xref: /dpdk/drivers/net/ionic/ionic_rxtx.c (revision 5f443cc0f905a9bf25f6274aff58e6e29f049466)
1 /* SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0)
2  * Copyright(c) 2018-2019 Pensando Systems, Inc. All rights reserved.
3  */
4 
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <errno.h>
10 #include <stdint.h>
11 #include <stdarg.h>
12 #include <unistd.h>
13 #include <inttypes.h>
14 
15 #include <rte_byteorder.h>
16 #include <rte_common.h>
17 #include <rte_cycles.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_interrupts.h>
21 #include <rte_pci.h>
22 #include <rte_memory.h>
23 #include <rte_memzone.h>
24 #include <rte_launch.h>
25 #include <rte_eal.h>
26 #include <rte_per_lcore.h>
27 #include <rte_lcore.h>
28 #include <rte_atomic.h>
29 #include <rte_branch_prediction.h>
30 #include <rte_mempool.h>
31 #include <rte_malloc.h>
32 #include <rte_mbuf.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev_driver.h>
35 #include <rte_prefetch.h>
36 #include <rte_udp.h>
37 #include <rte_tcp.h>
38 #include <rte_sctp.h>
39 #include <rte_string_fns.h>
40 #include <rte_errno.h>
41 #include <rte_ip.h>
42 #include <rte_net.h>
43 
44 #include "ionic_logs.h"
45 #include "ionic_mac_api.h"
46 #include "ionic_ethdev.h"
47 #include "ionic_lif.h"
48 #include "ionic_rxtx.h"
49 
50 #define IONIC_RX_RING_DOORBELL_STRIDE		(32 - 1)
51 
52 /*********************************************************************
53  *
54  *  TX functions
55  *
56  **********************************************************************/
57 
58 void
59 ionic_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
60 		struct rte_eth_txq_info *qinfo)
61 {
62 	struct ionic_qcq *txq = dev->data->tx_queues[queue_id];
63 	struct ionic_queue *q = &txq->q;
64 
65 	qinfo->nb_desc = q->num_descs;
66 	qinfo->conf.offloads = txq->offloads;
67 	qinfo->conf.tx_deferred_start = txq->flags & IONIC_QCQ_F_DEFERRED;
68 }
69 
70 static inline void __rte_cold
71 ionic_tx_flush(struct ionic_cq *cq)
72 {
73 	struct ionic_queue *q = cq->bound_q;
74 	struct ionic_desc_info *q_desc_info;
75 	struct rte_mbuf *txm, *next;
76 	struct ionic_txq_comp *cq_desc_base = cq->base;
77 	struct ionic_txq_comp *cq_desc;
78 	u_int32_t comp_index = (u_int32_t)-1;
79 
80 	cq_desc = &cq_desc_base[cq->tail_idx];
81 	while (color_match(cq_desc->color, cq->done_color)) {
82 		cq->tail_idx = (cq->tail_idx + 1) & (cq->num_descs - 1);
83 
84 		/* Prefetch the next 4 descriptors (not really useful here) */
85 		if ((cq->tail_idx & 0x3) == 0)
86 			rte_prefetch0(&cq_desc_base[cq->tail_idx]);
87 
88 		if (cq->tail_idx == 0)
89 			cq->done_color = !cq->done_color;
90 
91 		comp_index = cq_desc->comp_index;
92 
93 		cq_desc = &cq_desc_base[cq->tail_idx];
94 	}
95 
96 	if (comp_index != (u_int32_t)-1) {
97 		while (q->tail_idx != comp_index) {
98 			q_desc_info = &q->info[q->tail_idx];
99 
100 			q->tail_idx = (q->tail_idx + 1) & (q->num_descs - 1);
101 
102 			/* Prefetch the next 4 descriptors */
103 			if ((q->tail_idx & 0x3) == 0)
104 				/* q desc info */
105 				rte_prefetch0(&q->info[q->tail_idx]);
106 
107 			/*
108 			 * Note: you can just use rte_pktmbuf_free,
109 			 * but this loop is faster
110 			 */
111 			txm = q_desc_info->cb_arg;
112 			while (txm != NULL) {
113 				next = txm->next;
114 				rte_pktmbuf_free_seg(txm);
115 				txm = next;
116 			}
117 		}
118 	}
119 }
120 
121 void __rte_cold
122 ionic_dev_tx_queue_release(void *tx_queue)
123 {
124 	struct ionic_qcq *txq = (struct ionic_qcq *)tx_queue;
125 
126 	IONIC_PRINT_CALL();
127 
128 	ionic_lif_txq_deinit(txq);
129 
130 	ionic_qcq_free(txq);
131 }
132 
133 int __rte_cold
134 ionic_dev_tx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
135 {
136 	struct ionic_qcq *txq;
137 
138 	IONIC_PRINT(DEBUG, "Stopping TX queue %u", tx_queue_id);
139 
140 	txq = eth_dev->data->tx_queues[tx_queue_id];
141 
142 	eth_dev->data->tx_queue_state[tx_queue_id] =
143 		RTE_ETH_QUEUE_STATE_STOPPED;
144 
145 	/*
146 	 * Note: we should better post NOP Tx desc and wait for its completion
147 	 * before disabling Tx queue
148 	 */
149 
150 	ionic_qcq_disable(txq);
151 
152 	ionic_tx_flush(&txq->cq);
153 
154 	return 0;
155 }
156 
157 int __rte_cold
158 ionic_dev_tx_queue_setup(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id,
159 		uint16_t nb_desc, uint32_t socket_id,
160 		const struct rte_eth_txconf *tx_conf)
161 {
162 	struct ionic_lif *lif = IONIC_ETH_DEV_TO_LIF(eth_dev);
163 	struct ionic_qcq *txq;
164 	uint64_t offloads;
165 	int err;
166 
167 	if (tx_queue_id >= lif->ntxqcqs) {
168 		IONIC_PRINT(DEBUG, "Queue index %u not available "
169 			"(max %u queues)",
170 			tx_queue_id, lif->ntxqcqs);
171 		return -EINVAL;
172 	}
173 
174 	offloads = tx_conf->offloads | eth_dev->data->dev_conf.txmode.offloads;
175 	IONIC_PRINT(DEBUG,
176 		"Configuring skt %u TX queue %u with %u buffers, offloads %jx",
177 		socket_id, tx_queue_id, nb_desc, offloads);
178 
179 	/* Validate number of receive descriptors */
180 	if (!rte_is_power_of_2(nb_desc) || nb_desc < IONIC_MIN_RING_DESC)
181 		return -EINVAL; /* or use IONIC_DEFAULT_RING_DESC */
182 
183 	/* Free memory prior to re-allocation if needed... */
184 	if (eth_dev->data->tx_queues[tx_queue_id] != NULL) {
185 		void *tx_queue = eth_dev->data->tx_queues[tx_queue_id];
186 		ionic_dev_tx_queue_release(tx_queue);
187 		eth_dev->data->tx_queues[tx_queue_id] = NULL;
188 	}
189 
190 	eth_dev->data->tx_queue_state[tx_queue_id] =
191 		RTE_ETH_QUEUE_STATE_STOPPED;
192 
193 	err = ionic_tx_qcq_alloc(lif, tx_queue_id, nb_desc, &txq);
194 	if (err) {
195 		IONIC_PRINT(DEBUG, "Queue allocation failure");
196 		return -EINVAL;
197 	}
198 
199 	/* Do not start queue with rte_eth_dev_start() */
200 	if (tx_conf->tx_deferred_start)
201 		txq->flags |= IONIC_QCQ_F_DEFERRED;
202 
203 	txq->offloads = offloads;
204 
205 	eth_dev->data->tx_queues[tx_queue_id] = txq;
206 
207 	return 0;
208 }
209 
210 /*
211  * Start Transmit Units for specified queue.
212  */
213 int __rte_cold
214 ionic_dev_tx_queue_start(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
215 {
216 	uint8_t *tx_queue_state = eth_dev->data->tx_queue_state;
217 	struct ionic_qcq *txq;
218 	int err;
219 
220 	if (tx_queue_state[tx_queue_id] == RTE_ETH_QUEUE_STATE_STARTED) {
221 		IONIC_PRINT(DEBUG, "TX queue %u already started",
222 			tx_queue_id);
223 		return 0;
224 	}
225 
226 	txq = eth_dev->data->tx_queues[tx_queue_id];
227 
228 	IONIC_PRINT(DEBUG, "Starting TX queue %u, %u descs",
229 		tx_queue_id, txq->q.num_descs);
230 
231 	if (!(txq->flags & IONIC_QCQ_F_INITED)) {
232 		err = ionic_lif_txq_init(txq);
233 		if (err)
234 			return err;
235 	} else {
236 		ionic_qcq_enable(txq);
237 	}
238 
239 	tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
240 
241 	return 0;
242 }
243 
244 static void
245 ionic_tx_tcp_pseudo_csum(struct rte_mbuf *txm)
246 {
247 	struct ether_hdr *eth_hdr = rte_pktmbuf_mtod(txm, struct ether_hdr *);
248 	char *l3_hdr = ((char *)eth_hdr) + txm->l2_len;
249 	struct rte_tcp_hdr *tcp_hdr = (struct rte_tcp_hdr *)
250 		(l3_hdr + txm->l3_len);
251 
252 	if (txm->ol_flags & PKT_TX_IP_CKSUM) {
253 		struct rte_ipv4_hdr *ipv4_hdr = (struct rte_ipv4_hdr *)l3_hdr;
254 		ipv4_hdr->hdr_checksum = 0;
255 		tcp_hdr->cksum = 0;
256 		tcp_hdr->cksum = rte_ipv4_udptcp_cksum(ipv4_hdr, tcp_hdr);
257 	} else {
258 		struct rte_ipv6_hdr *ipv6_hdr = (struct rte_ipv6_hdr *)l3_hdr;
259 		tcp_hdr->cksum = 0;
260 		tcp_hdr->cksum = rte_ipv6_udptcp_cksum(ipv6_hdr, tcp_hdr);
261 	}
262 }
263 
264 static void
265 ionic_tx_tcp_inner_pseudo_csum(struct rte_mbuf *txm)
266 {
267 	struct ether_hdr *eth_hdr = rte_pktmbuf_mtod(txm, struct ether_hdr *);
268 	char *l3_hdr = ((char *)eth_hdr) + txm->outer_l2_len +
269 		txm->outer_l3_len + txm->l2_len;
270 	struct rte_tcp_hdr *tcp_hdr = (struct rte_tcp_hdr *)
271 		(l3_hdr + txm->l3_len);
272 
273 	if (txm->ol_flags & PKT_TX_IPV4) {
274 		struct rte_ipv4_hdr *ipv4_hdr = (struct rte_ipv4_hdr *)l3_hdr;
275 		ipv4_hdr->hdr_checksum = 0;
276 		tcp_hdr->cksum = 0;
277 		tcp_hdr->cksum = rte_ipv4_udptcp_cksum(ipv4_hdr, tcp_hdr);
278 	} else {
279 		struct rte_ipv6_hdr *ipv6_hdr = (struct rte_ipv6_hdr *)l3_hdr;
280 		tcp_hdr->cksum = 0;
281 		tcp_hdr->cksum = rte_ipv6_udptcp_cksum(ipv6_hdr, tcp_hdr);
282 	}
283 }
284 
285 static void
286 ionic_tx_tso_post(struct ionic_queue *q, struct ionic_txq_desc *desc,
287 		struct rte_mbuf *txm,
288 		rte_iova_t addr, uint8_t nsge, uint16_t len,
289 		uint32_t hdrlen, uint32_t mss,
290 		bool encap,
291 		uint16_t vlan_tci, bool has_vlan,
292 		bool start, bool done)
293 {
294 	uint8_t flags = 0;
295 	flags |= has_vlan ? IONIC_TXQ_DESC_FLAG_VLAN : 0;
296 	flags |= encap ? IONIC_TXQ_DESC_FLAG_ENCAP : 0;
297 	flags |= start ? IONIC_TXQ_DESC_FLAG_TSO_SOT : 0;
298 	flags |= done ? IONIC_TXQ_DESC_FLAG_TSO_EOT : 0;
299 
300 	desc->cmd = encode_txq_desc_cmd(IONIC_TXQ_DESC_OPCODE_TSO,
301 		flags, nsge, addr);
302 	desc->len = len;
303 	desc->vlan_tci = vlan_tci;
304 	desc->hdr_len = hdrlen;
305 	desc->mss = mss;
306 
307 	ionic_q_post(q, done, NULL, done ? txm : NULL);
308 }
309 
310 static struct ionic_txq_desc *
311 ionic_tx_tso_next(struct ionic_queue *q, struct ionic_txq_sg_elem **elem)
312 {
313 	struct ionic_txq_desc *desc_base = q->base;
314 	struct ionic_txq_sg_desc *sg_desc_base = q->sg_base;
315 	struct ionic_txq_desc *desc = &desc_base[q->head_idx];
316 	struct ionic_txq_sg_desc *sg_desc = &sg_desc_base[q->head_idx];
317 
318 	*elem = sg_desc->elems;
319 	return desc;
320 }
321 
322 static int
323 ionic_tx_tso(struct ionic_queue *q, struct rte_mbuf *txm,
324 		uint64_t offloads __rte_unused, bool not_xmit_more)
325 {
326 	struct ionic_tx_stats *stats = IONIC_Q_TO_TX_STATS(q);
327 	struct ionic_txq_desc *desc;
328 	struct ionic_txq_sg_elem *elem;
329 	struct rte_mbuf *txm_seg;
330 	uint64_t desc_addr = 0;
331 	uint16_t desc_len = 0;
332 	uint8_t desc_nsge;
333 	uint32_t hdrlen;
334 	uint32_t mss = txm->tso_segsz;
335 	uint32_t frag_left = 0;
336 	uint32_t left;
337 	uint32_t seglen;
338 	uint32_t len;
339 	uint32_t offset = 0;
340 	bool start, done;
341 	bool encap;
342 	bool has_vlan = !!(txm->ol_flags & PKT_TX_VLAN_PKT);
343 	uint16_t vlan_tci = txm->vlan_tci;
344 	uint64_t ol_flags = txm->ol_flags;
345 
346 	encap = ((ol_flags & PKT_TX_OUTER_IP_CKSUM) ||
347 		(ol_flags & PKT_TX_OUTER_UDP_CKSUM)) &&
348 		((ol_flags & PKT_TX_OUTER_IPV4) ||
349 		(ol_flags & PKT_TX_OUTER_IPV6));
350 
351 	/* Preload inner-most TCP csum field with IP pseudo hdr
352 	 * calculated with IP length set to zero.  HW will later
353 	 * add in length to each TCP segment resulting from the TSO.
354 	 */
355 
356 	if (encap) {
357 		ionic_tx_tcp_inner_pseudo_csum(txm);
358 		hdrlen = txm->outer_l2_len + txm->outer_l3_len +
359 			txm->l2_len + txm->l3_len + txm->l4_len;
360 	} else {
361 		ionic_tx_tcp_pseudo_csum(txm);
362 		hdrlen = txm->l2_len + txm->l3_len + txm->l4_len;
363 	}
364 
365 	seglen = hdrlen + mss;
366 	left = txm->data_len;
367 
368 	desc = ionic_tx_tso_next(q, &elem);
369 	start = true;
370 
371 	/* Chop data up into desc segments */
372 
373 	while (left > 0) {
374 		len = RTE_MIN(seglen, left);
375 		frag_left = seglen - len;
376 		desc_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(txm));
377 		desc_len = len;
378 		desc_nsge = 0;
379 		left -= len;
380 		offset += len;
381 		if (txm->nb_segs > 1 && frag_left > 0)
382 			continue;
383 		done = (txm->nb_segs == 1 && left == 0);
384 		ionic_tx_tso_post(q, desc, txm,
385 			desc_addr, desc_nsge, desc_len,
386 			hdrlen, mss,
387 			encap,
388 			vlan_tci, has_vlan,
389 			start, done && not_xmit_more);
390 		desc = ionic_tx_tso_next(q, &elem);
391 		start = false;
392 		seglen = mss;
393 	}
394 
395 	/* Chop frags into desc segments */
396 
397 	txm_seg = txm->next;
398 	while (txm_seg != NULL) {
399 		offset = 0;
400 		left = txm_seg->data_len;
401 		stats->frags++;
402 
403 		while (left > 0) {
404 			rte_iova_t data_iova;
405 			data_iova = rte_mbuf_data_iova(txm_seg);
406 			elem->addr = rte_cpu_to_le_64(data_iova) + offset;
407 			if (frag_left > 0) {
408 				len = RTE_MIN(frag_left, left);
409 				frag_left -= len;
410 				elem->len = len;
411 				elem++;
412 				desc_nsge++;
413 			} else {
414 				len = RTE_MIN(mss, left);
415 				frag_left = mss - len;
416 				data_iova = rte_mbuf_data_iova(txm_seg);
417 				desc_addr = rte_cpu_to_le_64(data_iova);
418 				desc_len = len;
419 				desc_nsge = 0;
420 			}
421 			left -= len;
422 			offset += len;
423 			if (txm_seg->next != NULL && frag_left > 0)
424 				continue;
425 			done = (txm_seg->next == NULL && left == 0);
426 			ionic_tx_tso_post(q, desc, txm_seg,
427 				desc_addr, desc_nsge, desc_len,
428 				hdrlen, mss,
429 				encap,
430 				vlan_tci, has_vlan,
431 				start, done && not_xmit_more);
432 			desc = ionic_tx_tso_next(q, &elem);
433 			start = false;
434 		}
435 
436 		txm_seg = txm_seg->next;
437 	}
438 
439 	stats->tso++;
440 
441 	return 0;
442 }
443 
444 static int
445 ionic_tx(struct ionic_queue *q, struct rte_mbuf *txm,
446 		uint64_t offloads, bool not_xmit_more)
447 {
448 	struct ionic_txq_desc *desc_base = q->base;
449 	struct ionic_txq_sg_desc *sg_desc_base = q->sg_base;
450 	struct ionic_txq_desc *desc = &desc_base[q->head_idx];
451 	struct ionic_txq_sg_desc *sg_desc = &sg_desc_base[q->head_idx];
452 	struct ionic_txq_sg_elem *elem = sg_desc->elems;
453 	struct ionic_tx_stats *stats = IONIC_Q_TO_TX_STATS(q);
454 	struct rte_mbuf *txm_seg;
455 	bool encap;
456 	bool has_vlan;
457 	uint64_t ol_flags = txm->ol_flags;
458 	uint64_t addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(txm));
459 	uint8_t opcode = IONIC_TXQ_DESC_OPCODE_CSUM_NONE;
460 	uint8_t flags = 0;
461 
462 	if ((ol_flags & PKT_TX_IP_CKSUM) &&
463 			(offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)) {
464 		opcode = IONIC_TXQ_DESC_OPCODE_CSUM_HW;
465 		flags |= IONIC_TXQ_DESC_FLAG_CSUM_L3;
466 		if (((ol_flags & PKT_TX_TCP_CKSUM) &&
467 				(offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) ||
468 				((ol_flags & PKT_TX_UDP_CKSUM) &&
469 				(offloads & DEV_TX_OFFLOAD_UDP_CKSUM)))
470 			flags |= IONIC_TXQ_DESC_FLAG_CSUM_L4;
471 	} else {
472 		stats->no_csum++;
473 	}
474 
475 	has_vlan = (ol_flags & PKT_TX_VLAN_PKT);
476 	encap = ((ol_flags & PKT_TX_OUTER_IP_CKSUM) ||
477 			(ol_flags & PKT_TX_OUTER_UDP_CKSUM)) &&
478 			((ol_flags & PKT_TX_OUTER_IPV4) ||
479 			(ol_flags & PKT_TX_OUTER_IPV6));
480 
481 	flags |= has_vlan ? IONIC_TXQ_DESC_FLAG_VLAN : 0;
482 	flags |= encap ? IONIC_TXQ_DESC_FLAG_ENCAP : 0;
483 
484 	desc->cmd = encode_txq_desc_cmd(opcode, flags, txm->nb_segs - 1, addr);
485 	desc->len = txm->data_len;
486 	desc->vlan_tci = txm->vlan_tci;
487 
488 	txm_seg = txm->next;
489 	while (txm_seg != NULL) {
490 		elem->len = txm_seg->data_len;
491 		elem->addr = rte_cpu_to_le_64(rte_mbuf_data_iova(txm_seg));
492 		stats->frags++;
493 		elem++;
494 		txm_seg = txm_seg->next;
495 	}
496 
497 	ionic_q_post(q, not_xmit_more, NULL, txm);
498 
499 	return 0;
500 }
501 
502 uint16_t
503 ionic_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
504 		uint16_t nb_pkts)
505 {
506 	struct ionic_qcq *txq = (struct ionic_qcq *)tx_queue;
507 	struct ionic_queue *q = &txq->q;
508 	struct ionic_cq *cq = &txq->cq;
509 	struct ionic_tx_stats *stats = IONIC_Q_TO_TX_STATS(q);
510 	uint32_t next_q_head_idx;
511 	uint32_t bytes_tx = 0;
512 	uint16_t nb_tx = 0;
513 	int err;
514 	bool last;
515 
516 	/* Cleaning old buffers */
517 	ionic_tx_flush(cq);
518 
519 	if (unlikely(ionic_q_space_avail(q) < nb_pkts)) {
520 		stats->stop += nb_pkts;
521 		return 0;
522 	}
523 
524 	while (nb_tx < nb_pkts) {
525 		last = (nb_tx == (nb_pkts - 1));
526 
527 		next_q_head_idx = (q->head_idx + 1) & (q->num_descs - 1);
528 		if ((next_q_head_idx & 0x3) == 0) {
529 			struct ionic_txq_desc *desc_base = q->base;
530 			rte_prefetch0(&desc_base[next_q_head_idx]);
531 			rte_prefetch0(&q->info[next_q_head_idx]);
532 		}
533 
534 		if (tx_pkts[nb_tx]->ol_flags & PKT_TX_TCP_SEG)
535 			err = ionic_tx_tso(q, tx_pkts[nb_tx], txq->offloads,
536 				last);
537 		else
538 			err = ionic_tx(q, tx_pkts[nb_tx], txq->offloads, last);
539 		if (err) {
540 			stats->drop += nb_pkts - nb_tx;
541 			if (nb_tx > 0)
542 				ionic_q_flush(q);
543 			break;
544 		}
545 
546 		bytes_tx += tx_pkts[nb_tx]->pkt_len;
547 		nb_tx++;
548 	}
549 
550 	stats->packets += nb_tx;
551 	stats->bytes += bytes_tx;
552 
553 	return nb_tx;
554 }
555 
556 /*********************************************************************
557  *
558  *  TX prep functions
559  *
560  **********************************************************************/
561 
562 #define IONIC_TX_OFFLOAD_MASK (	\
563 	PKT_TX_IPV4 |		\
564 	PKT_TX_IPV6 |		\
565 	PKT_TX_VLAN |		\
566 	PKT_TX_IP_CKSUM |	\
567 	PKT_TX_TCP_SEG |	\
568 	PKT_TX_L4_MASK)
569 
570 #define IONIC_TX_OFFLOAD_NOTSUP_MASK \
571 	(PKT_TX_OFFLOAD_MASK ^ IONIC_TX_OFFLOAD_MASK)
572 
573 uint16_t
574 ionic_prep_pkts(void *tx_queue __rte_unused, struct rte_mbuf **tx_pkts,
575 		uint16_t nb_pkts)
576 {
577 	struct rte_mbuf *txm;
578 	uint64_t offloads;
579 	int i = 0;
580 
581 	for (i = 0; i < nb_pkts; i++) {
582 		txm = tx_pkts[i];
583 
584 		if (txm->nb_segs > IONIC_TX_MAX_SG_ELEMS) {
585 			rte_errno = -EINVAL;
586 			break;
587 		}
588 
589 		offloads = txm->ol_flags;
590 
591 		if (offloads & IONIC_TX_OFFLOAD_NOTSUP_MASK) {
592 			rte_errno = -ENOTSUP;
593 			break;
594 		}
595 	}
596 
597 	return i;
598 }
599 
600 /*********************************************************************
601  *
602  *  RX functions
603  *
604  **********************************************************************/
605 
606 static void ionic_rx_recycle(struct ionic_queue *q, uint32_t q_desc_index,
607 		struct rte_mbuf *mbuf);
608 
609 void
610 ionic_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
611 		struct rte_eth_rxq_info *qinfo)
612 {
613 	struct ionic_qcq *rxq = dev->data->rx_queues[queue_id];
614 	struct ionic_queue *q = &rxq->q;
615 
616 	qinfo->mp = rxq->mb_pool;
617 	qinfo->scattered_rx = dev->data->scattered_rx;
618 	qinfo->nb_desc = q->num_descs;
619 	qinfo->conf.rx_deferred_start = rxq->flags & IONIC_QCQ_F_DEFERRED;
620 	qinfo->conf.offloads = rxq->offloads;
621 }
622 
623 static void __rte_cold
624 ionic_rx_empty(struct ionic_queue *q)
625 {
626 	struct ionic_qcq *rxq = IONIC_Q_TO_QCQ(q);
627 	struct ionic_desc_info *cur;
628 	struct rte_mbuf *mbuf;
629 
630 	while (q->tail_idx != q->head_idx) {
631 		cur = &q->info[q->tail_idx];
632 		mbuf = cur->cb_arg;
633 		rte_mempool_put(rxq->mb_pool, mbuf);
634 
635 		q->tail_idx = (q->tail_idx + 1) & (q->num_descs - 1);
636 	}
637 }
638 
639 void __rte_cold
640 ionic_dev_rx_queue_release(void *rx_queue)
641 {
642 	struct ionic_qcq *rxq = (struct ionic_qcq *)rx_queue;
643 
644 	IONIC_PRINT_CALL();
645 
646 	ionic_rx_empty(&rxq->q);
647 
648 	ionic_lif_rxq_deinit(rxq);
649 
650 	ionic_qcq_free(rxq);
651 }
652 
653 int __rte_cold
654 ionic_dev_rx_queue_setup(struct rte_eth_dev *eth_dev,
655 		uint16_t rx_queue_id,
656 		uint16_t nb_desc,
657 		uint32_t socket_id,
658 		const struct rte_eth_rxconf *rx_conf,
659 		struct rte_mempool *mp)
660 {
661 	struct ionic_lif *lif = IONIC_ETH_DEV_TO_LIF(eth_dev);
662 	struct ionic_qcq *rxq;
663 	uint64_t offloads;
664 	int err;
665 
666 	if (rx_queue_id >= lif->nrxqcqs) {
667 		IONIC_PRINT(ERR,
668 			"Queue index %u not available (max %u queues)",
669 			rx_queue_id, lif->nrxqcqs);
670 		return -EINVAL;
671 	}
672 
673 	offloads = rx_conf->offloads | eth_dev->data->dev_conf.rxmode.offloads;
674 	IONIC_PRINT(DEBUG,
675 		"Configuring skt %u RX queue %u with %u buffers, offloads %jx",
676 		socket_id, rx_queue_id, nb_desc, offloads);
677 
678 	if (!rx_conf->rx_drop_en)
679 		IONIC_PRINT(WARNING, "No-drop mode is not supported");
680 
681 	/* Validate number of receive descriptors */
682 	if (!rte_is_power_of_2(nb_desc) ||
683 			nb_desc < IONIC_MIN_RING_DESC ||
684 			nb_desc > IONIC_MAX_RING_DESC) {
685 		IONIC_PRINT(ERR,
686 			"Bad descriptor count (%u) for queue %u (min: %u)",
687 			nb_desc, rx_queue_id, IONIC_MIN_RING_DESC);
688 		return -EINVAL; /* or use IONIC_DEFAULT_RING_DESC */
689 	}
690 
691 	/* Free memory prior to re-allocation if needed... */
692 	if (eth_dev->data->rx_queues[rx_queue_id] != NULL) {
693 		void *rx_queue = eth_dev->data->rx_queues[rx_queue_id];
694 		ionic_dev_rx_queue_release(rx_queue);
695 		eth_dev->data->rx_queues[rx_queue_id] = NULL;
696 	}
697 
698 	eth_dev->data->rx_queue_state[rx_queue_id] =
699 		RTE_ETH_QUEUE_STATE_STOPPED;
700 
701 	err = ionic_rx_qcq_alloc(lif, rx_queue_id, nb_desc, &rxq);
702 	if (err) {
703 		IONIC_PRINT(ERR, "Queue %d allocation failure", rx_queue_id);
704 		return -EINVAL;
705 	}
706 
707 	rxq->mb_pool = mp;
708 
709 	/*
710 	 * Note: the interface does not currently support
711 	 * DEV_RX_OFFLOAD_KEEP_CRC, please also consider ETHER_CRC_LEN
712 	 * when the adapter will be able to keep the CRC and subtract
713 	 * it to the length for all received packets:
714 	 * if (eth_dev->data->dev_conf.rxmode.offloads &
715 	 *     DEV_RX_OFFLOAD_KEEP_CRC)
716 	 *   rxq->crc_len = ETHER_CRC_LEN;
717 	 */
718 
719 	/* Do not start queue with rte_eth_dev_start() */
720 	if (rx_conf->rx_deferred_start)
721 		rxq->flags |= IONIC_QCQ_F_DEFERRED;
722 
723 	rxq->offloads = offloads;
724 
725 	eth_dev->data->rx_queues[rx_queue_id] = rxq;
726 
727 	return 0;
728 }
729 
730 static void
731 ionic_rx_clean(struct ionic_queue *q,
732 		uint32_t q_desc_index, uint32_t cq_desc_index,
733 		void *cb_arg, void *service_cb_arg)
734 {
735 	struct ionic_rxq_comp *cq_desc_base = q->bound_cq->base;
736 	struct ionic_rxq_comp *cq_desc = &cq_desc_base[cq_desc_index];
737 	struct rte_mbuf *rxm = cb_arg;
738 	struct rte_mbuf *rxm_seg;
739 	struct ionic_qcq *rxq = IONIC_Q_TO_QCQ(q);
740 	uint32_t max_frame_size =
741 		rxq->lif->eth_dev->data->dev_conf.rxmode.max_rx_pkt_len;
742 	uint64_t pkt_flags = 0;
743 	uint32_t pkt_type;
744 	struct ionic_rx_stats *stats = IONIC_Q_TO_RX_STATS(q);
745 	struct ionic_rx_service *recv_args = (struct ionic_rx_service *)
746 		service_cb_arg;
747 	uint32_t buf_size = (uint16_t)
748 		(rte_pktmbuf_data_room_size(rxq->mb_pool) -
749 		RTE_PKTMBUF_HEADROOM);
750 	uint32_t left;
751 
752 	if (!recv_args) {
753 		stats->no_cb_arg++;
754 		/* Flush */
755 		rte_pktmbuf_free(rxm);
756 		/*
757 		 * Note: rte_mempool_put is faster with no segs
758 		 * rte_mempool_put(rxq->mb_pool, rxm);
759 		 */
760 		return;
761 	}
762 
763 	if (cq_desc->status) {
764 		stats->bad_cq_status++;
765 		ionic_rx_recycle(q, q_desc_index, rxm);
766 		return;
767 	}
768 
769 	if (recv_args->nb_rx >= recv_args->nb_pkts) {
770 		stats->no_room++;
771 		ionic_rx_recycle(q, q_desc_index, rxm);
772 		return;
773 	}
774 
775 	if (cq_desc->len > max_frame_size ||
776 			cq_desc->len == 0) {
777 		stats->bad_len++;
778 		ionic_rx_recycle(q, q_desc_index, rxm);
779 		return;
780 	}
781 
782 	rxm->data_off = RTE_PKTMBUF_HEADROOM;
783 	rte_prefetch1((char *)rxm->buf_addr + rxm->data_off);
784 	rxm->nb_segs = 1; /* cq_desc->num_sg_elems */
785 	rxm->pkt_len = cq_desc->len;
786 	rxm->port = rxq->lif->port_id;
787 
788 	left = cq_desc->len;
789 
790 	rxm->data_len = RTE_MIN(buf_size, left);
791 	left -= rxm->data_len;
792 
793 	rxm_seg = rxm->next;
794 	while (rxm_seg && left) {
795 		rxm_seg->data_len = RTE_MIN(buf_size, left);
796 		left -= rxm_seg->data_len;
797 
798 		rxm_seg = rxm_seg->next;
799 		rxm->nb_segs++;
800 	}
801 
802 	/* RSS */
803 	pkt_flags |= PKT_RX_RSS_HASH;
804 	rxm->hash.rss = cq_desc->rss_hash;
805 
806 	/* Vlan Strip */
807 	if (cq_desc->csum_flags & IONIC_RXQ_COMP_CSUM_F_VLAN) {
808 		pkt_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
809 		rxm->vlan_tci = cq_desc->vlan_tci;
810 	}
811 
812 	/* Checksum */
813 	if (cq_desc->csum_flags & IONIC_RXQ_COMP_CSUM_F_CALC) {
814 		if (cq_desc->csum_flags & IONIC_RXQ_COMP_CSUM_F_IP_OK)
815 			pkt_flags |= PKT_RX_IP_CKSUM_GOOD;
816 		else if (cq_desc->csum_flags & IONIC_RXQ_COMP_CSUM_F_IP_BAD)
817 			pkt_flags |= PKT_RX_IP_CKSUM_BAD;
818 
819 		if ((cq_desc->csum_flags & IONIC_RXQ_COMP_CSUM_F_TCP_OK) ||
820 			(cq_desc->csum_flags & IONIC_RXQ_COMP_CSUM_F_UDP_OK))
821 			pkt_flags |= PKT_RX_L4_CKSUM_GOOD;
822 		else if ((cq_desc->csum_flags &
823 				IONIC_RXQ_COMP_CSUM_F_TCP_BAD) ||
824 				(cq_desc->csum_flags &
825 				IONIC_RXQ_COMP_CSUM_F_UDP_BAD))
826 			pkt_flags |= PKT_RX_L4_CKSUM_BAD;
827 	}
828 
829 	rxm->ol_flags = pkt_flags;
830 
831 	/* Packet Type */
832 	switch (cq_desc->pkt_type_color & IONIC_RXQ_COMP_PKT_TYPE_MASK) {
833 	case IONIC_PKT_TYPE_IPV4:
834 		pkt_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4;
835 		break;
836 	case IONIC_PKT_TYPE_IPV6:
837 		pkt_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6;
838 		break;
839 	case IONIC_PKT_TYPE_IPV4_TCP:
840 		pkt_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4 |
841 			RTE_PTYPE_L4_TCP;
842 		break;
843 	case IONIC_PKT_TYPE_IPV6_TCP:
844 		pkt_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6 |
845 			RTE_PTYPE_L4_TCP;
846 		break;
847 	case IONIC_PKT_TYPE_IPV4_UDP:
848 		pkt_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4 |
849 			RTE_PTYPE_L4_UDP;
850 		break;
851 	case IONIC_PKT_TYPE_IPV6_UDP:
852 		pkt_type = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6 |
853 			RTE_PTYPE_L4_UDP;
854 		break;
855 	default:
856 		{
857 			struct rte_ether_hdr *eth_h = rte_pktmbuf_mtod(rxm,
858 				struct rte_ether_hdr *);
859 			uint16_t ether_type = eth_h->ether_type;
860 			if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_ARP))
861 				pkt_type = RTE_PTYPE_L2_ETHER_ARP;
862 			else
863 				pkt_type = RTE_PTYPE_UNKNOWN;
864 			break;
865 		}
866 	}
867 
868 	rxm->packet_type = pkt_type;
869 
870 	recv_args->rx_pkts[recv_args->nb_rx] = rxm;
871 	recv_args->nb_rx++;
872 
873 	stats->packets++;
874 	stats->bytes += rxm->pkt_len;
875 }
876 
877 static void
878 ionic_rx_recycle(struct ionic_queue *q, uint32_t q_desc_index,
879 		 struct rte_mbuf *mbuf)
880 {
881 	struct ionic_rxq_desc *desc_base = q->base;
882 	struct ionic_rxq_desc *old = &desc_base[q_desc_index];
883 	struct ionic_rxq_desc *new = &desc_base[q->head_idx];
884 
885 	new->addr = old->addr;
886 	new->len = old->len;
887 
888 	ionic_q_post(q, true, ionic_rx_clean, mbuf);
889 }
890 
891 static int __rte_cold
892 ionic_rx_fill(struct ionic_qcq *rxq, uint32_t len)
893 {
894 	struct ionic_queue *q = &rxq->q;
895 	struct ionic_rxq_desc *desc_base = q->base;
896 	struct ionic_rxq_sg_desc *sg_desc_base = q->sg_base;
897 	struct ionic_rxq_desc *desc;
898 	struct ionic_rxq_sg_desc *sg_desc;
899 	struct ionic_rxq_sg_elem *elem;
900 	rte_iova_t dma_addr;
901 	uint32_t i, j, nsegs, buf_size, size;
902 	bool ring_doorbell;
903 
904 	buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
905 		RTE_PKTMBUF_HEADROOM);
906 
907 	/* Initialize software ring entries */
908 	for (i = ionic_q_space_avail(q); i; i--) {
909 		struct rte_mbuf *rxm = rte_mbuf_raw_alloc(rxq->mb_pool);
910 		struct rte_mbuf *prev_rxm_seg;
911 
912 		if (rxm == NULL) {
913 			IONIC_PRINT(ERR, "RX mbuf alloc failed");
914 			return -ENOMEM;
915 		}
916 
917 		nsegs = (len + buf_size - 1) / buf_size;
918 
919 		desc = &desc_base[q->head_idx];
920 		dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(rxm));
921 		desc->addr = dma_addr;
922 		desc->len = buf_size;
923 		size = buf_size;
924 		desc->opcode = (nsegs > 1) ? IONIC_RXQ_DESC_OPCODE_SG :
925 			IONIC_RXQ_DESC_OPCODE_SIMPLE;
926 		rxm->next = NULL;
927 
928 		prev_rxm_seg = rxm;
929 		sg_desc = &sg_desc_base[q->head_idx];
930 		elem = sg_desc->elems;
931 		for (j = 0; j < nsegs - 1 && j < IONIC_RX_MAX_SG_ELEMS; j++) {
932 			struct rte_mbuf *rxm_seg;
933 			rte_iova_t data_iova;
934 
935 			rxm_seg = rte_mbuf_raw_alloc(rxq->mb_pool);
936 			if (rxm_seg == NULL) {
937 				IONIC_PRINT(ERR, "RX mbuf alloc failed");
938 				return -ENOMEM;
939 			}
940 
941 			data_iova = rte_mbuf_data_iova(rxm_seg);
942 			dma_addr = rte_cpu_to_le_64(data_iova);
943 			elem->addr = dma_addr;
944 			elem->len = buf_size;
945 			size += buf_size;
946 			elem++;
947 			rxm_seg->next = NULL;
948 			prev_rxm_seg->next = rxm_seg;
949 			prev_rxm_seg = rxm_seg;
950 		}
951 
952 		if (size < len)
953 			IONIC_PRINT(ERR, "Rx SG size is not sufficient (%d < %d)",
954 				size, len);
955 
956 		ring_doorbell = ((q->head_idx + 1) &
957 			IONIC_RX_RING_DOORBELL_STRIDE) == 0;
958 
959 		ionic_q_post(q, ring_doorbell, ionic_rx_clean, rxm);
960 	}
961 
962 	return 0;
963 }
964 
965 /*
966  * Start Receive Units for specified queue.
967  */
968 int __rte_cold
969 ionic_dev_rx_queue_start(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
970 {
971 	uint32_t frame_size = eth_dev->data->dev_conf.rxmode.max_rx_pkt_len;
972 	uint8_t *rx_queue_state = eth_dev->data->rx_queue_state;
973 	struct ionic_qcq *rxq;
974 	int err;
975 
976 	if (rx_queue_state[rx_queue_id] == RTE_ETH_QUEUE_STATE_STARTED) {
977 		IONIC_PRINT(DEBUG, "RX queue %u already started",
978 			rx_queue_id);
979 		return 0;
980 	}
981 
982 	rxq = eth_dev->data->rx_queues[rx_queue_id];
983 
984 	IONIC_PRINT(DEBUG, "Starting RX queue %u, %u descs (size: %u)",
985 		rx_queue_id, rxq->q.num_descs, frame_size);
986 
987 	if (!(rxq->flags & IONIC_QCQ_F_INITED)) {
988 		err = ionic_lif_rxq_init(rxq);
989 		if (err)
990 			return err;
991 	} else {
992 		ionic_qcq_enable(rxq);
993 	}
994 
995 	/* Allocate buffers for descriptor rings */
996 	if (ionic_rx_fill(rxq, frame_size) != 0) {
997 		IONIC_PRINT(ERR, "Could not alloc mbuf for queue:%d",
998 			rx_queue_id);
999 		return -1;
1000 	}
1001 
1002 	rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1003 
1004 	return 0;
1005 }
1006 
1007 static inline void __rte_cold
1008 ionic_rxq_service(struct ionic_cq *cq, uint32_t work_to_do,
1009 		void *service_cb_arg)
1010 {
1011 	struct ionic_queue *q = cq->bound_q;
1012 	struct ionic_desc_info *q_desc_info;
1013 	struct ionic_rxq_comp *cq_desc_base = cq->base;
1014 	struct ionic_rxq_comp *cq_desc;
1015 	bool more;
1016 	uint32_t curr_q_tail_idx, curr_cq_tail_idx;
1017 	uint32_t work_done = 0;
1018 
1019 	if (work_to_do == 0)
1020 		return;
1021 
1022 	cq_desc = &cq_desc_base[cq->tail_idx];
1023 	while (color_match(cq_desc->pkt_type_color, cq->done_color)) {
1024 		curr_cq_tail_idx = cq->tail_idx;
1025 		cq->tail_idx = (cq->tail_idx + 1) & (cq->num_descs - 1);
1026 
1027 		if (cq->tail_idx == 0)
1028 			cq->done_color = !cq->done_color;
1029 
1030 		/* Prefetch the next 4 descriptors */
1031 		if ((cq->tail_idx & 0x3) == 0)
1032 			rte_prefetch0(&cq_desc_base[cq->tail_idx]);
1033 
1034 		do {
1035 			more = (q->tail_idx != cq_desc->comp_index);
1036 
1037 			q_desc_info = &q->info[q->tail_idx];
1038 
1039 			curr_q_tail_idx = q->tail_idx;
1040 			q->tail_idx = (q->tail_idx + 1) & (q->num_descs - 1);
1041 
1042 			/* Prefetch the next 4 descriptors */
1043 			if ((q->tail_idx & 0x3) == 0)
1044 				/* q desc info */
1045 				rte_prefetch0(&q->info[q->tail_idx]);
1046 
1047 			ionic_rx_clean(q, curr_q_tail_idx, curr_cq_tail_idx,
1048 				q_desc_info->cb_arg, service_cb_arg);
1049 
1050 		} while (more);
1051 
1052 		if (++work_done == work_to_do)
1053 			break;
1054 
1055 		cq_desc = &cq_desc_base[cq->tail_idx];
1056 	}
1057 }
1058 
1059 /*
1060  * Stop Receive Units for specified queue.
1061  */
1062 int __rte_cold
1063 ionic_dev_rx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
1064 {
1065 	struct ionic_qcq *rxq;
1066 
1067 	IONIC_PRINT(DEBUG, "Stopping RX queue %u", rx_queue_id);
1068 
1069 	rxq = eth_dev->data->rx_queues[rx_queue_id];
1070 
1071 	eth_dev->data->rx_queue_state[rx_queue_id] =
1072 		RTE_ETH_QUEUE_STATE_STOPPED;
1073 
1074 	ionic_qcq_disable(rxq);
1075 
1076 	/* Flush */
1077 	ionic_rxq_service(&rxq->cq, -1, NULL);
1078 
1079 	return 0;
1080 }
1081 
1082 uint16_t
1083 ionic_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1084 		uint16_t nb_pkts)
1085 {
1086 	struct ionic_qcq *rxq = (struct ionic_qcq *)rx_queue;
1087 	uint32_t frame_size =
1088 		rxq->lif->eth_dev->data->dev_conf.rxmode.max_rx_pkt_len;
1089 	struct ionic_cq *cq = &rxq->cq;
1090 	struct ionic_rx_service service_cb_arg;
1091 
1092 	service_cb_arg.rx_pkts = rx_pkts;
1093 	service_cb_arg.nb_pkts = nb_pkts;
1094 	service_cb_arg.nb_rx = 0;
1095 
1096 	ionic_rxq_service(cq, nb_pkts, &service_cb_arg);
1097 
1098 	ionic_rx_fill(rxq, frame_size);
1099 
1100 	return service_cb_arg.nb_rx;
1101 }
1102