xref: /dpdk/drivers/net/intel/ixgbe/ixgbe_rxtx_vec_sse.c (revision e61679e7be157c1cb2cf309533a20375b3478ef8)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2015 Intel Corporation
3  */
4 
5 #include <stdint.h>
6 #include <ethdev_driver.h>
7 #include <rte_malloc.h>
8 
9 #include "ixgbe_ethdev.h"
10 #include "ixgbe_rxtx.h"
11 #include "ixgbe_rxtx_vec_common.h"
12 
13 #include <rte_vect.h>
14 
15 static inline void
16 ixgbe_rxq_rearm(struct ixgbe_rx_queue *rxq)
17 {
18 	int i;
19 	uint16_t rx_id;
20 	volatile union ixgbe_adv_rx_desc *rxdp;
21 	struct ixgbe_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
22 	struct rte_mbuf *mb0, *mb1;
23 	__m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
24 			RTE_PKTMBUF_HEADROOM);
25 	__m128i dma_addr0, dma_addr1;
26 
27 	const __m128i hba_msk = _mm_set_epi64x(0, UINT64_MAX);
28 
29 	rxdp = rxq->rx_ring + rxq->rxrearm_start;
30 
31 	/* Pull 'n' more MBUFs into the software ring */
32 	if (rte_mempool_get_bulk(rxq->mb_pool,
33 				 (void *)rxep,
34 				 RTE_IXGBE_RXQ_REARM_THRESH) < 0) {
35 		if (rxq->rxrearm_nb + RTE_IXGBE_RXQ_REARM_THRESH >=
36 		    rxq->nb_rx_desc) {
37 			dma_addr0 = _mm_setzero_si128();
38 			for (i = 0; i < RTE_IXGBE_DESCS_PER_LOOP; i++) {
39 				rxep[i].mbuf = &rxq->fake_mbuf;
40 				_mm_store_si128(RTE_CAST_PTR(__m128i *, &rxdp[i].read),
41 						dma_addr0);
42 			}
43 		}
44 		rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
45 			RTE_IXGBE_RXQ_REARM_THRESH;
46 		return;
47 	}
48 
49 	/* Initialize the mbufs in vector, process 2 mbufs in one loop */
50 	for (i = 0; i < RTE_IXGBE_RXQ_REARM_THRESH; i += 2, rxep += 2) {
51 		__m128i vaddr0, vaddr1;
52 
53 		mb0 = rxep[0].mbuf;
54 		mb1 = rxep[1].mbuf;
55 
56 		/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
57 		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
58 				offsetof(struct rte_mbuf, buf_addr) + 8);
59 		vaddr0 = _mm_loadu_si128((__m128i *)&(mb0->buf_addr));
60 		vaddr1 = _mm_loadu_si128((__m128i *)&(mb1->buf_addr));
61 
62 		/* convert pa to dma_addr hdr/data */
63 		dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
64 		dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
65 
66 		/* add headroom to pa values */
67 		dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
68 		dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
69 
70 		/* set Header Buffer Address to zero */
71 		dma_addr0 =  _mm_and_si128(dma_addr0, hba_msk);
72 		dma_addr1 =  _mm_and_si128(dma_addr1, hba_msk);
73 
74 		/* flush desc with pa dma_addr */
75 		_mm_store_si128(RTE_CAST_PTR(__m128i *, &rxdp++->read), dma_addr0);
76 		_mm_store_si128(RTE_CAST_PTR(__m128i *, &rxdp++->read), dma_addr1);
77 	}
78 
79 	rxq->rxrearm_start += RTE_IXGBE_RXQ_REARM_THRESH;
80 	if (rxq->rxrearm_start >= rxq->nb_rx_desc)
81 		rxq->rxrearm_start = 0;
82 
83 	rxq->rxrearm_nb -= RTE_IXGBE_RXQ_REARM_THRESH;
84 
85 	rx_id = (uint16_t) ((rxq->rxrearm_start == 0) ?
86 			     (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
87 
88 	/* Update the tail pointer on the NIC */
89 	IXGBE_PCI_REG_WC_WRITE(rxq->rdt_reg_addr, rx_id);
90 }
91 
92 #ifdef RTE_LIB_SECURITY
93 static inline void
94 desc_to_olflags_v_ipsec(__m128i descs[4], struct rte_mbuf **rx_pkts)
95 {
96 	__m128i sterr, rearm, tmp_e, tmp_p;
97 	uint32_t *rearm0 = (uint32_t *)rx_pkts[0]->rearm_data + 2;
98 	uint32_t *rearm1 = (uint32_t *)rx_pkts[1]->rearm_data + 2;
99 	uint32_t *rearm2 = (uint32_t *)rx_pkts[2]->rearm_data + 2;
100 	uint32_t *rearm3 = (uint32_t *)rx_pkts[3]->rearm_data + 2;
101 	const __m128i ipsec_sterr_msk =
102 			_mm_set1_epi32(IXGBE_RXDADV_IPSEC_STATUS_SECP |
103 				       IXGBE_RXDADV_IPSEC_ERROR_AUTH_FAILED);
104 	const __m128i ipsec_proc_msk  =
105 			_mm_set1_epi32(IXGBE_RXDADV_IPSEC_STATUS_SECP);
106 	const __m128i ipsec_err_flag  =
107 			_mm_set1_epi32(RTE_MBUF_F_RX_SEC_OFFLOAD_FAILED |
108 				       RTE_MBUF_F_RX_SEC_OFFLOAD);
109 	const __m128i ipsec_proc_flag = _mm_set1_epi32(RTE_MBUF_F_RX_SEC_OFFLOAD);
110 
111 	rearm = _mm_set_epi32(*rearm3, *rearm2, *rearm1, *rearm0);
112 	sterr = _mm_set_epi32(_mm_extract_epi32(descs[3], 2),
113 			      _mm_extract_epi32(descs[2], 2),
114 			      _mm_extract_epi32(descs[1], 2),
115 			      _mm_extract_epi32(descs[0], 2));
116 	sterr = _mm_and_si128(sterr, ipsec_sterr_msk);
117 	tmp_e = _mm_cmpeq_epi32(sterr, ipsec_sterr_msk);
118 	tmp_p = _mm_cmpeq_epi32(sterr, ipsec_proc_msk);
119 	sterr = _mm_or_si128(_mm_and_si128(tmp_e, ipsec_err_flag),
120 				_mm_and_si128(tmp_p, ipsec_proc_flag));
121 	rearm = _mm_or_si128(rearm, sterr);
122 	*rearm0 = _mm_extract_epi32(rearm, 0);
123 	*rearm1 = _mm_extract_epi32(rearm, 1);
124 	*rearm2 = _mm_extract_epi32(rearm, 2);
125 	*rearm3 = _mm_extract_epi32(rearm, 3);
126 }
127 #endif
128 
129 static inline void
130 desc_to_olflags_v(__m128i descs[4], __m128i mbuf_init, uint8_t vlan_flags,
131 		  uint16_t udp_p_flag, struct rte_mbuf **rx_pkts)
132 {
133 	__m128i ptype0, ptype1, vtag0, vtag1, csum, udp_csum_skip;
134 	__m128i rearm0, rearm1, rearm2, rearm3;
135 
136 	/* mask everything except rss type */
137 	const __m128i rsstype_msk = _mm_set_epi16(
138 			0x0000, 0x0000, 0x0000, 0x0000,
139 			0x000F, 0x000F, 0x000F, 0x000F);
140 
141 	/* mask the lower byte of ol_flags */
142 	const __m128i ol_flags_msk = _mm_set_epi16(
143 			0x0000, 0x0000, 0x0000, 0x0000,
144 			0x00FF, 0x00FF, 0x00FF, 0x00FF);
145 
146 	/* map rss type to rss hash flag */
147 	const __m128i rss_flags = _mm_set_epi8(RTE_MBUF_F_RX_FDIR, 0, 0, 0,
148 			0, 0, 0, RTE_MBUF_F_RX_RSS_HASH,
149 			RTE_MBUF_F_RX_RSS_HASH, 0, RTE_MBUF_F_RX_RSS_HASH, 0,
150 			RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, 0);
151 
152 	/* mask everything except vlan present and l4/ip csum error */
153 	const __m128i vlan_csum_msk = _mm_set_epi16(
154 		(IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 16,
155 		(IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 16,
156 		(IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 16,
157 		(IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 16,
158 		IXGBE_RXD_STAT_VP, IXGBE_RXD_STAT_VP,
159 		IXGBE_RXD_STAT_VP, IXGBE_RXD_STAT_VP);
160 
161 	/* map vlan present (0x8), IPE (0x2), L4E (0x1) to ol_flags */
162 	const __m128i vlan_csum_map_lo = _mm_set_epi8(
163 		0, 0, 0, 0,
164 		vlan_flags | RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD,
165 		vlan_flags | RTE_MBUF_F_RX_IP_CKSUM_BAD,
166 		vlan_flags | RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD,
167 		vlan_flags | RTE_MBUF_F_RX_IP_CKSUM_GOOD,
168 		0, 0, 0, 0,
169 		RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD,
170 		RTE_MBUF_F_RX_IP_CKSUM_BAD,
171 		RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD,
172 		RTE_MBUF_F_RX_IP_CKSUM_GOOD);
173 
174 	const __m128i vlan_csum_map_hi = _mm_set_epi8(
175 		0, 0, 0, 0,
176 		0, RTE_MBUF_F_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0,
177 		RTE_MBUF_F_RX_L4_CKSUM_GOOD >> sizeof(uint8_t),
178 		0, 0, 0, 0,
179 		0, RTE_MBUF_F_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0,
180 		RTE_MBUF_F_RX_L4_CKSUM_GOOD >> sizeof(uint8_t));
181 
182 	/* mask everything except UDP header present if specified */
183 	const __m128i udp_hdr_p_msk = _mm_set_epi16
184 		(0, 0, 0, 0,
185 		 udp_p_flag, udp_p_flag, udp_p_flag, udp_p_flag);
186 
187 	const __m128i udp_csum_bad_shuf = _mm_set_epi8
188 		(0, 0, 0, 0, 0, 0, 0, 0,
189 		 0, 0, 0, 0, 0, 0, ~(uint8_t)RTE_MBUF_F_RX_L4_CKSUM_BAD, 0xFF);
190 
191 	ptype0 = _mm_unpacklo_epi16(descs[0], descs[1]);
192 	ptype1 = _mm_unpacklo_epi16(descs[2], descs[3]);
193 	vtag0 = _mm_unpackhi_epi16(descs[0], descs[1]);
194 	vtag1 = _mm_unpackhi_epi16(descs[2], descs[3]);
195 
196 	ptype0 = _mm_unpacklo_epi32(ptype0, ptype1);
197 	/* save the UDP header present information */
198 	udp_csum_skip = _mm_and_si128(ptype0, udp_hdr_p_msk);
199 	ptype0 = _mm_and_si128(ptype0, rsstype_msk);
200 	ptype0 = _mm_shuffle_epi8(rss_flags, ptype0);
201 
202 	vtag1 = _mm_unpacklo_epi32(vtag0, vtag1);
203 	vtag1 = _mm_and_si128(vtag1, vlan_csum_msk);
204 
205 	/* csum bits are in the most significant, to use shuffle we need to
206 	 * shift them. Change mask to 0xc000 to 0x0003.
207 	 */
208 	csum = _mm_srli_epi16(vtag1, 14);
209 
210 	/* now or the most significant 64 bits containing the checksum
211 	 * flags with the vlan present flags.
212 	 */
213 	csum = _mm_srli_si128(csum, 8);
214 	vtag1 = _mm_or_si128(csum, vtag1);
215 
216 	/* convert VP, IPE, L4E to ol_flags */
217 	vtag0 = _mm_shuffle_epi8(vlan_csum_map_hi, vtag1);
218 	vtag0 = _mm_slli_epi16(vtag0, sizeof(uint8_t));
219 
220 	vtag1 = _mm_shuffle_epi8(vlan_csum_map_lo, vtag1);
221 	vtag1 = _mm_and_si128(vtag1, ol_flags_msk);
222 	vtag1 = _mm_or_si128(vtag0, vtag1);
223 
224 	vtag1 = _mm_or_si128(ptype0, vtag1);
225 
226 	/* convert the UDP header present 0x200 to 0x1 for aligning with each
227 	 * RTE_MBUF_F_RX_L4_CKSUM_BAD value in low byte of 16 bits word ol_flag in
228 	 * vtag1 (4x16). Then mask out the bad checksum value by shuffle and
229 	 * bit-mask.
230 	 */
231 	udp_csum_skip = _mm_srli_epi16(udp_csum_skip, 9);
232 	udp_csum_skip = _mm_shuffle_epi8(udp_csum_bad_shuf, udp_csum_skip);
233 	vtag1 = _mm_and_si128(vtag1, udp_csum_skip);
234 
235 	/*
236 	 * At this point, we have the 4 sets of flags in the low 64-bits
237 	 * of vtag1 (4x16).
238 	 * We want to extract these, and merge them with the mbuf init data
239 	 * so we can do a single 16-byte write to the mbuf to set the flags
240 	 * and all the other initialization fields. Extracting the
241 	 * appropriate flags means that we have to do a shift and blend for
242 	 * each mbuf before we do the write.
243 	 */
244 	rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 8), 0x10);
245 	rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 6), 0x10);
246 	rearm2 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 4), 0x10);
247 	rearm3 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 2), 0x10);
248 
249 	/* write the rearm data and the olflags in one write */
250 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
251 			offsetof(struct rte_mbuf, rearm_data) + 8);
252 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
253 			RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
254 	_mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
255 	_mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
256 	_mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
257 	_mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
258 }
259 
260 static inline uint32_t get_packet_type(int index,
261 				       uint32_t pkt_info,
262 				       uint32_t etqf_check,
263 				       uint32_t tunnel_check)
264 {
265 	if (etqf_check & (0x02 << (index * RTE_IXGBE_DESCS_PER_LOOP)))
266 		return RTE_PTYPE_UNKNOWN;
267 
268 	if (tunnel_check & (0x02 << (index * RTE_IXGBE_DESCS_PER_LOOP))) {
269 		pkt_info &= IXGBE_PACKET_TYPE_MASK_TUNNEL;
270 		return ptype_table_tn[pkt_info];
271 	}
272 
273 	pkt_info &= IXGBE_PACKET_TYPE_MASK_82599;
274 	return ptype_table[pkt_info];
275 }
276 
277 static inline void
278 desc_to_ptype_v(__m128i descs[4], uint16_t pkt_type_mask,
279 		struct rte_mbuf **rx_pkts)
280 {
281 	__m128i etqf_mask = _mm_set_epi64x(0x800000008000LL, 0x800000008000LL);
282 	__m128i ptype_mask = _mm_set_epi32(
283 		pkt_type_mask, pkt_type_mask, pkt_type_mask, pkt_type_mask);
284 	__m128i tunnel_mask =
285 		_mm_set_epi64x(0x100000001000LL, 0x100000001000LL);
286 
287 	uint32_t etqf_check, tunnel_check, pkt_info;
288 
289 	__m128i ptype0 = _mm_unpacklo_epi32(descs[0], descs[2]);
290 	__m128i ptype1 = _mm_unpacklo_epi32(descs[1], descs[3]);
291 
292 	/* interleave low 32 bits,
293 	 * now we have 4 ptypes in a XMM register
294 	 */
295 	ptype0 = _mm_unpacklo_epi32(ptype0, ptype1);
296 
297 	/* create a etqf bitmask based on the etqf bit. */
298 	etqf_check = _mm_movemask_epi8(_mm_and_si128(ptype0, etqf_mask));
299 
300 	/* shift left by IXGBE_PACKET_TYPE_SHIFT, and apply ptype mask */
301 	ptype0 = _mm_and_si128(_mm_srli_epi32(ptype0, IXGBE_PACKET_TYPE_SHIFT),
302 			       ptype_mask);
303 
304 	/* create a tunnel bitmask based on the tunnel bit */
305 	tunnel_check = _mm_movemask_epi8(
306 		_mm_slli_epi32(_mm_and_si128(ptype0, tunnel_mask), 0x3));
307 
308 	pkt_info = _mm_extract_epi32(ptype0, 0);
309 	rx_pkts[0]->packet_type =
310 		get_packet_type(0, pkt_info, etqf_check, tunnel_check);
311 	pkt_info = _mm_extract_epi32(ptype0, 1);
312 	rx_pkts[1]->packet_type =
313 		get_packet_type(1, pkt_info, etqf_check, tunnel_check);
314 	pkt_info = _mm_extract_epi32(ptype0, 2);
315 	rx_pkts[2]->packet_type =
316 		get_packet_type(2, pkt_info, etqf_check, tunnel_check);
317 	pkt_info = _mm_extract_epi32(ptype0, 3);
318 	rx_pkts[3]->packet_type =
319 		get_packet_type(3, pkt_info, etqf_check, tunnel_check);
320 }
321 
322 /**
323  * vPMD raw receive routine, only accept(nb_pkts >= RTE_IXGBE_DESCS_PER_LOOP)
324  *
325  * Notice:
326  * - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
327  * - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
328  */
329 static inline uint16_t
330 _recv_raw_pkts_vec(struct ixgbe_rx_queue *rxq, struct rte_mbuf **rx_pkts,
331 		uint16_t nb_pkts, uint8_t *split_packet)
332 {
333 	volatile union ixgbe_adv_rx_desc *rxdp;
334 	struct ixgbe_rx_entry *sw_ring;
335 	uint16_t nb_pkts_recd;
336 #ifdef RTE_LIB_SECURITY
337 	uint8_t use_ipsec = rxq->using_ipsec;
338 #endif
339 	int pos;
340 	uint64_t var;
341 	__m128i shuf_msk;
342 	__m128i crc_adjust = _mm_set_epi16(
343 				0, 0, 0,    /* ignore non-length fields */
344 				-rxq->crc_len, /* sub crc on data_len */
345 				0,          /* ignore high-16bits of pkt_len */
346 				-rxq->crc_len, /* sub crc on pkt_len */
347 				0, 0            /* ignore pkt_type field */
348 			);
349 	/*
350 	 * compile-time check the above crc_adjust layout is correct.
351 	 * NOTE: the first field (lowest address) is given last in set_epi16
352 	 * call above.
353 	 */
354 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
355 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
356 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
357 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
358 	__m128i dd_check, eop_check;
359 	__m128i mbuf_init;
360 	uint8_t vlan_flags;
361 	uint16_t udp_p_flag = 0; /* Rx Descriptor UDP header present */
362 
363 	/*
364 	 * Under the circumstance that `rx_tail` wrap back to zero
365 	 * and the advance speed of `rx_tail` is greater than `rxrearm_start`,
366 	 * `rx_tail` will catch up with `rxrearm_start` and surpass it.
367 	 * This may cause some mbufs be reused by application.
368 	 *
369 	 * So we need to make some restrictions to ensure that
370 	 * `rx_tail` will not exceed `rxrearm_start`.
371 	 */
372 	nb_pkts = RTE_MIN(nb_pkts, RTE_IXGBE_RXQ_REARM_THRESH);
373 
374 	/* nb_pkts has to be floor-aligned to RTE_IXGBE_DESCS_PER_LOOP */
375 	nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_IXGBE_DESCS_PER_LOOP);
376 
377 	/* Just the act of getting into the function from the application is
378 	 * going to cost about 7 cycles
379 	 */
380 	rxdp = rxq->rx_ring + rxq->rx_tail;
381 
382 	rte_prefetch0(rxdp);
383 
384 	/* See if we need to rearm the RX queue - gives the prefetch a bit
385 	 * of time to act
386 	 */
387 	if (rxq->rxrearm_nb > RTE_IXGBE_RXQ_REARM_THRESH)
388 		ixgbe_rxq_rearm(rxq);
389 
390 	/* Before we start moving massive data around, check to see if
391 	 * there is actually a packet available
392 	 */
393 	if (!(rxdp->wb.upper.status_error &
394 				rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
395 		return 0;
396 
397 	if (rxq->rx_udp_csum_zero_err)
398 		udp_p_flag = IXGBE_RXDADV_PKTTYPE_UDP;
399 
400 	/* 4 packets DD mask */
401 	dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
402 
403 	/* 4 packets EOP mask */
404 	eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
405 
406 	/* mask to shuffle from desc. to mbuf */
407 	shuf_msk = _mm_set_epi8(
408 		7, 6, 5, 4,  /* octet 4~7, 32bits rss */
409 		15, 14,      /* octet 14~15, low 16 bits vlan_macip */
410 		13, 12,      /* octet 12~13, 16 bits data_len */
411 		0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
412 		13, 12,      /* octet 12~13, low 16 bits pkt_len */
413 		0xFF, 0xFF,  /* skip 32 bit pkt_type */
414 		0xFF, 0xFF
415 		);
416 	/*
417 	 * Compile-time verify the shuffle mask
418 	 * NOTE: some field positions already verified above, but duplicated
419 	 * here for completeness in case of future modifications.
420 	 */
421 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
422 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
423 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
424 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
425 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
426 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
427 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
428 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
429 
430 	mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
431 
432 	/* Cache is empty -> need to scan the buffer rings, but first move
433 	 * the next 'n' mbufs into the cache
434 	 */
435 	sw_ring = &rxq->sw_ring[rxq->rx_tail];
436 
437 	/* ensure these 2 flags are in the lower 8 bits */
438 	RTE_BUILD_BUG_ON((RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED) > UINT8_MAX);
439 	vlan_flags = rxq->vlan_flags & UINT8_MAX;
440 
441 	/* A. load 4 packet in one loop
442 	 * [A*. mask out 4 unused dirty field in desc]
443 	 * B. copy 4 mbuf point from swring to rx_pkts
444 	 * C. calc the number of DD bits among the 4 packets
445 	 * [C*. extract the end-of-packet bit, if requested]
446 	 * D. fill info. from desc to mbuf
447 	 */
448 	for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
449 			pos += RTE_IXGBE_DESCS_PER_LOOP,
450 			rxdp += RTE_IXGBE_DESCS_PER_LOOP) {
451 		__m128i descs[RTE_IXGBE_DESCS_PER_LOOP];
452 		__m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
453 		__m128i zero, staterr, sterr_tmp1, sterr_tmp2;
454 		/* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
455 		__m128i mbp1;
456 #if defined(RTE_ARCH_X86_64)
457 		__m128i mbp2;
458 #endif
459 
460 		/* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
461 		mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
462 
463 		/* Read desc statuses backwards to avoid race condition */
464 		/* A.1 load desc[3] */
465 		descs[3] = _mm_loadu_si128(RTE_CAST_PTR(const __m128i *, rxdp + 3));
466 		rte_compiler_barrier();
467 
468 		/* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
469 		_mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
470 
471 #if defined(RTE_ARCH_X86_64)
472 		/* B.1 load 2 64 bit mbuf points */
473 		mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos+2]);
474 #endif
475 
476 		/* A.1 load desc[2-0] */
477 		descs[2] = _mm_loadu_si128(RTE_CAST_PTR(const __m128i *, rxdp + 2));
478 		rte_compiler_barrier();
479 		descs[1] = _mm_loadu_si128(RTE_CAST_PTR(const __m128i *, rxdp + 1));
480 		rte_compiler_barrier();
481 		descs[0] = _mm_loadu_si128(RTE_CAST_PTR(const __m128i *, rxdp));
482 
483 #if defined(RTE_ARCH_X86_64)
484 		/* B.2 copy 2 mbuf point into rx_pkts  */
485 		_mm_storeu_si128((__m128i *)&rx_pkts[pos+2], mbp2);
486 #endif
487 
488 		if (split_packet) {
489 			rte_mbuf_prefetch_part2(rx_pkts[pos]);
490 			rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
491 			rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
492 			rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
493 		}
494 
495 		/* avoid compiler reorder optimization */
496 		rte_compiler_barrier();
497 
498 		/* D.1 pkt 3,4 convert format from desc to pktmbuf */
499 		pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk);
500 		pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);
501 
502 		/* D.1 pkt 1,2 convert format from desc to pktmbuf */
503 		pkt_mb2 = _mm_shuffle_epi8(descs[1], shuf_msk);
504 		pkt_mb1 = _mm_shuffle_epi8(descs[0], shuf_msk);
505 
506 		/* C.1 4=>2 filter staterr info only */
507 		sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
508 		/* C.1 4=>2 filter staterr info only */
509 		sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
510 
511 		/* set ol_flags with vlan packet type */
512 		desc_to_olflags_v(descs, mbuf_init, vlan_flags, udp_p_flag,
513 				  &rx_pkts[pos]);
514 
515 #ifdef RTE_LIB_SECURITY
516 		if (unlikely(use_ipsec))
517 			desc_to_olflags_v_ipsec(descs, &rx_pkts[pos]);
518 #endif
519 
520 		/* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
521 		pkt_mb4 = _mm_add_epi16(pkt_mb4, crc_adjust);
522 		pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
523 
524 		/* C.2 get 4 pkts staterr value  */
525 		zero = _mm_xor_si128(dd_check, dd_check);
526 		staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
527 
528 		/* D.3 copy final 3,4 data to rx_pkts */
529 		_mm_storeu_si128((void *)&rx_pkts[pos+3]->rx_descriptor_fields1,
530 				pkt_mb4);
531 		_mm_storeu_si128((void *)&rx_pkts[pos+2]->rx_descriptor_fields1,
532 				pkt_mb3);
533 
534 		/* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
535 		pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
536 		pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
537 
538 		/* C* extract and record EOP bit */
539 		if (split_packet) {
540 			__m128i eop_shuf_mask = _mm_set_epi8(
541 					0xFF, 0xFF, 0xFF, 0xFF,
542 					0xFF, 0xFF, 0xFF, 0xFF,
543 					0xFF, 0xFF, 0xFF, 0xFF,
544 					0x04, 0x0C, 0x00, 0x08
545 					);
546 
547 			/* and with mask to extract bits, flipping 1-0 */
548 			__m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
549 			/* the staterr values are not in order, as the count
550 			 * of dd bits doesn't care. However, for end of
551 			 * packet tracking, we do care, so shuffle. This also
552 			 * compresses the 32-bit values to 8-bit
553 			 */
554 			eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
555 			/* store the resulting 32-bit value */
556 			*(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
557 			split_packet += RTE_IXGBE_DESCS_PER_LOOP;
558 		}
559 
560 		/* C.3 calc available number of desc */
561 		staterr = _mm_and_si128(staterr, dd_check);
562 		staterr = _mm_packs_epi32(staterr, zero);
563 
564 		/* D.3 copy final 1,2 data to rx_pkts */
565 		_mm_storeu_si128((void *)&rx_pkts[pos+1]->rx_descriptor_fields1,
566 				pkt_mb2);
567 		_mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
568 				pkt_mb1);
569 
570 		desc_to_ptype_v(descs, rxq->pkt_type_mask, &rx_pkts[pos]);
571 
572 		/* C.4 calc available number of desc */
573 		var = rte_popcount64(_mm_cvtsi128_si64(staterr));
574 		nb_pkts_recd += var;
575 		if (likely(var != RTE_IXGBE_DESCS_PER_LOOP))
576 			break;
577 	}
578 
579 	/* Update our internal tail pointer */
580 	rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
581 	rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
582 	rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
583 
584 	return nb_pkts_recd;
585 }
586 
587 /**
588  * vPMD receive routine, only accept(nb_pkts >= RTE_IXGBE_DESCS_PER_LOOP)
589  *
590  * Notice:
591  * - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
592  * - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
593  */
594 uint16_t
595 ixgbe_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
596 		uint16_t nb_pkts)
597 {
598 	return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
599 }
600 
601 /**
602  * vPMD receive routine that reassembles scattered packets
603  *
604  * Notice:
605  * - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
606  * - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
607  */
608 static uint16_t
609 ixgbe_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
610 			       uint16_t nb_pkts)
611 {
612 	struct ixgbe_rx_queue *rxq = rx_queue;
613 	uint8_t split_flags[RTE_IXGBE_MAX_RX_BURST] = {0};
614 
615 	/* get some new buffers */
616 	uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
617 			split_flags);
618 	if (nb_bufs == 0)
619 		return 0;
620 
621 	/* happy day case, full burst + no packets to be joined */
622 	const uint64_t *split_fl64 = (uint64_t *)split_flags;
623 	if (rxq->pkt_first_seg == NULL &&
624 			split_fl64[0] == 0 && split_fl64[1] == 0 &&
625 			split_fl64[2] == 0 && split_fl64[3] == 0)
626 		return nb_bufs;
627 
628 	/* reassemble any packets that need reassembly*/
629 	unsigned i = 0;
630 	if (rxq->pkt_first_seg == NULL) {
631 		/* find the first split flag, and only reassemble then*/
632 		while (i < nb_bufs && !split_flags[i])
633 			i++;
634 		if (i == nb_bufs)
635 			return nb_bufs;
636 		rxq->pkt_first_seg = rx_pkts[i];
637 	}
638 	return i + ci_rx_reassemble_packets(&rx_pkts[i], nb_bufs - i, &split_flags[i],
639 		&rxq->pkt_first_seg, &rxq->pkt_last_seg, rxq->crc_len);
640 }
641 
642 /**
643  * vPMD receive routine that reassembles scattered packets.
644  */
645 uint16_t
646 ixgbe_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
647 			      uint16_t nb_pkts)
648 {
649 	uint16_t retval = 0;
650 
651 	while (nb_pkts > RTE_IXGBE_MAX_RX_BURST) {
652 		uint16_t burst;
653 
654 		burst = ixgbe_recv_scattered_burst_vec(rx_queue,
655 						       rx_pkts + retval,
656 						       RTE_IXGBE_MAX_RX_BURST);
657 		retval += burst;
658 		nb_pkts -= burst;
659 		if (burst < RTE_IXGBE_MAX_RX_BURST)
660 			return retval;
661 	}
662 
663 	return retval + ixgbe_recv_scattered_burst_vec(rx_queue,
664 						       rx_pkts + retval,
665 						       nb_pkts);
666 }
667 
668 static inline void
669 vtx1(volatile union ixgbe_adv_tx_desc *txdp,
670 		struct rte_mbuf *pkt, uint64_t flags)
671 {
672 	__m128i descriptor = _mm_set_epi64x((uint64_t)pkt->pkt_len << 46 |
673 			flags | pkt->data_len,
674 			pkt->buf_iova + pkt->data_off);
675 	_mm_store_si128(RTE_CAST_PTR(__m128i *, &txdp->read), descriptor);
676 }
677 
678 static inline void
679 vtx(volatile union ixgbe_adv_tx_desc *txdp,
680 		struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
681 {
682 	int i;
683 
684 	for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
685 		vtx1(txdp, *pkt, flags);
686 }
687 
688 uint16_t
689 ixgbe_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
690 			   uint16_t nb_pkts)
691 {
692 	struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
693 	volatile union ixgbe_adv_tx_desc *txdp;
694 	struct ci_tx_entry_vec *txep;
695 	uint16_t n, nb_commit, tx_id;
696 	uint64_t flags = DCMD_DTYP_FLAGS;
697 	uint64_t rs = IXGBE_ADVTXD_DCMD_RS|DCMD_DTYP_FLAGS;
698 	int i;
699 
700 	/* cross rx_thresh boundary is not allowed */
701 	nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
702 
703 	if (txq->nb_tx_free < txq->tx_free_thresh)
704 		ixgbe_tx_free_bufs(txq);
705 
706 	nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
707 	if (unlikely(nb_pkts == 0))
708 		return 0;
709 
710 	tx_id = txq->tx_tail;
711 	txdp = &txq->tx_ring[tx_id];
712 	txep = &txq->sw_ring_v[tx_id];
713 
714 	txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
715 
716 	n = (uint16_t)(txq->nb_tx_desc - tx_id);
717 	if (nb_commit >= n) {
718 
719 		tx_backlog_entry(txep, tx_pkts, n);
720 
721 		for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
722 			vtx1(txdp, *tx_pkts, flags);
723 
724 		vtx1(txdp, *tx_pkts++, rs);
725 
726 		nb_commit = (uint16_t)(nb_commit - n);
727 
728 		tx_id = 0;
729 		txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
730 
731 		/* avoid reach the end of ring */
732 		txdp = &(txq->tx_ring[tx_id]);
733 		txep = &txq->sw_ring_v[tx_id];
734 	}
735 
736 	tx_backlog_entry(txep, tx_pkts, nb_commit);
737 
738 	vtx(txdp, tx_pkts, nb_commit, flags);
739 
740 	tx_id = (uint16_t)(tx_id + nb_commit);
741 	if (tx_id > txq->tx_next_rs) {
742 		txq->tx_ring[txq->tx_next_rs].read.cmd_type_len |=
743 			rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
744 		txq->tx_next_rs = (uint16_t)(txq->tx_next_rs +
745 			txq->tx_rs_thresh);
746 	}
747 
748 	txq->tx_tail = tx_id;
749 
750 	IXGBE_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
751 
752 	return nb_pkts;
753 }
754 
755 static void __rte_cold
756 ixgbe_tx_queue_release_mbufs_vec(struct ixgbe_tx_queue *txq)
757 {
758 	_ixgbe_tx_queue_release_mbufs_vec(txq);
759 }
760 
761 void __rte_cold
762 ixgbe_rx_queue_release_mbufs_vec(struct ixgbe_rx_queue *rxq)
763 {
764 	_ixgbe_rx_queue_release_mbufs_vec(rxq);
765 }
766 
767 static void __rte_cold
768 ixgbe_tx_free_swring(struct ixgbe_tx_queue *txq)
769 {
770 	_ixgbe_tx_free_swring_vec(txq);
771 }
772 
773 static void __rte_cold
774 ixgbe_reset_tx_queue(struct ixgbe_tx_queue *txq)
775 {
776 	_ixgbe_reset_tx_queue_vec(txq);
777 }
778 
779 static const struct ixgbe_txq_ops vec_txq_ops = {
780 	.release_mbufs = ixgbe_tx_queue_release_mbufs_vec,
781 	.free_swring = ixgbe_tx_free_swring,
782 	.reset = ixgbe_reset_tx_queue,
783 };
784 
785 int __rte_cold
786 ixgbe_rxq_vec_setup(struct ixgbe_rx_queue *rxq)
787 {
788 	return ixgbe_rxq_vec_setup_default(rxq);
789 }
790 
791 int __rte_cold
792 ixgbe_txq_vec_setup(struct ixgbe_tx_queue *txq)
793 {
794 	return ixgbe_txq_vec_setup_default(txq, &vec_txq_ops);
795 }
796 
797 int __rte_cold
798 ixgbe_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
799 {
800 	return ixgbe_rx_vec_dev_conf_condition_check_default(dev);
801 }
802