xref: /dpdk/drivers/net/intel/ixgbe/ixgbe_rxtx_vec_neon.c (revision 5cc9919fd443fbd3fce77a257601890a0ee6a247)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2015 Intel Corporation
3  */
4 
5 #include <stdint.h>
6 #include <ethdev_driver.h>
7 #include <rte_malloc.h>
8 #include <rte_vect.h>
9 
10 #include "ixgbe_ethdev.h"
11 #include "ixgbe_rxtx.h"
12 #include "ixgbe_rxtx_vec_common.h"
13 
14 static inline void
15 ixgbe_rxq_rearm(struct ixgbe_rx_queue *rxq)
16 {
17 	int i;
18 	uint16_t rx_id;
19 	volatile union ixgbe_adv_rx_desc *rxdp;
20 	struct ixgbe_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
21 	struct rte_mbuf *mb0, *mb1;
22 	uint64x2_t dma_addr0, dma_addr1;
23 	uint64x2_t zero = vdupq_n_u64(0);
24 	uint64_t paddr;
25 	uint8x8_t p;
26 
27 	rxdp = rxq->rx_ring + rxq->rxrearm_start;
28 
29 	/* Pull 'n' more MBUFs into the software ring */
30 	if (unlikely(rte_mempool_get_bulk(rxq->mb_pool,
31 					  (void *)rxep,
32 					  RTE_IXGBE_RXQ_REARM_THRESH) < 0)) {
33 		if (rxq->rxrearm_nb + RTE_IXGBE_RXQ_REARM_THRESH >=
34 		    rxq->nb_rx_desc) {
35 			for (i = 0; i < RTE_IXGBE_DESCS_PER_LOOP; i++) {
36 				rxep[i].mbuf = &rxq->fake_mbuf;
37 				vst1q_u64(RTE_CAST_PTR(uint64_t *, &rxdp[i].read),
38 					  zero);
39 			}
40 		}
41 		rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
42 			RTE_IXGBE_RXQ_REARM_THRESH;
43 		return;
44 	}
45 
46 	p = vld1_u8((uint8_t *)&rxq->mbuf_initializer);
47 
48 	/* Initialize the mbufs in vector, process 2 mbufs in one loop */
49 	for (i = 0; i < RTE_IXGBE_RXQ_REARM_THRESH; i += 2, rxep += 2) {
50 		mb0 = rxep[0].mbuf;
51 		mb1 = rxep[1].mbuf;
52 
53 		/*
54 		 * Flush mbuf with pkt template.
55 		 * Data to be rearmed is 6 bytes long.
56 		 */
57 		vst1_u8((uint8_t *)&mb0->rearm_data, p);
58 		paddr = mb0->buf_iova + RTE_PKTMBUF_HEADROOM;
59 		dma_addr0 = vsetq_lane_u64(paddr, zero, 0);
60 		/* flush desc with pa dma_addr */
61 		vst1q_u64(RTE_CAST_PTR(uint64_t *, &rxdp++->read), dma_addr0);
62 
63 		vst1_u8((uint8_t *)&mb1->rearm_data, p);
64 		paddr = mb1->buf_iova + RTE_PKTMBUF_HEADROOM;
65 		dma_addr1 = vsetq_lane_u64(paddr, zero, 0);
66 		vst1q_u64(RTE_CAST_PTR(uint64_t *, &rxdp++->read), dma_addr1);
67 	}
68 
69 	rxq->rxrearm_start += RTE_IXGBE_RXQ_REARM_THRESH;
70 	if (rxq->rxrearm_start >= rxq->nb_rx_desc)
71 		rxq->rxrearm_start = 0;
72 
73 	rxq->rxrearm_nb -= RTE_IXGBE_RXQ_REARM_THRESH;
74 
75 	rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
76 			     (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
77 
78 	/* Update the tail pointer on the NIC */
79 	IXGBE_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
80 }
81 
82 static inline void
83 desc_to_olflags_v(uint8x16x2_t sterr_tmp1, uint8x16x2_t sterr_tmp2,
84 		  uint8x16_t staterr, uint8_t vlan_flags, uint16_t udp_p_flag,
85 		  struct rte_mbuf **rx_pkts)
86 {
87 	uint16_t udp_p_flag_hi;
88 	uint8x16_t ptype, udp_csum_skip;
89 	uint32x4_t temp_udp_csum_skip = {0, 0, 0, 0};
90 	uint8x16_t vtag_lo, vtag_hi, vtag;
91 	uint8x16_t temp_csum;
92 	uint32x4_t csum = {0, 0, 0, 0};
93 
94 	union {
95 		uint16_t e[4];
96 		uint64_t word;
97 	} vol;
98 
99 	const uint8x16_t rsstype_msk = {
100 			0x0F, 0x0F, 0x0F, 0x0F,
101 			0x00, 0x00, 0x00, 0x00,
102 			0x00, 0x00, 0x00, 0x00,
103 			0x00, 0x00, 0x00, 0x00};
104 
105 	const uint8x16_t rss_flags = {
106 			0, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
107 			0, RTE_MBUF_F_RX_RSS_HASH, 0, RTE_MBUF_F_RX_RSS_HASH,
108 			RTE_MBUF_F_RX_RSS_HASH, 0, 0, 0,
109 			0, 0, 0, RTE_MBUF_F_RX_FDIR};
110 
111 	/* mask everything except vlan present and l4/ip csum error */
112 	const uint8x16_t vlan_csum_msk = {
113 			IXGBE_RXD_STAT_VP, IXGBE_RXD_STAT_VP,
114 			IXGBE_RXD_STAT_VP, IXGBE_RXD_STAT_VP,
115 			0, 0, 0, 0,
116 			0, 0, 0, 0,
117 			(IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 24,
118 			(IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 24,
119 			(IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 24,
120 			(IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 24};
121 
122 	/* map vlan present (0x8), IPE (0x2), L4E (0x1) to ol_flags */
123 	const uint8x16_t vlan_csum_map_lo = {
124 			RTE_MBUF_F_RX_IP_CKSUM_GOOD,
125 			RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD,
126 			RTE_MBUF_F_RX_IP_CKSUM_BAD,
127 			RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD,
128 			0, 0, 0, 0,
129 			vlan_flags | RTE_MBUF_F_RX_IP_CKSUM_GOOD,
130 			vlan_flags | RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD,
131 			vlan_flags | RTE_MBUF_F_RX_IP_CKSUM_BAD,
132 			vlan_flags | RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD,
133 			0, 0, 0, 0};
134 
135 	const uint8x16_t vlan_csum_map_hi = {
136 			RTE_MBUF_F_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0,
137 			RTE_MBUF_F_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0,
138 			0, 0, 0, 0,
139 			RTE_MBUF_F_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0,
140 			RTE_MBUF_F_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0,
141 			0, 0, 0, 0};
142 
143 	/* change mask from 0x200(IXGBE_RXDADV_PKTTYPE_UDP) to 0x2 */
144 	udp_p_flag_hi = udp_p_flag >> 8;
145 
146 	/* mask everything except UDP header present if specified */
147 	const uint8x16_t udp_hdr_p_msk = {
148 			0, 0, 0, 0,
149 			udp_p_flag_hi, udp_p_flag_hi, udp_p_flag_hi, udp_p_flag_hi,
150 			0, 0, 0, 0,
151 			0, 0, 0, 0};
152 
153 	const uint8x16_t udp_csum_bad_shuf = {
154 			0xFF, ~(uint8_t)RTE_MBUF_F_RX_L4_CKSUM_BAD, 0, 0,
155 			0, 0, 0, 0,
156 			0, 0, 0, 0,
157 			0, 0, 0, 0};
158 
159 	ptype = vzipq_u8(sterr_tmp1.val[0], sterr_tmp2.val[0]).val[0];
160 
161 	/* save the UDP header present information */
162 	udp_csum_skip = vandq_u8(ptype, udp_hdr_p_msk);
163 
164 	/* move UDP header present information to low 32bits */
165 	temp_udp_csum_skip = vcopyq_laneq_u32(temp_udp_csum_skip, 0,
166 				vreinterpretq_u32_u8(udp_csum_skip), 1);
167 
168 	ptype = vandq_u8(ptype, rsstype_msk);
169 	ptype = vqtbl1q_u8(rss_flags, ptype);
170 
171 	/* extract vlan_flags and csum_error from staterr */
172 	vtag = vandq_u8(staterr, vlan_csum_msk);
173 
174 	/* csum bits are in the most significant, to use shuffle we need to
175 	 * shift them. Change mask from 0xc0 to 0x03.
176 	 */
177 	temp_csum = vshrq_n_u8(vtag, 6);
178 
179 	/* 'OR' the most significant 32 bits containing the checksum
180 	 * flags with the vlan present flags
181 	 * Then bits layout of each lane(8bits) will be 'xxxx,VP,x,IPE,L4E'
182 	 */
183 	csum = vsetq_lane_u32(vgetq_lane_u32(vreinterpretq_u32_u8(temp_csum), 3), csum, 0);
184 	vtag = vorrq_u8(vreinterpretq_u8_u32(csum), vtag);
185 
186 	/* convert L4 checksum correct type to vtag_hi */
187 	vtag_hi = vqtbl1q_u8(vlan_csum_map_hi, vtag);
188 	vtag_hi = vshrq_n_u8(vtag_hi, 7);
189 
190 	/* convert VP, IPE, L4E to vtag_lo */
191 	vtag_lo = vqtbl1q_u8(vlan_csum_map_lo, vtag);
192 	vtag_lo = vorrq_u8(ptype, vtag_lo);
193 
194 	/* convert the UDP header present 0x2 to 0x1 for aligning with each
195 	 * RTE_MBUF_F_RX_L4_CKSUM_BAD value in low byte of 8 bits word ol_flag in
196 	 * vtag_lo (4x8). Then mask out the bad checksum value by shuffle and
197 	 * bit-mask.
198 	 */
199 	udp_csum_skip = vshrq_n_u8(vreinterpretq_u8_u32(temp_udp_csum_skip), 1);
200 	udp_csum_skip = vqtbl1q_u8(udp_csum_bad_shuf, udp_csum_skip);
201 	vtag_lo = vandq_u8(vtag_lo, udp_csum_skip);
202 
203 	vtag = vzipq_u8(vtag_lo, vtag_hi).val[0];
204 	vol.word = vgetq_lane_u64(vreinterpretq_u64_u8(vtag), 0);
205 
206 	rx_pkts[0]->ol_flags = vol.e[0];
207 	rx_pkts[1]->ol_flags = vol.e[1];
208 	rx_pkts[2]->ol_flags = vol.e[2];
209 	rx_pkts[3]->ol_flags = vol.e[3];
210 }
211 
212 #define IXGBE_VPMD_DESC_EOP_MASK	0x02020202
213 #define IXGBE_UINT8_BIT			(CHAR_BIT * sizeof(uint8_t))
214 
215 static inline uint32_t
216 get_packet_type(uint32_t pkt_info,
217 		uint32_t etqf_check,
218 		uint32_t tunnel_check)
219 {
220 	if (etqf_check)
221 		return RTE_PTYPE_UNKNOWN;
222 
223 	if (tunnel_check) {
224 		pkt_info &= IXGBE_PACKET_TYPE_MASK_TUNNEL;
225 		return ptype_table_tn[pkt_info];
226 	}
227 
228 	pkt_info &= IXGBE_PACKET_TYPE_MASK_82599;
229 	return ptype_table[pkt_info];
230 }
231 
232 static inline void
233 desc_to_ptype_v(uint64x2_t descs[4], uint16_t pkt_type_mask,
234 		struct rte_mbuf **rx_pkts)
235 {
236 	uint32x4_t etqf_check, tunnel_check;
237 	uint32x4_t etqf_mask = vdupq_n_u32(0x8000);
238 	uint32x4_t tunnel_mask = vdupq_n_u32(0x10000);
239 	uint32x4_t ptype_mask = vdupq_n_u32((uint32_t)pkt_type_mask);
240 	uint32x4_t ptype0 = vzipq_u32(vreinterpretq_u32_u64(descs[0]),
241 				vreinterpretq_u32_u64(descs[2])).val[0];
242 	uint32x4_t ptype1 = vzipq_u32(vreinterpretq_u32_u64(descs[1]),
243 				vreinterpretq_u32_u64(descs[3])).val[0];
244 
245 	/* interleave low 32 bits,
246 	 * now we have 4 ptypes in a NEON register
247 	 */
248 	ptype0 = vzipq_u32(ptype0, ptype1).val[0];
249 
250 	/* mask etqf bits */
251 	etqf_check = vandq_u32(ptype0, etqf_mask);
252 	/* mask tunnel bits */
253 	tunnel_check = vandq_u32(ptype0, tunnel_mask);
254 
255 	/* shift right by IXGBE_PACKET_TYPE_SHIFT, and apply ptype mask */
256 	ptype0 = vandq_u32(vshrq_n_u32(ptype0, IXGBE_PACKET_TYPE_SHIFT),
257 			ptype_mask);
258 
259 	rx_pkts[0]->packet_type =
260 		get_packet_type(vgetq_lane_u32(ptype0, 0),
261 				vgetq_lane_u32(etqf_check, 0),
262 				vgetq_lane_u32(tunnel_check, 0));
263 	rx_pkts[1]->packet_type =
264 		get_packet_type(vgetq_lane_u32(ptype0, 1),
265 				vgetq_lane_u32(etqf_check, 1),
266 				vgetq_lane_u32(tunnel_check, 1));
267 	rx_pkts[2]->packet_type =
268 		get_packet_type(vgetq_lane_u32(ptype0, 2),
269 				vgetq_lane_u32(etqf_check, 2),
270 				vgetq_lane_u32(tunnel_check, 2));
271 	rx_pkts[3]->packet_type =
272 		get_packet_type(vgetq_lane_u32(ptype0, 3),
273 				vgetq_lane_u32(etqf_check, 3),
274 				vgetq_lane_u32(tunnel_check, 3));
275 }
276 
277 /**
278  * vPMD raw receive routine, only accept(nb_pkts >= RTE_IXGBE_DESCS_PER_LOOP)
279  *
280  * Notice:
281  * - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
282  * - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
283  */
284 static inline uint16_t
285 _recv_raw_pkts_vec(struct ixgbe_rx_queue *rxq, struct rte_mbuf **rx_pkts,
286 		   uint16_t nb_pkts, uint8_t *split_packet)
287 {
288 	volatile union ixgbe_adv_rx_desc *rxdp;
289 	struct ixgbe_rx_entry *sw_ring;
290 	uint16_t nb_pkts_recd;
291 	int pos;
292 	uint8x16_t shuf_msk = {
293 		0xFF, 0xFF,
294 		0xFF, 0xFF,  /* skip 32 bits pkt_type */
295 		12, 13,      /* octet 12~13, low 16 bits pkt_len */
296 		0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
297 		12, 13,      /* octet 12~13, 16 bits data_len */
298 		14, 15,      /* octet 14~15, low 16 bits vlan_macip */
299 		4, 5, 6, 7  /* octet 4~7, 32bits rss */
300 		};
301 	uint16x8_t crc_adjust = {0, 0, rxq->crc_len, 0,
302 				 rxq->crc_len, 0, 0, 0};
303 	uint8_t vlan_flags;
304 	uint16_t udp_p_flag = 0; /* Rx Descriptor UDP header present */
305 
306 	/* nb_pkts has to be floor-aligned to RTE_IXGBE_DESCS_PER_LOOP */
307 	nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_IXGBE_DESCS_PER_LOOP);
308 
309 	/* Just the act of getting into the function from the application is
310 	 * going to cost about 7 cycles
311 	 */
312 	rxdp = rxq->rx_ring + rxq->rx_tail;
313 
314 	rte_prefetch_non_temporal(rxdp);
315 
316 	/* See if we need to rearm the RX queue - gives the prefetch a bit
317 	 * of time to act
318 	 */
319 	if (rxq->rxrearm_nb > RTE_IXGBE_RXQ_REARM_THRESH)
320 		ixgbe_rxq_rearm(rxq);
321 
322 	/* Before we start moving massive data around, check to see if
323 	 * there is actually a packet available
324 	 */
325 	if (!(rxdp->wb.upper.status_error &
326 				rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
327 		return 0;
328 
329 	if (rxq->rx_udp_csum_zero_err)
330 		udp_p_flag = IXGBE_RXDADV_PKTTYPE_UDP;
331 
332 	/* Cache is empty -> need to scan the buffer rings, but first move
333 	 * the next 'n' mbufs into the cache
334 	 */
335 	sw_ring = &rxq->sw_ring[rxq->rx_tail];
336 
337 	/* ensure these 2 flags are in the lower 8 bits */
338 	RTE_BUILD_BUG_ON((RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED) > UINT8_MAX);
339 	vlan_flags = rxq->vlan_flags & UINT8_MAX;
340 
341 	/* A. load 4 packet in one loop
342 	 * B. copy 4 mbuf point from swring to rx_pkts
343 	 * C. calc the number of DD bits among the 4 packets
344 	 * [C*. extract the end-of-packet bit, if requested]
345 	 * D. fill info. from desc to mbuf
346 	 */
347 	for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
348 			pos += RTE_IXGBE_DESCS_PER_LOOP,
349 			rxdp += RTE_IXGBE_DESCS_PER_LOOP) {
350 		uint64x2_t descs[RTE_IXGBE_DESCS_PER_LOOP];
351 		uint8x16_t pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
352 		uint8x16x2_t sterr_tmp1, sterr_tmp2;
353 		uint64x2_t mbp1, mbp2;
354 		uint8x16_t staterr;
355 		uint16x8_t tmp;
356 		uint32_t stat;
357 
358 		/* B.1 load 2 mbuf point */
359 		mbp1 = vld1q_u64((uint64_t *)&sw_ring[pos]);
360 
361 		/* B.2 copy 2 mbuf point into rx_pkts  */
362 		vst1q_u64((uint64_t *)&rx_pkts[pos], mbp1);
363 
364 		/* B.1 load 2 mbuf point */
365 		mbp2 = vld1q_u64((uint64_t *)&sw_ring[pos + 2]);
366 
367 		/* A. load 4 pkts descs */
368 		descs[0] =  vld1q_u64(RTE_CAST_PTR(uint64_t *, rxdp));
369 		descs[1] =  vld1q_u64(RTE_CAST_PTR(uint64_t *, rxdp + 1));
370 		descs[2] =  vld1q_u64(RTE_CAST_PTR(uint64_t *, rxdp + 2));
371 		descs[3] =  vld1q_u64(RTE_CAST_PTR(uint64_t *, rxdp + 3));
372 
373 		/* B.2 copy 2 mbuf point into rx_pkts  */
374 		vst1q_u64((uint64_t *)&rx_pkts[pos + 2], mbp2);
375 
376 		if (split_packet) {
377 			rte_mbuf_prefetch_part2(rx_pkts[pos]);
378 			rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
379 			rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
380 			rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
381 		}
382 
383 		/* D.1 pkt 3,4 convert format from desc to pktmbuf */
384 		pkt_mb4 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[3]), shuf_msk);
385 		pkt_mb3 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[2]), shuf_msk);
386 
387 		/* D.1 pkt 1,2 convert format from desc to pktmbuf */
388 		pkt_mb2 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[1]), shuf_msk);
389 		pkt_mb1 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[0]), shuf_msk);
390 
391 		/* C.1 4=>2 filter staterr info only */
392 		sterr_tmp2 = vzipq_u8(vreinterpretq_u8_u64(descs[1]),
393 				      vreinterpretq_u8_u64(descs[3]));
394 		/* C.1 4=>2 filter staterr info only */
395 		sterr_tmp1 = vzipq_u8(vreinterpretq_u8_u64(descs[0]),
396 				      vreinterpretq_u8_u64(descs[2]));
397 
398 		/* C.2 get 4 pkts staterr value  */
399 		staterr = vzipq_u8(sterr_tmp1.val[1], sterr_tmp2.val[1]).val[0];
400 
401 		/* set ol_flags with vlan packet type */
402 		desc_to_olflags_v(sterr_tmp1, sterr_tmp2, staterr, vlan_flags,
403 				  udp_p_flag, &rx_pkts[pos]);
404 
405 		/* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
406 		tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb4), crc_adjust);
407 		pkt_mb4 = vreinterpretq_u8_u16(tmp);
408 		tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb3), crc_adjust);
409 		pkt_mb3 = vreinterpretq_u8_u16(tmp);
410 
411 		/* D.3 copy final 3,4 data to rx_pkts */
412 		vst1q_u8((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
413 			 pkt_mb4);
414 		vst1q_u8((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
415 			 pkt_mb3);
416 
417 		/* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
418 		tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb2), crc_adjust);
419 		pkt_mb2 = vreinterpretq_u8_u16(tmp);
420 		tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb1), crc_adjust);
421 		pkt_mb1 = vreinterpretq_u8_u16(tmp);
422 
423 		/* C* extract and record EOP bit */
424 		if (split_packet) {
425 			stat = vgetq_lane_u32(vreinterpretq_u32_u8(staterr), 0);
426 			/* and with mask to extract bits, flipping 1-0 */
427 			*(int *)split_packet = ~stat & IXGBE_VPMD_DESC_EOP_MASK;
428 
429 			split_packet += RTE_IXGBE_DESCS_PER_LOOP;
430 		}
431 
432 		/* C.4 expand DD bit to saturate UINT8 */
433 		staterr = vshlq_n_u8(staterr, IXGBE_UINT8_BIT - 1);
434 		staterr = vreinterpretq_u8_s8
435 				(vshrq_n_s8(vreinterpretq_s8_u8(staterr),
436 					IXGBE_UINT8_BIT - 1));
437 		stat = ~vgetq_lane_u32(vreinterpretq_u32_u8(staterr), 0);
438 
439 		rte_prefetch_non_temporal(rxdp + RTE_IXGBE_DESCS_PER_LOOP);
440 
441 		/* D.3 copy final 1,2 data to rx_pkts */
442 		vst1q_u8((uint8_t *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
443 			 pkt_mb2);
444 		vst1q_u8((uint8_t *)&rx_pkts[pos]->rx_descriptor_fields1,
445 			 pkt_mb1);
446 
447 		desc_to_ptype_v(descs, rxq->pkt_type_mask, &rx_pkts[pos]);
448 
449 		/* C.5 calc available number of desc */
450 		if (unlikely(stat == 0)) {
451 			nb_pkts_recd += RTE_IXGBE_DESCS_PER_LOOP;
452 		} else {
453 			nb_pkts_recd += rte_ctz32(stat) / IXGBE_UINT8_BIT;
454 			break;
455 		}
456 	}
457 
458 	/* Update our internal tail pointer */
459 	rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
460 	rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
461 	rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
462 
463 	return nb_pkts_recd;
464 }
465 
466 /**
467  * vPMD receive routine, only accept(nb_pkts >= RTE_IXGBE_DESCS_PER_LOOP)
468  *
469  * Notice:
470  * - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
471  * - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
472  */
473 uint16_t
474 ixgbe_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
475 		uint16_t nb_pkts)
476 {
477 	return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
478 }
479 
480 /**
481  * vPMD receive routine that reassembles scattered packets
482  *
483  * Notice:
484  * - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
485  * - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
486  */
487 static uint16_t
488 ixgbe_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
489 			       uint16_t nb_pkts)
490 {
491 	struct ixgbe_rx_queue *rxq = rx_queue;
492 	uint8_t split_flags[RTE_IXGBE_MAX_RX_BURST] = {0};
493 
494 	/* get some new buffers */
495 	uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
496 			split_flags);
497 	if (nb_bufs == 0)
498 		return 0;
499 
500 	/* happy day case, full burst + no packets to be joined */
501 	const uint64_t *split_fl64 = (uint64_t *)split_flags;
502 	if (rxq->pkt_first_seg == NULL &&
503 			split_fl64[0] == 0 && split_fl64[1] == 0 &&
504 			split_fl64[2] == 0 && split_fl64[3] == 0)
505 		return nb_bufs;
506 
507 	/* reassemble any packets that need reassembly*/
508 	unsigned int i = 0;
509 	if (rxq->pkt_first_seg == NULL) {
510 		/* find the first split flag, and only reassemble then*/
511 		while (i < nb_bufs && !split_flags[i])
512 			i++;
513 		if (i == nb_bufs)
514 			return nb_bufs;
515 		rxq->pkt_first_seg = rx_pkts[i];
516 	}
517 	return i + ci_rx_reassemble_packets(&rx_pkts[i], nb_bufs - i, &split_flags[i],
518 		&rxq->pkt_first_seg, &rxq->pkt_last_seg, rxq->crc_len);
519 }
520 
521 /**
522  * vPMD receive routine that reassembles scattered packets.
523  */
524 uint16_t
525 ixgbe_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
526 			      uint16_t nb_pkts)
527 {
528 	uint16_t retval = 0;
529 
530 	while (nb_pkts > RTE_IXGBE_MAX_RX_BURST) {
531 		uint16_t burst;
532 
533 		burst = ixgbe_recv_scattered_burst_vec(rx_queue,
534 						       rx_pkts + retval,
535 						       RTE_IXGBE_MAX_RX_BURST);
536 		retval += burst;
537 		nb_pkts -= burst;
538 		if (burst < RTE_IXGBE_MAX_RX_BURST)
539 			return retval;
540 	}
541 
542 	return retval + ixgbe_recv_scattered_burst_vec(rx_queue,
543 						       rx_pkts + retval,
544 						       nb_pkts);
545 }
546 
547 static inline void
548 vtx1(volatile union ixgbe_adv_tx_desc *txdp,
549 		struct rte_mbuf *pkt, uint64_t flags)
550 {
551 	uint64x2_t descriptor = {
552 			pkt->buf_iova + pkt->data_off,
553 			(uint64_t)pkt->pkt_len << 46 | flags | pkt->data_len};
554 
555 	vst1q_u64(RTE_CAST_PTR(uint64_t *, &txdp->read), descriptor);
556 }
557 
558 static inline void
559 vtx(volatile union ixgbe_adv_tx_desc *txdp,
560 		struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
561 {
562 	int i;
563 
564 	for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
565 		vtx1(txdp, *pkt, flags);
566 }
567 
568 uint16_t
569 ixgbe_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
570 			   uint16_t nb_pkts)
571 {
572 	struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
573 	volatile union ixgbe_adv_tx_desc *txdp;
574 	struct ci_tx_entry_vec *txep;
575 	uint16_t n, nb_commit, tx_id;
576 	uint64_t flags = DCMD_DTYP_FLAGS;
577 	uint64_t rs = IXGBE_ADVTXD_DCMD_RS | DCMD_DTYP_FLAGS;
578 	int i;
579 
580 	/* cross rx_thresh boundary is not allowed */
581 	nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
582 
583 	if (txq->nb_tx_free < txq->tx_free_thresh)
584 		ixgbe_tx_free_bufs(txq);
585 
586 	nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
587 	if (unlikely(nb_pkts == 0))
588 		return 0;
589 
590 	tx_id = txq->tx_tail;
591 	txdp = &txq->tx_ring[tx_id];
592 	txep = &txq->sw_ring_v[tx_id];
593 
594 	txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
595 
596 	n = (uint16_t)(txq->nb_tx_desc - tx_id);
597 	if (nb_commit >= n) {
598 		tx_backlog_entry(txep, tx_pkts, n);
599 
600 		for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
601 			vtx1(txdp, *tx_pkts, flags);
602 
603 		vtx1(txdp, *tx_pkts++, rs);
604 
605 		nb_commit = (uint16_t)(nb_commit - n);
606 
607 		tx_id = 0;
608 		txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
609 
610 		/* avoid reach the end of ring */
611 		txdp = &txq->tx_ring[tx_id];
612 		txep = &txq->sw_ring_v[tx_id];
613 	}
614 
615 	tx_backlog_entry(txep, tx_pkts, nb_commit);
616 
617 	vtx(txdp, tx_pkts, nb_commit, flags);
618 
619 	tx_id = (uint16_t)(tx_id + nb_commit);
620 	if (tx_id > txq->tx_next_rs) {
621 		txq->tx_ring[txq->tx_next_rs].read.cmd_type_len |=
622 			rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
623 		txq->tx_next_rs = (uint16_t)(txq->tx_next_rs +
624 			txq->tx_rs_thresh);
625 	}
626 
627 	txq->tx_tail = tx_id;
628 
629 	IXGBE_PCI_REG_WRITE(txq->tdt_reg_addr, txq->tx_tail);
630 
631 	return nb_pkts;
632 }
633 
634 static void __rte_cold
635 ixgbe_tx_queue_release_mbufs_vec(struct ixgbe_tx_queue *txq)
636 {
637 	_ixgbe_tx_queue_release_mbufs_vec(txq);
638 }
639 
640 void __rte_cold
641 ixgbe_rx_queue_release_mbufs_vec(struct ixgbe_rx_queue *rxq)
642 {
643 	_ixgbe_rx_queue_release_mbufs_vec(rxq);
644 }
645 
646 static void __rte_cold
647 ixgbe_tx_free_swring(struct ixgbe_tx_queue *txq)
648 {
649 	_ixgbe_tx_free_swring_vec(txq);
650 }
651 
652 static void __rte_cold
653 ixgbe_reset_tx_queue(struct ixgbe_tx_queue *txq)
654 {
655 	_ixgbe_reset_tx_queue_vec(txq);
656 }
657 
658 static const struct ixgbe_txq_ops vec_txq_ops = {
659 	.release_mbufs = ixgbe_tx_queue_release_mbufs_vec,
660 	.free_swring = ixgbe_tx_free_swring,
661 	.reset = ixgbe_reset_tx_queue,
662 };
663 
664 int __rte_cold
665 ixgbe_rxq_vec_setup(struct ixgbe_rx_queue *rxq)
666 {
667 	return ixgbe_rxq_vec_setup_default(rxq);
668 }
669 
670 int __rte_cold
671 ixgbe_txq_vec_setup(struct ixgbe_tx_queue *txq)
672 {
673 	return ixgbe_txq_vec_setup_default(txq, &vec_txq_ops);
674 }
675 
676 int __rte_cold
677 ixgbe_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
678 {
679 	return ixgbe_rx_vec_dev_conf_condition_check_default(dev);
680 }
681