xref: /dpdk/drivers/net/ionic/ionic_rxtx_sg.c (revision 3c02593c9eabdf71998e708dd7f0cc0dae472261)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2018-2022 Advanced Micro Devices, Inc.
3  */
4 
5 #include <stdio.h>
6 #include <errno.h>
7 #include <stdint.h>
8 #include <assert.h>
9 
10 #include <rte_common.h>
11 #include <rte_byteorder.h>
12 #include <rte_atomic.h>
13 #include <rte_mempool.h>
14 #include <rte_mbuf.h>
15 #include <rte_ether.h>
16 #include <rte_prefetch.h>
17 
18 #include "ionic.h"
19 #include "ionic_if.h"
20 #include "ionic_dev.h"
21 #include "ionic_lif.h"
22 #include "ionic_rxtx.h"
23 
24 static __rte_always_inline void
25 ionic_tx_flush_sg(struct ionic_tx_qcq *txq)
26 {
27 	struct ionic_cq *cq = &txq->qcq.cq;
28 	struct ionic_queue *q = &txq->qcq.q;
29 	struct rte_mbuf *txm;
30 	struct ionic_txq_comp *cq_desc, *cq_desc_base = cq->base;
31 	void **info;
32 	uint32_t i;
33 
34 	cq_desc = &cq_desc_base[cq->tail_idx];
35 
36 	while (color_match(cq_desc->color, cq->done_color)) {
37 		cq->tail_idx = Q_NEXT_TO_SRVC(cq, 1);
38 		if (cq->tail_idx == 0)
39 			cq->done_color = !cq->done_color;
40 
41 		/* Prefetch 4 x 16B comp at cq->tail_idx + 4 */
42 		if ((cq->tail_idx & 0x3) == 0)
43 			rte_prefetch0(&cq_desc_base[Q_NEXT_TO_SRVC(cq, 4)]);
44 
45 		while (q->tail_idx != rte_le_to_cpu_16(cq_desc->comp_index)) {
46 			/* Prefetch 8 mbuf ptrs at q->tail_idx + 2 */
47 			rte_prefetch0(IONIC_INFO_PTR(q, Q_NEXT_TO_SRVC(q, 2)));
48 
49 			/* Prefetch next mbuf */
50 			void **next_info =
51 				IONIC_INFO_PTR(q, Q_NEXT_TO_SRVC(q, 1));
52 			if (next_info[0])
53 				rte_mbuf_prefetch_part2(next_info[0]);
54 			if (next_info[1])
55 				rte_mbuf_prefetch_part2(next_info[1]);
56 
57 			info = IONIC_INFO_PTR(q, q->tail_idx);
58 			for (i = 0; i < q->num_segs; i++) {
59 				txm = info[i];
60 				if (!txm)
61 					break;
62 
63 				if (txq->flags & IONIC_QCQ_F_FAST_FREE)
64 					rte_mempool_put(txm->pool, txm);
65 				else
66 					rte_pktmbuf_free_seg(txm);
67 
68 				info[i] = NULL;
69 			}
70 
71 			q->tail_idx = Q_NEXT_TO_SRVC(q, 1);
72 		}
73 
74 		cq_desc = &cq_desc_base[cq->tail_idx];
75 	}
76 }
77 
78 static __rte_always_inline int
79 ionic_tx_sg(struct ionic_tx_qcq *txq, struct rte_mbuf *txm)
80 {
81 	struct ionic_queue *q = &txq->qcq.q;
82 	struct ionic_txq_desc *desc, *desc_base = q->base;
83 	struct ionic_txq_sg_desc_v1 *sg_desc, *sg_desc_base = q->sg_base;
84 	struct ionic_txq_sg_elem *elem;
85 	struct ionic_tx_stats *stats = &txq->stats;
86 	struct rte_mbuf *txm_seg;
87 	rte_iova_t data_iova;
88 	void **info;
89 	uint64_t ol_flags = txm->ol_flags;
90 	uint64_t addr, cmd;
91 	uint8_t opcode = IONIC_TXQ_DESC_OPCODE_CSUM_NONE;
92 	uint8_t flags = 0;
93 
94 	desc = &desc_base[q->head_idx];
95 	sg_desc = &sg_desc_base[q->head_idx];
96 	info = IONIC_INFO_PTR(q, q->head_idx);
97 
98 	if ((ol_flags & RTE_MBUF_F_TX_IP_CKSUM) &&
99 	    (txq->flags & IONIC_QCQ_F_CSUM_L3)) {
100 		opcode = IONIC_TXQ_DESC_OPCODE_CSUM_HW;
101 		flags |= IONIC_TXQ_DESC_FLAG_CSUM_L3;
102 	}
103 
104 	if (((ol_flags & RTE_MBUF_F_TX_TCP_CKSUM) &&
105 	     (txq->flags & IONIC_QCQ_F_CSUM_TCP)) ||
106 	    ((ol_flags & RTE_MBUF_F_TX_UDP_CKSUM) &&
107 	     (txq->flags & IONIC_QCQ_F_CSUM_UDP))) {
108 		opcode = IONIC_TXQ_DESC_OPCODE_CSUM_HW;
109 		flags |= IONIC_TXQ_DESC_FLAG_CSUM_L4;
110 	}
111 
112 	if (opcode == IONIC_TXQ_DESC_OPCODE_CSUM_NONE)
113 		stats->no_csum++;
114 
115 	if (((ol_flags & RTE_MBUF_F_TX_OUTER_IP_CKSUM) ||
116 	     (ol_flags & RTE_MBUF_F_TX_OUTER_UDP_CKSUM)) &&
117 	    ((ol_flags & RTE_MBUF_F_TX_OUTER_IPV4) ||
118 	     (ol_flags & RTE_MBUF_F_TX_OUTER_IPV6))) {
119 		flags |= IONIC_TXQ_DESC_FLAG_ENCAP;
120 	}
121 
122 	if (ol_flags & RTE_MBUF_F_TX_VLAN) {
123 		flags |= IONIC_TXQ_DESC_FLAG_VLAN;
124 		desc->vlan_tci = rte_cpu_to_le_16(txm->vlan_tci);
125 	}
126 
127 	addr = rte_cpu_to_le_64(rte_mbuf_data_iova(txm));
128 
129 	cmd = encode_txq_desc_cmd(opcode, flags, txm->nb_segs - 1, addr);
130 	desc->cmd = rte_cpu_to_le_64(cmd);
131 	desc->len = rte_cpu_to_le_16(txm->data_len);
132 
133 	info[0] = txm;
134 
135 	if (txm->nb_segs > 1) {
136 		txm_seg = txm->next;
137 
138 		elem = sg_desc->elems;
139 
140 		while (txm_seg != NULL) {
141 			/* Stash the mbuf ptr in the array */
142 			info++;
143 			*info = txm_seg;
144 
145 			/* Configure the SGE */
146 			data_iova = rte_mbuf_data_iova(txm_seg);
147 			elem->len = rte_cpu_to_le_16(txm_seg->data_len);
148 			elem->addr = rte_cpu_to_le_64(data_iova);
149 			elem++;
150 
151 			txm_seg = txm_seg->next;
152 		}
153 	}
154 
155 	q->head_idx = Q_NEXT_TO_POST(q, 1);
156 
157 	return 0;
158 }
159 
160 uint16_t
161 ionic_xmit_pkts_sg(void *tx_queue, struct rte_mbuf **tx_pkts,
162 		uint16_t nb_pkts)
163 {
164 	struct ionic_tx_qcq *txq = tx_queue;
165 	struct ionic_queue *q = &txq->qcq.q;
166 	struct ionic_tx_stats *stats = &txq->stats;
167 	struct rte_mbuf *mbuf;
168 	uint32_t bytes_tx = 0;
169 	uint16_t nb_avail, nb_tx = 0;
170 	uint64_t then, now, hz, delta;
171 	int err;
172 
173 	struct ionic_txq_desc *desc_base = q->base;
174 	if (!(txq->flags & IONIC_QCQ_F_CMB))
175 		rte_prefetch0(&desc_base[q->head_idx]);
176 	rte_prefetch0(IONIC_INFO_PTR(q, q->head_idx));
177 
178 	if (nb_pkts) {
179 		rte_mbuf_prefetch_part1(tx_pkts[0]);
180 		rte_mbuf_prefetch_part2(tx_pkts[0]);
181 	}
182 
183 	if (ionic_q_space_avail(q) < txq->free_thresh) {
184 		/* Cleaning old buffers */
185 		ionic_tx_flush_sg(txq);
186 	}
187 
188 	nb_avail = ionic_q_space_avail(q);
189 	if (nb_avail < nb_pkts) {
190 		stats->stop += nb_pkts - nb_avail;
191 		nb_pkts = nb_avail;
192 	}
193 
194 	while (nb_tx < nb_pkts) {
195 		uint16_t next_idx = Q_NEXT_TO_POST(q, 1);
196 		if (!(txq->flags & IONIC_QCQ_F_CMB))
197 			rte_prefetch0(&desc_base[next_idx]);
198 		rte_prefetch0(IONIC_INFO_PTR(q, next_idx));
199 
200 		if (nb_tx + 1 < nb_pkts) {
201 			rte_mbuf_prefetch_part1(tx_pkts[nb_tx + 1]);
202 			rte_mbuf_prefetch_part2(tx_pkts[nb_tx + 1]);
203 		}
204 
205 		mbuf = tx_pkts[nb_tx];
206 
207 		if (mbuf->ol_flags & RTE_MBUF_F_TX_TCP_SEG)
208 			err = ionic_tx_tso(txq, mbuf);
209 		else
210 			err = ionic_tx_sg(txq, mbuf);
211 		if (err) {
212 			stats->drop += nb_pkts - nb_tx;
213 			break;
214 		}
215 
216 		bytes_tx += mbuf->pkt_len;
217 		nb_tx++;
218 	}
219 
220 	if (nb_tx > 0) {
221 		rte_wmb();
222 		ionic_q_flush(q);
223 
224 		txq->last_wdog_cycles = rte_get_timer_cycles();
225 
226 		stats->packets += nb_tx;
227 		stats->bytes += bytes_tx;
228 	} else {
229 		/*
230 		 * Ring the doorbell again if no work could be posted and work
231 		 * is still pending after the deadline.
232 		 */
233 		if (q->head_idx != q->tail_idx) {
234 			then = txq->last_wdog_cycles;
235 			now = rte_get_timer_cycles();
236 			hz = rte_get_timer_hz();
237 			delta = (now - then) * 1000;
238 
239 			if (delta >= hz * IONIC_Q_WDOG_MS) {
240 				ionic_q_flush(q);
241 				txq->last_wdog_cycles = now;
242 			}
243 		}
244 	}
245 
246 	return nb_tx;
247 }
248 
249 /*
250  * Cleans one descriptor. Connects the filled mbufs into a chain.
251  * Does not advance the tail index.
252  */
253 static __rte_always_inline void
254 ionic_rx_clean_one_sg(struct ionic_rx_qcq *rxq,
255 		struct ionic_rxq_comp *cq_desc,
256 		struct ionic_rx_service *rx_svc)
257 {
258 	struct ionic_queue *q = &rxq->qcq.q;
259 	struct rte_mbuf *rxm;
260 	struct rte_mbuf *rxm_seg, *prev_rxm;
261 	struct ionic_rx_stats *stats = &rxq->stats;
262 	uint64_t pkt_flags = 0;
263 	uint32_t pkt_type;
264 	uint32_t left, i;
265 	uint16_t cq_desc_len;
266 	uint8_t ptype, cflags;
267 	void **info;
268 
269 	cq_desc_len = rte_le_to_cpu_16(cq_desc->len);
270 
271 	info = IONIC_INFO_PTR(q, q->tail_idx);
272 
273 	rxm = info[0];
274 
275 	if (cq_desc->status) {
276 		stats->bad_cq_status++;
277 		return;
278 	}
279 
280 	if (cq_desc_len > rxq->frame_size || cq_desc_len == 0) {
281 		stats->bad_len++;
282 		return;
283 	}
284 
285 	info[0] = NULL;
286 
287 	/* Set the mbuf metadata based on the cq entry */
288 	rxm->rearm_data[0] = rxq->rearm_data;
289 	rxm->pkt_len = cq_desc_len;
290 	rxm->data_len = RTE_MIN(rxq->hdr_seg_size, cq_desc_len);
291 	left = cq_desc_len - rxm->data_len;
292 	rxm->nb_segs = cq_desc->num_sg_elems + 1;
293 
294 	prev_rxm = rxm;
295 
296 	for (i = 1; i < rxm->nb_segs && left; i++) {
297 		rxm_seg = info[i];
298 		info[i] = NULL;
299 
300 		/* Set the chained mbuf metadata */
301 		rxm_seg->rearm_data[0] = rxq->rearm_seg_data;
302 		rxm_seg->data_len = RTE_MIN(rxq->seg_size, left);
303 		left -= rxm_seg->data_len;
304 
305 		/* Link the mbuf */
306 		prev_rxm->next = rxm_seg;
307 		prev_rxm = rxm_seg;
308 	}
309 
310 	/* Terminate the mbuf chain */
311 	prev_rxm->next = NULL;
312 
313 	/* RSS */
314 	pkt_flags |= RTE_MBUF_F_RX_RSS_HASH;
315 	rxm->hash.rss = rte_le_to_cpu_32(cq_desc->rss_hash);
316 
317 	/* Vlan Strip */
318 	if (cq_desc->csum_flags & IONIC_RXQ_COMP_CSUM_F_VLAN) {
319 		pkt_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
320 		rxm->vlan_tci = rte_le_to_cpu_16(cq_desc->vlan_tci);
321 	}
322 
323 	/* Checksum */
324 	if (cq_desc->csum_flags & IONIC_RXQ_COMP_CSUM_F_CALC) {
325 		cflags = cq_desc->csum_flags & IONIC_CSUM_FLAG_MASK;
326 		pkt_flags |= ionic_csum_flags[cflags];
327 	}
328 
329 	rxm->ol_flags = pkt_flags;
330 
331 	/* Packet Type */
332 	ptype = cq_desc->pkt_type_color & IONIC_RXQ_COMP_PKT_TYPE_MASK;
333 	pkt_type = ionic_ptype_table[ptype];
334 	if (pkt_type == RTE_PTYPE_UNKNOWN) {
335 		struct rte_ether_hdr *eth_h = rte_pktmbuf_mtod(rxm,
336 				struct rte_ether_hdr *);
337 		uint16_t ether_type = eth_h->ether_type;
338 		if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_ARP))
339 			pkt_type = RTE_PTYPE_L2_ETHER_ARP;
340 		else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_LLDP))
341 			pkt_type = RTE_PTYPE_L2_ETHER_LLDP;
342 		else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_1588))
343 			pkt_type = RTE_PTYPE_L2_ETHER_TIMESYNC;
344 		stats->mtods++;
345 	} else if (pkt_flags & RTE_MBUF_F_RX_VLAN) {
346 		pkt_type |= RTE_PTYPE_L2_ETHER_VLAN;
347 	} else {
348 		pkt_type |= RTE_PTYPE_L2_ETHER;
349 	}
350 
351 	rxm->packet_type = pkt_type;
352 
353 	rx_svc->rx_pkts[rx_svc->nb_rx] = rxm;
354 	rx_svc->nb_rx++;
355 
356 	stats->packets++;
357 	stats->bytes += rxm->pkt_len;
358 }
359 
360 /*
361  * Fills one descriptor with mbufs. Does not advance the head index.
362  */
363 static __rte_always_inline int
364 ionic_rx_fill_one_sg(struct ionic_rx_qcq *rxq)
365 {
366 	struct ionic_queue *q = &rxq->qcq.q;
367 	struct rte_mbuf *rxm;
368 	struct rte_mbuf *rxm_seg;
369 	struct ionic_rxq_desc *desc, *desc_base = q->base;
370 	struct ionic_rxq_sg_desc *sg_desc, *sg_desc_base = q->sg_base;
371 	rte_iova_t data_iova;
372 	uint32_t i;
373 	void **info;
374 	int ret;
375 
376 	info = IONIC_INFO_PTR(q, q->head_idx);
377 	desc = &desc_base[q->head_idx];
378 	sg_desc = &sg_desc_base[q->head_idx];
379 
380 	/* mbuf is unused => whole chain is unused */
381 	if (info[0])
382 		return 0;
383 
384 	if (rxq->mb_idx == 0) {
385 		ret = rte_mempool_get_bulk(rxq->mb_pool,
386 					(void **)rxq->mbs,
387 					IONIC_MBUF_BULK_ALLOC);
388 		if (ret) {
389 			assert(0);
390 			return -ENOMEM;
391 		}
392 
393 		rxq->mb_idx = IONIC_MBUF_BULK_ALLOC;
394 	}
395 
396 	rxm = rxq->mbs[--rxq->mb_idx];
397 	info[0] = rxm;
398 
399 	data_iova = rte_mbuf_data_iova_default(rxm);
400 	desc->addr = rte_cpu_to_le_64(data_iova);
401 
402 	for (i = 1; i < q->num_segs; i++) {
403 		/* mbuf is unused => rest of the chain is unused */
404 		if (info[i])
405 			return 0;
406 
407 		if (rxq->mb_idx == 0) {
408 			ret = rte_mempool_get_bulk(rxq->mb_pool,
409 					(void **)rxq->mbs,
410 					IONIC_MBUF_BULK_ALLOC);
411 			if (ret) {
412 				assert(0);
413 				return -ENOMEM;
414 			}
415 
416 			rxq->mb_idx = IONIC_MBUF_BULK_ALLOC;
417 		}
418 
419 		rxm_seg = rxq->mbs[--rxq->mb_idx];
420 		info[i] = rxm_seg;
421 
422 		/* The data_off does not get set to 0 until later */
423 		data_iova = rxm_seg->buf_iova;
424 		sg_desc->elems[i - 1].addr = rte_cpu_to_le_64(data_iova);
425 	}
426 
427 	return 0;
428 }
429 
430 /*
431  * Walk the CQ to find completed receive descriptors.
432  * Any completed descriptor found is refilled.
433  */
434 static __rte_always_inline void
435 ionic_rxq_service_sg(struct ionic_rx_qcq *rxq, uint32_t work_to_do,
436 		struct ionic_rx_service *rx_svc)
437 {
438 	struct ionic_cq *cq = &rxq->qcq.cq;
439 	struct ionic_queue *q = &rxq->qcq.q;
440 	struct ionic_rxq_desc *q_desc_base = q->base;
441 	struct ionic_rxq_comp *cq_desc, *cq_desc_base = cq->base;
442 	uint32_t work_done = 0;
443 	uint64_t then, now, hz, delta;
444 
445 	cq_desc = &cq_desc_base[cq->tail_idx];
446 
447 	while (color_match(cq_desc->pkt_type_color, cq->done_color)) {
448 		cq->tail_idx = Q_NEXT_TO_SRVC(cq, 1);
449 		if (cq->tail_idx == 0)
450 			cq->done_color = !cq->done_color;
451 
452 		/* Prefetch 8 x 8B bufinfo */
453 		rte_prefetch0(IONIC_INFO_PTR(q, Q_NEXT_TO_SRVC(q, 8)));
454 		/* Prefetch 4 x 16B comp */
455 		rte_prefetch0(&cq_desc_base[Q_NEXT_TO_SRVC(cq, 4)]);
456 		/* Prefetch 4 x 16B descriptors */
457 		if (!(rxq->flags & IONIC_QCQ_F_CMB))
458 			rte_prefetch0(&q_desc_base[Q_NEXT_TO_POST(q, 4)]);
459 
460 		/* Clean one descriptor */
461 		ionic_rx_clean_one_sg(rxq, cq_desc, rx_svc);
462 		q->tail_idx = Q_NEXT_TO_SRVC(q, 1);
463 
464 		/* Fill one descriptor */
465 		(void)ionic_rx_fill_one_sg(rxq);
466 
467 		q->head_idx = Q_NEXT_TO_POST(q, 1);
468 
469 		if (++work_done == work_to_do)
470 			break;
471 
472 		cq_desc = &cq_desc_base[cq->tail_idx];
473 	}
474 
475 	/* Update the queue indices and ring the doorbell */
476 	if (work_done) {
477 		ionic_q_flush(q);
478 		rxq->last_wdog_cycles = rte_get_timer_cycles();
479 		rxq->wdog_ms = IONIC_Q_WDOG_MS;
480 	} else {
481 		/*
482 		 * Ring the doorbell again if no recvs were posted and the
483 		 * recv queue is not empty after the deadline.
484 		 *
485 		 * Exponentially back off the deadline to avoid excessive
486 		 * doorbells when the recv queue is idle.
487 		 */
488 		if (q->head_idx != q->tail_idx) {
489 			then = rxq->last_wdog_cycles;
490 			now = rte_get_timer_cycles();
491 			hz = rte_get_timer_hz();
492 			delta = (now - then) * 1000;
493 
494 			if (delta >= hz * rxq->wdog_ms) {
495 				ionic_q_flush(q);
496 				rxq->last_wdog_cycles = now;
497 
498 				delta = 2 * rxq->wdog_ms;
499 				if (delta > IONIC_Q_WDOG_MAX_MS)
500 					delta = IONIC_Q_WDOG_MAX_MS;
501 
502 				rxq->wdog_ms = delta;
503 			}
504 		}
505 	}
506 }
507 
508 uint16_t
509 ionic_recv_pkts_sg(void *rx_queue, struct rte_mbuf **rx_pkts,
510 		uint16_t nb_pkts)
511 {
512 	struct ionic_rx_qcq *rxq = rx_queue;
513 	struct ionic_rx_service rx_svc;
514 
515 	rx_svc.rx_pkts = rx_pkts;
516 	rx_svc.nb_rx = 0;
517 
518 	ionic_rxq_service_sg(rxq, nb_pkts, &rx_svc);
519 
520 	return rx_svc.nb_rx;
521 }
522 
523 /*
524  * Fills all descriptors with mbufs.
525  */
526 int __rte_cold
527 ionic_rx_fill_sg(struct ionic_rx_qcq *rxq)
528 {
529 	struct ionic_queue *q = &rxq->qcq.q;
530 	uint32_t i;
531 	int err = 0;
532 
533 	for (i = 0; i < q->num_descs - 1u; i++) {
534 		err = ionic_rx_fill_one_sg(rxq);
535 		if (err)
536 			break;
537 
538 		q->head_idx = Q_NEXT_TO_POST(q, 1);
539 	}
540 
541 	ionic_q_flush(q);
542 
543 	return err;
544 }
545