xref: /dpdk/drivers/net/ionic/ionic_rxtx_sg.c (revision 463ad260d35ee5934ab206d392a1a3e08b5506d0)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2018-2022 Advanced Micro Devices, Inc.
3  */
4 
5 #include <stdio.h>
6 #include <errno.h>
7 #include <stdint.h>
8 #include <assert.h>
9 
10 #include <rte_common.h>
11 #include <rte_byteorder.h>
12 #include <rte_atomic.h>
13 #include <rte_mempool.h>
14 #include <rte_mbuf.h>
15 #include <rte_ether.h>
16 #include <rte_prefetch.h>
17 
18 #include "ionic.h"
19 #include "ionic_if.h"
20 #include "ionic_dev.h"
21 #include "ionic_lif.h"
22 #include "ionic_rxtx.h"
23 
24 static __rte_always_inline void
25 ionic_tx_flush_sg(struct ionic_tx_qcq *txq)
26 {
27 	struct ionic_cq *cq = &txq->qcq.cq;
28 	struct ionic_queue *q = &txq->qcq.q;
29 	struct ionic_tx_stats *stats = &txq->stats;
30 	struct rte_mbuf *txm;
31 	struct ionic_txq_comp *cq_desc_base = cq->base;
32 	volatile struct ionic_txq_comp *cq_desc;
33 	void **info;
34 	uint32_t i;
35 
36 	cq_desc = &cq_desc_base[cq->tail_idx];
37 
38 	while (color_match(cq_desc->color, cq->done_color)) {
39 		cq->tail_idx = Q_NEXT_TO_SRVC(cq, 1);
40 		if (cq->tail_idx == 0)
41 			cq->done_color = !cq->done_color;
42 
43 		/* Prefetch 4 x 16B comp at cq->tail_idx + 4 */
44 		if ((cq->tail_idx & 0x3) == 0)
45 			rte_prefetch0(&cq_desc_base[Q_NEXT_TO_SRVC(cq, 4)]);
46 
47 		while (q->tail_idx != rte_le_to_cpu_16(cq_desc->comp_index)) {
48 			/* Prefetch 8 mbuf ptrs at q->tail_idx + 2 */
49 			rte_prefetch0(IONIC_INFO_PTR(q, Q_NEXT_TO_SRVC(q, 2)));
50 
51 			/* Prefetch next mbuf */
52 			void **next_info =
53 				IONIC_INFO_PTR(q, Q_NEXT_TO_SRVC(q, 1));
54 			if (next_info[0])
55 				rte_mbuf_prefetch_part2(next_info[0]);
56 			if (next_info[1])
57 				rte_mbuf_prefetch_part2(next_info[1]);
58 
59 			info = IONIC_INFO_PTR(q, q->tail_idx);
60 			for (i = 0; i < q->num_segs; i++) {
61 				txm = info[i];
62 				if (!txm)
63 					break;
64 
65 				if (txq->flags & IONIC_QCQ_F_FAST_FREE)
66 					rte_mempool_put(txm->pool, txm);
67 				else
68 					rte_pktmbuf_free_seg(txm);
69 
70 				info[i] = NULL;
71 			}
72 
73 			q->tail_idx = Q_NEXT_TO_SRVC(q, 1);
74 		}
75 
76 		cq_desc = &cq_desc_base[cq->tail_idx];
77 		stats->comps++;
78 	}
79 }
80 
81 static __rte_always_inline int
82 ionic_tx_sg(struct ionic_tx_qcq *txq, struct rte_mbuf *txm)
83 {
84 	struct ionic_queue *q = &txq->qcq.q;
85 	struct ionic_txq_desc *desc, *desc_base = q->base;
86 	struct ionic_txq_sg_desc_v1 *sg_desc, *sg_desc_base = q->sg_base;
87 	struct ionic_txq_sg_elem *elem;
88 	struct ionic_tx_stats *stats = &txq->stats;
89 	struct rte_mbuf *txm_seg;
90 	rte_iova_t data_iova;
91 	void **info;
92 	uint64_t ol_flags = txm->ol_flags;
93 	uint64_t addr, cmd;
94 	uint8_t opcode = IONIC_TXQ_DESC_OPCODE_CSUM_NONE;
95 	uint8_t flags = 0;
96 
97 	desc = &desc_base[q->head_idx];
98 	sg_desc = &sg_desc_base[q->head_idx];
99 	info = IONIC_INFO_PTR(q, q->head_idx);
100 
101 	if ((ol_flags & RTE_MBUF_F_TX_IP_CKSUM) &&
102 	    (txq->flags & IONIC_QCQ_F_CSUM_L3)) {
103 		opcode = IONIC_TXQ_DESC_OPCODE_CSUM_HW;
104 		flags |= IONIC_TXQ_DESC_FLAG_CSUM_L3;
105 	}
106 
107 	if (((ol_flags & RTE_MBUF_F_TX_TCP_CKSUM) &&
108 	     (txq->flags & IONIC_QCQ_F_CSUM_TCP)) ||
109 	    ((ol_flags & RTE_MBUF_F_TX_UDP_CKSUM) &&
110 	     (txq->flags & IONIC_QCQ_F_CSUM_UDP))) {
111 		opcode = IONIC_TXQ_DESC_OPCODE_CSUM_HW;
112 		flags |= IONIC_TXQ_DESC_FLAG_CSUM_L4;
113 	}
114 
115 	if (opcode == IONIC_TXQ_DESC_OPCODE_CSUM_NONE)
116 		stats->no_csum++;
117 
118 	if (((ol_flags & RTE_MBUF_F_TX_OUTER_IP_CKSUM) ||
119 	     (ol_flags & RTE_MBUF_F_TX_OUTER_UDP_CKSUM)) &&
120 	    ((ol_flags & RTE_MBUF_F_TX_OUTER_IPV4) ||
121 	     (ol_flags & RTE_MBUF_F_TX_OUTER_IPV6))) {
122 		flags |= IONIC_TXQ_DESC_FLAG_ENCAP;
123 	}
124 
125 	if (ol_flags & RTE_MBUF_F_TX_VLAN) {
126 		flags |= IONIC_TXQ_DESC_FLAG_VLAN;
127 		desc->vlan_tci = rte_cpu_to_le_16(txm->vlan_tci);
128 	}
129 
130 	addr = rte_cpu_to_le_64(rte_mbuf_data_iova(txm));
131 
132 	cmd = encode_txq_desc_cmd(opcode, flags, txm->nb_segs - 1, addr);
133 	desc->cmd = rte_cpu_to_le_64(cmd);
134 	desc->len = rte_cpu_to_le_16(txm->data_len);
135 
136 	info[0] = txm;
137 
138 	if (txm->nb_segs > 1) {
139 		txm_seg = txm->next;
140 
141 		elem = sg_desc->elems;
142 
143 		while (txm_seg != NULL) {
144 			/* Stash the mbuf ptr in the array */
145 			info++;
146 			*info = txm_seg;
147 
148 			/* Configure the SGE */
149 			data_iova = rte_mbuf_data_iova(txm_seg);
150 			elem->len = rte_cpu_to_le_16(txm_seg->data_len);
151 			elem->addr = rte_cpu_to_le_64(data_iova);
152 			elem++;
153 
154 			txm_seg = txm_seg->next;
155 		}
156 	}
157 
158 	q->head_idx = Q_NEXT_TO_POST(q, 1);
159 
160 	return 0;
161 }
162 
163 uint16_t
164 ionic_xmit_pkts_sg(void *tx_queue, struct rte_mbuf **tx_pkts,
165 		uint16_t nb_pkts)
166 {
167 	struct ionic_tx_qcq *txq = tx_queue;
168 	struct ionic_queue *q = &txq->qcq.q;
169 	struct ionic_tx_stats *stats = &txq->stats;
170 	struct rte_mbuf *mbuf;
171 	uint32_t bytes_tx = 0;
172 	uint16_t nb_avail, nb_tx = 0;
173 	uint64_t then, now, hz, delta;
174 	int err;
175 
176 	struct ionic_txq_desc *desc_base = q->base;
177 	if (!(txq->flags & IONIC_QCQ_F_CMB))
178 		rte_prefetch0(&desc_base[q->head_idx]);
179 	rte_prefetch0(IONIC_INFO_PTR(q, q->head_idx));
180 
181 	if (nb_pkts) {
182 		rte_mbuf_prefetch_part1(tx_pkts[0]);
183 		rte_mbuf_prefetch_part2(tx_pkts[0]);
184 	}
185 
186 	if (ionic_q_space_avail(q) < txq->free_thresh) {
187 		/* Cleaning old buffers */
188 		ionic_tx_flush_sg(txq);
189 	}
190 
191 	nb_avail = ionic_q_space_avail(q);
192 	if (nb_avail < nb_pkts) {
193 		stats->stop += nb_pkts - nb_avail;
194 		nb_pkts = nb_avail;
195 	}
196 
197 	while (nb_tx < nb_pkts) {
198 		uint16_t next_idx = Q_NEXT_TO_POST(q, 1);
199 		if (!(txq->flags & IONIC_QCQ_F_CMB))
200 			rte_prefetch0(&desc_base[next_idx]);
201 		rte_prefetch0(IONIC_INFO_PTR(q, next_idx));
202 
203 		if (nb_tx + 1 < nb_pkts) {
204 			rte_mbuf_prefetch_part1(tx_pkts[nb_tx + 1]);
205 			rte_mbuf_prefetch_part2(tx_pkts[nb_tx + 1]);
206 		}
207 
208 		mbuf = tx_pkts[nb_tx];
209 
210 		if (mbuf->ol_flags & RTE_MBUF_F_TX_TCP_SEG)
211 			err = ionic_tx_tso(txq, mbuf);
212 		else
213 			err = ionic_tx_sg(txq, mbuf);
214 		if (err) {
215 			stats->drop += nb_pkts - nb_tx;
216 			break;
217 		}
218 
219 		bytes_tx += mbuf->pkt_len;
220 		nb_tx++;
221 	}
222 
223 	if (nb_tx > 0) {
224 		rte_wmb();
225 		ionic_q_flush(q);
226 
227 		txq->last_wdog_cycles = rte_get_timer_cycles();
228 
229 		stats->packets += nb_tx;
230 		stats->bytes += bytes_tx;
231 	} else {
232 		/*
233 		 * Ring the doorbell again if no work could be posted and work
234 		 * is still pending after the deadline.
235 		 */
236 		if (q->head_idx != q->tail_idx) {
237 			then = txq->last_wdog_cycles;
238 			now = rte_get_timer_cycles();
239 			hz = rte_get_timer_hz();
240 			delta = (now - then) * 1000;
241 
242 			if (delta >= hz * IONIC_Q_WDOG_MS) {
243 				ionic_q_flush(q);
244 				txq->last_wdog_cycles = now;
245 			}
246 		}
247 	}
248 
249 	return nb_tx;
250 }
251 
252 /*
253  * Cleans one descriptor. Connects the filled mbufs into a chain.
254  * Does not advance the tail index.
255  */
256 static __rte_always_inline void
257 ionic_rx_clean_one_sg(struct ionic_rx_qcq *rxq,
258 		volatile struct ionic_rxq_comp *cq_desc,
259 		struct ionic_rx_service *rx_svc)
260 {
261 	struct ionic_queue *q = &rxq->qcq.q;
262 	struct rte_mbuf *rxm;
263 	struct rte_mbuf *rxm_seg, *prev_rxm;
264 	struct ionic_rx_stats *stats = &rxq->stats;
265 	uint64_t pkt_flags = 0;
266 	uint32_t pkt_type;
267 	uint32_t left, i;
268 	uint16_t cq_desc_len;
269 	uint8_t ptype, cflags;
270 	void **info;
271 
272 	cq_desc_len = rte_le_to_cpu_16(cq_desc->len);
273 
274 	info = IONIC_INFO_PTR(q, q->tail_idx);
275 
276 	rxm = info[0];
277 
278 	if (cq_desc->status) {
279 		stats->bad_cq_status++;
280 		return;
281 	}
282 
283 	if (cq_desc_len > rxq->frame_size || cq_desc_len == 0) {
284 		stats->bad_len++;
285 		return;
286 	}
287 
288 	info[0] = NULL;
289 
290 	/* Set the mbuf metadata based on the cq entry */
291 	rxm->rearm_data[0] = rxq->rearm_data;
292 	rxm->pkt_len = cq_desc_len;
293 	rxm->data_len = RTE_MIN(rxq->hdr_seg_size, cq_desc_len);
294 	left = cq_desc_len - rxm->data_len;
295 	rxm->nb_segs = cq_desc->num_sg_elems + 1;
296 
297 	prev_rxm = rxm;
298 
299 	for (i = 1; i < rxm->nb_segs && left; i++) {
300 		rxm_seg = info[i];
301 		info[i] = NULL;
302 
303 		/* Set the chained mbuf metadata */
304 		rxm_seg->rearm_data[0] = rxq->rearm_seg_data;
305 		rxm_seg->data_len = RTE_MIN(rxq->seg_size, left);
306 		left -= rxm_seg->data_len;
307 
308 		/* Link the mbuf */
309 		prev_rxm->next = rxm_seg;
310 		prev_rxm = rxm_seg;
311 	}
312 
313 	/* Terminate the mbuf chain */
314 	prev_rxm->next = NULL;
315 
316 	/* RSS */
317 	pkt_flags |= RTE_MBUF_F_RX_RSS_HASH;
318 	rxm->hash.rss = rte_le_to_cpu_32(cq_desc->rss_hash);
319 
320 	/* Vlan Strip */
321 	if (cq_desc->csum_flags & IONIC_RXQ_COMP_CSUM_F_VLAN) {
322 		pkt_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
323 		rxm->vlan_tci = rte_le_to_cpu_16(cq_desc->vlan_tci);
324 	}
325 
326 	/* Checksum */
327 	if (cq_desc->csum_flags & IONIC_RXQ_COMP_CSUM_F_CALC) {
328 		cflags = cq_desc->csum_flags & IONIC_CSUM_FLAG_MASK;
329 		pkt_flags |= ionic_csum_flags[cflags];
330 	}
331 
332 	rxm->ol_flags = pkt_flags;
333 
334 	/* Packet Type */
335 	ptype = cq_desc->pkt_type_color & IONIC_RXQ_COMP_PKT_TYPE_MASK;
336 	pkt_type = ionic_ptype_table[ptype];
337 	if (pkt_type == RTE_PTYPE_UNKNOWN) {
338 		struct rte_ether_hdr *eth_h = rte_pktmbuf_mtod(rxm,
339 				struct rte_ether_hdr *);
340 		uint16_t ether_type = eth_h->ether_type;
341 		if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_ARP))
342 			pkt_type = RTE_PTYPE_L2_ETHER_ARP;
343 		else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_LLDP))
344 			pkt_type = RTE_PTYPE_L2_ETHER_LLDP;
345 		else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_1588))
346 			pkt_type = RTE_PTYPE_L2_ETHER_TIMESYNC;
347 		stats->mtods++;
348 	} else if (pkt_flags & RTE_MBUF_F_RX_VLAN) {
349 		pkt_type |= RTE_PTYPE_L2_ETHER_VLAN;
350 	} else {
351 		pkt_type |= RTE_PTYPE_L2_ETHER;
352 	}
353 
354 	rxm->packet_type = pkt_type;
355 
356 	rx_svc->rx_pkts[rx_svc->nb_rx] = rxm;
357 	rx_svc->nb_rx++;
358 
359 	stats->packets++;
360 	stats->bytes += rxm->pkt_len;
361 }
362 
363 /*
364  * Fills one descriptor with mbufs. Does not advance the head index.
365  */
366 static __rte_always_inline int
367 ionic_rx_fill_one_sg(struct ionic_rx_qcq *rxq)
368 {
369 	struct ionic_queue *q = &rxq->qcq.q;
370 	struct rte_mbuf *rxm;
371 	struct rte_mbuf *rxm_seg;
372 	struct ionic_rxq_desc *desc, *desc_base = q->base;
373 	struct ionic_rxq_sg_desc *sg_desc, *sg_desc_base = q->sg_base;
374 	rte_iova_t data_iova;
375 	uint32_t i;
376 	void **info;
377 	int ret;
378 
379 	info = IONIC_INFO_PTR(q, q->head_idx);
380 	desc = &desc_base[q->head_idx];
381 	sg_desc = &sg_desc_base[q->head_idx];
382 
383 	/* mbuf is unused => whole chain is unused */
384 	if (info[0])
385 		return 0;
386 
387 	if (rxq->mb_idx == 0) {
388 		ret = rte_mempool_get_bulk(rxq->mb_pool,
389 					(void **)rxq->mbs,
390 					IONIC_MBUF_BULK_ALLOC);
391 		if (ret) {
392 			assert(0);
393 			return -ENOMEM;
394 		}
395 
396 		rxq->mb_idx = IONIC_MBUF_BULK_ALLOC;
397 	}
398 
399 	rxm = rxq->mbs[--rxq->mb_idx];
400 	info[0] = rxm;
401 
402 	data_iova = rte_mbuf_data_iova_default(rxm);
403 	desc->addr = rte_cpu_to_le_64(data_iova);
404 
405 	for (i = 1; i < q->num_segs; i++) {
406 		/* mbuf is unused => rest of the chain is unused */
407 		if (info[i])
408 			return 0;
409 
410 		if (rxq->mb_idx == 0) {
411 			ret = rte_mempool_get_bulk(rxq->mb_pool,
412 					(void **)rxq->mbs,
413 					IONIC_MBUF_BULK_ALLOC);
414 			if (ret) {
415 				assert(0);
416 				return -ENOMEM;
417 			}
418 
419 			rxq->mb_idx = IONIC_MBUF_BULK_ALLOC;
420 		}
421 
422 		rxm_seg = rxq->mbs[--rxq->mb_idx];
423 		info[i] = rxm_seg;
424 
425 		/* The data_off does not get set to 0 until later */
426 		data_iova = rxm_seg->buf_iova;
427 		sg_desc->elems[i - 1].addr = rte_cpu_to_le_64(data_iova);
428 	}
429 
430 	return 0;
431 }
432 
433 /*
434  * Walk the CQ to find completed receive descriptors.
435  * Any completed descriptor found is refilled.
436  */
437 static __rte_always_inline void
438 ionic_rxq_service_sg(struct ionic_rx_qcq *rxq, uint32_t work_to_do,
439 		struct ionic_rx_service *rx_svc)
440 {
441 	struct ionic_cq *cq = &rxq->qcq.cq;
442 	struct ionic_queue *q = &rxq->qcq.q;
443 	struct ionic_rxq_desc *q_desc_base = q->base;
444 	struct ionic_rxq_comp *cq_desc_base = cq->base;
445 	volatile struct ionic_rxq_comp *cq_desc;
446 	uint32_t work_done = 0;
447 	uint64_t then, now, hz, delta;
448 
449 	cq_desc = &cq_desc_base[cq->tail_idx];
450 
451 	while (color_match(cq_desc->pkt_type_color, cq->done_color)) {
452 		cq->tail_idx = Q_NEXT_TO_SRVC(cq, 1);
453 		if (cq->tail_idx == 0)
454 			cq->done_color = !cq->done_color;
455 
456 		/* Prefetch 8 x 8B bufinfo */
457 		rte_prefetch0(IONIC_INFO_PTR(q, Q_NEXT_TO_SRVC(q, 8)));
458 		/* Prefetch 4 x 16B comp */
459 		rte_prefetch0(&cq_desc_base[Q_NEXT_TO_SRVC(cq, 4)]);
460 		/* Prefetch 4 x 16B descriptors */
461 		if (!(rxq->flags & IONIC_QCQ_F_CMB))
462 			rte_prefetch0(&q_desc_base[Q_NEXT_TO_POST(q, 4)]);
463 
464 		/* Clean one descriptor */
465 		ionic_rx_clean_one_sg(rxq, cq_desc, rx_svc);
466 		q->tail_idx = Q_NEXT_TO_SRVC(q, 1);
467 
468 		/* Fill one descriptor */
469 		(void)ionic_rx_fill_one_sg(rxq);
470 
471 		q->head_idx = Q_NEXT_TO_POST(q, 1);
472 
473 		if (++work_done == work_to_do)
474 			break;
475 
476 		cq_desc = &cq_desc_base[cq->tail_idx];
477 	}
478 
479 	/* Update the queue indices and ring the doorbell */
480 	if (work_done) {
481 		ionic_q_flush(q);
482 		rxq->last_wdog_cycles = rte_get_timer_cycles();
483 		rxq->wdog_ms = IONIC_Q_WDOG_MS;
484 	} else {
485 		/*
486 		 * Ring the doorbell again if no recvs were posted and the
487 		 * recv queue is not empty after the deadline.
488 		 *
489 		 * Exponentially back off the deadline to avoid excessive
490 		 * doorbells when the recv queue is idle.
491 		 */
492 		if (q->head_idx != q->tail_idx) {
493 			then = rxq->last_wdog_cycles;
494 			now = rte_get_timer_cycles();
495 			hz = rte_get_timer_hz();
496 			delta = (now - then) * 1000;
497 
498 			if (delta >= hz * rxq->wdog_ms) {
499 				ionic_q_flush(q);
500 				rxq->last_wdog_cycles = now;
501 
502 				delta = 2 * rxq->wdog_ms;
503 				if (delta > IONIC_Q_WDOG_MAX_MS)
504 					delta = IONIC_Q_WDOG_MAX_MS;
505 
506 				rxq->wdog_ms = delta;
507 			}
508 		}
509 	}
510 }
511 
512 uint16_t
513 ionic_recv_pkts_sg(void *rx_queue, struct rte_mbuf **rx_pkts,
514 		uint16_t nb_pkts)
515 {
516 	struct ionic_rx_qcq *rxq = rx_queue;
517 	struct ionic_rx_service rx_svc;
518 
519 	rx_svc.rx_pkts = rx_pkts;
520 	rx_svc.nb_rx = 0;
521 
522 	ionic_rxq_service_sg(rxq, nb_pkts, &rx_svc);
523 
524 	return rx_svc.nb_rx;
525 }
526 
527 /*
528  * Fills all descriptors with mbufs.
529  */
530 int __rte_cold
531 ionic_rx_fill_sg(struct ionic_rx_qcq *rxq)
532 {
533 	struct ionic_queue *q = &rxq->qcq.q;
534 	uint32_t i;
535 	int err = 0;
536 
537 	for (i = 0; i < q->num_descs - 1u; i++) {
538 		err = ionic_rx_fill_one_sg(rxq);
539 		if (err)
540 			break;
541 
542 		q->head_idx = Q_NEXT_TO_POST(q, 1);
543 	}
544 
545 	ionic_q_flush(q);
546 
547 	return err;
548 }
549