xref: /dpdk/drivers/net/hns3/hns3_ethdev_vf.c (revision d38febb08d57fec29fed27a2d12a507fc6fcdfa1)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2021 HiSilicon Limited.
3  */
4 
5 #include <linux/pci_regs.h>
6 #include <rte_alarm.h>
7 #include <ethdev_pci.h>
8 #include <rte_io.h>
9 #include <rte_pci.h>
10 #include <rte_vfio.h>
11 
12 #include "hns3_ethdev.h"
13 #include "hns3_logs.h"
14 #include "hns3_rxtx.h"
15 #include "hns3_regs.h"
16 #include "hns3_intr.h"
17 #include "hns3_dcb.h"
18 #include "hns3_mp.h"
19 
20 #define HNS3VF_KEEP_ALIVE_INTERVAL	2000000 /* us */
21 #define HNS3VF_SERVICE_INTERVAL		1000000 /* us */
22 
23 #define HNS3VF_RESET_WAIT_MS	20
24 #define HNS3VF_RESET_WAIT_CNT	2000
25 
26 /* Reset related Registers */
27 #define HNS3_GLOBAL_RESET_BIT		0
28 #define HNS3_CORE_RESET_BIT		1
29 #define HNS3_IMP_RESET_BIT		2
30 #define HNS3_FUN_RST_ING_B		0
31 
32 enum hns3vf_evt_cause {
33 	HNS3VF_VECTOR0_EVENT_RST,
34 	HNS3VF_VECTOR0_EVENT_MBX,
35 	HNS3VF_VECTOR0_EVENT_OTHER,
36 };
37 
38 static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
39 						    uint64_t *levels);
40 static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
41 static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
42 
43 static int hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
44 				  struct rte_ether_addr *mac_addr);
45 static int hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
46 				     struct rte_ether_addr *mac_addr);
47 static int hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
48 				   __rte_unused int wait_to_complete);
49 
50 /* set PCI bus mastering */
51 static int
52 hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
53 {
54 	uint16_t reg;
55 	int ret;
56 
57 	ret = rte_pci_read_config(device, &reg, sizeof(reg), PCI_COMMAND);
58 	if (ret < 0) {
59 		PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
60 			     PCI_COMMAND);
61 		return ret;
62 	}
63 
64 	if (op)
65 		/* set the master bit */
66 		reg |= PCI_COMMAND_MASTER;
67 	else
68 		reg &= ~(PCI_COMMAND_MASTER);
69 
70 	return rte_pci_write_config(device, &reg, sizeof(reg), PCI_COMMAND);
71 }
72 
73 /**
74  * hns3vf_find_pci_capability - lookup a capability in the PCI capability list
75  * @cap: the capability
76  *
77  * Return the address of the given capability within the PCI capability list.
78  */
79 static int
80 hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
81 {
82 #define MAX_PCIE_CAPABILITY 48
83 	uint16_t status;
84 	uint8_t pos;
85 	uint8_t id;
86 	int ttl;
87 	int ret;
88 
89 	ret = rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
90 	if (ret < 0) {
91 		PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x", PCI_STATUS);
92 		return 0;
93 	}
94 
95 	if (!(status & PCI_STATUS_CAP_LIST))
96 		return 0;
97 
98 	ttl = MAX_PCIE_CAPABILITY;
99 	ret = rte_pci_read_config(device, &pos, sizeof(pos),
100 				  PCI_CAPABILITY_LIST);
101 	if (ret < 0) {
102 		PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
103 			     PCI_CAPABILITY_LIST);
104 		return 0;
105 	}
106 
107 	while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
108 		ret = rte_pci_read_config(device, &id, sizeof(id),
109 					  (pos + PCI_CAP_LIST_ID));
110 		if (ret < 0) {
111 			PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
112 				     (pos + PCI_CAP_LIST_ID));
113 			break;
114 		}
115 
116 		if (id == 0xFF)
117 			break;
118 
119 		if (id == cap)
120 			return (int)pos;
121 
122 		ret = rte_pci_read_config(device, &pos, sizeof(pos),
123 					  (pos + PCI_CAP_LIST_NEXT));
124 		if (ret < 0) {
125 			PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
126 				     (pos + PCI_CAP_LIST_NEXT));
127 			break;
128 		}
129 	}
130 	return 0;
131 }
132 
133 static int
134 hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
135 {
136 	uint16_t control;
137 	int pos;
138 	int ret;
139 
140 	pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
141 	if (pos) {
142 		ret = rte_pci_read_config(device, &control, sizeof(control),
143 				    (pos + PCI_MSIX_FLAGS));
144 		if (ret < 0) {
145 			PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
146 				     (pos + PCI_MSIX_FLAGS));
147 			return -ENXIO;
148 		}
149 
150 		if (op)
151 			control |= PCI_MSIX_FLAGS_ENABLE;
152 		else
153 			control &= ~PCI_MSIX_FLAGS_ENABLE;
154 		ret = rte_pci_write_config(device, &control, sizeof(control),
155 					  (pos + PCI_MSIX_FLAGS));
156 		if (ret < 0) {
157 			PMD_INIT_LOG(ERR, "failed to write PCI offset 0x%x",
158 				    (pos + PCI_MSIX_FLAGS));
159 			return -ENXIO;
160 		}
161 
162 		return 0;
163 	}
164 
165 	return -ENXIO;
166 }
167 
168 static int
169 hns3vf_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
170 {
171 	/* mac address was checked by upper level interface */
172 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
173 	int ret;
174 
175 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
176 				HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
177 				RTE_ETHER_ADDR_LEN, false, NULL, 0);
178 	if (ret) {
179 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
180 				      mac_addr);
181 		hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
182 			 mac_str, ret);
183 	}
184 	return ret;
185 }
186 
187 static int
188 hns3vf_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
189 {
190 	/* mac address was checked by upper level interface */
191 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
192 	int ret;
193 
194 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
195 				HNS3_MBX_MAC_VLAN_UC_REMOVE,
196 				mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN,
197 				false, NULL, 0);
198 	if (ret) {
199 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
200 				      mac_addr);
201 		hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
202 			 mac_str, ret);
203 	}
204 	return ret;
205 }
206 
207 static int
208 hns3vf_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
209 {
210 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
211 	struct rte_ether_addr *addr;
212 	int ret;
213 	int i;
214 
215 	for (i = 0; i < hw->mc_addrs_num; i++) {
216 		addr = &hw->mc_addrs[i];
217 		/* Check if there are duplicate addresses */
218 		if (rte_is_same_ether_addr(addr, mac_addr)) {
219 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
220 					      addr);
221 			hns3_err(hw, "failed to add mc mac addr, same addrs"
222 				 "(%s) is added by the set_mc_mac_addr_list "
223 				 "API", mac_str);
224 			return -EINVAL;
225 		}
226 	}
227 
228 	ret = hns3vf_add_mc_mac_addr(hw, mac_addr);
229 	if (ret) {
230 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
231 				      mac_addr);
232 		hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
233 			 mac_str, ret);
234 	}
235 	return ret;
236 }
237 
238 static int
239 hns3vf_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
240 		    __rte_unused uint32_t idx,
241 		    __rte_unused uint32_t pool)
242 {
243 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
244 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
245 	int ret;
246 
247 	rte_spinlock_lock(&hw->lock);
248 
249 	/*
250 	 * In hns3 network engine adding UC and MC mac address with different
251 	 * commands with firmware. We need to determine whether the input
252 	 * address is a UC or a MC address to call different commands.
253 	 * By the way, it is recommended calling the API function named
254 	 * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
255 	 * using the rte_eth_dev_mac_addr_add API function to set MC mac address
256 	 * may affect the specifications of UC mac addresses.
257 	 */
258 	if (rte_is_multicast_ether_addr(mac_addr))
259 		ret = hns3vf_add_mc_addr_common(hw, mac_addr);
260 	else
261 		ret = hns3vf_add_uc_mac_addr(hw, mac_addr);
262 
263 	rte_spinlock_unlock(&hw->lock);
264 	if (ret) {
265 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
266 				      mac_addr);
267 		hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
268 			 ret);
269 	}
270 
271 	return ret;
272 }
273 
274 static void
275 hns3vf_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
276 {
277 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
278 	/* index will be checked by upper level rte interface */
279 	struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
280 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
281 	int ret;
282 
283 	rte_spinlock_lock(&hw->lock);
284 
285 	if (rte_is_multicast_ether_addr(mac_addr))
286 		ret = hns3vf_remove_mc_mac_addr(hw, mac_addr);
287 	else
288 		ret = hns3vf_remove_uc_mac_addr(hw, mac_addr);
289 
290 	rte_spinlock_unlock(&hw->lock);
291 	if (ret) {
292 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
293 				      mac_addr);
294 		hns3_err(hw, "failed to remove mac addr(%s), ret = %d",
295 			 mac_str, ret);
296 	}
297 }
298 
299 static int
300 hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
301 			    struct rte_ether_addr *mac_addr)
302 {
303 #define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
304 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
305 	struct rte_ether_addr *old_addr;
306 	uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
307 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
308 	int ret;
309 
310 	/*
311 	 * It has been guaranteed that input parameter named mac_addr is valid
312 	 * address in the rte layer of DPDK framework.
313 	 */
314 	old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
315 	rte_spinlock_lock(&hw->lock);
316 	memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
317 	memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
318 	       RTE_ETHER_ADDR_LEN);
319 
320 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
321 				HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
322 				HNS3_TWO_ETHER_ADDR_LEN, true, NULL, 0);
323 	if (ret) {
324 		/*
325 		 * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev
326 		 * driver. When user has configured a MAC address for VF device
327 		 * by "ip link set ..." command based on the PF device, the hns3
328 		 * PF kernel ethdev driver does not allow VF driver to request
329 		 * reconfiguring a different default MAC address, and return
330 		 * -EPREM to VF driver through mailbox.
331 		 */
332 		if (ret == -EPERM) {
333 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
334 					      old_addr);
335 			hns3_warn(hw, "Has permanet mac addr(%s) for vf",
336 				  mac_str);
337 		} else {
338 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
339 					      mac_addr);
340 			hns3_err(hw, "Failed to set mac addr(%s) for vf: %d",
341 				 mac_str, ret);
342 		}
343 	}
344 
345 	rte_ether_addr_copy(mac_addr,
346 			    (struct rte_ether_addr *)hw->mac.mac_addr);
347 	rte_spinlock_unlock(&hw->lock);
348 
349 	return ret;
350 }
351 
352 static int
353 hns3vf_configure_mac_addr(struct hns3_adapter *hns, bool del)
354 {
355 	struct hns3_hw *hw = &hns->hw;
356 	struct rte_ether_addr *addr;
357 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
358 	int err = 0;
359 	int ret;
360 	int i;
361 
362 	for (i = 0; i < HNS3_VF_UC_MACADDR_NUM; i++) {
363 		addr = &hw->data->mac_addrs[i];
364 		if (rte_is_zero_ether_addr(addr))
365 			continue;
366 		if (rte_is_multicast_ether_addr(addr))
367 			ret = del ? hns3vf_remove_mc_mac_addr(hw, addr) :
368 			      hns3vf_add_mc_mac_addr(hw, addr);
369 		else
370 			ret = del ? hns3vf_remove_uc_mac_addr(hw, addr) :
371 			      hns3vf_add_uc_mac_addr(hw, addr);
372 
373 		if (ret) {
374 			err = ret;
375 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
376 					      addr);
377 			hns3_err(hw, "failed to %s mac addr(%s) index:%d "
378 				 "ret = %d.", del ? "remove" : "restore",
379 				 mac_str, i, ret);
380 		}
381 	}
382 	return err;
383 }
384 
385 static int
386 hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
387 		       struct rte_ether_addr *mac_addr)
388 {
389 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
390 	int ret;
391 
392 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
393 				HNS3_MBX_MAC_VLAN_MC_ADD,
394 				mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
395 				NULL, 0);
396 	if (ret) {
397 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
398 				      mac_addr);
399 		hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
400 			 mac_str, ret);
401 	}
402 
403 	return ret;
404 }
405 
406 static int
407 hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
408 			  struct rte_ether_addr *mac_addr)
409 {
410 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
411 	int ret;
412 
413 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
414 				HNS3_MBX_MAC_VLAN_MC_REMOVE,
415 				mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
416 				NULL, 0);
417 	if (ret) {
418 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
419 				      mac_addr);
420 		hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
421 			 mac_str, ret);
422 	}
423 
424 	return ret;
425 }
426 
427 static int
428 hns3vf_set_mc_addr_chk_param(struct hns3_hw *hw,
429 			     struct rte_ether_addr *mc_addr_set,
430 			     uint32_t nb_mc_addr)
431 {
432 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
433 	struct rte_ether_addr *addr;
434 	uint32_t i;
435 	uint32_t j;
436 
437 	if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
438 		hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
439 			 "invalid. valid range: 0~%d",
440 			 nb_mc_addr, HNS3_MC_MACADDR_NUM);
441 		return -EINVAL;
442 	}
443 
444 	/* Check if input mac addresses are valid */
445 	for (i = 0; i < nb_mc_addr; i++) {
446 		addr = &mc_addr_set[i];
447 		if (!rte_is_multicast_ether_addr(addr)) {
448 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
449 					      addr);
450 			hns3_err(hw,
451 				 "failed to set mc mac addr, addr(%s) invalid.",
452 				 mac_str);
453 			return -EINVAL;
454 		}
455 
456 		/* Check if there are duplicate addresses */
457 		for (j = i + 1; j < nb_mc_addr; j++) {
458 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
459 				hns3_ether_format_addr(mac_str,
460 						      RTE_ETHER_ADDR_FMT_SIZE,
461 						      addr);
462 				hns3_err(hw, "failed to set mc mac addr, "
463 					 "addrs invalid. two same addrs(%s).",
464 					 mac_str);
465 				return -EINVAL;
466 			}
467 		}
468 
469 		/*
470 		 * Check if there are duplicate addresses between mac_addrs
471 		 * and mc_addr_set
472 		 */
473 		for (j = 0; j < HNS3_VF_UC_MACADDR_NUM; j++) {
474 			if (rte_is_same_ether_addr(addr,
475 						   &hw->data->mac_addrs[j])) {
476 				hns3_ether_format_addr(mac_str,
477 						      RTE_ETHER_ADDR_FMT_SIZE,
478 						      addr);
479 				hns3_err(hw, "failed to set mc mac addr, "
480 					 "addrs invalid. addrs(%s) has already "
481 					 "configured in mac_addr add API",
482 					 mac_str);
483 				return -EINVAL;
484 			}
485 		}
486 	}
487 
488 	return 0;
489 }
490 
491 static int
492 hns3vf_set_mc_mac_addr_list(struct rte_eth_dev *dev,
493 			    struct rte_ether_addr *mc_addr_set,
494 			    uint32_t nb_mc_addr)
495 {
496 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
497 	struct rte_ether_addr *addr;
498 	int cur_addr_num;
499 	int set_addr_num;
500 	int num;
501 	int ret;
502 	int i;
503 
504 	ret = hns3vf_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
505 	if (ret)
506 		return ret;
507 
508 	rte_spinlock_lock(&hw->lock);
509 	cur_addr_num = hw->mc_addrs_num;
510 	for (i = 0; i < cur_addr_num; i++) {
511 		num = cur_addr_num - i - 1;
512 		addr = &hw->mc_addrs[num];
513 		ret = hns3vf_remove_mc_mac_addr(hw, addr);
514 		if (ret) {
515 			rte_spinlock_unlock(&hw->lock);
516 			return ret;
517 		}
518 
519 		hw->mc_addrs_num--;
520 	}
521 
522 	set_addr_num = (int)nb_mc_addr;
523 	for (i = 0; i < set_addr_num; i++) {
524 		addr = &mc_addr_set[i];
525 		ret = hns3vf_add_mc_mac_addr(hw, addr);
526 		if (ret) {
527 			rte_spinlock_unlock(&hw->lock);
528 			return ret;
529 		}
530 
531 		rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
532 		hw->mc_addrs_num++;
533 	}
534 	rte_spinlock_unlock(&hw->lock);
535 
536 	return 0;
537 }
538 
539 static int
540 hns3vf_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
541 {
542 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
543 	struct hns3_hw *hw = &hns->hw;
544 	struct rte_ether_addr *addr;
545 	int err = 0;
546 	int ret;
547 	int i;
548 
549 	for (i = 0; i < hw->mc_addrs_num; i++) {
550 		addr = &hw->mc_addrs[i];
551 		if (!rte_is_multicast_ether_addr(addr))
552 			continue;
553 		if (del)
554 			ret = hns3vf_remove_mc_mac_addr(hw, addr);
555 		else
556 			ret = hns3vf_add_mc_mac_addr(hw, addr);
557 		if (ret) {
558 			err = ret;
559 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
560 					      addr);
561 			hns3_err(hw, "Failed to %s mc mac addr: %s for vf: %d",
562 				 del ? "Remove" : "Restore", mac_str, ret);
563 		}
564 	}
565 	return err;
566 }
567 
568 static int
569 hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc,
570 			bool en_uc_pmc, bool en_mc_pmc)
571 {
572 	struct hns3_mbx_vf_to_pf_cmd *req;
573 	struct hns3_cmd_desc desc;
574 	int ret;
575 
576 	req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
577 
578 	/*
579 	 * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev driver,
580 	 * so there are some features for promiscuous/allmulticast mode in hns3
581 	 * VF PMD driver as below:
582 	 * 1. The promiscuous/allmulticast mode can be configured successfully
583 	 *    only based on the trusted VF device. If based on the non trusted
584 	 *    VF device, configuring promiscuous/allmulticast mode will fail.
585 	 *    The hns3 VF device can be confiruged as trusted device by hns3 PF
586 	 *    kernel ethdev driver on the host by the following command:
587 	 *      "ip link set <eth num> vf <vf id> turst on"
588 	 * 2. After the promiscuous mode is configured successfully, hns3 VF PMD
589 	 *    driver can receive the ingress and outgoing traffic. In the words,
590 	 *    all the ingress packets, all the packets sent from the PF and
591 	 *    other VFs on the same physical port.
592 	 * 3. Note: Because of the hardware constraints, By default vlan filter
593 	 *    is enabled and couldn't be turned off based on VF device, so vlan
594 	 *    filter is still effective even in promiscuous mode. If upper
595 	 *    applications don't call rte_eth_dev_vlan_filter API function to
596 	 *    set vlan based on VF device, hns3 VF PMD driver will can't receive
597 	 *    the packets with vlan tag in promiscuoue mode.
598 	 */
599 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
600 	req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
601 	req->msg[1] = en_bc_pmc ? 1 : 0;
602 	req->msg[2] = en_uc_pmc ? 1 : 0;
603 	req->msg[3] = en_mc_pmc ? 1 : 0;
604 	req->msg[4] = hw->promisc_mode == HNS3_LIMIT_PROMISC_MODE ? 1 : 0;
605 
606 	ret = hns3_cmd_send(hw, &desc, 1);
607 	if (ret)
608 		hns3_err(hw, "Set promisc mode fail, ret = %d", ret);
609 
610 	return ret;
611 }
612 
613 static int
614 hns3vf_dev_promiscuous_enable(struct rte_eth_dev *dev)
615 {
616 	struct hns3_adapter *hns = dev->data->dev_private;
617 	struct hns3_hw *hw = &hns->hw;
618 	int ret;
619 
620 	ret = hns3vf_set_promisc_mode(hw, true, true, true);
621 	if (ret)
622 		hns3_err(hw, "Failed to enable promiscuous mode, ret = %d",
623 			ret);
624 	return ret;
625 }
626 
627 static int
628 hns3vf_dev_promiscuous_disable(struct rte_eth_dev *dev)
629 {
630 	bool allmulti = dev->data->all_multicast ? true : false;
631 	struct hns3_adapter *hns = dev->data->dev_private;
632 	struct hns3_hw *hw = &hns->hw;
633 	int ret;
634 
635 	ret = hns3vf_set_promisc_mode(hw, true, false, allmulti);
636 	if (ret)
637 		hns3_err(hw, "Failed to disable promiscuous mode, ret = %d",
638 			ret);
639 	return ret;
640 }
641 
642 static int
643 hns3vf_dev_allmulticast_enable(struct rte_eth_dev *dev)
644 {
645 	struct hns3_adapter *hns = dev->data->dev_private;
646 	struct hns3_hw *hw = &hns->hw;
647 	int ret;
648 
649 	if (dev->data->promiscuous)
650 		return 0;
651 
652 	ret = hns3vf_set_promisc_mode(hw, true, false, true);
653 	if (ret)
654 		hns3_err(hw, "Failed to enable allmulticast mode, ret = %d",
655 			ret);
656 	return ret;
657 }
658 
659 static int
660 hns3vf_dev_allmulticast_disable(struct rte_eth_dev *dev)
661 {
662 	struct hns3_adapter *hns = dev->data->dev_private;
663 	struct hns3_hw *hw = &hns->hw;
664 	int ret;
665 
666 	if (dev->data->promiscuous)
667 		return 0;
668 
669 	ret = hns3vf_set_promisc_mode(hw, true, false, false);
670 	if (ret)
671 		hns3_err(hw, "Failed to disable allmulticast mode, ret = %d",
672 			ret);
673 	return ret;
674 }
675 
676 static int
677 hns3vf_restore_promisc(struct hns3_adapter *hns)
678 {
679 	struct hns3_hw *hw = &hns->hw;
680 	bool allmulti = hw->data->all_multicast ? true : false;
681 
682 	if (hw->data->promiscuous)
683 		return hns3vf_set_promisc_mode(hw, true, true, true);
684 
685 	return hns3vf_set_promisc_mode(hw, true, false, allmulti);
686 }
687 
688 static int
689 hns3vf_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id,
690 			     bool mmap, enum hns3_ring_type queue_type,
691 			     uint16_t queue_id)
692 {
693 	struct hns3_vf_bind_vector_msg bind_msg;
694 	const char *op_str;
695 	uint16_t code;
696 	int ret;
697 
698 	memset(&bind_msg, 0, sizeof(bind_msg));
699 	code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
700 		HNS3_MBX_UNMAP_RING_TO_VECTOR;
701 	bind_msg.vector_id = vector_id;
702 
703 	if (queue_type == HNS3_RING_TYPE_RX)
704 		bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
705 	else
706 		bind_msg.param[0].int_gl_index = HNS3_RING_GL_TX;
707 
708 	bind_msg.param[0].ring_type = queue_type;
709 	bind_msg.ring_num = 1;
710 	bind_msg.param[0].tqp_index = queue_id;
711 	op_str = mmap ? "Map" : "Unmap";
712 	ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
713 				sizeof(bind_msg), false, NULL, 0);
714 	if (ret)
715 		hns3_err(hw, "%s TQP %u fail, vector_id is %u, ret is %d.",
716 			 op_str, queue_id, bind_msg.vector_id, ret);
717 
718 	return ret;
719 }
720 
721 static int
722 hns3vf_init_ring_with_vector(struct hns3_hw *hw)
723 {
724 	uint16_t vec;
725 	int ret;
726 	int i;
727 
728 	/*
729 	 * In hns3 network engine, vector 0 is always the misc interrupt of this
730 	 * function, vector 1~N can be used respectively for the queues of the
731 	 * function. Tx and Rx queues with the same number share the interrupt
732 	 * vector. In the initialization clearing the all hardware mapping
733 	 * relationship configurations between queues and interrupt vectors is
734 	 * needed, so some error caused by the residual configurations, such as
735 	 * the unexpected Tx interrupt, can be avoid.
736 	 */
737 	vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
738 	if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
739 		vec = vec - 1; /* the last interrupt is reserved */
740 	hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
741 	for (i = 0; i < hw->intr_tqps_num; i++) {
742 		/*
743 		 * Set gap limiter/rate limiter/quanity limiter algorithm
744 		 * configuration for interrupt coalesce of queue's interrupt.
745 		 */
746 		hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
747 				       HNS3_TQP_INTR_GL_DEFAULT);
748 		hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
749 				       HNS3_TQP_INTR_GL_DEFAULT);
750 		hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
751 		/*
752 		 * QL(quantity limiter) is not used currently, just set 0 to
753 		 * close it.
754 		 */
755 		hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
756 
757 		ret = hns3vf_bind_ring_with_vector(hw, vec, false,
758 						   HNS3_RING_TYPE_TX, i);
759 		if (ret) {
760 			PMD_INIT_LOG(ERR, "VF fail to unbind TX ring(%d) with "
761 					  "vector: %u, ret=%d", i, vec, ret);
762 			return ret;
763 		}
764 
765 		ret = hns3vf_bind_ring_with_vector(hw, vec, false,
766 						   HNS3_RING_TYPE_RX, i);
767 		if (ret) {
768 			PMD_INIT_LOG(ERR, "VF fail to unbind RX ring(%d) with "
769 					  "vector: %u, ret=%d", i, vec, ret);
770 			return ret;
771 		}
772 	}
773 
774 	return 0;
775 }
776 
777 static int
778 hns3vf_dev_configure(struct rte_eth_dev *dev)
779 {
780 	struct hns3_adapter *hns = dev->data->dev_private;
781 	struct hns3_hw *hw = &hns->hw;
782 	struct rte_eth_conf *conf = &dev->data->dev_conf;
783 	enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
784 	uint16_t nb_rx_q = dev->data->nb_rx_queues;
785 	uint16_t nb_tx_q = dev->data->nb_tx_queues;
786 	struct rte_eth_rss_conf rss_conf;
787 	uint32_t max_rx_pkt_len;
788 	uint16_t mtu;
789 	bool gro_en;
790 	int ret;
791 
792 	hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
793 
794 	/*
795 	 * Some versions of hardware network engine does not support
796 	 * individually enable/disable/reset the Tx or Rx queue. These devices
797 	 * must enable/disable/reset Tx and Rx queues at the same time. When the
798 	 * numbers of Tx queues allocated by upper applications are not equal to
799 	 * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
800 	 * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
801 	 * work as usual. But these fake queues are imperceptible, and can not
802 	 * be used by upper applications.
803 	 */
804 	ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
805 	if (ret) {
806 		hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.", ret);
807 		hw->cfg_max_queues = 0;
808 		return ret;
809 	}
810 
811 	hw->adapter_state = HNS3_NIC_CONFIGURING;
812 	if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
813 		hns3_err(hw, "setting link speed/duplex not supported");
814 		ret = -EINVAL;
815 		goto cfg_err;
816 	}
817 
818 	/* When RSS is not configured, redirect the packet queue 0 */
819 	if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
820 		conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
821 		hw->rss_dis_flag = false;
822 		rss_conf = conf->rx_adv_conf.rss_conf;
823 		ret = hns3_dev_rss_hash_update(dev, &rss_conf);
824 		if (ret)
825 			goto cfg_err;
826 	}
827 
828 	/*
829 	 * If jumbo frames are enabled, MTU needs to be refreshed
830 	 * according to the maximum RX packet length.
831 	 */
832 	if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
833 		max_rx_pkt_len = conf->rxmode.max_rx_pkt_len;
834 		if (max_rx_pkt_len > HNS3_MAX_FRAME_LEN ||
835 		    max_rx_pkt_len <= HNS3_DEFAULT_FRAME_LEN) {
836 			hns3_err(hw, "maximum Rx packet length must be greater "
837 				 "than %u and less than %u when jumbo frame enabled.",
838 				 (uint16_t)HNS3_DEFAULT_FRAME_LEN,
839 				 (uint16_t)HNS3_MAX_FRAME_LEN);
840 			ret = -EINVAL;
841 			goto cfg_err;
842 		}
843 
844 		mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(max_rx_pkt_len);
845 		ret = hns3vf_dev_mtu_set(dev, mtu);
846 		if (ret)
847 			goto cfg_err;
848 		dev->data->mtu = mtu;
849 	}
850 
851 	ret = hns3vf_dev_configure_vlan(dev);
852 	if (ret)
853 		goto cfg_err;
854 
855 	/* config hardware GRO */
856 	gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
857 	ret = hns3_config_gro(hw, gro_en);
858 	if (ret)
859 		goto cfg_err;
860 
861 	hns3_init_rx_ptype_tble(dev);
862 
863 	hw->adapter_state = HNS3_NIC_CONFIGURED;
864 	return 0;
865 
866 cfg_err:
867 	hw->cfg_max_queues = 0;
868 	(void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
869 	hw->adapter_state = HNS3_NIC_INITIALIZED;
870 
871 	return ret;
872 }
873 
874 static int
875 hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
876 {
877 	int ret;
878 
879 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
880 				sizeof(mtu), true, NULL, 0);
881 	if (ret)
882 		hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
883 
884 	return ret;
885 }
886 
887 static int
888 hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
889 {
890 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
891 	uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
892 	int ret;
893 
894 	/*
895 	 * The hns3 PF/VF devices on the same port share the hardware MTU
896 	 * configuration. Currently, we send mailbox to inform hns3 PF kernel
897 	 * ethdev driver to finish hardware MTU configuration in hns3 VF PMD
898 	 * driver, there is no need to stop the port for hns3 VF device, and the
899 	 * MTU value issued by hns3 VF PMD driver must be less than or equal to
900 	 * PF's MTU.
901 	 */
902 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
903 		hns3_err(hw, "Failed to set mtu during resetting");
904 		return -EIO;
905 	}
906 
907 	/*
908 	 * when Rx of scattered packets is off, we have some possibility of
909 	 * using vector Rx process function or simple Rx functions in hns3 PMD
910 	 * driver. If the input MTU is increased and the maximum length of
911 	 * received packets is greater than the length of a buffer for Rx
912 	 * packet, the hardware network engine needs to use multiple BDs and
913 	 * buffers to store these packets. This will cause problems when still
914 	 * using vector Rx process function or simple Rx function to receiving
915 	 * packets. So, when Rx of scattered packets is off and device is
916 	 * started, it is not permitted to increase MTU so that the maximum
917 	 * length of Rx packets is greater than Rx buffer length.
918 	 */
919 	if (dev->data->dev_started && !dev->data->scattered_rx &&
920 	    frame_size > hw->rx_buf_len) {
921 		hns3_err(hw, "failed to set mtu because current is "
922 			"not scattered rx mode");
923 		return -EOPNOTSUPP;
924 	}
925 
926 	rte_spinlock_lock(&hw->lock);
927 	ret = hns3vf_config_mtu(hw, mtu);
928 	if (ret) {
929 		rte_spinlock_unlock(&hw->lock);
930 		return ret;
931 	}
932 	if (mtu > RTE_ETHER_MTU)
933 		dev->data->dev_conf.rxmode.offloads |=
934 						DEV_RX_OFFLOAD_JUMBO_FRAME;
935 	else
936 		dev->data->dev_conf.rxmode.offloads &=
937 						~DEV_RX_OFFLOAD_JUMBO_FRAME;
938 	dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
939 	rte_spinlock_unlock(&hw->lock);
940 
941 	return 0;
942 }
943 
944 static int
945 hns3vf_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
946 {
947 	struct hns3_adapter *hns = eth_dev->data->dev_private;
948 	struct hns3_hw *hw = &hns->hw;
949 	uint16_t q_num = hw->tqps_num;
950 
951 	/*
952 	 * In interrupt mode, 'max_rx_queues' is set based on the number of
953 	 * MSI-X interrupt resources of the hardware.
954 	 */
955 	if (hw->data->dev_conf.intr_conf.rxq == 1)
956 		q_num = hw->intr_tqps_num;
957 
958 	info->max_rx_queues = q_num;
959 	info->max_tx_queues = hw->tqps_num;
960 	info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
961 	info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
962 	info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM;
963 	info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
964 	info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
965 
966 	info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
967 				 DEV_RX_OFFLOAD_UDP_CKSUM |
968 				 DEV_RX_OFFLOAD_TCP_CKSUM |
969 				 DEV_RX_OFFLOAD_SCTP_CKSUM |
970 				 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
971 				 DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
972 				 DEV_RX_OFFLOAD_SCATTER |
973 				 DEV_RX_OFFLOAD_VLAN_STRIP |
974 				 DEV_RX_OFFLOAD_VLAN_FILTER |
975 				 DEV_RX_OFFLOAD_JUMBO_FRAME |
976 				 DEV_RX_OFFLOAD_RSS_HASH |
977 				 DEV_RX_OFFLOAD_TCP_LRO);
978 	info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
979 				 DEV_TX_OFFLOAD_IPV4_CKSUM |
980 				 DEV_TX_OFFLOAD_TCP_CKSUM |
981 				 DEV_TX_OFFLOAD_UDP_CKSUM |
982 				 DEV_TX_OFFLOAD_SCTP_CKSUM |
983 				 DEV_TX_OFFLOAD_MULTI_SEGS |
984 				 DEV_TX_OFFLOAD_TCP_TSO |
985 				 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
986 				 DEV_TX_OFFLOAD_GRE_TNL_TSO |
987 				 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
988 				 DEV_TX_OFFLOAD_MBUF_FAST_FREE |
989 				 hns3_txvlan_cap_get(hw));
990 
991 	if (hns3_dev_outer_udp_cksum_supported(hw))
992 		info->tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_UDP_CKSUM;
993 
994 	if (hns3_dev_indep_txrx_supported(hw))
995 		info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
996 				 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
997 
998 	info->rx_desc_lim = (struct rte_eth_desc_lim) {
999 		.nb_max = HNS3_MAX_RING_DESC,
1000 		.nb_min = HNS3_MIN_RING_DESC,
1001 		.nb_align = HNS3_ALIGN_RING_DESC,
1002 	};
1003 
1004 	info->tx_desc_lim = (struct rte_eth_desc_lim) {
1005 		.nb_max = HNS3_MAX_RING_DESC,
1006 		.nb_min = HNS3_MIN_RING_DESC,
1007 		.nb_align = HNS3_ALIGN_RING_DESC,
1008 		.nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
1009 		.nb_mtu_seg_max = hw->max_non_tso_bd_num,
1010 	};
1011 
1012 	info->default_rxconf = (struct rte_eth_rxconf) {
1013 		.rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
1014 		/*
1015 		 * If there are no available Rx buffer descriptors, incoming
1016 		 * packets are always dropped by hardware based on hns3 network
1017 		 * engine.
1018 		 */
1019 		.rx_drop_en = 1,
1020 		.offloads = 0,
1021 	};
1022 	info->default_txconf = (struct rte_eth_txconf) {
1023 		.tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
1024 		.offloads = 0,
1025 	};
1026 
1027 	info->reta_size = hw->rss_ind_tbl_size;
1028 	info->hash_key_size = HNS3_RSS_KEY_SIZE;
1029 	info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
1030 
1031 	info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
1032 	info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
1033 	info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
1034 	info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
1035 	info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1036 	info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1037 
1038 	return 0;
1039 }
1040 
1041 static void
1042 hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
1043 {
1044 	hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
1045 }
1046 
1047 static void
1048 hns3vf_disable_irq0(struct hns3_hw *hw)
1049 {
1050 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
1051 }
1052 
1053 static void
1054 hns3vf_enable_irq0(struct hns3_hw *hw)
1055 {
1056 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
1057 }
1058 
1059 static enum hns3vf_evt_cause
1060 hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
1061 {
1062 	struct hns3_hw *hw = &hns->hw;
1063 	enum hns3vf_evt_cause ret;
1064 	uint32_t cmdq_stat_reg;
1065 	uint32_t rst_ing_reg;
1066 	uint32_t val;
1067 
1068 	/* Fetch the events from their corresponding regs */
1069 	cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
1070 	if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1071 		rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
1072 		hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
1073 		hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
1074 		__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
1075 		val = hns3_read_dev(hw, HNS3_VF_RST_ING);
1076 		hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
1077 		val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
1078 		if (clearval) {
1079 			hw->reset.stats.global_cnt++;
1080 			hns3_warn(hw, "Global reset detected, clear reset status");
1081 		} else {
1082 			hns3_schedule_delayed_reset(hns);
1083 			hns3_warn(hw, "Global reset detected, don't clear reset status");
1084 		}
1085 
1086 		ret = HNS3VF_VECTOR0_EVENT_RST;
1087 		goto out;
1088 	}
1089 
1090 	/* Check for vector0 mailbox(=CMDQ RX) event source */
1091 	if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1092 		val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
1093 		ret = HNS3VF_VECTOR0_EVENT_MBX;
1094 		goto out;
1095 	}
1096 
1097 	val = 0;
1098 	ret = HNS3VF_VECTOR0_EVENT_OTHER;
1099 out:
1100 	if (clearval)
1101 		*clearval = val;
1102 	return ret;
1103 }
1104 
1105 static void
1106 hns3vf_interrupt_handler(void *param)
1107 {
1108 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1109 	struct hns3_adapter *hns = dev->data->dev_private;
1110 	struct hns3_hw *hw = &hns->hw;
1111 	enum hns3vf_evt_cause event_cause;
1112 	uint32_t clearval;
1113 
1114 	/* Disable interrupt */
1115 	hns3vf_disable_irq0(hw);
1116 
1117 	/* Read out interrupt causes */
1118 	event_cause = hns3vf_check_event_cause(hns, &clearval);
1119 	/* Clear interrupt causes */
1120 	hns3vf_clear_event_cause(hw, clearval);
1121 
1122 	switch (event_cause) {
1123 	case HNS3VF_VECTOR0_EVENT_RST:
1124 		hns3_schedule_reset(hns);
1125 		break;
1126 	case HNS3VF_VECTOR0_EVENT_MBX:
1127 		hns3_dev_handle_mbx_msg(hw);
1128 		break;
1129 	default:
1130 		break;
1131 	}
1132 
1133 	/* Enable interrupt */
1134 	hns3vf_enable_irq0(hw);
1135 }
1136 
1137 static void
1138 hns3vf_set_default_dev_specifications(struct hns3_hw *hw)
1139 {
1140 	hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
1141 	hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
1142 	hw->rss_key_size = HNS3_RSS_KEY_SIZE;
1143 	hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
1144 }
1145 
1146 static void
1147 hns3vf_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
1148 {
1149 	struct hns3_dev_specs_0_cmd *req0;
1150 
1151 	req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
1152 
1153 	hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
1154 	hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
1155 	hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
1156 	hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
1157 }
1158 
1159 static int
1160 hns3vf_check_dev_specifications(struct hns3_hw *hw)
1161 {
1162 	if (hw->rss_ind_tbl_size == 0 ||
1163 	    hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
1164 		hns3_warn(hw, "the size of hash lookup table configured (%u)"
1165 			      " exceeds the maximum(%u)", hw->rss_ind_tbl_size,
1166 			      HNS3_RSS_IND_TBL_SIZE_MAX);
1167 		return -EINVAL;
1168 	}
1169 
1170 	return 0;
1171 }
1172 
1173 static int
1174 hns3vf_query_dev_specifications(struct hns3_hw *hw)
1175 {
1176 	struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
1177 	int ret;
1178 	int i;
1179 
1180 	for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
1181 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
1182 					  true);
1183 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1184 	}
1185 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
1186 
1187 	ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
1188 	if (ret)
1189 		return ret;
1190 
1191 	hns3vf_parse_dev_specifications(hw, desc);
1192 
1193 	return hns3vf_check_dev_specifications(hw);
1194 }
1195 
1196 void
1197 hns3vf_update_push_lsc_cap(struct hns3_hw *hw, bool supported)
1198 {
1199 	uint16_t val = supported ? HNS3_PF_PUSH_LSC_CAP_SUPPORTED :
1200 				   HNS3_PF_PUSH_LSC_CAP_NOT_SUPPORTED;
1201 	uint16_t exp = HNS3_PF_PUSH_LSC_CAP_UNKNOWN;
1202 	struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1203 
1204 	if (vf->pf_push_lsc_cap == HNS3_PF_PUSH_LSC_CAP_UNKNOWN)
1205 		__atomic_compare_exchange(&vf->pf_push_lsc_cap, &exp, &val, 0,
1206 					  __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE);
1207 }
1208 
1209 static void
1210 hns3vf_get_push_lsc_cap(struct hns3_hw *hw)
1211 {
1212 #define HNS3_CHECK_PUSH_LSC_CAP_TIMEOUT_MS	500
1213 
1214 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
1215 	int32_t remain_ms = HNS3_CHECK_PUSH_LSC_CAP_TIMEOUT_MS;
1216 	uint16_t val = HNS3_PF_PUSH_LSC_CAP_NOT_SUPPORTED;
1217 	uint16_t exp = HNS3_PF_PUSH_LSC_CAP_UNKNOWN;
1218 	struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1219 
1220 	__atomic_store_n(&vf->pf_push_lsc_cap, HNS3_PF_PUSH_LSC_CAP_UNKNOWN,
1221 			 __ATOMIC_RELEASE);
1222 
1223 	(void)hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1224 				NULL, 0);
1225 
1226 	while (remain_ms > 0) {
1227 		rte_delay_ms(HNS3_POLL_RESPONE_MS);
1228 		if (__atomic_load_n(&vf->pf_push_lsc_cap, __ATOMIC_ACQUIRE) !=
1229 			HNS3_PF_PUSH_LSC_CAP_UNKNOWN)
1230 			break;
1231 		remain_ms--;
1232 	}
1233 
1234 	/*
1235 	 * When exit above loop, the pf_push_lsc_cap could be one of the three
1236 	 * state: unknown (means pf not ack), not_supported, supported.
1237 	 * Here config it as 'not_supported' when it's 'unknown' state.
1238 	 */
1239 	__atomic_compare_exchange(&vf->pf_push_lsc_cap, &exp, &val, 0,
1240 				  __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE);
1241 
1242 	if (__atomic_load_n(&vf->pf_push_lsc_cap, __ATOMIC_ACQUIRE) ==
1243 		HNS3_PF_PUSH_LSC_CAP_SUPPORTED) {
1244 		hns3_info(hw, "detect PF support push link status change!");
1245 	} else {
1246 		/*
1247 		 * Framework already set RTE_ETH_DEV_INTR_LSC bit because driver
1248 		 * declared RTE_PCI_DRV_INTR_LSC in drv_flags. So here cleared
1249 		 * the RTE_ETH_DEV_INTR_LSC capability.
1250 		 */
1251 		dev->data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
1252 	}
1253 }
1254 
1255 static int
1256 hns3vf_get_capability(struct hns3_hw *hw)
1257 {
1258 	struct rte_pci_device *pci_dev;
1259 	struct rte_eth_dev *eth_dev;
1260 	uint8_t revision;
1261 	int ret;
1262 
1263 	eth_dev = &rte_eth_devices[hw->data->port_id];
1264 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1265 
1266 	/* Get PCI revision id */
1267 	ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
1268 				  HNS3_PCI_REVISION_ID);
1269 	if (ret != HNS3_PCI_REVISION_ID_LEN) {
1270 		PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
1271 			     ret);
1272 		return -EIO;
1273 	}
1274 	hw->revision = revision;
1275 
1276 	if (revision < PCI_REVISION_ID_HIP09_A) {
1277 		hns3vf_set_default_dev_specifications(hw);
1278 		hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
1279 		hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
1280 		hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
1281 		hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE1;
1282 		hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
1283 		hw->rss_info.ipv6_sctp_offload_supported = false;
1284 		hw->promisc_mode = HNS3_UNLIMIT_PROMISC_MODE;
1285 		return 0;
1286 	}
1287 
1288 	ret = hns3vf_query_dev_specifications(hw);
1289 	if (ret) {
1290 		PMD_INIT_LOG(ERR,
1291 			     "failed to query dev specifications, ret = %d",
1292 			     ret);
1293 		return ret;
1294 	}
1295 
1296 	hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
1297 	hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
1298 	hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
1299 	hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE2;
1300 	hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
1301 	hw->rss_info.ipv6_sctp_offload_supported = true;
1302 	hw->promisc_mode = HNS3_LIMIT_PROMISC_MODE;
1303 
1304 	return 0;
1305 }
1306 
1307 static int
1308 hns3vf_check_tqp_info(struct hns3_hw *hw)
1309 {
1310 	if (hw->tqps_num == 0) {
1311 		PMD_INIT_LOG(ERR, "Get invalid tqps_num(0) from PF.");
1312 		return -EINVAL;
1313 	}
1314 
1315 	if (hw->rss_size_max == 0) {
1316 		PMD_INIT_LOG(ERR, "Get invalid rss_size_max(0) from PF.");
1317 		return -EINVAL;
1318 	}
1319 
1320 	hw->tqps_num = RTE_MIN(hw->rss_size_max, hw->tqps_num);
1321 
1322 	return 0;
1323 }
1324 
1325 static int
1326 hns3vf_get_port_base_vlan_filter_state(struct hns3_hw *hw)
1327 {
1328 	uint8_t resp_msg;
1329 	int ret;
1330 
1331 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
1332 				HNS3_MBX_GET_PORT_BASE_VLAN_STATE, NULL, 0,
1333 				true, &resp_msg, sizeof(resp_msg));
1334 	if (ret) {
1335 		if (ret == -ETIME) {
1336 			/*
1337 			 * Getting current port based VLAN state from PF driver
1338 			 * will not affect VF driver's basic function. Because
1339 			 * the VF driver relies on hns3 PF kernel ether driver,
1340 			 * to avoid introducing compatibility issues with older
1341 			 * version of PF driver, no failure will be returned
1342 			 * when the return value is ETIME. This return value has
1343 			 * the following scenarios:
1344 			 * 1) Firmware didn't return the results in time
1345 			 * 2) the result return by firmware is timeout
1346 			 * 3) the older version of kernel side PF driver does
1347 			 *    not support this mailbox message.
1348 			 * For scenarios 1 and 2, it is most likely that a
1349 			 * hardware error has occurred, or a hardware reset has
1350 			 * occurred. In this case, these errors will be caught
1351 			 * by other functions.
1352 			 */
1353 			PMD_INIT_LOG(WARNING,
1354 				"failed to get PVID state for timeout, maybe "
1355 				"kernel side PF driver doesn't support this "
1356 				"mailbox message, or firmware didn't respond.");
1357 			resp_msg = HNS3_PORT_BASE_VLAN_DISABLE;
1358 		} else {
1359 			PMD_INIT_LOG(ERR, "failed to get port based VLAN state,"
1360 				" ret = %d", ret);
1361 			return ret;
1362 		}
1363 	}
1364 	hw->port_base_vlan_cfg.state = resp_msg ?
1365 		HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
1366 	return 0;
1367 }
1368 
1369 static int
1370 hns3vf_get_queue_info(struct hns3_hw *hw)
1371 {
1372 #define HNS3VF_TQPS_RSS_INFO_LEN	6
1373 	uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
1374 	int ret;
1375 
1376 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
1377 				resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
1378 	if (ret) {
1379 		PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
1380 		return ret;
1381 	}
1382 
1383 	memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
1384 	memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
1385 
1386 	return hns3vf_check_tqp_info(hw);
1387 }
1388 
1389 static int
1390 hns3vf_get_queue_depth(struct hns3_hw *hw)
1391 {
1392 #define HNS3VF_TQPS_DEPTH_INFO_LEN	4
1393 	uint8_t resp_msg[HNS3VF_TQPS_DEPTH_INFO_LEN];
1394 	int ret;
1395 
1396 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QDEPTH, 0, NULL, 0, true,
1397 				resp_msg, HNS3VF_TQPS_DEPTH_INFO_LEN);
1398 	if (ret) {
1399 		PMD_INIT_LOG(ERR, "Failed to get tqp depth info from PF: %d",
1400 			     ret);
1401 		return ret;
1402 	}
1403 
1404 	memcpy(&hw->num_tx_desc, &resp_msg[0], sizeof(uint16_t));
1405 	memcpy(&hw->num_rx_desc, &resp_msg[2], sizeof(uint16_t));
1406 
1407 	return 0;
1408 }
1409 
1410 static void
1411 hns3vf_update_caps(struct hns3_hw *hw, uint32_t caps)
1412 {
1413 	if (hns3_get_bit(caps, HNS3VF_CAPS_VLAN_FLT_MOD_B))
1414 		hns3_set_bit(hw->capability,
1415 				HNS3_DEV_SUPPORT_VF_VLAN_FLT_MOD_B, 1);
1416 }
1417 
1418 static int
1419 hns3vf_get_num_tc(struct hns3_hw *hw)
1420 {
1421 	uint8_t num_tc = 0;
1422 	uint32_t i;
1423 
1424 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
1425 		if (hw->hw_tc_map & BIT(i))
1426 			num_tc++;
1427 	}
1428 	return num_tc;
1429 }
1430 
1431 static int
1432 hns3vf_get_basic_info(struct hns3_hw *hw)
1433 {
1434 	uint8_t resp_msg[HNS3_MBX_MAX_RESP_DATA_SIZE];
1435 	struct hns3_basic_info *basic_info;
1436 	int ret;
1437 
1438 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_BASIC_INFO, 0, NULL, 0,
1439 				true, resp_msg, sizeof(resp_msg));
1440 	if (ret) {
1441 		hns3_err(hw, "failed to get basic info from PF, ret = %d.",
1442 				ret);
1443 		return ret;
1444 	}
1445 
1446 	basic_info = (struct hns3_basic_info *)resp_msg;
1447 	hw->hw_tc_map = basic_info->hw_tc_map;
1448 	hw->num_tc = hns3vf_get_num_tc(hw);
1449 	hw->pf_vf_if_version = basic_info->pf_vf_if_version;
1450 	hns3vf_update_caps(hw, basic_info->caps);
1451 
1452 	return 0;
1453 }
1454 
1455 static int
1456 hns3vf_get_host_mac_addr(struct hns3_hw *hw)
1457 {
1458 	uint8_t host_mac[RTE_ETHER_ADDR_LEN];
1459 	int ret;
1460 
1461 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_MAC_ADDR, 0, NULL, 0,
1462 				true, host_mac, RTE_ETHER_ADDR_LEN);
1463 	if (ret) {
1464 		hns3_err(hw, "Failed to get mac addr from PF: %d", ret);
1465 		return ret;
1466 	}
1467 
1468 	memcpy(hw->mac.mac_addr, host_mac, RTE_ETHER_ADDR_LEN);
1469 
1470 	return 0;
1471 }
1472 
1473 static int
1474 hns3vf_get_configuration(struct hns3_hw *hw)
1475 {
1476 	int ret;
1477 
1478 	hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
1479 	hw->rss_dis_flag = false;
1480 
1481 	/* Get device capability */
1482 	ret = hns3vf_get_capability(hw);
1483 	if (ret) {
1484 		PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
1485 		return ret;
1486 	}
1487 
1488 	hns3vf_get_push_lsc_cap(hw);
1489 
1490 	/* Get basic info from PF */
1491 	ret = hns3vf_get_basic_info(hw);
1492 	if (ret)
1493 		return ret;
1494 
1495 	/* Get queue configuration from PF */
1496 	ret = hns3vf_get_queue_info(hw);
1497 	if (ret)
1498 		return ret;
1499 
1500 	/* Get queue depth info from PF */
1501 	ret = hns3vf_get_queue_depth(hw);
1502 	if (ret)
1503 		return ret;
1504 
1505 	/* Get user defined VF MAC addr from PF */
1506 	ret = hns3vf_get_host_mac_addr(hw);
1507 	if (ret)
1508 		return ret;
1509 
1510 	return hns3vf_get_port_base_vlan_filter_state(hw);
1511 }
1512 
1513 static int
1514 hns3vf_set_tc_queue_mapping(struct hns3_adapter *hns, uint16_t nb_rx_q,
1515 			    uint16_t nb_tx_q)
1516 {
1517 	struct hns3_hw *hw = &hns->hw;
1518 
1519 	return hns3_queue_to_tc_mapping(hw, nb_rx_q, nb_tx_q);
1520 }
1521 
1522 static void
1523 hns3vf_request_link_info(struct hns3_hw *hw)
1524 {
1525 	struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1526 	bool send_req;
1527 	int ret;
1528 
1529 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
1530 		return;
1531 
1532 	send_req = vf->pf_push_lsc_cap == HNS3_PF_PUSH_LSC_CAP_NOT_SUPPORTED ||
1533 		   vf->req_link_info_cnt > 0;
1534 	if (!send_req)
1535 		return;
1536 
1537 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1538 				NULL, 0);
1539 	if (ret) {
1540 		hns3_err(hw, "failed to fetch link status, ret = %d", ret);
1541 		return;
1542 	}
1543 
1544 	if (vf->req_link_info_cnt > 0)
1545 		vf->req_link_info_cnt--;
1546 }
1547 
1548 void
1549 hns3vf_update_link_status(struct hns3_hw *hw, uint8_t link_status,
1550 			  uint32_t link_speed, uint8_t link_duplex)
1551 {
1552 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
1553 	struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1554 	struct hns3_mac *mac = &hw->mac;
1555 	int ret;
1556 
1557 	/*
1558 	 * PF kernel driver may push link status when VF driver is in resetting,
1559 	 * driver will stop polling job in this case, after resetting done
1560 	 * driver will start polling job again.
1561 	 * When polling job started, driver will get initial link status by
1562 	 * sending request to PF kernel driver, then could update link status by
1563 	 * process PF kernel driver's link status mailbox message.
1564 	 */
1565 	if (!__atomic_load_n(&vf->poll_job_started, __ATOMIC_RELAXED))
1566 		return;
1567 
1568 	if (hw->adapter_state != HNS3_NIC_STARTED)
1569 		return;
1570 
1571 	mac->link_status = link_status;
1572 	mac->link_speed = link_speed;
1573 	mac->link_duplex = link_duplex;
1574 	ret = hns3vf_dev_link_update(dev, 0);
1575 	if (ret == 0 && dev->data->dev_conf.intr_conf.lsc != 0)
1576 		hns3_start_report_lse(dev);
1577 }
1578 
1579 static int
1580 hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
1581 {
1582 #define HNS3VF_VLAN_MBX_MSG_LEN 5
1583 	struct hns3_hw *hw = &hns->hw;
1584 	uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
1585 	uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
1586 	uint8_t is_kill = on ? 0 : 1;
1587 
1588 	msg_data[0] = is_kill;
1589 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1590 	memcpy(&msg_data[3], &proto, sizeof(proto));
1591 
1592 	return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
1593 				 msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
1594 				 0);
1595 }
1596 
1597 static int
1598 hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1599 {
1600 	struct hns3_adapter *hns = dev->data->dev_private;
1601 	struct hns3_hw *hw = &hns->hw;
1602 	int ret;
1603 
1604 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
1605 		hns3_err(hw,
1606 			 "vf set vlan id failed during resetting, vlan_id =%u",
1607 			 vlan_id);
1608 		return -EIO;
1609 	}
1610 	rte_spinlock_lock(&hw->lock);
1611 	ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1612 	rte_spinlock_unlock(&hw->lock);
1613 	if (ret)
1614 		hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
1615 			 vlan_id, ret);
1616 
1617 	return ret;
1618 }
1619 
1620 static int
1621 hns3vf_en_vlan_filter(struct hns3_hw *hw, bool enable)
1622 {
1623 	uint8_t msg_data;
1624 	int ret;
1625 
1626 	if (!hns3_dev_vf_vlan_flt_supported(hw))
1627 		return 0;
1628 
1629 	msg_data = enable ? 1 : 0;
1630 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
1631 			HNS3_MBX_ENABLE_VLAN_FILTER, &msg_data,
1632 			sizeof(msg_data), true, NULL, 0);
1633 	if (ret)
1634 		hns3_err(hw, "%s vlan filter failed, ret = %d.",
1635 				enable ? "enable" : "disable", ret);
1636 
1637 	return ret;
1638 }
1639 
1640 static int
1641 hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
1642 {
1643 	uint8_t msg_data;
1644 	int ret;
1645 
1646 	msg_data = enable ? 1 : 0;
1647 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
1648 				&msg_data, sizeof(msg_data), false, NULL, 0);
1649 	if (ret)
1650 		hns3_err(hw, "vf %s strip failed, ret = %d.",
1651 				enable ? "enable" : "disable", ret);
1652 
1653 	return ret;
1654 }
1655 
1656 static int
1657 hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1658 {
1659 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1660 	struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1661 	unsigned int tmp_mask;
1662 	int ret = 0;
1663 
1664 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
1665 		hns3_err(hw, "vf set vlan offload failed during resetting, "
1666 			     "mask = 0x%x", mask);
1667 		return -EIO;
1668 	}
1669 
1670 	tmp_mask = (unsigned int)mask;
1671 
1672 	if (tmp_mask & ETH_VLAN_FILTER_MASK) {
1673 		rte_spinlock_lock(&hw->lock);
1674 		/* Enable or disable VLAN filter */
1675 		if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
1676 			ret = hns3vf_en_vlan_filter(hw, true);
1677 		else
1678 			ret = hns3vf_en_vlan_filter(hw, false);
1679 		rte_spinlock_unlock(&hw->lock);
1680 		if (ret)
1681 			return ret;
1682 	}
1683 
1684 	/* Vlan stripping setting */
1685 	if (tmp_mask & ETH_VLAN_STRIP_MASK) {
1686 		rte_spinlock_lock(&hw->lock);
1687 		/* Enable or disable VLAN stripping */
1688 		if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1689 			ret = hns3vf_en_hw_strip_rxvtag(hw, true);
1690 		else
1691 			ret = hns3vf_en_hw_strip_rxvtag(hw, false);
1692 		rte_spinlock_unlock(&hw->lock);
1693 	}
1694 
1695 	return ret;
1696 }
1697 
1698 static int
1699 hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
1700 {
1701 	struct rte_vlan_filter_conf *vfc;
1702 	struct hns3_hw *hw = &hns->hw;
1703 	uint16_t vlan_id;
1704 	uint64_t vbit;
1705 	uint64_t ids;
1706 	int ret = 0;
1707 	uint32_t i;
1708 
1709 	vfc = &hw->data->vlan_filter_conf;
1710 	for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1711 		if (vfc->ids[i] == 0)
1712 			continue;
1713 		ids = vfc->ids[i];
1714 		while (ids) {
1715 			/*
1716 			 * 64 means the num bits of ids, one bit corresponds to
1717 			 * one vlan id
1718 			 */
1719 			vlan_id = 64 * i;
1720 			/* count trailing zeroes */
1721 			vbit = ~ids & (ids - 1);
1722 			/* clear least significant bit set */
1723 			ids ^= (ids ^ (ids - 1)) ^ vbit;
1724 			for (; vbit;) {
1725 				vbit >>= 1;
1726 				vlan_id++;
1727 			}
1728 			ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1729 			if (ret) {
1730 				hns3_err(hw,
1731 					 "VF handle vlan table failed, ret =%d, on = %d",
1732 					 ret, on);
1733 				return ret;
1734 			}
1735 		}
1736 	}
1737 
1738 	return ret;
1739 }
1740 
1741 static int
1742 hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
1743 {
1744 	return hns3vf_handle_all_vlan_table(hns, 0);
1745 }
1746 
1747 static int
1748 hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
1749 {
1750 	struct hns3_hw *hw = &hns->hw;
1751 	struct rte_eth_conf *dev_conf;
1752 	bool en;
1753 	int ret;
1754 
1755 	dev_conf = &hw->data->dev_conf;
1756 	en = dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP ? true
1757 								   : false;
1758 	ret = hns3vf_en_hw_strip_rxvtag(hw, en);
1759 	if (ret)
1760 		hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
1761 			 ret);
1762 	return ret;
1763 }
1764 
1765 static int
1766 hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
1767 {
1768 	struct hns3_adapter *hns = dev->data->dev_private;
1769 	struct rte_eth_dev_data *data = dev->data;
1770 	struct hns3_hw *hw = &hns->hw;
1771 	int ret;
1772 
1773 	if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
1774 	    data->dev_conf.txmode.hw_vlan_reject_untagged ||
1775 	    data->dev_conf.txmode.hw_vlan_insert_pvid) {
1776 		hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
1777 			      "or hw_vlan_insert_pvid is not support!");
1778 	}
1779 
1780 	/* Apply vlan offload setting */
1781 	ret = hns3vf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK |
1782 					ETH_VLAN_FILTER_MASK);
1783 	if (ret)
1784 		hns3_err(hw, "dev config vlan offload failed, ret = %d.", ret);
1785 
1786 	return ret;
1787 }
1788 
1789 static int
1790 hns3vf_set_alive(struct hns3_hw *hw, bool alive)
1791 {
1792 	uint8_t msg_data;
1793 
1794 	msg_data = alive ? 1 : 0;
1795 	return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
1796 				 sizeof(msg_data), false, NULL, 0);
1797 }
1798 
1799 static void
1800 hns3vf_keep_alive_handler(void *param)
1801 {
1802 	struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1803 	struct hns3_adapter *hns = eth_dev->data->dev_private;
1804 	struct hns3_hw *hw = &hns->hw;
1805 	int ret;
1806 
1807 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
1808 				false, NULL, 0);
1809 	if (ret)
1810 		hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
1811 			 ret);
1812 
1813 	rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1814 			  eth_dev);
1815 }
1816 
1817 static void
1818 hns3vf_service_handler(void *param)
1819 {
1820 	struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1821 	struct hns3_adapter *hns = eth_dev->data->dev_private;
1822 	struct hns3_hw *hw = &hns->hw;
1823 
1824 	/*
1825 	 * The query link status and reset processing are executed in the
1826 	 * interrupt thread. When the IMP reset occurs, IMP will not respond,
1827 	 * and the query operation will timeout after 30ms. In the case of
1828 	 * multiple PF/VFs, each query failure timeout causes the IMP reset
1829 	 * interrupt to fail to respond within 100ms.
1830 	 * Before querying the link status, check whether there is a reset
1831 	 * pending, and if so, abandon the query.
1832 	 */
1833 	if (!hns3vf_is_reset_pending(hns))
1834 		hns3vf_request_link_info(hw);
1835 	else
1836 		hns3_warn(hw, "Cancel the query when reset is pending");
1837 
1838 	rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
1839 			  eth_dev);
1840 }
1841 
1842 static void
1843 hns3vf_start_poll_job(struct rte_eth_dev *dev)
1844 {
1845 #define HNS3_REQUEST_LINK_INFO_REMAINS_CNT	3
1846 
1847 	struct hns3_vf *vf = HNS3_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1848 
1849 	if (vf->pf_push_lsc_cap == HNS3_PF_PUSH_LSC_CAP_SUPPORTED)
1850 		vf->req_link_info_cnt = HNS3_REQUEST_LINK_INFO_REMAINS_CNT;
1851 
1852 	__atomic_store_n(&vf->poll_job_started, 1, __ATOMIC_RELAXED);
1853 
1854 	hns3vf_service_handler(dev);
1855 }
1856 
1857 static void
1858 hns3vf_stop_poll_job(struct rte_eth_dev *dev)
1859 {
1860 	struct hns3_vf *vf = HNS3_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1861 
1862 	rte_eal_alarm_cancel(hns3vf_service_handler, dev);
1863 
1864 	__atomic_store_n(&vf->poll_job_started, 0, __ATOMIC_RELAXED);
1865 }
1866 
1867 static int
1868 hns3_query_vf_resource(struct hns3_hw *hw)
1869 {
1870 	struct hns3_vf_res_cmd *req;
1871 	struct hns3_cmd_desc desc;
1872 	uint16_t num_msi;
1873 	int ret;
1874 
1875 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_VF_RSRC, true);
1876 	ret = hns3_cmd_send(hw, &desc, 1);
1877 	if (ret) {
1878 		hns3_err(hw, "query vf resource failed, ret = %d", ret);
1879 		return ret;
1880 	}
1881 
1882 	req = (struct hns3_vf_res_cmd *)desc.data;
1883 	num_msi = hns3_get_field(rte_le_to_cpu_16(req->vf_intr_vector_number),
1884 				 HNS3_VF_VEC_NUM_M, HNS3_VF_VEC_NUM_S);
1885 	if (num_msi < HNS3_MIN_VECTOR_NUM) {
1886 		hns3_err(hw, "Just %u msi resources, not enough for vf(min:%d)",
1887 			 num_msi, HNS3_MIN_VECTOR_NUM);
1888 		return -EINVAL;
1889 	}
1890 
1891 	hw->num_msi = num_msi;
1892 
1893 	return 0;
1894 }
1895 
1896 static int
1897 hns3vf_init_hardware(struct hns3_adapter *hns)
1898 {
1899 	struct hns3_hw *hw = &hns->hw;
1900 	uint16_t mtu = hw->data->mtu;
1901 	int ret;
1902 
1903 	ret = hns3vf_set_promisc_mode(hw, true, false, false);
1904 	if (ret)
1905 		return ret;
1906 
1907 	ret = hns3vf_config_mtu(hw, mtu);
1908 	if (ret)
1909 		goto err_init_hardware;
1910 
1911 	ret = hns3vf_vlan_filter_configure(hns, 0, 1);
1912 	if (ret) {
1913 		PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
1914 		goto err_init_hardware;
1915 	}
1916 
1917 	ret = hns3_config_gro(hw, false);
1918 	if (ret) {
1919 		PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
1920 		goto err_init_hardware;
1921 	}
1922 
1923 	/*
1924 	 * In the initialization clearing the all hardware mapping relationship
1925 	 * configurations between queues and interrupt vectors is needed, so
1926 	 * some error caused by the residual configurations, such as the
1927 	 * unexpected interrupt, can be avoid.
1928 	 */
1929 	ret = hns3vf_init_ring_with_vector(hw);
1930 	if (ret) {
1931 		PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
1932 		goto err_init_hardware;
1933 	}
1934 
1935 	return 0;
1936 
1937 err_init_hardware:
1938 	(void)hns3vf_set_promisc_mode(hw, false, false, false);
1939 	return ret;
1940 }
1941 
1942 static int
1943 hns3vf_clear_vport_list(struct hns3_hw *hw)
1944 {
1945 	return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
1946 				 HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
1947 				 NULL, 0);
1948 }
1949 
1950 static int
1951 hns3vf_init_vf(struct rte_eth_dev *eth_dev)
1952 {
1953 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1954 	struct hns3_adapter *hns = eth_dev->data->dev_private;
1955 	struct hns3_hw *hw = &hns->hw;
1956 	int ret;
1957 
1958 	PMD_INIT_FUNC_TRACE();
1959 
1960 	/* Get hardware io base address from pcie BAR2 IO space */
1961 	hw->io_base = pci_dev->mem_resource[2].addr;
1962 
1963 	/* Firmware command queue initialize */
1964 	ret = hns3_cmd_init_queue(hw);
1965 	if (ret) {
1966 		PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
1967 		goto err_cmd_init_queue;
1968 	}
1969 
1970 	/* Firmware command initialize */
1971 	ret = hns3_cmd_init(hw);
1972 	if (ret) {
1973 		PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
1974 		goto err_cmd_init;
1975 	}
1976 
1977 	hns3_tx_push_init(eth_dev);
1978 
1979 	/* Get VF resource */
1980 	ret = hns3_query_vf_resource(hw);
1981 	if (ret)
1982 		goto err_cmd_init;
1983 
1984 	rte_spinlock_init(&hw->mbx_resp.lock);
1985 
1986 	hns3vf_clear_event_cause(hw, 0);
1987 
1988 	ret = rte_intr_callback_register(&pci_dev->intr_handle,
1989 					 hns3vf_interrupt_handler, eth_dev);
1990 	if (ret) {
1991 		PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
1992 		goto err_intr_callback_register;
1993 	}
1994 
1995 	/* Enable interrupt */
1996 	rte_intr_enable(&pci_dev->intr_handle);
1997 	hns3vf_enable_irq0(hw);
1998 
1999 	/* Get configuration from PF */
2000 	ret = hns3vf_get_configuration(hw);
2001 	if (ret) {
2002 		PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
2003 		goto err_get_config;
2004 	}
2005 
2006 	ret = hns3_tqp_stats_init(hw);
2007 	if (ret)
2008 		goto err_get_config;
2009 
2010 	/* Hardware statistics of imissed registers cleared. */
2011 	ret = hns3_update_imissed_stats(hw, true);
2012 	if (ret) {
2013 		hns3_err(hw, "clear imissed stats failed, ret = %d", ret);
2014 		goto err_set_tc_queue;
2015 	}
2016 
2017 	ret = hns3vf_set_tc_queue_mapping(hns, hw->tqps_num, hw->tqps_num);
2018 	if (ret) {
2019 		PMD_INIT_LOG(ERR, "failed to set tc info, ret = %d.", ret);
2020 		goto err_set_tc_queue;
2021 	}
2022 
2023 	ret = hns3vf_clear_vport_list(hw);
2024 	if (ret) {
2025 		PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
2026 		goto err_set_tc_queue;
2027 	}
2028 
2029 	ret = hns3vf_init_hardware(hns);
2030 	if (ret)
2031 		goto err_set_tc_queue;
2032 
2033 	hns3_rss_set_default_args(hw);
2034 
2035 	ret = hns3vf_set_alive(hw, true);
2036 	if (ret) {
2037 		PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
2038 		goto err_set_tc_queue;
2039 	}
2040 
2041 	return 0;
2042 
2043 err_set_tc_queue:
2044 	hns3_tqp_stats_uninit(hw);
2045 
2046 err_get_config:
2047 	hns3vf_disable_irq0(hw);
2048 	rte_intr_disable(&pci_dev->intr_handle);
2049 	hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
2050 			     eth_dev);
2051 err_intr_callback_register:
2052 err_cmd_init:
2053 	hns3_cmd_uninit(hw);
2054 	hns3_cmd_destroy_queue(hw);
2055 err_cmd_init_queue:
2056 	hw->io_base = NULL;
2057 
2058 	return ret;
2059 }
2060 
2061 static void
2062 hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
2063 {
2064 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2065 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2066 	struct hns3_hw *hw = &hns->hw;
2067 
2068 	PMD_INIT_FUNC_TRACE();
2069 
2070 	hns3_rss_uninit(hns);
2071 	(void)hns3_config_gro(hw, false);
2072 	(void)hns3vf_set_alive(hw, false);
2073 	(void)hns3vf_set_promisc_mode(hw, false, false, false);
2074 	hns3_flow_uninit(eth_dev);
2075 	hns3_tqp_stats_uninit(hw);
2076 	hns3vf_disable_irq0(hw);
2077 	rte_intr_disable(&pci_dev->intr_handle);
2078 	hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
2079 			     eth_dev);
2080 	hns3_cmd_uninit(hw);
2081 	hns3_cmd_destroy_queue(hw);
2082 	hw->io_base = NULL;
2083 }
2084 
2085 static int
2086 hns3vf_do_stop(struct hns3_adapter *hns)
2087 {
2088 	struct hns3_hw *hw = &hns->hw;
2089 	int ret;
2090 
2091 	hw->mac.link_status = ETH_LINK_DOWN;
2092 
2093 	/*
2094 	 * The "hns3vf_do_stop" function will also be called by .stop_service to
2095 	 * prepare reset. At the time of global or IMP reset, the command cannot
2096 	 * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
2097 	 * accessed during the reset process. So the mbuf can not be released
2098 	 * during reset and is required to be released after the reset is
2099 	 * completed.
2100 	 */
2101 	if (__atomic_load_n(&hw->reset.resetting,  __ATOMIC_RELAXED) == 0)
2102 		hns3_dev_release_mbufs(hns);
2103 
2104 	if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
2105 		hns3vf_configure_mac_addr(hns, true);
2106 		ret = hns3_reset_all_tqps(hns);
2107 		if (ret) {
2108 			hns3_err(hw, "failed to reset all queues ret = %d",
2109 				 ret);
2110 			return ret;
2111 		}
2112 	}
2113 	return 0;
2114 }
2115 
2116 static void
2117 hns3vf_unmap_rx_interrupt(struct rte_eth_dev *dev)
2118 {
2119 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2120 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2121 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2122 	uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
2123 	uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
2124 	uint16_t q_id;
2125 
2126 	if (dev->data->dev_conf.intr_conf.rxq == 0)
2127 		return;
2128 
2129 	/* unmap the ring with vector */
2130 	if (rte_intr_allow_others(intr_handle)) {
2131 		vec = RTE_INTR_VEC_RXTX_OFFSET;
2132 		base = RTE_INTR_VEC_RXTX_OFFSET;
2133 	}
2134 	if (rte_intr_dp_is_en(intr_handle)) {
2135 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2136 			(void)hns3vf_bind_ring_with_vector(hw, vec, false,
2137 							   HNS3_RING_TYPE_RX,
2138 							   q_id);
2139 			if (vec < base + intr_handle->nb_efd - 1)
2140 				vec++;
2141 		}
2142 	}
2143 	/* Clean datapath event and queue/vec mapping */
2144 	rte_intr_efd_disable(intr_handle);
2145 	if (intr_handle->intr_vec) {
2146 		rte_free(intr_handle->intr_vec);
2147 		intr_handle->intr_vec = NULL;
2148 	}
2149 }
2150 
2151 static int
2152 hns3vf_dev_stop(struct rte_eth_dev *dev)
2153 {
2154 	struct hns3_adapter *hns = dev->data->dev_private;
2155 	struct hns3_hw *hw = &hns->hw;
2156 
2157 	PMD_INIT_FUNC_TRACE();
2158 	dev->data->dev_started = 0;
2159 
2160 	hw->adapter_state = HNS3_NIC_STOPPING;
2161 	hns3_set_rxtx_function(dev);
2162 	rte_wmb();
2163 	/* Disable datapath on secondary process. */
2164 	hns3_mp_req_stop_rxtx(dev);
2165 	/* Prevent crashes when queues are still in use. */
2166 	rte_delay_ms(hw->cfg_max_queues);
2167 
2168 	rte_spinlock_lock(&hw->lock);
2169 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
2170 		hns3_stop_tqps(hw);
2171 		hns3vf_do_stop(hns);
2172 		hns3vf_unmap_rx_interrupt(dev);
2173 		hw->adapter_state = HNS3_NIC_CONFIGURED;
2174 	}
2175 	hns3_rx_scattered_reset(dev);
2176 	hns3vf_stop_poll_job(dev);
2177 	hns3_stop_report_lse(dev);
2178 	rte_spinlock_unlock(&hw->lock);
2179 
2180 	return 0;
2181 }
2182 
2183 static int
2184 hns3vf_dev_close(struct rte_eth_dev *eth_dev)
2185 {
2186 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2187 	struct hns3_hw *hw = &hns->hw;
2188 	int ret = 0;
2189 
2190 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2191 		return 0;
2192 
2193 	if (hw->adapter_state == HNS3_NIC_STARTED)
2194 		ret = hns3vf_dev_stop(eth_dev);
2195 
2196 	hw->adapter_state = HNS3_NIC_CLOSING;
2197 	hns3_reset_abort(hns);
2198 	hw->adapter_state = HNS3_NIC_CLOSED;
2199 	rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
2200 	hns3vf_configure_all_mc_mac_addr(hns, true);
2201 	hns3vf_remove_all_vlan_table(hns);
2202 	hns3vf_uninit_vf(eth_dev);
2203 	hns3_free_all_queues(eth_dev);
2204 	rte_free(hw->reset.wait_data);
2205 	hns3_mp_uninit_primary();
2206 	hns3_warn(hw, "Close port %u finished", hw->data->port_id);
2207 
2208 	return ret;
2209 }
2210 
2211 static int
2212 hns3vf_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2213 		      size_t fw_size)
2214 {
2215 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2216 	struct hns3_hw *hw = &hns->hw;
2217 	uint32_t version = hw->fw_version;
2218 	int ret;
2219 
2220 	ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2221 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2222 				      HNS3_FW_VERSION_BYTE3_S),
2223 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2224 				      HNS3_FW_VERSION_BYTE2_S),
2225 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2226 				      HNS3_FW_VERSION_BYTE1_S),
2227 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2228 				      HNS3_FW_VERSION_BYTE0_S));
2229 	if (ret < 0)
2230 		return -EINVAL;
2231 
2232 	ret += 1; /* add the size of '\0' */
2233 	if (fw_size < (size_t)ret)
2234 		return ret;
2235 	else
2236 		return 0;
2237 }
2238 
2239 static int
2240 hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
2241 		       __rte_unused int wait_to_complete)
2242 {
2243 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2244 	struct hns3_hw *hw = &hns->hw;
2245 	struct hns3_mac *mac = &hw->mac;
2246 	struct rte_eth_link new_link;
2247 
2248 	memset(&new_link, 0, sizeof(new_link));
2249 	switch (mac->link_speed) {
2250 	case ETH_SPEED_NUM_10M:
2251 	case ETH_SPEED_NUM_100M:
2252 	case ETH_SPEED_NUM_1G:
2253 	case ETH_SPEED_NUM_10G:
2254 	case ETH_SPEED_NUM_25G:
2255 	case ETH_SPEED_NUM_40G:
2256 	case ETH_SPEED_NUM_50G:
2257 	case ETH_SPEED_NUM_100G:
2258 	case ETH_SPEED_NUM_200G:
2259 		if (mac->link_status)
2260 			new_link.link_speed = mac->link_speed;
2261 		break;
2262 	default:
2263 		if (mac->link_status)
2264 			new_link.link_speed = ETH_SPEED_NUM_UNKNOWN;
2265 		break;
2266 	}
2267 
2268 	if (!mac->link_status)
2269 		new_link.link_speed = ETH_SPEED_NUM_NONE;
2270 
2271 	new_link.link_duplex = mac->link_duplex;
2272 	new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2273 	new_link.link_autoneg =
2274 	    !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2275 
2276 	return rte_eth_linkstatus_set(eth_dev, &new_link);
2277 }
2278 
2279 static int
2280 hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
2281 {
2282 	struct hns3_hw *hw = &hns->hw;
2283 	uint16_t nb_rx_q = hw->data->nb_rx_queues;
2284 	uint16_t nb_tx_q = hw->data->nb_tx_queues;
2285 	int ret;
2286 
2287 	ret = hns3vf_set_tc_queue_mapping(hns, nb_rx_q, nb_tx_q);
2288 	if (ret)
2289 		return ret;
2290 
2291 	hns3_enable_rxd_adv_layout(hw);
2292 
2293 	ret = hns3_init_queues(hns, reset_queue);
2294 	if (ret)
2295 		hns3_err(hw, "failed to init queues, ret = %d.", ret);
2296 
2297 	return ret;
2298 }
2299 
2300 static int
2301 hns3vf_map_rx_interrupt(struct rte_eth_dev *dev)
2302 {
2303 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2304 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2305 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2306 	uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
2307 	uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
2308 	uint32_t intr_vector;
2309 	uint16_t q_id;
2310 	int ret;
2311 
2312 	/*
2313 	 * hns3 needs a separate interrupt to be used as event interrupt which
2314 	 * could not be shared with task queue pair, so KERNEL drivers need
2315 	 * support multiple interrupt vectors.
2316 	 */
2317 	if (dev->data->dev_conf.intr_conf.rxq == 0 ||
2318 	    !rte_intr_cap_multiple(intr_handle))
2319 		return 0;
2320 
2321 	rte_intr_disable(intr_handle);
2322 	intr_vector = hw->used_rx_queues;
2323 	/* It creates event fd for each intr vector when MSIX is used */
2324 	if (rte_intr_efd_enable(intr_handle, intr_vector))
2325 		return -EINVAL;
2326 
2327 	if (intr_handle->intr_vec == NULL) {
2328 		intr_handle->intr_vec =
2329 			rte_zmalloc("intr_vec",
2330 				    hw->used_rx_queues * sizeof(int), 0);
2331 		if (intr_handle->intr_vec == NULL) {
2332 			hns3_err(hw, "Failed to allocate %u rx_queues"
2333 				     " intr_vec", hw->used_rx_queues);
2334 			ret = -ENOMEM;
2335 			goto vf_alloc_intr_vec_error;
2336 		}
2337 	}
2338 
2339 	if (rte_intr_allow_others(intr_handle)) {
2340 		vec = RTE_INTR_VEC_RXTX_OFFSET;
2341 		base = RTE_INTR_VEC_RXTX_OFFSET;
2342 	}
2343 
2344 	for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2345 		ret = hns3vf_bind_ring_with_vector(hw, vec, true,
2346 						   HNS3_RING_TYPE_RX, q_id);
2347 		if (ret)
2348 			goto vf_bind_vector_error;
2349 		intr_handle->intr_vec[q_id] = vec;
2350 		/*
2351 		 * If there are not enough efds (e.g. not enough interrupt),
2352 		 * remaining queues will be bond to the last interrupt.
2353 		 */
2354 		if (vec < base + intr_handle->nb_efd - 1)
2355 			vec++;
2356 	}
2357 	rte_intr_enable(intr_handle);
2358 	return 0;
2359 
2360 vf_bind_vector_error:
2361 	free(intr_handle->intr_vec);
2362 	intr_handle->intr_vec = NULL;
2363 vf_alloc_intr_vec_error:
2364 	rte_intr_efd_disable(intr_handle);
2365 	return ret;
2366 }
2367 
2368 static int
2369 hns3vf_restore_rx_interrupt(struct hns3_hw *hw)
2370 {
2371 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
2372 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2373 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2374 	uint16_t q_id;
2375 	int ret;
2376 
2377 	if (dev->data->dev_conf.intr_conf.rxq == 0)
2378 		return 0;
2379 
2380 	if (rte_intr_dp_is_en(intr_handle)) {
2381 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2382 			ret = hns3vf_bind_ring_with_vector(hw,
2383 					intr_handle->intr_vec[q_id], true,
2384 					HNS3_RING_TYPE_RX, q_id);
2385 			if (ret)
2386 				return ret;
2387 		}
2388 	}
2389 
2390 	return 0;
2391 }
2392 
2393 static void
2394 hns3vf_restore_filter(struct rte_eth_dev *dev)
2395 {
2396 	hns3_restore_rss_filter(dev);
2397 }
2398 
2399 static int
2400 hns3vf_dev_start(struct rte_eth_dev *dev)
2401 {
2402 	struct hns3_adapter *hns = dev->data->dev_private;
2403 	struct hns3_hw *hw = &hns->hw;
2404 	int ret;
2405 
2406 	PMD_INIT_FUNC_TRACE();
2407 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
2408 		return -EBUSY;
2409 
2410 	rte_spinlock_lock(&hw->lock);
2411 	hw->adapter_state = HNS3_NIC_STARTING;
2412 	ret = hns3vf_do_start(hns, true);
2413 	if (ret) {
2414 		hw->adapter_state = HNS3_NIC_CONFIGURED;
2415 		rte_spinlock_unlock(&hw->lock);
2416 		return ret;
2417 	}
2418 	ret = hns3vf_map_rx_interrupt(dev);
2419 	if (ret)
2420 		goto map_rx_inter_err;
2421 
2422 	/*
2423 	 * There are three register used to control the status of a TQP
2424 	 * (contains a pair of Tx queue and Rx queue) in the new version network
2425 	 * engine. One is used to control the enabling of Tx queue, the other is
2426 	 * used to control the enabling of Rx queue, and the last is the master
2427 	 * switch used to control the enabling of the tqp. The Tx register and
2428 	 * TQP register must be enabled at the same time to enable a Tx queue.
2429 	 * The same applies to the Rx queue. For the older network enginem, this
2430 	 * function only refresh the enabled flag, and it is used to update the
2431 	 * status of queue in the dpdk framework.
2432 	 */
2433 	ret = hns3_start_all_txqs(dev);
2434 	if (ret)
2435 		goto map_rx_inter_err;
2436 
2437 	ret = hns3_start_all_rxqs(dev);
2438 	if (ret)
2439 		goto start_all_rxqs_fail;
2440 
2441 	hw->adapter_state = HNS3_NIC_STARTED;
2442 	rte_spinlock_unlock(&hw->lock);
2443 
2444 	hns3_rx_scattered_calc(dev);
2445 	hns3_set_rxtx_function(dev);
2446 	hns3_mp_req_start_rxtx(dev);
2447 
2448 	hns3vf_restore_filter(dev);
2449 
2450 	/* Enable interrupt of all rx queues before enabling queues */
2451 	hns3_dev_all_rx_queue_intr_enable(hw, true);
2452 	hns3_start_tqps(hw);
2453 
2454 	if (dev->data->dev_conf.intr_conf.lsc != 0)
2455 		hns3vf_dev_link_update(dev, 0);
2456 	hns3vf_start_poll_job(dev);
2457 
2458 	return ret;
2459 
2460 start_all_rxqs_fail:
2461 	hns3_stop_all_txqs(dev);
2462 map_rx_inter_err:
2463 	(void)hns3vf_do_stop(hns);
2464 	hw->adapter_state = HNS3_NIC_CONFIGURED;
2465 	rte_spinlock_unlock(&hw->lock);
2466 
2467 	return ret;
2468 }
2469 
2470 static bool
2471 is_vf_reset_done(struct hns3_hw *hw)
2472 {
2473 #define HNS3_FUN_RST_ING_BITS \
2474 	(BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
2475 	 BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
2476 	 BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
2477 	 BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
2478 
2479 	uint32_t val;
2480 
2481 	if (hw->reset.level == HNS3_VF_RESET) {
2482 		val = hns3_read_dev(hw, HNS3_VF_RST_ING);
2483 		if (val & HNS3_VF_RST_ING_BIT)
2484 			return false;
2485 	} else {
2486 		val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
2487 		if (val & HNS3_FUN_RST_ING_BITS)
2488 			return false;
2489 	}
2490 	return true;
2491 }
2492 
2493 bool
2494 hns3vf_is_reset_pending(struct hns3_adapter *hns)
2495 {
2496 	struct hns3_hw *hw = &hns->hw;
2497 	enum hns3_reset_level reset;
2498 
2499 	/*
2500 	 * According to the protocol of PCIe, FLR to a PF device resets the PF
2501 	 * state as well as the SR-IOV extended capability including VF Enable
2502 	 * which means that VFs no longer exist.
2503 	 *
2504 	 * HNS3_VF_FULL_RESET means PF device is in FLR reset. when PF device
2505 	 * is in FLR stage, the register state of VF device is not reliable,
2506 	 * so register states detection can not be carried out. In this case,
2507 	 * we just ignore the register states and return false to indicate that
2508 	 * there are no other reset states that need to be processed by driver.
2509 	 */
2510 	if (hw->reset.level == HNS3_VF_FULL_RESET)
2511 		return false;
2512 
2513 	/* Check the registers to confirm whether there is reset pending */
2514 	hns3vf_check_event_cause(hns, NULL);
2515 	reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
2516 	if (hw->reset.level != HNS3_NONE_RESET && reset != HNS3_NONE_RESET &&
2517 	    hw->reset.level < reset) {
2518 		hns3_warn(hw, "High level reset %d is pending", reset);
2519 		return true;
2520 	}
2521 	return false;
2522 }
2523 
2524 static int
2525 hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
2526 {
2527 	struct hns3_hw *hw = &hns->hw;
2528 	struct hns3_wait_data *wait_data = hw->reset.wait_data;
2529 	struct timeval tv;
2530 
2531 	if (wait_data->result == HNS3_WAIT_SUCCESS) {
2532 		/*
2533 		 * After vf reset is ready, the PF may not have completed
2534 		 * the reset processing. The vf sending mbox to PF may fail
2535 		 * during the pf reset, so it is better to add extra delay.
2536 		 */
2537 		if (hw->reset.level == HNS3_VF_FUNC_RESET ||
2538 		    hw->reset.level == HNS3_FLR_RESET)
2539 			return 0;
2540 		/* Reset retry process, no need to add extra delay. */
2541 		if (hw->reset.attempts)
2542 			return 0;
2543 		if (wait_data->check_completion == NULL)
2544 			return 0;
2545 
2546 		wait_data->check_completion = NULL;
2547 		wait_data->interval = 1 * MSEC_PER_SEC * USEC_PER_MSEC;
2548 		wait_data->count = 1;
2549 		wait_data->result = HNS3_WAIT_REQUEST;
2550 		rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
2551 				  wait_data);
2552 		hns3_warn(hw, "hardware is ready, delay 1 sec for PF reset complete");
2553 		return -EAGAIN;
2554 	} else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
2555 		hns3_clock_gettime(&tv);
2556 		hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
2557 			  tv.tv_sec, tv.tv_usec);
2558 		return -ETIME;
2559 	} else if (wait_data->result == HNS3_WAIT_REQUEST)
2560 		return -EAGAIN;
2561 
2562 	wait_data->hns = hns;
2563 	wait_data->check_completion = is_vf_reset_done;
2564 	wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
2565 				HNS3VF_RESET_WAIT_MS + hns3_clock_gettime_ms();
2566 	wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
2567 	wait_data->count = HNS3VF_RESET_WAIT_CNT;
2568 	wait_data->result = HNS3_WAIT_REQUEST;
2569 	rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
2570 	return -EAGAIN;
2571 }
2572 
2573 static int
2574 hns3vf_prepare_reset(struct hns3_adapter *hns)
2575 {
2576 	struct hns3_hw *hw = &hns->hw;
2577 	int ret;
2578 
2579 	if (hw->reset.level == HNS3_VF_FUNC_RESET) {
2580 		ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
2581 					0, true, NULL, 0);
2582 		if (ret)
2583 			return ret;
2584 	}
2585 	__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
2586 
2587 	return 0;
2588 }
2589 
2590 static int
2591 hns3vf_stop_service(struct hns3_adapter *hns)
2592 {
2593 	struct hns3_hw *hw = &hns->hw;
2594 	struct rte_eth_dev *eth_dev;
2595 
2596 	eth_dev = &rte_eth_devices[hw->data->port_id];
2597 	if (hw->adapter_state == HNS3_NIC_STARTED) {
2598 		/*
2599 		 * Make sure call update link status before hns3vf_stop_poll_job
2600 		 * because update link status depend on polling job exist.
2601 		 */
2602 		hns3vf_update_link_status(hw, ETH_LINK_DOWN, hw->mac.link_speed,
2603 					  hw->mac.link_duplex);
2604 		hns3vf_stop_poll_job(eth_dev);
2605 	}
2606 	hw->mac.link_status = ETH_LINK_DOWN;
2607 
2608 	hns3_set_rxtx_function(eth_dev);
2609 	rte_wmb();
2610 	/* Disable datapath on secondary process. */
2611 	hns3_mp_req_stop_rxtx(eth_dev);
2612 	rte_delay_ms(hw->cfg_max_queues);
2613 
2614 	rte_spinlock_lock(&hw->lock);
2615 	if (hw->adapter_state == HNS3_NIC_STARTED ||
2616 	    hw->adapter_state == HNS3_NIC_STOPPING) {
2617 		hns3_enable_all_queues(hw, false);
2618 		hns3vf_do_stop(hns);
2619 		hw->reset.mbuf_deferred_free = true;
2620 	} else
2621 		hw->reset.mbuf_deferred_free = false;
2622 
2623 	/*
2624 	 * It is cumbersome for hardware to pick-and-choose entries for deletion
2625 	 * from table space. Hence, for function reset software intervention is
2626 	 * required to delete the entries.
2627 	 */
2628 	if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
2629 		hns3vf_configure_all_mc_mac_addr(hns, true);
2630 	rte_spinlock_unlock(&hw->lock);
2631 
2632 	return 0;
2633 }
2634 
2635 static int
2636 hns3vf_start_service(struct hns3_adapter *hns)
2637 {
2638 	struct hns3_hw *hw = &hns->hw;
2639 	struct rte_eth_dev *eth_dev;
2640 
2641 	eth_dev = &rte_eth_devices[hw->data->port_id];
2642 	hns3_set_rxtx_function(eth_dev);
2643 	hns3_mp_req_start_rxtx(eth_dev);
2644 	if (hw->adapter_state == HNS3_NIC_STARTED) {
2645 		hns3vf_start_poll_job(eth_dev);
2646 
2647 		/* Enable interrupt of all rx queues before enabling queues */
2648 		hns3_dev_all_rx_queue_intr_enable(hw, true);
2649 		/*
2650 		 * Enable state of each rxq and txq will be recovered after
2651 		 * reset, so we need to restore them before enable all tqps;
2652 		 */
2653 		hns3_restore_tqp_enable_state(hw);
2654 		/*
2655 		 * When finished the initialization, enable queues to receive
2656 		 * and transmit packets.
2657 		 */
2658 		hns3_enable_all_queues(hw, true);
2659 	}
2660 
2661 	return 0;
2662 }
2663 
2664 static int
2665 hns3vf_check_default_mac_change(struct hns3_hw *hw)
2666 {
2667 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2668 	struct rte_ether_addr *hw_mac;
2669 	int ret;
2670 
2671 	/*
2672 	 * The hns3 PF ethdev driver in kernel support setting VF MAC address
2673 	 * on the host by "ip link set ..." command. If the hns3 PF kernel
2674 	 * ethdev driver sets the MAC address for VF device after the
2675 	 * initialization of the related VF device, the PF driver will notify
2676 	 * VF driver to reset VF device to make the new MAC address effective
2677 	 * immediately. The hns3 VF PMD driver should check whether the MAC
2678 	 * address has been changed by the PF kernel ethdev driver, if changed
2679 	 * VF driver should configure hardware using the new MAC address in the
2680 	 * recovering hardware configuration stage of the reset process.
2681 	 */
2682 	ret = hns3vf_get_host_mac_addr(hw);
2683 	if (ret)
2684 		return ret;
2685 
2686 	hw_mac = (struct rte_ether_addr *)hw->mac.mac_addr;
2687 	ret = rte_is_zero_ether_addr(hw_mac);
2688 	if (ret) {
2689 		rte_ether_addr_copy(&hw->data->mac_addrs[0], hw_mac);
2690 	} else {
2691 		ret = rte_is_same_ether_addr(&hw->data->mac_addrs[0], hw_mac);
2692 		if (!ret) {
2693 			rte_ether_addr_copy(hw_mac, &hw->data->mac_addrs[0]);
2694 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2695 					      &hw->data->mac_addrs[0]);
2696 			hns3_warn(hw, "Default MAC address has been changed to:"
2697 				  " %s by the host PF kernel ethdev driver",
2698 				  mac_str);
2699 		}
2700 	}
2701 
2702 	return 0;
2703 }
2704 
2705 static int
2706 hns3vf_restore_conf(struct hns3_adapter *hns)
2707 {
2708 	struct hns3_hw *hw = &hns->hw;
2709 	int ret;
2710 
2711 	ret = hns3vf_check_default_mac_change(hw);
2712 	if (ret)
2713 		return ret;
2714 
2715 	ret = hns3vf_configure_mac_addr(hns, false);
2716 	if (ret)
2717 		return ret;
2718 
2719 	ret = hns3vf_configure_all_mc_mac_addr(hns, false);
2720 	if (ret)
2721 		goto err_mc_mac;
2722 
2723 	ret = hns3vf_restore_promisc(hns);
2724 	if (ret)
2725 		goto err_vlan_table;
2726 
2727 	ret = hns3vf_restore_vlan_conf(hns);
2728 	if (ret)
2729 		goto err_vlan_table;
2730 
2731 	ret = hns3vf_get_port_base_vlan_filter_state(hw);
2732 	if (ret)
2733 		goto err_vlan_table;
2734 
2735 	ret = hns3vf_restore_rx_interrupt(hw);
2736 	if (ret)
2737 		goto err_vlan_table;
2738 
2739 	ret = hns3_restore_gro_conf(hw);
2740 	if (ret)
2741 		goto err_vlan_table;
2742 
2743 	if (hw->adapter_state == HNS3_NIC_STARTED) {
2744 		ret = hns3vf_do_start(hns, false);
2745 		if (ret)
2746 			goto err_vlan_table;
2747 		hns3_info(hw, "hns3vf dev restart successful!");
2748 	} else if (hw->adapter_state == HNS3_NIC_STOPPING)
2749 		hw->adapter_state = HNS3_NIC_CONFIGURED;
2750 
2751 	ret = hns3vf_set_alive(hw, true);
2752 	if (ret) {
2753 		hns3_err(hw, "failed to VF send alive to PF: %d", ret);
2754 		goto err_vlan_table;
2755 	}
2756 
2757 	return 0;
2758 
2759 err_vlan_table:
2760 	hns3vf_configure_all_mc_mac_addr(hns, true);
2761 err_mc_mac:
2762 	hns3vf_configure_mac_addr(hns, true);
2763 	return ret;
2764 }
2765 
2766 static enum hns3_reset_level
2767 hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
2768 {
2769 	enum hns3_reset_level reset_level;
2770 
2771 	/* return the highest priority reset level amongst all */
2772 	if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
2773 		reset_level = HNS3_VF_RESET;
2774 	else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
2775 		reset_level = HNS3_VF_FULL_RESET;
2776 	else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
2777 		reset_level = HNS3_VF_PF_FUNC_RESET;
2778 	else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
2779 		reset_level = HNS3_VF_FUNC_RESET;
2780 	else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
2781 		reset_level = HNS3_FLR_RESET;
2782 	else
2783 		reset_level = HNS3_NONE_RESET;
2784 
2785 	if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
2786 		return HNS3_NONE_RESET;
2787 
2788 	return reset_level;
2789 }
2790 
2791 static void
2792 hns3vf_reset_service(void *param)
2793 {
2794 	struct hns3_adapter *hns = (struct hns3_adapter *)param;
2795 	struct hns3_hw *hw = &hns->hw;
2796 	enum hns3_reset_level reset_level;
2797 	struct timeval tv_delta;
2798 	struct timeval tv_start;
2799 	struct timeval tv;
2800 	uint64_t msec;
2801 
2802 	/*
2803 	 * The interrupt is not triggered within the delay time.
2804 	 * The interrupt may have been lost. It is necessary to handle
2805 	 * the interrupt to recover from the error.
2806 	 */
2807 	if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
2808 			    SCHEDULE_DEFERRED) {
2809 		__atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
2810 				 __ATOMIC_RELAXED);
2811 		hns3_err(hw, "Handling interrupts in delayed tasks");
2812 		hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
2813 		reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2814 		if (reset_level == HNS3_NONE_RESET) {
2815 			hns3_err(hw, "No reset level is set, try global reset");
2816 			hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
2817 		}
2818 	}
2819 	__atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
2820 
2821 	/*
2822 	 * Hardware reset has been notified, we now have to poll & check if
2823 	 * hardware has actually completed the reset sequence.
2824 	 */
2825 	reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2826 	if (reset_level != HNS3_NONE_RESET) {
2827 		hns3_clock_gettime(&tv_start);
2828 		hns3_reset_process(hns, reset_level);
2829 		hns3_clock_gettime(&tv);
2830 		timersub(&tv, &tv_start, &tv_delta);
2831 		msec = hns3_clock_calctime_ms(&tv_delta);
2832 		if (msec > HNS3_RESET_PROCESS_MS)
2833 			hns3_err(hw, "%d handle long time delta %" PRIu64
2834 				 " ms time=%ld.%.6ld",
2835 				 hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
2836 	}
2837 }
2838 
2839 static int
2840 hns3vf_reinit_dev(struct hns3_adapter *hns)
2841 {
2842 	struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
2843 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2844 	struct hns3_hw *hw = &hns->hw;
2845 	int ret;
2846 
2847 	if (hw->reset.level == HNS3_VF_FULL_RESET) {
2848 		rte_intr_disable(&pci_dev->intr_handle);
2849 		ret = hns3vf_set_bus_master(pci_dev, true);
2850 		if (ret < 0) {
2851 			hns3_err(hw, "failed to set pci bus, ret = %d", ret);
2852 			return ret;
2853 		}
2854 	}
2855 
2856 	/* Firmware command initialize */
2857 	ret = hns3_cmd_init(hw);
2858 	if (ret) {
2859 		hns3_err(hw, "Failed to init cmd: %d", ret);
2860 		return ret;
2861 	}
2862 
2863 	if (hw->reset.level == HNS3_VF_FULL_RESET) {
2864 		/*
2865 		 * UIO enables msix by writing the pcie configuration space
2866 		 * vfio_pci enables msix in rte_intr_enable.
2867 		 */
2868 		if (pci_dev->kdrv == RTE_PCI_KDRV_IGB_UIO ||
2869 		    pci_dev->kdrv == RTE_PCI_KDRV_UIO_GENERIC) {
2870 			if (hns3vf_enable_msix(pci_dev, true))
2871 				hns3_err(hw, "Failed to enable msix");
2872 		}
2873 
2874 		rte_intr_enable(&pci_dev->intr_handle);
2875 	}
2876 
2877 	ret = hns3_reset_all_tqps(hns);
2878 	if (ret) {
2879 		hns3_err(hw, "Failed to reset all queues: %d", ret);
2880 		return ret;
2881 	}
2882 
2883 	ret = hns3vf_init_hardware(hns);
2884 	if (ret) {
2885 		hns3_err(hw, "Failed to init hardware: %d", ret);
2886 		return ret;
2887 	}
2888 
2889 	return 0;
2890 }
2891 
2892 static const struct eth_dev_ops hns3vf_eth_dev_ops = {
2893 	.dev_configure      = hns3vf_dev_configure,
2894 	.dev_start          = hns3vf_dev_start,
2895 	.dev_stop           = hns3vf_dev_stop,
2896 	.dev_close          = hns3vf_dev_close,
2897 	.mtu_set            = hns3vf_dev_mtu_set,
2898 	.promiscuous_enable = hns3vf_dev_promiscuous_enable,
2899 	.promiscuous_disable = hns3vf_dev_promiscuous_disable,
2900 	.allmulticast_enable = hns3vf_dev_allmulticast_enable,
2901 	.allmulticast_disable = hns3vf_dev_allmulticast_disable,
2902 	.stats_get          = hns3_stats_get,
2903 	.stats_reset        = hns3_stats_reset,
2904 	.xstats_get         = hns3_dev_xstats_get,
2905 	.xstats_get_names   = hns3_dev_xstats_get_names,
2906 	.xstats_reset       = hns3_dev_xstats_reset,
2907 	.xstats_get_by_id   = hns3_dev_xstats_get_by_id,
2908 	.xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
2909 	.dev_infos_get      = hns3vf_dev_infos_get,
2910 	.fw_version_get     = hns3vf_fw_version_get,
2911 	.rx_queue_setup     = hns3_rx_queue_setup,
2912 	.tx_queue_setup     = hns3_tx_queue_setup,
2913 	.rx_queue_release   = hns3_dev_rx_queue_release,
2914 	.tx_queue_release   = hns3_dev_tx_queue_release,
2915 	.rx_queue_start     = hns3_dev_rx_queue_start,
2916 	.rx_queue_stop      = hns3_dev_rx_queue_stop,
2917 	.tx_queue_start     = hns3_dev_tx_queue_start,
2918 	.tx_queue_stop      = hns3_dev_tx_queue_stop,
2919 	.rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
2920 	.rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
2921 	.rxq_info_get       = hns3_rxq_info_get,
2922 	.txq_info_get       = hns3_txq_info_get,
2923 	.rx_burst_mode_get  = hns3_rx_burst_mode_get,
2924 	.tx_burst_mode_get  = hns3_tx_burst_mode_get,
2925 	.mac_addr_add       = hns3vf_add_mac_addr,
2926 	.mac_addr_remove    = hns3vf_remove_mac_addr,
2927 	.mac_addr_set       = hns3vf_set_default_mac_addr,
2928 	.set_mc_addr_list   = hns3vf_set_mc_mac_addr_list,
2929 	.link_update        = hns3vf_dev_link_update,
2930 	.rss_hash_update    = hns3_dev_rss_hash_update,
2931 	.rss_hash_conf_get  = hns3_dev_rss_hash_conf_get,
2932 	.reta_update        = hns3_dev_rss_reta_update,
2933 	.reta_query         = hns3_dev_rss_reta_query,
2934 	.flow_ops_get       = hns3_dev_flow_ops_get,
2935 	.vlan_filter_set    = hns3vf_vlan_filter_set,
2936 	.vlan_offload_set   = hns3vf_vlan_offload_set,
2937 	.get_reg            = hns3_get_regs,
2938 	.dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
2939 	.tx_done_cleanup    = hns3_tx_done_cleanup,
2940 };
2941 
2942 static const struct hns3_reset_ops hns3vf_reset_ops = {
2943 	.reset_service       = hns3vf_reset_service,
2944 	.stop_service        = hns3vf_stop_service,
2945 	.prepare_reset       = hns3vf_prepare_reset,
2946 	.wait_hardware_ready = hns3vf_wait_hardware_ready,
2947 	.reinit_dev          = hns3vf_reinit_dev,
2948 	.restore_conf        = hns3vf_restore_conf,
2949 	.start_service       = hns3vf_start_service,
2950 };
2951 
2952 static int
2953 hns3vf_dev_init(struct rte_eth_dev *eth_dev)
2954 {
2955 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2956 	struct hns3_hw *hw = &hns->hw;
2957 	int ret;
2958 
2959 	PMD_INIT_FUNC_TRACE();
2960 
2961 	hns3_flow_init(eth_dev);
2962 
2963 	hns3_set_rxtx_function(eth_dev);
2964 	eth_dev->dev_ops = &hns3vf_eth_dev_ops;
2965 	eth_dev->rx_queue_count = hns3_rx_queue_count;
2966 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2967 		ret = hns3_mp_init_secondary();
2968 		if (ret) {
2969 			PMD_INIT_LOG(ERR, "Failed to init for secondary "
2970 					  "process, ret = %d", ret);
2971 			goto err_mp_init_secondary;
2972 		}
2973 		hw->secondary_cnt++;
2974 		hns3_tx_push_init(eth_dev);
2975 		return 0;
2976 	}
2977 
2978 	ret = hns3_mp_init_primary();
2979 	if (ret) {
2980 		PMD_INIT_LOG(ERR,
2981 			     "Failed to init for primary process, ret = %d",
2982 			     ret);
2983 		goto err_mp_init_primary;
2984 	}
2985 
2986 	hw->adapter_state = HNS3_NIC_UNINITIALIZED;
2987 	hns->is_vf = true;
2988 	hw->data = eth_dev->data;
2989 	hns3_parse_devargs(eth_dev);
2990 
2991 	ret = hns3_reset_init(hw);
2992 	if (ret)
2993 		goto err_init_reset;
2994 	hw->reset.ops = &hns3vf_reset_ops;
2995 
2996 	ret = hns3vf_init_vf(eth_dev);
2997 	if (ret) {
2998 		PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
2999 		goto err_init_vf;
3000 	}
3001 
3002 	/* Allocate memory for storing MAC addresses */
3003 	eth_dev->data->mac_addrs = rte_zmalloc("hns3vf-mac",
3004 					       sizeof(struct rte_ether_addr) *
3005 					       HNS3_VF_UC_MACADDR_NUM, 0);
3006 	if (eth_dev->data->mac_addrs == NULL) {
3007 		PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
3008 			     "to store MAC addresses",
3009 			     sizeof(struct rte_ether_addr) *
3010 			     HNS3_VF_UC_MACADDR_NUM);
3011 		ret = -ENOMEM;
3012 		goto err_rte_zmalloc;
3013 	}
3014 
3015 	/*
3016 	 * The hns3 PF ethdev driver in kernel support setting VF MAC address
3017 	 * on the host by "ip link set ..." command. To avoid some incorrect
3018 	 * scenes, for example, hns3 VF PMD driver fails to receive and send
3019 	 * packets after user configure the MAC address by using the
3020 	 * "ip link set ..." command, hns3 VF PMD driver keep the same MAC
3021 	 * address strategy as the hns3 kernel ethdev driver in the
3022 	 * initialization. If user configure a MAC address by the ip command
3023 	 * for VF device, then hns3 VF PMD driver will start with it, otherwise
3024 	 * start with a random MAC address in the initialization.
3025 	 */
3026 	if (rte_is_zero_ether_addr((struct rte_ether_addr *)hw->mac.mac_addr))
3027 		rte_eth_random_addr(hw->mac.mac_addr);
3028 	rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
3029 			    &eth_dev->data->mac_addrs[0]);
3030 
3031 	hw->adapter_state = HNS3_NIC_INITIALIZED;
3032 
3033 	if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
3034 			    SCHEDULE_PENDING) {
3035 		hns3_err(hw, "Reschedule reset service after dev_init");
3036 		hns3_schedule_reset(hns);
3037 	} else {
3038 		/* IMP will wait ready flag before reset */
3039 		hns3_notify_reset_ready(hw, false);
3040 	}
3041 	rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
3042 			  eth_dev);
3043 	return 0;
3044 
3045 err_rte_zmalloc:
3046 	hns3vf_uninit_vf(eth_dev);
3047 
3048 err_init_vf:
3049 	rte_free(hw->reset.wait_data);
3050 
3051 err_init_reset:
3052 	hns3_mp_uninit_primary();
3053 
3054 err_mp_init_primary:
3055 err_mp_init_secondary:
3056 	eth_dev->dev_ops = NULL;
3057 	eth_dev->rx_pkt_burst = NULL;
3058 	eth_dev->rx_descriptor_status = NULL;
3059 	eth_dev->tx_pkt_burst = NULL;
3060 	eth_dev->tx_pkt_prepare = NULL;
3061 	eth_dev->tx_descriptor_status = NULL;
3062 
3063 	return ret;
3064 }
3065 
3066 static int
3067 hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
3068 {
3069 	struct hns3_adapter *hns = eth_dev->data->dev_private;
3070 	struct hns3_hw *hw = &hns->hw;
3071 
3072 	PMD_INIT_FUNC_TRACE();
3073 
3074 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3075 		return 0;
3076 
3077 	if (hw->adapter_state < HNS3_NIC_CLOSING)
3078 		hns3vf_dev_close(eth_dev);
3079 
3080 	hw->adapter_state = HNS3_NIC_REMOVED;
3081 	return 0;
3082 }
3083 
3084 static int
3085 eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3086 		     struct rte_pci_device *pci_dev)
3087 {
3088 	return rte_eth_dev_pci_generic_probe(pci_dev,
3089 					     sizeof(struct hns3_adapter),
3090 					     hns3vf_dev_init);
3091 }
3092 
3093 static int
3094 eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
3095 {
3096 	return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
3097 }
3098 
3099 static const struct rte_pci_id pci_id_hns3vf_map[] = {
3100 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
3101 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
3102 	{ .vendor_id = 0, }, /* sentinel */
3103 };
3104 
3105 static struct rte_pci_driver rte_hns3vf_pmd = {
3106 	.id_table = pci_id_hns3vf_map,
3107 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
3108 	.probe = eth_hns3vf_pci_probe,
3109 	.remove = eth_hns3vf_pci_remove,
3110 };
3111 
3112 RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
3113 RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
3114 RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");
3115 RTE_PMD_REGISTER_PARAM_STRING(net_hns3_vf,
3116 		HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
3117 		HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common "
3118 		HNS3_DEVARG_DEV_CAPS_MASK "=<1-65535> ");
3119