xref: /dpdk/drivers/net/intel/iavf/iavf_rxtx_vec_sse.c (revision bb8a37a95bad6734c9818ad6f7dee931c2f48c5b)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4 
5 #include <stdint.h>
6 #include <ethdev_driver.h>
7 #include <rte_malloc.h>
8 
9 #include "iavf.h"
10 #include "iavf_rxtx.h"
11 #include "iavf_rxtx_vec_common.h"
12 
13 #include <rte_vect.h>
14 
15 static inline void
16 iavf_rxq_rearm(struct iavf_rx_queue *rxq)
17 {
18 	int i;
19 	uint16_t rx_id;
20 
21 	volatile union iavf_rx_desc *rxdp;
22 	struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start];
23 	struct rte_mbuf *mb0, *mb1;
24 	__m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
25 			RTE_PKTMBUF_HEADROOM);
26 	__m128i dma_addr0, dma_addr1;
27 
28 	rxdp = rxq->rx_ring + rxq->rxrearm_start;
29 
30 	/* Pull 'n' more MBUFs into the software ring */
31 	if (rte_mempool_get_bulk(rxq->mp, (void *)rxp,
32 				 rxq->rx_free_thresh) < 0) {
33 		if (rxq->rxrearm_nb + rxq->rx_free_thresh >= rxq->nb_rx_desc) {
34 			dma_addr0 = _mm_setzero_si128();
35 			for (i = 0; i < IAVF_VPMD_DESCS_PER_LOOP; i++) {
36 				rxp[i] = &rxq->fake_mbuf;
37 				_mm_store_si128(RTE_CAST_PTR(__m128i *, &rxdp[i].read),
38 						dma_addr0);
39 			}
40 		}
41 		rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
42 			rxq->rx_free_thresh;
43 		return;
44 	}
45 
46 	/* Initialize the mbufs in vector, process 2 mbufs in one loop */
47 	for (i = 0; i < rxq->rx_free_thresh; i += 2, rxp += 2) {
48 		__m128i vaddr0, vaddr1;
49 
50 		mb0 = rxp[0];
51 		mb1 = rxp[1];
52 
53 		/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
54 		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
55 				offsetof(struct rte_mbuf, buf_addr) + 8);
56 		vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
57 		vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
58 
59 		/* convert pa to dma_addr hdr/data */
60 		dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
61 		dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
62 
63 		/* add headroom to pa values */
64 		dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
65 		dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
66 
67 		/* flush desc with pa dma_addr */
68 		_mm_store_si128(RTE_CAST_PTR(__m128i *, &rxdp++->read), dma_addr0);
69 		_mm_store_si128(RTE_CAST_PTR(__m128i *, &rxdp++->read), dma_addr1);
70 	}
71 
72 	rxq->rxrearm_start += rxq->rx_free_thresh;
73 	if (rxq->rxrearm_start >= rxq->nb_rx_desc)
74 		rxq->rxrearm_start = 0;
75 
76 	rxq->rxrearm_nb -= rxq->rx_free_thresh;
77 
78 	rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
79 			   (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
80 
81 	PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
82 		   "rearm_start=%u rearm_nb=%u",
83 		   rxq->port_id, rxq->queue_id,
84 		   rx_id, rxq->rxrearm_start, rxq->rxrearm_nb);
85 
86 	/* Update the tail pointer on the NIC */
87 	IAVF_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
88 }
89 
90 static inline void
91 desc_to_olflags_v(struct iavf_rx_queue *rxq, __m128i descs[4],
92 		  struct rte_mbuf **rx_pkts)
93 {
94 	const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
95 	__m128i rearm0, rearm1, rearm2, rearm3;
96 
97 	__m128i vlan0, vlan1, rss, l3_l4e;
98 
99 	/* mask everything except RSS, flow director and VLAN flags
100 	 * bit2 is for VLAN tag, bit11 for flow director indication
101 	 * bit13:12 for RSS indication.
102 	 */
103 	const __m128i rss_vlan_msk = _mm_set_epi32(
104 			0x1c03804, 0x1c03804, 0x1c03804, 0x1c03804);
105 
106 	const __m128i cksum_mask = _mm_set_epi32(
107 			RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
108 			RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
109 			RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
110 			RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
111 			RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
112 			RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
113 			RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
114 			RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
115 			RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
116 			RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
117 			RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
118 			RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD);
119 
120 	/* map rss and vlan type to rss hash and vlan flag */
121 	const __m128i vlan_flags = _mm_set_epi8(0, 0, 0, 0,
122 			0, 0, 0, 0,
123 			0, 0, 0, RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
124 			0, 0, 0, 0);
125 
126 	const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0,
127 			0, 0, 0, 0,
128 			RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_FDIR, RTE_MBUF_F_RX_RSS_HASH, 0, 0,
129 			0, 0, RTE_MBUF_F_RX_FDIR, 0);
130 
131 	const __m128i l3_l4e_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
132 			/* shift right 1 bit to make sure it not exceed 255 */
133 			(RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
134 			 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
135 			(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
136 			 RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1,
137 			(RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
138 			(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD) >> 1,
139 			(RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
140 			(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1,
141 			RTE_MBUF_F_RX_IP_CKSUM_BAD >> 1,
142 			(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1);
143 
144 	vlan0 = _mm_unpackhi_epi32(descs[0], descs[1]);
145 	vlan1 = _mm_unpackhi_epi32(descs[2], descs[3]);
146 	vlan0 = _mm_unpacklo_epi64(vlan0, vlan1);
147 
148 	vlan1 = _mm_and_si128(vlan0, rss_vlan_msk);
149 	vlan0 = _mm_shuffle_epi8(vlan_flags, vlan1);
150 
151 	rss = _mm_srli_epi32(vlan1, 11);
152 	rss = _mm_shuffle_epi8(rss_flags, rss);
153 
154 	l3_l4e = _mm_srli_epi32(vlan1, 22);
155 	l3_l4e = _mm_shuffle_epi8(l3_l4e_flags, l3_l4e);
156 	/* then we shift left 1 bit */
157 	l3_l4e = _mm_slli_epi32(l3_l4e, 1);
158 	/* we need to mask out the redundant bits */
159 	l3_l4e = _mm_and_si128(l3_l4e, cksum_mask);
160 
161 	vlan0 = _mm_or_si128(vlan0, rss);
162 	vlan0 = _mm_or_si128(vlan0, l3_l4e);
163 
164 	/* At this point, we have the 4 sets of flags in the low 16-bits
165 	 * of each 32-bit value in vlan0.
166 	 * We want to extract these, and merge them with the mbuf init data
167 	 * so we can do a single 16-byte write to the mbuf to set the flags
168 	 * and all the other initialization fields. Extracting the
169 	 * appropriate flags means that we have to do a shift and blend for
170 	 * each mbuf before we do the write.
171 	 */
172 	rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 8), 0x10);
173 	rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 4), 0x10);
174 	rearm2 = _mm_blend_epi16(mbuf_init, vlan0, 0x10);
175 	rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(vlan0, 4), 0x10);
176 
177 	/* write the rearm data and the olflags in one write */
178 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
179 			offsetof(struct rte_mbuf, rearm_data) + 8);
180 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
181 			RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
182 	_mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
183 	_mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
184 	_mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
185 	_mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
186 }
187 
188 static inline __m128i
189 flex_rxd_to_fdir_flags_vec(const __m128i fdir_id0_3)
190 {
191 #define FDID_MIS_MAGIC 0xFFFFFFFF
192 	RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR != (1 << 2));
193 	RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR_ID != (1 << 13));
194 	const __m128i pkt_fdir_bit = _mm_set1_epi32(RTE_MBUF_F_RX_FDIR |
195 			RTE_MBUF_F_RX_FDIR_ID);
196 	/* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */
197 	const __m128i fdir_mis_mask = _mm_set1_epi32(FDID_MIS_MAGIC);
198 	__m128i fdir_mask = _mm_cmpeq_epi32(fdir_id0_3,
199 			fdir_mis_mask);
200 	/* this XOR op results to bit-reverse the fdir_mask */
201 	fdir_mask = _mm_xor_si128(fdir_mask, fdir_mis_mask);
202 	const __m128i fdir_flags = _mm_and_si128(fdir_mask, pkt_fdir_bit);
203 
204 	return fdir_flags;
205 }
206 
207 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
208 static inline void
209 flex_desc_to_olflags_v(struct iavf_rx_queue *rxq, __m128i descs[4], __m128i descs_bh[4],
210 		       struct rte_mbuf **rx_pkts)
211 #else
212 static inline void
213 flex_desc_to_olflags_v(struct iavf_rx_queue *rxq, __m128i descs[4],
214 		       struct rte_mbuf **rx_pkts)
215 #endif
216 {
217 	const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
218 	__m128i rearm0, rearm1, rearm2, rearm3;
219 
220 	__m128i tmp_desc, flags, rss_vlan;
221 
222 	/* mask everything except checksum, RSS and VLAN flags.
223 	 * bit6:4 for checksum.
224 	 * bit12 for RSS indication.
225 	 * bit13 for VLAN indication.
226 	 */
227 	const __m128i desc_mask = _mm_set_epi32(0x30f0, 0x30f0,
228 						0x30f0, 0x30f0);
229 
230 	const __m128i cksum_mask = _mm_set_epi32(RTE_MBUF_F_RX_IP_CKSUM_MASK |
231 						 RTE_MBUF_F_RX_L4_CKSUM_MASK |
232 						 RTE_MBUF_F_RX_OUTER_L4_CKSUM_MASK |
233 						 RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
234 						 RTE_MBUF_F_RX_IP_CKSUM_MASK |
235 						 RTE_MBUF_F_RX_L4_CKSUM_MASK |
236 						 RTE_MBUF_F_RX_OUTER_L4_CKSUM_MASK |
237 						 RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
238 						 RTE_MBUF_F_RX_IP_CKSUM_MASK |
239 						 RTE_MBUF_F_RX_L4_CKSUM_MASK |
240 						 RTE_MBUF_F_RX_OUTER_L4_CKSUM_MASK |
241 						 RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
242 						 RTE_MBUF_F_RX_IP_CKSUM_MASK |
243 						 RTE_MBUF_F_RX_L4_CKSUM_MASK |
244 						 RTE_MBUF_F_RX_OUTER_L4_CKSUM_MASK |
245 						 RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD);
246 
247 	/* map the checksum, rss and vlan fields to the checksum, rss
248 	 * and vlan flag
249 	 */
250 	const __m128i cksum_flags =
251 		_mm_set_epi8((RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 |
252 		 RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
253 		  RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
254 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
255 		 RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
256 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
257 		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
258 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
259 		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
260 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
261 		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
262 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
263 		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
264 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
265 		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
266 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
267 		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
268 		/**
269 		 * shift right 20 bits to use the low two bits to indicate
270 		 * outer checksum status
271 		 * shift right 1 bit to make sure it not exceed 255
272 		 */
273 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
274 		 RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
275 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
276 		 RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
277 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
278 		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
279 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
280 		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
281 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
282 		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
283 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
284 		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
285 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
286 		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
287 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
288 		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1);
289 
290 
291 	const __m128i rss_vlan_flags = _mm_set_epi8(0, 0, 0, 0,
292 			0, 0, 0, 0,
293 			0, 0, 0, 0,
294 			RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
295 			RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
296 			RTE_MBUF_F_RX_RSS_HASH, 0);
297 
298 	/* merge 4 descriptors */
299 	flags = _mm_unpackhi_epi32(descs[0], descs[1]);
300 	tmp_desc = _mm_unpackhi_epi32(descs[2], descs[3]);
301 	tmp_desc = _mm_unpacklo_epi64(flags, tmp_desc);
302 	tmp_desc = _mm_and_si128(tmp_desc, desc_mask);
303 
304 	/* checksum flags */
305 	tmp_desc = _mm_srli_epi32(tmp_desc, 4);
306 	flags = _mm_shuffle_epi8(cksum_flags, tmp_desc);
307 	/* then we shift left 1 bit */
308 	flags = _mm_slli_epi32(flags, 1);
309 	__m128i l4_outer_mask = _mm_set_epi32(0x6, 0x6, 0x6, 0x6);
310 	__m128i l4_outer_flags = _mm_and_si128(flags, l4_outer_mask);
311 	l4_outer_flags = _mm_slli_epi32(l4_outer_flags, 20);
312 
313 	__m128i l3_l4_mask = _mm_set_epi32(~0x6, ~0x6, ~0x6, ~0x6);
314 	__m128i l3_l4_flags = _mm_and_si128(flags, l3_l4_mask);
315 	flags = _mm_or_si128(l3_l4_flags, l4_outer_flags);
316 	/* we need to mask out the redundant bits introduced by RSS or
317 	 * VLAN fields.
318 	 */
319 	flags = _mm_and_si128(flags, cksum_mask);
320 
321 	/* RSS, VLAN flag */
322 	tmp_desc = _mm_srli_epi32(tmp_desc, 8);
323 	rss_vlan = _mm_shuffle_epi8(rss_vlan_flags, tmp_desc);
324 
325 	/* merge the flags */
326 	flags = _mm_or_si128(flags, rss_vlan);
327 
328 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
329 	if (rxq->rx_flags & IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG2_2) {
330 		const __m128i l2tag2_mask =
331 			_mm_set1_epi32(1 << IAVF_RX_FLEX_DESC_STATUS1_L2TAG2P_S);
332 
333 		const __m128i vlan_tci0_1 =
334 			_mm_unpacklo_epi32(descs_bh[0], descs_bh[1]);
335 		const __m128i vlan_tci2_3 =
336 			_mm_unpacklo_epi32(descs_bh[2], descs_bh[3]);
337 		const __m128i vlan_tci0_3 =
338 			_mm_unpacklo_epi64(vlan_tci0_1, vlan_tci2_3);
339 
340 		__m128i vlan_bits = _mm_and_si128(vlan_tci0_3, l2tag2_mask);
341 
342 		vlan_bits = _mm_srli_epi32(vlan_bits,
343 						IAVF_RX_FLEX_DESC_STATUS1_L2TAG2P_S);
344 
345 		const __m128i vlan_flags_shuf =
346 			_mm_set_epi8(0, 0, 0, 0,
347 					0, 0, 0, 0,
348 					0, 0, 0, 0,
349 					0, 0,
350 					RTE_MBUF_F_RX_VLAN |
351 					RTE_MBUF_F_RX_VLAN_STRIPPED,
352 					0);
353 
354 		const __m128i vlan_flags = _mm_shuffle_epi8(vlan_flags_shuf, vlan_bits);
355 
356 		/* merge with vlan_flags */
357 		flags = _mm_or_si128(flags, vlan_flags);
358 	}
359 #endif
360 
361 	if (rxq->fdir_enabled) {
362 		const __m128i fdir_id0_1 =
363 			_mm_unpackhi_epi32(descs[0], descs[1]);
364 
365 		const __m128i fdir_id2_3 =
366 			_mm_unpackhi_epi32(descs[2], descs[3]);
367 
368 		const __m128i fdir_id0_3 =
369 			_mm_unpackhi_epi64(fdir_id0_1, fdir_id2_3);
370 
371 		const __m128i fdir_flags =
372 			flex_rxd_to_fdir_flags_vec(fdir_id0_3);
373 
374 		/* merge with fdir_flags */
375 		flags = _mm_or_si128(flags, fdir_flags);
376 
377 		/* write fdir_id to mbuf */
378 		rx_pkts[0]->hash.fdir.hi =
379 			_mm_extract_epi32(fdir_id0_3, 0);
380 
381 		rx_pkts[1]->hash.fdir.hi =
382 			_mm_extract_epi32(fdir_id0_3, 1);
383 
384 		rx_pkts[2]->hash.fdir.hi =
385 			_mm_extract_epi32(fdir_id0_3, 2);
386 
387 		rx_pkts[3]->hash.fdir.hi =
388 			_mm_extract_epi32(fdir_id0_3, 3);
389 	} /* if() on fdir_enabled */
390 
391 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
392 	if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP)
393 		flags = _mm_or_si128(flags, _mm_set1_epi32(iavf_timestamp_dynflag));
394 #endif
395 
396 	/**
397 	 * At this point, we have the 4 sets of flags in the low 16-bits
398 	 * of each 32-bit value in flags.
399 	 * We want to extract these, and merge them with the mbuf init data
400 	 * so we can do a single 16-byte write to the mbuf to set the flags
401 	 * and all the other initialization fields. Extracting the
402 	 * appropriate flags means that we have to do a shift and blend for
403 	 * each mbuf before we do the write.
404 	 */
405 	rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(flags, 8), 0x30);
406 	rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(flags, 4), 0x30);
407 	rearm2 = _mm_blend_epi16(mbuf_init, flags, 0x30);
408 	rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(flags, 4), 0x30);
409 
410 	/* write the rearm data and the olflags in one write */
411 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
412 			 offsetof(struct rte_mbuf, rearm_data) + 8);
413 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
414 			 RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
415 	_mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
416 	_mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
417 	_mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
418 	_mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
419 }
420 
421 #define PKTLEN_SHIFT     10
422 
423 static inline void
424 desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts,
425 		const uint32_t *type_table)
426 {
427 	__m128i ptype0 = _mm_unpackhi_epi64(descs[0], descs[1]);
428 	__m128i ptype1 = _mm_unpackhi_epi64(descs[2], descs[3]);
429 
430 	ptype0 = _mm_srli_epi64(ptype0, 30);
431 	ptype1 = _mm_srli_epi64(ptype1, 30);
432 
433 	rx_pkts[0]->packet_type = type_table[_mm_extract_epi8(ptype0, 0)];
434 	rx_pkts[1]->packet_type = type_table[_mm_extract_epi8(ptype0, 8)];
435 	rx_pkts[2]->packet_type = type_table[_mm_extract_epi8(ptype1, 0)];
436 	rx_pkts[3]->packet_type = type_table[_mm_extract_epi8(ptype1, 8)];
437 }
438 
439 static inline void
440 flex_desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts,
441 		     const uint32_t *type_table)
442 {
443 	const __m128i ptype_mask =
444 			_mm_set_epi16(IAVF_RX_FLEX_DESC_PTYPE_M, 0x0,
445 				IAVF_RX_FLEX_DESC_PTYPE_M, 0x0,
446 				IAVF_RX_FLEX_DESC_PTYPE_M, 0x0,
447 				IAVF_RX_FLEX_DESC_PTYPE_M, 0x0);
448 
449 	__m128i ptype_01 = _mm_unpacklo_epi32(descs[0], descs[1]);
450 	__m128i ptype_23 = _mm_unpacklo_epi32(descs[2], descs[3]);
451 	__m128i ptype_all = _mm_unpacklo_epi64(ptype_01, ptype_23);
452 
453 	ptype_all = _mm_and_si128(ptype_all, ptype_mask);
454 
455 	rx_pkts[0]->packet_type = type_table[_mm_extract_epi16(ptype_all, 1)];
456 	rx_pkts[1]->packet_type = type_table[_mm_extract_epi16(ptype_all, 3)];
457 	rx_pkts[2]->packet_type = type_table[_mm_extract_epi16(ptype_all, 5)];
458 	rx_pkts[3]->packet_type = type_table[_mm_extract_epi16(ptype_all, 7)];
459 }
460 
461 /**
462  * vPMD raw receive routine, only accept(nb_pkts >= IAVF_VPMD_DESCS_PER_LOOP)
463  *
464  * Notice:
465  * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet
466  * - floor align nb_pkts to a IAVF_VPMD_DESCS_PER_LOOP power-of-two
467  */
468 static inline uint16_t
469 _recv_raw_pkts_vec(struct iavf_rx_queue *rxq, struct rte_mbuf **rx_pkts,
470 		   uint16_t nb_pkts, uint8_t *split_packet)
471 {
472 	volatile union iavf_rx_desc *rxdp;
473 	struct rte_mbuf **sw_ring;
474 	uint16_t nb_pkts_recd;
475 	int pos;
476 	uint64_t var;
477 	__m128i shuf_msk;
478 	const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
479 
480 	__m128i crc_adjust = _mm_set_epi16(
481 				0, 0, 0,    /* ignore non-length fields */
482 				-rxq->crc_len, /* sub crc on data_len */
483 				0,          /* ignore high-16bits of pkt_len */
484 				-rxq->crc_len, /* sub crc on pkt_len */
485 				0, 0            /* ignore pkt_type field */
486 			);
487 	/* compile-time check the above crc_adjust layout is correct.
488 	 * NOTE: the first field (lowest address) is given last in set_epi16
489 	 * call above.
490 	 */
491 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
492 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
493 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
494 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
495 	__m128i dd_check, eop_check;
496 
497 	/* nb_pkts has to be floor-aligned to IAVF_VPMD_DESCS_PER_LOOP */
498 	nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_VPMD_DESCS_PER_LOOP);
499 
500 	/* Just the act of getting into the function from the application is
501 	 * going to cost about 7 cycles
502 	 */
503 	rxdp = rxq->rx_ring + rxq->rx_tail;
504 
505 	rte_prefetch0(rxdp);
506 
507 	/* See if we need to rearm the RX queue - gives the prefetch a bit
508 	 * of time to act
509 	 */
510 	if (rxq->rxrearm_nb > rxq->rx_free_thresh)
511 		iavf_rxq_rearm(rxq);
512 
513 	/* Before we start moving massive data around, check to see if
514 	 * there is actually a packet available
515 	 */
516 	if (!(rxdp->wb.qword1.status_error_len &
517 	      rte_cpu_to_le_32(1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
518 		return 0;
519 
520 	/* 4 packets DD mask */
521 	dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
522 
523 	/* 4 packets EOP mask */
524 	eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
525 
526 	/* mask to shuffle from desc. to mbuf */
527 	shuf_msk = _mm_set_epi8(
528 		7, 6, 5, 4,  /* octet 4~7, 32bits rss */
529 		3, 2,        /* octet 2~3, low 16 bits vlan_macip */
530 		15, 14,      /* octet 15~14, 16 bits data_len */
531 		0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
532 		15, 14,      /* octet 15~14, low 16 bits pkt_len */
533 		0xFF, 0xFF, 0xFF, 0xFF /* pkt_type set as unknown */
534 		);
535 	/* Compile-time verify the shuffle mask
536 	 * NOTE: some field positions already verified above, but duplicated
537 	 * here for completeness in case of future modifications.
538 	 */
539 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
540 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
541 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
542 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
543 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
544 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
545 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
546 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
547 
548 	/* Cache is empty -> need to scan the buffer rings, but first move
549 	 * the next 'n' mbufs into the cache
550 	 */
551 	sw_ring = &rxq->sw_ring[rxq->rx_tail];
552 
553 	/* A. load 4 packet in one loop
554 	 * [A*. mask out 4 unused dirty field in desc]
555 	 * B. copy 4 mbuf point from swring to rx_pkts
556 	 * C. calc the number of DD bits among the 4 packets
557 	 * [C*. extract the end-of-packet bit, if requested]
558 	 * D. fill info. from desc to mbuf
559 	 */
560 
561 	for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
562 	     pos += IAVF_VPMD_DESCS_PER_LOOP,
563 	     rxdp += IAVF_VPMD_DESCS_PER_LOOP) {
564 		__m128i descs[IAVF_VPMD_DESCS_PER_LOOP];
565 		__m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
566 		__m128i zero, staterr, sterr_tmp1, sterr_tmp2;
567 		/* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
568 		__m128i mbp1;
569 #if defined(RTE_ARCH_X86_64)
570 		__m128i mbp2;
571 #endif
572 
573 		/* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
574 		mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
575 		/* Read desc statuses backwards to avoid race condition */
576 		/* A.1 load desc[3] */
577 		descs[3] = _mm_loadu_si128(RTE_CAST_PTR(const __m128i *, rxdp + 3));
578 		rte_compiler_barrier();
579 
580 		/* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
581 		_mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
582 
583 #if defined(RTE_ARCH_X86_64)
584 		/* B.1 load 2 64 bit mbuf points */
585 		mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos + 2]);
586 #endif
587 
588 		/* A.1 load desc[2-0] */
589 		descs[2] = _mm_loadu_si128(RTE_CAST_PTR(const __m128i *, rxdp + 2));
590 		rte_compiler_barrier();
591 		descs[1] = _mm_loadu_si128(RTE_CAST_PTR(const __m128i *, rxdp + 1));
592 		rte_compiler_barrier();
593 		descs[0] = _mm_loadu_si128(RTE_CAST_PTR(const __m128i *, rxdp));
594 
595 #if defined(RTE_ARCH_X86_64)
596 		/* B.2 copy 2 mbuf point into rx_pkts  */
597 		_mm_storeu_si128((__m128i *)&rx_pkts[pos + 2], mbp2);
598 #endif
599 
600 		if (split_packet) {
601 			rte_mbuf_prefetch_part2(rx_pkts[pos]);
602 			rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
603 			rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
604 			rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
605 		}
606 
607 		/* avoid compiler reorder optimization */
608 		rte_compiler_barrier();
609 
610 		/* pkt 3,4 shift the pktlen field to be 16-bit aligned*/
611 		const __m128i len3 = _mm_slli_epi32(descs[3], PKTLEN_SHIFT);
612 		const __m128i len2 = _mm_slli_epi32(descs[2], PKTLEN_SHIFT);
613 
614 		/* merge the now-aligned packet length fields back in */
615 		descs[3] = _mm_blend_epi16(descs[3], len3, 0x80);
616 		descs[2] = _mm_blend_epi16(descs[2], len2, 0x80);
617 
618 		/* D.1 pkt 3,4 convert format from desc to pktmbuf */
619 		pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk);
620 		pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);
621 
622 		/* C.1 4=>2 status err info only */
623 		sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
624 		sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
625 
626 		desc_to_olflags_v(rxq, descs, &rx_pkts[pos]);
627 
628 		/* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
629 		pkt_mb4 = _mm_add_epi16(pkt_mb4, crc_adjust);
630 		pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
631 
632 		/* pkt 1,2 shift the pktlen field to be 16-bit aligned*/
633 		const __m128i len1 = _mm_slli_epi32(descs[1], PKTLEN_SHIFT);
634 		const __m128i len0 = _mm_slli_epi32(descs[0], PKTLEN_SHIFT);
635 
636 		/* merge the now-aligned packet length fields back in */
637 		descs[1] = _mm_blend_epi16(descs[1], len1, 0x80);
638 		descs[0] = _mm_blend_epi16(descs[0], len0, 0x80);
639 
640 		/* D.1 pkt 1,2 convert format from desc to pktmbuf */
641 		pkt_mb2 = _mm_shuffle_epi8(descs[1], shuf_msk);
642 		pkt_mb1 = _mm_shuffle_epi8(descs[0], shuf_msk);
643 
644 		/* C.2 get 4 pkts status err value  */
645 		zero = _mm_xor_si128(dd_check, dd_check);
646 		staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
647 
648 		/* D.3 copy final 3,4 data to rx_pkts */
649 		_mm_storeu_si128(
650 			(void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
651 			pkt_mb4);
652 		_mm_storeu_si128(
653 			(void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
654 			pkt_mb3);
655 
656 		/* D.2 pkt 1,2 remove crc */
657 		pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
658 		pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
659 
660 		/* C* extract and record EOP bit */
661 		if (split_packet) {
662 			__m128i eop_shuf_mask = _mm_set_epi8(
663 					0xFF, 0xFF, 0xFF, 0xFF,
664 					0xFF, 0xFF, 0xFF, 0xFF,
665 					0xFF, 0xFF, 0xFF, 0xFF,
666 					0x04, 0x0C, 0x00, 0x08
667 					);
668 
669 			/* and with mask to extract bits, flipping 1-0 */
670 			__m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
671 			/* the staterr values are not in order, as the count
672 			 * of dd bits doesn't care. However, for end of
673 			 * packet tracking, we do care, so shuffle. This also
674 			 * compresses the 32-bit values to 8-bit
675 			 */
676 			eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
677 			/* store the resulting 32-bit value */
678 			*(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
679 			split_packet += IAVF_VPMD_DESCS_PER_LOOP;
680 		}
681 
682 		/* C.3 calc available number of desc */
683 		staterr = _mm_and_si128(staterr, dd_check);
684 		staterr = _mm_packs_epi32(staterr, zero);
685 
686 		/* D.3 copy final 1,2 data to rx_pkts */
687 		_mm_storeu_si128(
688 			(void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
689 			pkt_mb2);
690 		_mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
691 				 pkt_mb1);
692 		desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
693 		/* C.4 calc available number of desc */
694 		var = rte_popcount64(_mm_cvtsi128_si64(staterr));
695 		nb_pkts_recd += var;
696 		if (likely(var != IAVF_VPMD_DESCS_PER_LOOP))
697 			break;
698 	}
699 
700 	/* Update our internal tail pointer */
701 	rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
702 	rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
703 	rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
704 
705 	return nb_pkts_recd;
706 }
707 
708 /**
709  * vPMD raw receive routine for flex RxD,
710  * only accept(nb_pkts >= IAVF_VPMD_DESCS_PER_LOOP)
711  *
712  * Notice:
713  * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet
714  * - floor align nb_pkts to a IAVF_VPMD_DESCS_PER_LOOP power-of-two
715  */
716 static inline uint16_t
717 _recv_raw_pkts_vec_flex_rxd(struct iavf_rx_queue *rxq,
718 			    struct rte_mbuf **rx_pkts,
719 			    uint16_t nb_pkts, uint8_t *split_packet)
720 {
721 	volatile union iavf_rx_flex_desc *rxdp;
722 	struct rte_mbuf **sw_ring;
723 	uint16_t nb_pkts_recd;
724 	int pos;
725 	uint64_t var;
726 	struct iavf_adapter *adapter = rxq->vsi->adapter;
727 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
728 	uint64_t offloads = adapter->dev_data->dev_conf.rxmode.offloads;
729 #endif
730 	const uint32_t *ptype_tbl = adapter->ptype_tbl;
731 	__m128i crc_adjust = _mm_set_epi16
732 				(0, 0, 0,       /* ignore non-length fields */
733 				 -rxq->crc_len, /* sub crc on data_len */
734 				 0,          /* ignore high-16bits of pkt_len */
735 				 -rxq->crc_len, /* sub crc on pkt_len */
736 				 0, 0           /* ignore pkt_type field */
737 				);
738 	const __m128i zero = _mm_setzero_si128();
739 	/* mask to shuffle from desc. to mbuf */
740 	const __m128i shuf_msk = _mm_set_epi8
741 			(0xFF, 0xFF,
742 			 0xFF, 0xFF,  /* rss hash parsed separately */
743 			 11, 10,      /* octet 10~11, 16 bits vlan_macip */
744 			 5, 4,        /* octet 4~5, 16 bits data_len */
745 			 0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
746 			 5, 4,        /* octet 4~5, low 16 bits pkt_len */
747 			 0xFF, 0xFF,  /* pkt_type set as unknown */
748 			 0xFF, 0xFF   /* pkt_type set as unknown */
749 			);
750 	const __m128i eop_shuf_mask = _mm_set_epi8(0xFF, 0xFF,
751 						   0xFF, 0xFF,
752 						   0xFF, 0xFF,
753 						   0xFF, 0xFF,
754 						   0xFF, 0xFF,
755 						   0xFF, 0xFF,
756 						   0x04, 0x0C,
757 						   0x00, 0x08);
758 
759 	/**
760 	 * compile-time check the above crc_adjust layout is correct.
761 	 * NOTE: the first field (lowest address) is given last in set_epi16
762 	 * call above.
763 	 */
764 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
765 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
766 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
767 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
768 
769 	/* 4 packets DD mask */
770 	const __m128i dd_check = _mm_set_epi64x(0x0000000100000001LL,
771 						0x0000000100000001LL);
772 	/* 4 packets EOP mask */
773 	const __m128i eop_check = _mm_set_epi64x(0x0000000200000002LL,
774 						 0x0000000200000002LL);
775 
776 	/* nb_pkts has to be floor-aligned to IAVF_VPMD_DESCS_PER_LOOP */
777 	nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_VPMD_DESCS_PER_LOOP);
778 
779 	/* Just the act of getting into the function from the application is
780 	 * going to cost about 7 cycles
781 	 */
782 	rxdp = (volatile union iavf_rx_flex_desc *)rxq->rx_ring + rxq->rx_tail;
783 
784 	rte_prefetch0(rxdp);
785 
786 	/* See if we need to rearm the RX queue - gives the prefetch a bit
787 	 * of time to act
788 	 */
789 	if (rxq->rxrearm_nb > rxq->rx_free_thresh)
790 		iavf_rxq_rearm(rxq);
791 
792 	/* Before we start moving massive data around, check to see if
793 	 * there is actually a packet available
794 	 */
795 	if (!(rxdp->wb.status_error0 &
796 	      rte_cpu_to_le_32(1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
797 		return 0;
798 
799 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
800 	uint8_t inflection_point = 0;
801 	bool is_tsinit = false;
802 	__m128i hw_low_last = _mm_set_epi32(0, 0, 0, (uint32_t)rxq->phc_time);
803 
804 	if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) {
805 		uint64_t sw_cur_time = rte_get_timer_cycles() / (rte_get_timer_hz() / 1000);
806 
807 		if (unlikely(sw_cur_time - rxq->hw_time_update > 4)) {
808 			hw_low_last = _mm_setzero_si128();
809 			is_tsinit = 1;
810 		} else {
811 			hw_low_last = _mm_set_epi32(0, 0, 0, (uint32_t)rxq->phc_time);
812 		}
813 	}
814 
815 #endif
816 
817 	/**
818 	 * Compile-time verify the shuffle mask
819 	 * NOTE: some field positions already verified above, but duplicated
820 	 * here for completeness in case of future modifications.
821 	 */
822 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
823 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
824 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
825 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
826 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
827 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
828 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
829 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
830 
831 	/* Cache is empty -> need to scan the buffer rings, but first move
832 	 * the next 'n' mbufs into the cache
833 	 */
834 	sw_ring = &rxq->sw_ring[rxq->rx_tail];
835 
836 	/* A. load 4 packet in one loop
837 	 * [A*. mask out 4 unused dirty field in desc]
838 	 * B. copy 4 mbuf point from swring to rx_pkts
839 	 * C. calc the number of DD bits among the 4 packets
840 	 * [C*. extract the end-of-packet bit, if requested]
841 	 * D. fill info. from desc to mbuf
842 	 */
843 
844 	for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
845 	     pos += IAVF_VPMD_DESCS_PER_LOOP,
846 	     rxdp += IAVF_VPMD_DESCS_PER_LOOP) {
847 		__m128i descs[IAVF_VPMD_DESCS_PER_LOOP];
848 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
849 		__m128i descs_bh[IAVF_VPMD_DESCS_PER_LOOP] = {_mm_setzero_si128()};
850 #endif
851 		__m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
852 		__m128i staterr, sterr_tmp1, sterr_tmp2;
853 		/* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
854 		__m128i mbp1;
855 #if defined(RTE_ARCH_X86_64)
856 		__m128i mbp2;
857 #endif
858 
859 		/* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
860 		mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
861 		/* Read desc statuses backwards to avoid race condition */
862 		/* A.1 load desc[3] */
863 		descs[3] = _mm_loadu_si128(RTE_CAST_PTR(const __m128i *, rxdp + 3));
864 		rte_compiler_barrier();
865 
866 		/* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
867 		_mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
868 
869 #if defined(RTE_ARCH_X86_64)
870 		/* B.1 load 2 64 bit mbuf points */
871 		mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos + 2]);
872 #endif
873 
874 		/* A.1 load desc[2-0] */
875 		descs[2] = _mm_loadu_si128(RTE_CAST_PTR(const __m128i *, rxdp + 2));
876 		rte_compiler_barrier();
877 		descs[1] = _mm_loadu_si128(RTE_CAST_PTR(const __m128i *, rxdp + 1));
878 		rte_compiler_barrier();
879 		descs[0] = _mm_loadu_si128(RTE_CAST_PTR(const __m128i *, rxdp));
880 
881 #if defined(RTE_ARCH_X86_64)
882 		/* B.2 copy 2 mbuf point into rx_pkts  */
883 		_mm_storeu_si128((__m128i *)&rx_pkts[pos + 2], mbp2);
884 #endif
885 
886 		if (split_packet) {
887 			rte_mbuf_prefetch_part2(rx_pkts[pos]);
888 			rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
889 			rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
890 			rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
891 		}
892 
893 		/* avoid compiler reorder optimization */
894 		rte_compiler_barrier();
895 
896 		/* D.1 pkt 3,4 convert format from desc to pktmbuf */
897 		pkt_mb3 = _mm_shuffle_epi8(descs[3], shuf_msk);
898 		pkt_mb2 = _mm_shuffle_epi8(descs[2], shuf_msk);
899 
900 		/* D.1 pkt 1,2 convert format from desc to pktmbuf */
901 		pkt_mb1 = _mm_shuffle_epi8(descs[1], shuf_msk);
902 		pkt_mb0 = _mm_shuffle_epi8(descs[0], shuf_msk);
903 
904 		/* C.1 4=>2 filter staterr info only */
905 		sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
906 		/* C.1 4=>2 filter staterr info only */
907 		sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
908 
909 		/* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
910 		pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
911 		pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
912 
913 		/* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
914 		pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
915 		pkt_mb0 = _mm_add_epi16(pkt_mb0, crc_adjust);
916 
917 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
918 		/**
919 		 * needs to load 2nd 16B of each desc,
920 		 * will cause performance drop to get into this context.
921 		 */
922 		if (offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH ||
923 			offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP ||
924 			rxq->rx_flags & IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG2_2) {
925 			/* load bottom half of every 32B desc */
926 			descs_bh[3] = _mm_load_si128
927 				(RTE_CAST_PTR(const __m128i *, &rxdp[3].wb.status_error1));
928 			rte_compiler_barrier();
929 			descs_bh[2] = _mm_load_si128
930 				(RTE_CAST_PTR(const __m128i *, &rxdp[2].wb.status_error1));
931 			rte_compiler_barrier();
932 			descs_bh[1] = _mm_load_si128
933 				(RTE_CAST_PTR(const __m128i *, &rxdp[1].wb.status_error1));
934 			rte_compiler_barrier();
935 			descs_bh[0] = _mm_load_si128
936 				(RTE_CAST_PTR(const __m128i *, &rxdp[0].wb.status_error1));
937 		}
938 
939 		if (offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH) {
940 			/**
941 			 * to shift the 32b RSS hash value to the
942 			 * highest 32b of each 128b before mask
943 			 */
944 			__m128i rss_hash3 =
945 				_mm_slli_epi64(descs_bh[3], 32);
946 			__m128i rss_hash2 =
947 				_mm_slli_epi64(descs_bh[2], 32);
948 			__m128i rss_hash1 =
949 				_mm_slli_epi64(descs_bh[1], 32);
950 			__m128i rss_hash0 =
951 				_mm_slli_epi64(descs_bh[0], 32);
952 
953 			__m128i rss_hash_msk =
954 				_mm_set_epi32(0xFFFFFFFF, 0, 0, 0);
955 
956 			rss_hash3 = _mm_and_si128
957 					(rss_hash3, rss_hash_msk);
958 			rss_hash2 = _mm_and_si128
959 					(rss_hash2, rss_hash_msk);
960 			rss_hash1 = _mm_and_si128
961 					(rss_hash1, rss_hash_msk);
962 			rss_hash0 = _mm_and_si128
963 					(rss_hash0, rss_hash_msk);
964 
965 			pkt_mb3 = _mm_or_si128(pkt_mb3, rss_hash3);
966 			pkt_mb2 = _mm_or_si128(pkt_mb2, rss_hash2);
967 			pkt_mb1 = _mm_or_si128(pkt_mb1, rss_hash1);
968 			pkt_mb0 = _mm_or_si128(pkt_mb0, rss_hash0);
969 		} /* if() on RSS hash parsing */
970 
971 		if (rxq->rx_flags & IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG2_2) {
972 			/* L2TAG2_2 */
973 			__m128i vlan_tci3 = _mm_slli_si128(descs_bh[3], 4);
974 			__m128i vlan_tci2 = _mm_slli_si128(descs_bh[2], 4);
975 			__m128i vlan_tci1 = _mm_slli_si128(descs_bh[1], 4);
976 			__m128i vlan_tci0 = _mm_slli_si128(descs_bh[0], 4);
977 
978 			const __m128i vlan_tci_msk = _mm_set_epi32(0, 0xFFFF0000, 0, 0);
979 
980 			vlan_tci3 = _mm_and_si128(vlan_tci3, vlan_tci_msk);
981 			vlan_tci2 = _mm_and_si128(vlan_tci2, vlan_tci_msk);
982 			vlan_tci1 = _mm_and_si128(vlan_tci1, vlan_tci_msk);
983 			vlan_tci0 = _mm_and_si128(vlan_tci0, vlan_tci_msk);
984 
985 			pkt_mb3 = _mm_or_si128(pkt_mb3, vlan_tci3);
986 			pkt_mb2 = _mm_or_si128(pkt_mb2, vlan_tci2);
987 			pkt_mb1 = _mm_or_si128(pkt_mb1, vlan_tci1);
988 			pkt_mb0 = _mm_or_si128(pkt_mb0, vlan_tci0);
989 		} /* if() on Vlan parsing */
990 
991 		if (offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) {
992 			uint32_t mask = 0xFFFFFFFF;
993 			__m128i ts;
994 			__m128i ts_low = _mm_setzero_si128();
995 			__m128i ts_low1;
996 			__m128i max_ret;
997 			__m128i cmp_ret;
998 			uint8_t ret = 0;
999 			uint8_t shift = 4;
1000 			__m128i ts_desp_mask = _mm_set_epi32(mask, 0, 0, 0);
1001 			__m128i cmp_mask = _mm_set1_epi32(mask);
1002 
1003 			ts = _mm_and_si128(descs_bh[0], ts_desp_mask);
1004 			ts_low = _mm_or_si128(ts_low, _mm_srli_si128(ts, 3 * 4));
1005 			ts = _mm_and_si128(descs_bh[1], ts_desp_mask);
1006 			ts_low = _mm_or_si128(ts_low, _mm_srli_si128(ts, 2 * 4));
1007 			ts = _mm_and_si128(descs_bh[2], ts_desp_mask);
1008 			ts_low = _mm_or_si128(ts_low, _mm_srli_si128(ts, 1 * 4));
1009 			ts = _mm_and_si128(descs_bh[3], ts_desp_mask);
1010 			ts_low = _mm_or_si128(ts_low, ts);
1011 
1012 			ts_low1 = _mm_slli_si128(ts_low, 4);
1013 			ts_low1 = _mm_and_si128(ts_low, _mm_set_epi32(mask, mask, mask, 0));
1014 			ts_low1 = _mm_or_si128(ts_low1, hw_low_last);
1015 			hw_low_last = _mm_and_si128(ts_low, _mm_set_epi32(0, 0, 0, mask));
1016 
1017 			*RTE_MBUF_DYNFIELD(rx_pkts[pos + 0],
1018 				iavf_timestamp_dynfield_offset, uint32_t *) = _mm_extract_epi32(ts_low, 0);
1019 			*RTE_MBUF_DYNFIELD(rx_pkts[pos + 1],
1020 				iavf_timestamp_dynfield_offset, uint32_t *) = _mm_extract_epi32(ts_low, 1);
1021 			*RTE_MBUF_DYNFIELD(rx_pkts[pos + 2],
1022 				iavf_timestamp_dynfield_offset, uint32_t *) = _mm_extract_epi32(ts_low, 2);
1023 			*RTE_MBUF_DYNFIELD(rx_pkts[pos + 3],
1024 				iavf_timestamp_dynfield_offset, uint32_t *) = _mm_extract_epi32(ts_low, 3);
1025 
1026 			if (unlikely(is_tsinit)) {
1027 				uint32_t in_timestamp;
1028 
1029 				if (iavf_get_phc_time(rxq))
1030 					PMD_DRV_LOG(ERR, "get physical time failed");
1031 				in_timestamp = *RTE_MBUF_DYNFIELD(rx_pkts[pos + 0],
1032 							iavf_timestamp_dynfield_offset, uint32_t *);
1033 				rxq->phc_time = iavf_tstamp_convert_32b_64b(rxq->phc_time, in_timestamp);
1034 			}
1035 
1036 			*RTE_MBUF_DYNFIELD(rx_pkts[pos + 0],
1037 				iavf_timestamp_dynfield_offset + 4, uint32_t *) = (uint32_t)(rxq->phc_time >> 32);
1038 			*RTE_MBUF_DYNFIELD(rx_pkts[pos + 1],
1039 				iavf_timestamp_dynfield_offset + 4, uint32_t *) = (uint32_t)(rxq->phc_time >> 32);
1040 			*RTE_MBUF_DYNFIELD(rx_pkts[pos + 2],
1041 				iavf_timestamp_dynfield_offset + 4, uint32_t *) = (uint32_t)(rxq->phc_time >> 32);
1042 			*RTE_MBUF_DYNFIELD(rx_pkts[pos + 3],
1043 				iavf_timestamp_dynfield_offset + 4, uint32_t *) = (uint32_t)(rxq->phc_time >> 32);
1044 
1045 			max_ret = _mm_max_epu32(ts_low, ts_low1);
1046 			cmp_ret = _mm_andnot_si128(_mm_cmpeq_epi32(max_ret, ts_low), cmp_mask);
1047 
1048 			if (_mm_testz_si128(cmp_ret, cmp_mask)) {
1049 				inflection_point = 0;
1050 			} else {
1051 				inflection_point = 1;
1052 				while (shift > 1) {
1053 					shift = shift >> 1;
1054 					__m128i mask_low = _mm_setzero_si128();
1055 					__m128i mask_high = _mm_setzero_si128();
1056 					switch (shift) {
1057 					case 2:
1058 						mask_low = _mm_set_epi32(0, 0, mask, mask);
1059 						mask_high = _mm_set_epi32(mask, mask, 0, 0);
1060 						break;
1061 					case 1:
1062 						mask_low = _mm_srli_si128(cmp_mask, 4);
1063 						mask_high = _mm_slli_si128(cmp_mask, 4);
1064 						break;
1065 					}
1066 					ret = _mm_testz_si128(cmp_ret, mask_low);
1067 					if (ret) {
1068 						ret = _mm_testz_si128(cmp_ret, mask_high);
1069 						inflection_point += ret ? 0 : shift;
1070 						cmp_mask = mask_high;
1071 					} else {
1072 						cmp_mask = mask_low;
1073 					}
1074 				}
1075 			}
1076 		} /* if() on Timestamp parsing */
1077 
1078 		flex_desc_to_olflags_v(rxq, descs, descs_bh, &rx_pkts[pos]);
1079 #else
1080 		flex_desc_to_olflags_v(rxq, descs, &rx_pkts[pos]);
1081 #endif
1082 
1083 		/* C.2 get 4 pkts staterr value  */
1084 		staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
1085 
1086 		/* D.3 copy final 3,4 data to rx_pkts */
1087 		_mm_storeu_si128
1088 			((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
1089 			 pkt_mb3);
1090 		_mm_storeu_si128
1091 			((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
1092 			 pkt_mb2);
1093 
1094 		/* C* extract and record EOP bit */
1095 		if (split_packet) {
1096 			/* and with mask to extract bits, flipping 1-0 */
1097 			__m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
1098 			/* the staterr values are not in order, as the count
1099 			 * of dd bits doesn't care. However, for end of
1100 			 * packet tracking, we do care, so shuffle. This also
1101 			 * compresses the 32-bit values to 8-bit
1102 			 */
1103 			eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
1104 			/* store the resulting 32-bit value */
1105 			*(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
1106 			split_packet += IAVF_VPMD_DESCS_PER_LOOP;
1107 		}
1108 
1109 		/* C.3 calc available number of desc */
1110 		staterr = _mm_and_si128(staterr, dd_check);
1111 		staterr = _mm_packs_epi32(staterr, zero);
1112 
1113 		/* D.3 copy final 1,2 data to rx_pkts */
1114 		_mm_storeu_si128
1115 			((void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
1116 			 pkt_mb1);
1117 		_mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
1118 				 pkt_mb0);
1119 		flex_desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
1120 		/* C.4 calc available number of desc */
1121 		var = rte_popcount64(_mm_cvtsi128_si64(staterr));
1122 		nb_pkts_recd += var;
1123 
1124 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
1125 		if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) {
1126 			inflection_point = (inflection_point <= var) ? inflection_point : 0;
1127 			switch (inflection_point) {
1128 			case 1:
1129 				*RTE_MBUF_DYNFIELD(rx_pkts[pos + 0],
1130 					iavf_timestamp_dynfield_offset + 4, uint32_t *) += 1;
1131 				/* fallthrough */
1132 			case 2:
1133 				*RTE_MBUF_DYNFIELD(rx_pkts[pos + 1],
1134 					iavf_timestamp_dynfield_offset + 4, uint32_t *) += 1;
1135 				/* fallthrough */
1136 			case 3:
1137 				*RTE_MBUF_DYNFIELD(rx_pkts[pos + 2],
1138 					iavf_timestamp_dynfield_offset + 4, uint32_t *) += 1;
1139 				/* fallthrough */
1140 			case 4:
1141 				*RTE_MBUF_DYNFIELD(rx_pkts[pos + 3],
1142 					iavf_timestamp_dynfield_offset + 4, uint32_t *) += 1;
1143 				rxq->phc_time += (uint64_t)1 << 32;
1144 				/* fallthrough */
1145 			case 0:
1146 				break;
1147 			default:
1148 				PMD_DRV_LOG(ERR, "invalid inflection point for rx timestamp");
1149 				break;
1150 			}
1151 
1152 			rxq->hw_time_update = rte_get_timer_cycles() / (rte_get_timer_hz() / 1000);
1153 		}
1154 #endif
1155 
1156 		if (likely(var != IAVF_VPMD_DESCS_PER_LOOP))
1157 			break;
1158 	}
1159 
1160 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
1161 #ifdef IAVF_RX_TS_OFFLOAD
1162 	if (nb_pkts_recd > 0 && (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP))
1163 		rxq->phc_time = *RTE_MBUF_DYNFIELD(rx_pkts[nb_pkts_recd - 1],
1164 						iavf_timestamp_dynfield_offset, uint32_t *);
1165 #endif
1166 #endif
1167 
1168 	/* Update our internal tail pointer */
1169 	rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
1170 	rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
1171 	rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
1172 
1173 	return nb_pkts_recd;
1174 }
1175 
1176 /* Notice:
1177  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
1178  * - nb_pkts > IAVF_VPMD_RX_MAX_BURST, only scan IAVF_VPMD_RX_MAX_BURST
1179  *   numbers of DD bits
1180  */
1181 uint16_t
1182 iavf_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
1183 		  uint16_t nb_pkts)
1184 {
1185 	return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
1186 }
1187 
1188 /* Notice:
1189  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
1190  * - nb_pkts > IAVF_VPMD_RX_MAX_BURST, only scan IAVF_VPMD_RX_MAX_BURST
1191  *   numbers of DD bits
1192  */
1193 uint16_t
1194 iavf_recv_pkts_vec_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts,
1195 			    uint16_t nb_pkts)
1196 {
1197 	return _recv_raw_pkts_vec_flex_rxd(rx_queue, rx_pkts, nb_pkts, NULL);
1198 }
1199 
1200 /**
1201  * vPMD receive routine that reassembles single burst of 32 scattered packets
1202  *
1203  * Notice:
1204  * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet
1205  */
1206 static uint16_t
1207 iavf_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
1208 			      uint16_t nb_pkts)
1209 {
1210 	struct iavf_rx_queue *rxq = rx_queue;
1211 	uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
1212 	unsigned int i = 0;
1213 
1214 	/* get some new buffers */
1215 	uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
1216 					      split_flags);
1217 	if (nb_bufs == 0)
1218 		return 0;
1219 
1220 	/* happy day case, full burst + no packets to be joined */
1221 	const uint64_t *split_fl64 = (uint64_t *)split_flags;
1222 
1223 	if (!rxq->pkt_first_seg &&
1224 	    split_fl64[0] == 0 && split_fl64[1] == 0 &&
1225 	    split_fl64[2] == 0 && split_fl64[3] == 0)
1226 		return nb_bufs;
1227 
1228 	/* reassemble any packets that need reassembly*/
1229 	if (!rxq->pkt_first_seg) {
1230 		/* find the first split flag, and only reassemble then*/
1231 		while (i < nb_bufs && !split_flags[i])
1232 			i++;
1233 		if (i == nb_bufs)
1234 			return nb_bufs;
1235 		rxq->pkt_first_seg = rx_pkts[i];
1236 	}
1237 	return i + ci_rx_reassemble_packets(&rx_pkts[i], nb_bufs - i, &split_flags[i],
1238 			&rxq->pkt_first_seg, &rxq->pkt_last_seg, rxq->crc_len);
1239 }
1240 
1241 /**
1242  * vPMD receive routine that reassembles scattered packets.
1243  */
1244 uint16_t
1245 iavf_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
1246 			     uint16_t nb_pkts)
1247 {
1248 	uint16_t retval = 0;
1249 
1250 	while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
1251 		uint16_t burst;
1252 
1253 		burst = iavf_recv_scattered_burst_vec(rx_queue,
1254 						      rx_pkts + retval,
1255 						      IAVF_VPMD_RX_MAX_BURST);
1256 		retval += burst;
1257 		nb_pkts -= burst;
1258 		if (burst < IAVF_VPMD_RX_MAX_BURST)
1259 			return retval;
1260 	}
1261 
1262 	return retval + iavf_recv_scattered_burst_vec(rx_queue,
1263 						      rx_pkts + retval,
1264 						      nb_pkts);
1265 }
1266 
1267 /**
1268  * vPMD receive routine that reassembles single burst of 32 scattered packets
1269  * for flex RxD
1270  *
1271  * Notice:
1272  * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet
1273  */
1274 static uint16_t
1275 iavf_recv_scattered_burst_vec_flex_rxd(void *rx_queue,
1276 				       struct rte_mbuf **rx_pkts,
1277 				       uint16_t nb_pkts)
1278 {
1279 	struct iavf_rx_queue *rxq = rx_queue;
1280 	uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
1281 	unsigned int i = 0;
1282 
1283 	/* get some new buffers */
1284 	uint16_t nb_bufs = _recv_raw_pkts_vec_flex_rxd(rxq, rx_pkts, nb_pkts,
1285 					      split_flags);
1286 	if (nb_bufs == 0)
1287 		return 0;
1288 
1289 	/* happy day case, full burst + no packets to be joined */
1290 	const uint64_t *split_fl64 = (uint64_t *)split_flags;
1291 
1292 	if (!rxq->pkt_first_seg &&
1293 	    split_fl64[0] == 0 && split_fl64[1] == 0 &&
1294 	    split_fl64[2] == 0 && split_fl64[3] == 0)
1295 		return nb_bufs;
1296 
1297 	/* reassemble any packets that need reassembly*/
1298 	if (!rxq->pkt_first_seg) {
1299 		/* find the first split flag, and only reassemble then*/
1300 		while (i < nb_bufs && !split_flags[i])
1301 			i++;
1302 		if (i == nb_bufs)
1303 			return nb_bufs;
1304 		rxq->pkt_first_seg = rx_pkts[i];
1305 	}
1306 	return i + ci_rx_reassemble_packets(&rx_pkts[i], nb_bufs - i, &split_flags[i],
1307 			&rxq->pkt_first_seg, &rxq->pkt_last_seg, rxq->crc_len);
1308 }
1309 
1310 /**
1311  * vPMD receive routine that reassembles scattered packets for flex RxD
1312  */
1313 uint16_t
1314 iavf_recv_scattered_pkts_vec_flex_rxd(void *rx_queue,
1315 				      struct rte_mbuf **rx_pkts,
1316 				      uint16_t nb_pkts)
1317 {
1318 	uint16_t retval = 0;
1319 
1320 	while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
1321 		uint16_t burst;
1322 
1323 		burst = iavf_recv_scattered_burst_vec_flex_rxd(rx_queue,
1324 						rx_pkts + retval,
1325 						IAVF_VPMD_RX_MAX_BURST);
1326 		retval += burst;
1327 		nb_pkts -= burst;
1328 		if (burst < IAVF_VPMD_RX_MAX_BURST)
1329 			return retval;
1330 	}
1331 
1332 	return retval + iavf_recv_scattered_burst_vec_flex_rxd(rx_queue,
1333 						      rx_pkts + retval,
1334 						      nb_pkts);
1335 }
1336 
1337 static inline void
1338 vtx1(volatile struct iavf_tx_desc *txdp, struct rte_mbuf *pkt, uint64_t flags)
1339 {
1340 	uint64_t high_qw =
1341 			(IAVF_TX_DESC_DTYPE_DATA |
1342 			 ((uint64_t)flags  << IAVF_TXD_QW1_CMD_SHIFT) |
1343 			 ((uint64_t)pkt->data_len <<
1344 			  IAVF_TXD_QW1_TX_BUF_SZ_SHIFT));
1345 
1346 	__m128i descriptor = _mm_set_epi64x(high_qw,
1347 					    pkt->buf_iova + pkt->data_off);
1348 	_mm_store_si128(RTE_CAST_PTR(__m128i *, txdp), descriptor);
1349 }
1350 
1351 static inline void
1352 iavf_vtx(volatile struct iavf_tx_desc *txdp, struct rte_mbuf **pkt,
1353 	uint16_t nb_pkts,  uint64_t flags)
1354 {
1355 	int i;
1356 
1357 	for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
1358 		vtx1(txdp, *pkt, flags);
1359 }
1360 
1361 uint16_t
1362 iavf_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
1363 			 uint16_t nb_pkts)
1364 {
1365 	struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
1366 	volatile struct iavf_tx_desc *txdp;
1367 	struct ci_tx_entry *txep;
1368 	uint16_t n, nb_commit, tx_id;
1369 	uint64_t flags = IAVF_TX_DESC_CMD_EOP | 0x04;  /* bit 2 must be set */
1370 	uint64_t rs = IAVF_TX_DESC_CMD_RS | flags;
1371 	int i;
1372 
1373 	if (txq->nb_free < txq->free_thresh)
1374 		iavf_tx_free_bufs(txq);
1375 
1376 	nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
1377 	if (unlikely(nb_pkts == 0))
1378 		return 0;
1379 	nb_commit = nb_pkts;
1380 
1381 	tx_id = txq->tx_tail;
1382 	txdp = &txq->tx_ring[tx_id];
1383 	txep = &txq->sw_ring[tx_id];
1384 
1385 	txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);
1386 
1387 	n = (uint16_t)(txq->nb_tx_desc - tx_id);
1388 	if (nb_commit >= n) {
1389 		ci_tx_backlog_entry(txep, tx_pkts, n);
1390 
1391 		for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
1392 			vtx1(txdp, *tx_pkts, flags);
1393 
1394 		vtx1(txdp, *tx_pkts++, rs);
1395 
1396 		nb_commit = (uint16_t)(nb_commit - n);
1397 
1398 		tx_id = 0;
1399 		txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
1400 
1401 		/* avoid reach the end of ring */
1402 		txdp = &txq->tx_ring[tx_id];
1403 		txep = &txq->sw_ring[tx_id];
1404 	}
1405 
1406 	ci_tx_backlog_entry(txep, tx_pkts, nb_commit);
1407 
1408 	iavf_vtx(txdp, tx_pkts, nb_commit, flags);
1409 
1410 	tx_id = (uint16_t)(tx_id + nb_commit);
1411 	if (tx_id > txq->next_rs) {
1412 		txq->tx_ring[txq->next_rs].cmd_type_offset_bsz |=
1413 			rte_cpu_to_le_64(((uint64_t)IAVF_TX_DESC_CMD_RS) <<
1414 					 IAVF_TXD_QW1_CMD_SHIFT);
1415 		txq->next_rs =
1416 			(uint16_t)(txq->next_rs + txq->rs_thresh);
1417 	}
1418 
1419 	txq->tx_tail = tx_id;
1420 
1421 	PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_pkts=%u",
1422 		   txq->port_id, txq->queue_id, tx_id, nb_pkts);
1423 
1424 	IAVF_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
1425 
1426 	return nb_pkts;
1427 }
1428 
1429 uint16_t
1430 iavf_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
1431 		   uint16_t nb_pkts)
1432 {
1433 	uint16_t nb_tx = 0;
1434 	struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
1435 
1436 	while (nb_pkts) {
1437 		uint16_t ret, num;
1438 
1439 		/* cross rs_thresh boundary is not allowed */
1440 		num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh);
1441 		ret = iavf_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx], num);
1442 		nb_tx += ret;
1443 		nb_pkts -= ret;
1444 		if (ret < num)
1445 			break;
1446 	}
1447 
1448 	return nb_tx;
1449 }
1450 
1451 void __rte_cold
1452 iavf_rx_queue_release_mbufs_sse(struct iavf_rx_queue *rxq)
1453 {
1454 	_iavf_rx_queue_release_mbufs_vec(rxq);
1455 }
1456 
1457 void __rte_cold
1458 iavf_tx_queue_release_mbufs_sse(struct iavf_tx_queue *txq)
1459 {
1460 	_iavf_tx_queue_release_mbufs_vec(txq);
1461 }
1462 
1463 int __rte_cold
1464 iavf_txq_vec_setup(struct iavf_tx_queue *txq)
1465 {
1466 	txq->rel_mbufs_type = IAVF_REL_MBUFS_SSE_VEC;
1467 	return 0;
1468 }
1469 
1470 int __rte_cold
1471 iavf_rxq_vec_setup(struct iavf_rx_queue *rxq)
1472 {
1473 	rxq->rel_mbufs_type = IAVF_REL_MBUFS_SSE_VEC;
1474 	return iavf_rxq_vec_setup_default(rxq);
1475 }
1476 
1477 int __rte_cold
1478 iavf_rx_vec_dev_check(struct rte_eth_dev *dev)
1479 {
1480 	return iavf_rx_vec_dev_check_default(dev);
1481 }
1482 
1483 int __rte_cold
1484 iavf_tx_vec_dev_check(struct rte_eth_dev *dev)
1485 {
1486 	return iavf_tx_vec_dev_check_default(dev);
1487 }
1488