xref: /dpdk/drivers/net/ionic/ionic_rxtx.c (revision 7b2eb674e1daa2e0ea1760e0d5d7207a69f669fd)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2018-2022 Advanced Micro Devices, Inc.
3  */
4 
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <errno.h>
10 #include <stdint.h>
11 #include <stdarg.h>
12 #include <unistd.h>
13 #include <inttypes.h>
14 
15 #include <rte_byteorder.h>
16 #include <rte_common.h>
17 #include <rte_cycles.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_interrupts.h>
21 #include <rte_pci.h>
22 #include <rte_memory.h>
23 #include <rte_memzone.h>
24 #include <rte_launch.h>
25 #include <rte_eal.h>
26 #include <rte_per_lcore.h>
27 #include <rte_lcore.h>
28 #include <rte_atomic.h>
29 #include <rte_branch_prediction.h>
30 #include <rte_mempool.h>
31 #include <rte_malloc.h>
32 #include <rte_mbuf.h>
33 #include <rte_ether.h>
34 #include <ethdev_driver.h>
35 #include <rte_prefetch.h>
36 #include <rte_udp.h>
37 #include <rte_tcp.h>
38 #include <rte_sctp.h>
39 #include <rte_string_fns.h>
40 #include <rte_errno.h>
41 #include <rte_ip.h>
42 #include <rte_net.h>
43 
44 #include "ionic_logs.h"
45 #include "ionic_mac_api.h"
46 #include "ionic_ethdev.h"
47 #include "ionic_lif.h"
48 #include "ionic_rxtx.h"
49 
50 static void
51 ionic_empty_array(void **array, uint32_t cnt, uint16_t idx)
52 {
53 	uint32_t i;
54 
55 	for (i = idx; i < cnt; i++)
56 		if (array[i])
57 			rte_pktmbuf_free_seg(array[i]);
58 
59 	memset(array, 0, sizeof(void *) * cnt);
60 }
61 
62 static void __rte_cold
63 ionic_tx_empty(struct ionic_tx_qcq *txq)
64 {
65 	struct ionic_queue *q = &txq->qcq.q;
66 
67 	ionic_empty_array(q->info, q->num_descs, 0);
68 }
69 
70 static void __rte_cold
71 ionic_rx_empty(struct ionic_rx_qcq *rxq)
72 {
73 	struct ionic_queue *q = &rxq->qcq.q;
74 
75 	ionic_empty_array(q->info, q->num_descs, 0);
76 }
77 
78 /*********************************************************************
79  *
80  *  TX functions
81  *
82  **********************************************************************/
83 
84 void
85 ionic_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
86 		struct rte_eth_txq_info *qinfo)
87 {
88 	struct ionic_tx_qcq *txq = dev->data->tx_queues[queue_id];
89 	struct ionic_queue *q = &txq->qcq.q;
90 
91 	qinfo->nb_desc = q->num_descs;
92 	qinfo->conf.offloads = dev->data->dev_conf.txmode.offloads;
93 	qinfo->conf.tx_deferred_start = txq->flags & IONIC_QCQ_F_DEFERRED;
94 }
95 
96 static __rte_always_inline void
97 ionic_tx_flush(struct ionic_tx_qcq *txq)
98 {
99 	struct ionic_cq *cq = &txq->qcq.cq;
100 	struct ionic_queue *q = &txq->qcq.q;
101 	struct rte_mbuf *txm, *next;
102 	struct ionic_txq_comp *cq_desc_base = cq->base;
103 	struct ionic_txq_comp *cq_desc;
104 	void **info;
105 	u_int32_t comp_index = (u_int32_t)-1;
106 
107 	cq_desc = &cq_desc_base[cq->tail_idx];
108 	while (color_match(cq_desc->color, cq->done_color)) {
109 		cq->tail_idx = Q_NEXT_TO_SRVC(cq, 1);
110 
111 		/* Prefetch the next 4 descriptors (not really useful here) */
112 		if ((cq->tail_idx & 0x3) == 0)
113 			rte_prefetch0(&cq_desc_base[cq->tail_idx]);
114 
115 		if (cq->tail_idx == 0)
116 			cq->done_color = !cq->done_color;
117 
118 		comp_index = cq_desc->comp_index;
119 
120 		cq_desc = &cq_desc_base[cq->tail_idx];
121 	}
122 
123 	if (comp_index != (u_int32_t)-1) {
124 		while (q->tail_idx != comp_index) {
125 			info = IONIC_INFO_PTR(q, q->tail_idx);
126 
127 			q->tail_idx = Q_NEXT_TO_SRVC(q, 1);
128 
129 			/* Prefetch the next 4 descriptors */
130 			if ((q->tail_idx & 0x3) == 0)
131 				/* q desc info */
132 				rte_prefetch0(&q->info[q->tail_idx]);
133 
134 			/*
135 			 * Note: you can just use rte_pktmbuf_free,
136 			 * but this loop is faster
137 			 */
138 			txm = info[0];
139 			while (txm != NULL) {
140 				next = txm->next;
141 				rte_pktmbuf_free_seg(txm);
142 				txm = next;
143 			}
144 		}
145 	}
146 }
147 
148 void __rte_cold
149 ionic_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
150 {
151 	struct ionic_tx_qcq *txq = dev->data->tx_queues[qid];
152 
153 	IONIC_PRINT_CALL();
154 
155 	ionic_qcq_free(&txq->qcq);
156 }
157 
158 int __rte_cold
159 ionic_dev_tx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
160 {
161 	struct ionic_tx_stats *stats;
162 	struct ionic_tx_qcq *txq;
163 
164 	IONIC_PRINT(DEBUG, "Stopping TX queue %u", tx_queue_id);
165 
166 	txq = eth_dev->data->tx_queues[tx_queue_id];
167 
168 	eth_dev->data->tx_queue_state[tx_queue_id] =
169 		RTE_ETH_QUEUE_STATE_STOPPED;
170 
171 	/*
172 	 * Note: we should better post NOP Tx desc and wait for its completion
173 	 * before disabling Tx queue
174 	 */
175 
176 	ionic_lif_txq_deinit(txq);
177 
178 	/* Free all buffers from descriptor ring */
179 	ionic_tx_empty(txq);
180 
181 	stats = &txq->stats;
182 	IONIC_PRINT(DEBUG, "TX queue %u pkts %ju tso %ju",
183 		txq->qcq.q.index, stats->packets, stats->tso);
184 
185 	return 0;
186 }
187 
188 int __rte_cold
189 ionic_dev_tx_queue_setup(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id,
190 		uint16_t nb_desc, uint32_t socket_id,
191 		const struct rte_eth_txconf *tx_conf)
192 {
193 	struct ionic_lif *lif = IONIC_ETH_DEV_TO_LIF(eth_dev);
194 	struct ionic_tx_qcq *txq;
195 	uint64_t offloads;
196 	int err;
197 
198 	if (tx_queue_id >= lif->ntxqcqs) {
199 		IONIC_PRINT(DEBUG, "Queue index %u not available "
200 			"(max %u queues)",
201 			tx_queue_id, lif->ntxqcqs);
202 		return -EINVAL;
203 	}
204 
205 	offloads = tx_conf->offloads | eth_dev->data->dev_conf.txmode.offloads;
206 	IONIC_PRINT(DEBUG,
207 		"Configuring skt %u TX queue %u with %u buffers, offloads %jx",
208 		socket_id, tx_queue_id, nb_desc, offloads);
209 
210 	/* Validate number of receive descriptors */
211 	if (!rte_is_power_of_2(nb_desc) || nb_desc < IONIC_MIN_RING_DESC)
212 		return -EINVAL; /* or use IONIC_DEFAULT_RING_DESC */
213 
214 	/* Free memory prior to re-allocation if needed... */
215 	if (eth_dev->data->tx_queues[tx_queue_id] != NULL) {
216 		ionic_dev_tx_queue_release(eth_dev, tx_queue_id);
217 		eth_dev->data->tx_queues[tx_queue_id] = NULL;
218 	}
219 
220 	eth_dev->data->tx_queue_state[tx_queue_id] =
221 		RTE_ETH_QUEUE_STATE_STOPPED;
222 
223 	err = ionic_tx_qcq_alloc(lif, socket_id, tx_queue_id, nb_desc, &txq);
224 	if (err) {
225 		IONIC_PRINT(DEBUG, "Queue allocation failure");
226 		return -EINVAL;
227 	}
228 
229 	/* Do not start queue with rte_eth_dev_start() */
230 	if (tx_conf->tx_deferred_start)
231 		txq->flags |= IONIC_QCQ_F_DEFERRED;
232 
233 	/* Convert the offload flags into queue flags */
234 	if (offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM)
235 		txq->flags |= IONIC_QCQ_F_CSUM_L3;
236 	if (offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)
237 		txq->flags |= IONIC_QCQ_F_CSUM_TCP;
238 	if (offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM)
239 		txq->flags |= IONIC_QCQ_F_CSUM_UDP;
240 
241 	eth_dev->data->tx_queues[tx_queue_id] = txq;
242 
243 	return 0;
244 }
245 
246 /*
247  * Start Transmit Units for specified queue.
248  */
249 int __rte_cold
250 ionic_dev_tx_queue_start(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
251 {
252 	uint8_t *tx_queue_state = eth_dev->data->tx_queue_state;
253 	struct ionic_tx_qcq *txq;
254 	int err;
255 
256 	if (tx_queue_state[tx_queue_id] == RTE_ETH_QUEUE_STATE_STARTED) {
257 		IONIC_PRINT(DEBUG, "TX queue %u already started",
258 			tx_queue_id);
259 		return 0;
260 	}
261 
262 	txq = eth_dev->data->tx_queues[tx_queue_id];
263 
264 	IONIC_PRINT(DEBUG, "Starting TX queue %u, %u descs",
265 		tx_queue_id, txq->qcq.q.num_descs);
266 
267 	err = ionic_lif_txq_init(txq);
268 	if (err)
269 		return err;
270 
271 	tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
272 
273 	return 0;
274 }
275 
276 static void
277 ionic_tx_tcp_pseudo_csum(struct rte_mbuf *txm)
278 {
279 	struct ether_hdr *eth_hdr = rte_pktmbuf_mtod(txm, struct ether_hdr *);
280 	char *l3_hdr = ((char *)eth_hdr) + txm->l2_len;
281 	struct rte_tcp_hdr *tcp_hdr = (struct rte_tcp_hdr *)
282 		(l3_hdr + txm->l3_len);
283 
284 	if (txm->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) {
285 		struct rte_ipv4_hdr *ipv4_hdr = (struct rte_ipv4_hdr *)l3_hdr;
286 		ipv4_hdr->hdr_checksum = 0;
287 		tcp_hdr->cksum = 0;
288 		tcp_hdr->cksum = rte_ipv4_udptcp_cksum(ipv4_hdr, tcp_hdr);
289 	} else {
290 		struct rte_ipv6_hdr *ipv6_hdr = (struct rte_ipv6_hdr *)l3_hdr;
291 		tcp_hdr->cksum = 0;
292 		tcp_hdr->cksum = rte_ipv6_udptcp_cksum(ipv6_hdr, tcp_hdr);
293 	}
294 }
295 
296 static void
297 ionic_tx_tcp_inner_pseudo_csum(struct rte_mbuf *txm)
298 {
299 	struct ether_hdr *eth_hdr = rte_pktmbuf_mtod(txm, struct ether_hdr *);
300 	char *l3_hdr = ((char *)eth_hdr) + txm->outer_l2_len +
301 		txm->outer_l3_len + txm->l2_len;
302 	struct rte_tcp_hdr *tcp_hdr = (struct rte_tcp_hdr *)
303 		(l3_hdr + txm->l3_len);
304 
305 	if (txm->ol_flags & RTE_MBUF_F_TX_IPV4) {
306 		struct rte_ipv4_hdr *ipv4_hdr = (struct rte_ipv4_hdr *)l3_hdr;
307 		ipv4_hdr->hdr_checksum = 0;
308 		tcp_hdr->cksum = 0;
309 		tcp_hdr->cksum = rte_ipv4_udptcp_cksum(ipv4_hdr, tcp_hdr);
310 	} else {
311 		struct rte_ipv6_hdr *ipv6_hdr = (struct rte_ipv6_hdr *)l3_hdr;
312 		tcp_hdr->cksum = 0;
313 		tcp_hdr->cksum = rte_ipv6_udptcp_cksum(ipv6_hdr, tcp_hdr);
314 	}
315 }
316 
317 static void
318 ionic_tx_tso_post(struct ionic_queue *q, struct ionic_txq_desc *desc,
319 		struct rte_mbuf *txm,
320 		rte_iova_t addr, uint8_t nsge, uint16_t len,
321 		uint32_t hdrlen, uint32_t mss,
322 		bool encap,
323 		uint16_t vlan_tci, bool has_vlan,
324 		bool start, bool done)
325 {
326 	void **info;
327 	uint64_t cmd;
328 	uint8_t flags = 0;
329 	flags |= has_vlan ? IONIC_TXQ_DESC_FLAG_VLAN : 0;
330 	flags |= encap ? IONIC_TXQ_DESC_FLAG_ENCAP : 0;
331 	flags |= start ? IONIC_TXQ_DESC_FLAG_TSO_SOT : 0;
332 	flags |= done ? IONIC_TXQ_DESC_FLAG_TSO_EOT : 0;
333 
334 	cmd = encode_txq_desc_cmd(IONIC_TXQ_DESC_OPCODE_TSO,
335 		flags, nsge, addr);
336 	desc->cmd = rte_cpu_to_le_64(cmd);
337 	desc->len = rte_cpu_to_le_16(len);
338 	desc->vlan_tci = rte_cpu_to_le_16(vlan_tci);
339 	desc->hdr_len = rte_cpu_to_le_16(hdrlen);
340 	desc->mss = rte_cpu_to_le_16(mss);
341 
342 	if (done) {
343 		info = IONIC_INFO_PTR(q, q->head_idx);
344 		info[0] = txm;
345 	}
346 
347 	q->head_idx = Q_NEXT_TO_POST(q, 1);
348 }
349 
350 static struct ionic_txq_desc *
351 ionic_tx_tso_next(struct ionic_tx_qcq *txq, struct ionic_txq_sg_elem **elem)
352 {
353 	struct ionic_queue *q = &txq->qcq.q;
354 	struct ionic_txq_desc *desc_base = q->base;
355 	struct ionic_txq_sg_desc_v1 *sg_desc_base = q->sg_base;
356 	struct ionic_txq_desc *desc = &desc_base[q->head_idx];
357 	struct ionic_txq_sg_desc_v1 *sg_desc = &sg_desc_base[q->head_idx];
358 
359 	*elem = sg_desc->elems;
360 	return desc;
361 }
362 
363 static int
364 ionic_tx_tso(struct ionic_tx_qcq *txq, struct rte_mbuf *txm)
365 {
366 	struct ionic_queue *q = &txq->qcq.q;
367 	struct ionic_tx_stats *stats = &txq->stats;
368 	struct ionic_txq_desc *desc;
369 	struct ionic_txq_sg_elem *elem;
370 	struct rte_mbuf *txm_seg;
371 	rte_iova_t data_iova;
372 	uint64_t desc_addr = 0, next_addr;
373 	uint16_t desc_len = 0;
374 	uint8_t desc_nsge;
375 	uint32_t hdrlen;
376 	uint32_t mss = txm->tso_segsz;
377 	uint32_t frag_left = 0;
378 	uint32_t left;
379 	uint32_t seglen;
380 	uint32_t len;
381 	uint32_t offset = 0;
382 	bool start, done;
383 	bool encap;
384 	bool has_vlan = !!(txm->ol_flags & RTE_MBUF_F_TX_VLAN);
385 	uint16_t vlan_tci = txm->vlan_tci;
386 	uint64_t ol_flags = txm->ol_flags;
387 
388 	encap = ((ol_flags & RTE_MBUF_F_TX_OUTER_IP_CKSUM) ||
389 		 (ol_flags & RTE_MBUF_F_TX_OUTER_UDP_CKSUM)) &&
390 		((ol_flags & RTE_MBUF_F_TX_OUTER_IPV4) ||
391 		 (ol_flags & RTE_MBUF_F_TX_OUTER_IPV6));
392 
393 	/* Preload inner-most TCP csum field with IP pseudo hdr
394 	 * calculated with IP length set to zero.  HW will later
395 	 * add in length to each TCP segment resulting from the TSO.
396 	 */
397 
398 	if (encap) {
399 		ionic_tx_tcp_inner_pseudo_csum(txm);
400 		hdrlen = txm->outer_l2_len + txm->outer_l3_len +
401 			txm->l2_len + txm->l3_len + txm->l4_len;
402 	} else {
403 		ionic_tx_tcp_pseudo_csum(txm);
404 		hdrlen = txm->l2_len + txm->l3_len + txm->l4_len;
405 	}
406 
407 	seglen = hdrlen + mss;
408 	left = txm->data_len;
409 	data_iova = rte_mbuf_data_iova(txm);
410 
411 	desc = ionic_tx_tso_next(txq, &elem);
412 	start = true;
413 
414 	/* Chop data up into desc segments */
415 
416 	while (left > 0) {
417 		len = RTE_MIN(seglen, left);
418 		frag_left = seglen - len;
419 		desc_addr = rte_cpu_to_le_64(data_iova + offset);
420 		desc_len = len;
421 		desc_nsge = 0;
422 		left -= len;
423 		offset += len;
424 		if (txm->nb_segs > 1 && frag_left > 0)
425 			continue;
426 		done = (txm->nb_segs == 1 && left == 0);
427 		ionic_tx_tso_post(q, desc, txm,
428 			desc_addr, desc_nsge, desc_len,
429 			hdrlen, mss,
430 			encap,
431 			vlan_tci, has_vlan,
432 			start, done);
433 		desc = ionic_tx_tso_next(txq, &elem);
434 		start = false;
435 		seglen = mss;
436 	}
437 
438 	/* Chop frags into desc segments */
439 
440 	txm_seg = txm->next;
441 	while (txm_seg != NULL) {
442 		offset = 0;
443 		data_iova = rte_mbuf_data_iova(txm_seg);
444 		left = txm_seg->data_len;
445 
446 		while (left > 0) {
447 			next_addr = rte_cpu_to_le_64(data_iova + offset);
448 			if (frag_left > 0) {
449 				len = RTE_MIN(frag_left, left);
450 				frag_left -= len;
451 				elem->addr = next_addr;
452 				elem->len = rte_cpu_to_le_16(len);
453 				elem++;
454 				desc_nsge++;
455 			} else {
456 				len = RTE_MIN(mss, left);
457 				frag_left = mss - len;
458 				desc_addr = next_addr;
459 				desc_len = len;
460 				desc_nsge = 0;
461 			}
462 			left -= len;
463 			offset += len;
464 			if (txm_seg->next != NULL && frag_left > 0)
465 				continue;
466 
467 			done = (txm_seg->next == NULL && left == 0);
468 			ionic_tx_tso_post(q, desc, txm_seg,
469 				desc_addr, desc_nsge, desc_len,
470 				hdrlen, mss,
471 				encap,
472 				vlan_tci, has_vlan,
473 				start, done);
474 			desc = ionic_tx_tso_next(txq, &elem);
475 			start = false;
476 		}
477 
478 		txm_seg = txm_seg->next;
479 	}
480 
481 	stats->tso++;
482 
483 	return 0;
484 }
485 
486 static __rte_always_inline int
487 ionic_tx(struct ionic_tx_qcq *txq, struct rte_mbuf *txm)
488 {
489 	struct ionic_queue *q = &txq->qcq.q;
490 	struct ionic_txq_desc *desc, *desc_base = q->base;
491 	struct ionic_txq_sg_desc_v1 *sg_desc_base = q->sg_base;
492 	struct ionic_txq_sg_elem *elem;
493 	struct ionic_tx_stats *stats = &txq->stats;
494 	struct rte_mbuf *txm_seg;
495 	void **info;
496 	bool encap;
497 	bool has_vlan;
498 	uint64_t ol_flags = txm->ol_flags;
499 	uint64_t addr, cmd;
500 	uint8_t opcode = IONIC_TXQ_DESC_OPCODE_CSUM_NONE;
501 	uint8_t flags = 0;
502 
503 	desc = &desc_base[q->head_idx];
504 	info = IONIC_INFO_PTR(q, q->head_idx);
505 
506 	if ((ol_flags & RTE_MBUF_F_TX_IP_CKSUM) &&
507 	    (txq->flags & IONIC_QCQ_F_CSUM_L3)) {
508 		opcode = IONIC_TXQ_DESC_OPCODE_CSUM_HW;
509 		flags |= IONIC_TXQ_DESC_FLAG_CSUM_L3;
510 	}
511 
512 	if (((ol_flags & RTE_MBUF_F_TX_TCP_CKSUM) &&
513 	     (txq->flags & IONIC_QCQ_F_CSUM_TCP)) ||
514 	    ((ol_flags & RTE_MBUF_F_TX_UDP_CKSUM) &&
515 	     (txq->flags & IONIC_QCQ_F_CSUM_UDP))) {
516 		opcode = IONIC_TXQ_DESC_OPCODE_CSUM_HW;
517 		flags |= IONIC_TXQ_DESC_FLAG_CSUM_L4;
518 	}
519 
520 	if (opcode == IONIC_TXQ_DESC_OPCODE_CSUM_NONE)
521 		stats->no_csum++;
522 
523 	has_vlan = (ol_flags & RTE_MBUF_F_TX_VLAN);
524 	encap = ((ol_flags & RTE_MBUF_F_TX_OUTER_IP_CKSUM) ||
525 			(ol_flags & RTE_MBUF_F_TX_OUTER_UDP_CKSUM)) &&
526 			((ol_flags & RTE_MBUF_F_TX_OUTER_IPV4) ||
527 			 (ol_flags & RTE_MBUF_F_TX_OUTER_IPV6));
528 
529 	flags |= has_vlan ? IONIC_TXQ_DESC_FLAG_VLAN : 0;
530 	flags |= encap ? IONIC_TXQ_DESC_FLAG_ENCAP : 0;
531 
532 	addr = rte_cpu_to_le_64(rte_mbuf_data_iova(txm));
533 
534 	cmd = encode_txq_desc_cmd(opcode, flags, txm->nb_segs - 1, addr);
535 	desc->cmd = rte_cpu_to_le_64(cmd);
536 	desc->len = rte_cpu_to_le_16(txm->data_len);
537 	desc->vlan_tci = rte_cpu_to_le_16(txm->vlan_tci);
538 
539 	info[0] = txm;
540 
541 	elem = sg_desc_base[q->head_idx].elems;
542 
543 	txm_seg = txm->next;
544 	while (txm_seg != NULL) {
545 		elem->len = rte_cpu_to_le_16(txm_seg->data_len);
546 		elem->addr = rte_cpu_to_le_64(rte_mbuf_data_iova(txm_seg));
547 		elem++;
548 		txm_seg = txm_seg->next;
549 	}
550 
551 	q->head_idx = Q_NEXT_TO_POST(q, 1);
552 
553 	return 0;
554 }
555 
556 uint16_t
557 ionic_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
558 		uint16_t nb_pkts)
559 {
560 	struct ionic_tx_qcq *txq = tx_queue;
561 	struct ionic_queue *q = &txq->qcq.q;
562 	struct ionic_tx_stats *stats = &txq->stats;
563 	struct rte_mbuf *mbuf;
564 	uint32_t next_q_head_idx;
565 	uint32_t bytes_tx = 0;
566 	uint16_t nb_avail, nb_tx = 0;
567 	int err;
568 
569 	/* Cleaning old buffers */
570 	ionic_tx_flush(txq);
571 
572 	nb_avail = ionic_q_space_avail(q);
573 	if (unlikely(nb_avail < nb_pkts)) {
574 		stats->stop += nb_pkts - nb_avail;
575 		nb_pkts = nb_avail;
576 	}
577 
578 	while (nb_tx < nb_pkts) {
579 		next_q_head_idx = Q_NEXT_TO_POST(q, 1);
580 		if ((next_q_head_idx & 0x3) == 0) {
581 			struct ionic_txq_desc *desc_base = q->base;
582 			rte_prefetch0(&desc_base[next_q_head_idx]);
583 			rte_prefetch0(&q->info[next_q_head_idx]);
584 		}
585 
586 		mbuf = tx_pkts[nb_tx];
587 
588 		if (mbuf->ol_flags & RTE_MBUF_F_TX_TCP_SEG)
589 			err = ionic_tx_tso(txq, mbuf);
590 		else
591 			err = ionic_tx(txq, mbuf);
592 		if (err) {
593 			stats->drop += nb_pkts - nb_tx;
594 			break;
595 		}
596 
597 		bytes_tx += mbuf->pkt_len;
598 		nb_tx++;
599 	}
600 
601 	if (nb_tx > 0) {
602 		rte_wmb();
603 		ionic_q_flush(q);
604 	}
605 
606 	stats->packets += nb_tx;
607 	stats->bytes += bytes_tx;
608 
609 	return nb_tx;
610 }
611 
612 /*********************************************************************
613  *
614  *  TX prep functions
615  *
616  **********************************************************************/
617 
618 #define IONIC_TX_OFFLOAD_MASK (RTE_MBUF_F_TX_IPV4 |		\
619 	RTE_MBUF_F_TX_IPV6 |		\
620 	RTE_MBUF_F_TX_VLAN |		\
621 	RTE_MBUF_F_TX_IP_CKSUM |	\
622 	RTE_MBUF_F_TX_TCP_SEG |	\
623 	RTE_MBUF_F_TX_L4_MASK)
624 
625 #define IONIC_TX_OFFLOAD_NOTSUP_MASK \
626 	(RTE_MBUF_F_TX_OFFLOAD_MASK ^ IONIC_TX_OFFLOAD_MASK)
627 
628 uint16_t
629 ionic_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
630 {
631 	struct ionic_tx_qcq *txq = tx_queue;
632 	struct rte_mbuf *txm;
633 	uint64_t offloads;
634 	int i = 0;
635 
636 	for (i = 0; i < nb_pkts; i++) {
637 		txm = tx_pkts[i];
638 
639 		if (txm->nb_segs > txq->num_segs_fw) {
640 			rte_errno = -EINVAL;
641 			break;
642 		}
643 
644 		offloads = txm->ol_flags;
645 
646 		if (offloads & IONIC_TX_OFFLOAD_NOTSUP_MASK) {
647 			rte_errno = -ENOTSUP;
648 			break;
649 		}
650 	}
651 
652 	return i;
653 }
654 
655 /*********************************************************************
656  *
657  *  RX functions
658  *
659  **********************************************************************/
660 
661 static void ionic_rx_recycle(struct ionic_queue *q, uint32_t q_desc_index,
662 		struct rte_mbuf *mbuf);
663 
664 void
665 ionic_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
666 		struct rte_eth_rxq_info *qinfo)
667 {
668 	struct ionic_rx_qcq *rxq = dev->data->rx_queues[queue_id];
669 	struct ionic_queue *q = &rxq->qcq.q;
670 
671 	qinfo->mp = rxq->mb_pool;
672 	qinfo->scattered_rx = dev->data->scattered_rx;
673 	qinfo->nb_desc = q->num_descs;
674 	qinfo->conf.rx_deferred_start = rxq->flags & IONIC_QCQ_F_DEFERRED;
675 	qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
676 }
677 
678 void __rte_cold
679 ionic_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
680 {
681 	struct ionic_rx_qcq *rxq = dev->data->rx_queues[qid];
682 
683 	if (!rxq)
684 		return;
685 
686 	IONIC_PRINT_CALL();
687 
688 	ionic_qcq_free(&rxq->qcq);
689 }
690 
691 int __rte_cold
692 ionic_dev_rx_queue_setup(struct rte_eth_dev *eth_dev,
693 		uint16_t rx_queue_id,
694 		uint16_t nb_desc,
695 		uint32_t socket_id,
696 		const struct rte_eth_rxconf *rx_conf,
697 		struct rte_mempool *mp)
698 {
699 	struct ionic_lif *lif = IONIC_ETH_DEV_TO_LIF(eth_dev);
700 	struct ionic_rx_qcq *rxq;
701 	uint64_t offloads;
702 	int err;
703 
704 	if (rx_queue_id >= lif->nrxqcqs) {
705 		IONIC_PRINT(ERR,
706 			"Queue index %u not available (max %u queues)",
707 			rx_queue_id, lif->nrxqcqs);
708 		return -EINVAL;
709 	}
710 
711 	offloads = rx_conf->offloads | eth_dev->data->dev_conf.rxmode.offloads;
712 	IONIC_PRINT(DEBUG,
713 		"Configuring skt %u RX queue %u with %u buffers, offloads %jx",
714 		socket_id, rx_queue_id, nb_desc, offloads);
715 
716 	if (!rx_conf->rx_drop_en)
717 		IONIC_PRINT(WARNING, "No-drop mode is not supported");
718 
719 	/* Validate number of receive descriptors */
720 	if (!rte_is_power_of_2(nb_desc) ||
721 			nb_desc < IONIC_MIN_RING_DESC ||
722 			nb_desc > IONIC_MAX_RING_DESC) {
723 		IONIC_PRINT(ERR,
724 			"Bad descriptor count (%u) for queue %u (min: %u)",
725 			nb_desc, rx_queue_id, IONIC_MIN_RING_DESC);
726 		return -EINVAL; /* or use IONIC_DEFAULT_RING_DESC */
727 	}
728 
729 	/* Free memory prior to re-allocation if needed... */
730 	if (eth_dev->data->rx_queues[rx_queue_id] != NULL) {
731 		ionic_dev_rx_queue_release(eth_dev, rx_queue_id);
732 		eth_dev->data->rx_queues[rx_queue_id] = NULL;
733 	}
734 
735 	eth_dev->data->rx_queue_state[rx_queue_id] =
736 		RTE_ETH_QUEUE_STATE_STOPPED;
737 
738 	err = ionic_rx_qcq_alloc(lif, socket_id, rx_queue_id, nb_desc, mp,
739 			&rxq);
740 	if (err) {
741 		IONIC_PRINT(ERR, "Queue %d allocation failure", rx_queue_id);
742 		return -EINVAL;
743 	}
744 
745 	rxq->mb_pool = mp;
746 
747 	/*
748 	 * Note: the interface does not currently support
749 	 * RTE_ETH_RX_OFFLOAD_KEEP_CRC, please also consider ETHER_CRC_LEN
750 	 * when the adapter will be able to keep the CRC and subtract
751 	 * it to the length for all received packets:
752 	 * if (eth_dev->data->dev_conf.rxmode.offloads &
753 	 *     RTE_ETH_RX_OFFLOAD_KEEP_CRC)
754 	 *   rxq->crc_len = ETHER_CRC_LEN;
755 	 */
756 
757 	/* Do not start queue with rte_eth_dev_start() */
758 	if (rx_conf->rx_deferred_start)
759 		rxq->flags |= IONIC_QCQ_F_DEFERRED;
760 
761 	eth_dev->data->rx_queues[rx_queue_id] = rxq;
762 
763 	return 0;
764 }
765 
766 static __rte_always_inline void
767 ionic_rx_clean(struct ionic_rx_qcq *rxq,
768 		uint32_t q_desc_index, uint32_t cq_desc_index,
769 		struct ionic_rx_service *rx_svc)
770 {
771 	struct ionic_queue *q = &rxq->qcq.q;
772 	struct ionic_cq *cq = &rxq->qcq.cq;
773 	struct ionic_rxq_comp *cq_desc_base = cq->base;
774 	struct ionic_rxq_comp *cq_desc = &cq_desc_base[cq_desc_index];
775 	struct rte_mbuf *rxm, *rxm_seg;
776 	uint64_t pkt_flags = 0;
777 	uint32_t pkt_type;
778 	struct ionic_rx_stats *stats = &rxq->stats;
779 	uint32_t left;
780 	void **info;
781 
782 	assert(q_desc_index == cq_desc->comp_index);
783 
784 	info = IONIC_INFO_PTR(q, cq_desc->comp_index);
785 
786 	rxm = info[0];
787 
788 	if (cq_desc->status) {
789 		stats->bad_cq_status++;
790 		ionic_rx_recycle(q, q_desc_index, rxm);
791 		return;
792 	}
793 
794 	if (rx_svc->nb_rx >= rx_svc->nb_pkts) {
795 		stats->no_room++;
796 		ionic_rx_recycle(q, q_desc_index, rxm);
797 		return;
798 	}
799 
800 	if (cq_desc->len > rxq->frame_size || cq_desc->len == 0) {
801 		stats->bad_len++;
802 		ionic_rx_recycle(q, q_desc_index, rxm);
803 		return;
804 	}
805 
806 	rxm->data_off = RTE_PKTMBUF_HEADROOM;
807 	rte_prefetch1((char *)rxm->buf_addr + rxm->data_off);
808 	rxm->nb_segs = 1; /* cq_desc->num_sg_elems */
809 	rxm->pkt_len = cq_desc->len;
810 	rxm->port = rxq->qcq.lif->port_id;
811 
812 	rxm->data_len = RTE_MIN(rxq->hdr_seg_size, cq_desc->len);
813 	left = cq_desc->len - rxm->data_len;
814 
815 	rxm_seg = rxm->next;
816 	while (rxm_seg && left) {
817 		rxm_seg->data_len = RTE_MIN(rxq->seg_size, left);
818 		left -= rxm_seg->data_len;
819 
820 		rxm_seg = rxm_seg->next;
821 		rxm->nb_segs++;
822 	}
823 
824 	/* RSS */
825 	pkt_flags |= RTE_MBUF_F_RX_RSS_HASH;
826 	rxm->hash.rss = rte_le_to_cpu_32(cq_desc->rss_hash);
827 
828 	/* Vlan Strip */
829 	if (cq_desc->csum_flags & IONIC_RXQ_COMP_CSUM_F_VLAN) {
830 		pkt_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
831 		rxm->vlan_tci = rte_le_to_cpu_16(cq_desc->vlan_tci);
832 	}
833 
834 	/* Checksum */
835 	if (cq_desc->csum_flags & IONIC_RXQ_COMP_CSUM_F_CALC) {
836 		if (cq_desc->csum_flags & IONIC_RXQ_COMP_CSUM_F_IP_OK)
837 			pkt_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
838 		else if (cq_desc->csum_flags & IONIC_RXQ_COMP_CSUM_F_IP_BAD)
839 			pkt_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
840 
841 		if ((cq_desc->csum_flags & IONIC_RXQ_COMP_CSUM_F_TCP_OK) ||
842 			(cq_desc->csum_flags & IONIC_RXQ_COMP_CSUM_F_UDP_OK))
843 			pkt_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
844 		else if ((cq_desc->csum_flags &
845 				IONIC_RXQ_COMP_CSUM_F_TCP_BAD) ||
846 				(cq_desc->csum_flags &
847 				IONIC_RXQ_COMP_CSUM_F_UDP_BAD))
848 			pkt_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
849 	}
850 
851 	rxm->ol_flags = pkt_flags;
852 
853 	/* Packet Type */
854 	switch (cq_desc->pkt_type_color & IONIC_RXQ_COMP_PKT_TYPE_MASK) {
855 	case IONIC_PKT_TYPE_IPV4:
856 		pkt_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4;
857 		break;
858 	case IONIC_PKT_TYPE_IPV6:
859 		pkt_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6;
860 		break;
861 	case IONIC_PKT_TYPE_IPV4_TCP:
862 		pkt_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4 |
863 			RTE_PTYPE_L4_TCP;
864 		break;
865 	case IONIC_PKT_TYPE_IPV6_TCP:
866 		pkt_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6 |
867 			RTE_PTYPE_L4_TCP;
868 		break;
869 	case IONIC_PKT_TYPE_IPV4_UDP:
870 		pkt_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4 |
871 			RTE_PTYPE_L4_UDP;
872 		break;
873 	case IONIC_PKT_TYPE_IPV6_UDP:
874 		pkt_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6 |
875 			RTE_PTYPE_L4_UDP;
876 		break;
877 	default:
878 		{
879 			struct rte_ether_hdr *eth_h = rte_pktmbuf_mtod(rxm,
880 				struct rte_ether_hdr *);
881 			uint16_t ether_type = eth_h->ether_type;
882 			if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_ARP))
883 				pkt_type = RTE_PTYPE_L2_ETHER_ARP;
884 			else
885 				pkt_type = RTE_PTYPE_UNKNOWN;
886 			stats->mtods++;
887 			break;
888 		}
889 	}
890 
891 	rxm->packet_type = pkt_type;
892 
893 	rx_svc->rx_pkts[rx_svc->nb_rx] = rxm;
894 	rx_svc->nb_rx++;
895 
896 	stats->packets++;
897 	stats->bytes += rxm->pkt_len;
898 }
899 
900 static void
901 ionic_rx_recycle(struct ionic_queue *q, uint32_t q_desc_index,
902 		 struct rte_mbuf *mbuf)
903 {
904 	struct ionic_rxq_desc *desc_base = q->base;
905 	struct ionic_rxq_desc *old = &desc_base[q_desc_index];
906 	struct ionic_rxq_desc *new = &desc_base[q->head_idx];
907 
908 	new->addr = old->addr;
909 	new->len = old->len;
910 
911 	q->info[q->head_idx] = mbuf;
912 
913 	q->head_idx = Q_NEXT_TO_POST(q, 1);
914 
915 	ionic_q_flush(q);
916 }
917 
918 static __rte_always_inline int
919 ionic_rx_fill(struct ionic_rx_qcq *rxq)
920 {
921 	struct ionic_queue *q = &rxq->qcq.q;
922 	struct ionic_rxq_desc *desc, *desc_base = q->base;
923 	struct ionic_rxq_sg_desc *sg_desc, *sg_desc_base = q->sg_base;
924 	struct ionic_rxq_sg_elem *elem;
925 	void **info;
926 	rte_iova_t dma_addr;
927 	uint32_t i, j;
928 
929 	/* Initialize software ring entries */
930 	for (i = ionic_q_space_avail(q); i; i--) {
931 		struct rte_mbuf *rxm = rte_mbuf_raw_alloc(rxq->mb_pool);
932 		struct rte_mbuf *prev_rxm_seg;
933 
934 		if (rxm == NULL) {
935 			IONIC_PRINT(ERR, "RX mbuf alloc failed");
936 			return -ENOMEM;
937 		}
938 
939 		info = IONIC_INFO_PTR(q, q->head_idx);
940 
941 		desc = &desc_base[q->head_idx];
942 		dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(rxm));
943 		desc->addr = dma_addr;
944 		rxm->next = NULL;
945 
946 		prev_rxm_seg = rxm;
947 		sg_desc = &sg_desc_base[q->head_idx];
948 		elem = sg_desc->elems;
949 		for (j = 0; j < q->num_segs - 1u; j++) {
950 			struct rte_mbuf *rxm_seg;
951 			rte_iova_t data_iova;
952 
953 			rxm_seg = rte_mbuf_raw_alloc(rxq->mb_pool);
954 			if (rxm_seg == NULL) {
955 				IONIC_PRINT(ERR, "RX mbuf alloc failed");
956 				return -ENOMEM;
957 			}
958 
959 			rxm_seg->data_off = 0;
960 			data_iova = rte_mbuf_data_iova(rxm_seg);
961 			dma_addr = rte_cpu_to_le_64(data_iova);
962 			elem->addr = dma_addr;
963 			elem++;
964 
965 			rxm_seg->next = NULL;
966 			prev_rxm_seg->next = rxm_seg;
967 			prev_rxm_seg = rxm_seg;
968 		}
969 
970 		info[0] = rxm;
971 
972 		q->head_idx = Q_NEXT_TO_POST(q, 1);
973 	}
974 
975 	ionic_q_flush(q);
976 
977 	return 0;
978 }
979 
980 /*
981  * Perform one-time initialization of descriptor fields
982  * which will not change for the life of the queue.
983  */
984 static void __rte_cold
985 ionic_rx_init_descriptors(struct ionic_rx_qcq *rxq)
986 {
987 	struct ionic_queue *q = &rxq->qcq.q;
988 	struct ionic_rxq_desc *desc, *desc_base = q->base;
989 	struct ionic_rxq_sg_desc *sg_desc, *sg_desc_base = q->sg_base;
990 	uint32_t i, j;
991 	uint8_t opcode;
992 
993 	opcode = (q->num_segs > 1) ?
994 		IONIC_RXQ_DESC_OPCODE_SG : IONIC_RXQ_DESC_OPCODE_SIMPLE;
995 
996 	/*
997 	 * NB: Only the first segment needs to leave headroom (hdr_seg_size).
998 	 *     Later segments (seg_size) do not.
999 	 */
1000 	for (i = 0; i < q->num_descs; i++) {
1001 		desc = &desc_base[i];
1002 		desc->len = rte_cpu_to_le_16(rxq->hdr_seg_size);
1003 		desc->opcode = opcode;
1004 
1005 		sg_desc = &sg_desc_base[i];
1006 		for (j = 0; j < q->num_segs - 1u; j++)
1007 			sg_desc->elems[j].len =
1008 				rte_cpu_to_le_16(rxq->seg_size);
1009 	}
1010 }
1011 
1012 /*
1013  * Start Receive Units for specified queue.
1014  */
1015 int __rte_cold
1016 ionic_dev_rx_queue_start(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
1017 {
1018 	uint8_t *rx_queue_state = eth_dev->data->rx_queue_state;
1019 	struct ionic_rx_qcq *rxq;
1020 	struct ionic_queue *q;
1021 	int err;
1022 
1023 	if (rx_queue_state[rx_queue_id] == RTE_ETH_QUEUE_STATE_STARTED) {
1024 		IONIC_PRINT(DEBUG, "RX queue %u already started",
1025 			rx_queue_id);
1026 		return 0;
1027 	}
1028 
1029 	rxq = eth_dev->data->rx_queues[rx_queue_id];
1030 	q = &rxq->qcq.q;
1031 
1032 	rxq->frame_size = rxq->qcq.lif->frame_size - RTE_ETHER_CRC_LEN;
1033 
1034 	/* Recalculate segment count based on MTU */
1035 	q->num_segs = 1 +
1036 		(rxq->frame_size + RTE_PKTMBUF_HEADROOM - 1) / rxq->seg_size;
1037 
1038 	IONIC_PRINT(DEBUG, "Starting RX queue %u, %u descs, size %u segs %u",
1039 		rx_queue_id, q->num_descs, rxq->frame_size, q->num_segs);
1040 
1041 	ionic_rx_init_descriptors(rxq);
1042 
1043 	err = ionic_lif_rxq_init(rxq);
1044 	if (err)
1045 		return err;
1046 
1047 	/* Allocate buffers for descriptor rings */
1048 	if (ionic_rx_fill(rxq) != 0) {
1049 		IONIC_PRINT(ERR, "Could not alloc mbuf for queue:%d",
1050 			rx_queue_id);
1051 		return -1;
1052 	}
1053 
1054 	rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1055 
1056 	return 0;
1057 }
1058 
1059 static __rte_always_inline void
1060 ionic_rxq_service(struct ionic_rx_qcq *rxq, uint32_t work_to_do,
1061 		struct ionic_rx_service *rx_svc)
1062 {
1063 	struct ionic_cq *cq = &rxq->qcq.cq;
1064 	struct ionic_queue *q = &rxq->qcq.q;
1065 	struct ionic_rxq_comp *cq_desc, *cq_desc_base = cq->base;
1066 	bool more;
1067 	uint32_t curr_q_tail_idx, curr_cq_tail_idx;
1068 	uint32_t work_done = 0;
1069 
1070 	if (work_to_do == 0)
1071 		return;
1072 
1073 	cq_desc = &cq_desc_base[cq->tail_idx];
1074 	while (color_match(cq_desc->pkt_type_color, cq->done_color)) {
1075 		curr_cq_tail_idx = cq->tail_idx;
1076 		cq->tail_idx = Q_NEXT_TO_SRVC(cq, 1);
1077 
1078 		if (cq->tail_idx == 0)
1079 			cq->done_color = !cq->done_color;
1080 
1081 		/* Prefetch the next 4 descriptors */
1082 		if ((cq->tail_idx & 0x3) == 0)
1083 			rte_prefetch0(&cq_desc_base[cq->tail_idx]);
1084 
1085 		do {
1086 			more = (q->tail_idx != cq_desc->comp_index);
1087 
1088 			curr_q_tail_idx = q->tail_idx;
1089 			q->tail_idx = Q_NEXT_TO_SRVC(q, 1);
1090 
1091 			/* Prefetch the next 4 descriptors */
1092 			if ((q->tail_idx & 0x3) == 0)
1093 				/* q desc info */
1094 				rte_prefetch0(&q->info[q->tail_idx]);
1095 
1096 			ionic_rx_clean(rxq, curr_q_tail_idx, curr_cq_tail_idx,
1097 				rx_svc);
1098 
1099 		} while (more);
1100 
1101 		if (++work_done == work_to_do)
1102 			break;
1103 
1104 		cq_desc = &cq_desc_base[cq->tail_idx];
1105 	}
1106 }
1107 
1108 /*
1109  * Stop Receive Units for specified queue.
1110  */
1111 int __rte_cold
1112 ionic_dev_rx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
1113 {
1114 	uint8_t *rx_queue_state = eth_dev->data->rx_queue_state;
1115 	struct ionic_rx_stats *stats;
1116 	struct ionic_rx_qcq *rxq;
1117 
1118 	IONIC_PRINT(DEBUG, "Stopping RX queue %u", rx_queue_id);
1119 
1120 	rxq = eth_dev->data->rx_queues[rx_queue_id];
1121 
1122 	rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1123 
1124 	ionic_lif_rxq_deinit(rxq);
1125 
1126 	/* Free all buffers from descriptor ring */
1127 	ionic_rx_empty(rxq);
1128 
1129 	stats = &rxq->stats;
1130 	IONIC_PRINT(DEBUG, "RX queue %u pkts %ju mtod %ju",
1131 		rxq->qcq.q.index, stats->packets, stats->mtods);
1132 
1133 	return 0;
1134 }
1135 
1136 uint16_t
1137 ionic_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1138 		uint16_t nb_pkts)
1139 {
1140 	struct ionic_rx_qcq *rxq = rx_queue;
1141 	struct ionic_rx_service rx_svc;
1142 
1143 	rx_svc.rx_pkts = rx_pkts;
1144 	rx_svc.nb_pkts = nb_pkts;
1145 	rx_svc.nb_rx = 0;
1146 
1147 	ionic_rxq_service(rxq, nb_pkts, &rx_svc);
1148 
1149 	ionic_rx_fill(rxq);
1150 
1151 	return rx_svc.nb_rx;
1152 }
1153