xref: /dpdk/drivers/net/intel/i40e/i40e_rxtx_vec_altivec.c (revision 5cc9919fd443fbd3fce77a257601890a0ee6a247)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010 - 2015 Intel Corporation
3  * Copyright(c) 2017 IBM Corporation.
4  */
5 
6 #include <stdint.h>
7 #include <ethdev_driver.h>
8 #include <rte_malloc.h>
9 
10 #include "base/i40e_prototype.h"
11 #include "base/i40e_type.h"
12 #include "i40e_ethdev.h"
13 #include "i40e_rxtx.h"
14 #include "i40e_rxtx_vec_common.h"
15 
16 #include <rte_altivec.h>
17 
18 static inline void
19 i40e_rxq_rearm(struct i40e_rx_queue *rxq)
20 {
21 	int i;
22 	uint16_t rx_id;
23 	volatile union i40e_rx_desc *rxdp;
24 
25 	struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
26 	struct rte_mbuf *mb0, *mb1;
27 
28 	__vector unsigned long hdr_room = (__vector unsigned long){
29 						RTE_PKTMBUF_HEADROOM,
30 						RTE_PKTMBUF_HEADROOM};
31 	__vector unsigned long dma_addr0, dma_addr1;
32 
33 	rxdp = rxq->rx_ring + rxq->rxrearm_start;
34 
35 	/* Pull 'n' more MBUFs into the software ring */
36 	if (rte_mempool_get_bulk(rxq->mp,
37 				 (void *)rxep,
38 				 RTE_I40E_RXQ_REARM_THRESH) < 0) {
39 		if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >=
40 		    rxq->nb_rx_desc) {
41 			dma_addr0 = (__vector unsigned long){};
42 			for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) {
43 				rxep[i].mbuf = &rxq->fake_mbuf;
44 				vec_st(dma_addr0, 0,
45 					RTE_CAST_PTR(__vector unsigned long *, &rxdp[i].read));
46 			}
47 		}
48 		rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
49 			RTE_I40E_RXQ_REARM_THRESH;
50 		return;
51 	}
52 
53 	/* Initialize the mbufs in vector, process 2 mbufs in one loop */
54 	for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) {
55 		__vector unsigned long vaddr0, vaddr1;
56 		uintptr_t p0, p1;
57 
58 		mb0 = rxep[0].mbuf;
59 		mb1 = rxep[1].mbuf;
60 
61 		 /* Flush mbuf with pkt template.
62 		  * Data to be rearmed is 6 bytes long.
63 		  * Though, RX will overwrite ol_flags that are coming next
64 		  * anyway. So overwrite whole 8 bytes with one load:
65 		  * 6 bytes of rearm_data plus first 2 bytes of ol_flags.
66 		  */
67 		p0 = (uintptr_t)&mb0->rearm_data;
68 		*(uint64_t *)p0 = rxq->mbuf_initializer;
69 		p1 = (uintptr_t)&mb1->rearm_data;
70 		*(uint64_t *)p1 = rxq->mbuf_initializer;
71 
72 		/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
73 		vaddr0 = vec_ld(0, (__vector unsigned long *)&mb0->buf_addr);
74 		vaddr1 = vec_ld(0, (__vector unsigned long *)&mb1->buf_addr);
75 
76 		/* convert pa to dma_addr hdr/data */
77 		dma_addr0 = vec_mergel(vaddr0, vaddr0);
78 		dma_addr1 = vec_mergel(vaddr1, vaddr1);
79 
80 		/* add headroom to pa values */
81 		dma_addr0 = vec_add(dma_addr0, hdr_room);
82 		dma_addr1 = vec_add(dma_addr1, hdr_room);
83 
84 		/* flush desc with pa dma_addr */
85 		vec_st(dma_addr0, 0, RTE_CAST_PTR(__vector unsigned long *, &rxdp++->read));
86 		vec_st(dma_addr1, 0, RTE_CAST_PTR(__vector unsigned long *, &rxdp++->read));
87 	}
88 
89 	rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH;
90 	rx_id = rxq->rxrearm_start - 1;
91 
92 	if (unlikely(rxq->rxrearm_start >= rxq->nb_rx_desc)) {
93 		rxq->rxrearm_start = 0;
94 		rx_id = rxq->nb_rx_desc - 1;
95 	}
96 
97 	rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH;
98 
99 	/* Update the tail pointer on the NIC */
100 	I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
101 }
102 
103 static inline void
104 desc_to_olflags_v(__vector unsigned long descs[4], struct rte_mbuf **rx_pkts)
105 {
106 	__vector unsigned int vlan0, vlan1, rss, l3_l4e;
107 
108 	/* mask everything except RSS, flow director and VLAN flags
109 	 * bit2 is for VLAN tag, bit11 for flow director indication
110 	 * bit13:12 for RSS indication.
111 	 */
112 	const __vector unsigned int rss_vlan_msk = (__vector unsigned int){
113 			(int32_t)0x1c03804, (int32_t)0x1c03804,
114 			(int32_t)0x1c03804, (int32_t)0x1c03804};
115 
116 	/* map rss and vlan type to rss hash and vlan flag */
117 	const __vector unsigned char vlan_flags = (__vector unsigned char){
118 			0, 0, 0, 0,
119 			RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, 0, 0, 0,
120 			0, 0, 0, 0,
121 			0, 0, 0, 0};
122 
123 	const __vector unsigned char rss_flags = (__vector unsigned char){
124 			0, RTE_MBUF_F_RX_FDIR, 0, 0,
125 			0, 0, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_FDIR,
126 			0, 0, 0, 0,
127 			0, 0, 0, 0};
128 
129 	const __vector unsigned char l3_l4e_flags = (__vector unsigned char){
130 			0,
131 			RTE_MBUF_F_RX_IP_CKSUM_BAD,
132 			RTE_MBUF_F_RX_L4_CKSUM_BAD,
133 			RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD,
134 			RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
135 			RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD,
136 			RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD,
137 			RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD
138 					     | RTE_MBUF_F_RX_IP_CKSUM_BAD,
139 			0, 0, 0, 0, 0, 0, 0, 0};
140 
141 	vlan0 = (__vector unsigned int)vec_mergel(descs[0], descs[1]);
142 	vlan1 = (__vector unsigned int)vec_mergel(descs[2], descs[3]);
143 	vlan0 = (__vector unsigned int)vec_mergeh(vlan0, vlan1);
144 
145 	vlan1 = vec_and(vlan0, rss_vlan_msk);
146 	vlan0 = (__vector unsigned int)vec_perm(vlan_flags,
147 				(__vector unsigned char){},
148 				*(__vector unsigned char *)&vlan1);
149 
150 	rss = vec_sr(vlan1, (__vector unsigned int){11, 11, 11, 11});
151 	rss = (__vector unsigned int)vec_perm(rss_flags, (__vector unsigned char){},
152 				*(__vector unsigned char *)&rss);
153 
154 	l3_l4e = vec_sr(vlan1, (__vector unsigned int){22, 22, 22, 22});
155 	l3_l4e = (__vector unsigned int)vec_perm(l3_l4e_flags,
156 				(__vector unsigned char){},
157 				*(__vector unsigned char *)&l3_l4e);
158 
159 	vlan0 = vec_or(vlan0, rss);
160 	vlan0 = vec_or(vlan0, l3_l4e);
161 
162 	rx_pkts[0]->ol_flags = (uint64_t)vlan0[2];
163 	rx_pkts[1]->ol_flags = (uint64_t)vlan0[3];
164 	rx_pkts[2]->ol_flags = (uint64_t)vlan0[0];
165 	rx_pkts[3]->ol_flags = (uint64_t)vlan0[1];
166 }
167 
168 #define PKTLEN_SHIFT     10
169 
170 static inline void
171 desc_to_ptype_v(__vector unsigned long descs[4], struct rte_mbuf **rx_pkts,
172 		uint32_t *ptype_tbl)
173 {
174 	__vector unsigned long ptype0 = vec_mergel(descs[0], descs[1]);
175 	__vector unsigned long ptype1 = vec_mergel(descs[2], descs[3]);
176 
177 	ptype0 = vec_sr(ptype0, (__vector unsigned long){30, 30});
178 	ptype1 = vec_sr(ptype1, (__vector unsigned long){30, 30});
179 
180 	rx_pkts[0]->packet_type =
181 		ptype_tbl[(*(__vector unsigned char *)&ptype0)[0]];
182 	rx_pkts[1]->packet_type =
183 		ptype_tbl[(*(__vector unsigned char *)&ptype0)[8]];
184 	rx_pkts[2]->packet_type =
185 		ptype_tbl[(*(__vector unsigned char *)&ptype1)[0]];
186 	rx_pkts[3]->packet_type =
187 		ptype_tbl[(*(__vector unsigned char *)&ptype1)[8]];
188 }
189 
190 /**
191  * vPMD raw receive routine, only accept(nb_pkts >= RTE_I40E_DESCS_PER_LOOP)
192  *
193  * Notice:
194  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
195  * - floor align nb_pkts to a RTE_I40E_DESCS_PER_LOOP power-of-two
196  */
197 static inline uint16_t
198 _recv_raw_pkts_vec(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts,
199 		   uint16_t nb_pkts, uint8_t *split_packet)
200 {
201 	volatile union i40e_rx_desc *rxdp;
202 	struct i40e_rx_entry *sw_ring;
203 	uint16_t nb_pkts_recd;
204 	int pos;
205 	uint64_t var;
206 	__vector unsigned char shuf_msk;
207 	uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
208 
209 	__vector unsigned short crc_adjust = (__vector unsigned short){
210 		0, 0,         /* ignore pkt_type field */
211 		rxq->crc_len, /* sub crc on pkt_len */
212 		0,            /* ignore high-16bits of pkt_len */
213 		rxq->crc_len, /* sub crc on data_len */
214 		0, 0, 0       /* ignore non-length fields */
215 		};
216 	__vector unsigned long dd_check, eop_check;
217 
218 	/* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP */
219 	nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP);
220 
221 	/* Just the act of getting into the function from the application is
222 	 * going to cost about 7 cycles
223 	 */
224 	rxdp = rxq->rx_ring + rxq->rx_tail;
225 
226 	rte_prefetch0(rxdp);
227 
228 	/* See if we need to rearm the RX queue - gives the prefetch a bit
229 	 * of time to act
230 	 */
231 	if (rxq->rxrearm_nb > RTE_I40E_RXQ_REARM_THRESH)
232 		i40e_rxq_rearm(rxq);
233 
234 	/* Before we start moving massive data around, check to see if
235 	 * there is actually a packet available
236 	 */
237 	if (!(rxdp->wb.qword1.status_error_len &
238 			rte_cpu_to_le_32(1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
239 		return 0;
240 
241 	/* 4 packets DD mask */
242 	dd_check = (__vector unsigned long){0x0000000100000001ULL,
243 					  0x0000000100000001ULL};
244 
245 	/* 4 packets EOP mask */
246 	eop_check = (__vector unsigned long){0x0000000200000002ULL,
247 					   0x0000000200000002ULL};
248 
249 	/* mask to shuffle from desc. to mbuf */
250 	shuf_msk = (__vector unsigned char){
251 		0xFF, 0xFF,   /* pkt_type set as unknown */
252 		0xFF, 0xFF,   /* pkt_type set as unknown */
253 		14, 15,       /* octet 15~14, low 16 bits pkt_len */
254 		0xFF, 0xFF,   /* skip high 16 bits pkt_len, zero out */
255 		14, 15,       /* octet 15~14, 16 bits data_len */
256 		2, 3,         /* octet 2~3, low 16 bits vlan_macip */
257 		4, 5, 6, 7    /* octet 4~7, 32bits rss */
258 		};
259 
260 	/* Cache is empty -> need to scan the buffer rings, but first move
261 	 * the next 'n' mbufs into the cache
262 	 */
263 	sw_ring = &rxq->sw_ring[rxq->rx_tail];
264 
265 	/* A. load 4 packet in one loop
266 	 * [A*. mask out 4 unused dirty field in desc]
267 	 * B. copy 4 mbuf point from swring to rx_pkts
268 	 * C. calc the number of DD bits among the 4 packets
269 	 * [C*. extract the end-of-packet bit, if requested]
270 	 * D. fill info. from desc to mbuf
271 	 */
272 
273 	for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
274 			pos += RTE_I40E_DESCS_PER_LOOP,
275 			rxdp += RTE_I40E_DESCS_PER_LOOP) {
276 		__vector unsigned long descs[RTE_I40E_DESCS_PER_LOOP];
277 		__vector unsigned char pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
278 		__vector unsigned short staterr, sterr_tmp1, sterr_tmp2;
279 		__vector unsigned long mbp1, mbp2; /* two mbuf pointer
280 						  * in one XMM reg.
281 						  */
282 
283 		/* B.1 load 2 mbuf point */
284 		mbp1 = *(__vector unsigned long *)&sw_ring[pos];
285 		/* Read desc statuses backwards to avoid race condition */
286 		/* A.1 load desc[3] */
287 		descs[3] = *RTE_CAST_PTR(__vector unsigned long *, rxdp + 3);
288 		rte_compiler_barrier();
289 
290 		/* B.2 copy 2 mbuf point into rx_pkts  */
291 		*(__vector unsigned long *)&rx_pkts[pos] = mbp1;
292 
293 		/* B.1 load 2 mbuf point */
294 		mbp2 = *(__vector unsigned long *)&sw_ring[pos + 2];
295 
296 		/* A.1 load desc[2-0] */
297 		descs[2] = *RTE_CAST_PTR(__vector unsigned long *, rxdp + 2);
298 		rte_compiler_barrier();
299 		descs[1] = *RTE_CAST_PTR(__vector unsigned long *, rxdp + 1);
300 		rte_compiler_barrier();
301 		descs[0] = *RTE_CAST_PTR(__vector unsigned long *, rxdp);
302 
303 		/* B.2 copy 2 mbuf point into rx_pkts  */
304 		*(__vector unsigned long *)&rx_pkts[pos + 2] =  mbp2;
305 
306 		if (split_packet) {
307 			rte_mbuf_prefetch_part2(rx_pkts[pos]);
308 			rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
309 			rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
310 			rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
311 		}
312 
313 		/* avoid compiler reorder optimization */
314 		rte_compiler_barrier();
315 
316 		/* pkt 3,4 shift the pktlen field to be 16-bit aligned*/
317 		const __vector unsigned int len3 = vec_sl(
318 			vec_ld(0, (__vector unsigned int *)&descs[3]),
319 			(__vector unsigned int){0, 0, 0, PKTLEN_SHIFT});
320 
321 		const __vector unsigned int len2 = vec_sl(
322 			vec_ld(0, (__vector unsigned int *)&descs[2]),
323 			(__vector unsigned int){0, 0, 0, PKTLEN_SHIFT});
324 
325 		/* merge the now-aligned packet length fields back in */
326 		descs[3] = (__vector unsigned long)len3;
327 		descs[2] = (__vector unsigned long)len2;
328 
329 		/* D.1 pkt 3,4 convert format from desc to pktmbuf */
330 		pkt_mb4 = vec_perm((__vector unsigned char)descs[3],
331 				  (__vector unsigned char){}, shuf_msk);
332 		pkt_mb3 = vec_perm((__vector unsigned char)descs[2],
333 				  (__vector unsigned char){}, shuf_msk);
334 
335 		/* C.1 4=>2 filter staterr info only */
336 		sterr_tmp2 = vec_mergel((__vector unsigned short)descs[3],
337 					(__vector unsigned short)descs[2]);
338 		/* C.1 4=>2 filter staterr info only */
339 		sterr_tmp1 = vec_mergel((__vector unsigned short)descs[1],
340 					(__vector unsigned short)descs[0]);
341 		/* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
342 		pkt_mb4 = (__vector unsigned char)vec_sub(
343 				(__vector unsigned short)pkt_mb4, crc_adjust);
344 		pkt_mb3 = (__vector unsigned char)vec_sub(
345 				(__vector unsigned short)pkt_mb3, crc_adjust);
346 
347 		/* pkt 1,2 shift the pktlen field to be 16-bit aligned*/
348 		const __vector unsigned int len1 = vec_sl(
349 			vec_ld(0, (__vector unsigned int *)&descs[1]),
350 			(__vector unsigned int){0, 0, 0, PKTLEN_SHIFT});
351 		const __vector unsigned int len0 = vec_sl(
352 			vec_ld(0, (__vector unsigned int *)&descs[0]),
353 			(__vector unsigned int){0, 0, 0, PKTLEN_SHIFT});
354 
355 		/* merge the now-aligned packet length fields back in */
356 		descs[1] = (__vector unsigned long)len1;
357 		descs[0] = (__vector unsigned long)len0;
358 
359 		/* D.1 pkt 1,2 convert format from desc to pktmbuf */
360 		pkt_mb2 = vec_perm((__vector unsigned char)descs[1],
361 				(__vector unsigned char){}, shuf_msk);
362 		pkt_mb1 = vec_perm((__vector unsigned char)descs[0],
363 				(__vector unsigned char){}, shuf_msk);
364 
365 		/* C.2 get 4 pkts staterr value  */
366 		staterr = (__vector unsigned short)vec_mergeh(
367 				sterr_tmp1, sterr_tmp2);
368 
369 		/* D.3 copy final 3,4 data to rx_pkts */
370 		vec_st(pkt_mb4, 0,
371 		 (__vector unsigned char *)&rx_pkts[pos + 3]
372 			->rx_descriptor_fields1
373 		);
374 		vec_st(pkt_mb3, 0,
375 		 (__vector unsigned char *)&rx_pkts[pos + 2]
376 			->rx_descriptor_fields1
377 		);
378 
379 		/* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
380 		pkt_mb2 = (__vector unsigned char)vec_sub(
381 				(__vector unsigned short)pkt_mb2, crc_adjust);
382 		pkt_mb1 = (__vector unsigned char)vec_sub(
383 				(__vector unsigned short)pkt_mb1,	crc_adjust);
384 
385 		/* C* extract and record EOP bit */
386 		if (split_packet) {
387 			__vector unsigned char eop_shuf_mask =
388 				(__vector unsigned char){
389 					0xFF, 0xFF, 0xFF, 0xFF,
390 					0xFF, 0xFF, 0xFF, 0xFF,
391 					0xFF, 0xFF, 0xFF, 0xFF,
392 					0x04, 0x0C, 0x00, 0x08
393 				};
394 
395 			/* and with mask to extract bits, flipping 1-0 */
396 			__vector unsigned char eop_bits = vec_and(
397 				(__vector unsigned char)vec_nor(staterr, staterr),
398 				(__vector unsigned char)eop_check);
399 			/* the staterr values are not in order, as the count
400 			 * of dd bits doesn't care. However, for end of
401 			 * packet tracking, we do care, so shuffle. This also
402 			 * compresses the 32-bit values to 8-bit
403 			 */
404 			eop_bits = vec_perm(eop_bits, (__vector unsigned char){},
405 					    eop_shuf_mask);
406 			/* store the resulting 32-bit value */
407 			*split_packet = (vec_ld(0,
408 					 (__vector unsigned int *)&eop_bits))[0];
409 			split_packet += RTE_I40E_DESCS_PER_LOOP;
410 
411 			/* zero-out next pointers */
412 			rx_pkts[pos]->next = NULL;
413 			rx_pkts[pos + 1]->next = NULL;
414 			rx_pkts[pos + 2]->next = NULL;
415 			rx_pkts[pos + 3]->next = NULL;
416 		}
417 
418 		/* C.3 calc available number of desc */
419 		staterr = vec_and(staterr, (__vector unsigned short)dd_check);
420 
421 		/* D.3 copy final 1,2 data to rx_pkts */
422 		vec_st(pkt_mb2, 0,
423 		 (__vector unsigned char *)&rx_pkts[pos + 1]
424 			->rx_descriptor_fields1
425 		);
426 		vec_st(pkt_mb1, 0,
427 		 (__vector unsigned char *)&rx_pkts[pos]->rx_descriptor_fields1
428 		);
429 		desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
430 		desc_to_olflags_v(descs, &rx_pkts[pos]);
431 
432 		/* C.4 calc available number of desc */
433 		var = rte_popcount64((vec_ld(0,
434 			(__vector unsigned long *)&staterr)[0]));
435 		nb_pkts_recd += var;
436 		if (likely(var != RTE_I40E_DESCS_PER_LOOP))
437 			break;
438 	}
439 
440 	/* Update our internal tail pointer */
441 	rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
442 	rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
443 	rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
444 
445 	return nb_pkts_recd;
446 }
447 
448  /* Notice:
449   * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
450   */
451 uint16_t
452 i40e_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
453 		   uint16_t nb_pkts)
454 {
455 	return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
456 }
457 
458 /**
459  * vPMD receive routine that reassembles single burst of 32 scattered packets
460  *
461  * Notice:
462  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
463  */
464 static uint16_t
465 i40e_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
466 			      uint16_t nb_pkts)
467 {
468 	struct i40e_rx_queue *rxq = rx_queue;
469 	uint8_t split_flags[RTE_I40E_VPMD_RX_BURST] = {0};
470 
471 	/* get some new buffers */
472 	uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
473 			split_flags);
474 	if (nb_bufs == 0)
475 		return 0;
476 
477 	/* happy day case, full burst + no packets to be joined */
478 	const uint64_t *split_fl64 = (uint64_t *)split_flags;
479 
480 	if (rxq->pkt_first_seg == NULL &&
481 	    split_fl64[0] == 0 && split_fl64[1] == 0 &&
482 	    split_fl64[2] == 0 && split_fl64[3] == 0)
483 		return nb_bufs;
484 
485 	/* reassemble any packets that need reassembly*/
486 	unsigned int i = 0;
487 
488 	if (!rxq->pkt_first_seg) {
489 		/* find the first split flag, and only reassemble then*/
490 		while (i < nb_bufs && !split_flags[i])
491 			i++;
492 		if (i == nb_bufs)
493 			return nb_bufs;
494 	}
495 	return i + ci_rx_reassemble_packets(&rx_pkts[i], nb_bufs - i, &split_flags[i],
496 		&rxq->pkt_first_seg, &rxq->pkt_last_seg, rxq->crc_len);
497 }
498 
499 /**
500  * vPMD receive routine that reassembles scattered packets.
501  */
502 uint16_t
503 i40e_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
504 			     uint16_t nb_pkts)
505 {
506 	uint16_t retval = 0;
507 
508 	while (nb_pkts > RTE_I40E_VPMD_RX_BURST) {
509 		uint16_t burst;
510 
511 		burst = i40e_recv_scattered_burst_vec(rx_queue,
512 						      rx_pkts + retval,
513 						      RTE_I40E_VPMD_RX_BURST);
514 		retval += burst;
515 		nb_pkts -= burst;
516 		if (burst < RTE_I40E_VPMD_RX_BURST)
517 			return retval;
518 	}
519 
520 	return retval + i40e_recv_scattered_burst_vec(rx_queue,
521 						      rx_pkts + retval,
522 						      nb_pkts);
523 }
524 
525 static inline void
526 vtx1(volatile struct i40e_tx_desc *txdp,
527 	struct rte_mbuf *pkt, uint64_t flags)
528 {
529 	uint64_t high_qw = (I40E_TX_DESC_DTYPE_DATA |
530 		((uint64_t)flags  << I40E_TXD_QW1_CMD_SHIFT) |
531 		((uint64_t)pkt->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT));
532 
533 	__vector unsigned long descriptor = (__vector unsigned long){
534 		pkt->buf_iova + pkt->data_off, high_qw};
535 	*RTE_CAST_PTR(__vector unsigned long *, txdp) = descriptor;
536 }
537 
538 static inline void
539 vtx(volatile struct i40e_tx_desc *txdp,
540 	struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
541 {
542 	int i;
543 
544 	for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
545 		vtx1(txdp, *pkt, flags);
546 }
547 
548 uint16_t
549 i40e_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
550 			  uint16_t nb_pkts)
551 {
552 	struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
553 	volatile struct i40e_tx_desc *txdp;
554 	struct ci_tx_entry *txep;
555 	uint16_t n, nb_commit, tx_id;
556 	uint64_t flags = I40E_TD_CMD;
557 	uint64_t rs = I40E_TX_DESC_CMD_RS | I40E_TD_CMD;
558 	int i;
559 
560 	if (txq->nb_tx_free < txq->tx_free_thresh)
561 		i40e_tx_free_bufs(txq);
562 
563 	nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
564 	nb_commit = nb_pkts;
565 	if (unlikely(nb_pkts == 0))
566 		return 0;
567 
568 	tx_id = txq->tx_tail;
569 	txdp = &txq->tx_ring[tx_id];
570 	txep = &txq->sw_ring[tx_id];
571 
572 	txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
573 
574 	n = (uint16_t)(txq->nb_tx_desc - tx_id);
575 	if (nb_commit >= n) {
576 		tx_backlog_entry(txep, tx_pkts, n);
577 
578 		for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
579 			vtx1(txdp, *tx_pkts, flags);
580 
581 		vtx1(txdp, *tx_pkts++, rs);
582 
583 		nb_commit = (uint16_t)(nb_commit - n);
584 
585 		tx_id = 0;
586 		txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
587 
588 		/* avoid reach the end of ring */
589 		txdp = &txq->tx_ring[tx_id];
590 		txep = &txq->sw_ring[tx_id];
591 	}
592 
593 	tx_backlog_entry(txep, tx_pkts, nb_commit);
594 
595 	vtx(txdp, tx_pkts, nb_commit, flags);
596 
597 	tx_id = (uint16_t)(tx_id + nb_commit);
598 	if (tx_id > txq->tx_next_rs) {
599 		txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
600 			rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
601 						I40E_TXD_QW1_CMD_SHIFT);
602 		txq->tx_next_rs =
603 			(uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
604 	}
605 
606 	txq->tx_tail = tx_id;
607 
608 	I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
609 
610 	return nb_pkts;
611 }
612 
613 void __rte_cold
614 i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue *rxq)
615 {
616 	_i40e_rx_queue_release_mbufs_vec(rxq);
617 }
618 
619 int __rte_cold
620 i40e_rxq_vec_setup(struct i40e_rx_queue *rxq)
621 {
622 	return i40e_rxq_vec_setup_default(rxq);
623 }
624 
625 int __rte_cold
626 i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused * txq)
627 {
628 	return 0;
629 }
630 
631 int __rte_cold
632 i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
633 {
634 	return i40e_rx_vec_dev_conf_condition_check_default(dev);
635 }
636