1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright 2018-2019 Cisco Systems, Inc. All rights reserved. 3 */ 4 5 #include <stdlib.h> 6 #include <fcntl.h> 7 #include <unistd.h> 8 #include <sys/types.h> 9 #include <sys/socket.h> 10 #include <sys/un.h> 11 #include <sys/ioctl.h> 12 #include <sys/mman.h> 13 #include <linux/if_ether.h> 14 #include <errno.h> 15 #include <sys/eventfd.h> 16 17 #include <rte_version.h> 18 #include <rte_mbuf.h> 19 #include <rte_ether.h> 20 #include <ethdev_driver.h> 21 #include <ethdev_vdev.h> 22 #include <rte_malloc.h> 23 #include <rte_kvargs.h> 24 #include <bus_vdev_driver.h> 25 #include <rte_string_fns.h> 26 #include <rte_errno.h> 27 #include <rte_memory.h> 28 #include <rte_memzone.h> 29 #include <rte_eal_memconfig.h> 30 31 #include "rte_eth_memif.h" 32 #include "memif_socket.h" 33 34 #define ETH_MEMIF_ID_ARG "id" 35 #define ETH_MEMIF_ROLE_ARG "role" 36 #define ETH_MEMIF_PKT_BUFFER_SIZE_ARG "bsize" 37 #define ETH_MEMIF_RING_SIZE_ARG "rsize" 38 #define ETH_MEMIF_SOCKET_ARG "socket" 39 #define ETH_MEMIF_SOCKET_ABSTRACT_ARG "socket-abstract" 40 #define ETH_MEMIF_OWNER_UID_ARG "owner-uid" 41 #define ETH_MEMIF_OWNER_GID_ARG "owner-gid" 42 #define ETH_MEMIF_MAC_ARG "mac" 43 #define ETH_MEMIF_ZC_ARG "zero-copy" 44 #define ETH_MEMIF_SECRET_ARG "secret" 45 46 static const char * const valid_arguments[] = { 47 ETH_MEMIF_ID_ARG, 48 ETH_MEMIF_ROLE_ARG, 49 ETH_MEMIF_PKT_BUFFER_SIZE_ARG, 50 ETH_MEMIF_RING_SIZE_ARG, 51 ETH_MEMIF_SOCKET_ARG, 52 ETH_MEMIF_SOCKET_ABSTRACT_ARG, 53 ETH_MEMIF_OWNER_UID_ARG, 54 ETH_MEMIF_OWNER_GID_ARG, 55 ETH_MEMIF_MAC_ARG, 56 ETH_MEMIF_ZC_ARG, 57 ETH_MEMIF_SECRET_ARG, 58 NULL 59 }; 60 61 static const struct rte_eth_link pmd_link = { 62 .link_speed = RTE_ETH_SPEED_NUM_100G, 63 .link_duplex = RTE_ETH_LINK_FULL_DUPLEX, 64 .link_status = RTE_ETH_LINK_DOWN, 65 .link_autoneg = RTE_ETH_LINK_AUTONEG 66 }; 67 68 #define MEMIF_MP_SEND_REGION "memif_mp_send_region" 69 70 71 static int memif_region_init_zc(const struct rte_memseg_list *msl, 72 const struct rte_memseg *ms, void *arg); 73 74 const char * 75 memif_version(void) 76 { 77 return ("memif-" RTE_STR(MEMIF_VERSION_MAJOR) "." RTE_STR(MEMIF_VERSION_MINOR)); 78 } 79 80 /* Message header to synchronize regions */ 81 struct mp_region_msg { 82 char port_name[RTE_DEV_NAME_MAX_LEN]; 83 memif_region_index_t idx; 84 memif_region_size_t size; 85 }; 86 87 static int 88 memif_mp_send_region(const struct rte_mp_msg *msg, const void *peer) 89 { 90 struct rte_eth_dev *dev; 91 struct pmd_process_private *proc_private; 92 const struct mp_region_msg *msg_param = (const struct mp_region_msg *)msg->param; 93 struct rte_mp_msg reply; 94 struct mp_region_msg *reply_param = (struct mp_region_msg *)reply.param; 95 96 /* Get requested port */ 97 dev = rte_eth_dev_get_by_name(msg_param->port_name); 98 if (!dev) { 99 MIF_LOG(ERR, "Failed to get port id for %s", 100 msg_param->port_name); 101 return -1; 102 } 103 proc_private = dev->process_private; 104 105 memset(&reply, 0, sizeof(reply)); 106 strlcpy(reply.name, msg->name, sizeof(reply.name)); 107 reply_param->idx = msg_param->idx; 108 if (proc_private->regions[msg_param->idx] != NULL) { 109 reply_param->size = proc_private->regions[msg_param->idx]->region_size; 110 reply.fds[0] = proc_private->regions[msg_param->idx]->fd; 111 reply.num_fds = 1; 112 } 113 reply.len_param = sizeof(*reply_param); 114 if (rte_mp_reply(&reply, peer) < 0) { 115 MIF_LOG(ERR, "Failed to reply to an add region request"); 116 return -1; 117 } 118 119 return 0; 120 } 121 122 /* 123 * Request regions 124 * Called by secondary process, when ports link status goes up. 125 */ 126 static int 127 memif_mp_request_regions(struct rte_eth_dev *dev) 128 { 129 int ret, i; 130 struct timespec timeout = {.tv_sec = 5, .tv_nsec = 0}; 131 struct rte_mp_msg msg, *reply; 132 struct rte_mp_reply replies; 133 struct mp_region_msg *msg_param = (struct mp_region_msg *)msg.param; 134 struct mp_region_msg *reply_param; 135 struct memif_region *r; 136 struct pmd_process_private *proc_private = dev->process_private; 137 struct pmd_internals *pmd = dev->data->dev_private; 138 /* in case of zero-copy client, only request region 0 */ 139 uint16_t max_region_num = (pmd->flags & ETH_MEMIF_FLAG_ZERO_COPY) ? 140 1 : ETH_MEMIF_MAX_REGION_NUM; 141 142 MIF_LOG(DEBUG, "Requesting memory regions"); 143 144 for (i = 0; i < max_region_num; i++) { 145 /* Prepare the message */ 146 memset(&msg, 0, sizeof(msg)); 147 strlcpy(msg.name, MEMIF_MP_SEND_REGION, sizeof(msg.name)); 148 strlcpy(msg_param->port_name, dev->data->name, 149 sizeof(msg_param->port_name)); 150 msg_param->idx = i; 151 msg.len_param = sizeof(*msg_param); 152 153 /* Send message */ 154 ret = rte_mp_request_sync(&msg, &replies, &timeout); 155 if (ret < 0 || replies.nb_received != 1) { 156 MIF_LOG(ERR, "Failed to send mp msg: %d", 157 rte_errno); 158 return -1; 159 } 160 161 reply = &replies.msgs[0]; 162 reply_param = (struct mp_region_msg *)reply->param; 163 164 if (reply_param->size > 0) { 165 r = rte_zmalloc("region", sizeof(struct memif_region), 0); 166 if (r == NULL) { 167 MIF_LOG(ERR, "Failed to alloc memif region."); 168 free(reply); 169 return -ENOMEM; 170 } 171 r->region_size = reply_param->size; 172 if (reply->num_fds < 1) { 173 MIF_LOG(ERR, "Missing file descriptor."); 174 free(reply); 175 return -1; 176 } 177 r->fd = reply->fds[0]; 178 r->addr = NULL; 179 180 proc_private->regions[reply_param->idx] = r; 181 proc_private->regions_num++; 182 } 183 free(reply); 184 } 185 186 if (pmd->flags & ETH_MEMIF_FLAG_ZERO_COPY) { 187 ret = rte_memseg_walk(memif_region_init_zc, (void *)proc_private); 188 if (ret < 0) 189 return ret; 190 } 191 192 return memif_connect(dev); 193 } 194 195 static int 196 memif_dev_info(struct rte_eth_dev *dev __rte_unused, struct rte_eth_dev_info *dev_info) 197 { 198 dev_info->max_mac_addrs = 1; 199 dev_info->max_rx_pktlen = RTE_ETHER_MAX_LEN; 200 dev_info->max_rx_queues = ETH_MEMIF_MAX_NUM_Q_PAIRS; 201 dev_info->max_tx_queues = ETH_MEMIF_MAX_NUM_Q_PAIRS; 202 dev_info->min_rx_bufsize = 0; 203 dev_info->tx_offload_capa = RTE_ETH_TX_OFFLOAD_MULTI_SEGS; 204 205 return 0; 206 } 207 208 static memif_ring_t * 209 memif_get_ring(struct pmd_internals *pmd, struct pmd_process_private *proc_private, 210 memif_ring_type_t type, uint16_t ring_num) 211 { 212 /* rings only in region 0 */ 213 void *p = proc_private->regions[0]->addr; 214 int ring_size = sizeof(memif_ring_t) + sizeof(memif_desc_t) * 215 (1 << pmd->run.log2_ring_size); 216 217 p = (uint8_t *)p + (ring_num + type * pmd->run.num_c2s_rings) * ring_size; 218 219 return (memif_ring_t *)p; 220 } 221 222 static memif_region_offset_t 223 memif_get_ring_offset(struct rte_eth_dev *dev, struct memif_queue *mq, 224 memif_ring_type_t type, uint16_t num) 225 { 226 struct pmd_internals *pmd = dev->data->dev_private; 227 struct pmd_process_private *proc_private = dev->process_private; 228 229 return ((uint8_t *)memif_get_ring(pmd, proc_private, type, num) - 230 (uint8_t *)proc_private->regions[mq->region]->addr); 231 } 232 233 static memif_ring_t * 234 memif_get_ring_from_queue(struct pmd_process_private *proc_private, 235 struct memif_queue *mq) 236 { 237 struct memif_region *r; 238 239 r = proc_private->regions[mq->region]; 240 if (r == NULL) 241 return NULL; 242 243 return (memif_ring_t *)((uint8_t *)r->addr + mq->ring_offset); 244 } 245 246 static void * 247 memif_get_buffer(struct pmd_process_private *proc_private, memif_desc_t *d) 248 { 249 return ((uint8_t *)proc_private->regions[d->region]->addr + d->offset); 250 } 251 252 /* Free mbufs received by server */ 253 static void 254 memif_free_stored_mbufs(struct pmd_process_private *proc_private, struct memif_queue *mq) 255 { 256 uint16_t cur_tail; 257 uint16_t mask = (1 << mq->log2_ring_size) - 1; 258 memif_ring_t *ring = memif_get_ring_from_queue(proc_private, mq); 259 260 /* FIXME: improve performance */ 261 /* The ring->tail acts as a guard variable between Tx and Rx 262 * threads, so using load-acquire pairs with store-release 263 * in function eth_memif_rx for C2S queues. 264 */ 265 cur_tail = rte_atomic_load_explicit(&ring->tail, rte_memory_order_acquire); 266 while (mq->last_tail != cur_tail) { 267 RTE_MBUF_PREFETCH_TO_FREE(mq->buffers[(mq->last_tail + 1) & mask]); 268 rte_pktmbuf_free_seg(mq->buffers[mq->last_tail & mask]); 269 mq->last_tail++; 270 } 271 } 272 273 static int 274 memif_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *cur_tail, 275 struct rte_mbuf *tail) 276 { 277 /* Check for number-of-segments-overflow */ 278 if (unlikely(head->nb_segs + tail->nb_segs > RTE_MBUF_MAX_NB_SEGS)) 279 return -EOVERFLOW; 280 281 /* Chain 'tail' onto the old tail */ 282 cur_tail->next = tail; 283 284 /* accumulate number of segments and total length. */ 285 head->nb_segs = (uint16_t)(head->nb_segs + tail->nb_segs); 286 287 tail->pkt_len = tail->data_len; 288 head->pkt_len += tail->pkt_len; 289 290 return 0; 291 } 292 293 static uint16_t 294 eth_memif_rx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts) 295 { 296 struct memif_queue *mq = queue; 297 struct pmd_internals *pmd = rte_eth_devices[mq->in_port].data->dev_private; 298 struct pmd_process_private *proc_private = 299 rte_eth_devices[mq->in_port].process_private; 300 memif_ring_t *ring = memif_get_ring_from_queue(proc_private, mq); 301 uint16_t cur_slot, last_slot, n_slots, ring_size, mask, s0; 302 uint16_t pkts, rx_pkts, n_rx_pkts = 0; 303 uint16_t mbuf_size = rte_pktmbuf_data_room_size(mq->mempool) - 304 RTE_PKTMBUF_HEADROOM; 305 uint16_t src_len, src_off, dst_len, dst_off, cp_len; 306 memif_ring_type_t type = mq->type; 307 memif_desc_t *d0; 308 struct rte_mbuf *mbuf, *mbuf_head, *mbuf_tail; 309 uint64_t b; 310 ssize_t size __rte_unused; 311 uint16_t head; 312 int ret; 313 struct rte_eth_link link; 314 315 if (unlikely((pmd->flags & ETH_MEMIF_FLAG_CONNECTED) == 0)) 316 return 0; 317 if (unlikely(ring == NULL)) { 318 /* Secondary process will attempt to request regions. */ 319 ret = rte_eth_link_get(mq->in_port, &link); 320 if (ret < 0) 321 MIF_LOG(ERR, "Failed to get port %u link info: %s", 322 mq->in_port, rte_strerror(-ret)); 323 return 0; 324 } 325 326 /* consume interrupt */ 327 if (((ring->flags & MEMIF_RING_FLAG_MASK_INT) == 0) && 328 (rte_intr_fd_get(mq->intr_handle) >= 0)) 329 size = read(rte_intr_fd_get(mq->intr_handle), &b, 330 sizeof(b)); 331 332 ring_size = 1 << mq->log2_ring_size; 333 mask = ring_size - 1; 334 335 if (type == MEMIF_RING_C2S) { 336 cur_slot = mq->last_head; 337 last_slot = rte_atomic_load_explicit(&ring->head, rte_memory_order_acquire); 338 } else { 339 cur_slot = mq->last_tail; 340 last_slot = rte_atomic_load_explicit(&ring->tail, rte_memory_order_acquire); 341 } 342 343 if (cur_slot == last_slot) 344 goto refill; 345 n_slots = last_slot - cur_slot; 346 347 if (likely(mbuf_size >= pmd->cfg.pkt_buffer_size)) { 348 struct rte_mbuf *mbufs[MAX_PKT_BURST]; 349 next_bulk: 350 ret = rte_pktmbuf_alloc_bulk(mq->mempool, mbufs, MAX_PKT_BURST); 351 if (unlikely(ret < 0)) 352 goto no_free_bufs; 353 354 rx_pkts = 0; 355 pkts = nb_pkts < MAX_PKT_BURST ? nb_pkts : MAX_PKT_BURST; 356 while (n_slots && rx_pkts < pkts) { 357 mbuf_head = mbufs[rx_pkts]; 358 mbuf = mbuf_head; 359 360 next_slot1: 361 mbuf->port = mq->in_port; 362 s0 = cur_slot & mask; 363 d0 = &ring->desc[s0]; 364 365 cp_len = d0->length; 366 367 rte_pktmbuf_data_len(mbuf) = cp_len; 368 rte_pktmbuf_pkt_len(mbuf) = cp_len; 369 if (mbuf != mbuf_head) 370 rte_pktmbuf_pkt_len(mbuf_head) += cp_len; 371 372 rte_memcpy(rte_pktmbuf_mtod(mbuf, void *), 373 (uint8_t *)memif_get_buffer(proc_private, d0), cp_len); 374 375 cur_slot++; 376 n_slots--; 377 378 if (d0->flags & MEMIF_DESC_FLAG_NEXT) { 379 mbuf_tail = mbuf; 380 mbuf = rte_pktmbuf_alloc(mq->mempool); 381 if (unlikely(mbuf == NULL)) { 382 rte_pktmbuf_free_bulk(mbufs + rx_pkts, 383 MAX_PKT_BURST - rx_pkts); 384 goto no_free_bufs; 385 } 386 ret = memif_pktmbuf_chain(mbuf_head, mbuf_tail, mbuf); 387 if (unlikely(ret < 0)) { 388 MIF_LOG(ERR, "number-of-segments-overflow"); 389 rte_pktmbuf_free(mbuf); 390 rte_pktmbuf_free_bulk(mbufs + rx_pkts, 391 MAX_PKT_BURST - rx_pkts); 392 goto no_free_bufs; 393 } 394 goto next_slot1; 395 } 396 397 mq->n_bytes += rte_pktmbuf_pkt_len(mbuf_head); 398 *bufs++ = mbuf_head; 399 rx_pkts++; 400 n_rx_pkts++; 401 } 402 403 if (rx_pkts < MAX_PKT_BURST) { 404 rte_pktmbuf_free_bulk(mbufs + rx_pkts, MAX_PKT_BURST - rx_pkts); 405 } else { 406 nb_pkts -= rx_pkts; 407 if (nb_pkts) 408 goto next_bulk; 409 } 410 } else { 411 while (n_slots && n_rx_pkts < nb_pkts) { 412 mbuf_head = rte_pktmbuf_alloc(mq->mempool); 413 if (unlikely(mbuf_head == NULL)) 414 goto no_free_bufs; 415 mbuf = mbuf_head; 416 mbuf->port = mq->in_port; 417 418 next_slot2: 419 s0 = cur_slot & mask; 420 d0 = &ring->desc[s0]; 421 422 src_len = d0->length; 423 dst_off = 0; 424 src_off = 0; 425 426 do { 427 dst_len = mbuf_size - dst_off; 428 if (dst_len == 0) { 429 dst_off = 0; 430 dst_len = mbuf_size; 431 432 /* store pointer to tail */ 433 mbuf_tail = mbuf; 434 mbuf = rte_pktmbuf_alloc(mq->mempool); 435 if (unlikely(mbuf == NULL)) 436 goto no_free_bufs; 437 mbuf->port = mq->in_port; 438 ret = memif_pktmbuf_chain(mbuf_head, mbuf_tail, mbuf); 439 if (unlikely(ret < 0)) { 440 MIF_LOG(ERR, "number-of-segments-overflow"); 441 rte_pktmbuf_free(mbuf); 442 goto no_free_bufs; 443 } 444 } 445 cp_len = RTE_MIN(dst_len, src_len); 446 447 rte_pktmbuf_data_len(mbuf) += cp_len; 448 rte_pktmbuf_pkt_len(mbuf) = rte_pktmbuf_data_len(mbuf); 449 if (mbuf != mbuf_head) 450 rte_pktmbuf_pkt_len(mbuf_head) += cp_len; 451 452 rte_memcpy(rte_pktmbuf_mtod_offset(mbuf, void *, 453 dst_off), 454 (uint8_t *)memif_get_buffer(proc_private, d0) + 455 src_off, cp_len); 456 457 src_off += cp_len; 458 dst_off += cp_len; 459 src_len -= cp_len; 460 } while (src_len); 461 462 cur_slot++; 463 n_slots--; 464 465 if (d0->flags & MEMIF_DESC_FLAG_NEXT) 466 goto next_slot2; 467 468 mq->n_bytes += rte_pktmbuf_pkt_len(mbuf_head); 469 *bufs++ = mbuf_head; 470 n_rx_pkts++; 471 } 472 } 473 474 no_free_bufs: 475 if (type == MEMIF_RING_C2S) { 476 rte_atomic_store_explicit(&ring->tail, cur_slot, rte_memory_order_release); 477 mq->last_head = cur_slot; 478 } else { 479 mq->last_tail = cur_slot; 480 } 481 482 refill: 483 if (type == MEMIF_RING_S2C) { 484 /* ring->head is updated by the receiver and this function 485 * is called in the context of receiver thread. The loads in 486 * the receiver do not need to synchronize with its own stores. 487 */ 488 head = rte_atomic_load_explicit(&ring->head, rte_memory_order_relaxed); 489 n_slots = ring_size - head + mq->last_tail; 490 491 while (n_slots--) { 492 s0 = head++ & mask; 493 d0 = &ring->desc[s0]; 494 d0->length = pmd->run.pkt_buffer_size; 495 } 496 rte_atomic_store_explicit(&ring->head, head, rte_memory_order_release); 497 } 498 499 mq->n_pkts += n_rx_pkts; 500 return n_rx_pkts; 501 } 502 503 static uint16_t 504 eth_memif_rx_zc(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts) 505 { 506 struct memif_queue *mq = queue; 507 struct pmd_internals *pmd = rte_eth_devices[mq->in_port].data->dev_private; 508 struct pmd_process_private *proc_private = 509 rte_eth_devices[mq->in_port].process_private; 510 memif_ring_t *ring = memif_get_ring_from_queue(proc_private, mq); 511 uint16_t cur_slot, last_slot, n_slots, ring_size, mask, s0, head; 512 uint16_t n_rx_pkts = 0; 513 memif_desc_t *d0; 514 struct rte_mbuf *mbuf, *mbuf_tail; 515 struct rte_mbuf *mbuf_head = NULL; 516 int ret; 517 struct rte_eth_link link; 518 519 if (unlikely((pmd->flags & ETH_MEMIF_FLAG_CONNECTED) == 0)) 520 return 0; 521 if (unlikely(ring == NULL)) { 522 /* Secondary process will attempt to request regions. */ 523 rte_eth_link_get(mq->in_port, &link); 524 return 0; 525 } 526 527 /* consume interrupt */ 528 if ((rte_intr_fd_get(mq->intr_handle) >= 0) && 529 ((ring->flags & MEMIF_RING_FLAG_MASK_INT) == 0)) { 530 uint64_t b; 531 ssize_t size __rte_unused; 532 size = read(rte_intr_fd_get(mq->intr_handle), &b, 533 sizeof(b)); 534 } 535 536 ring_size = 1 << mq->log2_ring_size; 537 mask = ring_size - 1; 538 539 cur_slot = mq->last_tail; 540 /* The ring->tail acts as a guard variable between Tx and Rx 541 * threads, so using load-acquire pairs with store-release 542 * to synchronize it between threads. 543 */ 544 last_slot = rte_atomic_load_explicit(&ring->tail, rte_memory_order_acquire); 545 if (cur_slot == last_slot) 546 goto refill; 547 n_slots = last_slot - cur_slot; 548 549 while (n_slots && n_rx_pkts < nb_pkts) { 550 s0 = cur_slot & mask; 551 552 d0 = &ring->desc[s0]; 553 mbuf_head = mq->buffers[s0]; 554 mbuf = mbuf_head; 555 556 next_slot: 557 /* prefetch next descriptor */ 558 if (n_rx_pkts + 1 < nb_pkts) 559 rte_prefetch0(&ring->desc[(cur_slot + 1) & mask]); 560 561 mbuf->port = mq->in_port; 562 rte_pktmbuf_data_len(mbuf) = d0->length; 563 rte_pktmbuf_pkt_len(mbuf) = rte_pktmbuf_data_len(mbuf); 564 565 mq->n_bytes += rte_pktmbuf_data_len(mbuf); 566 567 cur_slot++; 568 n_slots--; 569 if (d0->flags & MEMIF_DESC_FLAG_NEXT) { 570 s0 = cur_slot & mask; 571 d0 = &ring->desc[s0]; 572 mbuf_tail = mbuf; 573 mbuf = mq->buffers[s0]; 574 ret = memif_pktmbuf_chain(mbuf_head, mbuf_tail, mbuf); 575 if (unlikely(ret < 0)) { 576 MIF_LOG(ERR, "number-of-segments-overflow"); 577 goto refill; 578 } 579 goto next_slot; 580 } 581 582 *bufs++ = mbuf_head; 583 n_rx_pkts++; 584 } 585 586 mq->last_tail = cur_slot; 587 588 /* Supply server with new buffers */ 589 refill: 590 /* ring->head is updated by the receiver and this function 591 * is called in the context of receiver thread. The loads in 592 * the receiver do not need to synchronize with its own stores. 593 */ 594 head = rte_atomic_load_explicit(&ring->head, rte_memory_order_relaxed); 595 n_slots = ring_size - head + mq->last_tail; 596 597 if (n_slots < 32) 598 goto no_free_mbufs; 599 600 ret = rte_pktmbuf_alloc_bulk(mq->mempool, &mq->buffers[head & mask], n_slots); 601 if (unlikely(ret < 0)) 602 goto no_free_mbufs; 603 if (unlikely(n_slots > ring_size - (head & mask))) { 604 rte_memcpy(mq->buffers, &mq->buffers[ring_size], 605 (n_slots + (head & mask) - ring_size) * sizeof(struct rte_mbuf *)); 606 } 607 608 while (n_slots--) { 609 s0 = head++ & mask; 610 if (n_slots > 0) 611 rte_prefetch0(mq->buffers[head & mask]); 612 d0 = &ring->desc[s0]; 613 /* store buffer header */ 614 mbuf = mq->buffers[s0]; 615 /* populate descriptor */ 616 d0->length = rte_pktmbuf_data_room_size(mq->mempool) - 617 RTE_PKTMBUF_HEADROOM; 618 d0->region = 1; 619 d0->offset = rte_pktmbuf_mtod(mbuf, uint8_t *) - 620 (uint8_t *)proc_private->regions[d0->region]->addr; 621 } 622 no_free_mbufs: 623 /* The ring->head acts as a guard variable between Tx and Rx 624 * threads, so using store-release pairs with load-acquire 625 * in function eth_memif_tx. 626 */ 627 rte_atomic_store_explicit(&ring->head, head, rte_memory_order_release); 628 629 mq->n_pkts += n_rx_pkts; 630 631 return n_rx_pkts; 632 } 633 634 static uint16_t 635 eth_memif_tx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts) 636 { 637 struct memif_queue *mq = queue; 638 struct pmd_internals *pmd = rte_eth_devices[mq->in_port].data->dev_private; 639 struct pmd_process_private *proc_private = 640 rte_eth_devices[mq->in_port].process_private; 641 memif_ring_t *ring = memif_get_ring_from_queue(proc_private, mq); 642 uint16_t slot, saved_slot, n_free, ring_size, mask, n_tx_pkts = 0; 643 uint16_t src_len, src_off, dst_len, dst_off, cp_len, nb_segs; 644 memif_ring_type_t type = mq->type; 645 memif_desc_t *d0; 646 struct rte_mbuf *mbuf; 647 struct rte_mbuf *mbuf_head; 648 uint64_t a; 649 ssize_t size; 650 struct rte_eth_link link; 651 652 if (unlikely((pmd->flags & ETH_MEMIF_FLAG_CONNECTED) == 0)) 653 return 0; 654 if (unlikely(ring == NULL)) { 655 int ret; 656 657 /* Secondary process will attempt to request regions. */ 658 ret = rte_eth_link_get(mq->in_port, &link); 659 if (ret < 0) 660 MIF_LOG(ERR, "Failed to get port %u link info: %s", 661 mq->in_port, rte_strerror(-ret)); 662 return 0; 663 } 664 665 ring_size = 1 << mq->log2_ring_size; 666 mask = ring_size - 1; 667 668 if (type == MEMIF_RING_C2S) { 669 /* For C2S queues ring->head is updated by the sender and 670 * this function is called in the context of sending thread. 671 * The loads in the sender do not need to synchronize with 672 * its own stores. Hence, the following load can be a 673 * relaxed load. 674 */ 675 slot = rte_atomic_load_explicit(&ring->head, rte_memory_order_relaxed); 676 n_free = ring_size - slot + 677 rte_atomic_load_explicit(&ring->tail, rte_memory_order_acquire); 678 } else { 679 /* For S2C queues ring->tail is updated by the sender and 680 * this function is called in the context of sending thread. 681 * The loads in the sender do not need to synchronize with 682 * its own stores. Hence, the following load can be a 683 * relaxed load. 684 */ 685 slot = rte_atomic_load_explicit(&ring->tail, rte_memory_order_relaxed); 686 n_free = rte_atomic_load_explicit(&ring->head, rte_memory_order_acquire) - slot; 687 } 688 689 uint16_t i; 690 struct rte_mbuf **buf_tmp = bufs; 691 mbuf_head = *buf_tmp++; 692 struct rte_mempool *mp = mbuf_head->pool; 693 694 for (i = 1; i < nb_pkts; i++) { 695 mbuf_head = *buf_tmp++; 696 if (mbuf_head->pool != mp) 697 break; 698 } 699 700 uint16_t mbuf_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM; 701 if (i == nb_pkts && pmd->cfg.pkt_buffer_size >= mbuf_size) { 702 buf_tmp = bufs; 703 while (n_tx_pkts < nb_pkts && n_free) { 704 mbuf_head = *bufs++; 705 nb_segs = mbuf_head->nb_segs; 706 mbuf = mbuf_head; 707 708 saved_slot = slot; 709 710 next_in_chain1: 711 d0 = &ring->desc[slot & mask]; 712 cp_len = rte_pktmbuf_data_len(mbuf); 713 714 rte_memcpy((uint8_t *)memif_get_buffer(proc_private, d0), 715 rte_pktmbuf_mtod(mbuf, void *), cp_len); 716 717 d0->length = cp_len; 718 mq->n_bytes += cp_len; 719 slot++; 720 n_free--; 721 722 if (--nb_segs > 0) { 723 if (n_free) { 724 d0->flags |= MEMIF_DESC_FLAG_NEXT; 725 mbuf = mbuf->next; 726 goto next_in_chain1; 727 } else { 728 slot = saved_slot; 729 goto free_mbufs; 730 } 731 } 732 733 n_tx_pkts++; 734 } 735 free_mbufs: 736 rte_pktmbuf_free_bulk(buf_tmp, n_tx_pkts); 737 } else { 738 while (n_tx_pkts < nb_pkts && n_free) { 739 mbuf_head = *bufs++; 740 nb_segs = mbuf_head->nb_segs; 741 mbuf = mbuf_head; 742 743 saved_slot = slot; 744 d0 = &ring->desc[slot & mask]; 745 dst_off = 0; 746 dst_len = (type == MEMIF_RING_C2S) ? 747 pmd->run.pkt_buffer_size : d0->length; 748 749 next_in_chain2: 750 src_off = 0; 751 src_len = rte_pktmbuf_data_len(mbuf); 752 753 while (src_len) { 754 if (dst_len == 0) { 755 if (n_free) { 756 slot++; 757 n_free--; 758 d0->flags |= MEMIF_DESC_FLAG_NEXT; 759 d0 = &ring->desc[slot & mask]; 760 dst_off = 0; 761 dst_len = (type == MEMIF_RING_C2S) ? 762 pmd->run.pkt_buffer_size : d0->length; 763 d0->flags = 0; 764 } else { 765 slot = saved_slot; 766 goto no_free_slots; 767 } 768 } 769 cp_len = RTE_MIN(dst_len, src_len); 770 771 rte_memcpy((uint8_t *)memif_get_buffer(proc_private, 772 d0) + dst_off, 773 rte_pktmbuf_mtod_offset(mbuf, void *, src_off), 774 cp_len); 775 776 mq->n_bytes += cp_len; 777 src_off += cp_len; 778 dst_off += cp_len; 779 src_len -= cp_len; 780 dst_len -= cp_len; 781 782 d0->length = dst_off; 783 } 784 785 if (--nb_segs > 0) { 786 mbuf = mbuf->next; 787 goto next_in_chain2; 788 } 789 790 n_tx_pkts++; 791 slot++; 792 n_free--; 793 rte_pktmbuf_free(mbuf_head); 794 } 795 } 796 797 no_free_slots: 798 if (type == MEMIF_RING_C2S) 799 rte_atomic_store_explicit(&ring->head, slot, rte_memory_order_release); 800 else 801 rte_atomic_store_explicit(&ring->tail, slot, rte_memory_order_release); 802 803 if (((ring->flags & MEMIF_RING_FLAG_MASK_INT) == 0) && 804 (rte_intr_fd_get(mq->intr_handle) >= 0)) { 805 a = 1; 806 size = write(rte_intr_fd_get(mq->intr_handle), &a, 807 sizeof(a)); 808 if (unlikely(size < 0)) { 809 MIF_LOG(WARNING, 810 "Failed to send interrupt. %s", strerror(errno)); 811 } 812 } 813 814 mq->n_pkts += n_tx_pkts; 815 return n_tx_pkts; 816 } 817 818 static int 819 memif_tx_one_zc(struct pmd_process_private *proc_private, struct memif_queue *mq, 820 memif_ring_t *ring, struct rte_mbuf *mbuf, const uint16_t mask, 821 uint16_t slot, uint16_t n_free) 822 { 823 memif_desc_t *d0; 824 uint16_t nb_segs = mbuf->nb_segs; 825 int used_slots = 1; 826 827 next_in_chain: 828 /* store pointer to mbuf to free it later */ 829 mq->buffers[slot & mask] = mbuf; 830 /* populate descriptor */ 831 d0 = &ring->desc[slot & mask]; 832 d0->length = rte_pktmbuf_data_len(mbuf); 833 mq->n_bytes += rte_pktmbuf_data_len(mbuf); 834 /* FIXME: get region index */ 835 d0->region = 1; 836 d0->offset = rte_pktmbuf_mtod(mbuf, uint8_t *) - 837 (uint8_t *)proc_private->regions[d0->region]->addr; 838 d0->flags = 0; 839 840 /* check if buffer is chained */ 841 if (--nb_segs > 0) { 842 if (n_free < 2) 843 return 0; 844 /* mark buffer as chained */ 845 d0->flags |= MEMIF_DESC_FLAG_NEXT; 846 /* advance mbuf */ 847 mbuf = mbuf->next; 848 /* update counters */ 849 used_slots++; 850 slot++; 851 n_free--; 852 goto next_in_chain; 853 } 854 return used_slots; 855 } 856 857 static uint16_t 858 eth_memif_tx_zc(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts) 859 { 860 struct memif_queue *mq = queue; 861 struct pmd_internals *pmd = rte_eth_devices[mq->in_port].data->dev_private; 862 struct pmd_process_private *proc_private = 863 rte_eth_devices[mq->in_port].process_private; 864 memif_ring_t *ring = memif_get_ring_from_queue(proc_private, mq); 865 uint16_t slot, n_free, ring_size, mask, n_tx_pkts = 0; 866 struct rte_eth_link link; 867 868 if (unlikely((pmd->flags & ETH_MEMIF_FLAG_CONNECTED) == 0)) 869 return 0; 870 if (unlikely(ring == NULL)) { 871 /* Secondary process will attempt to request regions. */ 872 rte_eth_link_get(mq->in_port, &link); 873 return 0; 874 } 875 876 ring_size = 1 << mq->log2_ring_size; 877 mask = ring_size - 1; 878 879 /* free mbufs received by server */ 880 memif_free_stored_mbufs(proc_private, mq); 881 882 /* ring type always MEMIF_RING_C2S */ 883 /* For C2S queues ring->head is updated by the sender and 884 * this function is called in the context of sending thread. 885 * The loads in the sender do not need to synchronize with 886 * its own stores. Hence, the following load can be a 887 * relaxed load. 888 */ 889 slot = rte_atomic_load_explicit(&ring->head, rte_memory_order_relaxed); 890 n_free = ring_size - slot + mq->last_tail; 891 892 int used_slots; 893 894 while (n_free && (n_tx_pkts < nb_pkts)) { 895 while ((n_free > 4) && ((nb_pkts - n_tx_pkts) > 4)) { 896 if ((nb_pkts - n_tx_pkts) > 8) { 897 rte_prefetch0(*bufs + 4); 898 rte_prefetch0(*bufs + 5); 899 rte_prefetch0(*bufs + 6); 900 rte_prefetch0(*bufs + 7); 901 } 902 used_slots = memif_tx_one_zc(proc_private, mq, ring, *bufs++, 903 mask, slot, n_free); 904 if (unlikely(used_slots < 1)) 905 goto no_free_slots; 906 n_tx_pkts++; 907 slot += used_slots; 908 n_free -= used_slots; 909 910 used_slots = memif_tx_one_zc(proc_private, mq, ring, *bufs++, 911 mask, slot, n_free); 912 if (unlikely(used_slots < 1)) 913 goto no_free_slots; 914 n_tx_pkts++; 915 slot += used_slots; 916 n_free -= used_slots; 917 918 used_slots = memif_tx_one_zc(proc_private, mq, ring, *bufs++, 919 mask, slot, n_free); 920 if (unlikely(used_slots < 1)) 921 goto no_free_slots; 922 n_tx_pkts++; 923 slot += used_slots; 924 n_free -= used_slots; 925 926 used_slots = memif_tx_one_zc(proc_private, mq, ring, *bufs++, 927 mask, slot, n_free); 928 if (unlikely(used_slots < 1)) 929 goto no_free_slots; 930 n_tx_pkts++; 931 slot += used_slots; 932 n_free -= used_slots; 933 } 934 used_slots = memif_tx_one_zc(proc_private, mq, ring, *bufs++, 935 mask, slot, n_free); 936 if (unlikely(used_slots < 1)) 937 goto no_free_slots; 938 n_tx_pkts++; 939 slot += used_slots; 940 n_free -= used_slots; 941 } 942 943 no_free_slots: 944 /* ring type always MEMIF_RING_C2S */ 945 /* The ring->head acts as a guard variable between Tx and Rx 946 * threads, so using store-release pairs with load-acquire 947 * in function eth_memif_rx for C2S rings. 948 */ 949 rte_atomic_store_explicit(&ring->head, slot, rte_memory_order_release); 950 951 /* Send interrupt, if enabled. */ 952 if ((ring->flags & MEMIF_RING_FLAG_MASK_INT) == 0) { 953 uint64_t a = 1; 954 if (rte_intr_fd_get(mq->intr_handle) < 0) 955 return -1; 956 957 ssize_t size = write(rte_intr_fd_get(mq->intr_handle), 958 &a, sizeof(a)); 959 if (unlikely(size < 0)) { 960 MIF_LOG(WARNING, 961 "Failed to send interrupt. %s", strerror(errno)); 962 } 963 } 964 965 /* increment queue counters */ 966 mq->n_pkts += n_tx_pkts; 967 968 return n_tx_pkts; 969 } 970 971 void 972 memif_free_regions(struct rte_eth_dev *dev) 973 { 974 struct pmd_process_private *proc_private = dev->process_private; 975 struct pmd_internals *pmd = dev->data->dev_private; 976 int i; 977 struct memif_region *r; 978 979 /* regions are allocated contiguously, so it's 980 * enough to loop until 'proc_private->regions_num' 981 */ 982 for (i = 0; i < proc_private->regions_num; i++) { 983 r = proc_private->regions[i]; 984 if (r != NULL) { 985 /* This is memzone */ 986 if (i > 0 && (pmd->flags & ETH_MEMIF_FLAG_ZERO_COPY)) { 987 r->addr = NULL; 988 if (r->fd > 0) 989 close(r->fd); 990 } 991 if (r->addr != NULL) { 992 munmap(r->addr, r->region_size); 993 if (r->fd > 0) { 994 close(r->fd); 995 r->fd = -1; 996 } 997 } 998 rte_free(r); 999 proc_private->regions[i] = NULL; 1000 } 1001 } 1002 proc_private->regions_num = 0; 1003 } 1004 1005 static int 1006 memif_region_init_zc(const struct rte_memseg_list *msl, const struct rte_memseg *ms, 1007 void *arg) 1008 { 1009 struct pmd_process_private *proc_private = (struct pmd_process_private *)arg; 1010 struct memif_region *r; 1011 1012 if (proc_private->regions_num < 1) { 1013 MIF_LOG(ERR, "Missing descriptor region"); 1014 return -1; 1015 } 1016 1017 r = proc_private->regions[proc_private->regions_num - 1]; 1018 1019 if (r->addr != msl->base_va) 1020 r = proc_private->regions[++proc_private->regions_num - 1]; 1021 1022 if (r == NULL) { 1023 r = rte_zmalloc("region", sizeof(struct memif_region), 0); 1024 if (r == NULL) { 1025 MIF_LOG(ERR, "Failed to alloc memif region."); 1026 return -ENOMEM; 1027 } 1028 1029 r->addr = msl->base_va; 1030 r->region_size = ms->len; 1031 r->fd = rte_memseg_get_fd(ms); 1032 if (r->fd < 0) 1033 return -1; 1034 r->pkt_buffer_offset = 0; 1035 1036 proc_private->regions[proc_private->regions_num - 1] = r; 1037 } else { 1038 r->region_size += ms->len; 1039 } 1040 1041 return 0; 1042 } 1043 1044 static int 1045 memif_region_init_shm(struct rte_eth_dev *dev, uint8_t has_buffers) 1046 { 1047 struct pmd_internals *pmd = dev->data->dev_private; 1048 struct pmd_process_private *proc_private = dev->process_private; 1049 char shm_name[ETH_MEMIF_SHM_NAME_SIZE]; 1050 int ret = 0; 1051 struct memif_region *r; 1052 1053 if (proc_private->regions_num >= ETH_MEMIF_MAX_REGION_NUM) { 1054 MIF_LOG(ERR, "Too many regions."); 1055 return -1; 1056 } 1057 1058 r = rte_zmalloc("region", sizeof(struct memif_region), 0); 1059 if (r == NULL) { 1060 MIF_LOG(ERR, "Failed to alloc memif region."); 1061 return -ENOMEM; 1062 } 1063 1064 /* calculate buffer offset */ 1065 r->pkt_buffer_offset = (pmd->run.num_c2s_rings + pmd->run.num_s2c_rings) * 1066 (sizeof(memif_ring_t) + sizeof(memif_desc_t) * 1067 (1 << pmd->run.log2_ring_size)); 1068 1069 r->region_size = r->pkt_buffer_offset; 1070 /* if region has buffers, add buffers size to region_size */ 1071 if (has_buffers == 1) 1072 r->region_size += (uint32_t)(pmd->run.pkt_buffer_size * 1073 (1 << pmd->run.log2_ring_size) * 1074 (pmd->run.num_c2s_rings + 1075 pmd->run.num_s2c_rings)); 1076 1077 memset(shm_name, 0, sizeof(char) * ETH_MEMIF_SHM_NAME_SIZE); 1078 snprintf(shm_name, ETH_MEMIF_SHM_NAME_SIZE, "memif_region_%d", 1079 proc_private->regions_num); 1080 1081 r->fd = memfd_create(shm_name, MFD_ALLOW_SEALING); 1082 if (r->fd < 0) { 1083 MIF_LOG(ERR, "Failed to create shm file: %s.", strerror(errno)); 1084 ret = -1; 1085 goto error; 1086 } 1087 1088 ret = fcntl(r->fd, F_ADD_SEALS, F_SEAL_SHRINK); 1089 if (ret < 0) { 1090 MIF_LOG(ERR, "Failed to add seals to shm file: %s.", strerror(errno)); 1091 goto error; 1092 } 1093 1094 ret = ftruncate(r->fd, r->region_size); 1095 if (ret < 0) { 1096 MIF_LOG(ERR, "Failed to truncate shm file: %s.", strerror(errno)); 1097 goto error; 1098 } 1099 1100 r->addr = mmap(NULL, r->region_size, PROT_READ | 1101 PROT_WRITE, MAP_SHARED, r->fd, 0); 1102 if (r->addr == MAP_FAILED) { 1103 MIF_LOG(ERR, "Failed to mmap shm region: %s.", strerror(ret)); 1104 ret = -1; 1105 goto error; 1106 } 1107 1108 proc_private->regions[proc_private->regions_num] = r; 1109 proc_private->regions_num++; 1110 1111 return ret; 1112 1113 error: 1114 if (r->fd > 0) 1115 close(r->fd); 1116 r->fd = -1; 1117 1118 return ret; 1119 } 1120 1121 static int 1122 memif_regions_init(struct rte_eth_dev *dev) 1123 { 1124 struct pmd_internals *pmd = dev->data->dev_private; 1125 int ret; 1126 1127 /* 1128 * Zero-copy exposes dpdk memory. 1129 * Each memseg list will be represented by memif region. 1130 * Zero-copy regions indexing: memseg list idx + 1, 1131 * as we already have region 0 reserved for descriptors. 1132 */ 1133 if (pmd->flags & ETH_MEMIF_FLAG_ZERO_COPY) { 1134 /* create region idx 0 containing descriptors */ 1135 ret = memif_region_init_shm(dev, 0); 1136 if (ret < 0) 1137 return ret; 1138 ret = rte_memseg_walk(memif_region_init_zc, (void *)dev->process_private); 1139 if (ret < 0) 1140 return ret; 1141 } else { 1142 /* create one memory region containing rings and buffers */ 1143 ret = memif_region_init_shm(dev, /* has buffers */ 1); 1144 if (ret < 0) 1145 return ret; 1146 } 1147 1148 return 0; 1149 } 1150 1151 static void 1152 memif_init_rings(struct rte_eth_dev *dev) 1153 { 1154 struct pmd_internals *pmd = dev->data->dev_private; 1155 struct pmd_process_private *proc_private = dev->process_private; 1156 memif_ring_t *ring; 1157 int i, j; 1158 uint16_t slot; 1159 1160 for (i = 0; i < pmd->run.num_c2s_rings; i++) { 1161 ring = memif_get_ring(pmd, proc_private, MEMIF_RING_C2S, i); 1162 rte_atomic_store_explicit(&ring->head, 0, rte_memory_order_relaxed); 1163 rte_atomic_store_explicit(&ring->tail, 0, rte_memory_order_relaxed); 1164 ring->cookie = MEMIF_COOKIE; 1165 ring->flags = 0; 1166 1167 if (pmd->flags & ETH_MEMIF_FLAG_ZERO_COPY) 1168 continue; 1169 1170 for (j = 0; j < (1 << pmd->run.log2_ring_size); j++) { 1171 slot = i * (1 << pmd->run.log2_ring_size) + j; 1172 ring->desc[j].region = 0; 1173 ring->desc[j].offset = 1174 proc_private->regions[0]->pkt_buffer_offset + 1175 (uint32_t)(slot * pmd->run.pkt_buffer_size); 1176 ring->desc[j].length = pmd->run.pkt_buffer_size; 1177 } 1178 } 1179 1180 for (i = 0; i < pmd->run.num_s2c_rings; i++) { 1181 ring = memif_get_ring(pmd, proc_private, MEMIF_RING_S2C, i); 1182 rte_atomic_store_explicit(&ring->head, 0, rte_memory_order_relaxed); 1183 rte_atomic_store_explicit(&ring->tail, 0, rte_memory_order_relaxed); 1184 ring->cookie = MEMIF_COOKIE; 1185 ring->flags = 0; 1186 1187 if (pmd->flags & ETH_MEMIF_FLAG_ZERO_COPY) 1188 continue; 1189 1190 for (j = 0; j < (1 << pmd->run.log2_ring_size); j++) { 1191 slot = (i + pmd->run.num_c2s_rings) * 1192 (1 << pmd->run.log2_ring_size) + j; 1193 ring->desc[j].region = 0; 1194 ring->desc[j].offset = 1195 proc_private->regions[0]->pkt_buffer_offset + 1196 (uint32_t)(slot * pmd->run.pkt_buffer_size); 1197 ring->desc[j].length = pmd->run.pkt_buffer_size; 1198 } 1199 } 1200 } 1201 1202 /* called only by client */ 1203 static int 1204 memif_init_queues(struct rte_eth_dev *dev) 1205 { 1206 struct pmd_internals *pmd = dev->data->dev_private; 1207 struct memif_queue *mq; 1208 int i; 1209 1210 for (i = 0; i < pmd->run.num_c2s_rings; i++) { 1211 mq = dev->data->tx_queues[i]; 1212 mq->log2_ring_size = pmd->run.log2_ring_size; 1213 /* queues located only in region 0 */ 1214 mq->region = 0; 1215 mq->ring_offset = memif_get_ring_offset(dev, mq, MEMIF_RING_C2S, i); 1216 mq->last_head = 0; 1217 mq->last_tail = 0; 1218 if (rte_intr_fd_set(mq->intr_handle, eventfd(0, EFD_NONBLOCK))) 1219 return -rte_errno; 1220 1221 if (rte_intr_fd_get(mq->intr_handle) < 0) { 1222 MIF_LOG(WARNING, 1223 "Failed to create eventfd for tx queue %d: %s.", i, 1224 strerror(errno)); 1225 } 1226 mq->buffers = NULL; 1227 if (pmd->flags & ETH_MEMIF_FLAG_ZERO_COPY) { 1228 mq->buffers = rte_zmalloc("bufs", sizeof(struct rte_mbuf *) * 1229 (1 << mq->log2_ring_size), 0); 1230 if (mq->buffers == NULL) 1231 return -ENOMEM; 1232 } 1233 } 1234 1235 for (i = 0; i < pmd->run.num_s2c_rings; i++) { 1236 mq = dev->data->rx_queues[i]; 1237 mq->log2_ring_size = pmd->run.log2_ring_size; 1238 /* queues located only in region 0 */ 1239 mq->region = 0; 1240 mq->ring_offset = memif_get_ring_offset(dev, mq, MEMIF_RING_S2C, i); 1241 mq->last_head = 0; 1242 mq->last_tail = 0; 1243 if (rte_intr_fd_set(mq->intr_handle, eventfd(0, EFD_NONBLOCK))) 1244 return -rte_errno; 1245 if (rte_intr_fd_get(mq->intr_handle) < 0) { 1246 MIF_LOG(WARNING, 1247 "Failed to create eventfd for rx queue %d: %s.", i, 1248 strerror(errno)); 1249 } 1250 mq->buffers = NULL; 1251 if (pmd->flags & ETH_MEMIF_FLAG_ZERO_COPY) { 1252 /* 1253 * Allocate 2x ring_size to reserve a contiguous array for 1254 * rte_pktmbuf_alloc_bulk (to store allocated mbufs). 1255 */ 1256 mq->buffers = rte_zmalloc("bufs", sizeof(struct rte_mbuf *) * 1257 (1 << (mq->log2_ring_size + 1)), 0); 1258 if (mq->buffers == NULL) 1259 return -ENOMEM; 1260 } 1261 } 1262 return 0; 1263 } 1264 1265 int 1266 memif_init_regions_and_queues(struct rte_eth_dev *dev) 1267 { 1268 int ret; 1269 1270 ret = memif_regions_init(dev); 1271 if (ret < 0) 1272 return ret; 1273 1274 memif_init_rings(dev); 1275 1276 ret = memif_init_queues(dev); 1277 if (ret < 0) 1278 return ret; 1279 1280 return 0; 1281 } 1282 1283 int 1284 memif_connect(struct rte_eth_dev *dev) 1285 { 1286 struct pmd_internals *pmd = dev->data->dev_private; 1287 struct pmd_process_private *proc_private = dev->process_private; 1288 struct memif_region *mr; 1289 struct memif_queue *mq; 1290 memif_ring_t *ring; 1291 int i; 1292 1293 for (i = 0; i < proc_private->regions_num; i++) { 1294 mr = proc_private->regions[i]; 1295 if (mr != NULL) { 1296 if (mr->addr == NULL) { 1297 if (mr->fd < 0) 1298 return -1; 1299 mr->addr = mmap(NULL, mr->region_size, 1300 PROT_READ | PROT_WRITE, 1301 MAP_SHARED, mr->fd, 0); 1302 if (mr->addr == MAP_FAILED) { 1303 MIF_LOG(ERR, "mmap failed: %s", 1304 strerror(errno)); 1305 return -1; 1306 } 1307 } 1308 if (i > 0 && (pmd->flags & ETH_MEMIF_FLAG_ZERO_COPY)) { 1309 /* close memseg file */ 1310 close(mr->fd); 1311 mr->fd = -1; 1312 } 1313 } 1314 } 1315 1316 if (rte_eal_process_type() == RTE_PROC_PRIMARY) { 1317 for (i = 0; i < pmd->run.num_c2s_rings; i++) { 1318 mq = (pmd->role == MEMIF_ROLE_CLIENT) ? 1319 dev->data->tx_queues[i] : dev->data->rx_queues[i]; 1320 ring = memif_get_ring_from_queue(proc_private, mq); 1321 if (ring == NULL || ring->cookie != MEMIF_COOKIE) { 1322 MIF_LOG(ERR, "Wrong ring"); 1323 return -1; 1324 } 1325 rte_atomic_store_explicit(&ring->head, 0, rte_memory_order_relaxed); 1326 rte_atomic_store_explicit(&ring->tail, 0, rte_memory_order_relaxed); 1327 mq->last_head = 0; 1328 mq->last_tail = 0; 1329 /* enable polling mode */ 1330 if (pmd->role == MEMIF_ROLE_SERVER) 1331 ring->flags = MEMIF_RING_FLAG_MASK_INT; 1332 } 1333 for (i = 0; i < pmd->run.num_s2c_rings; i++) { 1334 mq = (pmd->role == MEMIF_ROLE_CLIENT) ? 1335 dev->data->rx_queues[i] : dev->data->tx_queues[i]; 1336 ring = memif_get_ring_from_queue(proc_private, mq); 1337 if (ring == NULL || ring->cookie != MEMIF_COOKIE) { 1338 MIF_LOG(ERR, "Wrong ring"); 1339 return -1; 1340 } 1341 rte_atomic_store_explicit(&ring->head, 0, rte_memory_order_relaxed); 1342 rte_atomic_store_explicit(&ring->tail, 0, rte_memory_order_relaxed); 1343 mq->last_head = 0; 1344 mq->last_tail = 0; 1345 /* enable polling mode */ 1346 if (pmd->role == MEMIF_ROLE_CLIENT) 1347 ring->flags = MEMIF_RING_FLAG_MASK_INT; 1348 } 1349 1350 pmd->flags &= ~ETH_MEMIF_FLAG_CONNECTING; 1351 pmd->flags |= ETH_MEMIF_FLAG_CONNECTED; 1352 dev->data->dev_link.link_status = RTE_ETH_LINK_UP; 1353 } 1354 MIF_LOG(INFO, "Connected."); 1355 return 0; 1356 } 1357 1358 static int 1359 memif_dev_start(struct rte_eth_dev *dev) 1360 { 1361 struct pmd_internals *pmd = dev->data->dev_private; 1362 int ret = 0; 1363 uint16_t i; 1364 1365 switch (pmd->role) { 1366 case MEMIF_ROLE_CLIENT: 1367 ret = memif_connect_client(dev); 1368 break; 1369 case MEMIF_ROLE_SERVER: 1370 ret = memif_connect_server(dev); 1371 break; 1372 default: 1373 MIF_LOG(ERR, "Unknown role: %d.", pmd->role); 1374 ret = -1; 1375 break; 1376 } 1377 1378 if (ret == 0) { 1379 for (i = 0; i < dev->data->nb_rx_queues; i++) 1380 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED; 1381 for (i = 0; i < dev->data->nb_tx_queues; i++) 1382 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED; 1383 } 1384 1385 return ret; 1386 } 1387 1388 static int 1389 memif_dev_stop(struct rte_eth_dev *dev) 1390 { 1391 uint16_t i; 1392 1393 memif_disconnect(dev); 1394 1395 for (i = 0; i < dev->data->nb_rx_queues; i++) 1396 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED; 1397 for (i = 0; i < dev->data->nb_tx_queues; i++) 1398 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED; 1399 1400 return 0; 1401 } 1402 1403 static int 1404 memif_dev_close(struct rte_eth_dev *dev) 1405 { 1406 struct pmd_internals *pmd = dev->data->dev_private; 1407 int i; 1408 1409 if (rte_eal_process_type() == RTE_PROC_PRIMARY) { 1410 memif_msg_enq_disconnect(pmd->cc, "Device closed", 0); 1411 1412 for (i = 0; i < dev->data->nb_rx_queues; i++) 1413 (*dev->dev_ops->rx_queue_release)(dev, i); 1414 for (i = 0; i < dev->data->nb_tx_queues; i++) 1415 (*dev->dev_ops->tx_queue_release)(dev, i); 1416 1417 memif_socket_remove_device(dev); 1418 } 1419 1420 rte_free(dev->process_private); 1421 1422 return 0; 1423 } 1424 1425 static int 1426 memif_dev_configure(struct rte_eth_dev *dev) 1427 { 1428 struct pmd_internals *pmd = dev->data->dev_private; 1429 1430 /* 1431 * CLIENT - TXQ 1432 * SERVER - RXQ 1433 */ 1434 pmd->cfg.num_c2s_rings = (pmd->role == MEMIF_ROLE_CLIENT) ? 1435 dev->data->nb_tx_queues : dev->data->nb_rx_queues; 1436 1437 /* 1438 * CLIENT - RXQ 1439 * SERVER - TXQ 1440 */ 1441 pmd->cfg.num_s2c_rings = (pmd->role == MEMIF_ROLE_CLIENT) ? 1442 dev->data->nb_rx_queues : dev->data->nb_tx_queues; 1443 1444 return 0; 1445 } 1446 1447 static int 1448 memif_tx_queue_setup(struct rte_eth_dev *dev, 1449 uint16_t qid, 1450 uint16_t nb_tx_desc __rte_unused, 1451 unsigned int socket_id __rte_unused, 1452 const struct rte_eth_txconf *tx_conf __rte_unused) 1453 { 1454 struct pmd_internals *pmd = dev->data->dev_private; 1455 struct memif_queue *mq; 1456 1457 mq = rte_zmalloc("tx-queue", sizeof(struct memif_queue), 0); 1458 if (mq == NULL) { 1459 MIF_LOG(ERR, "Failed to allocate tx queue id: %u", qid); 1460 return -ENOMEM; 1461 } 1462 1463 /* Allocate interrupt instance */ 1464 mq->intr_handle = rte_intr_instance_alloc(RTE_INTR_INSTANCE_F_SHARED); 1465 if (mq->intr_handle == NULL) { 1466 MIF_LOG(ERR, "Failed to allocate intr handle"); 1467 return -ENOMEM; 1468 } 1469 1470 mq->type = 1471 (pmd->role == MEMIF_ROLE_CLIENT) ? MEMIF_RING_C2S : MEMIF_RING_S2C; 1472 mq->n_pkts = 0; 1473 mq->n_bytes = 0; 1474 1475 if (rte_intr_fd_set(mq->intr_handle, -1)) 1476 return -rte_errno; 1477 1478 if (rte_intr_type_set(mq->intr_handle, RTE_INTR_HANDLE_EXT)) 1479 return -rte_errno; 1480 1481 mq->in_port = dev->data->port_id; 1482 dev->data->tx_queues[qid] = mq; 1483 1484 return 0; 1485 } 1486 1487 static int 1488 memif_rx_queue_setup(struct rte_eth_dev *dev, 1489 uint16_t qid, 1490 uint16_t nb_rx_desc __rte_unused, 1491 unsigned int socket_id __rte_unused, 1492 const struct rte_eth_rxconf *rx_conf __rte_unused, 1493 struct rte_mempool *mb_pool) 1494 { 1495 struct pmd_internals *pmd = dev->data->dev_private; 1496 struct memif_queue *mq; 1497 1498 mq = rte_zmalloc("rx-queue", sizeof(struct memif_queue), 0); 1499 if (mq == NULL) { 1500 MIF_LOG(ERR, "Failed to allocate rx queue id: %u", qid); 1501 return -ENOMEM; 1502 } 1503 1504 /* Allocate interrupt instance */ 1505 mq->intr_handle = rte_intr_instance_alloc(RTE_INTR_INSTANCE_F_SHARED); 1506 if (mq->intr_handle == NULL) { 1507 MIF_LOG(ERR, "Failed to allocate intr handle"); 1508 return -ENOMEM; 1509 } 1510 1511 mq->type = (pmd->role == MEMIF_ROLE_CLIENT) ? MEMIF_RING_S2C : MEMIF_RING_C2S; 1512 mq->n_pkts = 0; 1513 mq->n_bytes = 0; 1514 1515 if (rte_intr_fd_set(mq->intr_handle, -1)) 1516 return -rte_errno; 1517 1518 if (rte_intr_type_set(mq->intr_handle, RTE_INTR_HANDLE_EXT)) 1519 return -rte_errno; 1520 1521 mq->mempool = mb_pool; 1522 mq->in_port = dev->data->port_id; 1523 dev->data->rx_queues[qid] = mq; 1524 1525 return 0; 1526 } 1527 1528 static void 1529 memif_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid) 1530 { 1531 struct memif_queue *mq = dev->data->rx_queues[qid]; 1532 1533 if (!mq) 1534 return; 1535 1536 rte_intr_instance_free(mq->intr_handle); 1537 rte_free(mq); 1538 } 1539 1540 static void 1541 memif_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid) 1542 { 1543 struct memif_queue *mq = dev->data->tx_queues[qid]; 1544 1545 if (!mq) 1546 return; 1547 1548 rte_free(mq); 1549 } 1550 1551 static int 1552 memif_link_update(struct rte_eth_dev *dev, 1553 int wait_to_complete __rte_unused) 1554 { 1555 struct pmd_process_private *proc_private; 1556 1557 if (rte_eal_process_type() == RTE_PROC_SECONDARY) { 1558 proc_private = dev->process_private; 1559 if (dev->data->dev_link.link_status == RTE_ETH_LINK_UP && 1560 proc_private->regions_num == 0) { 1561 memif_mp_request_regions(dev); 1562 } else if (dev->data->dev_link.link_status == RTE_ETH_LINK_DOWN && 1563 proc_private->regions_num > 0) { 1564 memif_free_regions(dev); 1565 } 1566 } 1567 return 0; 1568 } 1569 1570 static int 1571 memif_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 1572 { 1573 struct pmd_internals *pmd = dev->data->dev_private; 1574 struct memif_queue *mq; 1575 int i; 1576 uint8_t tmp, nq; 1577 1578 stats->ipackets = 0; 1579 stats->ibytes = 0; 1580 stats->opackets = 0; 1581 stats->obytes = 0; 1582 1583 tmp = (pmd->role == MEMIF_ROLE_CLIENT) ? pmd->run.num_s2c_rings : 1584 pmd->run.num_c2s_rings; 1585 nq = (tmp < RTE_ETHDEV_QUEUE_STAT_CNTRS) ? tmp : 1586 RTE_ETHDEV_QUEUE_STAT_CNTRS; 1587 1588 /* RX stats */ 1589 for (i = 0; i < nq; i++) { 1590 mq = dev->data->rx_queues[i]; 1591 stats->q_ipackets[i] = mq->n_pkts; 1592 stats->q_ibytes[i] = mq->n_bytes; 1593 stats->ipackets += mq->n_pkts; 1594 stats->ibytes += mq->n_bytes; 1595 } 1596 1597 tmp = (pmd->role == MEMIF_ROLE_CLIENT) ? pmd->run.num_c2s_rings : 1598 pmd->run.num_s2c_rings; 1599 nq = (tmp < RTE_ETHDEV_QUEUE_STAT_CNTRS) ? tmp : 1600 RTE_ETHDEV_QUEUE_STAT_CNTRS; 1601 1602 /* TX stats */ 1603 for (i = 0; i < nq; i++) { 1604 mq = dev->data->tx_queues[i]; 1605 stats->q_opackets[i] = mq->n_pkts; 1606 stats->q_obytes[i] = mq->n_bytes; 1607 stats->opackets += mq->n_pkts; 1608 stats->obytes += mq->n_bytes; 1609 } 1610 return 0; 1611 } 1612 1613 static int 1614 memif_stats_reset(struct rte_eth_dev *dev) 1615 { 1616 struct pmd_internals *pmd = dev->data->dev_private; 1617 int i; 1618 struct memif_queue *mq; 1619 1620 for (i = 0; i < pmd->run.num_c2s_rings; i++) { 1621 mq = (pmd->role == MEMIF_ROLE_CLIENT) ? dev->data->tx_queues[i] : 1622 dev->data->rx_queues[i]; 1623 mq->n_pkts = 0; 1624 mq->n_bytes = 0; 1625 } 1626 for (i = 0; i < pmd->run.num_s2c_rings; i++) { 1627 mq = (pmd->role == MEMIF_ROLE_CLIENT) ? dev->data->rx_queues[i] : 1628 dev->data->tx_queues[i]; 1629 mq->n_pkts = 0; 1630 mq->n_bytes = 0; 1631 } 1632 1633 return 0; 1634 } 1635 1636 static const struct eth_dev_ops ops = { 1637 .dev_start = memif_dev_start, 1638 .dev_stop = memif_dev_stop, 1639 .dev_close = memif_dev_close, 1640 .dev_infos_get = memif_dev_info, 1641 .dev_configure = memif_dev_configure, 1642 .tx_queue_setup = memif_tx_queue_setup, 1643 .rx_queue_setup = memif_rx_queue_setup, 1644 .rx_queue_release = memif_rx_queue_release, 1645 .tx_queue_release = memif_tx_queue_release, 1646 .link_update = memif_link_update, 1647 .stats_get = memif_stats_get, 1648 .stats_reset = memif_stats_reset, 1649 }; 1650 1651 static int 1652 memif_create(struct rte_vdev_device *vdev, enum memif_role_t role, 1653 memif_interface_id_t id, uint32_t flags, 1654 const char *socket_filename, uid_t owner_uid, gid_t owner_gid, 1655 memif_log2_ring_size_t log2_ring_size, 1656 uint16_t pkt_buffer_size, const char *secret, 1657 struct rte_ether_addr *ether_addr) 1658 { 1659 int ret = 0; 1660 struct rte_eth_dev *eth_dev; 1661 struct rte_eth_dev_data *data; 1662 struct pmd_internals *pmd; 1663 struct pmd_process_private *process_private; 1664 const unsigned int numa_node = vdev->device.numa_node; 1665 const char *name = rte_vdev_device_name(vdev); 1666 1667 eth_dev = rte_eth_vdev_allocate(vdev, sizeof(*pmd)); 1668 if (eth_dev == NULL) { 1669 MIF_LOG(ERR, "%s: Unable to allocate device struct.", name); 1670 return -1; 1671 } 1672 1673 process_private = (struct pmd_process_private *) 1674 rte_zmalloc(name, sizeof(struct pmd_process_private), 1675 RTE_CACHE_LINE_SIZE); 1676 1677 if (process_private == NULL) { 1678 MIF_LOG(ERR, "Failed to alloc memory for process private"); 1679 return -1; 1680 } 1681 eth_dev->process_private = process_private; 1682 1683 pmd = eth_dev->data->dev_private; 1684 memset(pmd, 0, sizeof(*pmd)); 1685 1686 pmd->id = id; 1687 pmd->flags = flags; 1688 pmd->flags |= ETH_MEMIF_FLAG_DISABLED; 1689 pmd->role = role; 1690 /* Zero-copy flag irelevant to server. */ 1691 if (pmd->role == MEMIF_ROLE_SERVER) 1692 pmd->flags &= ~ETH_MEMIF_FLAG_ZERO_COPY; 1693 pmd->owner_uid = owner_uid; 1694 pmd->owner_gid = owner_gid; 1695 1696 ret = memif_socket_init(eth_dev, socket_filename); 1697 if (ret < 0) 1698 return ret; 1699 1700 memset(pmd->secret, 0, sizeof(char) * ETH_MEMIF_SECRET_SIZE); 1701 if (secret != NULL) 1702 strlcpy(pmd->secret, secret, sizeof(pmd->secret)); 1703 1704 pmd->cfg.log2_ring_size = log2_ring_size; 1705 /* set in .dev_configure() */ 1706 pmd->cfg.num_c2s_rings = 0; 1707 pmd->cfg.num_s2c_rings = 0; 1708 1709 pmd->cfg.pkt_buffer_size = pkt_buffer_size; 1710 rte_spinlock_init(&pmd->cc_lock); 1711 1712 data = eth_dev->data; 1713 data->dev_private = pmd; 1714 data->numa_node = numa_node; 1715 data->dev_link = pmd_link; 1716 data->mac_addrs = ether_addr; 1717 data->promiscuous = 1; 1718 data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS; 1719 1720 eth_dev->dev_ops = &ops; 1721 eth_dev->device = &vdev->device; 1722 if (pmd->flags & ETH_MEMIF_FLAG_ZERO_COPY) { 1723 eth_dev->rx_pkt_burst = eth_memif_rx_zc; 1724 eth_dev->tx_pkt_burst = eth_memif_tx_zc; 1725 } else { 1726 eth_dev->rx_pkt_burst = eth_memif_rx; 1727 eth_dev->tx_pkt_burst = eth_memif_tx; 1728 } 1729 1730 rte_eth_dev_probing_finish(eth_dev); 1731 1732 return 0; 1733 } 1734 1735 static int 1736 memif_set_role(const char *key __rte_unused, const char *value, 1737 void *extra_args) 1738 { 1739 enum memif_role_t *role = (enum memif_role_t *)extra_args; 1740 1741 if (strstr(value, "server") != NULL) { 1742 *role = MEMIF_ROLE_SERVER; 1743 } else if (strstr(value, "client") != NULL) { 1744 *role = MEMIF_ROLE_CLIENT; 1745 } else if (strstr(value, "master") != NULL) { 1746 MIF_LOG(NOTICE, "Role argument \"master\" is deprecated, use \"server\""); 1747 *role = MEMIF_ROLE_SERVER; 1748 } else if (strstr(value, "slave") != NULL) { 1749 MIF_LOG(NOTICE, "Role argument \"slave\" is deprecated, use \"client\""); 1750 *role = MEMIF_ROLE_CLIENT; 1751 } else { 1752 MIF_LOG(ERR, "Unknown role: %s.", value); 1753 return -EINVAL; 1754 } 1755 return 0; 1756 } 1757 1758 static int 1759 memif_set_zc(const char *key __rte_unused, const char *value, void *extra_args) 1760 { 1761 uint32_t *flags = (uint32_t *)extra_args; 1762 1763 if (strstr(value, "yes") != NULL) { 1764 if (!rte_mcfg_get_single_file_segments()) { 1765 MIF_LOG(ERR, "Zero-copy doesn't support multi-file segments."); 1766 return -ENOTSUP; 1767 } 1768 *flags |= ETH_MEMIF_FLAG_ZERO_COPY; 1769 } else if (strstr(value, "no") != NULL) { 1770 *flags &= ~ETH_MEMIF_FLAG_ZERO_COPY; 1771 } else { 1772 MIF_LOG(ERR, "Failed to parse zero-copy param: %s.", value); 1773 return -EINVAL; 1774 } 1775 return 0; 1776 } 1777 1778 static int 1779 memif_set_id(const char *key __rte_unused, const char *value, void *extra_args) 1780 { 1781 memif_interface_id_t *id = (memif_interface_id_t *)extra_args; 1782 1783 /* even if parsing fails, 0 is a valid id */ 1784 *id = strtoul(value, NULL, 10); 1785 return 0; 1786 } 1787 1788 static int 1789 memif_set_bs(const char *key __rte_unused, const char *value, void *extra_args) 1790 { 1791 unsigned long tmp; 1792 uint16_t *pkt_buffer_size = (uint16_t *)extra_args; 1793 1794 tmp = strtoul(value, NULL, 10); 1795 if (tmp == 0 || tmp > 0xFFFF) { 1796 MIF_LOG(ERR, "Invalid buffer size: %s.", value); 1797 return -EINVAL; 1798 } 1799 *pkt_buffer_size = tmp; 1800 return 0; 1801 } 1802 1803 static int 1804 memif_set_rs(const char *key __rte_unused, const char *value, void *extra_args) 1805 { 1806 unsigned long tmp; 1807 memif_log2_ring_size_t *log2_ring_size = 1808 (memif_log2_ring_size_t *)extra_args; 1809 1810 tmp = strtoul(value, NULL, 10); 1811 if (tmp == 0 || tmp > ETH_MEMIF_MAX_LOG2_RING_SIZE) { 1812 MIF_LOG(ERR, "Invalid ring size: %s (max %u).", 1813 value, ETH_MEMIF_MAX_LOG2_RING_SIZE); 1814 return -EINVAL; 1815 } 1816 *log2_ring_size = tmp; 1817 return 0; 1818 } 1819 1820 /* check if directory exists and if we have permission to read/write */ 1821 static int 1822 memif_check_socket_filename(const char *filename) 1823 { 1824 char *dir = NULL, *tmp; 1825 uint32_t idx; 1826 int ret = 0; 1827 1828 if (strlen(filename) >= MEMIF_SOCKET_UN_SIZE) { 1829 MIF_LOG(ERR, "Unix socket address too long (max 108)."); 1830 return -1; 1831 } 1832 1833 tmp = strrchr(filename, '/'); 1834 if (tmp != NULL) { 1835 idx = tmp - filename; 1836 dir = rte_zmalloc("memif_tmp", sizeof(char) * (idx + 1), 0); 1837 if (dir == NULL) { 1838 MIF_LOG(ERR, "Failed to allocate memory."); 1839 return -1; 1840 } 1841 strlcpy(dir, filename, sizeof(char) * (idx + 1)); 1842 } 1843 1844 if (dir == NULL || (faccessat(-1, dir, F_OK | R_OK | 1845 W_OK, AT_EACCESS) < 0)) { 1846 MIF_LOG(ERR, "Invalid socket directory."); 1847 ret = -EINVAL; 1848 } 1849 1850 rte_free(dir); 1851 1852 return ret; 1853 } 1854 1855 static int 1856 memif_set_socket_filename(const char *key __rte_unused, const char *value, 1857 void *extra_args) 1858 { 1859 const char **socket_filename = (const char **)extra_args; 1860 1861 *socket_filename = value; 1862 return 0; 1863 } 1864 1865 static int 1866 memif_set_is_socket_abstract(const char *key __rte_unused, const char *value, void *extra_args) 1867 { 1868 uint32_t *flags = (uint32_t *)extra_args; 1869 1870 if (strstr(value, "yes") != NULL) { 1871 *flags |= ETH_MEMIF_FLAG_SOCKET_ABSTRACT; 1872 } else if (strstr(value, "no") != NULL) { 1873 *flags &= ~ETH_MEMIF_FLAG_SOCKET_ABSTRACT; 1874 } else { 1875 MIF_LOG(ERR, "Failed to parse socket-abstract param: %s.", value); 1876 return -EINVAL; 1877 } 1878 return 0; 1879 } 1880 1881 static int 1882 memif_set_owner(const char *key, const char *value, void *extra_args) 1883 { 1884 RTE_ASSERT(sizeof(uid_t) == sizeof(uint32_t)); 1885 RTE_ASSERT(sizeof(gid_t) == sizeof(uint32_t)); 1886 1887 unsigned long val; 1888 char *end = NULL; 1889 uint32_t *id = (uint32_t *)extra_args; 1890 1891 val = strtoul(value, &end, 10); 1892 if (*value == '\0' || *end != '\0') { 1893 MIF_LOG(ERR, "Failed to parse %s: %s.", key, value); 1894 return -EINVAL; 1895 } 1896 if (val >= UINT32_MAX) { 1897 MIF_LOG(ERR, "Invalid %s: %s.", key, value); 1898 return -ERANGE; 1899 } 1900 1901 *id = val; 1902 return 0; 1903 } 1904 1905 static int 1906 memif_set_mac(const char *key __rte_unused, const char *value, void *extra_args) 1907 { 1908 struct rte_ether_addr *ether_addr = (struct rte_ether_addr *)extra_args; 1909 1910 if (rte_ether_unformat_addr(value, ether_addr) < 0) 1911 MIF_LOG(WARNING, "Failed to parse mac '%s'.", value); 1912 return 0; 1913 } 1914 1915 static int 1916 memif_set_secret(const char *key __rte_unused, const char *value, void *extra_args) 1917 { 1918 const char **secret = (const char **)extra_args; 1919 1920 *secret = value; 1921 return 0; 1922 } 1923 1924 static int 1925 rte_pmd_memif_probe(struct rte_vdev_device *vdev) 1926 { 1927 RTE_BUILD_BUG_ON(sizeof(memif_msg_t) != 128); 1928 RTE_BUILD_BUG_ON(sizeof(memif_desc_t) != 16); 1929 int ret = 0; 1930 struct rte_kvargs *kvlist; 1931 const char *name = rte_vdev_device_name(vdev); 1932 enum memif_role_t role = MEMIF_ROLE_CLIENT; 1933 memif_interface_id_t id = 0; 1934 uint16_t pkt_buffer_size = ETH_MEMIF_DEFAULT_PKT_BUFFER_SIZE; 1935 memif_log2_ring_size_t log2_ring_size = ETH_MEMIF_DEFAULT_RING_SIZE; 1936 const char *socket_filename = ETH_MEMIF_DEFAULT_SOCKET_FILENAME; 1937 uid_t owner_uid = -1; 1938 gid_t owner_gid = -1; 1939 uint32_t flags = 0; 1940 const char *secret = NULL; 1941 struct rte_ether_addr *ether_addr = rte_zmalloc("", 1942 sizeof(struct rte_ether_addr), 0); 1943 struct rte_eth_dev *eth_dev; 1944 1945 rte_eth_random_addr(ether_addr->addr_bytes); 1946 1947 MIF_LOG(INFO, "Initialize MEMIF: %s.", name); 1948 1949 if (rte_eal_process_type() == RTE_PROC_SECONDARY) { 1950 eth_dev = rte_eth_dev_attach_secondary(name); 1951 if (!eth_dev) { 1952 MIF_LOG(ERR, "Failed to probe %s", name); 1953 return -1; 1954 } 1955 1956 eth_dev->dev_ops = &ops; 1957 eth_dev->device = &vdev->device; 1958 eth_dev->rx_pkt_burst = eth_memif_rx; 1959 eth_dev->tx_pkt_burst = eth_memif_tx; 1960 1961 if (!rte_eal_primary_proc_alive(NULL)) { 1962 MIF_LOG(ERR, "Primary process is missing"); 1963 return -1; 1964 } 1965 1966 eth_dev->process_private = (struct pmd_process_private *) 1967 rte_zmalloc(name, 1968 sizeof(struct pmd_process_private), 1969 RTE_CACHE_LINE_SIZE); 1970 if (eth_dev->process_private == NULL) { 1971 MIF_LOG(ERR, 1972 "Failed to alloc memory for process private"); 1973 return -1; 1974 } 1975 1976 rte_eth_dev_probing_finish(eth_dev); 1977 1978 return 0; 1979 } 1980 1981 ret = rte_mp_action_register(MEMIF_MP_SEND_REGION, memif_mp_send_region); 1982 /* 1983 * Primary process can continue probing, but secondary process won't 1984 * be able to get memory regions information 1985 */ 1986 if (ret < 0 && rte_errno != EEXIST) 1987 MIF_LOG(WARNING, "Failed to register mp action callback: %s", 1988 strerror(rte_errno)); 1989 1990 /* use abstract address by default */ 1991 flags |= ETH_MEMIF_FLAG_SOCKET_ABSTRACT; 1992 1993 kvlist = rte_kvargs_parse(rte_vdev_device_args(vdev), valid_arguments); 1994 1995 /* parse parameters */ 1996 if (kvlist != NULL) { 1997 ret = rte_kvargs_process(kvlist, ETH_MEMIF_ROLE_ARG, 1998 &memif_set_role, &role); 1999 if (ret < 0) 2000 goto exit; 2001 ret = rte_kvargs_process(kvlist, ETH_MEMIF_ID_ARG, 2002 &memif_set_id, &id); 2003 if (ret < 0) 2004 goto exit; 2005 ret = rte_kvargs_process(kvlist, ETH_MEMIF_PKT_BUFFER_SIZE_ARG, 2006 &memif_set_bs, &pkt_buffer_size); 2007 if (ret < 0) 2008 goto exit; 2009 ret = rte_kvargs_process(kvlist, ETH_MEMIF_RING_SIZE_ARG, 2010 &memif_set_rs, &log2_ring_size); 2011 if (ret < 0) 2012 goto exit; 2013 ret = rte_kvargs_process(kvlist, ETH_MEMIF_SOCKET_ARG, 2014 &memif_set_socket_filename, 2015 (void *)(&socket_filename)); 2016 if (ret < 0) 2017 goto exit; 2018 ret = rte_kvargs_process(kvlist, ETH_MEMIF_SOCKET_ABSTRACT_ARG, 2019 &memif_set_is_socket_abstract, &flags); 2020 if (ret < 0) 2021 goto exit; 2022 ret = rte_kvargs_process(kvlist, ETH_MEMIF_OWNER_UID_ARG, 2023 &memif_set_owner, &owner_uid); 2024 if (ret < 0) 2025 goto exit; 2026 ret = rte_kvargs_process(kvlist, ETH_MEMIF_OWNER_GID_ARG, 2027 &memif_set_owner, &owner_gid); 2028 if (ret < 0) 2029 goto exit; 2030 ret = rte_kvargs_process(kvlist, ETH_MEMIF_MAC_ARG, 2031 &memif_set_mac, ether_addr); 2032 if (ret < 0) 2033 goto exit; 2034 ret = rte_kvargs_process(kvlist, ETH_MEMIF_ZC_ARG, 2035 &memif_set_zc, &flags); 2036 if (ret < 0) 2037 goto exit; 2038 ret = rte_kvargs_process(kvlist, ETH_MEMIF_SECRET_ARG, 2039 &memif_set_secret, (void *)(&secret)); 2040 if (ret < 0) 2041 goto exit; 2042 } 2043 2044 if (!(flags & ETH_MEMIF_FLAG_SOCKET_ABSTRACT)) { 2045 ret = memif_check_socket_filename(socket_filename); 2046 if (ret < 0) 2047 goto exit; 2048 } 2049 2050 /* create interface */ 2051 ret = memif_create(vdev, role, id, flags, socket_filename, owner_uid, owner_gid, 2052 log2_ring_size, pkt_buffer_size, secret, ether_addr); 2053 2054 exit: 2055 rte_kvargs_free(kvlist); 2056 return ret; 2057 } 2058 2059 static int 2060 rte_pmd_memif_remove(struct rte_vdev_device *vdev) 2061 { 2062 struct rte_eth_dev *eth_dev; 2063 2064 eth_dev = rte_eth_dev_allocated(rte_vdev_device_name(vdev)); 2065 if (eth_dev == NULL) 2066 return 0; 2067 2068 return rte_eth_dev_close(eth_dev->data->port_id); 2069 } 2070 2071 static struct rte_vdev_driver pmd_memif_drv = { 2072 .probe = rte_pmd_memif_probe, 2073 .remove = rte_pmd_memif_remove, 2074 }; 2075 2076 RTE_PMD_REGISTER_VDEV(net_memif, pmd_memif_drv); 2077 2078 RTE_PMD_REGISTER_PARAM_STRING(net_memif, 2079 ETH_MEMIF_ID_ARG "=<int>" 2080 ETH_MEMIF_ROLE_ARG "=server|client" 2081 ETH_MEMIF_PKT_BUFFER_SIZE_ARG "=<int>" 2082 ETH_MEMIF_RING_SIZE_ARG "=<int>" 2083 ETH_MEMIF_SOCKET_ARG "=<string>" 2084 ETH_MEMIF_SOCKET_ABSTRACT_ARG "=yes|no" 2085 ETH_MEMIF_OWNER_UID_ARG "=<int>" 2086 ETH_MEMIF_OWNER_GID_ARG "=<int>" 2087 ETH_MEMIF_MAC_ARG "=xx:xx:xx:xx:xx:xx" 2088 ETH_MEMIF_ZC_ARG "=yes|no" 2089 ETH_MEMIF_SECRET_ARG "=<string>"); 2090 2091 RTE_LOG_REGISTER_DEFAULT(memif_logtype, NOTICE); 2092