xref: /dpdk/drivers/net/hns3/hns3_ethdev_vf.c (revision 68a03efeed657e6e05f281479b33b51102797e15)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4 
5 #include <linux/pci_regs.h>
6 #include <rte_alarm.h>
7 #include <ethdev_pci.h>
8 #include <rte_io.h>
9 #include <rte_pci.h>
10 #include <rte_vfio.h>
11 
12 #include "hns3_ethdev.h"
13 #include "hns3_logs.h"
14 #include "hns3_rxtx.h"
15 #include "hns3_regs.h"
16 #include "hns3_intr.h"
17 #include "hns3_dcb.h"
18 #include "hns3_mp.h"
19 
20 #define HNS3VF_KEEP_ALIVE_INTERVAL	2000000 /* us */
21 #define HNS3VF_SERVICE_INTERVAL		1000000 /* us */
22 
23 #define HNS3VF_RESET_WAIT_MS	20
24 #define HNS3VF_RESET_WAIT_CNT	2000
25 
26 /* Reset related Registers */
27 #define HNS3_GLOBAL_RESET_BIT		0
28 #define HNS3_CORE_RESET_BIT		1
29 #define HNS3_IMP_RESET_BIT		2
30 #define HNS3_FUN_RST_ING_B		0
31 
32 enum hns3vf_evt_cause {
33 	HNS3VF_VECTOR0_EVENT_RST,
34 	HNS3VF_VECTOR0_EVENT_MBX,
35 	HNS3VF_VECTOR0_EVENT_OTHER,
36 };
37 
38 static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
39 						    uint64_t *levels);
40 static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
41 static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
42 
43 static int hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
44 				  struct rte_ether_addr *mac_addr);
45 static int hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
46 				     struct rte_ether_addr *mac_addr);
47 /* set PCI bus mastering */
48 static int
49 hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
50 {
51 	uint16_t reg;
52 	int ret;
53 
54 	ret = rte_pci_read_config(device, &reg, sizeof(reg), PCI_COMMAND);
55 	if (ret < 0) {
56 		PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
57 			     PCI_COMMAND);
58 		return ret;
59 	}
60 
61 	if (op)
62 		/* set the master bit */
63 		reg |= PCI_COMMAND_MASTER;
64 	else
65 		reg &= ~(PCI_COMMAND_MASTER);
66 
67 	return rte_pci_write_config(device, &reg, sizeof(reg), PCI_COMMAND);
68 }
69 
70 /**
71  * hns3vf_find_pci_capability - lookup a capability in the PCI capability list
72  * @cap: the capability
73  *
74  * Return the address of the given capability within the PCI capability list.
75  */
76 static int
77 hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
78 {
79 #define MAX_PCIE_CAPABILITY 48
80 	uint16_t status;
81 	uint8_t pos;
82 	uint8_t id;
83 	int ttl;
84 	int ret;
85 
86 	ret = rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
87 	if (ret < 0) {
88 		PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x", PCI_STATUS);
89 		return 0;
90 	}
91 
92 	if (!(status & PCI_STATUS_CAP_LIST))
93 		return 0;
94 
95 	ttl = MAX_PCIE_CAPABILITY;
96 	ret = rte_pci_read_config(device, &pos, sizeof(pos),
97 				  PCI_CAPABILITY_LIST);
98 	if (ret < 0) {
99 		PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
100 			     PCI_CAPABILITY_LIST);
101 		return 0;
102 	}
103 
104 	while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
105 		ret = rte_pci_read_config(device, &id, sizeof(id),
106 					  (pos + PCI_CAP_LIST_ID));
107 		if (ret < 0) {
108 			PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
109 				     (pos + PCI_CAP_LIST_ID));
110 			break;
111 		}
112 
113 		if (id == 0xFF)
114 			break;
115 
116 		if (id == cap)
117 			return (int)pos;
118 
119 		ret = rte_pci_read_config(device, &pos, sizeof(pos),
120 					  (pos + PCI_CAP_LIST_NEXT));
121 		if (ret < 0) {
122 			PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
123 				     (pos + PCI_CAP_LIST_NEXT));
124 			break;
125 		}
126 	}
127 	return 0;
128 }
129 
130 static int
131 hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
132 {
133 	uint16_t control;
134 	int pos;
135 	int ret;
136 
137 	pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
138 	if (pos) {
139 		ret = rte_pci_read_config(device, &control, sizeof(control),
140 				    (pos + PCI_MSIX_FLAGS));
141 		if (ret < 0) {
142 			PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
143 				     (pos + PCI_MSIX_FLAGS));
144 			return -ENXIO;
145 		}
146 
147 		if (op)
148 			control |= PCI_MSIX_FLAGS_ENABLE;
149 		else
150 			control &= ~PCI_MSIX_FLAGS_ENABLE;
151 		ret = rte_pci_write_config(device, &control, sizeof(control),
152 					  (pos + PCI_MSIX_FLAGS));
153 		if (ret < 0) {
154 			PMD_INIT_LOG(ERR, "failed to write PCI offset 0x%x",
155 				    (pos + PCI_MSIX_FLAGS));
156 		}
157 		return 0;
158 	}
159 	return -ENXIO;
160 }
161 
162 static int
163 hns3vf_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
164 {
165 	/* mac address was checked by upper level interface */
166 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
167 	int ret;
168 
169 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
170 				HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
171 				RTE_ETHER_ADDR_LEN, false, NULL, 0);
172 	if (ret) {
173 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
174 				      mac_addr);
175 		hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
176 			 mac_str, ret);
177 	}
178 	return ret;
179 }
180 
181 static int
182 hns3vf_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
183 {
184 	/* mac address was checked by upper level interface */
185 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
186 	int ret;
187 
188 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
189 				HNS3_MBX_MAC_VLAN_UC_REMOVE,
190 				mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN,
191 				false, NULL, 0);
192 	if (ret) {
193 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
194 				      mac_addr);
195 		hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
196 			 mac_str, ret);
197 	}
198 	return ret;
199 }
200 
201 static int
202 hns3vf_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
203 {
204 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
205 	struct rte_ether_addr *addr;
206 	int ret;
207 	int i;
208 
209 	for (i = 0; i < hw->mc_addrs_num; i++) {
210 		addr = &hw->mc_addrs[i];
211 		/* Check if there are duplicate addresses */
212 		if (rte_is_same_ether_addr(addr, mac_addr)) {
213 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
214 					      addr);
215 			hns3_err(hw, "failed to add mc mac addr, same addrs"
216 				 "(%s) is added by the set_mc_mac_addr_list "
217 				 "API", mac_str);
218 			return -EINVAL;
219 		}
220 	}
221 
222 	ret = hns3vf_add_mc_mac_addr(hw, mac_addr);
223 	if (ret) {
224 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
225 				      mac_addr);
226 		hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
227 			 mac_str, ret);
228 	}
229 	return ret;
230 }
231 
232 static int
233 hns3vf_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
234 		    __rte_unused uint32_t idx,
235 		    __rte_unused uint32_t pool)
236 {
237 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
238 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
239 	int ret;
240 
241 	rte_spinlock_lock(&hw->lock);
242 
243 	/*
244 	 * In hns3 network engine adding UC and MC mac address with different
245 	 * commands with firmware. We need to determine whether the input
246 	 * address is a UC or a MC address to call different commands.
247 	 * By the way, it is recommended calling the API function named
248 	 * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
249 	 * using the rte_eth_dev_mac_addr_add API function to set MC mac address
250 	 * may affect the specifications of UC mac addresses.
251 	 */
252 	if (rte_is_multicast_ether_addr(mac_addr))
253 		ret = hns3vf_add_mc_addr_common(hw, mac_addr);
254 	else
255 		ret = hns3vf_add_uc_mac_addr(hw, mac_addr);
256 
257 	rte_spinlock_unlock(&hw->lock);
258 	if (ret) {
259 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
260 				      mac_addr);
261 		hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
262 			 ret);
263 	}
264 
265 	return ret;
266 }
267 
268 static void
269 hns3vf_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
270 {
271 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
272 	/* index will be checked by upper level rte interface */
273 	struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
274 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
275 	int ret;
276 
277 	rte_spinlock_lock(&hw->lock);
278 
279 	if (rte_is_multicast_ether_addr(mac_addr))
280 		ret = hns3vf_remove_mc_mac_addr(hw, mac_addr);
281 	else
282 		ret = hns3vf_remove_uc_mac_addr(hw, mac_addr);
283 
284 	rte_spinlock_unlock(&hw->lock);
285 	if (ret) {
286 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
287 				      mac_addr);
288 		hns3_err(hw, "failed to remove mac addr(%s), ret = %d",
289 			 mac_str, ret);
290 	}
291 }
292 
293 static int
294 hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
295 			    struct rte_ether_addr *mac_addr)
296 {
297 #define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
298 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
299 	struct rte_ether_addr *old_addr;
300 	uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
301 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
302 	int ret;
303 
304 	/*
305 	 * It has been guaranteed that input parameter named mac_addr is valid
306 	 * address in the rte layer of DPDK framework.
307 	 */
308 	old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
309 	rte_spinlock_lock(&hw->lock);
310 	memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
311 	memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
312 	       RTE_ETHER_ADDR_LEN);
313 
314 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
315 				HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
316 				HNS3_TWO_ETHER_ADDR_LEN, true, NULL, 0);
317 	if (ret) {
318 		/*
319 		 * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev
320 		 * driver. When user has configured a MAC address for VF device
321 		 * by "ip link set ..." command based on the PF device, the hns3
322 		 * PF kernel ethdev driver does not allow VF driver to request
323 		 * reconfiguring a different default MAC address, and return
324 		 * -EPREM to VF driver through mailbox.
325 		 */
326 		if (ret == -EPERM) {
327 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
328 					      old_addr);
329 			hns3_warn(hw, "Has permanet mac addr(%s) for vf",
330 				  mac_str);
331 		} else {
332 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
333 					      mac_addr);
334 			hns3_err(hw, "Failed to set mac addr(%s) for vf: %d",
335 				 mac_str, ret);
336 		}
337 	}
338 
339 	rte_ether_addr_copy(mac_addr,
340 			    (struct rte_ether_addr *)hw->mac.mac_addr);
341 	rte_spinlock_unlock(&hw->lock);
342 
343 	return ret;
344 }
345 
346 static int
347 hns3vf_configure_mac_addr(struct hns3_adapter *hns, bool del)
348 {
349 	struct hns3_hw *hw = &hns->hw;
350 	struct rte_ether_addr *addr;
351 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
352 	int err = 0;
353 	int ret;
354 	int i;
355 
356 	for (i = 0; i < HNS3_VF_UC_MACADDR_NUM; i++) {
357 		addr = &hw->data->mac_addrs[i];
358 		if (rte_is_zero_ether_addr(addr))
359 			continue;
360 		if (rte_is_multicast_ether_addr(addr))
361 			ret = del ? hns3vf_remove_mc_mac_addr(hw, addr) :
362 			      hns3vf_add_mc_mac_addr(hw, addr);
363 		else
364 			ret = del ? hns3vf_remove_uc_mac_addr(hw, addr) :
365 			      hns3vf_add_uc_mac_addr(hw, addr);
366 
367 		if (ret) {
368 			err = ret;
369 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
370 					      addr);
371 			hns3_err(hw, "failed to %s mac addr(%s) index:%d "
372 				 "ret = %d.", del ? "remove" : "restore",
373 				 mac_str, i, ret);
374 		}
375 	}
376 	return err;
377 }
378 
379 static int
380 hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
381 		       struct rte_ether_addr *mac_addr)
382 {
383 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
384 	int ret;
385 
386 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
387 				HNS3_MBX_MAC_VLAN_MC_ADD,
388 				mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
389 				NULL, 0);
390 	if (ret) {
391 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
392 				      mac_addr);
393 		hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
394 			 mac_str, ret);
395 	}
396 
397 	return ret;
398 }
399 
400 static int
401 hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
402 			  struct rte_ether_addr *mac_addr)
403 {
404 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
405 	int ret;
406 
407 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
408 				HNS3_MBX_MAC_VLAN_MC_REMOVE,
409 				mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
410 				NULL, 0);
411 	if (ret) {
412 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
413 				      mac_addr);
414 		hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
415 			 mac_str, ret);
416 	}
417 
418 	return ret;
419 }
420 
421 static int
422 hns3vf_set_mc_addr_chk_param(struct hns3_hw *hw,
423 			     struct rte_ether_addr *mc_addr_set,
424 			     uint32_t nb_mc_addr)
425 {
426 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
427 	struct rte_ether_addr *addr;
428 	uint32_t i;
429 	uint32_t j;
430 
431 	if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
432 		hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
433 			 "invalid. valid range: 0~%d",
434 			 nb_mc_addr, HNS3_MC_MACADDR_NUM);
435 		return -EINVAL;
436 	}
437 
438 	/* Check if input mac addresses are valid */
439 	for (i = 0; i < nb_mc_addr; i++) {
440 		addr = &mc_addr_set[i];
441 		if (!rte_is_multicast_ether_addr(addr)) {
442 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
443 					      addr);
444 			hns3_err(hw,
445 				 "failed to set mc mac addr, addr(%s) invalid.",
446 				 mac_str);
447 			return -EINVAL;
448 		}
449 
450 		/* Check if there are duplicate addresses */
451 		for (j = i + 1; j < nb_mc_addr; j++) {
452 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
453 				hns3_ether_format_addr(mac_str,
454 						      RTE_ETHER_ADDR_FMT_SIZE,
455 						      addr);
456 				hns3_err(hw, "failed to set mc mac addr, "
457 					 "addrs invalid. two same addrs(%s).",
458 					 mac_str);
459 				return -EINVAL;
460 			}
461 		}
462 
463 		/*
464 		 * Check if there are duplicate addresses between mac_addrs
465 		 * and mc_addr_set
466 		 */
467 		for (j = 0; j < HNS3_VF_UC_MACADDR_NUM; j++) {
468 			if (rte_is_same_ether_addr(addr,
469 						   &hw->data->mac_addrs[j])) {
470 				hns3_ether_format_addr(mac_str,
471 						      RTE_ETHER_ADDR_FMT_SIZE,
472 						      addr);
473 				hns3_err(hw, "failed to set mc mac addr, "
474 					 "addrs invalid. addrs(%s) has already "
475 					 "configured in mac_addr add API",
476 					 mac_str);
477 				return -EINVAL;
478 			}
479 		}
480 	}
481 
482 	return 0;
483 }
484 
485 static int
486 hns3vf_set_mc_mac_addr_list(struct rte_eth_dev *dev,
487 			    struct rte_ether_addr *mc_addr_set,
488 			    uint32_t nb_mc_addr)
489 {
490 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
491 	struct rte_ether_addr *addr;
492 	int cur_addr_num;
493 	int set_addr_num;
494 	int num;
495 	int ret;
496 	int i;
497 
498 	ret = hns3vf_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
499 	if (ret)
500 		return ret;
501 
502 	rte_spinlock_lock(&hw->lock);
503 	cur_addr_num = hw->mc_addrs_num;
504 	for (i = 0; i < cur_addr_num; i++) {
505 		num = cur_addr_num - i - 1;
506 		addr = &hw->mc_addrs[num];
507 		ret = hns3vf_remove_mc_mac_addr(hw, addr);
508 		if (ret) {
509 			rte_spinlock_unlock(&hw->lock);
510 			return ret;
511 		}
512 
513 		hw->mc_addrs_num--;
514 	}
515 
516 	set_addr_num = (int)nb_mc_addr;
517 	for (i = 0; i < set_addr_num; i++) {
518 		addr = &mc_addr_set[i];
519 		ret = hns3vf_add_mc_mac_addr(hw, addr);
520 		if (ret) {
521 			rte_spinlock_unlock(&hw->lock);
522 			return ret;
523 		}
524 
525 		rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
526 		hw->mc_addrs_num++;
527 	}
528 	rte_spinlock_unlock(&hw->lock);
529 
530 	return 0;
531 }
532 
533 static int
534 hns3vf_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
535 {
536 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
537 	struct hns3_hw *hw = &hns->hw;
538 	struct rte_ether_addr *addr;
539 	int err = 0;
540 	int ret;
541 	int i;
542 
543 	for (i = 0; i < hw->mc_addrs_num; i++) {
544 		addr = &hw->mc_addrs[i];
545 		if (!rte_is_multicast_ether_addr(addr))
546 			continue;
547 		if (del)
548 			ret = hns3vf_remove_mc_mac_addr(hw, addr);
549 		else
550 			ret = hns3vf_add_mc_mac_addr(hw, addr);
551 		if (ret) {
552 			err = ret;
553 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
554 					      addr);
555 			hns3_err(hw, "Failed to %s mc mac addr: %s for vf: %d",
556 				 del ? "Remove" : "Restore", mac_str, ret);
557 		}
558 	}
559 	return err;
560 }
561 
562 static int
563 hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc,
564 			bool en_uc_pmc, bool en_mc_pmc)
565 {
566 	struct hns3_mbx_vf_to_pf_cmd *req;
567 	struct hns3_cmd_desc desc;
568 	int ret;
569 
570 	req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
571 
572 	/*
573 	 * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev driver,
574 	 * so there are some features for promiscuous/allmulticast mode in hns3
575 	 * VF PMD driver as below:
576 	 * 1. The promiscuous/allmulticast mode can be configured successfully
577 	 *    only based on the trusted VF device. If based on the non trusted
578 	 *    VF device, configuring promiscuous/allmulticast mode will fail.
579 	 *    The hns3 VF device can be confiruged as trusted device by hns3 PF
580 	 *    kernel ethdev driver on the host by the following command:
581 	 *      "ip link set <eth num> vf <vf id> turst on"
582 	 * 2. After the promiscuous mode is configured successfully, hns3 VF PMD
583 	 *    driver can receive the ingress and outgoing traffic. In the words,
584 	 *    all the ingress packets, all the packets sent from the PF and
585 	 *    other VFs on the same physical port.
586 	 * 3. Note: Because of the hardware constraints, By default vlan filter
587 	 *    is enabled and couldn't be turned off based on VF device, so vlan
588 	 *    filter is still effective even in promiscuous mode. If upper
589 	 *    applications don't call rte_eth_dev_vlan_filter API function to
590 	 *    set vlan based on VF device, hns3 VF PMD driver will can't receive
591 	 *    the packets with vlan tag in promiscuoue mode.
592 	 */
593 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
594 	req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
595 	req->msg[1] = en_bc_pmc ? 1 : 0;
596 	req->msg[2] = en_uc_pmc ? 1 : 0;
597 	req->msg[3] = en_mc_pmc ? 1 : 0;
598 	req->msg[4] = hw->promisc_mode == HNS3_LIMIT_PROMISC_MODE ? 1 : 0;
599 
600 	ret = hns3_cmd_send(hw, &desc, 1);
601 	if (ret)
602 		hns3_err(hw, "Set promisc mode fail, ret = %d", ret);
603 
604 	return ret;
605 }
606 
607 static int
608 hns3vf_dev_promiscuous_enable(struct rte_eth_dev *dev)
609 {
610 	struct hns3_adapter *hns = dev->data->dev_private;
611 	struct hns3_hw *hw = &hns->hw;
612 	int ret;
613 
614 	ret = hns3vf_set_promisc_mode(hw, true, true, true);
615 	if (ret)
616 		hns3_err(hw, "Failed to enable promiscuous mode, ret = %d",
617 			ret);
618 	return ret;
619 }
620 
621 static int
622 hns3vf_dev_promiscuous_disable(struct rte_eth_dev *dev)
623 {
624 	bool allmulti = dev->data->all_multicast ? true : false;
625 	struct hns3_adapter *hns = dev->data->dev_private;
626 	struct hns3_hw *hw = &hns->hw;
627 	int ret;
628 
629 	ret = hns3vf_set_promisc_mode(hw, true, false, allmulti);
630 	if (ret)
631 		hns3_err(hw, "Failed to disable promiscuous mode, ret = %d",
632 			ret);
633 	return ret;
634 }
635 
636 static int
637 hns3vf_dev_allmulticast_enable(struct rte_eth_dev *dev)
638 {
639 	struct hns3_adapter *hns = dev->data->dev_private;
640 	struct hns3_hw *hw = &hns->hw;
641 	int ret;
642 
643 	if (dev->data->promiscuous)
644 		return 0;
645 
646 	ret = hns3vf_set_promisc_mode(hw, true, false, true);
647 	if (ret)
648 		hns3_err(hw, "Failed to enable allmulticast mode, ret = %d",
649 			ret);
650 	return ret;
651 }
652 
653 static int
654 hns3vf_dev_allmulticast_disable(struct rte_eth_dev *dev)
655 {
656 	struct hns3_adapter *hns = dev->data->dev_private;
657 	struct hns3_hw *hw = &hns->hw;
658 	int ret;
659 
660 	if (dev->data->promiscuous)
661 		return 0;
662 
663 	ret = hns3vf_set_promisc_mode(hw, true, false, false);
664 	if (ret)
665 		hns3_err(hw, "Failed to disable allmulticast mode, ret = %d",
666 			ret);
667 	return ret;
668 }
669 
670 static int
671 hns3vf_restore_promisc(struct hns3_adapter *hns)
672 {
673 	struct hns3_hw *hw = &hns->hw;
674 	bool allmulti = hw->data->all_multicast ? true : false;
675 
676 	if (hw->data->promiscuous)
677 		return hns3vf_set_promisc_mode(hw, true, true, true);
678 
679 	return hns3vf_set_promisc_mode(hw, true, false, allmulti);
680 }
681 
682 static int
683 hns3vf_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id,
684 			     bool mmap, enum hns3_ring_type queue_type,
685 			     uint16_t queue_id)
686 {
687 	struct hns3_vf_bind_vector_msg bind_msg;
688 	const char *op_str;
689 	uint16_t code;
690 	int ret;
691 
692 	memset(&bind_msg, 0, sizeof(bind_msg));
693 	code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
694 		HNS3_MBX_UNMAP_RING_TO_VECTOR;
695 	bind_msg.vector_id = vector_id;
696 
697 	if (queue_type == HNS3_RING_TYPE_RX)
698 		bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
699 	else
700 		bind_msg.param[0].int_gl_index = HNS3_RING_GL_TX;
701 
702 	bind_msg.param[0].ring_type = queue_type;
703 	bind_msg.ring_num = 1;
704 	bind_msg.param[0].tqp_index = queue_id;
705 	op_str = mmap ? "Map" : "Unmap";
706 	ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
707 				sizeof(bind_msg), false, NULL, 0);
708 	if (ret)
709 		hns3_err(hw, "%s TQP %u fail, vector_id is %u, ret is %d.",
710 			 op_str, queue_id, bind_msg.vector_id, ret);
711 
712 	return ret;
713 }
714 
715 static int
716 hns3vf_init_ring_with_vector(struct hns3_hw *hw)
717 {
718 	uint16_t vec;
719 	int ret;
720 	int i;
721 
722 	/*
723 	 * In hns3 network engine, vector 0 is always the misc interrupt of this
724 	 * function, vector 1~N can be used respectively for the queues of the
725 	 * function. Tx and Rx queues with the same number share the interrupt
726 	 * vector. In the initialization clearing the all hardware mapping
727 	 * relationship configurations between queues and interrupt vectors is
728 	 * needed, so some error caused by the residual configurations, such as
729 	 * the unexpected Tx interrupt, can be avoid.
730 	 */
731 	vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
732 	if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
733 		vec = vec - 1; /* the last interrupt is reserved */
734 	hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
735 	for (i = 0; i < hw->intr_tqps_num; i++) {
736 		/*
737 		 * Set gap limiter/rate limiter/quanity limiter algorithm
738 		 * configuration for interrupt coalesce of queue's interrupt.
739 		 */
740 		hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
741 				       HNS3_TQP_INTR_GL_DEFAULT);
742 		hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
743 				       HNS3_TQP_INTR_GL_DEFAULT);
744 		hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
745 		/*
746 		 * QL(quantity limiter) is not used currently, just set 0 to
747 		 * close it.
748 		 */
749 		hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
750 
751 		ret = hns3vf_bind_ring_with_vector(hw, vec, false,
752 						   HNS3_RING_TYPE_TX, i);
753 		if (ret) {
754 			PMD_INIT_LOG(ERR, "VF fail to unbind TX ring(%d) with "
755 					  "vector: %u, ret=%d", i, vec, ret);
756 			return ret;
757 		}
758 
759 		ret = hns3vf_bind_ring_with_vector(hw, vec, false,
760 						   HNS3_RING_TYPE_RX, i);
761 		if (ret) {
762 			PMD_INIT_LOG(ERR, "VF fail to unbind RX ring(%d) with "
763 					  "vector: %u, ret=%d", i, vec, ret);
764 			return ret;
765 		}
766 	}
767 
768 	return 0;
769 }
770 
771 static int
772 hns3vf_dev_configure(struct rte_eth_dev *dev)
773 {
774 	struct hns3_adapter *hns = dev->data->dev_private;
775 	struct hns3_hw *hw = &hns->hw;
776 	struct rte_eth_conf *conf = &dev->data->dev_conf;
777 	enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
778 	uint16_t nb_rx_q = dev->data->nb_rx_queues;
779 	uint16_t nb_tx_q = dev->data->nb_tx_queues;
780 	struct rte_eth_rss_conf rss_conf;
781 	uint32_t max_rx_pkt_len;
782 	uint16_t mtu;
783 	bool gro_en;
784 	int ret;
785 
786 	hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
787 
788 	/*
789 	 * Some versions of hardware network engine does not support
790 	 * individually enable/disable/reset the Tx or Rx queue. These devices
791 	 * must enable/disable/reset Tx and Rx queues at the same time. When the
792 	 * numbers of Tx queues allocated by upper applications are not equal to
793 	 * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
794 	 * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
795 	 * work as usual. But these fake queues are imperceptible, and can not
796 	 * be used by upper applications.
797 	 */
798 	if (!hns3_dev_indep_txrx_supported(hw)) {
799 		ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
800 		if (ret) {
801 			hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.",
802 				 ret);
803 			return ret;
804 		}
805 	}
806 
807 	hw->adapter_state = HNS3_NIC_CONFIGURING;
808 	if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
809 		hns3_err(hw, "setting link speed/duplex not supported");
810 		ret = -EINVAL;
811 		goto cfg_err;
812 	}
813 
814 	/* When RSS is not configured, redirect the packet queue 0 */
815 	if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
816 		conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
817 		hw->rss_dis_flag = false;
818 		rss_conf = conf->rx_adv_conf.rss_conf;
819 		ret = hns3_dev_rss_hash_update(dev, &rss_conf);
820 		if (ret)
821 			goto cfg_err;
822 	}
823 
824 	/*
825 	 * If jumbo frames are enabled, MTU needs to be refreshed
826 	 * according to the maximum RX packet length.
827 	 */
828 	if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
829 		max_rx_pkt_len = conf->rxmode.max_rx_pkt_len;
830 		if (max_rx_pkt_len > HNS3_MAX_FRAME_LEN ||
831 		    max_rx_pkt_len <= HNS3_DEFAULT_FRAME_LEN) {
832 			hns3_err(hw, "maximum Rx packet length must be greater "
833 				 "than %u and less than %u when jumbo frame enabled.",
834 				 (uint16_t)HNS3_DEFAULT_FRAME_LEN,
835 				 (uint16_t)HNS3_MAX_FRAME_LEN);
836 			ret = -EINVAL;
837 			goto cfg_err;
838 		}
839 
840 		mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(max_rx_pkt_len);
841 		ret = hns3vf_dev_mtu_set(dev, mtu);
842 		if (ret)
843 			goto cfg_err;
844 		dev->data->mtu = mtu;
845 	}
846 
847 	ret = hns3vf_dev_configure_vlan(dev);
848 	if (ret)
849 		goto cfg_err;
850 
851 	/* config hardware GRO */
852 	gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
853 	ret = hns3_config_gro(hw, gro_en);
854 	if (ret)
855 		goto cfg_err;
856 
857 	hns->rx_simple_allowed = true;
858 	hns->rx_vec_allowed = true;
859 	hns->tx_simple_allowed = true;
860 	hns->tx_vec_allowed = true;
861 
862 	hns3_init_rx_ptype_tble(dev);
863 
864 	hw->adapter_state = HNS3_NIC_CONFIGURED;
865 	return 0;
866 
867 cfg_err:
868 	(void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
869 	hw->adapter_state = HNS3_NIC_INITIALIZED;
870 
871 	return ret;
872 }
873 
874 static int
875 hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
876 {
877 	int ret;
878 
879 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
880 				sizeof(mtu), true, NULL, 0);
881 	if (ret)
882 		hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
883 
884 	return ret;
885 }
886 
887 static int
888 hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
889 {
890 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
891 	uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
892 	int ret;
893 
894 	/*
895 	 * The hns3 PF/VF devices on the same port share the hardware MTU
896 	 * configuration. Currently, we send mailbox to inform hns3 PF kernel
897 	 * ethdev driver to finish hardware MTU configuration in hns3 VF PMD
898 	 * driver, there is no need to stop the port for hns3 VF device, and the
899 	 * MTU value issued by hns3 VF PMD driver must be less than or equal to
900 	 * PF's MTU.
901 	 */
902 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
903 		hns3_err(hw, "Failed to set mtu during resetting");
904 		return -EIO;
905 	}
906 
907 	/*
908 	 * when Rx of scattered packets is off, we have some possibility of
909 	 * using vector Rx process function or simple Rx functions in hns3 PMD
910 	 * driver. If the input MTU is increased and the maximum length of
911 	 * received packets is greater than the length of a buffer for Rx
912 	 * packet, the hardware network engine needs to use multiple BDs and
913 	 * buffers to store these packets. This will cause problems when still
914 	 * using vector Rx process function or simple Rx function to receiving
915 	 * packets. So, when Rx of scattered packets is off and device is
916 	 * started, it is not permitted to increase MTU so that the maximum
917 	 * length of Rx packets is greater than Rx buffer length.
918 	 */
919 	if (dev->data->dev_started && !dev->data->scattered_rx &&
920 	    frame_size > hw->rx_buf_len) {
921 		hns3_err(hw, "failed to set mtu because current is "
922 			"not scattered rx mode");
923 		return -EOPNOTSUPP;
924 	}
925 
926 	rte_spinlock_lock(&hw->lock);
927 	ret = hns3vf_config_mtu(hw, mtu);
928 	if (ret) {
929 		rte_spinlock_unlock(&hw->lock);
930 		return ret;
931 	}
932 	if (mtu > RTE_ETHER_MTU)
933 		dev->data->dev_conf.rxmode.offloads |=
934 						DEV_RX_OFFLOAD_JUMBO_FRAME;
935 	else
936 		dev->data->dev_conf.rxmode.offloads &=
937 						~DEV_RX_OFFLOAD_JUMBO_FRAME;
938 	dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
939 	rte_spinlock_unlock(&hw->lock);
940 
941 	return 0;
942 }
943 
944 static int
945 hns3vf_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
946 {
947 	struct hns3_adapter *hns = eth_dev->data->dev_private;
948 	struct hns3_hw *hw = &hns->hw;
949 	uint16_t q_num = hw->tqps_num;
950 
951 	/*
952 	 * In interrupt mode, 'max_rx_queues' is set based on the number of
953 	 * MSI-X interrupt resources of the hardware.
954 	 */
955 	if (hw->data->dev_conf.intr_conf.rxq == 1)
956 		q_num = hw->intr_tqps_num;
957 
958 	info->max_rx_queues = q_num;
959 	info->max_tx_queues = hw->tqps_num;
960 	info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
961 	info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
962 	info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM;
963 	info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
964 	info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
965 
966 	info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
967 				 DEV_RX_OFFLOAD_UDP_CKSUM |
968 				 DEV_RX_OFFLOAD_TCP_CKSUM |
969 				 DEV_RX_OFFLOAD_SCTP_CKSUM |
970 				 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
971 				 DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
972 				 DEV_RX_OFFLOAD_SCATTER |
973 				 DEV_RX_OFFLOAD_VLAN_STRIP |
974 				 DEV_RX_OFFLOAD_VLAN_FILTER |
975 				 DEV_RX_OFFLOAD_JUMBO_FRAME |
976 				 DEV_RX_OFFLOAD_RSS_HASH |
977 				 DEV_RX_OFFLOAD_TCP_LRO);
978 	info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
979 				 DEV_TX_OFFLOAD_IPV4_CKSUM |
980 				 DEV_TX_OFFLOAD_TCP_CKSUM |
981 				 DEV_TX_OFFLOAD_UDP_CKSUM |
982 				 DEV_TX_OFFLOAD_SCTP_CKSUM |
983 				 DEV_TX_OFFLOAD_MULTI_SEGS |
984 				 DEV_TX_OFFLOAD_TCP_TSO |
985 				 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
986 				 DEV_TX_OFFLOAD_GRE_TNL_TSO |
987 				 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
988 				 DEV_TX_OFFLOAD_MBUF_FAST_FREE |
989 				 hns3_txvlan_cap_get(hw));
990 
991 	if (hns3_dev_outer_udp_cksum_supported(hw))
992 		info->tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_UDP_CKSUM;
993 
994 	if (hns3_dev_indep_txrx_supported(hw))
995 		info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
996 				 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
997 
998 	info->rx_desc_lim = (struct rte_eth_desc_lim) {
999 		.nb_max = HNS3_MAX_RING_DESC,
1000 		.nb_min = HNS3_MIN_RING_DESC,
1001 		.nb_align = HNS3_ALIGN_RING_DESC,
1002 	};
1003 
1004 	info->tx_desc_lim = (struct rte_eth_desc_lim) {
1005 		.nb_max = HNS3_MAX_RING_DESC,
1006 		.nb_min = HNS3_MIN_RING_DESC,
1007 		.nb_align = HNS3_ALIGN_RING_DESC,
1008 		.nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
1009 		.nb_mtu_seg_max = hw->max_non_tso_bd_num,
1010 	};
1011 
1012 	info->default_rxconf = (struct rte_eth_rxconf) {
1013 		.rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
1014 		/*
1015 		 * If there are no available Rx buffer descriptors, incoming
1016 		 * packets are always dropped by hardware based on hns3 network
1017 		 * engine.
1018 		 */
1019 		.rx_drop_en = 1,
1020 		.offloads = 0,
1021 	};
1022 	info->default_txconf = (struct rte_eth_txconf) {
1023 		.tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
1024 		.offloads = 0,
1025 	};
1026 
1027 	info->vmdq_queue_num = 0;
1028 
1029 	info->reta_size = hw->rss_ind_tbl_size;
1030 	info->hash_key_size = HNS3_RSS_KEY_SIZE;
1031 	info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
1032 	info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1033 	info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1034 
1035 	return 0;
1036 }
1037 
1038 static void
1039 hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
1040 {
1041 	hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
1042 }
1043 
1044 static void
1045 hns3vf_disable_irq0(struct hns3_hw *hw)
1046 {
1047 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
1048 }
1049 
1050 static void
1051 hns3vf_enable_irq0(struct hns3_hw *hw)
1052 {
1053 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
1054 }
1055 
1056 static enum hns3vf_evt_cause
1057 hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
1058 {
1059 	struct hns3_hw *hw = &hns->hw;
1060 	enum hns3vf_evt_cause ret;
1061 	uint32_t cmdq_stat_reg;
1062 	uint32_t rst_ing_reg;
1063 	uint32_t val;
1064 
1065 	/* Fetch the events from their corresponding regs */
1066 	cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
1067 
1068 	if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1069 		rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
1070 		hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
1071 		hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
1072 		__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
1073 		val = hns3_read_dev(hw, HNS3_VF_RST_ING);
1074 		hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
1075 		val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
1076 		if (clearval) {
1077 			hw->reset.stats.global_cnt++;
1078 			hns3_warn(hw, "Global reset detected, clear reset status");
1079 		} else {
1080 			hns3_schedule_delayed_reset(hns);
1081 			hns3_warn(hw, "Global reset detected, don't clear reset status");
1082 		}
1083 
1084 		ret = HNS3VF_VECTOR0_EVENT_RST;
1085 		goto out;
1086 	}
1087 
1088 	/* Check for vector0 mailbox(=CMDQ RX) event source */
1089 	if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1090 		val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
1091 		ret = HNS3VF_VECTOR0_EVENT_MBX;
1092 		goto out;
1093 	}
1094 
1095 	val = 0;
1096 	ret = HNS3VF_VECTOR0_EVENT_OTHER;
1097 out:
1098 	if (clearval)
1099 		*clearval = val;
1100 	return ret;
1101 }
1102 
1103 static void
1104 hns3vf_interrupt_handler(void *param)
1105 {
1106 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1107 	struct hns3_adapter *hns = dev->data->dev_private;
1108 	struct hns3_hw *hw = &hns->hw;
1109 	enum hns3vf_evt_cause event_cause;
1110 	uint32_t clearval;
1111 
1112 	if (hw->irq_thread_id == 0)
1113 		hw->irq_thread_id = pthread_self();
1114 
1115 	/* Disable interrupt */
1116 	hns3vf_disable_irq0(hw);
1117 
1118 	/* Read out interrupt causes */
1119 	event_cause = hns3vf_check_event_cause(hns, &clearval);
1120 
1121 	switch (event_cause) {
1122 	case HNS3VF_VECTOR0_EVENT_RST:
1123 		hns3_schedule_reset(hns);
1124 		break;
1125 	case HNS3VF_VECTOR0_EVENT_MBX:
1126 		hns3_dev_handle_mbx_msg(hw);
1127 		break;
1128 	default:
1129 		break;
1130 	}
1131 
1132 	/* Clear interrupt causes */
1133 	hns3vf_clear_event_cause(hw, clearval);
1134 
1135 	/* Enable interrupt */
1136 	hns3vf_enable_irq0(hw);
1137 }
1138 
1139 static void
1140 hns3vf_set_default_dev_specifications(struct hns3_hw *hw)
1141 {
1142 	hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
1143 	hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
1144 	hw->rss_key_size = HNS3_RSS_KEY_SIZE;
1145 	hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
1146 }
1147 
1148 static void
1149 hns3vf_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
1150 {
1151 	struct hns3_dev_specs_0_cmd *req0;
1152 
1153 	req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
1154 
1155 	hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
1156 	hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
1157 	hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
1158 	hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
1159 }
1160 
1161 static int
1162 hns3vf_check_dev_specifications(struct hns3_hw *hw)
1163 {
1164 	if (hw->rss_ind_tbl_size == 0 ||
1165 	    hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
1166 		hns3_warn(hw, "the size of hash lookup table configured (%u)"
1167 			      " exceeds the maximum(%u)", hw->rss_ind_tbl_size,
1168 			      HNS3_RSS_IND_TBL_SIZE_MAX);
1169 		return -EINVAL;
1170 	}
1171 
1172 	return 0;
1173 }
1174 
1175 static int
1176 hns3vf_query_dev_specifications(struct hns3_hw *hw)
1177 {
1178 	struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
1179 	int ret;
1180 	int i;
1181 
1182 	for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
1183 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
1184 					  true);
1185 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1186 	}
1187 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
1188 
1189 	ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
1190 	if (ret)
1191 		return ret;
1192 
1193 	hns3vf_parse_dev_specifications(hw, desc);
1194 
1195 	return hns3vf_check_dev_specifications(hw);
1196 }
1197 
1198 static int
1199 hns3vf_get_capability(struct hns3_hw *hw)
1200 {
1201 	struct rte_pci_device *pci_dev;
1202 	struct rte_eth_dev *eth_dev;
1203 	uint8_t revision;
1204 	int ret;
1205 
1206 	eth_dev = &rte_eth_devices[hw->data->port_id];
1207 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1208 
1209 	/* Get PCI revision id */
1210 	ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
1211 				  HNS3_PCI_REVISION_ID);
1212 	if (ret != HNS3_PCI_REVISION_ID_LEN) {
1213 		PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
1214 			     ret);
1215 		return -EIO;
1216 	}
1217 	hw->revision = revision;
1218 
1219 	if (revision < PCI_REVISION_ID_HIP09_A) {
1220 		hns3vf_set_default_dev_specifications(hw);
1221 		hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
1222 		hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
1223 		hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
1224 		hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE1;
1225 		hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
1226 		hw->rss_info.ipv6_sctp_offload_supported = false;
1227 		hw->promisc_mode = HNS3_UNLIMIT_PROMISC_MODE;
1228 		return 0;
1229 	}
1230 
1231 	ret = hns3vf_query_dev_specifications(hw);
1232 	if (ret) {
1233 		PMD_INIT_LOG(ERR,
1234 			     "failed to query dev specifications, ret = %d",
1235 			     ret);
1236 		return ret;
1237 	}
1238 
1239 	hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
1240 	hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
1241 	hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
1242 	hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE2;
1243 	hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
1244 	hw->rss_info.ipv6_sctp_offload_supported = true;
1245 	hw->promisc_mode = HNS3_LIMIT_PROMISC_MODE;
1246 
1247 	return 0;
1248 }
1249 
1250 static int
1251 hns3vf_check_tqp_info(struct hns3_hw *hw)
1252 {
1253 	if (hw->tqps_num == 0) {
1254 		PMD_INIT_LOG(ERR, "Get invalid tqps_num(0) from PF.");
1255 		return -EINVAL;
1256 	}
1257 
1258 	if (hw->rss_size_max == 0) {
1259 		PMD_INIT_LOG(ERR, "Get invalid rss_size_max(0) from PF.");
1260 		return -EINVAL;
1261 	}
1262 
1263 	hw->tqps_num = RTE_MIN(hw->rss_size_max, hw->tqps_num);
1264 
1265 	return 0;
1266 }
1267 
1268 static int
1269 hns3vf_get_port_base_vlan_filter_state(struct hns3_hw *hw)
1270 {
1271 	uint8_t resp_msg;
1272 	int ret;
1273 
1274 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
1275 				HNS3_MBX_GET_PORT_BASE_VLAN_STATE, NULL, 0,
1276 				true, &resp_msg, sizeof(resp_msg));
1277 	if (ret) {
1278 		if (ret == -ETIME) {
1279 			/*
1280 			 * Getting current port based VLAN state from PF driver
1281 			 * will not affect VF driver's basic function. Because
1282 			 * the VF driver relies on hns3 PF kernel ether driver,
1283 			 * to avoid introducing compatibility issues with older
1284 			 * version of PF driver, no failure will be returned
1285 			 * when the return value is ETIME. This return value has
1286 			 * the following scenarios:
1287 			 * 1) Firmware didn't return the results in time
1288 			 * 2) the result return by firmware is timeout
1289 			 * 3) the older version of kernel side PF driver does
1290 			 *    not support this mailbox message.
1291 			 * For scenarios 1 and 2, it is most likely that a
1292 			 * hardware error has occurred, or a hardware reset has
1293 			 * occurred. In this case, these errors will be caught
1294 			 * by other functions.
1295 			 */
1296 			PMD_INIT_LOG(WARNING,
1297 				"failed to get PVID state for timeout, maybe "
1298 				"kernel side PF driver doesn't support this "
1299 				"mailbox message, or firmware didn't respond.");
1300 			resp_msg = HNS3_PORT_BASE_VLAN_DISABLE;
1301 		} else {
1302 			PMD_INIT_LOG(ERR, "failed to get port based VLAN state,"
1303 				" ret = %d", ret);
1304 			return ret;
1305 		}
1306 	}
1307 	hw->port_base_vlan_cfg.state = resp_msg ?
1308 		HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
1309 	return 0;
1310 }
1311 
1312 static int
1313 hns3vf_get_queue_info(struct hns3_hw *hw)
1314 {
1315 #define HNS3VF_TQPS_RSS_INFO_LEN	6
1316 	uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
1317 	int ret;
1318 
1319 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
1320 				resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
1321 	if (ret) {
1322 		PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
1323 		return ret;
1324 	}
1325 
1326 	memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
1327 	memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
1328 
1329 	return hns3vf_check_tqp_info(hw);
1330 }
1331 
1332 static int
1333 hns3vf_get_queue_depth(struct hns3_hw *hw)
1334 {
1335 #define HNS3VF_TQPS_DEPTH_INFO_LEN	4
1336 	uint8_t resp_msg[HNS3VF_TQPS_DEPTH_INFO_LEN];
1337 	int ret;
1338 
1339 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QDEPTH, 0, NULL, 0, true,
1340 				resp_msg, HNS3VF_TQPS_DEPTH_INFO_LEN);
1341 	if (ret) {
1342 		PMD_INIT_LOG(ERR, "Failed to get tqp depth info from PF: %d",
1343 			     ret);
1344 		return ret;
1345 	}
1346 
1347 	memcpy(&hw->num_tx_desc, &resp_msg[0], sizeof(uint16_t));
1348 	memcpy(&hw->num_rx_desc, &resp_msg[2], sizeof(uint16_t));
1349 
1350 	return 0;
1351 }
1352 
1353 static int
1354 hns3vf_get_tc_info(struct hns3_hw *hw)
1355 {
1356 	uint8_t resp_msg;
1357 	int ret;
1358 	uint32_t i;
1359 
1360 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_TCINFO, 0, NULL, 0,
1361 				true, &resp_msg, sizeof(resp_msg));
1362 	if (ret) {
1363 		hns3_err(hw, "VF request to get TC info from PF failed %d",
1364 			 ret);
1365 		return ret;
1366 	}
1367 
1368 	hw->hw_tc_map = resp_msg;
1369 
1370 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
1371 		if (hw->hw_tc_map & BIT(i))
1372 			hw->num_tc++;
1373 	}
1374 
1375 	return 0;
1376 }
1377 
1378 static int
1379 hns3vf_get_host_mac_addr(struct hns3_hw *hw)
1380 {
1381 	uint8_t host_mac[RTE_ETHER_ADDR_LEN];
1382 	int ret;
1383 
1384 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_MAC_ADDR, 0, NULL, 0,
1385 				true, host_mac, RTE_ETHER_ADDR_LEN);
1386 	if (ret) {
1387 		hns3_err(hw, "Failed to get mac addr from PF: %d", ret);
1388 		return ret;
1389 	}
1390 
1391 	memcpy(hw->mac.mac_addr, host_mac, RTE_ETHER_ADDR_LEN);
1392 
1393 	return 0;
1394 }
1395 
1396 static int
1397 hns3vf_get_configuration(struct hns3_hw *hw)
1398 {
1399 	int ret;
1400 
1401 	hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
1402 	hw->rss_dis_flag = false;
1403 
1404 	/* Get device capability */
1405 	ret = hns3vf_get_capability(hw);
1406 	if (ret) {
1407 		PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
1408 		return ret;
1409 	}
1410 
1411 	/* Get queue configuration from PF */
1412 	ret = hns3vf_get_queue_info(hw);
1413 	if (ret)
1414 		return ret;
1415 
1416 	/* Get queue depth info from PF */
1417 	ret = hns3vf_get_queue_depth(hw);
1418 	if (ret)
1419 		return ret;
1420 
1421 	/* Get user defined VF MAC addr from PF */
1422 	ret = hns3vf_get_host_mac_addr(hw);
1423 	if (ret)
1424 		return ret;
1425 
1426 	ret = hns3vf_get_port_base_vlan_filter_state(hw);
1427 	if (ret)
1428 		return ret;
1429 
1430 	/* Get tc configuration from PF */
1431 	return hns3vf_get_tc_info(hw);
1432 }
1433 
1434 static int
1435 hns3vf_set_tc_queue_mapping(struct hns3_adapter *hns, uint16_t nb_rx_q,
1436 			    uint16_t nb_tx_q)
1437 {
1438 	struct hns3_hw *hw = &hns->hw;
1439 
1440 	if (nb_rx_q < hw->num_tc) {
1441 		hns3_err(hw, "number of Rx queues(%u) is less than tcs(%u).",
1442 			 nb_rx_q, hw->num_tc);
1443 		return -EINVAL;
1444 	}
1445 
1446 	if (nb_tx_q < hw->num_tc) {
1447 		hns3_err(hw, "number of Tx queues(%u) is less than tcs(%u).",
1448 			 nb_tx_q, hw->num_tc);
1449 		return -EINVAL;
1450 	}
1451 
1452 	return hns3_queue_to_tc_mapping(hw, nb_rx_q, nb_tx_q);
1453 }
1454 
1455 static void
1456 hns3vf_request_link_info(struct hns3_hw *hw)
1457 {
1458 	uint8_t resp_msg;
1459 	int ret;
1460 
1461 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
1462 		return;
1463 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1464 				&resp_msg, sizeof(resp_msg));
1465 	if (ret)
1466 		hns3_err(hw, "Failed to fetch link status from PF: %d", ret);
1467 }
1468 
1469 void
1470 hns3vf_update_link_status(struct hns3_hw *hw, uint8_t link_status,
1471 			  uint32_t link_speed, uint8_t link_duplex)
1472 {
1473 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
1474 	struct hns3_mac *mac = &hw->mac;
1475 	bool report_lse;
1476 	bool changed;
1477 
1478 	changed = mac->link_status != link_status ||
1479 		  mac->link_speed != link_speed ||
1480 		  mac->link_duplex != link_duplex;
1481 	if (!changed)
1482 		return;
1483 
1484 	/*
1485 	 * VF's link status/speed/duplex were updated by polling from PF driver,
1486 	 * because the link status/speed/duplex may be changed in the polling
1487 	 * interval, so driver will report lse (lsc event) once any of the above
1488 	 * thress variables changed.
1489 	 * But if the PF's link status is down and driver saved link status is
1490 	 * also down, there are no need to report lse.
1491 	 */
1492 	report_lse = true;
1493 	if (link_status == ETH_LINK_DOWN && link_status == mac->link_status)
1494 		report_lse = false;
1495 
1496 	mac->link_status = link_status;
1497 	mac->link_speed = link_speed;
1498 	mac->link_duplex = link_duplex;
1499 
1500 	if (report_lse)
1501 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
1502 }
1503 
1504 static int
1505 hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
1506 {
1507 #define HNS3VF_VLAN_MBX_MSG_LEN 5
1508 	struct hns3_hw *hw = &hns->hw;
1509 	uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
1510 	uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
1511 	uint8_t is_kill = on ? 0 : 1;
1512 
1513 	msg_data[0] = is_kill;
1514 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1515 	memcpy(&msg_data[3], &proto, sizeof(proto));
1516 
1517 	return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
1518 				 msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
1519 				 0);
1520 }
1521 
1522 static int
1523 hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1524 {
1525 	struct hns3_adapter *hns = dev->data->dev_private;
1526 	struct hns3_hw *hw = &hns->hw;
1527 	int ret;
1528 
1529 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
1530 		hns3_err(hw,
1531 			 "vf set vlan id failed during resetting, vlan_id =%u",
1532 			 vlan_id);
1533 		return -EIO;
1534 	}
1535 	rte_spinlock_lock(&hw->lock);
1536 	ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1537 	rte_spinlock_unlock(&hw->lock);
1538 	if (ret)
1539 		hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
1540 			 vlan_id, ret);
1541 
1542 	return ret;
1543 }
1544 
1545 static int
1546 hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
1547 {
1548 	uint8_t msg_data;
1549 	int ret;
1550 
1551 	msg_data = enable ? 1 : 0;
1552 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
1553 				&msg_data, sizeof(msg_data), false, NULL, 0);
1554 	if (ret)
1555 		hns3_err(hw, "vf enable strip failed, ret =%d", ret);
1556 
1557 	return ret;
1558 }
1559 
1560 static int
1561 hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1562 {
1563 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1564 	struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1565 	unsigned int tmp_mask;
1566 	int ret = 0;
1567 
1568 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
1569 		hns3_err(hw, "vf set vlan offload failed during resetting, "
1570 			     "mask = 0x%x", mask);
1571 		return -EIO;
1572 	}
1573 
1574 	tmp_mask = (unsigned int)mask;
1575 	/* Vlan stripping setting */
1576 	if (tmp_mask & ETH_VLAN_STRIP_MASK) {
1577 		rte_spinlock_lock(&hw->lock);
1578 		/* Enable or disable VLAN stripping */
1579 		if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1580 			ret = hns3vf_en_hw_strip_rxvtag(hw, true);
1581 		else
1582 			ret = hns3vf_en_hw_strip_rxvtag(hw, false);
1583 		rte_spinlock_unlock(&hw->lock);
1584 	}
1585 
1586 	return ret;
1587 }
1588 
1589 static int
1590 hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
1591 {
1592 	struct rte_vlan_filter_conf *vfc;
1593 	struct hns3_hw *hw = &hns->hw;
1594 	uint16_t vlan_id;
1595 	uint64_t vbit;
1596 	uint64_t ids;
1597 	int ret = 0;
1598 	uint32_t i;
1599 
1600 	vfc = &hw->data->vlan_filter_conf;
1601 	for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1602 		if (vfc->ids[i] == 0)
1603 			continue;
1604 		ids = vfc->ids[i];
1605 		while (ids) {
1606 			/*
1607 			 * 64 means the num bits of ids, one bit corresponds to
1608 			 * one vlan id
1609 			 */
1610 			vlan_id = 64 * i;
1611 			/* count trailing zeroes */
1612 			vbit = ~ids & (ids - 1);
1613 			/* clear least significant bit set */
1614 			ids ^= (ids ^ (ids - 1)) ^ vbit;
1615 			for (; vbit;) {
1616 				vbit >>= 1;
1617 				vlan_id++;
1618 			}
1619 			ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1620 			if (ret) {
1621 				hns3_err(hw,
1622 					 "VF handle vlan table failed, ret =%d, on = %d",
1623 					 ret, on);
1624 				return ret;
1625 			}
1626 		}
1627 	}
1628 
1629 	return ret;
1630 }
1631 
1632 static int
1633 hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
1634 {
1635 	return hns3vf_handle_all_vlan_table(hns, 0);
1636 }
1637 
1638 static int
1639 hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
1640 {
1641 	struct hns3_hw *hw = &hns->hw;
1642 	struct rte_eth_conf *dev_conf;
1643 	bool en;
1644 	int ret;
1645 
1646 	dev_conf = &hw->data->dev_conf;
1647 	en = dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP ? true
1648 								   : false;
1649 	ret = hns3vf_en_hw_strip_rxvtag(hw, en);
1650 	if (ret)
1651 		hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
1652 			 ret);
1653 	return ret;
1654 }
1655 
1656 static int
1657 hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
1658 {
1659 	struct hns3_adapter *hns = dev->data->dev_private;
1660 	struct rte_eth_dev_data *data = dev->data;
1661 	struct hns3_hw *hw = &hns->hw;
1662 	int ret;
1663 
1664 	if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
1665 	    data->dev_conf.txmode.hw_vlan_reject_untagged ||
1666 	    data->dev_conf.txmode.hw_vlan_insert_pvid) {
1667 		hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
1668 			      "or hw_vlan_insert_pvid is not support!");
1669 	}
1670 
1671 	/* Apply vlan offload setting */
1672 	ret = hns3vf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
1673 	if (ret)
1674 		hns3_err(hw, "dev config vlan offload failed, ret =%d", ret);
1675 
1676 	return ret;
1677 }
1678 
1679 static int
1680 hns3vf_set_alive(struct hns3_hw *hw, bool alive)
1681 {
1682 	uint8_t msg_data;
1683 
1684 	msg_data = alive ? 1 : 0;
1685 	return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
1686 				 sizeof(msg_data), false, NULL, 0);
1687 }
1688 
1689 static void
1690 hns3vf_keep_alive_handler(void *param)
1691 {
1692 	struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1693 	struct hns3_adapter *hns = eth_dev->data->dev_private;
1694 	struct hns3_hw *hw = &hns->hw;
1695 	uint8_t respmsg;
1696 	int ret;
1697 
1698 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
1699 				false, &respmsg, sizeof(uint8_t));
1700 	if (ret)
1701 		hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
1702 			 ret);
1703 
1704 	rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1705 			  eth_dev);
1706 }
1707 
1708 static void
1709 hns3vf_service_handler(void *param)
1710 {
1711 	struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1712 	struct hns3_adapter *hns = eth_dev->data->dev_private;
1713 	struct hns3_hw *hw = &hns->hw;
1714 
1715 	/*
1716 	 * The query link status and reset processing are executed in the
1717 	 * interrupt thread.When the IMP reset occurs, IMP will not respond,
1718 	 * and the query operation will time out after 30ms. In the case of
1719 	 * multiple PF/VFs, each query failure timeout causes the IMP reset
1720 	 * interrupt to fail to respond within 100ms.
1721 	 * Before querying the link status, check whether there is a reset
1722 	 * pending, and if so, abandon the query.
1723 	 */
1724 	if (!hns3vf_is_reset_pending(hns))
1725 		hns3vf_request_link_info(hw);
1726 	else
1727 		hns3_warn(hw, "Cancel the query when reset is pending");
1728 
1729 	rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
1730 			  eth_dev);
1731 }
1732 
1733 static int
1734 hns3_query_vf_resource(struct hns3_hw *hw)
1735 {
1736 	struct hns3_vf_res_cmd *req;
1737 	struct hns3_cmd_desc desc;
1738 	uint16_t num_msi;
1739 	int ret;
1740 
1741 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_VF_RSRC, true);
1742 	ret = hns3_cmd_send(hw, &desc, 1);
1743 	if (ret) {
1744 		hns3_err(hw, "query vf resource failed, ret = %d", ret);
1745 		return ret;
1746 	}
1747 
1748 	req = (struct hns3_vf_res_cmd *)desc.data;
1749 	num_msi = hns3_get_field(rte_le_to_cpu_16(req->vf_intr_vector_number),
1750 				 HNS3_VF_VEC_NUM_M, HNS3_VF_VEC_NUM_S);
1751 	if (num_msi < HNS3_MIN_VECTOR_NUM) {
1752 		hns3_err(hw, "Just %u msi resources, not enough for vf(min:%d)",
1753 			 num_msi, HNS3_MIN_VECTOR_NUM);
1754 		return -EINVAL;
1755 	}
1756 
1757 	hw->num_msi = num_msi;
1758 
1759 	return 0;
1760 }
1761 
1762 static int
1763 hns3vf_init_hardware(struct hns3_adapter *hns)
1764 {
1765 	struct hns3_hw *hw = &hns->hw;
1766 	uint16_t mtu = hw->data->mtu;
1767 	int ret;
1768 
1769 	ret = hns3vf_set_promisc_mode(hw, true, false, false);
1770 	if (ret)
1771 		return ret;
1772 
1773 	ret = hns3vf_config_mtu(hw, mtu);
1774 	if (ret)
1775 		goto err_init_hardware;
1776 
1777 	ret = hns3vf_vlan_filter_configure(hns, 0, 1);
1778 	if (ret) {
1779 		PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
1780 		goto err_init_hardware;
1781 	}
1782 
1783 	ret = hns3_config_gro(hw, false);
1784 	if (ret) {
1785 		PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
1786 		goto err_init_hardware;
1787 	}
1788 
1789 	/*
1790 	 * In the initialization clearing the all hardware mapping relationship
1791 	 * configurations between queues and interrupt vectors is needed, so
1792 	 * some error caused by the residual configurations, such as the
1793 	 * unexpected interrupt, can be avoid.
1794 	 */
1795 	ret = hns3vf_init_ring_with_vector(hw);
1796 	if (ret) {
1797 		PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
1798 		goto err_init_hardware;
1799 	}
1800 
1801 	ret = hns3vf_set_alive(hw, true);
1802 	if (ret) {
1803 		PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
1804 		goto err_init_hardware;
1805 	}
1806 
1807 	return 0;
1808 
1809 err_init_hardware:
1810 	(void)hns3vf_set_promisc_mode(hw, false, false, false);
1811 	return ret;
1812 }
1813 
1814 static int
1815 hns3vf_clear_vport_list(struct hns3_hw *hw)
1816 {
1817 	return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
1818 				 HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
1819 				 NULL, 0);
1820 }
1821 
1822 static int
1823 hns3vf_init_vf(struct rte_eth_dev *eth_dev)
1824 {
1825 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1826 	struct hns3_adapter *hns = eth_dev->data->dev_private;
1827 	struct hns3_hw *hw = &hns->hw;
1828 	int ret;
1829 
1830 	PMD_INIT_FUNC_TRACE();
1831 
1832 	/* Get hardware io base address from pcie BAR2 IO space */
1833 	hw->io_base = pci_dev->mem_resource[2].addr;
1834 
1835 	/* Firmware command queue initialize */
1836 	ret = hns3_cmd_init_queue(hw);
1837 	if (ret) {
1838 		PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
1839 		goto err_cmd_init_queue;
1840 	}
1841 
1842 	/* Firmware command initialize */
1843 	ret = hns3_cmd_init(hw);
1844 	if (ret) {
1845 		PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
1846 		goto err_cmd_init;
1847 	}
1848 
1849 	/* Get VF resource */
1850 	ret = hns3_query_vf_resource(hw);
1851 	if (ret)
1852 		goto err_cmd_init;
1853 
1854 	rte_spinlock_init(&hw->mbx_resp.lock);
1855 
1856 	hns3vf_clear_event_cause(hw, 0);
1857 
1858 	ret = rte_intr_callback_register(&pci_dev->intr_handle,
1859 					 hns3vf_interrupt_handler, eth_dev);
1860 	if (ret) {
1861 		PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
1862 		goto err_intr_callback_register;
1863 	}
1864 
1865 	/* Enable interrupt */
1866 	rte_intr_enable(&pci_dev->intr_handle);
1867 	hns3vf_enable_irq0(hw);
1868 
1869 	/* Get configuration from PF */
1870 	ret = hns3vf_get_configuration(hw);
1871 	if (ret) {
1872 		PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
1873 		goto err_get_config;
1874 	}
1875 
1876 	ret = hns3_tqp_stats_init(hw);
1877 	if (ret)
1878 		goto err_get_config;
1879 
1880 	/* Hardware statistics of imissed registers cleared. */
1881 	ret = hns3_update_imissed_stats(hw, true);
1882 	if (ret) {
1883 		hns3_err(hw, "clear imissed stats failed, ret = %d", ret);
1884 		goto err_set_tc_queue;
1885 	}
1886 
1887 	ret = hns3vf_set_tc_queue_mapping(hns, hw->tqps_num, hw->tqps_num);
1888 	if (ret) {
1889 		PMD_INIT_LOG(ERR, "failed to set tc info, ret = %d.", ret);
1890 		goto err_set_tc_queue;
1891 	}
1892 
1893 	ret = hns3vf_clear_vport_list(hw);
1894 	if (ret) {
1895 		PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
1896 		goto err_set_tc_queue;
1897 	}
1898 
1899 	ret = hns3vf_init_hardware(hns);
1900 	if (ret)
1901 		goto err_set_tc_queue;
1902 
1903 	hns3_rss_set_default_args(hw);
1904 
1905 	return 0;
1906 
1907 err_set_tc_queue:
1908 	hns3_tqp_stats_uninit(hw);
1909 
1910 err_get_config:
1911 	hns3vf_disable_irq0(hw);
1912 	rte_intr_disable(&pci_dev->intr_handle);
1913 	hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1914 			     eth_dev);
1915 err_intr_callback_register:
1916 err_cmd_init:
1917 	hns3_cmd_uninit(hw);
1918 	hns3_cmd_destroy_queue(hw);
1919 err_cmd_init_queue:
1920 	hw->io_base = NULL;
1921 
1922 	return ret;
1923 }
1924 
1925 static void
1926 hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
1927 {
1928 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1929 	struct hns3_adapter *hns = eth_dev->data->dev_private;
1930 	struct hns3_hw *hw = &hns->hw;
1931 
1932 	PMD_INIT_FUNC_TRACE();
1933 
1934 	hns3_rss_uninit(hns);
1935 	(void)hns3_config_gro(hw, false);
1936 	(void)hns3vf_set_alive(hw, false);
1937 	(void)hns3vf_set_promisc_mode(hw, false, false, false);
1938 	hns3_tqp_stats_uninit(hw);
1939 	hns3vf_disable_irq0(hw);
1940 	rte_intr_disable(&pci_dev->intr_handle);
1941 	hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1942 			     eth_dev);
1943 	hns3_cmd_uninit(hw);
1944 	hns3_cmd_destroy_queue(hw);
1945 	hw->io_base = NULL;
1946 }
1947 
1948 static int
1949 hns3vf_do_stop(struct hns3_adapter *hns)
1950 {
1951 	struct hns3_hw *hw = &hns->hw;
1952 	int ret;
1953 
1954 	hw->mac.link_status = ETH_LINK_DOWN;
1955 
1956 	/*
1957 	 * The "hns3vf_do_stop" function will also be called by .stop_service to
1958 	 * prepare reset. At the time of global or IMP reset, the command cannot
1959 	 * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
1960 	 * accessed during the reset process. So the mbuf can not be released
1961 	 * during reset and is required to be released after the reset is
1962 	 * completed.
1963 	 */
1964 	if (__atomic_load_n(&hw->reset.resetting,  __ATOMIC_RELAXED) == 0)
1965 		hns3_dev_release_mbufs(hns);
1966 
1967 	if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
1968 		hns3vf_configure_mac_addr(hns, true);
1969 		ret = hns3_reset_all_tqps(hns);
1970 		if (ret) {
1971 			hns3_err(hw, "failed to reset all queues ret = %d",
1972 				 ret);
1973 			return ret;
1974 		}
1975 	}
1976 	return 0;
1977 }
1978 
1979 static void
1980 hns3vf_unmap_rx_interrupt(struct rte_eth_dev *dev)
1981 {
1982 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1983 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1984 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1985 	uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
1986 	uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
1987 	uint16_t q_id;
1988 
1989 	if (dev->data->dev_conf.intr_conf.rxq == 0)
1990 		return;
1991 
1992 	/* unmap the ring with vector */
1993 	if (rte_intr_allow_others(intr_handle)) {
1994 		vec = RTE_INTR_VEC_RXTX_OFFSET;
1995 		base = RTE_INTR_VEC_RXTX_OFFSET;
1996 	}
1997 	if (rte_intr_dp_is_en(intr_handle)) {
1998 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
1999 			(void)hns3vf_bind_ring_with_vector(hw, vec, false,
2000 							   HNS3_RING_TYPE_RX,
2001 							   q_id);
2002 			if (vec < base + intr_handle->nb_efd - 1)
2003 				vec++;
2004 		}
2005 	}
2006 	/* Clean datapath event and queue/vec mapping */
2007 	rte_intr_efd_disable(intr_handle);
2008 	if (intr_handle->intr_vec) {
2009 		rte_free(intr_handle->intr_vec);
2010 		intr_handle->intr_vec = NULL;
2011 	}
2012 }
2013 
2014 static int
2015 hns3vf_dev_stop(struct rte_eth_dev *dev)
2016 {
2017 	struct hns3_adapter *hns = dev->data->dev_private;
2018 	struct hns3_hw *hw = &hns->hw;
2019 
2020 	PMD_INIT_FUNC_TRACE();
2021 	dev->data->dev_started = 0;
2022 
2023 	hw->adapter_state = HNS3_NIC_STOPPING;
2024 	hns3_set_rxtx_function(dev);
2025 	rte_wmb();
2026 	/* Disable datapath on secondary process. */
2027 	hns3_mp_req_stop_rxtx(dev);
2028 	/* Prevent crashes when queues are still in use. */
2029 	rte_delay_ms(hw->tqps_num);
2030 
2031 	rte_spinlock_lock(&hw->lock);
2032 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
2033 		hns3_stop_tqps(hw);
2034 		hns3vf_do_stop(hns);
2035 		hns3vf_unmap_rx_interrupt(dev);
2036 		hw->adapter_state = HNS3_NIC_CONFIGURED;
2037 	}
2038 	hns3_rx_scattered_reset(dev);
2039 	rte_eal_alarm_cancel(hns3vf_service_handler, dev);
2040 	rte_spinlock_unlock(&hw->lock);
2041 
2042 	return 0;
2043 }
2044 
2045 static int
2046 hns3vf_dev_close(struct rte_eth_dev *eth_dev)
2047 {
2048 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2049 	struct hns3_hw *hw = &hns->hw;
2050 	int ret = 0;
2051 
2052 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2053 		rte_free(eth_dev->process_private);
2054 		eth_dev->process_private = NULL;
2055 		return 0;
2056 	}
2057 
2058 	if (hw->adapter_state == HNS3_NIC_STARTED)
2059 		ret = hns3vf_dev_stop(eth_dev);
2060 
2061 	hw->adapter_state = HNS3_NIC_CLOSING;
2062 	hns3_reset_abort(hns);
2063 	hw->adapter_state = HNS3_NIC_CLOSED;
2064 	rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
2065 	hns3vf_configure_all_mc_mac_addr(hns, true);
2066 	hns3vf_remove_all_vlan_table(hns);
2067 	hns3vf_uninit_vf(eth_dev);
2068 	hns3_free_all_queues(eth_dev);
2069 	rte_free(hw->reset.wait_data);
2070 	rte_free(eth_dev->process_private);
2071 	eth_dev->process_private = NULL;
2072 	hns3_mp_uninit_primary();
2073 	hns3_warn(hw, "Close port %u finished", hw->data->port_id);
2074 
2075 	return ret;
2076 }
2077 
2078 static int
2079 hns3vf_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2080 		      size_t fw_size)
2081 {
2082 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2083 	struct hns3_hw *hw = &hns->hw;
2084 	uint32_t version = hw->fw_version;
2085 	int ret;
2086 
2087 	ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2088 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2089 				      HNS3_FW_VERSION_BYTE3_S),
2090 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2091 				      HNS3_FW_VERSION_BYTE2_S),
2092 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2093 				      HNS3_FW_VERSION_BYTE1_S),
2094 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2095 				      HNS3_FW_VERSION_BYTE0_S));
2096 	ret += 1; /* add the size of '\0' */
2097 	if (fw_size < (uint32_t)ret)
2098 		return ret;
2099 	else
2100 		return 0;
2101 }
2102 
2103 static int
2104 hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
2105 		       __rte_unused int wait_to_complete)
2106 {
2107 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2108 	struct hns3_hw *hw = &hns->hw;
2109 	struct hns3_mac *mac = &hw->mac;
2110 	struct rte_eth_link new_link;
2111 
2112 	memset(&new_link, 0, sizeof(new_link));
2113 	switch (mac->link_speed) {
2114 	case ETH_SPEED_NUM_10M:
2115 	case ETH_SPEED_NUM_100M:
2116 	case ETH_SPEED_NUM_1G:
2117 	case ETH_SPEED_NUM_10G:
2118 	case ETH_SPEED_NUM_25G:
2119 	case ETH_SPEED_NUM_40G:
2120 	case ETH_SPEED_NUM_50G:
2121 	case ETH_SPEED_NUM_100G:
2122 	case ETH_SPEED_NUM_200G:
2123 		new_link.link_speed = mac->link_speed;
2124 		break;
2125 	default:
2126 		if (mac->link_status)
2127 			new_link.link_speed = ETH_SPEED_NUM_UNKNOWN;
2128 		else
2129 			new_link.link_speed = ETH_SPEED_NUM_NONE;
2130 		break;
2131 	}
2132 
2133 	new_link.link_duplex = mac->link_duplex;
2134 	new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2135 	new_link.link_autoneg =
2136 	    !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2137 
2138 	return rte_eth_linkstatus_set(eth_dev, &new_link);
2139 }
2140 
2141 static int
2142 hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
2143 {
2144 	struct hns3_hw *hw = &hns->hw;
2145 	uint16_t nb_rx_q = hw->data->nb_rx_queues;
2146 	uint16_t nb_tx_q = hw->data->nb_tx_queues;
2147 	int ret;
2148 
2149 	ret = hns3vf_set_tc_queue_mapping(hns, nb_rx_q, nb_tx_q);
2150 	if (ret)
2151 		return ret;
2152 
2153 	hns3_enable_rxd_adv_layout(hw);
2154 
2155 	ret = hns3_init_queues(hns, reset_queue);
2156 	if (ret)
2157 		hns3_err(hw, "failed to init queues, ret = %d.", ret);
2158 
2159 	return ret;
2160 }
2161 
2162 static int
2163 hns3vf_map_rx_interrupt(struct rte_eth_dev *dev)
2164 {
2165 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2166 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2167 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2168 	uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
2169 	uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
2170 	uint32_t intr_vector;
2171 	uint16_t q_id;
2172 	int ret;
2173 
2174 	/*
2175 	 * hns3 needs a separate interrupt to be used as event interrupt which
2176 	 * could not be shared with task queue pair, so KERNEL drivers need
2177 	 * support multiple interrupt vectors.
2178 	 */
2179 	if (dev->data->dev_conf.intr_conf.rxq == 0 ||
2180 	    !rte_intr_cap_multiple(intr_handle))
2181 		return 0;
2182 
2183 	rte_intr_disable(intr_handle);
2184 	intr_vector = hw->used_rx_queues;
2185 	/* It creates event fd for each intr vector when MSIX is used */
2186 	if (rte_intr_efd_enable(intr_handle, intr_vector))
2187 		return -EINVAL;
2188 
2189 	if (intr_handle->intr_vec == NULL) {
2190 		intr_handle->intr_vec =
2191 			rte_zmalloc("intr_vec",
2192 				    hw->used_rx_queues * sizeof(int), 0);
2193 		if (intr_handle->intr_vec == NULL) {
2194 			hns3_err(hw, "Failed to allocate %u rx_queues"
2195 				     " intr_vec", hw->used_rx_queues);
2196 			ret = -ENOMEM;
2197 			goto vf_alloc_intr_vec_error;
2198 		}
2199 	}
2200 
2201 	if (rte_intr_allow_others(intr_handle)) {
2202 		vec = RTE_INTR_VEC_RXTX_OFFSET;
2203 		base = RTE_INTR_VEC_RXTX_OFFSET;
2204 	}
2205 
2206 	for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2207 		ret = hns3vf_bind_ring_with_vector(hw, vec, true,
2208 						   HNS3_RING_TYPE_RX, q_id);
2209 		if (ret)
2210 			goto vf_bind_vector_error;
2211 		intr_handle->intr_vec[q_id] = vec;
2212 		/*
2213 		 * If there are not enough efds (e.g. not enough interrupt),
2214 		 * remaining queues will be bond to the last interrupt.
2215 		 */
2216 		if (vec < base + intr_handle->nb_efd - 1)
2217 			vec++;
2218 	}
2219 	rte_intr_enable(intr_handle);
2220 	return 0;
2221 
2222 vf_bind_vector_error:
2223 	free(intr_handle->intr_vec);
2224 	intr_handle->intr_vec = NULL;
2225 vf_alloc_intr_vec_error:
2226 	rte_intr_efd_disable(intr_handle);
2227 	return ret;
2228 }
2229 
2230 static int
2231 hns3vf_restore_rx_interrupt(struct hns3_hw *hw)
2232 {
2233 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
2234 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2235 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2236 	uint16_t q_id;
2237 	int ret;
2238 
2239 	if (dev->data->dev_conf.intr_conf.rxq == 0)
2240 		return 0;
2241 
2242 	if (rte_intr_dp_is_en(intr_handle)) {
2243 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2244 			ret = hns3vf_bind_ring_with_vector(hw,
2245 					intr_handle->intr_vec[q_id], true,
2246 					HNS3_RING_TYPE_RX, q_id);
2247 			if (ret)
2248 				return ret;
2249 		}
2250 	}
2251 
2252 	return 0;
2253 }
2254 
2255 static void
2256 hns3vf_restore_filter(struct rte_eth_dev *dev)
2257 {
2258 	hns3_restore_rss_filter(dev);
2259 }
2260 
2261 static int
2262 hns3vf_dev_start(struct rte_eth_dev *dev)
2263 {
2264 	struct hns3_adapter *hns = dev->data->dev_private;
2265 	struct hns3_hw *hw = &hns->hw;
2266 	int ret;
2267 
2268 	PMD_INIT_FUNC_TRACE();
2269 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
2270 		return -EBUSY;
2271 
2272 	rte_spinlock_lock(&hw->lock);
2273 	hw->adapter_state = HNS3_NIC_STARTING;
2274 	ret = hns3vf_do_start(hns, true);
2275 	if (ret) {
2276 		hw->adapter_state = HNS3_NIC_CONFIGURED;
2277 		rte_spinlock_unlock(&hw->lock);
2278 		return ret;
2279 	}
2280 	ret = hns3vf_map_rx_interrupt(dev);
2281 	if (ret)
2282 		goto map_rx_inter_err;
2283 
2284 	/*
2285 	 * There are three register used to control the status of a TQP
2286 	 * (contains a pair of Tx queue and Rx queue) in the new version network
2287 	 * engine. One is used to control the enabling of Tx queue, the other is
2288 	 * used to control the enabling of Rx queue, and the last is the master
2289 	 * switch used to control the enabling of the tqp. The Tx register and
2290 	 * TQP register must be enabled at the same time to enable a Tx queue.
2291 	 * The same applies to the Rx queue. For the older network enginem, this
2292 	 * function only refresh the enabled flag, and it is used to update the
2293 	 * status of queue in the dpdk framework.
2294 	 */
2295 	ret = hns3_start_all_txqs(dev);
2296 	if (ret)
2297 		goto map_rx_inter_err;
2298 
2299 	ret = hns3_start_all_rxqs(dev);
2300 	if (ret)
2301 		goto start_all_rxqs_fail;
2302 
2303 	hw->adapter_state = HNS3_NIC_STARTED;
2304 	rte_spinlock_unlock(&hw->lock);
2305 
2306 	hns3_rx_scattered_calc(dev);
2307 	hns3_set_rxtx_function(dev);
2308 	hns3_mp_req_start_rxtx(dev);
2309 	hns3vf_service_handler(dev);
2310 
2311 	hns3vf_restore_filter(dev);
2312 
2313 	/* Enable interrupt of all rx queues before enabling queues */
2314 	hns3_dev_all_rx_queue_intr_enable(hw, true);
2315 
2316 	/*
2317 	 * After finished the initialization, start all tqps to receive/transmit
2318 	 * packets and refresh all queue status.
2319 	 */
2320 	hns3_start_tqps(hw);
2321 
2322 	return ret;
2323 
2324 start_all_rxqs_fail:
2325 	hns3_stop_all_txqs(dev);
2326 map_rx_inter_err:
2327 	(void)hns3vf_do_stop(hns);
2328 	hw->adapter_state = HNS3_NIC_CONFIGURED;
2329 	rte_spinlock_unlock(&hw->lock);
2330 
2331 	return ret;
2332 }
2333 
2334 static bool
2335 is_vf_reset_done(struct hns3_hw *hw)
2336 {
2337 #define HNS3_FUN_RST_ING_BITS \
2338 	(BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
2339 	 BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
2340 	 BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
2341 	 BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
2342 
2343 	uint32_t val;
2344 
2345 	if (hw->reset.level == HNS3_VF_RESET) {
2346 		val = hns3_read_dev(hw, HNS3_VF_RST_ING);
2347 		if (val & HNS3_VF_RST_ING_BIT)
2348 			return false;
2349 	} else {
2350 		val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
2351 		if (val & HNS3_FUN_RST_ING_BITS)
2352 			return false;
2353 	}
2354 	return true;
2355 }
2356 
2357 bool
2358 hns3vf_is_reset_pending(struct hns3_adapter *hns)
2359 {
2360 	struct hns3_hw *hw = &hns->hw;
2361 	enum hns3_reset_level reset;
2362 
2363 	/*
2364 	 * According to the protocol of PCIe, FLR to a PF device resets the PF
2365 	 * state as well as the SR-IOV extended capability including VF Enable
2366 	 * which means that VFs no longer exist.
2367 	 *
2368 	 * HNS3_VF_FULL_RESET means PF device is in FLR reset. when PF device
2369 	 * is in FLR stage, the register state of VF device is not reliable,
2370 	 * so register states detection can not be carried out. In this case,
2371 	 * we just ignore the register states and return false to indicate that
2372 	 * there are no other reset states that need to be processed by driver.
2373 	 */
2374 	if (hw->reset.level == HNS3_VF_FULL_RESET)
2375 		return false;
2376 
2377 	/* Check the registers to confirm whether there is reset pending */
2378 	hns3vf_check_event_cause(hns, NULL);
2379 	reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
2380 	if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
2381 		hns3_warn(hw, "High level reset %d is pending", reset);
2382 		return true;
2383 	}
2384 	return false;
2385 }
2386 
2387 static int
2388 hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
2389 {
2390 	struct hns3_hw *hw = &hns->hw;
2391 	struct hns3_wait_data *wait_data = hw->reset.wait_data;
2392 	struct timeval tv;
2393 
2394 	if (wait_data->result == HNS3_WAIT_SUCCESS) {
2395 		/*
2396 		 * After vf reset is ready, the PF may not have completed
2397 		 * the reset processing. The vf sending mbox to PF may fail
2398 		 * during the pf reset, so it is better to add extra delay.
2399 		 */
2400 		if (hw->reset.level == HNS3_VF_FUNC_RESET ||
2401 		    hw->reset.level == HNS3_FLR_RESET)
2402 			return 0;
2403 		/* Reset retry process, no need to add extra delay. */
2404 		if (hw->reset.attempts)
2405 			return 0;
2406 		if (wait_data->check_completion == NULL)
2407 			return 0;
2408 
2409 		wait_data->check_completion = NULL;
2410 		wait_data->interval = 1 * MSEC_PER_SEC * USEC_PER_MSEC;
2411 		wait_data->count = 1;
2412 		wait_data->result = HNS3_WAIT_REQUEST;
2413 		rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
2414 				  wait_data);
2415 		hns3_warn(hw, "hardware is ready, delay 1 sec for PF reset complete");
2416 		return -EAGAIN;
2417 	} else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
2418 		gettimeofday(&tv, NULL);
2419 		hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
2420 			  tv.tv_sec, tv.tv_usec);
2421 		return -ETIME;
2422 	} else if (wait_data->result == HNS3_WAIT_REQUEST)
2423 		return -EAGAIN;
2424 
2425 	wait_data->hns = hns;
2426 	wait_data->check_completion = is_vf_reset_done;
2427 	wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
2428 				      HNS3VF_RESET_WAIT_MS + get_timeofday_ms();
2429 	wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
2430 	wait_data->count = HNS3VF_RESET_WAIT_CNT;
2431 	wait_data->result = HNS3_WAIT_REQUEST;
2432 	rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
2433 	return -EAGAIN;
2434 }
2435 
2436 static int
2437 hns3vf_prepare_reset(struct hns3_adapter *hns)
2438 {
2439 	struct hns3_hw *hw = &hns->hw;
2440 	int ret;
2441 
2442 	if (hw->reset.level == HNS3_VF_FUNC_RESET) {
2443 		ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
2444 					0, true, NULL, 0);
2445 		if (ret)
2446 			return ret;
2447 	}
2448 	__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
2449 
2450 	return 0;
2451 }
2452 
2453 static int
2454 hns3vf_stop_service(struct hns3_adapter *hns)
2455 {
2456 	struct hns3_hw *hw = &hns->hw;
2457 	struct rte_eth_dev *eth_dev;
2458 
2459 	eth_dev = &rte_eth_devices[hw->data->port_id];
2460 	if (hw->adapter_state == HNS3_NIC_STARTED) {
2461 		rte_eal_alarm_cancel(hns3vf_service_handler, eth_dev);
2462 		hns3vf_update_link_status(hw, ETH_LINK_DOWN, hw->mac.link_speed,
2463 			hw->mac.link_duplex);
2464 	}
2465 	hw->mac.link_status = ETH_LINK_DOWN;
2466 
2467 	hns3_set_rxtx_function(eth_dev);
2468 	rte_wmb();
2469 	/* Disable datapath on secondary process. */
2470 	hns3_mp_req_stop_rxtx(eth_dev);
2471 	rte_delay_ms(hw->tqps_num);
2472 
2473 	rte_spinlock_lock(&hw->lock);
2474 	if (hw->adapter_state == HNS3_NIC_STARTED ||
2475 	    hw->adapter_state == HNS3_NIC_STOPPING) {
2476 		hns3_enable_all_queues(hw, false);
2477 		hns3vf_do_stop(hns);
2478 		hw->reset.mbuf_deferred_free = true;
2479 	} else
2480 		hw->reset.mbuf_deferred_free = false;
2481 
2482 	/*
2483 	 * It is cumbersome for hardware to pick-and-choose entries for deletion
2484 	 * from table space. Hence, for function reset software intervention is
2485 	 * required to delete the entries.
2486 	 */
2487 	if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
2488 		hns3vf_configure_all_mc_mac_addr(hns, true);
2489 	rte_spinlock_unlock(&hw->lock);
2490 
2491 	return 0;
2492 }
2493 
2494 static int
2495 hns3vf_start_service(struct hns3_adapter *hns)
2496 {
2497 	struct hns3_hw *hw = &hns->hw;
2498 	struct rte_eth_dev *eth_dev;
2499 
2500 	eth_dev = &rte_eth_devices[hw->data->port_id];
2501 	hns3_set_rxtx_function(eth_dev);
2502 	hns3_mp_req_start_rxtx(eth_dev);
2503 	if (hw->adapter_state == HNS3_NIC_STARTED) {
2504 		hns3vf_service_handler(eth_dev);
2505 
2506 		/* Enable interrupt of all rx queues before enabling queues */
2507 		hns3_dev_all_rx_queue_intr_enable(hw, true);
2508 		/*
2509 		 * Enable state of each rxq and txq will be recovered after
2510 		 * reset, so we need to restore them before enable all tqps;
2511 		 */
2512 		hns3_restore_tqp_enable_state(hw);
2513 		/*
2514 		 * When finished the initialization, enable queues to receive
2515 		 * and transmit packets.
2516 		 */
2517 		hns3_enable_all_queues(hw, true);
2518 	}
2519 
2520 	return 0;
2521 }
2522 
2523 static int
2524 hns3vf_check_default_mac_change(struct hns3_hw *hw)
2525 {
2526 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2527 	struct rte_ether_addr *hw_mac;
2528 	int ret;
2529 
2530 	/*
2531 	 * The hns3 PF ethdev driver in kernel support setting VF MAC address
2532 	 * on the host by "ip link set ..." command. If the hns3 PF kernel
2533 	 * ethdev driver sets the MAC address for VF device after the
2534 	 * initialization of the related VF device, the PF driver will notify
2535 	 * VF driver to reset VF device to make the new MAC address effective
2536 	 * immediately. The hns3 VF PMD driver should check whether the MAC
2537 	 * address has been changed by the PF kernel ethdev driver, if changed
2538 	 * VF driver should configure hardware using the new MAC address in the
2539 	 * recovering hardware configuration stage of the reset process.
2540 	 */
2541 	ret = hns3vf_get_host_mac_addr(hw);
2542 	if (ret)
2543 		return ret;
2544 
2545 	hw_mac = (struct rte_ether_addr *)hw->mac.mac_addr;
2546 	ret = rte_is_zero_ether_addr(hw_mac);
2547 	if (ret) {
2548 		rte_ether_addr_copy(&hw->data->mac_addrs[0], hw_mac);
2549 	} else {
2550 		ret = rte_is_same_ether_addr(&hw->data->mac_addrs[0], hw_mac);
2551 		if (!ret) {
2552 			rte_ether_addr_copy(hw_mac, &hw->data->mac_addrs[0]);
2553 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2554 					      &hw->data->mac_addrs[0]);
2555 			hns3_warn(hw, "Default MAC address has been changed to:"
2556 				  " %s by the host PF kernel ethdev driver",
2557 				  mac_str);
2558 		}
2559 	}
2560 
2561 	return 0;
2562 }
2563 
2564 static int
2565 hns3vf_restore_conf(struct hns3_adapter *hns)
2566 {
2567 	struct hns3_hw *hw = &hns->hw;
2568 	int ret;
2569 
2570 	ret = hns3vf_check_default_mac_change(hw);
2571 	if (ret)
2572 		return ret;
2573 
2574 	ret = hns3vf_configure_mac_addr(hns, false);
2575 	if (ret)
2576 		return ret;
2577 
2578 	ret = hns3vf_configure_all_mc_mac_addr(hns, false);
2579 	if (ret)
2580 		goto err_mc_mac;
2581 
2582 	ret = hns3vf_restore_promisc(hns);
2583 	if (ret)
2584 		goto err_vlan_table;
2585 
2586 	ret = hns3vf_restore_vlan_conf(hns);
2587 	if (ret)
2588 		goto err_vlan_table;
2589 
2590 	ret = hns3vf_get_port_base_vlan_filter_state(hw);
2591 	if (ret)
2592 		goto err_vlan_table;
2593 
2594 	ret = hns3vf_restore_rx_interrupt(hw);
2595 	if (ret)
2596 		goto err_vlan_table;
2597 
2598 	ret = hns3_restore_gro_conf(hw);
2599 	if (ret)
2600 		goto err_vlan_table;
2601 
2602 	if (hw->adapter_state == HNS3_NIC_STARTED) {
2603 		ret = hns3vf_do_start(hns, false);
2604 		if (ret)
2605 			goto err_vlan_table;
2606 		hns3_info(hw, "hns3vf dev restart successful!");
2607 	} else if (hw->adapter_state == HNS3_NIC_STOPPING)
2608 		hw->adapter_state = HNS3_NIC_CONFIGURED;
2609 	return 0;
2610 
2611 err_vlan_table:
2612 	hns3vf_configure_all_mc_mac_addr(hns, true);
2613 err_mc_mac:
2614 	hns3vf_configure_mac_addr(hns, true);
2615 	return ret;
2616 }
2617 
2618 static enum hns3_reset_level
2619 hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
2620 {
2621 	enum hns3_reset_level reset_level;
2622 
2623 	/* return the highest priority reset level amongst all */
2624 	if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
2625 		reset_level = HNS3_VF_RESET;
2626 	else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
2627 		reset_level = HNS3_VF_FULL_RESET;
2628 	else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
2629 		reset_level = HNS3_VF_PF_FUNC_RESET;
2630 	else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
2631 		reset_level = HNS3_VF_FUNC_RESET;
2632 	else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
2633 		reset_level = HNS3_FLR_RESET;
2634 	else
2635 		reset_level = HNS3_NONE_RESET;
2636 
2637 	if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
2638 		return HNS3_NONE_RESET;
2639 
2640 	return reset_level;
2641 }
2642 
2643 static void
2644 hns3vf_reset_service(void *param)
2645 {
2646 	struct hns3_adapter *hns = (struct hns3_adapter *)param;
2647 	struct hns3_hw *hw = &hns->hw;
2648 	enum hns3_reset_level reset_level;
2649 	struct timeval tv_delta;
2650 	struct timeval tv_start;
2651 	struct timeval tv;
2652 	uint64_t msec;
2653 
2654 	/*
2655 	 * The interrupt is not triggered within the delay time.
2656 	 * The interrupt may have been lost. It is necessary to handle
2657 	 * the interrupt to recover from the error.
2658 	 */
2659 	if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
2660 			    SCHEDULE_DEFERRED) {
2661 		__atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
2662 				 __ATOMIC_RELAXED);
2663 		hns3_err(hw, "Handling interrupts in delayed tasks");
2664 		hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
2665 		reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2666 		if (reset_level == HNS3_NONE_RESET) {
2667 			hns3_err(hw, "No reset level is set, try global reset");
2668 			hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
2669 		}
2670 	}
2671 	__atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
2672 
2673 	/*
2674 	 * Hardware reset has been notified, we now have to poll & check if
2675 	 * hardware has actually completed the reset sequence.
2676 	 */
2677 	reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2678 	if (reset_level != HNS3_NONE_RESET) {
2679 		gettimeofday(&tv_start, NULL);
2680 		hns3_reset_process(hns, reset_level);
2681 		gettimeofday(&tv, NULL);
2682 		timersub(&tv, &tv_start, &tv_delta);
2683 		msec = tv_delta.tv_sec * MSEC_PER_SEC +
2684 		       tv_delta.tv_usec / USEC_PER_MSEC;
2685 		if (msec > HNS3_RESET_PROCESS_MS)
2686 			hns3_err(hw, "%d handle long time delta %" PRIx64
2687 				 " ms time=%ld.%.6ld",
2688 				 hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
2689 	}
2690 }
2691 
2692 static int
2693 hns3vf_reinit_dev(struct hns3_adapter *hns)
2694 {
2695 	struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
2696 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2697 	struct hns3_hw *hw = &hns->hw;
2698 	int ret;
2699 
2700 	if (hw->reset.level == HNS3_VF_FULL_RESET) {
2701 		rte_intr_disable(&pci_dev->intr_handle);
2702 		ret = hns3vf_set_bus_master(pci_dev, true);
2703 		if (ret < 0) {
2704 			hns3_err(hw, "failed to set pci bus, ret = %d", ret);
2705 			return ret;
2706 		}
2707 	}
2708 
2709 	/* Firmware command initialize */
2710 	ret = hns3_cmd_init(hw);
2711 	if (ret) {
2712 		hns3_err(hw, "Failed to init cmd: %d", ret);
2713 		return ret;
2714 	}
2715 
2716 	if (hw->reset.level == HNS3_VF_FULL_RESET) {
2717 		/*
2718 		 * UIO enables msix by writing the pcie configuration space
2719 		 * vfio_pci enables msix in rte_intr_enable.
2720 		 */
2721 		if (pci_dev->kdrv == RTE_PCI_KDRV_IGB_UIO ||
2722 		    pci_dev->kdrv == RTE_PCI_KDRV_UIO_GENERIC) {
2723 			if (hns3vf_enable_msix(pci_dev, true))
2724 				hns3_err(hw, "Failed to enable msix");
2725 		}
2726 
2727 		rte_intr_enable(&pci_dev->intr_handle);
2728 	}
2729 
2730 	ret = hns3_reset_all_tqps(hns);
2731 	if (ret) {
2732 		hns3_err(hw, "Failed to reset all queues: %d", ret);
2733 		return ret;
2734 	}
2735 
2736 	ret = hns3vf_init_hardware(hns);
2737 	if (ret) {
2738 		hns3_err(hw, "Failed to init hardware: %d", ret);
2739 		return ret;
2740 	}
2741 
2742 	return 0;
2743 }
2744 
2745 static const struct eth_dev_ops hns3vf_eth_dev_ops = {
2746 	.dev_configure      = hns3vf_dev_configure,
2747 	.dev_start          = hns3vf_dev_start,
2748 	.dev_stop           = hns3vf_dev_stop,
2749 	.dev_close          = hns3vf_dev_close,
2750 	.mtu_set            = hns3vf_dev_mtu_set,
2751 	.promiscuous_enable = hns3vf_dev_promiscuous_enable,
2752 	.promiscuous_disable = hns3vf_dev_promiscuous_disable,
2753 	.allmulticast_enable = hns3vf_dev_allmulticast_enable,
2754 	.allmulticast_disable = hns3vf_dev_allmulticast_disable,
2755 	.stats_get          = hns3_stats_get,
2756 	.stats_reset        = hns3_stats_reset,
2757 	.xstats_get         = hns3_dev_xstats_get,
2758 	.xstats_get_names   = hns3_dev_xstats_get_names,
2759 	.xstats_reset       = hns3_dev_xstats_reset,
2760 	.xstats_get_by_id   = hns3_dev_xstats_get_by_id,
2761 	.xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
2762 	.dev_infos_get      = hns3vf_dev_infos_get,
2763 	.fw_version_get     = hns3vf_fw_version_get,
2764 	.rx_queue_setup     = hns3_rx_queue_setup,
2765 	.tx_queue_setup     = hns3_tx_queue_setup,
2766 	.rx_queue_release   = hns3_dev_rx_queue_release,
2767 	.tx_queue_release   = hns3_dev_tx_queue_release,
2768 	.rx_queue_start     = hns3_dev_rx_queue_start,
2769 	.rx_queue_stop      = hns3_dev_rx_queue_stop,
2770 	.tx_queue_start     = hns3_dev_tx_queue_start,
2771 	.tx_queue_stop      = hns3_dev_tx_queue_stop,
2772 	.rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
2773 	.rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
2774 	.rxq_info_get       = hns3_rxq_info_get,
2775 	.txq_info_get       = hns3_txq_info_get,
2776 	.rx_burst_mode_get  = hns3_rx_burst_mode_get,
2777 	.tx_burst_mode_get  = hns3_tx_burst_mode_get,
2778 	.mac_addr_add       = hns3vf_add_mac_addr,
2779 	.mac_addr_remove    = hns3vf_remove_mac_addr,
2780 	.mac_addr_set       = hns3vf_set_default_mac_addr,
2781 	.set_mc_addr_list   = hns3vf_set_mc_mac_addr_list,
2782 	.link_update        = hns3vf_dev_link_update,
2783 	.rss_hash_update    = hns3_dev_rss_hash_update,
2784 	.rss_hash_conf_get  = hns3_dev_rss_hash_conf_get,
2785 	.reta_update        = hns3_dev_rss_reta_update,
2786 	.reta_query         = hns3_dev_rss_reta_query,
2787 	.flow_ops_get       = hns3_dev_flow_ops_get,
2788 	.vlan_filter_set    = hns3vf_vlan_filter_set,
2789 	.vlan_offload_set   = hns3vf_vlan_offload_set,
2790 	.get_reg            = hns3_get_regs,
2791 	.dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
2792 	.tx_done_cleanup    = hns3_tx_done_cleanup,
2793 };
2794 
2795 static const struct hns3_reset_ops hns3vf_reset_ops = {
2796 	.reset_service       = hns3vf_reset_service,
2797 	.stop_service        = hns3vf_stop_service,
2798 	.prepare_reset       = hns3vf_prepare_reset,
2799 	.wait_hardware_ready = hns3vf_wait_hardware_ready,
2800 	.reinit_dev          = hns3vf_reinit_dev,
2801 	.restore_conf        = hns3vf_restore_conf,
2802 	.start_service       = hns3vf_start_service,
2803 };
2804 
2805 static int
2806 hns3vf_dev_init(struct rte_eth_dev *eth_dev)
2807 {
2808 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2809 	struct hns3_hw *hw = &hns->hw;
2810 	int ret;
2811 
2812 	PMD_INIT_FUNC_TRACE();
2813 
2814 	eth_dev->process_private = (struct hns3_process_private *)
2815 	    rte_zmalloc_socket("hns3_filter_list",
2816 			       sizeof(struct hns3_process_private),
2817 			       RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
2818 	if (eth_dev->process_private == NULL) {
2819 		PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
2820 		return -ENOMEM;
2821 	}
2822 
2823 	/* initialize flow filter lists */
2824 	hns3_filterlist_init(eth_dev);
2825 
2826 	hns3_set_rxtx_function(eth_dev);
2827 	eth_dev->dev_ops = &hns3vf_eth_dev_ops;
2828 	eth_dev->rx_queue_count = hns3_rx_queue_count;
2829 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2830 		ret = hns3_mp_init_secondary();
2831 		if (ret) {
2832 			PMD_INIT_LOG(ERR, "Failed to init for secondary "
2833 					  "process, ret = %d", ret);
2834 			goto err_mp_init_secondary;
2835 		}
2836 
2837 		hw->secondary_cnt++;
2838 		return 0;
2839 	}
2840 
2841 	ret = hns3_mp_init_primary();
2842 	if (ret) {
2843 		PMD_INIT_LOG(ERR,
2844 			     "Failed to init for primary process, ret = %d",
2845 			     ret);
2846 		goto err_mp_init_primary;
2847 	}
2848 
2849 	hw->adapter_state = HNS3_NIC_UNINITIALIZED;
2850 	hns->is_vf = true;
2851 	hw->data = eth_dev->data;
2852 	hns3_parse_devargs(eth_dev);
2853 
2854 	ret = hns3_reset_init(hw);
2855 	if (ret)
2856 		goto err_init_reset;
2857 	hw->reset.ops = &hns3vf_reset_ops;
2858 
2859 	ret = hns3vf_init_vf(eth_dev);
2860 	if (ret) {
2861 		PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
2862 		goto err_init_vf;
2863 	}
2864 
2865 	/* Allocate memory for storing MAC addresses */
2866 	eth_dev->data->mac_addrs = rte_zmalloc("hns3vf-mac",
2867 					       sizeof(struct rte_ether_addr) *
2868 					       HNS3_VF_UC_MACADDR_NUM, 0);
2869 	if (eth_dev->data->mac_addrs == NULL) {
2870 		PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
2871 			     "to store MAC addresses",
2872 			     sizeof(struct rte_ether_addr) *
2873 			     HNS3_VF_UC_MACADDR_NUM);
2874 		ret = -ENOMEM;
2875 		goto err_rte_zmalloc;
2876 	}
2877 
2878 	/*
2879 	 * The hns3 PF ethdev driver in kernel support setting VF MAC address
2880 	 * on the host by "ip link set ..." command. To avoid some incorrect
2881 	 * scenes, for example, hns3 VF PMD driver fails to receive and send
2882 	 * packets after user configure the MAC address by using the
2883 	 * "ip link set ..." command, hns3 VF PMD driver keep the same MAC
2884 	 * address strategy as the hns3 kernel ethdev driver in the
2885 	 * initialization. If user configure a MAC address by the ip command
2886 	 * for VF device, then hns3 VF PMD driver will start with it, otherwise
2887 	 * start with a random MAC address in the initialization.
2888 	 */
2889 	if (rte_is_zero_ether_addr((struct rte_ether_addr *)hw->mac.mac_addr))
2890 		rte_eth_random_addr(hw->mac.mac_addr);
2891 	rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
2892 			    &eth_dev->data->mac_addrs[0]);
2893 
2894 	hw->adapter_state = HNS3_NIC_INITIALIZED;
2895 
2896 	if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
2897 			    SCHEDULE_PENDING) {
2898 		hns3_err(hw, "Reschedule reset service after dev_init");
2899 		hns3_schedule_reset(hns);
2900 	} else {
2901 		/* IMP will wait ready flag before reset */
2902 		hns3_notify_reset_ready(hw, false);
2903 	}
2904 	rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
2905 			  eth_dev);
2906 	return 0;
2907 
2908 err_rte_zmalloc:
2909 	hns3vf_uninit_vf(eth_dev);
2910 
2911 err_init_vf:
2912 	rte_free(hw->reset.wait_data);
2913 
2914 err_init_reset:
2915 	hns3_mp_uninit_primary();
2916 
2917 err_mp_init_primary:
2918 err_mp_init_secondary:
2919 	eth_dev->dev_ops = NULL;
2920 	eth_dev->rx_pkt_burst = NULL;
2921 	eth_dev->rx_descriptor_status = NULL;
2922 	eth_dev->tx_pkt_burst = NULL;
2923 	eth_dev->tx_pkt_prepare = NULL;
2924 	eth_dev->tx_descriptor_status = NULL;
2925 	rte_free(eth_dev->process_private);
2926 	eth_dev->process_private = NULL;
2927 
2928 	return ret;
2929 }
2930 
2931 static int
2932 hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
2933 {
2934 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2935 	struct hns3_hw *hw = &hns->hw;
2936 
2937 	PMD_INIT_FUNC_TRACE();
2938 
2939 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2940 		rte_free(eth_dev->process_private);
2941 		eth_dev->process_private = NULL;
2942 		return 0;
2943 	}
2944 
2945 	if (hw->adapter_state < HNS3_NIC_CLOSING)
2946 		hns3vf_dev_close(eth_dev);
2947 
2948 	hw->adapter_state = HNS3_NIC_REMOVED;
2949 	return 0;
2950 }
2951 
2952 static int
2953 eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2954 		     struct rte_pci_device *pci_dev)
2955 {
2956 	return rte_eth_dev_pci_generic_probe(pci_dev,
2957 					     sizeof(struct hns3_adapter),
2958 					     hns3vf_dev_init);
2959 }
2960 
2961 static int
2962 eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
2963 {
2964 	return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
2965 }
2966 
2967 static const struct rte_pci_id pci_id_hns3vf_map[] = {
2968 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
2969 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
2970 	{ .vendor_id = 0, }, /* sentinel */
2971 };
2972 
2973 static struct rte_pci_driver rte_hns3vf_pmd = {
2974 	.id_table = pci_id_hns3vf_map,
2975 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
2976 	.probe = eth_hns3vf_pci_probe,
2977 	.remove = eth_hns3vf_pci_remove,
2978 };
2979 
2980 RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
2981 RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
2982 RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");
2983 RTE_PMD_REGISTER_PARAM_STRING(net_hns3_vf,
2984 		HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
2985 		HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common ");
2986