via Verbs library call. 375 * 376 * @see rte_flow_query() 377 * @see rte_flow_ops 378 */ 379 static int 380 flow_verbs_counter_query(struct rte_eth_dev *dev __rte_unused, 381 struct rte_flow *flow, void *data, 382 struct rte_flow_error *error) 383 { 384 #if defined(HAVE_IBV_DEVICE_COUNTERS_SET_V42) || \ 385 defined(HAVE_IBV_DEVICE_COUNTERS_SET_V45) 386 if (flow->counter) { 387 struct mlx5_flow_counter_pool *pool; 388 struct mlx5_flow_counter *cnt = flow_verbs_counter_get_by_idx 389 (dev, flow->counter, &pool); 390 struct rte_flow_query_count *qc = data; 391 uint64_t counters[2] = {0, 0}; 392 #if defined(HAVE_IBV_DEVICE_COUNTERS_SET_V42) 393 struct ibv_query_counter_set_attr query_cs_attr = { 394 .dcs_when_free = (struct ibv_counter_set *) 395 cnt->dcs_when_active, 396 .query_flags = IBV_COUNTER_SET_FORCE_UPDATE, 397 }; 398 struct ibv_counter_set_data query_out = { 399 .out = counters, 400 .outlen = 2 * sizeof(uint64_t), 401 }; 402 int err = mlx5_glue->query_counter_set(&query_cs_attr, 403 &query_out); 404 #elif defined(HAVE_IBV_DEVICE_COUNTERS_SET_V45) 405 int err = mlx5_glue->query_counters 406 ((struct ibv_counters *)cnt->dcs_when_active, counters, 407 RTE_DIM(counters), 408 IBV_READ_COUNTERS_ATTR_PREFER_CACHED); 409 #endif 410 if (err) 411 return rte_flow_error_set 412 (error, err, 413 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 414 NULL, 415 "cannot read counter"); 416 qc->hits_set = 1; 417 qc->bytes_set = 1; 418 qc->hits = counters[0] - cnt->hits; 419 qc->bytes = counters[1] - cnt->bytes; 420 if (qc->reset) { 421 cnt->hits = counters[0]; 422 cnt->bytes = counters[1]; 423 } 424 return 0; 425 } 426 return rte_flow_error_set(error, EINVAL, 427 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 428 NULL, 429 "flow does not have counter"); 430 #else 431 (void)flow; 432 (void)data; 433 return rte_flow_error_set(error, ENOTSUP, 434 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 435 NULL, 436 "counters are not available"); 437 #endif 438 } 439 440 /** 441 * Add a verbs item specification into @p verbs. 442 * 443 * @param[out] verbs 444 * Pointer to verbs structure. 445 * @param[in] src 446 * Create specification. 447 * @param[in] size 448 * Size in bytes of the specification to copy. 449 */ 450 static void 451 flow_verbs_spec_add(struct mlx5_flow_verbs_workspace *verbs, 452 void *src, unsigned int size) 453 { 454 void *dst; 455 456 if (!verbs) 457 return; 458 MLX5_ASSERT(verbs->specs); 459 dst = (void *)(verbs->specs + verbs->size); 460 memcpy(dst, src, size); 461 ++verbs->attr.num_of_specs; 462 verbs->size += size; 463 } 464 465 /** 466 * Convert the @p item into a Verbs specification. This function assumes that 467 * the input is valid and that there is space to insert the requested item 468 * into the flow. 469 * 470 * @param[in, out] dev_flow 471 * Pointer to dev_flow structure. 472 * @param[in] item 473 * Item specification. 474 * @param[in] item_flags 475 * Parsed item flags. 476 */ 477 static void 478 flow_verbs_translate_item_eth(struct mlx5_flow *dev_flow, 479 const struct rte_flow_item *item, 480 uint64_t item_flags) 481 { 482 const struct rte_flow_item_eth *spec = item->spec; 483 const struct rte_flow_item_eth *mask = item->mask; 484 const unsigned int size = sizeof(struct ibv_flow_spec_eth); 485 struct ibv_flow_spec_eth eth = { 486 .type = IBV_FLOW_SPEC_ETH | VERBS_SPEC_INNER(item_flags), 487 .size = size, 488 }; 489 490 if (!mask) 491 mask = &rte_flow_item_eth_mask; 492 if (spec) { 493 unsigned int i; 494 495 memcpy(ð.val.dst_mac, spec->dst.addr_bytes, 496 RTE_ETHER_ADDR_LEN); 497 memcpy(ð.val.src_mac, spec->src.addr_bytes, 498 RTE_ETHER_ADDR_LEN); 499 eth.val.ether_type = spec->type; 500 memcpy(ð.mask.dst_mac, mask->dst.addr_bytes, 501 RTE_ETHER_ADDR_LEN); 502 memcpy(ð.mask.src_mac, mask->src.addr_bytes, 503 RTE_ETHER_ADDR_LEN); 504 eth.mask.ether_type = mask->type; 505 /* Remove unwanted bits from values. */ 506 for (i = 0; i < RTE_ETHER_ADDR_LEN; ++i) { 507 eth.val.dst_mac[i] &= eth.mask.dst_mac[i]; 508 eth.val.src_mac[i] &= eth.mask.src_mac[i]; 509 } 510 eth.val.ether_type &= eth.mask.ether_type; 511 } 512 flow_verbs_spec_add(&dev_flow->verbs, ð, size); 513 } 514 515 /** 516 * Update the VLAN tag in the Verbs Ethernet specification. 517 * This function assumes that the input is valid and there is space to add 518 * the requested item. 519 * 520 * @param[in, out] attr 521 * Pointer to Verbs attributes structure. 522 * @param[in] eth 523 * Verbs structure containing the VLAN information to copy. 524 */ 525 static void 526 flow_verbs_item_vlan_update(struct ibv_flow_attr *attr, 527 struct ibv_flow_spec_eth *eth) 528 { 529 unsigned int i; 530 const enum ibv_flow_spec_type search = eth->type; 531 struct ibv_spec_header *hdr = (struct ibv_spec_header *) 532 ((uint8_t *)attr + sizeof(struct ibv_flow_attr)); 533 534 for (i = 0; i != attr->num_of_specs; ++i) { 535 if (hdr->type == search) { 536 struct ibv_flow_spec_eth *e = 537 (struct ibv_flow_spec_eth *)hdr; 538 539 e->val.vlan_tag = eth->val.vlan_tag; 540 e->mask.vlan_tag = eth->mask.vlan_tag; 541 e->val.ether_type = eth->val.ether_type; 542 e->mask.ether_type = eth->mask.ether_type; 543 break; 544 } 545 hdr = (struct ibv_spec_header *)((uint8_t *)hdr + hdr->size); 546 } 547 } 548 549 /** 550 * Convert the @p item into a Verbs specification. This function assumes that 551 * the input is valid and that there is space to insert the requested item 552 * into the flow. 553 * 554 * @param[in, out] dev_flow 555 * Pointer to dev_flow structure. 556 * @param[in] item 557 * Item specification. 558 * @param[in] item_flags 559 * Parsed item flags. 560 */ 561 static void 562 flow_verbs_translate_item_vlan(struct mlx5_flow *dev_flow, 563 const struct rte_flow_item *item, 564 uint64_t item_flags) 565 { 566 const struct rte_flow_item_vlan *spec = item->spec; 567 const struct rte_flow_item_vlan *mask = item->mask; 568 unsigned int size = sizeof(struct ibv_flow_spec_eth); 569 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 570 struct ibv_flow_spec_eth eth = { 571 .type = IBV_FLOW_SPEC_ETH | VERBS_SPEC_INNER(item_flags), 572 .size = size, 573 }; 574 const uint32_t l2m = tunnel ? MLX5_FLOW_LAYER_INNER_L2 : 575 MLX5_FLOW_LAYER_OUTER_L2; 576 577 if (!mask) 578 mask = &rte_flow_item_vlan_mask; 579 if (spec) { 580 eth.val.vlan_tag = spec->tci; 581 eth.mask.vlan_tag = mask->tci; 582 eth.val.vlan_tag &= eth.mask.vlan_tag; 583 eth.val.ether_type = spec->inner_type; 584 eth.mask.ether_type = mask->inner_type; 585 eth.val.ether_type &= eth.mask.ether_type; 586 } 587 if (!(item_flags & l2m)) 588 flow_verbs_spec_add(&dev_flow->verbs, ð, size); 589 else 590 flow_verbs_item_vlan_update(&dev_flow->verbs.attr, ð); 591 if (!tunnel) 592 dev_flow->handle->vf_vlan.tag = 593 rte_be_to_cpu_16(spec->tci) & 0x0fff; 594 } 595 596 /** 597 * Convert the @p item into a Verbs specification. This function assumes that 598 * the input is valid and that there is space to insert the requested item 599 * into the flow. 600 * 601 * @param[in, out] dev_flow 602 * Pointer to dev_flow structure. 603 * @param[in] item 604 * Item specification. 605 * @param[in] item_flags 606 * Parsed item flags. 607 */ 608 static void 609 flow_verbs_translate_item_ipv4(struct mlx5_flow *dev_flow, 610 const struct rte_flow_item *item, 611 uint64_t item_flags) 612 { 613 const struct rte_flow_item_ipv4 *spec = item->spec; 614 const struct rte_flow_item_ipv4 *mask = item->mask; 615 unsigned int size = sizeof(struct ibv_flow_spec_ipv4_ext); 616 struct ibv_flow_spec_ipv4_ext ipv4 = { 617 .type = IBV_FLOW_SPEC_IPV4_EXT | VERBS_SPEC_INNER(item_flags), 618 .size = size, 619 }; 620 621 if (!mask) 622 mask = &rte_flow_item_ipv4_mask; 623 if (spec) { 624 ipv4.val = (struct ibv_flow_ipv4_ext_filter){ 625 .src_ip = spec->hdr.src_addr, 626 .dst_ip = spec->hdr.dst_addr, 627 .proto = spec->hdr.next_proto_id, 628 .tos = spec->hdr.type_of_service, 629 }; 630 ipv4.mask = (struct ibv_flow_ipv4_ext_filter){ 631 .src_ip = mask->hdr.src_addr, 632 .dst_ip = mask->hdr.dst_addr, 633 .proto = mask->hdr.next_proto_id, 634 .tos = mask->hdr.type_of_service, 635 }; 636 /* Remove unwanted bits from values. */ 637 ipv4.val.src_ip &= ipv4.mask.src_ip; 638 ipv4.val.dst_ip &= ipv4.mask.dst_ip; 639 ipv4.val.proto &= ipv4.mask.proto; 640 ipv4.val.tos &= ipv4.mask.tos; 641 } 642 flow_verbs_spec_add(&dev_flow->verbs, &ipv4, size); 643 } 644 645 /** 646 * Convert the @p item into a Verbs specification. This function assumes that 647 * the input is valid and that there is space to insert the requested item 648 * into the flow. 649 * 650 * @param[in, out] dev_flow 651 * Pointer to dev_flow structure. 652 * @param[in] item 653 * Item specification. 654 * @param[in] item_flags 655 * Parsed item flags. 656 */ 657 static void 658 flow_verbs_translate_item_ipv6(struct mlx5_flow *dev_flow, 659 const struct rte_flow_item *item, 660 uint64_t item_flags) 661 { 662 const struct rte_flow_item_ipv6 *spec = item->spec; 663 const struct rte_flow_item_ipv6 *mask = item->mask; 664 unsigned int size = sizeof(struct ibv_flow_spec_ipv6); 665 struct ibv_flow_spec_ipv6 ipv6 = { 666 .type = IBV_FLOW_SPEC_IPV6 | VERBS_SPEC_INNER(item_flags), 667 .size = size, 668 }; 669 670 if (!mask) 671 mask = &rte_flow_item_ipv6_mask; 672 if (spec) { 673 unsigned int i; 674 uint32_t vtc_flow_val; 675 uint32_t vtc_flow_mask; 676 677 memcpy(&ipv6.val.src_ip, spec->hdr.src_addr, 678 RTE_DIM(ipv6.val.src_ip)); 679 memcpy(&ipv6.val.dst_ip, spec->hdr.dst_addr, 680 RTE_DIM(ipv6.val.dst_ip)); 681 memcpy(&ipv6.mask.src_ip, mask->hdr.src_addr, 682 RTE_DIM(ipv6.mask.src_ip)); 683 memcpy(&ipv6.mask.dst_ip, mask->hdr.dst_addr, 684 RTE_DIM(ipv6.mask.dst_ip)); 685 vtc_flow_val = rte_be_to_cpu_32(spec->hdr.vtc_flow); 686 vtc_flow_mask = rte_be_to_cpu_32(mask->hdr.vtc_flow); 687 ipv6.val.flow_label = 688 rte_cpu_to_be_32((vtc_flow_val & RTE_IPV6_HDR_FL_MASK) >> 689 RTE_IPV6_HDR_FL_SHIFT); 690 ipv6.val.traffic_class = (vtc_flow_val & RTE_IPV6_HDR_TC_MASK) >> 691 RTE_IPV6_HDR_TC_SHIFT; 692 ipv6.val.next_hdr = spec->hdr.proto; 693 ipv6.mask.flow_label = 694 rte_cpu_to_be_32((vtc_flow_mask & RTE_IPV6_HDR_FL_MASK) >> 695 RTE_IPV6_HDR_FL_SHIFT); 696 ipv6.mask.traffic_class = (vtc_flow_mask & RTE_IPV6_HDR_TC_MASK) >> 697 RTE_IPV6_HDR_TC_SHIFT; 698 ipv6.mask.next_hdr = mask->hdr.proto; 699 /* Remove unwanted bits from values. */ 700 for (i = 0; i < RTE_DIM(ipv6.val.src_ip); ++i) { 701 ipv6.val.src_ip[i] &= ipv6.mask.src_ip[i]; 702 ipv6.val.dst_ip[i] &= ipv6.mask.dst_ip[i]; 703 } 704 ipv6.val.flow_label &= ipv6.mask.flow_label; 705 ipv6.val.traffic_class &= ipv6.mask.traffic_class; 706 ipv6.val.next_hdr &= ipv6.mask.next_hdr; 707 } 708 flow_verbs_spec_add(&dev_flow->verbs, &ipv6, size); 709 } 710 711 /** 712 * Convert the @p item into a Verbs specification. This function assumes that 713 * the input is valid and that there is space to insert the requested item 714 * into the flow. 715 * 716 * @param[in, out] dev_flow 717 * Pointer to dev_flow structure. 718 * @param[in] item 719 * Item specification. 720 * @param[in] item_flags 721 * Parsed item flags. 722 */ 723 static void 724 flow_verbs_translate_item_tcp(struct mlx5_flow *dev_flow, 725 const struct rte_flow_item *item, 726 uint64_t item_flags __rte_unused) 727 { 728 const struct rte_flow_item_tcp *spec = item->spec; 729 const struct rte_flow_item_tcp *mask = item->mask; 730 unsigned int size = sizeof(struct ibv_flow_spec_tcp_udp); 731 struct ibv_flow_spec_tcp_udp tcp = { 732 .type = IBV_FLOW_SPEC_TCP | VERBS_SPEC_INNER(item_flags), 733 .size = size, 734 }; 735 736 if (!mask) 737 mask = &rte_flow_item_tcp_mask; 738 if (spec) { 739 tcp.val.dst_port = spec->hdr.dst_port; 740 tcp.val.src_port = spec->hdr.src_port; 741 tcp.mask.dst_port = mask->hdr.dst_port; 742 tcp.mask.src_port = mask->hdr.src_port; 743 /* Remove unwanted bits from values. */ 744 tcp.val.src_port &= tcp.mask.src_port; 745 tcp.val.dst_port &= tcp.mask.dst_port; 746 } 747 flow_verbs_spec_add(&dev_flow->verbs, &tcp, size); 748 } 749 750 /** 751 * Convert the @p item into a Verbs specification. This function assumes that 752 * the input is valid and that there is space to insert the requested item 753 * into the flow. 754 * 755 * @param[in, out] dev_flow 756 * Pointer to dev_flow structure. 757 * @param[in] item 758 * Item specification. 759 * @param[in] item_flags 760 * Parsed item flags. 761 */ 762 static void 763 flow_verbs_translate_item_udp(struct mlx5_flow *dev_flow, 764 const struct rte_flow_item *item, 765 uint64_t item_flags __rte_unused) 766 { 767 const struct rte_flow_item_udp *spec = item->spec; 768 const struct rte_flow_item_udp *mask = item->mask; 769 unsigned int size = sizeof(struct ibv_flow_spec_tcp_udp); 770 struct ibv_flow_spec_tcp_udp udp = { 771 .type = IBV_FLOW_SPEC_UDP | VERBS_SPEC_INNER(item_flags), 772 .size = size, 773 }; 774 775 if (!mask) 776 mask = &rte_flow_item_udp_mask; 777 if (spec) { 778 udp.val.dst_port = spec->hdr.dst_port; 779 udp.val.src_port = spec->hdr.src_port; 780 udp.mask.dst_port = mask->hdr.dst_port; 781 udp.mask.src_port = mask->hdr.src_port; 782 /* Remove unwanted bits from values. */ 783 udp.val.src_port &= udp.mask.src_port; 784 udp.val.dst_port &= udp.mask.dst_port; 785 } 786 item++; 787 while (item->type == RTE_FLOW_ITEM_TYPE_VOID) 788 item++; 789 if (!(udp.val.dst_port & udp.mask.dst_port)) { 790 switch ((item)->type) { 791 case RTE_FLOW_ITEM_TYPE_VXLAN: 792 udp.val.dst_port = htons(MLX5_UDP_PORT_VXLAN); 793 udp.mask.dst_port = 0xffff; 794 break; 795 case RTE_FLOW_ITEM_TYPE_VXLAN_GPE: 796 udp.val.dst_port = htons(MLX5_UDP_PORT_VXLAN_GPE); 797 udp.mask.dst_port = 0xffff; 798 break; 799 case RTE_FLOW_ITEM_TYPE_MPLS: 800 udp.val.dst_port = htons(MLX5_UDP_PORT_MPLS); 801 udp.mask.dst_port = 0xffff; 802 break; 803 default: 804 break; 805 } 806 } 807 808 flow_verbs_spec_add(&dev_flow->verbs, &udp, size); 809 } 810 811 /** 812 * Convert the @p item into a Verbs specification. This function assumes that 813 * the input is valid and that there is space to insert the requested item 814 * into the flow. 815 * 816 * @param[in, out] dev_flow 817 * Pointer to dev_flow structure. 818 * @param[in] item 819 * Item specification. 820 * @param[in] item_flags 821 * Parsed item flags. 822 */ 823 static void 824 flow_verbs_translate_item_vxlan(struct mlx5_flow *dev_flow, 825 const struct rte_flow_item *item, 826 uint64_t item_flags __rte_unused) 827 { 828 const struct rte_flow_item_vxlan *spec = item->spec; 829 const struct rte_flow_item_vxlan *mask = item->mask; 830 unsigned int size = sizeof(struct ibv_flow_spec_tunnel); 831 struct ibv_flow_spec_tunnel vxlan = { 832 .type = IBV_FLOW_SPEC_VXLAN_TUNNEL, 833 .size = size, 834 }; 835 union vni { 836 uint32_t vlan_id; 837 uint8_t vni[4]; 838 } id = { .vlan_id = 0, }; 839 840 if (!mask) 841 mask = &rte_flow_item_vxlan_mask; 842 if (spec) { 843 memcpy(&id.vni[1], spec->vni, 3); 844 vxlan.val.tunnel_id = id.vlan_id; 845 memcpy(&id.vni[1], mask->vni, 3); 846 vxlan.mask.tunnel_id = id.vlan_id; 847 /* Remove unwanted bits from values. */ 848 vxlan.val.tunnel_id &= vxlan.mask.tunnel_id; 849 } 850 flow_verbs_spec_add(&dev_flow->verbs, &vxlan, size); 851 } 852 853 /** 854 * Convert the @p item into a Verbs specification. This function assumes that 855 * the input is valid and that there is space to insert the requested item 856 * into the flow. 857 * 858 * @param[in, out] dev_flow 859 * Pointer to dev_flow structure. 860 * @param[in] item 861 * Item specification. 862 * @param[in] item_flags 863 * Parsed item flags. 864 */ 865 static void 866 flow_verbs_translate_item_vxlan_gpe(struct mlx5_flow *dev_flow, 867 const struct rte_flow_item *item, 868 uint64_t item_flags __rte_unused) 869 { 870 const struct rte_flow_item_vxlan_gpe *spec = item->spec; 871 const struct rte_flow_item_vxlan_gpe *mask = item->mask; 872 unsigned int size = sizeof(struct ibv_flow_spec_tunnel); 873 struct ibv_flow_spec_tunnel vxlan_gpe = { 874 .type = IBV_FLOW_SPEC_VXLAN_TUNNEL, 875 .size = size, 876 }; 877 union vni { 878 uint32_t vlan_id; 879 uint8_t vni[4]; 880 } id = { .vlan_id = 0, }; 881 882 if (!mask) 883 mask = &rte_flow_item_vxlan_gpe_mask; 884 if (spec) { 885 memcpy(&id.vni[1], spec->vni, 3); 886 vxlan_gpe.val.tunnel_id = id.vlan_id; 887 memcpy(&id.vni[1], mask->vni, 3); 888 vxlan_gpe.mask.tunnel_id = id.vlan_id; 889 /* Remove unwanted bits from values. */ 890 vxlan_gpe.val.tunnel_id &= vxlan_gpe.mask.tunnel_id; 891 } 892 flow_verbs_spec_add(&dev_flow->verbs, &vxlan_gpe, size); 893 } 894 895 /** 896 * Update the protocol in Verbs IPv4/IPv6 spec. 897 * 898 * @param[in, out] attr 899 * Pointer to Verbs attributes structure. 900 * @param[in] search 901 * Specification type to search in order to update the IP protocol. 902 * @param[in] protocol 903 * Protocol value to set if none is present in the specification. 904 */ 905 static void 906 flow_verbs_item_gre_ip_protocol_update(struct ibv_flow_attr *attr, 907 enum ibv_flow_spec_type search, 908 uint8_t protocol) 909 { 910 unsigned int i; 911 struct ibv_spec_header *hdr = (struct ibv_spec_header *) 912 ((uint8_t *)attr + sizeof(struct ibv_flow_attr)); 913 914 if (!attr) 915 return; 916 for (i = 0; i != attr->num_of_specs; ++i) { 917 if (hdr->type == search) { 918 union { 919 struct ibv_flow_spec_ipv4_ext *ipv4; 920 struct ibv_flow_spec_ipv6 *ipv6; 921 } ip; 922 923 switch (search) { 924 case IBV_FLOW_SPEC_IPV4_EXT: 925 ip.ipv4 = (struct ibv_flow_spec_ipv4_ext *)hdr; 926 if (!ip.ipv4->val.proto) { 927 ip.ipv4->val.proto = protocol; 928 ip.ipv4->mask.proto = 0xff; 929 } 930 break; 931 case IBV_FLOW_SPEC_IPV6: 932 ip.ipv6 = (struct ibv_flow_spec_ipv6 *)hdr; 933 if (!ip.ipv6->val.next_hdr) { 934 ip.ipv6->val.next_hdr = protocol; 935 ip.ipv6->mask.next_hdr = 0xff; 936 } 937 break; 938 default: 939 break; 940 } 941 break; 942 } 943 hdr = (struct ibv_spec_header *)((uint8_t *)hdr + hdr->size); 944 } 945 } 946 947 /** 948 * Convert the @p item into a Verbs specification. This function assumes that 949 * the input is valid and that there is space to insert the requested item 950 * into the flow. 951 * 952 * @param[in, out] dev_flow 953 * Pointer to dev_flow structure. 954 * @param[in] item 955 * Item specification. 956 * @param[in] item_flags 957 * Parsed item flags. 958 */ 959 static void 960 flow_verbs_translate_item_gre(struct mlx5_flow *dev_flow, 961 const struct rte_flow_item *item __rte_unused, 962 uint64_t item_flags) 963 { 964 struct mlx5_flow_verbs_workspace *verbs = &dev_flow->verbs; 965 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT 966 unsigned int size = sizeof(struct ibv_flow_spec_tunnel); 967 struct ibv_flow_spec_tunnel tunnel = { 968 .type = IBV_FLOW_SPEC_VXLAN_TUNNEL, 969 .size = size, 970 }; 971 #else 972 const struct rte_flow_item_gre *spec = item->spec; 973 const struct rte_flow_item_gre *mask = item->mask; 974 unsigned int size = sizeof(struct ibv_flow_spec_gre); 975 struct ibv_flow_spec_gre tunnel = { 976 .type = IBV_FLOW_SPEC_GRE, 977 .size = size, 978 }; 979 980 if (!mask) 981 mask = &rte_flow_item_gre_mask; 982 if (spec) { 983 tunnel.val.c_ks_res0_ver = spec->c_rsvd0_ver; 984 tunnel.val.protocol = spec->protocol; 985 tunnel.mask.c_ks_res0_ver = mask->c_rsvd0_ver; 986 tunnel.mask.protocol = mask->protocol; 987 /* Remove unwanted bits from values. */ 988 tunnel.val.c_ks_res0_ver &= tunnel.mask.c_ks_res0_ver; 989 tunnel.val.protocol &= tunnel.mask.protocol; 990 tunnel.val.key &= tunnel.mask.key; 991 } 992 #endif 993 if (item_flags & MLX5_FLOW_LAYER_OUTER_L3_IPV4) 994 flow_verbs_item_gre_ip_protocol_update(&verbs->attr, 995 IBV_FLOW_SPEC_IPV4_EXT, 996 IPPROTO_GRE); 997 else 998 flow_verbs_item_gre_ip_protocol_update(&verbs->attr, 999 IBV_FLOW_SPEC_IPV6, 1000 IPPROTO_GRE); 1001 flow_verbs_spec_add(verbs, &tunnel, size); 1002 } 1003 1004 /** 1005 * Convert the @p action into a Verbs specification. This function assumes that 1006 * the input is valid and that there is space to insert the requested action 1007 * into the flow. This function also return the action that was added. 1008 * 1009 * @param[in, out] dev_flow 1010 * Pointer to dev_flow structure. 1011 * @param[in] item 1012 * Item specification. 1013 * @param[in] item_flags 1014 * Parsed item flags. 1015 */ 1016 static void 1017 flow_verbs_translate_item_mpls(struct mlx5_flow *dev_flow __rte_unused, 1018 const struct rte_flow_item *item __rte_unused, 1019 uint64_t item_flags __rte_unused) 1020 { 1021 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT 1022 const struct rte_flow_item_mpls *spec = item->spec; 1023 const struct rte_flow_item_mpls *mask = item->mask; 1024 unsigned int size = sizeof(struct ibv_flow_spec_mpls); 1025 struct ibv_flow_spec_mpls mpls = { 1026 .type = IBV_FLOW_SPEC_MPLS, 1027 .size = size, 1028 }; 1029 1030 if (!mask) 1031 mask = &rte_flow_item_mpls_mask; 1032 if (spec) { 1033 memcpy(&mpls.val.label, spec, sizeof(mpls.val.label)); 1034 memcpy(&mpls.mask.label, mask, sizeof(mpls.mask.label)); 1035 /* Remove unwanted bits from values. */ 1036 mpls.val.label &= mpls.mask.label; 1037 } 1038 flow_verbs_spec_add(&dev_flow->verbs, &mpls, size); 1039 #endif 1040 } 1041 1042 /** 1043 * Convert the @p action into a Verbs specification. This function assumes that 1044 * the input is valid and that there is space to insert the requested action 1045 * into the flow. 1046 * 1047 * @param[in] dev_flow 1048 * Pointer to mlx5_flow. 1049 * @param[in] action 1050 * Action configuration. 1051 */ 1052 static void 1053 flow_verbs_translate_action_drop 1054 (struct mlx5_flow *dev_flow, 1055 const struct rte_flow_action *action __rte_unused) 1056 { 1057 unsigned int size = sizeof(struct ibv_flow_spec_action_drop); 1058 struct ibv_flow_spec_action_drop drop = { 1059 .type = IBV_FLOW_SPEC_ACTION_DROP, 1060 .size = size, 1061 }; 1062 1063 flow_verbs_spec_add(&dev_flow->verbs, &drop, size); 1064 } 1065 1066 /** 1067 * Convert the @p action into a Verbs specification. This function assumes that 1068 * the input is valid and that there is space to insert the requested action 1069 * into the flow. 1070 * 1071 * @param[in] rss_desc 1072 * Pointer to mlx5_flow_rss_desc. 1073 * @param[in] action 1074 * Action configuration. 1075 */ 1076 static void 1077 flow_verbs_translate_action_queue(struct mlx5_flow_rss_desc *rss_desc, 1078 const struct rte_flow_action *action) 1079 { 1080 const struct rte_flow_action_queue *queue = action->conf; 1081 1082 rss_desc->queue[0] = queue->index; 1083 rss_desc->queue_num = 1; 1084 } 1085 1086 /** 1087 * Convert the @p action into a Verbs specification. This function assumes that 1088 * the input is valid and that there is space to insert the requested action 1089 * into the flow. 1090 * 1091 * @param[in] rss_desc 1092 * Pointer to mlx5_flow_rss_desc. 1093 * @param[in] action 1094 * Action configuration. 1095 */ 1096 static void 1097 flow_verbs_translate_action_rss(struct mlx5_flow_rss_desc *rss_desc, 1098 const struct rte_flow_action *action) 1099 { 1100 const struct rte_flow_action_rss *rss = action->conf; 1101 const uint8_t *rss_key; 1102 1103 memcpy(rss_desc->queue, rss->queue, rss->queue_num * sizeof(uint16_t)); 1104 rss_desc->queue_num = rss->queue_num; 1105 /* NULL RSS key indicates default RSS key. */ 1106 rss_key = !rss->key ? rss_hash_default_key : rss->key; 1107 memcpy(rss_desc->key, rss_key, MLX5_RSS_HASH_KEY_LEN); 1108 /* 1109 * rss->level and rss.types should be set in advance when expanding 1110 * items for RSS. 1111 */ 1112 } 1113 1114 /** 1115 * Convert the @p action into a Verbs specification. This function assumes that 1116 * the input is valid and that there is space to insert the requested action 1117 * into the flow. 1118 * 1119 * @param[in] dev_flow 1120 * Pointer to mlx5_flow. 1121 * @param[in] action 1122 * Action configuration. 1123 */ 1124 static void 1125 flow_verbs_translate_action_flag 1126 (struct mlx5_flow *dev_flow, 1127 const struct rte_flow_action *action __rte_unused) 1128 { 1129 unsigned int size = sizeof(struct ibv_flow_spec_action_tag); 1130 struct ibv_flow_spec_action_tag tag = { 1131 .type = IBV_FLOW_SPEC_ACTION_TAG, 1132 .size = size, 1133 .tag_id = mlx5_flow_mark_set(MLX5_FLOW_MARK_DEFAULT), 1134 }; 1135 1136 flow_verbs_spec_add(&dev_flow->verbs, &tag, size); 1137 } 1138 1139 /** 1140 * Convert the @p action into a Verbs specification. This function assumes that 1141 * the input is valid and that there is space to insert the requested action 1142 * into the flow. 1143 * 1144 * @param[in] dev_flow 1145 * Pointer to mlx5_flow. 1146 * @param[in] action 1147 * Action configuration. 1148 */ 1149 static void 1150 flow_verbs_translate_action_mark(struct mlx5_flow *dev_flow, 1151 const struct rte_flow_action *action) 1152 { 1153 const struct rte_flow_action_mark *mark = action->conf; 1154 unsigned int size = sizeof(struct ibv_flow_spec_action_tag); 1155 struct ibv_flow_spec_action_tag tag = { 1156 .type = IBV_FLOW_SPEC_ACTION_TAG, 1157 .size = size, 1158 .tag_id = mlx5_flow_mark_set(mark->id), 1159 }; 1160 1161 flow_verbs_spec_add(&dev_flow->verbs, &tag, size); 1162 } 1163 1164 /** 1165 * Convert the @p action into a Verbs specification. This function assumes that 1166 * the input is valid and that there is space to insert the requested action 1167 * into the flow. 1168 * 1169 * @param[in] dev 1170 * Pointer to the Ethernet device structure. 1171 * @param[in] action 1172 * Action configuration. 1173 * @param[in] dev_flow 1174 * Pointer to mlx5_flow. 1175 * @param[out] error 1176 * Pointer to error structure. 1177 * 1178 * @return 1179 * 0 On success else a negative errno value is returned and rte_errno is set. 1180 */ 1181 static int 1182 flow_verbs_translate_action_count(struct mlx5_flow *dev_flow, 1183 const struct rte_flow_action *action, 1184 struct rte_eth_dev *dev, 1185 struct rte_flow_error *error) 1186 { 1187 const struct rte_flow_action_count *count = action->conf; 1188 struct rte_flow *flow = dev_flow->flow; 1189 #if defined(HAVE_IBV_DEVICE_COUNTERS_SET_V42) || \ 1190 defined(HAVE_IBV_DEVICE_COUNTERS_SET_V45) 1191 struct mlx5_flow_counter_pool *pool; 1192 struct mlx5_flow_counter *cnt = NULL; 1193 unsigned int size = sizeof(struct ibv_flow_spec_counter_action); 1194 struct ibv_flow_spec_counter_action counter = { 1195 .type = IBV_FLOW_SPEC_ACTION_COUNT, 1196 .size = size, 1197 }; 1198 #endif 1199 1200 if (!flow->counter) { 1201 flow->counter = flow_verbs_counter_new(dev, count->shared, 1202 count->id); 1203 if (!flow->counter) 1204 return rte_flow_error_set(error, rte_errno, 1205 RTE_FLOW_ERROR_TYPE_ACTION, 1206 action, 1207 "cannot get counter" 1208 " context."); 1209 } 1210 #if defined(HAVE_IBV_DEVICE_COUNTERS_SET_V42) 1211 cnt = flow_verbs_counter_get_by_idx(dev, flow->counter, &pool); 1212 counter.counter_set_handle = 1213 ((struct ibv_counter_set *)cnt->dcs_when_active)->handle; 1214 flow_verbs_spec_add(&dev_flow->verbs, &counter, size); 1215 #elif defined(HAVE_IBV_DEVICE_COUNTERS_SET_V45) 1216 cnt = flow_verbs_counter_get_by_idx(dev, flow->counter, &pool); 1217 counter.counters = (struct ibv_counters *)cnt->dcs_when_active; 1218 flow_verbs_spec_add(&dev_flow->verbs, &counter, size); 1219 #endif 1220 return 0; 1221 } 1222 1223 /** 1224 * Internal validation function. For validating both actions and items. 1225 * 1226 * @param[in] dev 1227 * Pointer to the Ethernet device structure. 1228 * @param[in] attr 1229 * Pointer to the flow attributes. 1230 * @param[in] items 1231 * Pointer to the list of items. 1232 * @param[in] actions 1233 * Pointer to the list of actions. 1234 * @param[in] external 1235 * This flow rule is created by request external to PMD. 1236 * @param[in] hairpin 1237 * Number of hairpin TX actions, 0 means classic flow. 1238 * @param[out] error 1239 * Pointer to the error structure. 1240 * 1241 * @return 1242 * 0 on success, a negative errno value otherwise and rte_errno is set. 1243 */ 1244 static int 1245 flow_verbs_validate(struct rte_eth_dev *dev, 1246 const struct rte_flow_attr *attr, 1247 const struct rte_flow_item items[], 1248 const struct rte_flow_action actions[], 1249 bool external __rte_unused, 1250 int hairpin __rte_unused, 1251 struct rte_flow_error *error) 1252 { 1253 int ret; 1254 uint64_t action_flags = 0; 1255 uint64_t item_flags = 0; 1256 uint64_t last_item = 0; 1257 uint8_t next_protocol = 0xff; 1258 uint16_t ether_type = 0; 1259 bool is_empty_vlan = false; 1260 1261 if (items == NULL) 1262 return -1; 1263 ret = mlx5_flow_validate_attributes(dev, attr, error); 1264 if (ret < 0) 1265 return ret; 1266 for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) { 1267 int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1268 int ret = 0; 1269 1270 switch (items->type) { 1271 case RTE_FLOW_ITEM_TYPE_VOID: 1272 break; 1273 case RTE_FLOW_ITEM_TYPE_ETH: 1274 ret = mlx5_flow_validate_item_eth(items, item_flags, 1275 false, error); 1276 if (ret < 0) 1277 return ret; 1278 last_item = tunnel ? MLX5_FLOW_LAYER_INNER_L2 : 1279 MLX5_FLOW_LAYER_OUTER_L2; 1280 if (items->mask != NULL && items->spec != NULL) { 1281 ether_type = 1282 ((const struct rte_flow_item_eth *) 1283 items->spec)->type; 1284 ether_type &= 1285 ((const struct rte_flow_item_eth *) 1286 items->mask)->type; 1287 if (ether_type == RTE_BE16(RTE_ETHER_TYPE_VLAN)) 1288 is_empty_vlan = true; 1289 ether_type = rte_be_to_cpu_16(ether_type); 1290 } else { 1291 ether_type = 0; 1292 } 1293 break; 1294 case RTE_FLOW_ITEM_TYPE_VLAN: 1295 ret = mlx5_flow_validate_item_vlan(items, item_flags, 1296 dev, error); 1297 if (ret < 0) 1298 return ret; 1299 last_item = tunnel ? (MLX5_FLOW_LAYER_INNER_L2 | 1300 MLX5_FLOW_LAYER_INNER_VLAN) : 1301 (MLX5_FLOW_LAYER_OUTER_L2 | 1302 MLX5_FLOW_LAYER_OUTER_VLAN); 1303 if (items->mask != NULL && items->spec != NULL) { 1304 ether_type = 1305 ((const struct rte_flow_item_vlan *) 1306 items->spec)->inner_type; 1307 ether_type &= 1308 ((const struct rte_flow_item_vlan *) 1309 items->mask)->inner_type; 1310 ether_type = rte_be_to_cpu_16(ether_type); 1311 } else { 1312 ether_type = 0; 1313 } 1314 is_empty_vlan = false; 1315 break; 1316 case RTE_FLOW_ITEM_TYPE_IPV4: 1317 ret = mlx5_flow_validate_item_ipv4 1318 (items, item_flags, 1319 last_item, ether_type, NULL, 1320 MLX5_ITEM_RANGE_NOT_ACCEPTED, 1321 error); 1322 if (ret < 0) 1323 return ret; 1324 last_item = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 : 1325 MLX5_FLOW_LAYER_OUTER_L3_IPV4; 1326 if (items->mask != NULL && 1327 ((const struct rte_flow_item_ipv4 *) 1328 items->mask)->hdr.next_proto_id) { 1329 next_protocol = 1330 ((const struct rte_flow_item_ipv4 *) 1331 (items->spec))->hdr.next_proto_id; 1332 next_protocol &= 1333 ((const struct rte_flow_item_ipv4 *) 1334 (items->mask))->hdr.next_proto_id; 1335 } else { 1336 /* Reset for inner layer. */ 1337 next_protocol = 0xff; 1338 } 1339 break; 1340 case RTE_FLOW_ITEM_TYPE_IPV6: 1341 ret = mlx5_flow_validate_item_ipv6(items, item_flags, 1342 last_item, 1343 ether_type, NULL, 1344 error); 1345 if (ret < 0) 1346 return ret; 1347 last_item = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 : 1348 MLX5_FLOW_LAYER_OUTER_L3_IPV6; 1349 if (items->mask != NULL && 1350 ((const struct rte_flow_item_ipv6 *) 1351 items->mask)->hdr.proto) { 1352 next_protocol = 1353 ((const struct rte_flow_item_ipv6 *) 1354 items->spec)->hdr.proto; 1355 next_protocol &= 1356 ((const struct rte_flow_item_ipv6 *) 1357 items->mask)->hdr.proto; 1358 } else { 1359 /* Reset for inner layer. */ 1360 next_protocol = 0xff; 1361 } 1362 break; 1363 case RTE_FLOW_ITEM_TYPE_UDP: 1364 ret = mlx5_flow_validate_item_udp(items, item_flags, 1365 next_protocol, 1366 error); 1367 if (ret < 0) 1368 return ret; 1369 last_item = tunnel ? MLX5_FLOW_LAYER_INNER_L4_UDP : 1370 MLX5_FLOW_LAYER_OUTER_L4_UDP; 1371 break; 1372 case RTE_FLOW_ITEM_TYPE_TCP: 1373 ret = mlx5_flow_validate_item_tcp 1374 (items, item_flags, 1375 next_protocol, 1376 &rte_flow_item_tcp_mask, 1377 error); 1378 if (ret < 0) 1379 return ret; 1380 last_item = tunnel ? MLX5_FLOW_LAYER_INNER_L4_TCP : 1381 MLX5_FLOW_LAYER_OUTER_L4_TCP; 1382 break; 1383 case RTE_FLOW_ITEM_TYPE_VXLAN: 1384 ret = mlx5_flow_validate_item_vxlan(items, item_flags, 1385 error); 1386 if (ret < 0) 1387 return ret; 1388 last_item = MLX5_FLOW_LAYER_VXLAN; 1389 break; 1390 case RTE_FLOW_ITEM_TYPE_VXLAN_GPE: 1391 ret = mlx5_flow_validate_item_vxlan_gpe(items, 1392 item_flags, 1393 dev, error); 1394 if (ret < 0) 1395 return ret; 1396 last_item = MLX5_FLOW_LAYER_VXLAN_GPE; 1397 break; 1398 case RTE_FLOW_ITEM_TYPE_GRE: 1399 ret = mlx5_flow_validate_item_gre(items, item_flags, 1400 next_protocol, error); 1401 if (ret < 0) 1402 return ret; 1403 last_item = MLX5_FLOW_LAYER_GRE; 1404 break; 1405 case RTE_FLOW_ITEM_TYPE_MPLS: 1406 ret = mlx5_flow_validate_item_mpls(dev, items, 1407 item_flags, 1408 last_item, error); 1409 if (ret < 0) 1410 return ret; 1411 last_item = MLX5_FLOW_LAYER_MPLS; 1412 break; 1413 case RTE_FLOW_ITEM_TYPE_ICMP: 1414 case RTE_FLOW_ITEM_TYPE_ICMP6: 1415 return rte_flow_error_set(error, ENOTSUP, 1416 RTE_FLOW_ERROR_TYPE_ITEM, 1417 NULL, "ICMP/ICMP6 " 1418 "item not supported"); 1419 default: 1420 return rte_flow_error_set(error, ENOTSUP, 1421 RTE_FLOW_ERROR_TYPE_ITEM, 1422 NULL, "item not supported"); 1423 } 1424 item_flags |= last_item; 1425 } 1426 if (is_empty_vlan) 1427 return rte_flow_error_set(error, ENOTSUP, 1428 RTE_FLOW_ERROR_TYPE_ITEM, NULL, 1429 "VLAN matching without vid specification is not supported"); 1430 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 1431 switch (actions->type) { 1432 case RTE_FLOW_ACTION_TYPE_VOID: 1433 break; 1434 case RTE_FLOW_ACTION_TYPE_FLAG: 1435 ret = mlx5_flow_validate_action_flag(action_flags, 1436 attr, 1437 error); 1438 if (ret < 0) 1439 return ret; 1440 action_flags |= MLX5_FLOW_ACTION_FLAG; 1441 break; 1442 case RTE_FLOW_ACTION_TYPE_MARK: 1443 ret = mlx5_flow_validate_action_mark(actions, 1444 action_flags, 1445 attr, 1446 error); 1447 if (ret < 0) 1448 return ret; 1449 action_flags |= MLX5_FLOW_ACTION_MARK; 1450 break; 1451 case RTE_FLOW_ACTION_TYPE_DROP: 1452 ret = mlx5_flow_validate_action_drop(action_flags, 1453 attr, 1454 error); 1455 if (ret < 0) 1456 return ret; 1457 action_flags |= MLX5_FLOW_ACTION_DROP; 1458 break; 1459 case RTE_FLOW_ACTION_TYPE_QUEUE: 1460 ret = mlx5_flow_validate_action_queue(actions, 1461 action_flags, dev, 1462 attr, 1463 error); 1464 if (ret < 0) 1465 return ret; 1466 action_flags |= MLX5_FLOW_ACTION_QUEUE; 1467 break; 1468 case RTE_FLOW_ACTION_TYPE_RSS: 1469 ret = mlx5_flow_validate_action_rss(actions, 1470 action_flags, dev, 1471 attr, item_flags, 1472 error); 1473 if (ret < 0) 1474 return ret; 1475 action_flags |= MLX5_FLOW_ACTION_RSS; 1476 break; 1477 case RTE_FLOW_ACTION_TYPE_COUNT: 1478 ret = mlx5_flow_validate_action_count(dev, attr, error); 1479 if (ret < 0) 1480 return ret; 1481 action_flags |= MLX5_FLOW_ACTION_COUNT; 1482 break; 1483 default: 1484 return rte_flow_error_set(error, ENOTSUP, 1485 RTE_FLOW_ERROR_TYPE_ACTION, 1486 actions, 1487 "action not supported"); 1488 } 1489 } 1490 /* 1491 * Validate the drop action mutual exclusion with other actions. 1492 * Drop action is mutually-exclusive with any other action, except for 1493 * Count action. 1494 */ 1495 if ((action_flags & MLX5_FLOW_ACTION_DROP) && 1496 (action_flags & ~(MLX5_FLOW_ACTION_DROP | MLX5_FLOW_ACTION_COUNT))) 1497 return rte_flow_error_set(error, EINVAL, 1498 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1499 "Drop action is mutually-exclusive " 1500 "with any other action, except for " 1501 "Count action"); 1502 if (!(action_flags & MLX5_FLOW_FATE_ACTIONS)) 1503 return rte_flow_error_set(error, EINVAL, 1504 RTE_FLOW_ERROR_TYPE_ACTION, actions, 1505 "no fate action is found"); 1506 return 0; 1507 } 1508 1509 /** 1510 * Calculate the required bytes that are needed for the action part of the verbs 1511 * flow. 1512 * 1513 * @param[in] actions 1514 * Pointer to the list of actions. 1515 * 1516 * @return 1517 * The size of the memory needed for all actions. 1518 */ 1519 static int 1520 flow_verbs_get_actions_size(const struct rte_flow_action actions[]) 1521 { 1522 int size = 0; 1523 1524 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 1525 switch (actions->type) { 1526 case RTE_FLOW_ACTION_TYPE_VOID: 1527 break; 1528 case RTE_FLOW_ACTION_TYPE_FLAG: 1529 size += sizeof(struct ibv_flow_spec_action_tag); 1530 break; 1531 case RTE_FLOW_ACTION_TYPE_MARK: 1532 size += sizeof(struct ibv_flow_spec_action_tag); 1533 break; 1534 case RTE_FLOW_ACTION_TYPE_DROP: 1535 size += sizeof(struct ibv_flow_spec_action_drop); 1536 break; 1537 case RTE_FLOW_ACTION_TYPE_QUEUE: 1538 break; 1539 case RTE_FLOW_ACTION_TYPE_RSS: 1540 break; 1541 case RTE_FLOW_ACTION_TYPE_COUNT: 1542 #if defined(HAVE_IBV_DEVICE_COUNTERS_SET_V42) || \ 1543 defined(HAVE_IBV_DEVICE_COUNTERS_SET_V45) 1544 size += sizeof(struct ibv_flow_spec_counter_action); 1545 #endif 1546 break; 1547 default: 1548 break; 1549 } 1550 } 1551 return size; 1552 } 1553 1554 /** 1555 * Calculate the required bytes that are needed for the item part of the verbs 1556 * flow. 1557 * 1558 * @param[in] items 1559 * Pointer to the list of items. 1560 * 1561 * @return 1562 * The size of the memory needed for all items. 1563 */ 1564 static int 1565 flow_verbs_get_items_size(const struct rte_flow_item items[]) 1566 { 1567 int size = 0; 1568 1569 for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) { 1570 switch (items->type) { 1571 case RTE_FLOW_ITEM_TYPE_VOID: 1572 break; 1573 case RTE_FLOW_ITEM_TYPE_ETH: 1574 size += sizeof(struct ibv_flow_spec_eth); 1575 break; 1576 case RTE_FLOW_ITEM_TYPE_VLAN: 1577 size += sizeof(struct ibv_flow_spec_eth); 1578 break; 1579 case RTE_FLOW_ITEM_TYPE_IPV4: 1580 size += sizeof(struct ibv_flow_spec_ipv4_ext); 1581 break; 1582 case RTE_FLOW_ITEM_TYPE_IPV6: 1583 size += sizeof(struct ibv_flow_spec_ipv6); 1584 break; 1585 case RTE_FLOW_ITEM_TYPE_UDP: 1586 size += sizeof(struct ibv_flow_spec_tcp_udp); 1587 break; 1588 case RTE_FLOW_ITEM_TYPE_TCP: 1589 size += sizeof(struct ibv_flow_spec_tcp_udp); 1590 break; 1591 case RTE_FLOW_ITEM_TYPE_VXLAN: 1592 size += sizeof(struct ibv_flow_spec_tunnel); 1593 break; 1594 case RTE_FLOW_ITEM_TYPE_VXLAN_GPE: 1595 size += sizeof(struct ibv_flow_spec_tunnel); 1596 break; 1597 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT 1598 case RTE_FLOW_ITEM_TYPE_GRE: 1599 size += sizeof(struct ibv_flow_spec_gre); 1600 break; 1601 case RTE_FLOW_ITEM_TYPE_MPLS: 1602 size += sizeof(struct ibv_flow_spec_mpls); 1603 break; 1604 #else 1605 case RTE_FLOW_ITEM_TYPE_GRE: 1606 size += sizeof(struct ibv_flow_spec_tunnel); 1607 break; 1608 #endif 1609 default: 1610 break; 1611 } 1612 } 1613 return size; 1614 } 1615 1616 /** 1617 * Internal preparation function. Allocate mlx5_flow with the required size. 1618 * The required size is calculate based on the actions and items. This function 1619 * also returns the detected actions and items for later use. 1620 * 1621 * @param[in] dev 1622 * Pointer to Ethernet device. 1623 * @param[in] attr 1624 * Pointer to the flow attributes. 1625 * @param[in] items 1626 * Pointer to the list of items. 1627 * @param[in] actions 1628 * Pointer to the list of actions. 1629 * @param[out] error 1630 * Pointer to the error structure. 1631 * 1632 * @return 1633 * Pointer to mlx5_flow object on success, otherwise NULL and rte_errno 1634 * is set. 1635 */ 1636 static struct mlx5_flow * 1637 flow_verbs_prepare(struct rte_eth_dev *dev, 1638 const struct rte_flow_attr *attr __rte_unused, 1639 const struct rte_flow_item items[], 1640 const struct rte_flow_action actions[], 1641 struct rte_flow_error *error) 1642 { 1643 size_t size = 0; 1644 uint32_t handle_idx = 0; 1645 struct mlx5_flow *dev_flow; 1646 struct mlx5_flow_handle *dev_handle; 1647 struct mlx5_priv *priv = dev->data->dev_private; 1648 struct mlx5_flow_workspace *wks = mlx5_flow_get_thread_workspace(); 1649 1650 MLX5_ASSERT(wks); 1651 size += flow_verbs_get_actions_size(actions); 1652 size += flow_verbs_get_items_size(items); 1653 if (size > MLX5_VERBS_MAX_SPEC_ACT_SIZE) { 1654 rte_flow_error_set(error, E2BIG, 1655 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 1656 "Verbs spec/action size too large"); 1657 return NULL; 1658 } 1659 /* In case of corrupting the memory. */ 1660 if (wks->flow_idx >= MLX5_NUM_MAX_DEV_FLOWS) { 1661 rte_flow_error_set(error, ENOSPC, 1662 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 1663 "not free temporary device flow"); 1664 return NULL; 1665 } 1666 dev_handle = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], 1667 &handle_idx); 1668 if (!dev_handle) { 1669 rte_flow_error_set(error, ENOMEM, 1670 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 1671 "not enough memory to create flow handle"); 1672 return NULL; 1673 } 1674 MLX5_ASSERT(wks->flow_idx + 1 < RTE_DIM(wks->flows)); 1675 dev_flow = &wks->flows[wks->flow_idx++]; 1676 dev_flow->handle = dev_handle; 1677 dev_flow->handle_idx = handle_idx; 1678 /* Memcpy is used, only size needs to be cleared to 0. */ 1679 dev_flow->verbs.size = 0; 1680 dev_flow->verbs.attr.num_of_specs = 0; 1681 dev_flow->ingress = attr->ingress; 1682 dev_flow->hash_fields = 0; 1683 /* Need to set transfer attribute: not supported in Verbs mode. */ 1684 return dev_flow; 1685 } 1686 1687 /** 1688 * Fill the flow with verb spec. 1689 * 1690 * @param[in] dev 1691 * Pointer to Ethernet device. 1692 * @param[in, out] dev_flow 1693 * Pointer to the mlx5 flow. 1694 * @param[in] attr 1695 * Pointer to the flow attributes. 1696 * @param[in] items 1697 * Pointer to the list of items. 1698 * @param[in] actions 1699 * Pointer to the list of actions. 1700 * @param[out] error 1701 * Pointer to the error structure. 1702 * 1703 * @return 1704 * 0 on success, else a negative errno value otherwise and rte_errno is set. 1705 */ 1706 static int 1707 flow_verbs_translate(struct rte_eth_dev *dev, 1708 struct mlx5_flow *dev_flow, 1709 const struct rte_flow_attr *attr, 1710 const struct rte_flow_item items[], 1711 const struct rte_flow_action actions[], 1712 struct rte_flow_error *error) 1713 { 1714 uint64_t item_flags = 0; 1715 uint64_t action_flags = 0; 1716 uint64_t priority = attr->priority; 1717 uint32_t subpriority = 0; 1718 struct mlx5_priv *priv = dev->data->dev_private; 1719 struct mlx5_flow_workspace *wks = mlx5_flow_get_thread_workspace(); 1720 struct mlx5_flow_rss_desc *rss_desc; 1721 1722 MLX5_ASSERT(wks); 1723 rss_desc = &wks->rss_desc; 1724 if (priority == MLX5_FLOW_LOWEST_PRIO_INDICATOR) 1725 priority = priv->config.flow_prio - 1; 1726 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 1727 int ret; 1728 1729 switch (actions->type) { 1730 case RTE_FLOW_ACTION_TYPE_VOID: 1731 break; 1732 case RTE_FLOW_ACTION_TYPE_FLAG: 1733 flow_verbs_translate_action_flag(dev_flow, actions); 1734 action_flags |= MLX5_FLOW_ACTION_FLAG; 1735 dev_flow->handle->mark = 1; 1736 break; 1737 case RTE_FLOW_ACTION_TYPE_MARK: 1738 flow_verbs_translate_action_mark(dev_flow, actions); 1739 action_flags |= MLX5_FLOW_ACTION_MARK; 1740 dev_flow->handle->mark = 1; 1741 break; 1742 case RTE_FLOW_ACTION_TYPE_DROP: 1743 flow_verbs_translate_action_drop(dev_flow, actions); 1744 action_flags |= MLX5_FLOW_ACTION_DROP; 1745 dev_flow->handle->fate_action = MLX5_FLOW_FATE_DROP; 1746 break; 1747 case RTE_FLOW_ACTION_TYPE_QUEUE: 1748 flow_verbs_translate_action_queue(rss_desc, actions); 1749 action_flags |= MLX5_FLOW_ACTION_QUEUE; 1750 dev_flow->handle->fate_action = MLX5_FLOW_FATE_QUEUE; 1751 break; 1752 case RTE_FLOW_ACTION_TYPE_RSS: 1753 flow_verbs_translate_action_rss(rss_desc, actions); 1754 action_flags |= MLX5_FLOW_ACTION_RSS; 1755 dev_flow->handle->fate_action = MLX5_FLOW_FATE_QUEUE; 1756 break; 1757 case RTE_FLOW_ACTION_TYPE_COUNT: 1758 ret = flow_verbs_translate_action_count(dev_flow, 1759 actions, 1760 dev, error); 1761 if (ret < 0) 1762 return ret; 1763 action_flags |= MLX5_FLOW_ACTION_COUNT; 1764 break; 1765 default: 1766 return rte_flow_error_set(error, ENOTSUP, 1767 RTE_FLOW_ERROR_TYPE_ACTION, 1768 actions, 1769 "action not supported"); 1770 } 1771 } 1772 dev_flow->act_flags = action_flags; 1773 for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) { 1774 int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1775 1776 switch (items->type) { 1777 case RTE_FLOW_ITEM_TYPE_VOID: 1778 break; 1779 case RTE_FLOW_ITEM_TYPE_ETH: 1780 flow_verbs_translate_item_eth(dev_flow, items, 1781 item_flags); 1782 subpriority = MLX5_PRIORITY_MAP_L2; 1783 item_flags |= tunnel ? MLX5_FLOW_LAYER_INNER_L2 : 1784 MLX5_FLOW_LAYER_OUTER_L2; 1785 break; 1786 case RTE_FLOW_ITEM_TYPE_VLAN: 1787 flow_verbs_translate_item_vlan(dev_flow, items, 1788 item_flags); 1789 subpriority = MLX5_PRIORITY_MAP_L2; 1790 item_flags |= tunnel ? (MLX5_FLOW_LAYER_INNER_L2 | 1791 MLX5_FLOW_LAYER_INNER_VLAN) : 1792 (MLX5_FLOW_LAYER_OUTER_L2 | 1793 MLX5_FLOW_LAYER_OUTER_VLAN); 1794 break; 1795 case RTE_FLOW_ITEM_TYPE_IPV4: 1796 flow_verbs_translate_item_ipv4(dev_flow, items, 1797 item_flags); 1798 subpriority = MLX5_PRIORITY_MAP_L3; 1799 dev_flow->hash_fields |= 1800 mlx5_flow_hashfields_adjust 1801 (rss_desc, tunnel, 1802 MLX5_IPV4_LAYER_TYPES, 1803 MLX5_IPV4_IBV_RX_HASH); 1804 item_flags |= tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 : 1805 MLX5_FLOW_LAYER_OUTER_L3_IPV4; 1806 break; 1807 case RTE_FLOW_ITEM_TYPE_IPV6: 1808 flow_verbs_translate_item_ipv6(dev_flow, items, 1809 item_flags); 1810 subpriority = MLX5_PRIORITY_MAP_L3; 1811 dev_flow->hash_fields |= 1812 mlx5_flow_hashfields_adjust 1813 (rss_desc, tunnel, 1814 MLX5_IPV6_LAYER_TYPES, 1815 MLX5_IPV6_IBV_RX_HASH); 1816 item_flags |= tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 : 1817 MLX5_FLOW_LAYER_OUTER_L3_IPV6; 1818 break; 1819 case RTE_FLOW_ITEM_TYPE_TCP: 1820 flow_verbs_translate_item_tcp(dev_flow, items, 1821 item_flags); 1822 subpriority = MLX5_PRIORITY_MAP_L4; 1823 dev_flow->hash_fields |= 1824 mlx5_flow_hashfields_adjust 1825 (rss_desc, tunnel, ETH_RSS_TCP, 1826 (IBV_RX_HASH_SRC_PORT_TCP | 1827 IBV_RX_HASH_DST_PORT_TCP)); 1828 item_flags |= tunnel ? MLX5_FLOW_LAYER_INNER_L4_TCP : 1829 MLX5_FLOW_LAYER_OUTER_L4_TCP; 1830 break; 1831 case RTE_FLOW_ITEM_TYPE_UDP: 1832 flow_verbs_translate_item_udp(dev_flow, items, 1833 item_flags); 1834 subpriority = MLX5_PRIORITY_MAP_L4; 1835 dev_flow->hash_fields |= 1836 mlx5_flow_hashfields_adjust 1837 (rss_desc, tunnel, ETH_RSS_UDP, 1838 (IBV_RX_HASH_SRC_PORT_UDP | 1839 IBV_RX_HASH_DST_PORT_UDP)); 1840 item_flags |= tunnel ? MLX5_FLOW_LAYER_INNER_L4_UDP : 1841 MLX5_FLOW_LAYER_OUTER_L4_UDP; 1842 break; 1843 case RTE_FLOW_ITEM_TYPE_VXLAN: 1844 flow_verbs_translate_item_vxlan(dev_flow, items, 1845 item_flags); 1846 subpriority = MLX5_TUNNEL_PRIO_GET(rss_desc); 1847 item_flags |= MLX5_FLOW_LAYER_VXLAN; 1848 break; 1849 case RTE_FLOW_ITEM_TYPE_VXLAN_GPE: 1850 flow_verbs_translate_item_vxlan_gpe(dev_flow, items, 1851 item_flags); 1852 subpriority = MLX5_TUNNEL_PRIO_GET(rss_desc); 1853 item_flags |= MLX5_FLOW_LAYER_VXLAN_GPE; 1854 break; 1855 case RTE_FLOW_ITEM_TYPE_GRE: 1856 flow_verbs_translate_item_gre(dev_flow, items, 1857 item_flags); 1858 subpriority = MLX5_TUNNEL_PRIO_GET(rss_desc); 1859 item_flags |= MLX5_FLOW_LAYER_GRE; 1860 break; 1861 case RTE_FLOW_ITEM_TYPE_MPLS: 1862 flow_verbs_translate_item_mpls(dev_flow, items, 1863 item_flags); 1864 subpriority = MLX5_TUNNEL_PRIO_GET(rss_desc); 1865 item_flags |= MLX5_FLOW_LAYER_MPLS; 1866 break; 1867 default: 1868 return rte_flow_error_set(error, ENOTSUP, 1869 RTE_FLOW_ERROR_TYPE_ITEM, 1870 NULL, "item not supported"); 1871 } 1872 } 1873 dev_flow->handle->layers = item_flags; 1874 /* Other members of attr will be ignored. */ 1875 dev_flow->verbs.attr.priority = 1876 mlx5_flow_adjust_priority(dev, priority, subpriority); 1877 dev_flow->verbs.attr.port = (uint8_t)priv->dev_port; 1878 return 0; 1879 } 1880 1881 /** 1882 * Remove the flow from the NIC but keeps it in memory. 1883 * 1884 * @param[in] dev 1885 * Pointer to the Ethernet device structure. 1886 * @param[in, out] flow 1887 * Pointer to flow structure. 1888 */ 1889 static void 1890 flow_verbs_remove(struct rte_eth_dev *dev, struct rte_flow *flow) 1891 { 1892 struct mlx5_priv *priv = dev->data->dev_private; 1893 struct mlx5_flow_handle *handle; 1894 uint32_t handle_idx; 1895 1896 if (!flow) 1897 return; 1898 SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles, 1899 handle_idx, handle, next) { 1900 if (handle->drv_flow) { 1901 claim_zero(mlx5_glue->destroy_flow(handle->drv_flow)); 1902 handle->drv_flow = NULL; 1903 } 1904 /* hrxq is union, don't touch it only the flag is set. */ 1905 if (handle->rix_hrxq && 1906 handle->fate_action == MLX5_FLOW_FATE_QUEUE) { 1907 mlx5_hrxq_release(dev, handle->rix_hrxq); 1908 handle->rix_hrxq = 0; 1909 } 1910 if (handle->vf_vlan.tag && handle->vf_vlan.created) 1911 mlx5_vlan_vmwa_release(dev, &handle->vf_vlan); 1912 } 1913 } 1914 1915 /** 1916 * Remove the flow from the NIC and the memory. 1917 * 1918 * @param[in] dev 1919 * Pointer to the Ethernet device structure. 1920 * @param[in, out] flow 1921 * Pointer to flow structure. 1922 */ 1923 static void 1924 flow_verbs_destroy(struct rte_eth_dev *dev, struct rte_flow *flow) 1925 { 1926 struct mlx5_priv *priv = dev->data->dev_private; 1927 struct mlx5_flow_handle *handle; 1928 1929 if (!flow) 1930 return; 1931 flow_verbs_remove(dev, flow); 1932 while (flow->dev_handles) { 1933 uint32_t tmp_idx = flow->dev_handles; 1934 1935 handle = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], 1936 tmp_idx); 1937 if (!handle) 1938 return; 1939 flow->dev_handles = handle->next.next; 1940 mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], 1941 tmp_idx); 1942 } 1943 if (flow->counter) { 1944 flow_verbs_counter_release(dev, flow->counter); 1945 flow->counter = 0; 1946 } 1947 } 1948 1949 /** 1950 * Apply the flow to the NIC. 1951 * 1952 * @param[in] dev 1953 * Pointer to the Ethernet device structure. 1954 * @param[in, out] flow 1955 * Pointer to flow structure. 1956 * @param[out] error 1957 * Pointer to error structure. 1958 * 1959 * @return 1960 * 0 on success, a negative errno value otherwise and rte_errno is set. 1961 */ 1962 static int 1963 flow_verbs_apply(struct rte_eth_dev *dev, struct rte_flow *flow, 1964 struct rte_flow_error *error) 1965 { 1966 struct mlx5_priv *priv = dev->data->dev_private; 1967 struct mlx5_flow_handle *handle; 1968 struct mlx5_flow *dev_flow; 1969 struct mlx5_hrxq *hrxq; 1970 uint32_t dev_handles; 1971 int err; 1972 int idx; 1973 struct mlx5_flow_workspace *wks = mlx5_flow_get_thread_workspace(); 1974 1975 MLX5_ASSERT(wks); 1976 for (idx = wks->flow_idx - 1; idx >= 0; idx--) { 1977 dev_flow = &wks->flows[idx]; 1978 handle = dev_flow->handle; 1979 if (handle->fate_action == MLX5_FLOW_FATE_DROP) { 1980 MLX5_ASSERT(priv->drop_queue.hrxq); 1981 hrxq = priv->drop_queue.hrxq; 1982 } else { 1983 uint32_t hrxq_idx; 1984 struct mlx5_flow_rss_desc *rss_desc = &wks->rss_desc; 1985 1986 MLX5_ASSERT(rss_desc->queue_num); 1987 rss_desc->key_len = MLX5_RSS_HASH_KEY_LEN; 1988 rss_desc->hash_fields = dev_flow->hash_fields; 1989 rss_desc->tunnel = !!(handle->layers & 1990 MLX5_FLOW_LAYER_TUNNEL); 1991 rss_desc->shared_rss = 0; 1992 hrxq_idx = mlx5_hrxq_get(dev, rss_desc); 1993 hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ], 1994 hrxq_idx); 1995 if (!hrxq) { 1996 rte_flow_error_set 1997 (error, rte_errno, 1998 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 1999 "cannot get hash queue"); 2000 goto error; 2001 } 2002 handle->rix_hrxq = hrxq_idx; 2003 } 2004 MLX5_ASSERT(hrxq); 2005 handle->drv_flow = mlx5_glue->create_flow 2006 (hrxq->qp, &dev_flow->verbs.attr); 2007 if (!handle->drv_flow) { 2008 rte_flow_error_set(error, errno, 2009 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2010 NULL, 2011 "hardware refuses to create flow"); 2012 goto error; 2013 } 2014 if (priv->vmwa_context && 2015 handle->vf_vlan.tag && !handle->vf_vlan.created) { 2016 /* 2017 * The rule contains the VLAN pattern. 2018 * For VF we are going to create VLAN 2019 * interface to make hypervisor set correct 2020 * e-Switch vport context. 2021 */ 2022 mlx5_vlan_vmwa_acquire(dev, &handle->vf_vlan); 2023 } 2024 } 2025 return 0; 2026 error: 2027 err = rte_errno; /* Save rte_errno before cleanup. */ 2028 SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles, 2029 dev_handles, handle, next) { 2030 /* hrxq is union, don't touch it only the flag is set. */ 2031 if (handle->rix_hrxq && 2032 handle->fate_action == MLX5_FLOW_FATE_QUEUE) { 2033 mlx5_hrxq_release(dev, handle->rix_hrxq); 2034 handle->rix_hrxq = 0; 2035 } 2036 if (handle->vf_vlan.tag && handle->vf_vlan.created) 2037 mlx5_vlan_vmwa_release(dev, &handle->vf_vlan); 2038 } 2039 rte_errno = err; /* Restore rte_errno. */ 2040 return -rte_errno; 2041 } 2042 2043 /** 2044 * Query a flow. 2045 * 2046 * @see rte_flow_query() 2047 * @see rte_flow_ops 2048 */ 2049 static int 2050 flow_verbs_query(struct rte_eth_dev *dev, 2051 struct rte_flow *flow, 2052 const struct rte_flow_action *actions, 2053 void *data, 2054 struct rte_flow_error *error) 2055 { 2056 int ret = -EINVAL; 2057 2058 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 2059 switch (actions->type) { 2060 case RTE_FLOW_ACTION_TYPE_VOID: 2061 break; 2062 case RTE_FLOW_ACTION_TYPE_COUNT: 2063 ret = flow_verbs_counter_query(dev, flow, data, error); 2064 break; 2065 default: 2066 return rte_flow_error_set(error, ENOTSUP, 2067 RTE_FLOW_ERROR_TYPE_ACTION, 2068 actions, 2069 "action not supported"); 2070 } 2071 } 2072 return ret; 2073 } 2074 2075 static int 2076 flow_verbs_sync_domain(struct rte_eth_dev *dev, uint32_t domains, 2077 uint32_t flags) 2078 { 2079 RTE_SET_USED(dev); 2080 RTE_SET_USED(domains); 2081 RTE_SET_USED(flags); 2082 2083 return 0; 2084 } 2085 2086 const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops = { 2087 .validate = flow_verbs_validate, 2088 .prepare = flow_verbs_prepare, 2089 .translate = flow_verbs_translate, 2090 .apply = flow_verbs_apply, 2091 .remove = flow_verbs_remove, 2092 .destroy = flow_verbs_destroy, 2093 .query = flow_verbs_query, 2094 .sync_domain = flow_verbs_sync_domain, 2095 }; 2096