xref: /dpdk/drivers/net/hns3/hns3_intr.c (revision f5057be340e44f3edc0fe90fa875eb89a4c49b4f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4 
5 #include <stdbool.h>
6 #include <rte_atomic.h>
7 #include <rte_alarm.h>
8 #include <rte_cycles.h>
9 #include <rte_ethdev.h>
10 #include <rte_io.h>
11 #include <rte_malloc.h>
12 #include <rte_pci.h>
13 #include <rte_bus_pci.h>
14 
15 #include "hns3_ethdev.h"
16 #include "hns3_logs.h"
17 #include "hns3_intr.h"
18 #include "hns3_regs.h"
19 #include "hns3_rxtx.h"
20 
21 #define SWITCH_CONTEXT_US	10
22 
23 #define HNS3_CHECK_MERGE_CNT(val)			\
24 	do {						\
25 		if (val)				\
26 			hw->reset.stats.merge_cnt++;	\
27 	} while (0)
28 
29 static const char *reset_string[HNS3_MAX_RESET] = {
30 	"none", "vf_func", "vf_pf_func", "vf_full", "flr",
31 	"vf_global", "pf_func", "global", "IMP",
32 };
33 
34 static const struct hns3_hw_error mac_afifo_tnl_int[] = {
35 	{ .int_msk = BIT(0), .msg = "egu_cge_afifo_ecc_1bit_err",
36 	  .reset_level = HNS3_NONE_RESET },
37 	{ .int_msk = BIT(1), .msg = "egu_cge_afifo_ecc_mbit_err",
38 	  .reset_level = HNS3_GLOBAL_RESET },
39 	{ .int_msk = BIT(2), .msg = "egu_lge_afifo_ecc_1bit_err",
40 	  .reset_level = HNS3_NONE_RESET },
41 	{ .int_msk = BIT(3), .msg = "egu_lge_afifo_ecc_mbit_err",
42 	  .reset_level = HNS3_GLOBAL_RESET },
43 	{ .int_msk = BIT(4), .msg = "cge_igu_afifo_ecc_1bit_err",
44 	  .reset_level = HNS3_NONE_RESET },
45 	{ .int_msk = BIT(5), .msg = "cge_igu_afifo_ecc_mbit_err",
46 	  .reset_level = HNS3_GLOBAL_RESET },
47 	{ .int_msk = BIT(6), .msg = "lge_igu_afifo_ecc_1bit_err",
48 	  .reset_level = HNS3_NONE_RESET },
49 	{ .int_msk = BIT(7), .msg = "lge_igu_afifo_ecc_mbit_err",
50 	  .reset_level = HNS3_GLOBAL_RESET },
51 	{ .int_msk = BIT(8), .msg = "cge_igu_afifo_overflow_err",
52 	  .reset_level = HNS3_GLOBAL_RESET },
53 	{ .int_msk = BIT(9), .msg = "lge_igu_afifo_overflow_err",
54 	  .reset_level = HNS3_GLOBAL_RESET },
55 	{ .int_msk = BIT(10), .msg = "egu_cge_afifo_underrun_err",
56 	  .reset_level = HNS3_GLOBAL_RESET },
57 	{ .int_msk = BIT(11), .msg = "egu_lge_afifo_underrun_err",
58 	  .reset_level = HNS3_GLOBAL_RESET },
59 	{ .int_msk = BIT(12), .msg = "egu_ge_afifo_underrun_err",
60 	  .reset_level = HNS3_GLOBAL_RESET },
61 	{ .int_msk = BIT(13), .msg = "ge_igu_afifo_overflow_err",
62 	  .reset_level = HNS3_GLOBAL_RESET },
63 	{ .int_msk = 0, .msg = NULL,
64 	  .reset_level = HNS3_NONE_RESET}
65 };
66 
67 static const struct hns3_hw_error ppu_mpf_abnormal_int_st1[] = {
68 	{ .int_msk = 0xFFFFFFFF, .msg = "rpu_rx_pkt_ecc_mbit_err",
69 	  .reset_level = HNS3_GLOBAL_RESET },
70 	{ .int_msk = 0, .msg = NULL,
71 	  .reset_level = HNS3_NONE_RESET}
72 };
73 
74 static const struct hns3_hw_error ppu_mpf_abnormal_int_st2_ras[] = {
75 	{ .int_msk = BIT(13), .msg = "rpu_rx_pkt_bit32_ecc_mbit_err",
76 	  .reset_level = HNS3_GLOBAL_RESET },
77 	{ .int_msk = BIT(14), .msg = "rpu_rx_pkt_bit33_ecc_mbit_err",
78 	  .reset_level = HNS3_GLOBAL_RESET },
79 	{ .int_msk = BIT(15), .msg = "rpu_rx_pkt_bit34_ecc_mbit_err",
80 	  .reset_level = HNS3_GLOBAL_RESET },
81 	{ .int_msk = BIT(16), .msg = "rpu_rx_pkt_bit35_ecc_mbit_err",
82 	  .reset_level = HNS3_GLOBAL_RESET },
83 	{ .int_msk = BIT(17), .msg = "rcb_tx_ring_ecc_mbit_err",
84 	  .reset_level = HNS3_GLOBAL_RESET },
85 	{ .int_msk = BIT(18), .msg = "rcb_rx_ring_ecc_mbit_err",
86 	  .reset_level = HNS3_GLOBAL_RESET },
87 	{ .int_msk = BIT(19), .msg = "rcb_tx_fbd_ecc_mbit_err",
88 	  .reset_level = HNS3_GLOBAL_RESET },
89 	{ .int_msk = BIT(20), .msg = "rcb_rx_ebd_ecc_mbit_err",
90 	  .reset_level = HNS3_GLOBAL_RESET },
91 	{ .int_msk = BIT(21), .msg = "rcb_tso_info_ecc_mbit_err",
92 	  .reset_level = HNS3_GLOBAL_RESET },
93 	{ .int_msk = BIT(22), .msg = "rcb_tx_int_info_ecc_mbit_err",
94 	  .reset_level = HNS3_GLOBAL_RESET },
95 	{ .int_msk = BIT(23), .msg = "rcb_rx_int_info_ecc_mbit_err",
96 	  .reset_level = HNS3_GLOBAL_RESET },
97 	{ .int_msk = BIT(24), .msg = "tpu_tx_pkt_0_ecc_mbit_err",
98 	  .reset_level = HNS3_GLOBAL_RESET },
99 	{ .int_msk = BIT(25), .msg = "tpu_tx_pkt_1_ecc_mbit_err",
100 	  .reset_level = HNS3_GLOBAL_RESET },
101 	{ .int_msk = BIT(26), .msg = "rd_bus_err",
102 	  .reset_level = HNS3_GLOBAL_RESET },
103 	{ .int_msk = BIT(27), .msg = "wr_bus_err",
104 	  .reset_level = HNS3_GLOBAL_RESET },
105 	{ .int_msk = BIT(30), .msg = "ooo_ecc_err_detect",
106 	  .reset_level = HNS3_NONE_RESET },
107 	{ .int_msk = BIT(31), .msg = "ooo_ecc_err_multpl",
108 	  .reset_level = HNS3_GLOBAL_RESET },
109 	{ .int_msk = 0, .msg = NULL,
110 	  .reset_level = HNS3_NONE_RESET}
111 };
112 
113 static const struct hns3_hw_error ppu_mpf_abnormal_int_st2_msix[] = {
114 	{ .int_msk = BIT(29), .msg = "rx_q_search_miss",
115 	  .reset_level = HNS3_NONE_RESET },
116 	{ .int_msk = 0, .msg = NULL,
117 	  .reset_level = HNS3_NONE_RESET}
118 };
119 
120 static const struct hns3_hw_error ssu_port_based_pf_int[] = {
121 	{ .int_msk = BIT(0), .msg = "roc_pkt_without_key_port",
122 	  .reset_level = HNS3_GLOBAL_RESET },
123 	{ .int_msk = BIT(9), .msg = "low_water_line_err_port",
124 	  .reset_level = HNS3_NONE_RESET },
125 	{ .int_msk = 0, .msg = NULL,
126 	  .reset_level = HNS3_NONE_RESET}
127 };
128 
129 static const struct hns3_hw_error ppp_pf_abnormal_int[] = {
130 	{ .int_msk = BIT(0), .msg = "tx_vlan_tag_err",
131 	  .reset_level = HNS3_NONE_RESET },
132 	{ .int_msk = BIT(1), .msg = "rss_list_tc_unassigned_queue_err",
133 	  .reset_level = HNS3_NONE_RESET },
134 	{ .int_msk = 0, .msg = NULL,
135 	  .reset_level = HNS3_NONE_RESET}
136 };
137 
138 static const struct hns3_hw_error ppu_pf_abnormal_int_ras[] = {
139 	{ .int_msk = BIT(3), .msg = "tx_rd_fbd_poison",
140 	  .reset_level = HNS3_FUNC_RESET },
141 	{ .int_msk = BIT(4), .msg = "rx_rd_ebd_poison",
142 	  .reset_level = HNS3_FUNC_RESET },
143 	{ .int_msk = 0, .msg = NULL,
144 	  .reset_level = HNS3_NONE_RESET}
145 };
146 
147 static const struct hns3_hw_error ppu_pf_abnormal_int_msix[] = {
148 	{ .int_msk = BIT(0), .msg = "over_8bd_no_fe",
149 	  .reset_level = HNS3_FUNC_RESET },
150 	{ .int_msk = BIT(1), .msg = "tso_mss_cmp_min_err",
151 	  .reset_level = HNS3_NONE_RESET },
152 	{ .int_msk = BIT(2), .msg = "tso_mss_cmp_max_err",
153 	  .reset_level = HNS3_NONE_RESET },
154 	{ .int_msk = BIT(5), .msg = "buf_wait_timeout",
155 	  .reset_level = HNS3_NONE_RESET },
156 	{ .int_msk = 0, .msg = NULL,
157 	  .reset_level = HNS3_NONE_RESET}
158 };
159 
160 static const struct hns3_hw_error imp_tcm_ecc_int[] = {
161 	{ .int_msk = BIT(1), .msg = "imp_itcm0_ecc_mbit_err",
162 	  .reset_level = HNS3_NONE_RESET },
163 	{ .int_msk = BIT(3), .msg = "imp_itcm1_ecc_mbit_err",
164 	  .reset_level = HNS3_NONE_RESET },
165 	{ .int_msk = BIT(5), .msg = "imp_itcm2_ecc_mbit_err",
166 	  .reset_level = HNS3_NONE_RESET },
167 	{ .int_msk = BIT(7), .msg = "imp_itcm3_ecc_mbit_err",
168 	  .reset_level = HNS3_NONE_RESET },
169 	{ .int_msk = BIT(9), .msg = "imp_dtcm0_mem0_ecc_mbit_err",
170 	  .reset_level = HNS3_NONE_RESET },
171 	{ .int_msk = BIT(11), .msg = "imp_dtcm0_mem1_ecc_mbit_err",
172 	  .reset_level = HNS3_NONE_RESET },
173 	{ .int_msk = BIT(13), .msg = "imp_dtcm1_mem0_ecc_mbit_err",
174 	  .reset_level = HNS3_NONE_RESET },
175 	{ .int_msk = BIT(15), .msg = "imp_dtcm1_mem1_ecc_mbit_err",
176 	  .reset_level = HNS3_NONE_RESET },
177 	{ .int_msk = BIT(17), .msg = "imp_itcm4_ecc_mbit_err",
178 	  .reset_level = HNS3_NONE_RESET },
179 	{ .int_msk = 0, .msg = NULL,
180 	  .reset_level = HNS3_NONE_RESET}
181 };
182 
183 static const struct hns3_hw_error cmdq_mem_ecc_int[] = {
184 	{ .int_msk = BIT(1), .msg = "cmdq_nic_rx_depth_ecc_mbit_err",
185 	  .reset_level = HNS3_NONE_RESET },
186 	{ .int_msk = BIT(3), .msg = "cmdq_nic_tx_depth_ecc_mbit_err",
187 	  .reset_level = HNS3_NONE_RESET },
188 	{ .int_msk = BIT(5), .msg = "cmdq_nic_rx_tail_ecc_mbit_err",
189 	  .reset_level = HNS3_NONE_RESET },
190 	{ .int_msk = BIT(7), .msg = "cmdq_nic_tx_tail_ecc_mbit_err",
191 	  .reset_level = HNS3_NONE_RESET },
192 	{ .int_msk = BIT(9), .msg = "cmdq_nic_rx_head_ecc_mbit_err",
193 	  .reset_level = HNS3_NONE_RESET },
194 	{ .int_msk = BIT(11), .msg = "cmdq_nic_tx_head_ecc_mbit_err",
195 	  .reset_level = HNS3_NONE_RESET },
196 	{ .int_msk = BIT(13), .msg = "cmdq_nic_rx_addr_ecc_mbit_err",
197 	  .reset_level = HNS3_NONE_RESET },
198 	{ .int_msk = BIT(15), .msg = "cmdq_nic_tx_addr_ecc_mbit_err",
199 	  .reset_level = HNS3_NONE_RESET },
200 	{ .int_msk = 0, .msg = NULL,
201 	  .reset_level = HNS3_NONE_RESET}
202 };
203 
204 static const struct hns3_hw_error tqp_int_ecc_int[] = {
205 	{ .int_msk = BIT(6), .msg = "tqp_int_cfg_even_ecc_mbit_err",
206 	  .reset_level = HNS3_NONE_RESET },
207 	{ .int_msk = BIT(7), .msg = "tqp_int_cfg_odd_ecc_mbit_err",
208 	  .reset_level = HNS3_NONE_RESET },
209 	{ .int_msk = BIT(8), .msg = "tqp_int_ctrl_even_ecc_mbit_err",
210 	  .reset_level = HNS3_NONE_RESET },
211 	{ .int_msk = BIT(9), .msg = "tqp_int_ctrl_odd_ecc_mbit_err",
212 	  .reset_level = HNS3_NONE_RESET },
213 	{ .int_msk = BIT(10), .msg = "tx_que_scan_int_ecc_mbit_err",
214 	  .reset_level = HNS3_NONE_RESET },
215 	{ .int_msk = BIT(11), .msg = "rx_que_scan_int_ecc_mbit_err",
216 	  .reset_level = HNS3_NONE_RESET },
217 	{ .int_msk = 0, .msg = NULL,
218 	  .reset_level = HNS3_NONE_RESET}
219 };
220 
221 static const struct hns3_hw_error imp_rd_poison_int[] = {
222 	{ .int_msk = BIT(0), .msg = "imp_rd_poison_int",
223 	  .reset_level = HNS3_NONE_RESET },
224 	{ .int_msk = 0, .msg = NULL,
225 	  .reset_level = HNS3_NONE_RESET}
226 };
227 
228 #define HNS3_SSU_MEM_ECC_ERR(x) \
229 	{ .int_msk = BIT(x), .msg = "ssu_mem" #x "_ecc_mbit_err", \
230 	  .reset_level = HNS3_GLOBAL_RESET }
231 
232 static const struct hns3_hw_error ssu_ecc_multi_bit_int_0[] = {
233 	HNS3_SSU_MEM_ECC_ERR(0),
234 	HNS3_SSU_MEM_ECC_ERR(1),
235 	HNS3_SSU_MEM_ECC_ERR(2),
236 	HNS3_SSU_MEM_ECC_ERR(3),
237 	HNS3_SSU_MEM_ECC_ERR(4),
238 	HNS3_SSU_MEM_ECC_ERR(5),
239 	HNS3_SSU_MEM_ECC_ERR(6),
240 	HNS3_SSU_MEM_ECC_ERR(7),
241 	HNS3_SSU_MEM_ECC_ERR(8),
242 	HNS3_SSU_MEM_ECC_ERR(9),
243 	HNS3_SSU_MEM_ECC_ERR(10),
244 	HNS3_SSU_MEM_ECC_ERR(11),
245 	HNS3_SSU_MEM_ECC_ERR(12),
246 	HNS3_SSU_MEM_ECC_ERR(13),
247 	HNS3_SSU_MEM_ECC_ERR(14),
248 	HNS3_SSU_MEM_ECC_ERR(15),
249 	HNS3_SSU_MEM_ECC_ERR(16),
250 	HNS3_SSU_MEM_ECC_ERR(17),
251 	HNS3_SSU_MEM_ECC_ERR(18),
252 	HNS3_SSU_MEM_ECC_ERR(19),
253 	HNS3_SSU_MEM_ECC_ERR(20),
254 	HNS3_SSU_MEM_ECC_ERR(21),
255 	HNS3_SSU_MEM_ECC_ERR(22),
256 	HNS3_SSU_MEM_ECC_ERR(23),
257 	HNS3_SSU_MEM_ECC_ERR(24),
258 	HNS3_SSU_MEM_ECC_ERR(25),
259 	HNS3_SSU_MEM_ECC_ERR(26),
260 	HNS3_SSU_MEM_ECC_ERR(27),
261 	HNS3_SSU_MEM_ECC_ERR(28),
262 	HNS3_SSU_MEM_ECC_ERR(29),
263 	HNS3_SSU_MEM_ECC_ERR(30),
264 	HNS3_SSU_MEM_ECC_ERR(31),
265 	{ .int_msk = 0, .msg = NULL,
266 	  .reset_level = HNS3_NONE_RESET}
267 };
268 
269 static const struct hns3_hw_error ssu_ecc_multi_bit_int_1[] = {
270 	{ .int_msk = BIT(0), .msg = "ssu_mem32_ecc_mbit_err",
271 	  .reset_level = HNS3_GLOBAL_RESET },
272 	{ .int_msk = 0, .msg = NULL,
273 	  .reset_level = HNS3_NONE_RESET}
274 };
275 
276 static const struct hns3_hw_error ssu_common_ecc_int[] = {
277 	{ .int_msk = BIT(0), .msg = "buf_sum_err",
278 	  .reset_level = HNS3_NONE_RESET },
279 	{ .int_msk = BIT(1), .msg = "ppp_mb_num_err",
280 	  .reset_level = HNS3_NONE_RESET },
281 	{ .int_msk = BIT(2), .msg = "ppp_mbid_err",
282 	  .reset_level = HNS3_GLOBAL_RESET },
283 	{ .int_msk = BIT(3), .msg = "ppp_rlt_mac_err",
284 	  .reset_level = HNS3_GLOBAL_RESET },
285 	{ .int_msk = BIT(4), .msg = "ppp_rlt_host_err",
286 	  .reset_level = HNS3_GLOBAL_RESET },
287 	{ .int_msk = BIT(5), .msg = "cks_edit_position_err",
288 	  .reset_level = HNS3_GLOBAL_RESET },
289 	{ .int_msk = BIT(6), .msg = "cks_edit_condition_err",
290 	  .reset_level = HNS3_GLOBAL_RESET },
291 	{ .int_msk = BIT(7), .msg = "vlan_edit_condition_err",
292 	  .reset_level = HNS3_GLOBAL_RESET },
293 	{ .int_msk = BIT(8), .msg = "vlan_num_ot_err",
294 	  .reset_level = HNS3_GLOBAL_RESET },
295 	{ .int_msk = BIT(9), .msg = "vlan_num_in_err",
296 	  .reset_level = HNS3_GLOBAL_RESET },
297 	{ .int_msk = 0, .msg = NULL,
298 	  .reset_level = HNS3_NONE_RESET}
299 };
300 
301 static const struct hns3_hw_error igu_int[] = {
302 	{ .int_msk = BIT(0), .msg = "igu_rx_buf0_ecc_mbit_err",
303 	  .reset_level = HNS3_GLOBAL_RESET },
304 	{ .int_msk = BIT(2), .msg = "igu_rx_buf1_ecc_mbit_err",
305 	  .reset_level = HNS3_GLOBAL_RESET },
306 	{ .int_msk = 0, .msg = NULL,
307 	  .reset_level = HNS3_NONE_RESET}
308 };
309 
310 static const struct hns3_hw_error msix_ecc_int[] = {
311 	{ .int_msk = BIT(1), .msg = "msix_nic_ecc_mbit_err",
312 	  .reset_level = HNS3_NONE_RESET },
313 	{ .int_msk = 0, .msg = NULL,
314 	  .reset_level = HNS3_NONE_RESET}
315 };
316 
317 static const struct hns3_hw_error ppp_mpf_abnormal_int_st1[] = {
318 	{ .int_msk = BIT(0), .msg = "vf_vlan_ad_mem_ecc_mbit_err",
319 	  .reset_level = HNS3_GLOBAL_RESET },
320 	{ .int_msk = BIT(1), .msg = "umv_mcast_group_mem_ecc_mbit_err",
321 	  .reset_level = HNS3_GLOBAL_RESET },
322 	{ .int_msk = BIT(2), .msg = "umv_key_mem0_ecc_mbit_err",
323 	  .reset_level = HNS3_GLOBAL_RESET },
324 	{ .int_msk = BIT(3), .msg = "umv_key_mem1_ecc_mbit_err",
325 	  .reset_level = HNS3_GLOBAL_RESET },
326 	{ .int_msk = BIT(4), .msg = "umv_key_mem2_ecc_mbit_err",
327 	  .reset_level = HNS3_GLOBAL_RESET },
328 	{ .int_msk = BIT(5), .msg = "umv_key_mem3_ecc_mbit_err",
329 	  .reset_level = HNS3_GLOBAL_RESET },
330 	{ .int_msk = BIT(6), .msg = "umv_ad_mem_ecc_mbit_err",
331 	  .reset_level = HNS3_GLOBAL_RESET },
332 	{ .int_msk = BIT(7), .msg = "rss_tc_mode_mem_ecc_mbit_err",
333 	  .reset_level = HNS3_GLOBAL_RESET },
334 	{ .int_msk = BIT(8), .msg = "rss_idt_mem0_ecc_mbit_err",
335 	  .reset_level = HNS3_GLOBAL_RESET },
336 	{ .int_msk = BIT(9), .msg = "rss_idt_mem1_ecc_mbit_err",
337 	  .reset_level = HNS3_GLOBAL_RESET },
338 	{ .int_msk = BIT(10), .msg = "rss_idt_mem2_ecc_mbit_err",
339 	  .reset_level = HNS3_GLOBAL_RESET },
340 	{ .int_msk = BIT(11), .msg = "rss_idt_mem3_ecc_mbit_err",
341 	  .reset_level = HNS3_GLOBAL_RESET },
342 	{ .int_msk = BIT(12), .msg = "rss_idt_mem4_ecc_mbit_err",
343 	  .reset_level = HNS3_GLOBAL_RESET },
344 	{ .int_msk = BIT(13), .msg = "rss_idt_mem5_ecc_mbit_err",
345 	  .reset_level = HNS3_GLOBAL_RESET },
346 	{ .int_msk = BIT(14), .msg = "rss_idt_mem6_ecc_mbit_err",
347 	  .reset_level = HNS3_GLOBAL_RESET },
348 	{ .int_msk = BIT(15), .msg = "rss_idt_mem7_ecc_mbit_err",
349 	  .reset_level = HNS3_GLOBAL_RESET },
350 	{ .int_msk = BIT(16), .msg = "rss_idt_mem8_ecc_mbit_err",
351 	  .reset_level = HNS3_GLOBAL_RESET },
352 	{ .int_msk = BIT(17), .msg = "rss_idt_mem9_ecc_mbit_err",
353 	  .reset_level = HNS3_GLOBAL_RESET },
354 	{ .int_msk = BIT(18), .msg = "rss_idt_mem10_ecc_m1bit_err",
355 	  .reset_level = HNS3_GLOBAL_RESET },
356 	{ .int_msk = BIT(19), .msg = "rss_idt_mem11_ecc_mbit_err",
357 	  .reset_level = HNS3_GLOBAL_RESET },
358 	{ .int_msk = BIT(20), .msg = "rss_idt_mem12_ecc_mbit_err",
359 	  .reset_level = HNS3_GLOBAL_RESET },
360 	{ .int_msk = BIT(21), .msg = "rss_idt_mem13_ecc_mbit_err",
361 	  .reset_level = HNS3_GLOBAL_RESET },
362 	{ .int_msk = BIT(22), .msg = "rss_idt_mem14_ecc_mbit_err",
363 	  .reset_level = HNS3_GLOBAL_RESET },
364 	{ .int_msk = BIT(23), .msg = "rss_idt_mem15_ecc_mbit_err",
365 	  .reset_level = HNS3_GLOBAL_RESET },
366 	{ .int_msk = BIT(24), .msg = "port_vlan_mem_ecc_mbit_err",
367 	  .reset_level = HNS3_GLOBAL_RESET },
368 	{ .int_msk = BIT(25), .msg = "mcast_linear_table_mem_ecc_mbit_err",
369 	  .reset_level = HNS3_GLOBAL_RESET },
370 	{ .int_msk = BIT(26), .msg = "mcast_result_mem_ecc_mbit_err",
371 	  .reset_level = HNS3_GLOBAL_RESET },
372 	{ .int_msk = BIT(27), .msg = "flow_director_ad_mem0_ecc_mbit_err",
373 	  .reset_level = HNS3_GLOBAL_RESET },
374 	{ .int_msk = BIT(28), .msg = "flow_director_ad_mem1_ecc_mbit_err",
375 	  .reset_level = HNS3_GLOBAL_RESET },
376 	{ .int_msk = BIT(29), .msg = "rx_vlan_tag_memory_ecc_mbit_err",
377 	  .reset_level = HNS3_GLOBAL_RESET },
378 	{ .int_msk = BIT(30), .msg = "Tx_UP_mapping_config_mem_ecc_mbit_err",
379 	  .reset_level = HNS3_GLOBAL_RESET },
380 	{ .int_msk = 0, .msg = NULL,
381 	  .reset_level = HNS3_NONE_RESET}
382 };
383 
384 static const struct hns3_hw_error ppp_mpf_abnormal_int_st3[] = {
385 	{ .int_msk = BIT(0), .msg = "hfs_fifo_mem_ecc_mbit_err",
386 	  .reset_level = HNS3_GLOBAL_RESET },
387 	{ .int_msk = BIT(1), .msg = "rslt_descr_fifo_mem_ecc_mbit_err",
388 	  .reset_level = HNS3_GLOBAL_RESET },
389 	{ .int_msk = BIT(2), .msg = "tx_vlan_tag_mem_ecc_mbit_err",
390 	  .reset_level = HNS3_GLOBAL_RESET },
391 	{ .int_msk = BIT(3), .msg = "FD_CN0_memory_ecc_mbit_err",
392 	  .reset_level = HNS3_GLOBAL_RESET },
393 	{ .int_msk = BIT(4), .msg = "FD_CN1_memory_ecc_mbit_err",
394 	  .reset_level = HNS3_GLOBAL_RESET },
395 	{ .int_msk = BIT(5), .msg = "GRO_AD_memory_ecc_mbit_err",
396 	  .reset_level = HNS3_GLOBAL_RESET },
397 	{ .int_msk = 0, .msg = NULL,
398 	  .reset_level = HNS3_NONE_RESET}
399 };
400 
401 static const struct hns3_hw_error ppu_mpf_abnormal_int_st3[] = {
402 	{ .int_msk = BIT(4), .msg = "gro_bd_ecc_mbit_err",
403 	  .reset_level = HNS3_GLOBAL_RESET },
404 	{ .int_msk = BIT(5), .msg = "gro_context_ecc_mbit_err",
405 	  .reset_level = HNS3_GLOBAL_RESET },
406 	{ .int_msk = BIT(6), .msg = "rx_stash_cfg_ecc_mbit_err",
407 	  .reset_level = HNS3_GLOBAL_RESET },
408 	{ .int_msk = BIT(7), .msg = "axi_rd_fbd_ecc_mbit_err",
409 	  .reset_level = HNS3_GLOBAL_RESET },
410 	{ .int_msk = 0, .msg = NULL,
411 	  .reset_level = HNS3_NONE_RESET}
412 };
413 
414 static const struct hns3_hw_error tm_sch_int[] = {
415 	{ .int_msk = BIT(1), .msg = "tm_sch_ecc_mbit_err",
416 	  .reset_level = HNS3_GLOBAL_RESET },
417 	{ .int_msk = BIT(2), .msg = "tm_sch_port_shap_sub_fifo_wr_err",
418 	  .reset_level = HNS3_GLOBAL_RESET },
419 	{ .int_msk = BIT(3), .msg = "tm_sch_port_shap_sub_fifo_rd_err",
420 	  .reset_level = HNS3_GLOBAL_RESET },
421 	{ .int_msk = BIT(4), .msg = "tm_sch_pg_pshap_sub_fifo_wr_err",
422 	  .reset_level = HNS3_GLOBAL_RESET },
423 	{ .int_msk = BIT(5), .msg = "tm_sch_pg_pshap_sub_fifo_rd_err",
424 	  .reset_level = HNS3_GLOBAL_RESET },
425 	{ .int_msk = BIT(6), .msg = "tm_sch_pg_cshap_sub_fifo_wr_err",
426 	  .reset_level = HNS3_GLOBAL_RESET },
427 	{ .int_msk = BIT(7), .msg = "tm_sch_pg_cshap_sub_fifo_rd_err",
428 	  .reset_level = HNS3_GLOBAL_RESET },
429 	{ .int_msk = BIT(8), .msg = "tm_sch_pri_pshap_sub_fifo_wr_err",
430 	  .reset_level = HNS3_GLOBAL_RESET },
431 	{ .int_msk = BIT(9), .msg = "tm_sch_pri_pshap_sub_fifo_rd_err",
432 	  .reset_level = HNS3_GLOBAL_RESET },
433 	{ .int_msk = BIT(10), .msg = "tm_sch_pri_cshap_sub_fifo_wr_err",
434 	  .reset_level = HNS3_GLOBAL_RESET },
435 	{ .int_msk = BIT(11), .msg = "tm_sch_pri_cshap_sub_fifo_rd_err",
436 	  .reset_level = HNS3_GLOBAL_RESET },
437 	{ .int_msk = BIT(12), .msg = "tm_sch_port_shap_offset_fifo_wr_err",
438 	  .reset_level = HNS3_GLOBAL_RESET },
439 	{ .int_msk = BIT(13), .msg = "tm_sch_port_shap_offset_fifo_rd_err",
440 	  .reset_level = HNS3_GLOBAL_RESET },
441 	{ .int_msk = BIT(14), .msg = "tm_sch_pg_pshap_offset_fifo_wr_err",
442 	  .reset_level = HNS3_GLOBAL_RESET },
443 	{ .int_msk = BIT(15), .msg = "tm_sch_pg_pshap_offset_fifo_rd_err",
444 	  .reset_level = HNS3_GLOBAL_RESET },
445 	{ .int_msk = BIT(16), .msg = "tm_sch_pg_cshap_offset_fifo_wr_err",
446 	  .reset_level = HNS3_GLOBAL_RESET },
447 	{ .int_msk = BIT(17), .msg = "tm_sch_pg_cshap_offset_fifo_rd_err",
448 	  .reset_level = HNS3_GLOBAL_RESET },
449 	{ .int_msk = BIT(18), .msg = "tm_sch_pri_pshap_offset_fifo_wr_err",
450 	  .reset_level = HNS3_GLOBAL_RESET },
451 	{ .int_msk = BIT(19), .msg = "tm_sch_pri_pshap_offset_fifo_rd_err",
452 	  .reset_level = HNS3_GLOBAL_RESET },
453 	{ .int_msk = BIT(20), .msg = "tm_sch_pri_cshap_offset_fifo_wr_err",
454 	  .reset_level = HNS3_GLOBAL_RESET },
455 	{ .int_msk = BIT(21), .msg = "tm_sch_pri_cshap_offset_fifo_rd_err",
456 	  .reset_level = HNS3_GLOBAL_RESET },
457 	{ .int_msk = BIT(22), .msg = "tm_sch_rq_fifo_wr_err",
458 	  .reset_level = HNS3_GLOBAL_RESET },
459 	{ .int_msk = BIT(23), .msg = "tm_sch_rq_fifo_rd_err",
460 	  .reset_level = HNS3_GLOBAL_RESET },
461 	{ .int_msk = BIT(24), .msg = "tm_sch_nq_fifo_wr_err",
462 	  .reset_level = HNS3_GLOBAL_RESET },
463 	{ .int_msk = BIT(25), .msg = "tm_sch_nq_fifo_rd_err",
464 	  .reset_level = HNS3_GLOBAL_RESET },
465 	{ .int_msk = BIT(26), .msg = "tm_sch_roce_up_fifo_wr_err",
466 	  .reset_level = HNS3_GLOBAL_RESET },
467 	{ .int_msk = BIT(27), .msg = "tm_sch_roce_up_fifo_rd_err",
468 	  .reset_level = HNS3_GLOBAL_RESET },
469 	{ .int_msk = BIT(28), .msg = "tm_sch_rcb_byte_fifo_wr_err",
470 	  .reset_level = HNS3_GLOBAL_RESET },
471 	{ .int_msk = BIT(29), .msg = "tm_sch_rcb_byte_fifo_rd_err",
472 	  .reset_level = HNS3_GLOBAL_RESET },
473 	{ .int_msk = BIT(30), .msg = "tm_sch_ssu_byte_fifo_wr_err",
474 	  .reset_level = HNS3_GLOBAL_RESET },
475 	{ .int_msk = BIT(31), .msg = "tm_sch_ssu_byte_fifo_rd_err",
476 	  .reset_level = HNS3_GLOBAL_RESET },
477 	{ .int_msk = 0, .msg = NULL,
478 	  .reset_level = HNS3_NONE_RESET}
479 };
480 
481 static const struct hns3_hw_error qcn_fifo_int[] = {
482 	{ .int_msk = BIT(0), .msg = "qcn_shap_gp0_sch_fifo_rd_err",
483 	  .reset_level = HNS3_GLOBAL_RESET },
484 	{ .int_msk = BIT(1), .msg = "qcn_shap_gp0_sch_fifo_wr_err",
485 	  .reset_level = HNS3_GLOBAL_RESET },
486 	{ .int_msk = BIT(2), .msg = "qcn_shap_gp1_sch_fifo_rd_err",
487 	  .reset_level = HNS3_GLOBAL_RESET },
488 	{ .int_msk = BIT(3), .msg = "qcn_shap_gp1_sch_fifo_wr_err",
489 	  .reset_level = HNS3_GLOBAL_RESET },
490 	{ .int_msk = BIT(4), .msg = "qcn_shap_gp2_sch_fifo_rd_err",
491 	  .reset_level = HNS3_GLOBAL_RESET },
492 	{ .int_msk = BIT(5), .msg = "qcn_shap_gp2_sch_fifo_wr_err",
493 	  .reset_level = HNS3_GLOBAL_RESET },
494 	{ .int_msk = BIT(6), .msg = "qcn_shap_gp3_sch_fifo_rd_err",
495 	  .reset_level = HNS3_GLOBAL_RESET },
496 	{ .int_msk = BIT(7), .msg = "qcn_shap_gp3_sch_fifo_wr_err",
497 	  .reset_level = HNS3_GLOBAL_RESET },
498 	{ .int_msk = BIT(8), .msg = "qcn_shap_gp0_offset_fifo_rd_err",
499 	  .reset_level = HNS3_GLOBAL_RESET },
500 	{ .int_msk = BIT(9), .msg = "qcn_shap_gp0_offset_fifo_wr_err",
501 	  .reset_level = HNS3_GLOBAL_RESET },
502 	{ .int_msk = BIT(10), .msg = "qcn_shap_gp1_offset_fifo_rd_err",
503 	  .reset_level = HNS3_GLOBAL_RESET },
504 	{ .int_msk = BIT(11), .msg = "qcn_shap_gp1_offset_fifo_wr_err",
505 	  .reset_level = HNS3_GLOBAL_RESET },
506 	{ .int_msk = BIT(12), .msg = "qcn_shap_gp2_offset_fifo_rd_err",
507 	  .reset_level = HNS3_GLOBAL_RESET },
508 	{ .int_msk = BIT(13), .msg = "qcn_shap_gp2_offset_fifo_wr_err",
509 	  .reset_level = HNS3_GLOBAL_RESET },
510 	{ .int_msk = BIT(14), .msg = "qcn_shap_gp3_offset_fifo_rd_err",
511 	  .reset_level = HNS3_GLOBAL_RESET },
512 	{ .int_msk = BIT(15), .msg = "qcn_shap_gp3_offset_fifo_wr_err",
513 	  .reset_level = HNS3_GLOBAL_RESET },
514 	{ .int_msk = BIT(16), .msg = "qcn_byte_info_fifo_rd_err",
515 	  .reset_level = HNS3_GLOBAL_RESET },
516 	{ .int_msk = BIT(17), .msg = "qcn_byte_info_fifo_wr_err",
517 	  .reset_level = HNS3_GLOBAL_RESET },
518 	{ .int_msk = 0, .msg = NULL,
519 	  .reset_level = HNS3_NONE_RESET}
520 };
521 
522 static const struct hns3_hw_error qcn_ecc_int[] = {
523 	{ .int_msk = BIT(1), .msg = "qcn_byte_mem_ecc_mbit_err",
524 	  .reset_level = HNS3_GLOBAL_RESET },
525 	{ .int_msk = BIT(3), .msg = "qcn_time_mem_ecc_mbit_err",
526 	  .reset_level = HNS3_GLOBAL_RESET },
527 	{ .int_msk = BIT(5), .msg = "qcn_fb_mem_ecc_mbit_err",
528 	  .reset_level = HNS3_GLOBAL_RESET },
529 	{ .int_msk = BIT(7), .msg = "qcn_link_mem_ecc_mbit_err",
530 	  .reset_level = HNS3_GLOBAL_RESET },
531 	{ .int_msk = BIT(9), .msg = "qcn_rate_mem_ecc_mbit_err",
532 	  .reset_level = HNS3_GLOBAL_RESET },
533 	{ .int_msk = BIT(11), .msg = "qcn_tmplt_mem_ecc_mbit_err",
534 	  .reset_level = HNS3_GLOBAL_RESET },
535 	{ .int_msk = BIT(13), .msg = "qcn_shap_cfg_mem_ecc_mbit_err",
536 	  .reset_level = HNS3_GLOBAL_RESET },
537 	{ .int_msk = BIT(15), .msg = "qcn_gp0_barrel_mem_ecc_mbit_err",
538 	  .reset_level = HNS3_GLOBAL_RESET },
539 	{ .int_msk = BIT(17), .msg = "qcn_gp1_barrel_mem_ecc_mbit_err",
540 	  .reset_level = HNS3_GLOBAL_RESET },
541 	{ .int_msk = BIT(19), .msg = "qcn_gp2_barrel_mem_ecc_mbit_err",
542 	  .reset_level = HNS3_GLOBAL_RESET },
543 	{ .int_msk = BIT(21), .msg = "qcn_gp3_barral_mem_ecc_mbit_err",
544 	  .reset_level = HNS3_GLOBAL_RESET },
545 	{ .int_msk = 0, .msg = NULL,
546 	  .reset_level = HNS3_NONE_RESET}
547 };
548 
549 static const struct hns3_hw_error ncsi_ecc_int[] = {
550 	{ .int_msk = BIT(1), .msg = "ncsi_tx_ecc_mbit_err",
551 	  .reset_level = HNS3_NONE_RESET },
552 	{ .int_msk = 0, .msg = NULL,
553 	  .reset_level = HNS3_NONE_RESET}
554 };
555 
556 static const struct hns3_hw_error ssu_fifo_overflow_int[] = {
557 	{ .int_msk = BIT(0), .msg = "ig_mac_inf_int",
558 	  .reset_level = HNS3_GLOBAL_RESET },
559 	{ .int_msk = BIT(1), .msg = "ig_host_inf_int",
560 	  .reset_level = HNS3_GLOBAL_RESET },
561 	{ .int_msk = BIT(2), .msg = "ig_roc_buf_int",
562 	  .reset_level = HNS3_GLOBAL_RESET },
563 	{ .int_msk = BIT(3), .msg = "ig_host_data_fifo_int",
564 	  .reset_level = HNS3_GLOBAL_RESET },
565 	{ .int_msk = BIT(4), .msg = "ig_host_key_fifo_int",
566 	  .reset_level = HNS3_GLOBAL_RESET },
567 	{ .int_msk = BIT(5), .msg = "tx_qcn_fifo_int",
568 	  .reset_level = HNS3_GLOBAL_RESET },
569 	{ .int_msk = BIT(6), .msg = "rx_qcn_fifo_int",
570 	  .reset_level = HNS3_GLOBAL_RESET },
571 	{ .int_msk = BIT(7), .msg = "tx_pf_rd_fifo_int",
572 	  .reset_level = HNS3_GLOBAL_RESET },
573 	{ .int_msk = BIT(8), .msg = "rx_pf_rd_fifo_int",
574 	  .reset_level = HNS3_GLOBAL_RESET },
575 	{ .int_msk = BIT(9), .msg = "qm_eof_fifo_int",
576 	  .reset_level = HNS3_GLOBAL_RESET },
577 	{ .int_msk = BIT(10), .msg = "mb_rlt_fifo_int",
578 	  .reset_level = HNS3_GLOBAL_RESET },
579 	{ .int_msk = BIT(11), .msg = "dup_uncopy_fifo_int",
580 	  .reset_level = HNS3_GLOBAL_RESET },
581 	{ .int_msk = BIT(12), .msg = "dup_cnt_rd_fifo_int",
582 	  .reset_level = HNS3_GLOBAL_RESET },
583 	{ .int_msk = BIT(13), .msg = "dup_cnt_drop_fifo_int",
584 	  .reset_level = HNS3_GLOBAL_RESET },
585 	{ .int_msk = BIT(14), .msg = "dup_cnt_wrb_fifo_int",
586 	  .reset_level = HNS3_GLOBAL_RESET },
587 	{ .int_msk = BIT(15), .msg = "host_cmd_fifo_int",
588 	  .reset_level = HNS3_GLOBAL_RESET },
589 	{ .int_msk = BIT(16), .msg = "mac_cmd_fifo_int",
590 	  .reset_level = HNS3_GLOBAL_RESET },
591 	{ .int_msk = BIT(17), .msg = "host_cmd_bitmap_empty_int",
592 	  .reset_level = HNS3_GLOBAL_RESET },
593 	{ .int_msk = BIT(18), .msg = "mac_cmd_bitmap_empty_int",
594 	  .reset_level = HNS3_GLOBAL_RESET },
595 	{ .int_msk = BIT(19), .msg = "dup_bitmap_empty_int",
596 	  .reset_level = HNS3_GLOBAL_RESET },
597 	{ .int_msk = BIT(20), .msg = "out_queue_bitmap_empty_int",
598 	  .reset_level = HNS3_GLOBAL_RESET },
599 	{ .int_msk = BIT(21), .msg = "bank2_bitmap_empty_int",
600 	  .reset_level = HNS3_GLOBAL_RESET },
601 	{ .int_msk = BIT(22), .msg = "bank1_bitmap_empty_int",
602 	  .reset_level = HNS3_GLOBAL_RESET },
603 	{ .int_msk = BIT(23), .msg = "bank0_bitmap_empty_int",
604 	  .reset_level = HNS3_GLOBAL_RESET },
605 	{ .int_msk = 0, .msg = NULL,
606 	  .reset_level = HNS3_NONE_RESET}
607 };
608 
609 static const struct hns3_hw_error ssu_ets_tcg_int[] = {
610 	{ .int_msk = BIT(0), .msg = "ets_rd_int_rx_tcg",
611 	  .reset_level = HNS3_GLOBAL_RESET },
612 	{ .int_msk = BIT(1), .msg = "ets_wr_int_rx_tcg",
613 	  .reset_level = HNS3_GLOBAL_RESET },
614 	{ .int_msk = BIT(2), .msg = "ets_rd_int_tx_tcg",
615 	  .reset_level = HNS3_GLOBAL_RESET },
616 	{ .int_msk = BIT(3), .msg = "ets_wr_int_tx_tcg",
617 	  .reset_level = HNS3_GLOBAL_RESET },
618 	{ .int_msk = 0, .msg = NULL,
619 	  .reset_level = HNS3_NONE_RESET}
620 };
621 
622 static const struct hns3_hw_error igu_egu_tnl_int[] = {
623 	{ .int_msk = BIT(0), .msg = "rx_buf_overflow",
624 	  .reset_level = HNS3_GLOBAL_RESET },
625 	{ .int_msk = BIT(1), .msg = "rx_stp_fifo_overflow",
626 	  .reset_level = HNS3_GLOBAL_RESET },
627 	{ .int_msk = BIT(2), .msg = "rx_stp_fifo_underflow",
628 	  .reset_level = HNS3_GLOBAL_RESET },
629 	{ .int_msk = BIT(3), .msg = "tx_buf_overflow",
630 	  .reset_level = HNS3_GLOBAL_RESET },
631 	{ .int_msk = BIT(4), .msg = "tx_buf_underrun",
632 	  .reset_level = HNS3_GLOBAL_RESET },
633 	{ .int_msk = BIT(5), .msg = "rx_stp_buf_overflow",
634 	  .reset_level = HNS3_GLOBAL_RESET },
635 	{ .int_msk = 0, .msg = NULL,
636 	  .reset_level = HNS3_NONE_RESET}
637 };
638 
639 static const struct hns3_hw_error ssu_port_based_err_int[] = {
640 	{ .int_msk = BIT(0), .msg = "roc_pkt_without_key_port",
641 	  .reset_level = HNS3_FUNC_RESET },
642 	{ .int_msk = BIT(1), .msg = "tpu_pkt_without_key_port",
643 	  .reset_level = HNS3_GLOBAL_RESET },
644 	{ .int_msk = BIT(2), .msg = "igu_pkt_without_key_port",
645 	  .reset_level = HNS3_GLOBAL_RESET },
646 	{ .int_msk = BIT(3), .msg = "roc_eof_mis_match_port",
647 	  .reset_level = HNS3_GLOBAL_RESET },
648 	{ .int_msk = BIT(4), .msg = "tpu_eof_mis_match_port",
649 	  .reset_level = HNS3_GLOBAL_RESET },
650 	{ .int_msk = BIT(5), .msg = "igu_eof_mis_match_port",
651 	  .reset_level = HNS3_GLOBAL_RESET },
652 	{ .int_msk = BIT(6), .msg = "roc_sof_mis_match_port",
653 	  .reset_level = HNS3_GLOBAL_RESET },
654 	{ .int_msk = BIT(7), .msg = "tpu_sof_mis_match_port",
655 	  .reset_level = HNS3_GLOBAL_RESET },
656 	{ .int_msk = BIT(8), .msg = "igu_sof_mis_match_port",
657 	  .reset_level = HNS3_GLOBAL_RESET },
658 	{ .int_msk = BIT(11), .msg = "ets_rd_int_rx_port",
659 	  .reset_level = HNS3_GLOBAL_RESET },
660 	{ .int_msk = BIT(12), .msg = "ets_wr_int_rx_port",
661 	  .reset_level = HNS3_GLOBAL_RESET },
662 	{ .int_msk = BIT(13), .msg = "ets_rd_int_tx_port",
663 	  .reset_level = HNS3_GLOBAL_RESET },
664 	{ .int_msk = BIT(14), .msg = "ets_wr_int_tx_port",
665 	  .reset_level = HNS3_GLOBAL_RESET },
666 	{ .int_msk = 0, .msg = NULL,
667 	  .reset_level = HNS3_NONE_RESET}
668 };
669 
670 static const struct hns3_hw_error_desc mpf_ras_err_tbl[] = {
671 	{ .desc_offset = 0, .data_offset = 0,
672 	  .msg = "IMP_TCM_ECC_INT_STS",
673 	  .hw_err = imp_tcm_ecc_int },
674 	{ .desc_offset = 0, .data_offset = 1,
675 	  .msg = "CMDQ_MEM_ECC_INT_STS",
676 	  .hw_err = cmdq_mem_ecc_int },
677 	{ .desc_offset = 0, .data_offset = 2,
678 	  .msg = "IMP_RD_POISON_INT_STS",
679 	  .hw_err = imp_rd_poison_int },
680 	{ .desc_offset = 0, .data_offset = 3,
681 	  .msg = "TQP_INT_ECC_INT_STS",
682 	  .hw_err = tqp_int_ecc_int },
683 	{ .desc_offset = 0, .data_offset = 4,
684 	  .msg = "MSIX_ECC_INT_STS",
685 	  .hw_err = msix_ecc_int },
686 	{ .desc_offset = 2, .data_offset = 2,
687 	  .msg = "SSU_ECC_MULTI_BIT_INT_0",
688 	  .hw_err = ssu_ecc_multi_bit_int_0 },
689 	{ .desc_offset = 2, .data_offset = 3,
690 	  .msg = "SSU_ECC_MULTI_BIT_INT_1",
691 	  .hw_err = ssu_ecc_multi_bit_int_1 },
692 	{ .desc_offset = 2, .data_offset = 4,
693 	  .msg = "SSU_COMMON_ERR_INT",
694 	  .hw_err = ssu_common_ecc_int },
695 	{ .desc_offset = 3, .data_offset = 0,
696 	  .msg = "IGU_INT_STS",
697 	  .hw_err = igu_int },
698 	{ .desc_offset = 4, .data_offset = 1,
699 	  .msg = "PPP_MPF_ABNORMAL_INT_ST1",
700 	  .hw_err = ppp_mpf_abnormal_int_st1 },
701 	{ .desc_offset = 4, .data_offset = 3,
702 	  .msg = "PPP_MPF_ABNORMAL_INT_ST3",
703 	  .hw_err = ppp_mpf_abnormal_int_st3 },
704 	{ .desc_offset = 5, .data_offset = 1,
705 	  .msg = "PPU_MPF_ABNORMAL_INT_ST1",
706 	  .hw_err = ppu_mpf_abnormal_int_st1 },
707 	{ .desc_offset = 5, .data_offset = 2,
708 	  .msg = "PPU_MPF_ABNORMAL_INT_ST2_RAS",
709 	  .hw_err = ppu_mpf_abnormal_int_st2_ras },
710 	{ .desc_offset = 5, .data_offset = 3,
711 	  .msg = "PPU_MPF_ABNORMAL_INT_ST3",
712 	  .hw_err = ppu_mpf_abnormal_int_st3 },
713 	{ .desc_offset = 6, .data_offset = 0,
714 	  .msg = "TM_SCH_RINT",
715 	  .hw_err = tm_sch_int },
716 	{ .desc_offset = 7, .data_offset = 0,
717 	  .msg = "QCN_FIFO_RINT",
718 	  .hw_err = qcn_fifo_int },
719 	{ .desc_offset = 7, .data_offset = 1,
720 	  .msg = "QCN_ECC_RINT",
721 	  .hw_err = qcn_ecc_int },
722 	{ .desc_offset = 9, .data_offset = 0,
723 	  .msg = "NCSI_ECC_INT_RPT",
724 	  .hw_err = ncsi_ecc_int },
725 	{ .desc_offset = 0, .data_offset = 0,
726 	  .msg = NULL,
727 	  .hw_err = NULL }
728 };
729 
730 static const struct hns3_hw_error_desc pf_ras_err_tbl[] = {
731 	{ .desc_offset = 0, .data_offset = 0,
732 	  .msg = "SSU_PORT_BASED_ERR_INT_RAS",
733 	  .hw_err = ssu_port_based_err_int },
734 	{ .desc_offset = 0, .data_offset = 1,
735 	  .msg = "SSU_FIFO_OVERFLOW_INT",
736 	  .hw_err = ssu_fifo_overflow_int },
737 	{ .desc_offset = 0, .data_offset = 2,
738 	  .msg = "SSU_ETS_TCG_INT",
739 	  .hw_err = ssu_ets_tcg_int },
740 	{ .desc_offset = 1, .data_offset = 0,
741 	  .msg = "IGU_EGU_TNL_INT_STS",
742 	  .hw_err = igu_egu_tnl_int },
743 	{ .desc_offset = 3, .data_offset = 0,
744 	  .msg = "PPU_PF_ABNORMAL_INT_ST_RAS",
745 	  .hw_err = ppu_pf_abnormal_int_ras },
746 	{ .desc_offset = 0, .data_offset = 0,
747 	  .msg = NULL,
748 	  .hw_err = NULL }
749 };
750 
751 static const struct hns3_hw_error_desc mpf_msix_err_tbl[] = {
752 	{ .desc_offset = 1, .data_offset = 0,
753 	  .msg = "MAC_AFIFO_TNL_INT_R",
754 	  .hw_err = mac_afifo_tnl_int },
755 	{ .desc_offset = 5, .data_offset = 2,
756 	  .msg = "PPU_MPF_ABNORMAL_INT_ST2_MSIX",
757 	  .hw_err = ppu_mpf_abnormal_int_st2_msix },
758 	{ .desc_offset = 0, .data_offset = 0,
759 	  .msg = NULL,
760 	  .hw_err = NULL }
761 };
762 
763 static const struct hns3_hw_error_desc pf_msix_err_tbl[] = {
764 	{ .desc_offset = 0, .data_offset = 0,
765 	  .msg = "SSU_PORT_BASED_ERR_INT_MSIX",
766 	  .hw_err = ssu_port_based_pf_int },
767 	{ .desc_offset = 2, .data_offset = 0,
768 	  .msg = "PPP_PF_ABNORMAL_INT_ST0",
769 	  .hw_err = ppp_pf_abnormal_int },
770 	{ .desc_offset = 3, .data_offset = 0,
771 	  .msg = "PPU_PF_ABNORMAL_INT_ST_MSIX",
772 	  .hw_err = ppu_pf_abnormal_int_msix },
773 	{ .desc_offset = 0, .data_offset = 0,
774 	  .msg = NULL,
775 	  .hw_err = NULL }
776 };
777 
778 enum hns3_hw_err_type {
779 	MPF_MSIX_ERR,
780 	PF_MSIX_ERR,
781 	MPF_RAS_ERR,
782 	PF_RAS_ERR,
783 };
784 
785 static int
786 hns3_config_ncsi_hw_err_int(struct hns3_adapter *hns, bool en)
787 {
788 	struct hns3_hw *hw = &hns->hw;
789 	struct hns3_cmd_desc desc;
790 	int ret;
791 
792 	/* configure NCSI error interrupts */
793 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_NCSI_INT_EN, false);
794 	if (en)
795 		desc.data[0] = rte_cpu_to_le_32(HNS3_NCSI_ERR_INT_EN);
796 
797 	ret = hns3_cmd_send(hw, &desc, 1);
798 	if (ret)
799 		hns3_err(hw, "fail to %s NCSI error interrupts, ret = %d",
800 			 en ? "enable" : "disable", ret);
801 
802 	return ret;
803 }
804 
805 static int
806 enable_igu_egu_err_intr(struct hns3_adapter *hns, bool en)
807 {
808 	struct hns3_hw *hw = &hns->hw;
809 	struct hns3_cmd_desc desc;
810 	int ret;
811 
812 	/* configure IGU,EGU error interrupts */
813 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_IGU_COMMON_INT_EN, false);
814 	if (en)
815 		desc.data[0] = rte_cpu_to_le_32(HNS3_IGU_ERR_INT_ENABLE);
816 	else
817 		desc.data[0] = rte_cpu_to_le_32(HNS3_IGU_ERR_INT_DISABLE);
818 
819 	desc.data[1] = rte_cpu_to_le_32(HNS3_IGU_ERR_INT_EN_MASK);
820 
821 	ret = hns3_cmd_send(hw, &desc, 1);
822 	if (ret) {
823 		hns3_err(hw, "fail to %s IGU common interrupts, ret = %d",
824 			 en ? "enable" : "disable", ret);
825 		return ret;
826 	}
827 
828 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_IGU_EGU_TNL_INT_EN, false);
829 	if (en)
830 		desc.data[0] = rte_cpu_to_le_32(HNS3_IGU_TNL_ERR_INT_EN);
831 
832 	desc.data[1] = rte_cpu_to_le_32(HNS3_IGU_TNL_ERR_INT_EN_MASK);
833 
834 	ret = hns3_cmd_send(hw, &desc, 1);
835 	if (ret) {
836 		hns3_err(hw, "fail to %s IGU-EGU TNL interrupts, ret = %d",
837 			 en ? "enable" : "disable", ret);
838 		return ret;
839 	}
840 
841 	return hns3_config_ncsi_hw_err_int(hns, en);
842 }
843 
844 static int
845 config_ppp_err_intr(struct hns3_adapter *hns, uint32_t cmd, bool en)
846 {
847 	struct hns3_hw *hw = &hns->hw;
848 	struct hns3_cmd_desc desc[2];
849 	int ret;
850 
851 	/* configure PPP error interrupts */
852 	hns3_cmd_setup_basic_desc(&desc[0], cmd, false);
853 	desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
854 	hns3_cmd_setup_basic_desc(&desc[1], cmd, false);
855 
856 	if (cmd == HNS3_OPC_PPP_CMD0_INT_CMD) {
857 		if (en) {
858 			desc[0].data[0] =
859 				rte_cpu_to_le_32(HNS3_PPP_MPF_ECC_ERR_INT0_EN);
860 			desc[0].data[1] =
861 				rte_cpu_to_le_32(HNS3_PPP_MPF_ECC_ERR_INT1_EN);
862 			desc[0].data[4] =
863 				rte_cpu_to_le_32(HNS3_PPP_PF_ERR_INT_EN);
864 		}
865 
866 		desc[1].data[0] =
867 			rte_cpu_to_le_32(HNS3_PPP_MPF_ECC_ERR_INT0_EN_MASK);
868 		desc[1].data[1] =
869 			rte_cpu_to_le_32(HNS3_PPP_MPF_ECC_ERR_INT1_EN_MASK);
870 		desc[1].data[2] =
871 			rte_cpu_to_le_32(HNS3_PPP_PF_ERR_INT_EN_MASK);
872 	} else if (cmd == HNS3_OPC_PPP_CMD1_INT_CMD) {
873 		if (en) {
874 			desc[0].data[0] =
875 				rte_cpu_to_le_32(HNS3_PPP_MPF_ECC_ERR_INT2_EN);
876 			desc[0].data[1] =
877 				rte_cpu_to_le_32(HNS3_PPP_MPF_ECC_ERR_INT3_EN);
878 		}
879 
880 		desc[1].data[0] =
881 			rte_cpu_to_le_32(HNS3_PPP_MPF_ECC_ERR_INT2_EN_MASK);
882 		desc[1].data[1] =
883 			rte_cpu_to_le_32(HNS3_PPP_MPF_ECC_ERR_INT3_EN_MASK);
884 	}
885 
886 	ret = hns3_cmd_send(hw, &desc[0], 2);
887 	if (ret)
888 		hns3_err(hw, "fail to %s PPP error int, ret = %d",
889 		en ? "enable" : "disable", ret);
890 
891 	return ret;
892 }
893 
894 static int
895 enable_ppp_err_intr(struct hns3_adapter *hns, bool en)
896 {
897 	int ret;
898 
899 	ret = config_ppp_err_intr(hns, HNS3_OPC_PPP_CMD0_INT_CMD, en);
900 	if (ret)
901 		return ret;
902 
903 	return config_ppp_err_intr(hns, HNS3_OPC_PPP_CMD1_INT_CMD, en);
904 }
905 
906 static int
907 enable_ssu_err_intr(struct hns3_adapter *hns, bool en)
908 {
909 	struct hns3_hw *hw = &hns->hw;
910 	struct hns3_cmd_desc desc[2];
911 	int ret;
912 
913 	/* configure SSU ecc error interrupts */
914 	hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_SSU_ECC_INT_CMD, false);
915 	desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
916 	hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_SSU_ECC_INT_CMD, false);
917 	if (en) {
918 		desc[0].data[0] =
919 			rte_cpu_to_le_32(HNS3_SSU_1BIT_ECC_ERR_INT_EN);
920 		desc[0].data[1] =
921 			rte_cpu_to_le_32(HNS3_SSU_MULTI_BIT_ECC_ERR_INT_EN);
922 		desc[0].data[4] =
923 			rte_cpu_to_le_32(HNS3_SSU_BIT32_ECC_ERR_INT_EN);
924 	}
925 
926 	desc[1].data[0] = rte_cpu_to_le_32(HNS3_SSU_1BIT_ECC_ERR_INT_EN_MASK);
927 	desc[1].data[1] =
928 		rte_cpu_to_le_32(HNS3_SSU_MULTI_BIT_ECC_ERR_INT_EN_MASK);
929 	desc[1].data[2] = rte_cpu_to_le_32(HNS3_SSU_BIT32_ECC_ERR_INT_EN_MASK);
930 
931 	ret = hns3_cmd_send(hw, &desc[0], 2);
932 	if (ret) {
933 		hns3_err(hw, "fail to %s SSU ECC error interrupt, ret = %d",
934 			 en ? "enable" : "disable", ret);
935 		return ret;
936 	}
937 
938 	/* configure SSU common error interrupts */
939 	hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_SSU_COMMON_INT_CMD, false);
940 	desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
941 	hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_SSU_COMMON_INT_CMD, false);
942 
943 	if (en) {
944 		desc[0].data[0] = rte_cpu_to_le_32(HNS3_SSU_COMMON_INT_EN);
945 		desc[0].data[1] =
946 			rte_cpu_to_le_32(HNS3_SSU_PORT_BASED_ERR_INT_EN);
947 		desc[0].data[2] =
948 			rte_cpu_to_le_32(HNS3_SSU_FIFO_OVERFLOW_ERR_INT_EN);
949 	}
950 
951 	desc[1].data[0] = rte_cpu_to_le_32(HNS3_SSU_COMMON_INT_EN_MASK |
952 					   HNS3_SSU_PORT_BASED_ERR_INT_EN_MASK);
953 	desc[1].data[1] =
954 		rte_cpu_to_le_32(HNS3_SSU_FIFO_OVERFLOW_ERR_INT_EN_MASK);
955 
956 	ret = hns3_cmd_send(hw, &desc[0], 2);
957 	if (ret)
958 		hns3_err(hw, "fail to %s SSU COMMON error intr, ret = %d",
959 			 en ? "enable" : "disable", ret);
960 
961 	return ret;
962 }
963 
964 static int
965 config_ppu_err_intrs(struct hns3_adapter *hns, uint32_t cmd, bool en)
966 {
967 	struct hns3_hw *hw = &hns->hw;
968 	struct hns3_cmd_desc desc[2];
969 	int num = 1;
970 
971 	/* configure PPU error interrupts */
972 	switch (cmd) {
973 	case HNS3_OPC_PPU_MPF_ECC_INT_CMD:
974 		hns3_cmd_setup_basic_desc(&desc[0], cmd, false);
975 		desc[0].flag |= HNS3_CMD_FLAG_NEXT;
976 		hns3_cmd_setup_basic_desc(&desc[1], cmd, false);
977 		if (en) {
978 			desc[0].data[0] = HNS3_PPU_MPF_ABNORMAL_INT0_EN;
979 			desc[0].data[1] = HNS3_PPU_MPF_ABNORMAL_INT1_EN;
980 			desc[1].data[3] = HNS3_PPU_MPF_ABNORMAL_INT3_EN;
981 			desc[1].data[4] = HNS3_PPU_MPF_ABNORMAL_INT2_EN;
982 		}
983 
984 		desc[1].data[0] = HNS3_PPU_MPF_ABNORMAL_INT0_EN_MASK;
985 		desc[1].data[1] = HNS3_PPU_MPF_ABNORMAL_INT1_EN_MASK;
986 		desc[1].data[2] = HNS3_PPU_MPF_ABNORMAL_INT2_EN_MASK;
987 		desc[1].data[3] |= HNS3_PPU_MPF_ABNORMAL_INT3_EN_MASK;
988 		num = 2;
989 		break;
990 	case HNS3_OPC_PPU_MPF_OTHER_INT_CMD:
991 		hns3_cmd_setup_basic_desc(&desc[0], cmd, false);
992 		if (en)
993 			desc[0].data[0] = HNS3_PPU_MPF_ABNORMAL_INT2_EN2;
994 
995 		desc[0].data[2] = HNS3_PPU_MPF_ABNORMAL_INT2_EN2_MASK;
996 		break;
997 	case HNS3_OPC_PPU_PF_OTHER_INT_CMD:
998 		hns3_cmd_setup_basic_desc(&desc[0], cmd, false);
999 		if (en)
1000 			desc[0].data[0] = HNS3_PPU_PF_ABNORMAL_INT_EN;
1001 
1002 		desc[0].data[2] = HNS3_PPU_PF_ABNORMAL_INT_EN_MASK;
1003 		break;
1004 	default:
1005 		hns3_err(hw,
1006 			 "Invalid cmd(%u) to configure PPU error interrupts.",
1007 			 cmd);
1008 		return -EINVAL;
1009 	}
1010 
1011 	return hns3_cmd_send(hw, &desc[0], num);
1012 }
1013 
1014 static int
1015 enable_ppu_err_intr(struct hns3_adapter *hns, bool en)
1016 {
1017 	struct hns3_hw *hw = &hns->hw;
1018 	int ret;
1019 
1020 	ret = config_ppu_err_intrs(hns, HNS3_OPC_PPU_MPF_ECC_INT_CMD, en);
1021 	if (ret) {
1022 		hns3_err(hw, "fail to %s PPU MPF ECC error intr, ret = %d",
1023 			 en ? "enable" : "disable", ret);
1024 		return ret;
1025 	}
1026 
1027 	ret = config_ppu_err_intrs(hns, HNS3_OPC_PPU_MPF_OTHER_INT_CMD, en);
1028 	if (ret) {
1029 		hns3_err(hw, "fail to %s PPU MPF other intr, ret = %d",
1030 			 en ? "enable" : "disable", ret);
1031 		return ret;
1032 	}
1033 
1034 	ret = config_ppu_err_intrs(hns, HNS3_OPC_PPU_PF_OTHER_INT_CMD, en);
1035 	if (ret)
1036 		hns3_err(hw, "fail to %s PPU PF error interrupts, ret = %d",
1037 			 en ? "enable" : "disable", ret);
1038 	return ret;
1039 }
1040 
1041 static int
1042 enable_tm_err_intr(struct hns3_adapter *hns, bool en)
1043 {
1044 	struct hns3_hw *hw = &hns->hw;
1045 	struct hns3_cmd_desc desc;
1046 	int ret;
1047 
1048 	/* configure TM SCH error interrupts */
1049 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TM_SCH_ECC_INT_EN, false);
1050 	if (en)
1051 		desc.data[0] = rte_cpu_to_le_32(HNS3_TM_SCH_ECC_ERR_INT_EN);
1052 
1053 	ret = hns3_cmd_send(hw, &desc, 1);
1054 	if (ret) {
1055 		hns3_err(hw, "fail to %s TM SCH interrupts, ret = %d",
1056 			 en ? "enable" : "disable", ret);
1057 		return ret;
1058 	}
1059 
1060 	/* configure TM QCN hw errors */
1061 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TM_QCN_MEM_INT_CFG, true);
1062 	ret = hns3_cmd_send(hw, &desc, 1);
1063 	if (ret) {
1064 		hns3_err(hw, "fail to read TM QCN CFG status, ret = %d\n", ret);
1065 		return ret;
1066 	}
1067 
1068 	hns3_cmd_reuse_desc(&desc, false);
1069 	if (en)
1070 		desc.data[1] = rte_cpu_to_le_32(HNS3_TM_QCN_MEM_ERR_INT_EN);
1071 
1072 	ret = hns3_cmd_send(hw, &desc, 1);
1073 	if (ret)
1074 		hns3_err(hw, "fail to %s TM QCN mem errors, ret = %d\n",
1075 			 en ? "enable" : "disable", ret);
1076 
1077 	return ret;
1078 }
1079 
1080 static int
1081 enable_common_err_intr(struct hns3_adapter *hns, bool en)
1082 {
1083 	struct hns3_hw *hw = &hns->hw;
1084 	struct hns3_cmd_desc desc[2];
1085 	int ret;
1086 
1087 	/* configure common error interrupts */
1088 	hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_COMMON_ECC_INT_CFG, false);
1089 	desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1090 	hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_COMMON_ECC_INT_CFG, false);
1091 
1092 	if (en) {
1093 		desc[0].data[0] =
1094 			rte_cpu_to_le_32(HNS3_IMP_TCM_ECC_ERR_INT_EN);
1095 		desc[0].data[2] =
1096 			rte_cpu_to_le_32(HNS3_CMDQ_NIC_ECC_ERR_INT_EN);
1097 		desc[0].data[3] =
1098 			rte_cpu_to_le_32(HNS3_IMP_RD_POISON_ERR_INT_EN);
1099 		desc[0].data[4] =
1100 			rte_cpu_to_le_32(HNS3_TQP_ECC_ERR_INT_EN |
1101 					 HNS3_MSIX_SRAM_ECC_ERR_INT_EN);
1102 		desc[0].data[5] =
1103 			rte_cpu_to_le_32(HNS3_IMP_ITCM4_ECC_ERR_INT_EN);
1104 	}
1105 
1106 	desc[1].data[0] = rte_cpu_to_le_32(HNS3_IMP_TCM_ECC_ERR_INT_EN_MASK);
1107 	desc[1].data[2] = rte_cpu_to_le_32(HNS3_CMDQ_NIC_ECC_ERR_INT_EN_MASK);
1108 	desc[1].data[3] = rte_cpu_to_le_32(HNS3_IMP_RD_POISON_ERR_INT_EN_MASK);
1109 	desc[1].data[4] = rte_cpu_to_le_32(HNS3_TQP_ECC_ERR_INT_EN_MASK |
1110 				      HNS3_MSIX_SRAM_ECC_ERR_INT_EN_MASK);
1111 	desc[1].data[5] = rte_cpu_to_le_32(HNS3_IMP_ITCM4_ECC_ERR_INT_EN_MASK);
1112 
1113 	ret = hns3_cmd_send(hw, &desc[0], RTE_DIM(desc));
1114 	if (ret)
1115 		hns3_err(hw, "fail to %s common err interrupts, ret = %d\n",
1116 			 en ? "enable" : "disable", ret);
1117 
1118 	return ret;
1119 }
1120 
1121 static int
1122 enable_mac_err_intr(struct hns3_adapter *hns, bool en)
1123 {
1124 	struct hns3_hw *hw = &hns->hw;
1125 	struct hns3_cmd_desc desc;
1126 	int ret;
1127 
1128 	/* configure MAC common error interrupts */
1129 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_COMMON_INT_EN, false);
1130 	if (en)
1131 		desc.data[0] = rte_cpu_to_le_32(HNS3_MAC_COMMON_ERR_INT_EN);
1132 
1133 	desc.data[1] = rte_cpu_to_le_32(HNS3_MAC_COMMON_ERR_INT_EN_MASK);
1134 
1135 	ret = hns3_cmd_send(hw, &desc, 1);
1136 	if (ret)
1137 		hns3_err(hw, "fail to %s MAC COMMON error intr: %d",
1138 			 en ? "enable" : "disable", ret);
1139 
1140 	return ret;
1141 }
1142 
1143 static const struct hns3_hw_blk hw_blk[] = {
1144 	{
1145 		.name = "IGU_EGU",
1146 		.enable_err_intr = enable_igu_egu_err_intr,
1147 	},
1148 	{
1149 		.name = "PPP",
1150 		.enable_err_intr = enable_ppp_err_intr,
1151 	},
1152 	{
1153 		.name = "SSU",
1154 		.enable_err_intr = enable_ssu_err_intr,
1155 	},
1156 	{
1157 		.name = "PPU",
1158 		.enable_err_intr = enable_ppu_err_intr,
1159 	},
1160 	{
1161 		.name = "TM",
1162 		.enable_err_intr = enable_tm_err_intr,
1163 	},
1164 	{
1165 		.name = "COMMON",
1166 		.enable_err_intr = enable_common_err_intr,
1167 	},
1168 	{
1169 		.name = "MAC",
1170 		.enable_err_intr = enable_mac_err_intr,
1171 	},
1172 	{
1173 		.name = NULL,
1174 		.enable_err_intr = NULL,
1175 	}
1176 };
1177 
1178 int
1179 hns3_enable_hw_error_intr(struct hns3_adapter *hns, bool en)
1180 {
1181 	const struct hns3_hw_blk *module = hw_blk;
1182 	int ret = 0;
1183 
1184 	while (module->enable_err_intr) {
1185 		ret = module->enable_err_intr(hns, en);
1186 		if (ret)
1187 			return ret;
1188 
1189 		module++;
1190 	}
1191 
1192 	return ret;
1193 }
1194 
1195 static enum hns3_reset_level
1196 hns3_find_highest_level(struct hns3_adapter *hns, const char *reg,
1197 			const struct hns3_hw_error *err, uint32_t err_sts)
1198 {
1199 	enum hns3_reset_level reset_level = HNS3_FUNC_RESET;
1200 	struct hns3_hw *hw = &hns->hw;
1201 	bool need_reset = false;
1202 
1203 	while (err->msg) {
1204 		if (err->int_msk & err_sts) {
1205 			hns3_warn(hw, "%s %s found [error status=0x%x]",
1206 				  reg, err->msg, err_sts);
1207 			if (err->reset_level != HNS3_NONE_RESET &&
1208 			    err->reset_level >= reset_level) {
1209 				reset_level = err->reset_level;
1210 				need_reset = true;
1211 			}
1212 			hns3_error_int_stats_add(hns, reg);
1213 		}
1214 		err++;
1215 	}
1216 	if (need_reset)
1217 		return reset_level;
1218 	else
1219 		return HNS3_NONE_RESET;
1220 }
1221 
1222 static int
1223 query_num_bds(struct hns3_hw *hw, bool is_ras, uint32_t *mpf_bd_num,
1224 	      uint32_t *pf_bd_num)
1225 {
1226 	uint32_t mpf_min_bd_num, pf_min_bd_num;
1227 	uint32_t mpf_bd_num_val, pf_bd_num_val;
1228 	enum hns3_opcode_type opcode;
1229 	struct hns3_cmd_desc desc;
1230 	int ret;
1231 
1232 	if (is_ras) {
1233 		opcode = HNS3_OPC_QUERY_RAS_INT_STS_BD_NUM;
1234 		mpf_min_bd_num = HNS3_MPF_RAS_INT_MIN_BD_NUM;
1235 		pf_min_bd_num = HNS3_PF_RAS_INT_MIN_BD_NUM;
1236 	} else {
1237 		opcode = HNS3_OPC_QUERY_MSIX_INT_STS_BD_NUM;
1238 		mpf_min_bd_num = HNS3_MPF_MSIX_INT_MIN_BD_NUM;
1239 		pf_min_bd_num = HNS3_PF_MSIX_INT_MIN_BD_NUM;
1240 	}
1241 
1242 	hns3_cmd_setup_basic_desc(&desc, opcode, true);
1243 	ret = hns3_cmd_send(hw, &desc, 1);
1244 	if (ret) {
1245 		hns3_err(hw, "query num bds in msix failed, ret = %d", ret);
1246 		return ret;
1247 	}
1248 
1249 	mpf_bd_num_val = rte_le_to_cpu_32(desc.data[0]);
1250 	pf_bd_num_val = rte_le_to_cpu_32(desc.data[1]);
1251 	if (mpf_bd_num_val < mpf_min_bd_num || pf_bd_num_val < pf_min_bd_num) {
1252 		hns3_err(hw, "error bd num: mpf(%u), min_mpf(%u), "
1253 			 "pf(%u), min_pf(%u)\n", mpf_bd_num_val, mpf_min_bd_num,
1254 			 pf_bd_num_val, pf_min_bd_num);
1255 		return -EINVAL;
1256 	}
1257 
1258 	*mpf_bd_num = mpf_bd_num_val;
1259 	*pf_bd_num = pf_bd_num_val;
1260 
1261 	return 0;
1262 }
1263 
1264 void
1265 hns3_intr_unregister(const struct rte_intr_handle *hdl,
1266 		     rte_intr_callback_fn cb_fn, void *cb_arg)
1267 {
1268 	int retry_cnt = 0;
1269 	int ret;
1270 
1271 	do {
1272 		ret = rte_intr_callback_unregister(hdl, cb_fn, cb_arg);
1273 		if (ret >= 0) {
1274 			break;
1275 		} else if (ret != -EAGAIN) {
1276 			PMD_INIT_LOG(ERR, "Failed to unregister intr: %d", ret);
1277 			break;
1278 		}
1279 		rte_delay_ms(HNS3_INTR_UNREG_FAIL_DELAY_MS);
1280 	} while (retry_cnt++ < HNS3_INTR_UNREG_FAIL_RETRY_CNT);
1281 }
1282 
1283 static uint32_t
1284 hns3_get_hw_error_status(struct hns3_cmd_desc *desc, uint8_t desc_offset,
1285 			 uint8_t data_offset)
1286 {
1287 	uint32_t status;
1288 	uint32_t *desc_data;
1289 
1290 	if (desc_offset == 0)
1291 		status = rte_le_to_cpu_32(desc[desc_offset].data[data_offset]);
1292 	else {
1293 		desc_data = (uint32_t *)&desc[desc_offset];
1294 		status = rte_le_to_cpu_32(*(desc_data + data_offset));
1295 	}
1296 
1297 	return status;
1298 }
1299 
1300 static int
1301 hns3_handle_hw_error(struct hns3_adapter *hns, struct hns3_cmd_desc *desc,
1302 		     int num, uint64_t *levels, enum hns3_hw_err_type err_type)
1303 {
1304 	const struct hns3_hw_error_desc *err = pf_ras_err_tbl;
1305 	enum hns3_opcode_type opcode;
1306 	enum hns3_reset_level req_level;
1307 	struct hns3_hw *hw = &hns->hw;
1308 	uint32_t status;
1309 	int ret;
1310 
1311 	switch (err_type) {
1312 	case MPF_MSIX_ERR:
1313 		err = mpf_msix_err_tbl;
1314 		opcode = HNS3_OPC_QUERY_CLEAR_ALL_MPF_MSIX_INT;
1315 		break;
1316 	case PF_MSIX_ERR:
1317 		err = pf_msix_err_tbl;
1318 		opcode = HNS3_OPC_QUERY_CLEAR_ALL_PF_MSIX_INT;
1319 		break;
1320 	case MPF_RAS_ERR:
1321 		err = mpf_ras_err_tbl;
1322 		opcode = HNS3_OPC_QUERY_CLEAR_MPF_RAS_INT;
1323 		break;
1324 	case PF_RAS_ERR:
1325 		err = pf_ras_err_tbl;
1326 		opcode = HNS3_OPC_QUERY_CLEAR_PF_RAS_INT;
1327 		break;
1328 	default:
1329 		hns3_err(hw, "error hardware err_type = %d\n", err_type);
1330 		return -EINVAL;
1331 	}
1332 
1333 	/* query all hardware errors */
1334 	hns3_cmd_setup_basic_desc(&desc[0], opcode, true);
1335 	ret = hns3_cmd_send(hw, &desc[0], num);
1336 	if (ret) {
1337 		hns3_err(hw, "query hw err int 0x%x cmd failed, ret = %d\n",
1338 			 opcode, ret);
1339 		return ret;
1340 	}
1341 
1342 	/* traverses the error table and process based on the error type */
1343 	while (err->msg) {
1344 		status = hns3_get_hw_error_status(desc, err->desc_offset,
1345 						  err->data_offset);
1346 		if (status) {
1347 			/*
1348 			 * set the reset_level or non_reset flag based on
1349 			 * the error type and add error statistics. here just
1350 			 * set the flag, the actual reset action is in
1351 			 * hns3_msix_process.
1352 			 */
1353 			req_level = hns3_find_highest_level(hns, err->msg,
1354 							    err->hw_err,
1355 							    status);
1356 			hns3_atomic_set_bit(req_level, levels);
1357 		}
1358 		err++;
1359 	}
1360 
1361 	/* clear all hardware errors */
1362 	hns3_cmd_reuse_desc(&desc[0], false);
1363 	ret = hns3_cmd_send(hw, &desc[0], num);
1364 	if (ret)
1365 		hns3_err(hw, "clear all hw err int cmd failed, ret = %d\n",
1366 			 ret);
1367 
1368 	return ret;
1369 }
1370 
1371 void
1372 hns3_handle_msix_error(struct hns3_adapter *hns, uint64_t *levels)
1373 {
1374 	uint32_t mpf_bd_num, pf_bd_num, bd_num;
1375 	struct hns3_hw *hw = &hns->hw;
1376 	struct hns3_cmd_desc *desc;
1377 	int ret;
1378 
1379 	/* query the number of bds for the MSIx int status */
1380 	ret = query_num_bds(hw, false, &mpf_bd_num, &pf_bd_num);
1381 	if (ret) {
1382 		hns3_err(hw, "fail to query msix int status bd num: ret = %d",
1383 			 ret);
1384 		return;
1385 	}
1386 
1387 	bd_num = RTE_MAX(mpf_bd_num, pf_bd_num);
1388 	desc = rte_zmalloc(NULL, bd_num * sizeof(struct hns3_cmd_desc), 0);
1389 	if (desc == NULL) {
1390 		hns3_err(hw,
1391 			 "fail to zmalloc desc for handling msix error, size = %zu",
1392 			 bd_num * sizeof(struct hns3_cmd_desc));
1393 		return;
1394 	}
1395 
1396 	/* handle all main PF MSIx errors */
1397 	ret = hns3_handle_hw_error(hns, desc, mpf_bd_num, levels, MPF_MSIX_ERR);
1398 	if (ret) {
1399 		hns3_err(hw, "fail to handle all main pf msix errors, ret = %d",
1400 			 ret);
1401 		goto out;
1402 	}
1403 
1404 	memset(desc, 0, bd_num * sizeof(struct hns3_cmd_desc));
1405 
1406 	/* handle all PF MSIx errors */
1407 	ret = hns3_handle_hw_error(hns, desc, pf_bd_num, levels, PF_MSIX_ERR);
1408 	if (ret) {
1409 		hns3_err(hw, "fail to handle all pf msix errors, ret = %d",
1410 			 ret);
1411 		goto out;
1412 	}
1413 
1414 out:
1415 	rte_free(desc);
1416 }
1417 
1418 void
1419 hns3_handle_ras_error(struct hns3_adapter *hns, uint64_t *levels)
1420 {
1421 	uint32_t mpf_bd_num, pf_bd_num, bd_num;
1422 	struct hns3_hw *hw = &hns->hw;
1423 	struct hns3_cmd_desc *desc;
1424 	uint32_t status;
1425 	int ret;
1426 
1427 	status = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
1428 	if ((status & HNS3_RAS_REG_NFE_MASK) == 0)
1429 		return;
1430 
1431 	/* query the number of bds for the RAS int status */
1432 	ret = query_num_bds(hw, true, &mpf_bd_num, &pf_bd_num);
1433 	if (ret) {
1434 		hns3_err(hw, "fail to query ras int status bd num: ret = %d",
1435 			 ret);
1436 		return;
1437 	}
1438 
1439 	bd_num = RTE_MAX(mpf_bd_num, pf_bd_num);
1440 	desc = rte_zmalloc(NULL, bd_num * sizeof(struct hns3_cmd_desc), 0);
1441 	if (desc == NULL) {
1442 		hns3_err(hw,
1443 			 "fail to zmalloc desc for handing ras error, size = %zu",
1444 			 bd_num * sizeof(struct hns3_cmd_desc));
1445 		return;
1446 	}
1447 
1448 	/* handle all main PF RAS errors */
1449 	ret = hns3_handle_hw_error(hns, desc, mpf_bd_num, levels, MPF_RAS_ERR);
1450 	if (ret) {
1451 		hns3_err(hw, "fail to handle all main pf ras errors, ret = %d",
1452 			 ret);
1453 		goto out;
1454 	}
1455 
1456 	memset(desc, 0, bd_num * sizeof(struct hns3_cmd_desc));
1457 
1458 	/* handle all PF RAS errors */
1459 	ret = hns3_handle_hw_error(hns, desc, pf_bd_num, levels, PF_RAS_ERR);
1460 	if (ret) {
1461 		hns3_err(hw, "fail to handle all pf ras errors, ret = %d", ret);
1462 		goto out;
1463 	}
1464 
1465 out:
1466 	rte_free(desc);
1467 }
1468 
1469 int
1470 hns3_reset_init(struct hns3_hw *hw)
1471 {
1472 	rte_spinlock_init(&hw->lock);
1473 	hw->reset.level = HNS3_NONE_RESET;
1474 	hw->reset.stage = RESET_STAGE_NONE;
1475 	hw->reset.request = 0;
1476 	hw->reset.pending = 0;
1477 	rte_atomic16_init(&hw->reset.resetting);
1478 	rte_atomic16_init(&hw->reset.disable_cmd);
1479 	hw->reset.wait_data = rte_zmalloc("wait_data",
1480 					  sizeof(struct hns3_wait_data), 0);
1481 	if (!hw->reset.wait_data) {
1482 		PMD_INIT_LOG(ERR, "Failed to allocate memory for wait_data");
1483 		return -ENOMEM;
1484 	}
1485 	return 0;
1486 }
1487 
1488 void
1489 hns3_schedule_reset(struct hns3_adapter *hns)
1490 {
1491 	struct hns3_hw *hw = &hns->hw;
1492 
1493 	/* Reschedule the reset process after successful initialization */
1494 	if (hw->adapter_state == HNS3_NIC_UNINITIALIZED) {
1495 		rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_PENDING);
1496 		return;
1497 	}
1498 
1499 	if (hw->adapter_state >= HNS3_NIC_CLOSED)
1500 		return;
1501 
1502 	/* Schedule restart alarm if it is not scheduled yet */
1503 	if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_REQUESTED)
1504 		return;
1505 	if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED)
1506 		rte_eal_alarm_cancel(hw->reset.ops->reset_service, hns);
1507 	rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
1508 
1509 	rte_eal_alarm_set(SWITCH_CONTEXT_US, hw->reset.ops->reset_service, hns);
1510 }
1511 
1512 void
1513 hns3_schedule_delayed_reset(struct hns3_adapter *hns)
1514 {
1515 #define DEFERRED_SCHED_US (3 * MSEC_PER_SEC * USEC_PER_MSEC)
1516 	struct hns3_hw *hw = &hns->hw;
1517 
1518 	/* Do nothing if it is uninited or closed */
1519 	if (hw->adapter_state == HNS3_NIC_UNINITIALIZED ||
1520 	    hw->adapter_state >= HNS3_NIC_CLOSED) {
1521 		return;
1522 	}
1523 
1524 	if (rte_atomic16_read(&hns->hw.reset.schedule) != SCHEDULE_NONE)
1525 		return;
1526 	rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_DEFERRED);
1527 	rte_eal_alarm_set(DEFERRED_SCHED_US, hw->reset.ops->reset_service, hns);
1528 }
1529 
1530 void
1531 hns3_wait_callback(void *param)
1532 {
1533 	struct hns3_wait_data *data = (struct hns3_wait_data *)param;
1534 	struct hns3_adapter *hns = data->hns;
1535 	struct hns3_hw *hw = &hns->hw;
1536 	uint64_t msec;
1537 	bool done;
1538 
1539 	data->count--;
1540 	if (data->check_completion) {
1541 		/*
1542 		 * Check if the current time exceeds the deadline
1543 		 * or a pending reset coming, or reset during close.
1544 		 */
1545 		msec = get_timeofday_ms();
1546 		if (msec > data->end_ms || is_reset_pending(hns) ||
1547 		    hw->adapter_state == HNS3_NIC_CLOSING) {
1548 			done = false;
1549 			data->count = 0;
1550 		} else
1551 			done = data->check_completion(hw);
1552 	} else
1553 		done = true;
1554 
1555 	if (!done && data->count > 0) {
1556 		rte_eal_alarm_set(data->interval, hns3_wait_callback, data);
1557 		return;
1558 	}
1559 	if (done)
1560 		data->result = HNS3_WAIT_SUCCESS;
1561 	else {
1562 		hns3_err(hw, "%s wait timeout at stage %d",
1563 			 reset_string[hw->reset.level], hw->reset.stage);
1564 		data->result = HNS3_WAIT_TIMEOUT;
1565 	}
1566 	hns3_schedule_reset(hns);
1567 }
1568 
1569 void
1570 hns3_notify_reset_ready(struct hns3_hw *hw, bool enable)
1571 {
1572 	uint32_t reg_val;
1573 
1574 	reg_val = hns3_read_dev(hw, HNS3_CMDQ_TX_DEPTH_REG);
1575 	if (enable)
1576 		reg_val |= HNS3_NIC_SW_RST_RDY;
1577 	else
1578 		reg_val &= ~HNS3_NIC_SW_RST_RDY;
1579 
1580 	hns3_write_dev(hw, HNS3_CMDQ_TX_DEPTH_REG, reg_val);
1581 }
1582 
1583 int
1584 hns3_reset_req_hw_reset(struct hns3_adapter *hns)
1585 {
1586 	struct hns3_hw *hw = &hns->hw;
1587 
1588 	if (hw->reset.wait_data->result == HNS3_WAIT_UNKNOWN) {
1589 		hw->reset.wait_data->hns = hns;
1590 		hw->reset.wait_data->check_completion = NULL;
1591 		hw->reset.wait_data->interval = HNS3_RESET_SYNC_US;
1592 		hw->reset.wait_data->count = 1;
1593 		hw->reset.wait_data->result = HNS3_WAIT_REQUEST;
1594 		rte_eal_alarm_set(hw->reset.wait_data->interval,
1595 				  hns3_wait_callback, hw->reset.wait_data);
1596 		return -EAGAIN;
1597 	} else if (hw->reset.wait_data->result == HNS3_WAIT_REQUEST)
1598 		return -EAGAIN;
1599 
1600 	/* inform hardware that preparatory work is done */
1601 	hns3_notify_reset_ready(hw, true);
1602 	return 0;
1603 }
1604 
1605 static void
1606 hns3_clear_reset_level(struct hns3_hw *hw, uint64_t *levels)
1607 {
1608 	uint64_t merge_cnt = hw->reset.stats.merge_cnt;
1609 	int64_t tmp;
1610 
1611 	switch (hw->reset.level) {
1612 	case HNS3_IMP_RESET:
1613 		hns3_atomic_clear_bit(HNS3_IMP_RESET, levels);
1614 		tmp = hns3_test_and_clear_bit(HNS3_GLOBAL_RESET, levels);
1615 		HNS3_CHECK_MERGE_CNT(tmp);
1616 		tmp = hns3_test_and_clear_bit(HNS3_FUNC_RESET, levels);
1617 		HNS3_CHECK_MERGE_CNT(tmp);
1618 		break;
1619 	case HNS3_GLOBAL_RESET:
1620 		hns3_atomic_clear_bit(HNS3_GLOBAL_RESET, levels);
1621 		tmp = hns3_test_and_clear_bit(HNS3_FUNC_RESET, levels);
1622 		HNS3_CHECK_MERGE_CNT(tmp);
1623 		break;
1624 	case HNS3_FUNC_RESET:
1625 		hns3_atomic_clear_bit(HNS3_FUNC_RESET, levels);
1626 		break;
1627 	case HNS3_VF_RESET:
1628 		hns3_atomic_clear_bit(HNS3_VF_RESET, levels);
1629 		tmp = hns3_test_and_clear_bit(HNS3_VF_PF_FUNC_RESET, levels);
1630 		HNS3_CHECK_MERGE_CNT(tmp);
1631 		tmp = hns3_test_and_clear_bit(HNS3_VF_FUNC_RESET, levels);
1632 		HNS3_CHECK_MERGE_CNT(tmp);
1633 		break;
1634 	case HNS3_VF_FULL_RESET:
1635 		hns3_atomic_clear_bit(HNS3_VF_FULL_RESET, levels);
1636 		tmp = hns3_test_and_clear_bit(HNS3_VF_FUNC_RESET, levels);
1637 		HNS3_CHECK_MERGE_CNT(tmp);
1638 		break;
1639 	case HNS3_VF_PF_FUNC_RESET:
1640 		hns3_atomic_clear_bit(HNS3_VF_PF_FUNC_RESET, levels);
1641 		tmp = hns3_test_and_clear_bit(HNS3_VF_FUNC_RESET, levels);
1642 		HNS3_CHECK_MERGE_CNT(tmp);
1643 		break;
1644 	case HNS3_VF_FUNC_RESET:
1645 		hns3_atomic_clear_bit(HNS3_VF_FUNC_RESET, levels);
1646 		break;
1647 	case HNS3_FLR_RESET:
1648 		hns3_atomic_clear_bit(HNS3_FLR_RESET, levels);
1649 		break;
1650 	case HNS3_NONE_RESET:
1651 	default:
1652 		return;
1653 	};
1654 	if (merge_cnt != hw->reset.stats.merge_cnt)
1655 		hns3_warn(hw,
1656 			  "No need to do low-level reset after %s reset. "
1657 			  "merge cnt: %" PRIx64 " total merge cnt: %" PRIx64,
1658 			  reset_string[hw->reset.level],
1659 			  hw->reset.stats.merge_cnt - merge_cnt,
1660 			  hw->reset.stats.merge_cnt);
1661 }
1662 
1663 static bool
1664 hns3_reset_err_handle(struct hns3_adapter *hns)
1665 {
1666 #define MAX_RESET_FAIL_CNT 5
1667 
1668 	struct hns3_hw *hw = &hns->hw;
1669 
1670 	if (hw->adapter_state == HNS3_NIC_CLOSING)
1671 		goto reset_fail;
1672 
1673 	if (is_reset_pending(hns)) {
1674 		hw->reset.attempts = 0;
1675 		hw->reset.stats.fail_cnt++;
1676 		hns3_warn(hw, "%s reset fail because new Reset is pending "
1677 			      "attempts:%" PRIx64,
1678 			  reset_string[hw->reset.level],
1679 			  hw->reset.stats.fail_cnt);
1680 		hw->reset.level = HNS3_NONE_RESET;
1681 		return true;
1682 	}
1683 
1684 	hw->reset.attempts++;
1685 	if (hw->reset.attempts < MAX_RESET_FAIL_CNT) {
1686 		hns3_atomic_set_bit(hw->reset.level, &hw->reset.pending);
1687 		hns3_warn(hw, "%s retry to reset attempts: %d",
1688 			  reset_string[hw->reset.level],
1689 			  hw->reset.attempts);
1690 		return true;
1691 	}
1692 
1693 	/*
1694 	 * Failure to reset does not mean that the network port is
1695 	 * completely unavailable, so cmd still needs to be initialized.
1696 	 * Regardless of whether the execution is successful or not, the
1697 	 * flow after execution must be continued.
1698 	 */
1699 	if (rte_atomic16_read(&hw->reset.disable_cmd))
1700 		(void)hns3_cmd_init(hw);
1701 reset_fail:
1702 	hw->reset.attempts = 0;
1703 	hw->reset.stats.fail_cnt++;
1704 	hns3_warn(hw, "%s reset fail fail_cnt:%" PRIx64 " success_cnt:%" PRIx64
1705 		  " global_cnt:%" PRIx64 " imp_cnt:%" PRIx64
1706 		  " request_cnt:%" PRIx64 " exec_cnt:%" PRIx64
1707 		  " merge_cnt:%" PRIx64 "adapter_state:%d",
1708 		  reset_string[hw->reset.level], hw->reset.stats.fail_cnt,
1709 		  hw->reset.stats.success_cnt, hw->reset.stats.global_cnt,
1710 		  hw->reset.stats.imp_cnt, hw->reset.stats.request_cnt,
1711 		  hw->reset.stats.exec_cnt, hw->reset.stats.merge_cnt,
1712 		  hw->adapter_state);
1713 
1714 	/* IMP no longer waiting the ready flag */
1715 	hns3_notify_reset_ready(hw, true);
1716 	return false;
1717 }
1718 
1719 static int
1720 hns3_reset_pre(struct hns3_adapter *hns)
1721 {
1722 	struct hns3_hw *hw = &hns->hw;
1723 	struct timeval tv;
1724 	int ret;
1725 
1726 	if (hw->reset.stage == RESET_STAGE_NONE) {
1727 		rte_atomic16_set(&hns->hw.reset.resetting, 1);
1728 		hw->reset.stage = RESET_STAGE_DOWN;
1729 		ret = hw->reset.ops->stop_service(hns);
1730 		gettimeofday(&tv, NULL);
1731 		if (ret) {
1732 			hns3_warn(hw, "Reset step1 down fail=%d time=%ld.%.6ld",
1733 				  ret, tv.tv_sec, tv.tv_usec);
1734 			return ret;
1735 		}
1736 		hns3_warn(hw, "Reset step1 down success time=%ld.%.6ld",
1737 			  tv.tv_sec, tv.tv_usec);
1738 		hw->reset.stage = RESET_STAGE_PREWAIT;
1739 	}
1740 	if (hw->reset.stage == RESET_STAGE_PREWAIT) {
1741 		ret = hw->reset.ops->prepare_reset(hns);
1742 		gettimeofday(&tv, NULL);
1743 		if (ret) {
1744 			hns3_warn(hw,
1745 				  "Reset step2 prepare wait fail=%d time=%ld.%.6ld",
1746 				  ret, tv.tv_sec, tv.tv_usec);
1747 			return ret;
1748 		}
1749 		hns3_warn(hw, "Reset step2 prepare wait success time=%ld.%.6ld",
1750 			  tv.tv_sec, tv.tv_usec);
1751 		hw->reset.stage = RESET_STAGE_REQ_HW_RESET;
1752 		hw->reset.wait_data->result = HNS3_WAIT_UNKNOWN;
1753 	}
1754 	return 0;
1755 }
1756 
1757 static int
1758 hns3_reset_post(struct hns3_adapter *hns)
1759 {
1760 #define TIMEOUT_RETRIES_CNT	5
1761 	struct hns3_hw *hw = &hns->hw;
1762 	struct timeval tv_delta;
1763 	struct timeval tv;
1764 	int ret = 0;
1765 
1766 	if (hw->adapter_state == HNS3_NIC_CLOSING) {
1767 		hns3_warn(hw, "Don't do reset_post during closing, just uninit cmd");
1768 		hns3_cmd_uninit(hw);
1769 		return -EPERM;
1770 	}
1771 
1772 	if (hw->reset.stage == RESET_STAGE_DEV_INIT) {
1773 		rte_spinlock_lock(&hw->lock);
1774 		if (hw->reset.mbuf_deferred_free) {
1775 			hns3_dev_release_mbufs(hns);
1776 			hw->reset.mbuf_deferred_free = false;
1777 		}
1778 		ret = hw->reset.ops->reinit_dev(hns);
1779 		rte_spinlock_unlock(&hw->lock);
1780 		gettimeofday(&tv, NULL);
1781 		if (ret) {
1782 			hns3_warn(hw, "Reset step5 devinit fail=%d retries=%d",
1783 				  ret, hw->reset.retries);
1784 			goto err;
1785 		}
1786 		hns3_warn(hw, "Reset step5 devinit success time=%ld.%.6ld",
1787 			  tv.tv_sec, tv.tv_usec);
1788 		hw->reset.retries = 0;
1789 		hw->reset.stage = RESET_STAGE_RESTORE;
1790 		rte_eal_alarm_set(SWITCH_CONTEXT_US,
1791 				  hw->reset.ops->reset_service, hns);
1792 		return -EAGAIN;
1793 	}
1794 	if (hw->reset.stage == RESET_STAGE_RESTORE) {
1795 		rte_spinlock_lock(&hw->lock);
1796 		ret = hw->reset.ops->restore_conf(hns);
1797 		rte_spinlock_unlock(&hw->lock);
1798 		gettimeofday(&tv, NULL);
1799 		if (ret) {
1800 			hns3_warn(hw,
1801 				  "Reset step6 restore fail=%d retries=%d",
1802 				  ret, hw->reset.retries);
1803 			goto err;
1804 		}
1805 		hns3_warn(hw, "Reset step6 restore success time=%ld.%.6ld",
1806 			  tv.tv_sec, tv.tv_usec);
1807 		hw->reset.retries = 0;
1808 		hw->reset.stage = RESET_STAGE_DONE;
1809 	}
1810 	if (hw->reset.stage == RESET_STAGE_DONE) {
1811 		/* IMP will wait ready flag before reset */
1812 		hns3_notify_reset_ready(hw, false);
1813 		hns3_clear_reset_level(hw, &hw->reset.pending);
1814 		rte_atomic16_clear(&hns->hw.reset.resetting);
1815 		hw->reset.attempts = 0;
1816 		hw->reset.stats.success_cnt++;
1817 		hw->reset.stage = RESET_STAGE_NONE;
1818 		rte_spinlock_lock(&hw->lock);
1819 		hw->reset.ops->start_service(hns);
1820 		rte_spinlock_unlock(&hw->lock);
1821 		gettimeofday(&tv, NULL);
1822 		timersub(&tv, &hw->reset.start_time, &tv_delta);
1823 		hns3_warn(hw, "%s reset done fail_cnt:%" PRIx64
1824 			  " success_cnt:%" PRIx64 " global_cnt:%" PRIx64
1825 			  " imp_cnt:%" PRIx64 " request_cnt:%" PRIx64
1826 			  " exec_cnt:%" PRIx64 " merge_cnt:%" PRIx64,
1827 			  reset_string[hw->reset.level],
1828 			  hw->reset.stats.fail_cnt, hw->reset.stats.success_cnt,
1829 			  hw->reset.stats.global_cnt, hw->reset.stats.imp_cnt,
1830 			  hw->reset.stats.request_cnt, hw->reset.stats.exec_cnt,
1831 			  hw->reset.stats.merge_cnt);
1832 		hns3_warn(hw,
1833 			  "%s reset done delta %ld ms time=%ld.%.6ld",
1834 			  reset_string[hw->reset.level],
1835 			  tv_delta.tv_sec * MSEC_PER_SEC +
1836 			  tv_delta.tv_usec / USEC_PER_MSEC,
1837 			  tv.tv_sec, tv.tv_usec);
1838 		hw->reset.level = HNS3_NONE_RESET;
1839 	}
1840 	return 0;
1841 
1842 err:
1843 	if (ret == -ETIME) {
1844 		hw->reset.retries++;
1845 		if (hw->reset.retries < TIMEOUT_RETRIES_CNT) {
1846 			rte_eal_alarm_set(HNS3_RESET_SYNC_US,
1847 					  hw->reset.ops->reset_service, hns);
1848 			return -EAGAIN;
1849 		}
1850 	}
1851 	hw->reset.retries = 0;
1852 	return -EIO;
1853 }
1854 
1855 /*
1856  * There are three scenarios as follows:
1857  * When the reset is not in progress, the reset process starts.
1858  * During the reset process, if the reset level has not changed,
1859  * the reset process continues; otherwise, the reset process is aborted.
1860  *	hw->reset.level   new_level          action
1861  *	HNS3_NONE_RESET	 HNS3_XXXX_RESET    start reset
1862  *	HNS3_XXXX_RESET  HNS3_XXXX_RESET    continue reset
1863  *	HNS3_LOW_RESET   HNS3_HIGH_RESET    abort
1864  */
1865 int
1866 hns3_reset_process(struct hns3_adapter *hns, enum hns3_reset_level new_level)
1867 {
1868 	struct hns3_hw *hw = &hns->hw;
1869 	struct timeval tv_delta;
1870 	struct timeval tv;
1871 	int ret;
1872 
1873 	if (hw->reset.level == HNS3_NONE_RESET) {
1874 		hw->reset.level = new_level;
1875 		hw->reset.stats.exec_cnt++;
1876 		gettimeofday(&hw->reset.start_time, NULL);
1877 		hns3_warn(hw, "Start %s reset time=%ld.%.6ld",
1878 			  reset_string[hw->reset.level],
1879 			  hw->reset.start_time.tv_sec,
1880 			  hw->reset.start_time.tv_usec);
1881 	}
1882 
1883 	if (is_reset_pending(hns)) {
1884 		gettimeofday(&tv, NULL);
1885 		hns3_warn(hw,
1886 			  "%s reset is aborted by high level time=%ld.%.6ld",
1887 			  reset_string[hw->reset.level], tv.tv_sec, tv.tv_usec);
1888 		if (hw->reset.wait_data->result == HNS3_WAIT_REQUEST)
1889 			rte_eal_alarm_cancel(hns3_wait_callback,
1890 					     hw->reset.wait_data);
1891 		ret = -EBUSY;
1892 		goto err;
1893 	}
1894 
1895 	ret = hns3_reset_pre(hns);
1896 	if (ret)
1897 		goto err;
1898 
1899 	if (hw->reset.stage == RESET_STAGE_REQ_HW_RESET) {
1900 		ret = hns3_reset_req_hw_reset(hns);
1901 		if (ret == -EAGAIN)
1902 			return ret;
1903 		gettimeofday(&tv, NULL);
1904 		hns3_warn(hw,
1905 			  "Reset step3 request IMP reset success time=%ld.%.6ld",
1906 			  tv.tv_sec, tv.tv_usec);
1907 		hw->reset.stage = RESET_STAGE_WAIT;
1908 		hw->reset.wait_data->result = HNS3_WAIT_UNKNOWN;
1909 	}
1910 	if (hw->reset.stage == RESET_STAGE_WAIT) {
1911 		ret = hw->reset.ops->wait_hardware_ready(hns);
1912 		if (ret)
1913 			goto retry;
1914 		gettimeofday(&tv, NULL);
1915 		hns3_warn(hw, "Reset step4 reset wait success time=%ld.%.6ld",
1916 			  tv.tv_sec, tv.tv_usec);
1917 		hw->reset.stage = RESET_STAGE_DEV_INIT;
1918 	}
1919 
1920 	ret = hns3_reset_post(hns);
1921 	if (ret)
1922 		goto retry;
1923 
1924 	return 0;
1925 retry:
1926 	if (ret == -EAGAIN)
1927 		return ret;
1928 err:
1929 	hns3_clear_reset_level(hw, &hw->reset.pending);
1930 	if (hns3_reset_err_handle(hns)) {
1931 		hw->reset.stage = RESET_STAGE_PREWAIT;
1932 		hns3_schedule_reset(hns);
1933 	} else {
1934 		rte_spinlock_lock(&hw->lock);
1935 		if (hw->reset.mbuf_deferred_free) {
1936 			hns3_dev_release_mbufs(hns);
1937 			hw->reset.mbuf_deferred_free = false;
1938 		}
1939 		rte_spinlock_unlock(&hw->lock);
1940 		rte_atomic16_clear(&hns->hw.reset.resetting);
1941 		hw->reset.stage = RESET_STAGE_NONE;
1942 		gettimeofday(&tv, NULL);
1943 		timersub(&tv, &hw->reset.start_time, &tv_delta);
1944 		hns3_warn(hw, "%s reset fail delta %ld ms time=%ld.%.6ld",
1945 			  reset_string[hw->reset.level],
1946 			  tv_delta.tv_sec * MSEC_PER_SEC +
1947 			  tv_delta.tv_usec / USEC_PER_MSEC,
1948 			  tv.tv_sec, tv.tv_usec);
1949 		hw->reset.level = HNS3_NONE_RESET;
1950 	}
1951 
1952 	return -EIO;
1953 }
1954 
1955 /*
1956  * The reset process can only be terminated after handshake with IMP(step3),
1957  * so that IMP can complete the reset process normally.
1958  */
1959 void
1960 hns3_reset_abort(struct hns3_adapter *hns)
1961 {
1962 	struct hns3_hw *hw = &hns->hw;
1963 	struct timeval tv;
1964 	int i;
1965 
1966 	for (i = 0; i < HNS3_QUIT_RESET_CNT; i++) {
1967 		if (hw->reset.level == HNS3_NONE_RESET)
1968 			break;
1969 		rte_delay_ms(HNS3_QUIT_RESET_DELAY_MS);
1970 	}
1971 
1972 	/* IMP no longer waiting the ready flag */
1973 	hns3_notify_reset_ready(hw, true);
1974 
1975 	rte_eal_alarm_cancel(hw->reset.ops->reset_service, hns);
1976 	rte_eal_alarm_cancel(hns3_wait_callback, hw->reset.wait_data);
1977 
1978 	if (hw->reset.level != HNS3_NONE_RESET) {
1979 		gettimeofday(&tv, NULL);
1980 		hns3_err(hw, "Failed to terminate reset: %s time=%ld.%.6ld",
1981 			 reset_string[hw->reset.level], tv.tv_sec, tv.tv_usec);
1982 	}
1983 }
1984