xref: /dpdk/drivers/net/intel/ice/ice_rxtx_vec_avx512.c (revision 5cc9919fd443fbd3fce77a257601890a0ee6a247)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2019 Intel Corporation
3  */
4 
5 #include "ice_rxtx_vec_common.h"
6 #include "ice_rxtx_common_avx.h"
7 
8 #include <rte_vect.h>
9 
10 #define ICE_DESCS_PER_LOOP_AVX 8
11 
12 static __rte_always_inline void
13 ice_rxq_rearm(struct ice_rx_queue *rxq)
14 {
15 	ice_rxq_rearm_common(rxq, true);
16 }
17 
18 static inline __m256i
19 ice_flex_rxd_to_fdir_flags_vec_avx512(const __m256i fdir_id0_7)
20 {
21 #define FDID_MIS_MAGIC 0xFFFFFFFF
22 	RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR != (1 << 2));
23 	RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR_ID != (1 << 13));
24 	const __m256i pkt_fdir_bit = _mm256_set1_epi32(RTE_MBUF_F_RX_FDIR |
25 			RTE_MBUF_F_RX_FDIR_ID);
26 	/* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */
27 	const __m256i fdir_mis_mask = _mm256_set1_epi32(FDID_MIS_MAGIC);
28 	__m256i fdir_mask = _mm256_cmpeq_epi32(fdir_id0_7,
29 			fdir_mis_mask);
30 	/* this XOR op results to bit-reverse the fdir_mask */
31 	fdir_mask = _mm256_xor_si256(fdir_mask, fdir_mis_mask);
32 	const __m256i fdir_flags = _mm256_and_si256(fdir_mask, pkt_fdir_bit);
33 
34 	return fdir_flags;
35 }
36 
37 static __rte_always_inline uint16_t
38 _ice_recv_raw_pkts_vec_avx512(struct ice_rx_queue *rxq,
39 			      struct rte_mbuf **rx_pkts,
40 			      uint16_t nb_pkts,
41 			      uint8_t *split_packet,
42 			      bool do_offload)
43 {
44 	const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
45 	const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
46 			0, rxq->mbuf_initializer);
47 	struct ice_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail];
48 	volatile union ice_rx_flex_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
49 
50 	rte_prefetch0(rxdp);
51 
52 	/* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP_AVX */
53 	nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP_AVX);
54 
55 	/* See if we need to rearm the RX queue - gives the prefetch a bit
56 	 * of time to act
57 	 */
58 	if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH)
59 		ice_rxq_rearm(rxq);
60 
61 	/* Before we start moving massive data around, check to see if
62 	 * there is actually a packet available
63 	 */
64 	if (!(rxdp->wb.status_error0 &
65 			rte_cpu_to_le_32(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
66 		return 0;
67 
68 	/* constants used in processing loop */
69 	const __m512i crc_adjust =
70 		_mm512_set4_epi32
71 			(0,             /* ignore non-length fields */
72 			 -rxq->crc_len, /* sub crc on data_len */
73 			 -rxq->crc_len, /* sub crc on pkt_len */
74 			 0              /* ignore non-length fields */
75 			);
76 
77 	/* 8 packets DD mask, LSB in each 32-bit value */
78 	const __m256i dd_check = _mm256_set1_epi32(1);
79 
80 	/* 8 packets EOP mask, second-LSB in each 32-bit value */
81 	const __m256i eop_check = _mm256_slli_epi32(dd_check,
82 			ICE_RX_DESC_STATUS_EOF_S);
83 
84 	/* mask to shuffle from desc. to mbuf (4 descriptors)*/
85 	const __m512i shuf_msk =
86 		_mm512_set4_epi32
87 			(/* rss hash parsed separately */
88 			 0xFFFFFFFF,
89 			 /* octet 10~11, 16 bits vlan_macip */
90 			 /* octet 4~5, 16 bits data_len */
91 			 11 << 24 | 10 << 16 | 5 << 8 | 4,
92 			 /* skip hi 16 bits pkt_len, zero out */
93 			 /* octet 4~5, 16 bits pkt_len */
94 			 0xFFFF << 16 | 5 << 8 | 4,
95 			 /* pkt_type set as unknown */
96 			 0xFFFFFFFF
97 			);
98 
99 	/**
100 	 * compile-time check the above crc and shuffle layout is correct.
101 	 * NOTE: the first field (lowest address) is given last in set_epi
102 	 * calls above.
103 	 */
104 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
105 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
106 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
107 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
108 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
109 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
110 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
111 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
112 
113 	/* following code block is for Rx Checksum Offload */
114 	/* Status/Error flag masks */
115 	/**
116 	 * mask everything except Checksum Reports, RSS indication
117 	 * and VLAN indication.
118 	 * bit6:4 for IP/L4 checksum errors.
119 	 * bit12 is for RSS indication.
120 	 * bit13 is for VLAN indication.
121 	 */
122 	const __m256i flags_mask =
123 		 _mm256_set1_epi32((0xF << 4) | (1 << 12) | (1 << 13));
124 	/**
125 	 * data to be shuffled by the result of the flags mask shifted by 4
126 	 * bits.  This gives use the l3_l4 flags.
127 	 */
128 	const __m256i l3_l4_flags_shuf =
129 		_mm256_set_epi8((RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 |
130 		 RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
131 		  RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
132 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
133 		 RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
134 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
135 		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
136 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
137 		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
138 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD  |
139 		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
140 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD  |
141 		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
142 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
143 		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
144 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
145 		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
146 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
147 		 RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
148 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
149 		 RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
150 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
151 		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
152 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
153 		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
154 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
155 		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
156 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
157 		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
158 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
159 		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
160 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
161 		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
162 		/**
163 		 * second 128-bits
164 		 * shift right 20 bits to use the low two bits to indicate
165 		 * outer checksum status
166 		 * shift right 1 bit to make sure it not exceed 255
167 		 */
168 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
169 		 RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
170 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
171 		 RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
172 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
173 		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
174 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
175 		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
176 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD  |
177 		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
178 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD  |
179 		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
180 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
181 		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
182 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
183 		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
184 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
185 		 RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
186 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
187 		 RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
188 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
189 		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
190 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
191 		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
192 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
193 		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
194 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
195 		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
196 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
197 		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
198 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
199 		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1);
200 	const __m256i cksum_mask =
201 		 _mm256_set1_epi32(RTE_MBUF_F_RX_IP_CKSUM_MASK |
202 				   RTE_MBUF_F_RX_L4_CKSUM_MASK |
203 				   RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
204 				   RTE_MBUF_F_RX_OUTER_L4_CKSUM_MASK);
205 	/**
206 	 * data to be shuffled by result of flag mask, shifted down 12.
207 	 * If RSS(bit12)/VLAN(bit13) are set,
208 	 * shuffle moves appropriate flags in place.
209 	 */
210 	const __m256i rss_vlan_flags_shuf = _mm256_set_epi8(0, 0, 0, 0,
211 			0, 0, 0, 0,
212 			0, 0, 0, 0,
213 			RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
214 			RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
215 			RTE_MBUF_F_RX_RSS_HASH, 0,
216 			/* 2nd 128-bits */
217 			0, 0, 0, 0,
218 			0, 0, 0, 0,
219 			0, 0, 0, 0,
220 			RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
221 			RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
222 			RTE_MBUF_F_RX_RSS_HASH, 0);
223 
224 	uint16_t i, received;
225 
226 	for (i = 0, received = 0; i < nb_pkts;
227 	     i += ICE_DESCS_PER_LOOP_AVX,
228 	     rxdp += ICE_DESCS_PER_LOOP_AVX) {
229 		/* step 1, copy over 8 mbuf pointers to rx_pkts array */
230 		_mm256_storeu_si256((void *)&rx_pkts[i],
231 				    _mm256_loadu_si256((void *)&sw_ring[i]));
232 #ifdef RTE_ARCH_X86_64
233 		_mm256_storeu_si256
234 			((void *)&rx_pkts[i + 4],
235 			 _mm256_loadu_si256((void *)&sw_ring[i + 4]));
236 #endif
237 
238 		__m512i raw_desc0_3, raw_desc4_7;
239 		__m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
240 
241 		/* load in descriptors, in reverse order */
242 		const __m128i raw_desc7 =
243 			_mm_load_si128(RTE_CAST_PTR(const __m128i *, rxdp + 7));
244 		rte_compiler_barrier();
245 		const __m128i raw_desc6 =
246 			_mm_load_si128(RTE_CAST_PTR(const __m128i *, rxdp + 6));
247 		rte_compiler_barrier();
248 		const __m128i raw_desc5 =
249 			_mm_load_si128(RTE_CAST_PTR(const __m128i *, rxdp + 5));
250 		rte_compiler_barrier();
251 		const __m128i raw_desc4 =
252 			_mm_load_si128(RTE_CAST_PTR(const __m128i *, rxdp + 4));
253 		rte_compiler_barrier();
254 		const __m128i raw_desc3 =
255 			_mm_load_si128(RTE_CAST_PTR(const __m128i *, rxdp + 3));
256 		rte_compiler_barrier();
257 		const __m128i raw_desc2 =
258 			_mm_load_si128(RTE_CAST_PTR(const __m128i *, rxdp + 2));
259 		rte_compiler_barrier();
260 		const __m128i raw_desc1 =
261 			_mm_load_si128(RTE_CAST_PTR(const __m128i *, rxdp + 1));
262 		rte_compiler_barrier();
263 		const __m128i raw_desc0 =
264 			_mm_load_si128(RTE_CAST_PTR(const __m128i *, rxdp + 0));
265 
266 		raw_desc6_7 =
267 			_mm256_inserti128_si256
268 				(_mm256_castsi128_si256(raw_desc6),
269 				 raw_desc7, 1);
270 		raw_desc4_5 =
271 			_mm256_inserti128_si256
272 				(_mm256_castsi128_si256(raw_desc4),
273 				 raw_desc5, 1);
274 		raw_desc2_3 =
275 			_mm256_inserti128_si256
276 				(_mm256_castsi128_si256(raw_desc2),
277 				 raw_desc3, 1);
278 		raw_desc0_1 =
279 			_mm256_inserti128_si256
280 				(_mm256_castsi128_si256(raw_desc0),
281 				 raw_desc1, 1);
282 
283 		raw_desc4_7 =
284 			_mm512_inserti64x4
285 				(_mm512_castsi256_si512(raw_desc4_5),
286 				 raw_desc6_7, 1);
287 		raw_desc0_3 =
288 			_mm512_inserti64x4
289 				(_mm512_castsi256_si512(raw_desc0_1),
290 				 raw_desc2_3, 1);
291 
292 		if (split_packet) {
293 			int j;
294 
295 			for (j = 0; j < ICE_DESCS_PER_LOOP_AVX; j++)
296 				rte_mbuf_prefetch_part2(rx_pkts[i + j]);
297 		}
298 
299 		/**
300 		 * convert descriptors 0-7 into mbufs, re-arrange fields.
301 		 * Then write into the mbuf.
302 		 */
303 		__m512i mb4_7 = _mm512_shuffle_epi8(raw_desc4_7, shuf_msk);
304 		__m512i mb0_3 = _mm512_shuffle_epi8(raw_desc0_3, shuf_msk);
305 
306 		mb4_7 = _mm512_add_epi32(mb4_7, crc_adjust);
307 		mb0_3 = _mm512_add_epi32(mb0_3, crc_adjust);
308 
309 		/**
310 		 * to get packet types, ptype is located in bit16-25
311 		 * of each 128bits
312 		 */
313 		const __m512i ptype_mask =
314 			_mm512_set1_epi16(ICE_RX_FLEX_DESC_PTYPE_M);
315 
316 		/**
317 		 * to get packet types, ptype is located in bit16-25
318 		 * of each 128bits
319 		 */
320 		const __m512i ptypes4_7 =
321 			_mm512_and_si512(raw_desc4_7, ptype_mask);
322 		const __m512i ptypes0_3 =
323 			_mm512_and_si512(raw_desc0_3, ptype_mask);
324 
325 		const __m256i ptypes6_7 =
326 			_mm512_extracti64x4_epi64(ptypes4_7, 1);
327 		const __m256i ptypes4_5 =
328 			_mm512_extracti64x4_epi64(ptypes4_7, 0);
329 		const __m256i ptypes2_3 =
330 			_mm512_extracti64x4_epi64(ptypes0_3, 1);
331 		const __m256i ptypes0_1 =
332 			_mm512_extracti64x4_epi64(ptypes0_3, 0);
333 		const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9);
334 		const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1);
335 		const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9);
336 		const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1);
337 		const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9);
338 		const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1);
339 		const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9);
340 		const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1);
341 
342 		const __m512i ptype4_7 = _mm512_set_epi32
343 			(0, 0, 0, ptype_tbl[ptype7],
344 			 0, 0, 0, ptype_tbl[ptype6],
345 			 0, 0, 0, ptype_tbl[ptype5],
346 			 0, 0, 0, ptype_tbl[ptype4]);
347 		const __m512i ptype0_3 = _mm512_set_epi32
348 			(0, 0, 0, ptype_tbl[ptype3],
349 			 0, 0, 0, ptype_tbl[ptype2],
350 			 0, 0, 0, ptype_tbl[ptype1],
351 			 0, 0, 0, ptype_tbl[ptype0]);
352 
353 		mb4_7 = _mm512_mask_blend_epi32(0x1111, mb4_7, ptype4_7);
354 		mb0_3 = _mm512_mask_blend_epi32(0x1111, mb0_3, ptype0_3);
355 
356 		__m256i mb4_5 = _mm512_extracti64x4_epi64(mb4_7, 0);
357 		__m256i mb6_7 = _mm512_extracti64x4_epi64(mb4_7, 1);
358 		__m256i mb0_1 = _mm512_extracti64x4_epi64(mb0_3, 0);
359 		__m256i mb2_3 = _mm512_extracti64x4_epi64(mb0_3, 1);
360 
361 		/**
362 		 * use permute/extract to get status content
363 		 * After the operations, the packets status flags are in the
364 		 * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
365 		 */
366 		/* merge the status bits into one register */
367 		const __m512i status_permute_msk = _mm512_set_epi32
368 			(0, 0, 0, 0,
369 			 0, 0, 0, 0,
370 			 22, 30, 6, 14,
371 			 18, 26, 2, 10);
372 		const __m512i raw_status0_7 = _mm512_permutex2var_epi32
373 			(raw_desc4_7, status_permute_msk, raw_desc0_3);
374 		__m256i status0_7 = _mm512_extracti64x4_epi64
375 			(raw_status0_7, 0);
376 
377 		__m256i mbuf_flags = _mm256_set1_epi32(0);
378 
379 		if (do_offload) {
380 			/* now do flag manipulation */
381 
382 			/* get only flag/error bits we want */
383 			const __m256i flag_bits =
384 				_mm256_and_si256(status0_7, flags_mask);
385 			/**
386 			 * l3_l4_error flags, shuffle, then shift to correct adjustment
387 			 * of flags in flags_shuf, and finally mask out extra bits
388 			 */
389 			__m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
390 					_mm256_srli_epi32(flag_bits, 4));
391 			l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
392 			__m256i l4_outer_mask = _mm256_set1_epi32(0x6);
393 			__m256i l4_outer_flags =
394 					_mm256_and_si256(l3_l4_flags, l4_outer_mask);
395 			l4_outer_flags = _mm256_slli_epi32(l4_outer_flags, 20);
396 
397 			__m256i l3_l4_mask = _mm256_set1_epi32(~0x6);
398 
399 			l3_l4_flags = _mm256_and_si256(l3_l4_flags, l3_l4_mask);
400 			l3_l4_flags = _mm256_or_si256(l3_l4_flags, l4_outer_flags);
401 			l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
402 			/* set rss and vlan flags */
403 			const __m256i rss_vlan_flag_bits =
404 				_mm256_srli_epi32(flag_bits, 12);
405 			const __m256i rss_vlan_flags =
406 				_mm256_shuffle_epi8(rss_vlan_flags_shuf,
407 						    rss_vlan_flag_bits);
408 
409 			/* merge flags */
410 			mbuf_flags = _mm256_or_si256(l3_l4_flags,
411 						     rss_vlan_flags);
412 		}
413 
414 		if (rxq->fdir_enabled) {
415 			const __m256i fdir_id4_7 =
416 				_mm256_unpackhi_epi32(raw_desc6_7, raw_desc4_5);
417 
418 			const __m256i fdir_id0_3 =
419 				_mm256_unpackhi_epi32(raw_desc2_3, raw_desc0_1);
420 
421 			const __m256i fdir_id0_7 =
422 				_mm256_unpackhi_epi64(fdir_id4_7, fdir_id0_3);
423 
424 			if (do_offload) {
425 				const __m256i fdir_flags =
426 					ice_flex_rxd_to_fdir_flags_vec_avx512
427 						(fdir_id0_7);
428 
429 				/* merge with fdir_flags */
430 				mbuf_flags = _mm256_or_si256
431 						(mbuf_flags, fdir_flags);
432 			} else {
433 				mbuf_flags =
434 					ice_flex_rxd_to_fdir_flags_vec_avx512
435 						(fdir_id0_7);
436 			}
437 
438 			/* write to mbuf: have to use scalar store here */
439 			rx_pkts[i + 0]->hash.fdir.hi =
440 				_mm256_extract_epi32(fdir_id0_7, 3);
441 
442 			rx_pkts[i + 1]->hash.fdir.hi =
443 				_mm256_extract_epi32(fdir_id0_7, 7);
444 
445 			rx_pkts[i + 2]->hash.fdir.hi =
446 				_mm256_extract_epi32(fdir_id0_7, 2);
447 
448 			rx_pkts[i + 3]->hash.fdir.hi =
449 				_mm256_extract_epi32(fdir_id0_7, 6);
450 
451 			rx_pkts[i + 4]->hash.fdir.hi =
452 				_mm256_extract_epi32(fdir_id0_7, 1);
453 
454 			rx_pkts[i + 5]->hash.fdir.hi =
455 				_mm256_extract_epi32(fdir_id0_7, 5);
456 
457 			rx_pkts[i + 6]->hash.fdir.hi =
458 				_mm256_extract_epi32(fdir_id0_7, 0);
459 
460 			rx_pkts[i + 7]->hash.fdir.hi =
461 				_mm256_extract_epi32(fdir_id0_7, 4);
462 		} /* if() on fdir_enabled */
463 
464 		if (do_offload) {
465 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
466 			/**
467 			 * needs to load 2nd 16B of each desc for RSS hash parsing,
468 			 * will cause performance drop to get into this context.
469 			 */
470 			if (rxq->vsi->adapter->pf.dev_data->dev_conf.rxmode.offloads &
471 					RTE_ETH_RX_OFFLOAD_RSS_HASH) {
472 				/* load bottom half of every 32B desc */
473 				const __m128i raw_desc_bh7 = _mm_load_si128
474 					(RTE_CAST_PTR(const __m128i *, &rxdp[7].wb.status_error1));
475 				rte_compiler_barrier();
476 				const __m128i raw_desc_bh6 = _mm_load_si128
477 					(RTE_CAST_PTR(const __m128i *, rxdp[6].wb.status_error1));
478 				rte_compiler_barrier();
479 				const __m128i raw_desc_bh5 = _mm_load_si128
480 					(RTE_CAST_PTR(const __m128i *, &rxdp[5].wb.status_error1));
481 				rte_compiler_barrier();
482 				const __m128i raw_desc_bh4 = _mm_load_si128
483 					(RTE_CAST_PTR(const __m128i *, &rxdp[4].wb.status_error1));
484 				rte_compiler_barrier();
485 				const __m128i raw_desc_bh3 = _mm_load_si128
486 					(RTE_CAST_PTR(const __m128i *, &rxdp[3].wb.status_error1));
487 				rte_compiler_barrier();
488 				const __m128i raw_desc_bh2 = _mm_load_si128
489 					(RTE_CAST_PTR(const __m128i *, &rxdp[2].wb.status_error1));
490 				rte_compiler_barrier();
491 				const __m128i raw_desc_bh1 = _mm_load_si128
492 					(RTE_CAST_PTR(const __m128i *, &rxdp[1].wb.status_error1));
493 				rte_compiler_barrier();
494 				const __m128i raw_desc_bh0 = _mm_load_si128
495 					(RTE_CAST_PTR(const __m128i *, &rxdp[0].wb.status_error1));
496 
497 				__m256i raw_desc_bh6_7 =
498 					_mm256_inserti128_si256
499 						(_mm256_castsi128_si256(raw_desc_bh6),
500 						raw_desc_bh7, 1);
501 				__m256i raw_desc_bh4_5 =
502 					_mm256_inserti128_si256
503 						(_mm256_castsi128_si256(raw_desc_bh4),
504 						raw_desc_bh5, 1);
505 				__m256i raw_desc_bh2_3 =
506 					_mm256_inserti128_si256
507 						(_mm256_castsi128_si256(raw_desc_bh2),
508 						raw_desc_bh3, 1);
509 				__m256i raw_desc_bh0_1 =
510 					_mm256_inserti128_si256
511 						(_mm256_castsi128_si256(raw_desc_bh0),
512 						raw_desc_bh1, 1);
513 
514 				/**
515 				 * to shift the 32b RSS hash value to the
516 				 * highest 32b of each 128b before mask
517 				 */
518 				__m256i rss_hash6_7 =
519 					_mm256_slli_epi64(raw_desc_bh6_7, 32);
520 				__m256i rss_hash4_5 =
521 					_mm256_slli_epi64(raw_desc_bh4_5, 32);
522 				__m256i rss_hash2_3 =
523 					_mm256_slli_epi64(raw_desc_bh2_3, 32);
524 				__m256i rss_hash0_1 =
525 					_mm256_slli_epi64(raw_desc_bh0_1, 32);
526 
527 				__m256i rss_hash_msk =
528 					_mm256_set_epi32(0xFFFFFFFF, 0, 0, 0,
529 							 0xFFFFFFFF, 0, 0, 0);
530 
531 				rss_hash6_7 = _mm256_and_si256
532 						(rss_hash6_7, rss_hash_msk);
533 				rss_hash4_5 = _mm256_and_si256
534 						(rss_hash4_5, rss_hash_msk);
535 				rss_hash2_3 = _mm256_and_si256
536 						(rss_hash2_3, rss_hash_msk);
537 				rss_hash0_1 = _mm256_and_si256
538 						(rss_hash0_1, rss_hash_msk);
539 
540 				mb6_7 = _mm256_or_si256(mb6_7, rss_hash6_7);
541 				mb4_5 = _mm256_or_si256(mb4_5, rss_hash4_5);
542 				mb2_3 = _mm256_or_si256(mb2_3, rss_hash2_3);
543 				mb0_1 = _mm256_or_si256(mb0_1, rss_hash0_1);
544 			} /* if() on RSS hash parsing */
545 #endif
546 		}
547 
548 		/**
549 		 * At this point, we have the 8 sets of flags in the low 16-bits
550 		 * of each 32-bit value in vlan0.
551 		 * We want to extract these, and merge them with the mbuf init
552 		 * data so we can do a single write to the mbuf to set the flags
553 		 * and all the other initialization fields. Extracting the
554 		 * appropriate flags means that we have to do a shift and blend
555 		 * for each mbuf before we do the write. However, we can also
556 		 * add in the previously computed rx_descriptor fields to
557 		 * make a single 256-bit write per mbuf
558 		 */
559 		/* check the structure matches expectations */
560 		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
561 				 offsetof(struct rte_mbuf, rearm_data) + 8);
562 		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
563 				 RTE_ALIGN(offsetof(struct rte_mbuf,
564 						    rearm_data),
565 					   16));
566 		/* build up data and do writes */
567 		__m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
568 			rearm6, rearm7;
569 
570 		rearm6 = _mm256_blend_epi32(mbuf_init,
571 					    _mm256_slli_si256(mbuf_flags, 8),
572 					    0x04);
573 		rearm4 = _mm256_blend_epi32(mbuf_init,
574 					    _mm256_slli_si256(mbuf_flags, 4),
575 					    0x04);
576 		rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
577 		rearm0 = _mm256_blend_epi32(mbuf_init,
578 					    _mm256_srli_si256(mbuf_flags, 4),
579 					    0x04);
580 
581 		/* permute to add in the rx_descriptor e.g. rss fields */
582 		rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
583 		rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
584 		rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
585 		rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
586 
587 		/* write to mbuf */
588 		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
589 				    rearm6);
590 		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
591 				    rearm4);
592 		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
593 				    rearm2);
594 		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
595 				    rearm0);
596 
597 		/* repeat for the odd mbufs */
598 		const __m256i odd_flags =
599 			_mm256_castsi128_si256
600 				(_mm256_extracti128_si256(mbuf_flags, 1));
601 		rearm7 = _mm256_blend_epi32(mbuf_init,
602 					    _mm256_slli_si256(odd_flags, 8),
603 					    0x04);
604 		rearm5 = _mm256_blend_epi32(mbuf_init,
605 					    _mm256_slli_si256(odd_flags, 4),
606 					    0x04);
607 		rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
608 		rearm1 = _mm256_blend_epi32(mbuf_init,
609 					    _mm256_srli_si256(odd_flags, 4),
610 					    0x04);
611 
612 		/* since odd mbufs are already in hi 128-bits use blend */
613 		rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
614 		rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
615 		rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
616 		rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
617 		/* again write to mbufs */
618 		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
619 				    rearm7);
620 		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
621 				    rearm5);
622 		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
623 				    rearm3);
624 		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
625 				    rearm1);
626 
627 		/* extract and record EOP bit */
628 		if (split_packet) {
629 			const __m128i eop_mask =
630 				_mm_set1_epi16(1 << ICE_RX_DESC_STATUS_EOF_S);
631 			const __m256i eop_bits256 = _mm256_and_si256(status0_7,
632 								     eop_check);
633 			/* pack status bits into a single 128-bit register */
634 			const __m128i eop_bits =
635 				_mm_packus_epi32
636 					(_mm256_castsi256_si128(eop_bits256),
637 					 _mm256_extractf128_si256(eop_bits256,
638 								  1));
639 			/**
640 			 * flip bits, and mask out the EOP bit, which is now
641 			 * a split-packet bit i.e. !EOP, rather than EOP one.
642 			 */
643 			__m128i split_bits = _mm_andnot_si128(eop_bits,
644 					eop_mask);
645 			/**
646 			 * eop bits are out of order, so we need to shuffle them
647 			 * back into order again. In doing so, only use low 8
648 			 * bits, which acts like another pack instruction
649 			 * The original order is (hi->lo): 1,3,5,7,0,2,4,6
650 			 * [Since we use epi8, the 16-bit positions are
651 			 * multiplied by 2 in the eop_shuffle value.]
652 			 */
653 			__m128i eop_shuffle =
654 				_mm_set_epi8(/* zero hi 64b */
655 					     0xFF, 0xFF, 0xFF, 0xFF,
656 					     0xFF, 0xFF, 0xFF, 0xFF,
657 					     /* move values to lo 64b */
658 					     8, 0, 10, 2,
659 					     12, 4, 14, 6);
660 			split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
661 			*(uint64_t *)split_packet =
662 				_mm_cvtsi128_si64(split_bits);
663 			split_packet += ICE_DESCS_PER_LOOP_AVX;
664 		}
665 
666 		/* perform dd_check */
667 		status0_7 = _mm256_and_si256(status0_7, dd_check);
668 		status0_7 = _mm256_packs_epi32(status0_7,
669 					       _mm256_setzero_si256());
670 
671 		uint64_t burst = rte_popcount64
672 					(_mm_cvtsi128_si64
673 						(_mm256_extracti128_si256
674 							(status0_7, 1)));
675 		burst += rte_popcount64
676 				(_mm_cvtsi128_si64
677 					(_mm256_castsi256_si128(status0_7)));
678 		received += burst;
679 		if (burst != ICE_DESCS_PER_LOOP_AVX)
680 			break;
681 	}
682 
683 	/* update tail pointers */
684 	rxq->rx_tail += received;
685 	rxq->rx_tail &= (rxq->nb_rx_desc - 1);
686 	if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
687 		rxq->rx_tail--;
688 		received--;
689 	}
690 	rxq->rxrearm_nb += received;
691 	return received;
692 }
693 
694 /**
695  * Notice:
696  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
697  */
698 uint16_t
699 ice_recv_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
700 			 uint16_t nb_pkts)
701 {
702 	return _ice_recv_raw_pkts_vec_avx512(rx_queue, rx_pkts, nb_pkts, NULL, false);
703 }
704 
705 /**
706  * Notice:
707  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
708  */
709 uint16_t
710 ice_recv_pkts_vec_avx512_offload(void *rx_queue, struct rte_mbuf **rx_pkts,
711 				 uint16_t nb_pkts)
712 {
713 	return _ice_recv_raw_pkts_vec_avx512(rx_queue, rx_pkts,
714 					     nb_pkts, NULL, true);
715 }
716 
717 /**
718  * vPMD receive routine that reassembles single burst of 32 scattered packets
719  * Notice:
720  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
721  */
722 static uint16_t
723 ice_recv_scattered_burst_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
724 				    uint16_t nb_pkts)
725 {
726 	struct ice_rx_queue *rxq = rx_queue;
727 	uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};
728 
729 	/* get some new buffers */
730 	uint16_t nb_bufs = _ice_recv_raw_pkts_vec_avx512(rxq, rx_pkts, nb_pkts,
731 						       split_flags, false);
732 	if (nb_bufs == 0)
733 		return 0;
734 
735 	/* happy day case, full burst + no packets to be joined */
736 	const uint64_t *split_fl64 = (uint64_t *)split_flags;
737 
738 	if (!rxq->pkt_first_seg &&
739 	    split_fl64[0] == 0 && split_fl64[1] == 0 &&
740 	    split_fl64[2] == 0 && split_fl64[3] == 0)
741 		return nb_bufs;
742 
743 	/* reassemble any packets that need reassembly */
744 	unsigned int i = 0;
745 
746 	if (!rxq->pkt_first_seg) {
747 		/* find the first split flag, and only reassemble then */
748 		while (i < nb_bufs && !split_flags[i])
749 			i++;
750 		if (i == nb_bufs)
751 			return nb_bufs;
752 		rxq->pkt_first_seg = rx_pkts[i];
753 	}
754 	return i + ci_rx_reassemble_packets(&rx_pkts[i], nb_bufs - i, &split_flags[i],
755 			&rxq->pkt_first_seg, &rxq->pkt_last_seg, rxq->crc_len);
756 }
757 
758 /**
759  * vPMD receive routine that reassembles single burst of 32 scattered packets
760  * Notice:
761  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
762  */
763 static uint16_t
764 ice_recv_scattered_burst_vec_avx512_offload(void *rx_queue,
765 					    struct rte_mbuf **rx_pkts,
766 					    uint16_t nb_pkts)
767 {
768 	struct ice_rx_queue *rxq = rx_queue;
769 	uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};
770 
771 	/* get some new buffers */
772 	uint16_t nb_bufs = _ice_recv_raw_pkts_vec_avx512(rxq,
773 				rx_pkts, nb_pkts, split_flags, true);
774 	if (nb_bufs == 0)
775 		return 0;
776 
777 	/* happy day case, full burst + no packets to be joined */
778 	const uint64_t *split_fl64 = (uint64_t *)split_flags;
779 
780 	if (!rxq->pkt_first_seg &&
781 	    split_fl64[0] == 0 && split_fl64[1] == 0 &&
782 	    split_fl64[2] == 0 && split_fl64[3] == 0)
783 		return nb_bufs;
784 
785 	/* reassemble any packets that need reassembly */
786 	unsigned int i = 0;
787 
788 	if (!rxq->pkt_first_seg) {
789 		/* find the first split flag, and only reassemble then */
790 		while (i < nb_bufs && !split_flags[i])
791 			i++;
792 		if (i == nb_bufs)
793 			return nb_bufs;
794 		rxq->pkt_first_seg = rx_pkts[i];
795 	}
796 	return i + ci_rx_reassemble_packets(&rx_pkts[i], nb_bufs - i, &split_flags[i],
797 			&rxq->pkt_first_seg, &rxq->pkt_last_seg, rxq->crc_len);
798 }
799 
800 /**
801  * vPMD receive routine that reassembles scattered packets.
802  * Main receive routine that can handle arbitrary burst sizes
803  * Notice:
804  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
805  */
806 uint16_t
807 ice_recv_scattered_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
808 				   uint16_t nb_pkts)
809 {
810 	uint16_t retval = 0;
811 
812 	while (nb_pkts > ICE_VPMD_RX_BURST) {
813 		uint16_t burst = ice_recv_scattered_burst_vec_avx512(rx_queue,
814 				rx_pkts + retval, ICE_VPMD_RX_BURST);
815 		retval += burst;
816 		nb_pkts -= burst;
817 		if (burst < ICE_VPMD_RX_BURST)
818 			return retval;
819 	}
820 	return retval + ice_recv_scattered_burst_vec_avx512(rx_queue,
821 				rx_pkts + retval, nb_pkts);
822 }
823 
824 /**
825  * vPMD receive routine that reassembles scattered packets.
826  * Main receive routine that can handle arbitrary burst sizes
827  * Notice:
828  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
829  */
830 uint16_t
831 ice_recv_scattered_pkts_vec_avx512_offload(void *rx_queue,
832 					   struct rte_mbuf **rx_pkts,
833 					   uint16_t nb_pkts)
834 {
835 	uint16_t retval = 0;
836 
837 	while (nb_pkts > ICE_VPMD_RX_BURST) {
838 		uint16_t burst =
839 			ice_recv_scattered_burst_vec_avx512_offload(rx_queue,
840 				rx_pkts + retval, ICE_VPMD_RX_BURST);
841 		retval += burst;
842 		nb_pkts -= burst;
843 		if (burst < ICE_VPMD_RX_BURST)
844 			return retval;
845 	}
846 	return retval + ice_recv_scattered_burst_vec_avx512_offload(rx_queue,
847 				rx_pkts + retval, nb_pkts);
848 }
849 
850 static __rte_always_inline int
851 ice_tx_free_bufs_avx512(struct ice_tx_queue *txq)
852 {
853 	struct ci_tx_entry_vec *txep;
854 	uint32_t n;
855 	uint32_t i;
856 	int nb_free = 0;
857 	struct rte_mbuf *m, *free[ICE_TX_MAX_FREE_BUF_SZ];
858 
859 	/* check DD bits on threshold descriptor */
860 	if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
861 			rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) !=
862 			rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
863 		return 0;
864 
865 	n = txq->tx_rs_thresh;
866 
867 	/* first buffer to free from S/W ring is at index
868 	 * tx_next_dd - (tx_rs_thresh - 1)
869 	 */
870 	txep = (void *)txq->sw_ring;
871 	txep += txq->tx_next_dd - (n - 1);
872 
873 	if (txq->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE && (n & 31) == 0) {
874 		struct rte_mempool *mp = txep[0].mbuf->pool;
875 		void **cache_objs;
876 		struct rte_mempool_cache *cache = rte_mempool_default_cache(mp,
877 				rte_lcore_id());
878 
879 		if (!cache || cache->len == 0)
880 			goto normal;
881 
882 		cache_objs = &cache->objs[cache->len];
883 
884 		if (n > RTE_MEMPOOL_CACHE_MAX_SIZE) {
885 			rte_mempool_ops_enqueue_bulk(mp, (void *)txep, n);
886 			goto done;
887 		}
888 
889 		/* The cache follows the following algorithm
890 		 *   1. Add the objects to the cache
891 		 *   2. Anything greater than the cache min value (if it
892 		 *   crosses the cache flush threshold) is flushed to the ring.
893 		 */
894 		/* Add elements back into the cache */
895 		uint32_t copied = 0;
896 		/* n is multiple of 32 */
897 		while (copied < n) {
898 #ifdef RTE_ARCH_64
899 			const __m512i a = _mm512_loadu_si512(&txep[copied]);
900 			const __m512i b = _mm512_loadu_si512(&txep[copied + 8]);
901 			const __m512i c = _mm512_loadu_si512(&txep[copied + 16]);
902 			const __m512i d = _mm512_loadu_si512(&txep[copied + 24]);
903 
904 			_mm512_storeu_si512(&cache_objs[copied], a);
905 			_mm512_storeu_si512(&cache_objs[copied + 8], b);
906 			_mm512_storeu_si512(&cache_objs[copied + 16], c);
907 			_mm512_storeu_si512(&cache_objs[copied + 24], d);
908 #else
909 			const __m512i a = _mm512_loadu_si512(&txep[copied]);
910 			const __m512i b = _mm512_loadu_si512(&txep[copied + 16]);
911 			_mm512_storeu_si512(&cache_objs[copied], a);
912 			_mm512_storeu_si512(&cache_objs[copied + 16], b);
913 #endif
914 			copied += 32;
915 		}
916 		cache->len += n;
917 
918 		if (cache->len >= cache->flushthresh) {
919 			rte_mempool_ops_enqueue_bulk
920 				(mp, &cache->objs[cache->size],
921 				 cache->len - cache->size);
922 			cache->len = cache->size;
923 		}
924 		goto done;
925 	}
926 
927 normal:
928 	m = rte_pktmbuf_prefree_seg(txep[0].mbuf);
929 	if (likely(m)) {
930 		free[0] = m;
931 		nb_free = 1;
932 		for (i = 1; i < n; i++) {
933 			m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
934 			if (likely(m)) {
935 				if (likely(m->pool == free[0]->pool)) {
936 					free[nb_free++] = m;
937 				} else {
938 					rte_mempool_put_bulk(free[0]->pool,
939 							     (void *)free,
940 							     nb_free);
941 					free[0] = m;
942 					nb_free = 1;
943 				}
944 			}
945 		}
946 		rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
947 	} else {
948 		for (i = 1; i < n; i++) {
949 			m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
950 			if (m)
951 				rte_mempool_put(m->pool, m);
952 		}
953 	}
954 
955 done:
956 	/* buffers were freed, update counters */
957 	txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
958 	txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
959 	if (txq->tx_next_dd >= txq->nb_tx_desc)
960 		txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
961 
962 	return txq->tx_rs_thresh;
963 }
964 
965 static __rte_always_inline void
966 ice_vtx1(volatile struct ice_tx_desc *txdp,
967 	 struct rte_mbuf *pkt, uint64_t flags, bool do_offload)
968 {
969 	uint64_t high_qw =
970 		(ICE_TX_DESC_DTYPE_DATA |
971 		 ((uint64_t)flags  << ICE_TXD_QW1_CMD_S) |
972 		 ((uint64_t)pkt->data_len << ICE_TXD_QW1_TX_BUF_SZ_S));
973 
974 	if (do_offload)
975 		ice_txd_enable_offload(pkt, &high_qw);
976 
977 	__m128i descriptor = _mm_set_epi64x(high_qw, rte_pktmbuf_iova(pkt));
978 	_mm_store_si128(RTE_CAST_PTR(__m128i *, txdp), descriptor);
979 }
980 
981 static __rte_always_inline void
982 ice_vtx(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkt,
983 	uint16_t nb_pkts,  uint64_t flags, bool do_offload)
984 {
985 	const uint64_t hi_qw_tmpl = (ICE_TX_DESC_DTYPE_DATA |
986 			((uint64_t)flags  << ICE_TXD_QW1_CMD_S));
987 
988 	for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
989 		uint64_t hi_qw3 =
990 			hi_qw_tmpl |
991 			((uint64_t)pkt[3]->data_len <<
992 			 ICE_TXD_QW1_TX_BUF_SZ_S);
993 		if (do_offload)
994 			ice_txd_enable_offload(pkt[3], &hi_qw3);
995 		uint64_t hi_qw2 =
996 			hi_qw_tmpl |
997 			((uint64_t)pkt[2]->data_len <<
998 			 ICE_TXD_QW1_TX_BUF_SZ_S);
999 		if (do_offload)
1000 			ice_txd_enable_offload(pkt[2], &hi_qw2);
1001 		uint64_t hi_qw1 =
1002 			hi_qw_tmpl |
1003 			((uint64_t)pkt[1]->data_len <<
1004 			 ICE_TXD_QW1_TX_BUF_SZ_S);
1005 		if (do_offload)
1006 			ice_txd_enable_offload(pkt[1], &hi_qw1);
1007 		uint64_t hi_qw0 =
1008 			hi_qw_tmpl |
1009 			((uint64_t)pkt[0]->data_len <<
1010 			 ICE_TXD_QW1_TX_BUF_SZ_S);
1011 		if (do_offload)
1012 			ice_txd_enable_offload(pkt[0], &hi_qw0);
1013 
1014 		__m512i desc0_3 =
1015 			_mm512_set_epi64
1016 				(hi_qw3, rte_pktmbuf_iova(pkt[3]),
1017 				 hi_qw2, rte_pktmbuf_iova(pkt[2]),
1018 				 hi_qw1, rte_pktmbuf_iova(pkt[1]),
1019 				 hi_qw0, rte_pktmbuf_iova(pkt[0]));
1020 		_mm512_storeu_si512(RTE_CAST_PTR(void *, txdp), desc0_3);
1021 	}
1022 
1023 	/* do any last ones */
1024 	while (nb_pkts) {
1025 		ice_vtx1(txdp, *pkt, flags, do_offload);
1026 		txdp++, pkt++, nb_pkts--;
1027 	}
1028 }
1029 
1030 static __rte_always_inline void
1031 ice_tx_backlog_entry_avx512(struct ci_tx_entry_vec *txep,
1032 			    struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1033 {
1034 	int i;
1035 
1036 	for (i = 0; i < (int)nb_pkts; ++i)
1037 		txep[i].mbuf = tx_pkts[i];
1038 }
1039 
1040 static __rte_always_inline uint16_t
1041 ice_xmit_fixed_burst_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
1042 				uint16_t nb_pkts, bool do_offload)
1043 {
1044 	struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
1045 	volatile struct ice_tx_desc *txdp;
1046 	struct ci_tx_entry_vec *txep;
1047 	uint16_t n, nb_commit, tx_id;
1048 	uint64_t flags = ICE_TD_CMD;
1049 	uint64_t rs = ICE_TX_DESC_CMD_RS | ICE_TD_CMD;
1050 
1051 	/* cross rx_thresh boundary is not allowed */
1052 	nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
1053 
1054 	if (txq->nb_tx_free < txq->tx_free_thresh)
1055 		ice_tx_free_bufs_avx512(txq);
1056 
1057 	nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
1058 	if (unlikely(nb_pkts == 0))
1059 		return 0;
1060 
1061 	tx_id = txq->tx_tail;
1062 	txdp = &txq->tx_ring[tx_id];
1063 	txep = (void *)txq->sw_ring;
1064 	txep += tx_id;
1065 
1066 	txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
1067 
1068 	n = (uint16_t)(txq->nb_tx_desc - tx_id);
1069 	if (nb_commit >= n) {
1070 		ice_tx_backlog_entry_avx512(txep, tx_pkts, n);
1071 
1072 		ice_vtx(txdp, tx_pkts, n - 1, flags, do_offload);
1073 		tx_pkts += (n - 1);
1074 		txdp += (n - 1);
1075 
1076 		ice_vtx1(txdp, *tx_pkts++, rs, do_offload);
1077 
1078 		nb_commit = (uint16_t)(nb_commit - n);
1079 
1080 		tx_id = 0;
1081 		txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1082 
1083 		/* avoid reach the end of ring */
1084 		txdp = txq->tx_ring;
1085 		txep = (void *)txq->sw_ring;
1086 	}
1087 
1088 	ice_tx_backlog_entry_avx512(txep, tx_pkts, nb_commit);
1089 
1090 	ice_vtx(txdp, tx_pkts, nb_commit, flags, do_offload);
1091 
1092 	tx_id = (uint16_t)(tx_id + nb_commit);
1093 	if (tx_id > txq->tx_next_rs) {
1094 		txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
1095 			rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
1096 					 ICE_TXD_QW1_CMD_S);
1097 		txq->tx_next_rs =
1098 			(uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
1099 	}
1100 
1101 	txq->tx_tail = tx_id;
1102 
1103 	ICE_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
1104 
1105 	return nb_pkts;
1106 }
1107 
1108 uint16_t
1109 ice_xmit_pkts_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
1110 			 uint16_t nb_pkts)
1111 {
1112 	uint16_t nb_tx = 0;
1113 	struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
1114 
1115 	while (nb_pkts) {
1116 		uint16_t ret, num;
1117 
1118 		num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
1119 		ret = ice_xmit_fixed_burst_vec_avx512(tx_queue,
1120 				&tx_pkts[nb_tx], num, false);
1121 		nb_tx += ret;
1122 		nb_pkts -= ret;
1123 		if (ret < num)
1124 			break;
1125 	}
1126 
1127 	return nb_tx;
1128 }
1129 
1130 uint16_t
1131 ice_xmit_pkts_vec_avx512_offload(void *tx_queue, struct rte_mbuf **tx_pkts,
1132 				 uint16_t nb_pkts)
1133 {
1134 	uint16_t nb_tx = 0;
1135 	struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
1136 
1137 	while (nb_pkts) {
1138 		uint16_t ret, num;
1139 
1140 		num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
1141 		ret = ice_xmit_fixed_burst_vec_avx512(tx_queue,
1142 				&tx_pkts[nb_tx], num, true);
1143 
1144 		nb_tx += ret;
1145 		nb_pkts -= ret;
1146 		if (ret < num)
1147 			break;
1148 	}
1149 
1150 	return nb_tx;
1151 }
1152