xref: /dpdk/drivers/net/failsafe/failsafe_ops.c (revision 8809f78c7dd9f33a44a4f89c58fc91ded34296ed)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2017 6WIND S.A.
3  * Copyright 2017 Mellanox Technologies, Ltd
4  */
5 
6 #include <stdbool.h>
7 #include <stdint.h>
8 #include <unistd.h>
9 
10 #include <rte_debug.h>
11 #include <rte_atomic.h>
12 #include <rte_ethdev_driver.h>
13 #include <rte_malloc.h>
14 #include <rte_flow.h>
15 #include <rte_cycles.h>
16 #include <rte_ethdev.h>
17 #include <rte_string_fns.h>
18 
19 #include "failsafe_private.h"
20 
21 static int
22 fs_dev_configure(struct rte_eth_dev *dev)
23 {
24 	struct sub_device *sdev;
25 	uint8_t i;
26 	int ret;
27 
28 	fs_lock(dev, 0);
29 	FOREACH_SUBDEV(sdev, i, dev) {
30 		int rmv_interrupt = 0;
31 		int lsc_interrupt = 0;
32 		int lsc_enabled;
33 
34 		if (sdev->state != DEV_PROBED &&
35 		    !(PRIV(dev)->alarm_lock == 0 && sdev->state == DEV_ACTIVE))
36 			continue;
37 
38 		rmv_interrupt = ETH(sdev)->data->dev_flags &
39 				RTE_ETH_DEV_INTR_RMV;
40 		if (rmv_interrupt) {
41 			DEBUG("Enabling RMV interrupts for sub_device %d", i);
42 			dev->data->dev_conf.intr_conf.rmv = 1;
43 		} else {
44 			DEBUG("sub_device %d does not support RMV event", i);
45 		}
46 		lsc_enabled = dev->data->dev_conf.intr_conf.lsc;
47 		lsc_interrupt = lsc_enabled &&
48 				(ETH(sdev)->data->dev_flags &
49 				 RTE_ETH_DEV_INTR_LSC);
50 		if (lsc_interrupt) {
51 			DEBUG("Enabling LSC interrupts for sub_device %d", i);
52 			dev->data->dev_conf.intr_conf.lsc = 1;
53 		} else if (lsc_enabled && !lsc_interrupt) {
54 			DEBUG("Disabling LSC interrupts for sub_device %d", i);
55 			dev->data->dev_conf.intr_conf.lsc = 0;
56 		}
57 		DEBUG("Configuring sub-device %d", i);
58 		ret = rte_eth_dev_configure(PORT_ID(sdev),
59 					dev->data->nb_rx_queues,
60 					dev->data->nb_tx_queues,
61 					&dev->data->dev_conf);
62 		if (ret) {
63 			if (!fs_err(sdev, ret))
64 				continue;
65 			ERROR("Could not configure sub_device %d", i);
66 			fs_unlock(dev, 0);
67 			return ret;
68 		}
69 		if (rmv_interrupt && sdev->rmv_callback == 0) {
70 			ret = rte_eth_dev_callback_register(PORT_ID(sdev),
71 					RTE_ETH_EVENT_INTR_RMV,
72 					failsafe_eth_rmv_event_callback,
73 					sdev);
74 			if (ret)
75 				WARN("Failed to register RMV callback for sub_device %d",
76 				     SUB_ID(sdev));
77 			else
78 				sdev->rmv_callback = 1;
79 		}
80 		dev->data->dev_conf.intr_conf.rmv = 0;
81 		if (lsc_interrupt && sdev->lsc_callback == 0) {
82 			ret = rte_eth_dev_callback_register(PORT_ID(sdev),
83 						RTE_ETH_EVENT_INTR_LSC,
84 						failsafe_eth_lsc_event_callback,
85 						dev);
86 			if (ret)
87 				WARN("Failed to register LSC callback for sub_device %d",
88 				     SUB_ID(sdev));
89 			else
90 				sdev->lsc_callback = 1;
91 		}
92 		dev->data->dev_conf.intr_conf.lsc = lsc_enabled;
93 		sdev->state = DEV_ACTIVE;
94 	}
95 	if (PRIV(dev)->state < DEV_ACTIVE)
96 		PRIV(dev)->state = DEV_ACTIVE;
97 	fs_unlock(dev, 0);
98 	return 0;
99 }
100 
101 static void
102 fs_set_queues_state_start(struct rte_eth_dev *dev)
103 {
104 	struct rxq *rxq;
105 	struct txq *txq;
106 	uint16_t i;
107 
108 	for (i = 0; i < dev->data->nb_rx_queues; i++) {
109 		rxq = dev->data->rx_queues[i];
110 		if (rxq != NULL && !rxq->info.conf.rx_deferred_start)
111 			dev->data->rx_queue_state[i] =
112 						RTE_ETH_QUEUE_STATE_STARTED;
113 	}
114 	for (i = 0; i < dev->data->nb_tx_queues; i++) {
115 		txq = dev->data->tx_queues[i];
116 		if (txq != NULL && !txq->info.conf.tx_deferred_start)
117 			dev->data->tx_queue_state[i] =
118 						RTE_ETH_QUEUE_STATE_STARTED;
119 	}
120 }
121 
122 static int
123 fs_dev_start(struct rte_eth_dev *dev)
124 {
125 	struct sub_device *sdev;
126 	uint8_t i;
127 	int ret;
128 
129 	fs_lock(dev, 0);
130 	ret = failsafe_rx_intr_install(dev);
131 	if (ret) {
132 		fs_unlock(dev, 0);
133 		return ret;
134 	}
135 	FOREACH_SUBDEV(sdev, i, dev) {
136 		if (sdev->state != DEV_ACTIVE)
137 			continue;
138 		DEBUG("Starting sub_device %d", i);
139 		ret = rte_eth_dev_start(PORT_ID(sdev));
140 		if (ret) {
141 			if (!fs_err(sdev, ret))
142 				continue;
143 			fs_unlock(dev, 0);
144 			return ret;
145 		}
146 		ret = failsafe_rx_intr_install_subdevice(sdev);
147 		if (ret) {
148 			if (!fs_err(sdev, ret))
149 				continue;
150 			if (fs_err(sdev, rte_eth_dev_stop(PORT_ID(sdev))) < 0)
151 				ERROR("Failed to stop sub-device %u",
152 				      SUB_ID(sdev));
153 			fs_unlock(dev, 0);
154 			return ret;
155 		}
156 		sdev->state = DEV_STARTED;
157 	}
158 	if (PRIV(dev)->state < DEV_STARTED) {
159 		PRIV(dev)->state = DEV_STARTED;
160 		fs_set_queues_state_start(dev);
161 	}
162 	fs_switch_dev(dev, NULL);
163 	fs_unlock(dev, 0);
164 	return 0;
165 }
166 
167 static void
168 fs_set_queues_state_stop(struct rte_eth_dev *dev)
169 {
170 	uint16_t i;
171 
172 	for (i = 0; i < dev->data->nb_rx_queues; i++)
173 		if (dev->data->rx_queues[i] != NULL)
174 			dev->data->rx_queue_state[i] =
175 						RTE_ETH_QUEUE_STATE_STOPPED;
176 	for (i = 0; i < dev->data->nb_tx_queues; i++)
177 		if (dev->data->tx_queues[i] != NULL)
178 			dev->data->tx_queue_state[i] =
179 						RTE_ETH_QUEUE_STATE_STOPPED;
180 }
181 
182 static int
183 fs_dev_stop(struct rte_eth_dev *dev)
184 {
185 	struct sub_device *sdev;
186 	uint8_t i;
187 	int ret;
188 
189 	fs_lock(dev, 0);
190 	PRIV(dev)->state = DEV_STARTED - 1;
191 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_STARTED) {
192 		ret = rte_eth_dev_stop(PORT_ID(sdev));
193 		if (fs_err(sdev, ret) < 0) {
194 			ERROR("Failed to stop device %u",
195 			      PORT_ID(sdev));
196 			PRIV(dev)->state = DEV_STARTED + 1;
197 			fs_unlock(dev, 0);
198 			return ret;
199 		}
200 		failsafe_rx_intr_uninstall_subdevice(sdev);
201 		sdev->state = DEV_STARTED - 1;
202 	}
203 	failsafe_rx_intr_uninstall(dev);
204 	fs_set_queues_state_stop(dev);
205 	fs_unlock(dev, 0);
206 
207 	return 0;
208 }
209 
210 static int
211 fs_dev_set_link_up(struct rte_eth_dev *dev)
212 {
213 	struct sub_device *sdev;
214 	uint8_t i;
215 	int ret;
216 
217 	fs_lock(dev, 0);
218 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
219 		DEBUG("Calling rte_eth_dev_set_link_up on sub_device %d", i);
220 		ret = rte_eth_dev_set_link_up(PORT_ID(sdev));
221 		if ((ret = fs_err(sdev, ret))) {
222 			ERROR("Operation rte_eth_dev_set_link_up failed for sub_device %d"
223 			      " with error %d", i, ret);
224 			fs_unlock(dev, 0);
225 			return ret;
226 		}
227 	}
228 	fs_unlock(dev, 0);
229 	return 0;
230 }
231 
232 static int
233 fs_dev_set_link_down(struct rte_eth_dev *dev)
234 {
235 	struct sub_device *sdev;
236 	uint8_t i;
237 	int ret;
238 
239 	fs_lock(dev, 0);
240 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
241 		DEBUG("Calling rte_eth_dev_set_link_down on sub_device %d", i);
242 		ret = rte_eth_dev_set_link_down(PORT_ID(sdev));
243 		if ((ret = fs_err(sdev, ret))) {
244 			ERROR("Operation rte_eth_dev_set_link_down failed for sub_device %d"
245 			      " with error %d", i, ret);
246 			fs_unlock(dev, 0);
247 			return ret;
248 		}
249 	}
250 	fs_unlock(dev, 0);
251 	return 0;
252 }
253 
254 static int
255 fs_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
256 {
257 	struct sub_device *sdev;
258 	uint8_t i;
259 	int ret;
260 	int err = 0;
261 	bool failure = true;
262 
263 	fs_lock(dev, 0);
264 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
265 		uint16_t port_id = ETH(sdev)->data->port_id;
266 
267 		ret = rte_eth_dev_rx_queue_stop(port_id, rx_queue_id);
268 		ret = fs_err(sdev, ret);
269 		if (ret) {
270 			ERROR("Rx queue stop failed for subdevice %d", i);
271 			err = ret;
272 		} else {
273 			failure = false;
274 		}
275 	}
276 	dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
277 	fs_unlock(dev, 0);
278 	/* Return 0 in case of at least one successful queue stop */
279 	return (failure) ? err : 0;
280 }
281 
282 static int
283 fs_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
284 {
285 	struct sub_device *sdev;
286 	uint8_t i;
287 	int ret;
288 
289 	fs_lock(dev, 0);
290 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
291 		uint16_t port_id = ETH(sdev)->data->port_id;
292 
293 		ret = rte_eth_dev_rx_queue_start(port_id, rx_queue_id);
294 		ret = fs_err(sdev, ret);
295 		if (ret) {
296 			ERROR("Rx queue start failed for subdevice %d", i);
297 			fs_rx_queue_stop(dev, rx_queue_id);
298 			fs_unlock(dev, 0);
299 			return ret;
300 		}
301 	}
302 	dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
303 	fs_unlock(dev, 0);
304 	return 0;
305 }
306 
307 static int
308 fs_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
309 {
310 	struct sub_device *sdev;
311 	uint8_t i;
312 	int ret;
313 	int err = 0;
314 	bool failure = true;
315 
316 	fs_lock(dev, 0);
317 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
318 		uint16_t port_id = ETH(sdev)->data->port_id;
319 
320 		ret = rte_eth_dev_tx_queue_stop(port_id, tx_queue_id);
321 		ret = fs_err(sdev, ret);
322 		if (ret) {
323 			ERROR("Tx queue stop failed for subdevice %d", i);
324 			err = ret;
325 		} else {
326 			failure = false;
327 		}
328 	}
329 	dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
330 	fs_unlock(dev, 0);
331 	/* Return 0 in case of at least one successful queue stop */
332 	return (failure) ? err : 0;
333 }
334 
335 static int
336 fs_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
337 {
338 	struct sub_device *sdev;
339 	uint8_t i;
340 	int ret;
341 
342 	fs_lock(dev, 0);
343 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
344 		uint16_t port_id = ETH(sdev)->data->port_id;
345 
346 		ret = rte_eth_dev_tx_queue_start(port_id, tx_queue_id);
347 		ret = fs_err(sdev, ret);
348 		if (ret) {
349 			ERROR("Tx queue start failed for subdevice %d", i);
350 			fs_tx_queue_stop(dev, tx_queue_id);
351 			fs_unlock(dev, 0);
352 			return ret;
353 		}
354 	}
355 	dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
356 	fs_unlock(dev, 0);
357 	return 0;
358 }
359 
360 static void
361 fs_rx_queue_release(void *queue)
362 {
363 	struct rte_eth_dev *dev;
364 	struct sub_device *sdev;
365 	uint8_t i;
366 	struct rxq *rxq;
367 
368 	if (queue == NULL)
369 		return;
370 	rxq = queue;
371 	dev = &rte_eth_devices[rxq->priv->data->port_id];
372 	fs_lock(dev, 0);
373 	if (rxq->event_fd >= 0)
374 		close(rxq->event_fd);
375 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
376 		if (ETH(sdev)->data->rx_queues != NULL &&
377 		    ETH(sdev)->data->rx_queues[rxq->qid] != NULL) {
378 			SUBOPS(sdev, rx_queue_release)
379 				(ETH(sdev)->data->rx_queues[rxq->qid]);
380 		}
381 	}
382 	dev->data->rx_queues[rxq->qid] = NULL;
383 	rte_free(rxq);
384 	fs_unlock(dev, 0);
385 }
386 
387 static int
388 fs_rx_queue_setup(struct rte_eth_dev *dev,
389 		uint16_t rx_queue_id,
390 		uint16_t nb_rx_desc,
391 		unsigned int socket_id,
392 		const struct rte_eth_rxconf *rx_conf,
393 		struct rte_mempool *mb_pool)
394 {
395 	/*
396 	 * FIXME: Add a proper interface in rte_eal_interrupts for
397 	 * allocating eventfd as an interrupt vector.
398 	 * For the time being, fake as if we are using MSIX interrupts,
399 	 * this will cause rte_intr_efd_enable to allocate an eventfd for us.
400 	 */
401 	struct rte_intr_handle intr_handle = {
402 		.type = RTE_INTR_HANDLE_VFIO_MSIX,
403 		.efds = { -1, },
404 	};
405 	struct sub_device *sdev;
406 	struct rxq *rxq;
407 	uint8_t i;
408 	int ret;
409 
410 	fs_lock(dev, 0);
411 	if (rx_conf->rx_deferred_start) {
412 		FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_PROBED) {
413 			if (SUBOPS(sdev, rx_queue_start) == NULL) {
414 				ERROR("Rx queue deferred start is not "
415 					"supported for subdevice %d", i);
416 				fs_unlock(dev, 0);
417 				return -EINVAL;
418 			}
419 		}
420 	}
421 	rxq = dev->data->rx_queues[rx_queue_id];
422 	if (rxq != NULL) {
423 		fs_rx_queue_release(rxq);
424 		dev->data->rx_queues[rx_queue_id] = NULL;
425 	}
426 	rxq = rte_zmalloc(NULL,
427 			  sizeof(*rxq) +
428 			  sizeof(rte_atomic64_t) * PRIV(dev)->subs_tail,
429 			  RTE_CACHE_LINE_SIZE);
430 	if (rxq == NULL) {
431 		fs_unlock(dev, 0);
432 		return -ENOMEM;
433 	}
434 	FOREACH_SUBDEV(sdev, i, dev)
435 		rte_atomic64_init(&rxq->refcnt[i]);
436 	rxq->qid = rx_queue_id;
437 	rxq->socket_id = socket_id;
438 	rxq->info.mp = mb_pool;
439 	rxq->info.conf = *rx_conf;
440 	rxq->info.nb_desc = nb_rx_desc;
441 	rxq->priv = PRIV(dev);
442 	rxq->sdev = PRIV(dev)->subs;
443 	ret = rte_intr_efd_enable(&intr_handle, 1);
444 	if (ret < 0) {
445 		fs_unlock(dev, 0);
446 		return ret;
447 	}
448 	rxq->event_fd = intr_handle.efds[0];
449 	dev->data->rx_queues[rx_queue_id] = rxq;
450 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
451 		ret = rte_eth_rx_queue_setup(PORT_ID(sdev),
452 				rx_queue_id,
453 				nb_rx_desc, socket_id,
454 				rx_conf, mb_pool);
455 		if ((ret = fs_err(sdev, ret))) {
456 			ERROR("RX queue setup failed for sub_device %d", i);
457 			goto free_rxq;
458 		}
459 	}
460 	fs_unlock(dev, 0);
461 	return 0;
462 free_rxq:
463 	fs_rx_queue_release(rxq);
464 	fs_unlock(dev, 0);
465 	return ret;
466 }
467 
468 static int
469 fs_rx_intr_enable(struct rte_eth_dev *dev, uint16_t idx)
470 {
471 	struct rxq *rxq;
472 	struct sub_device *sdev;
473 	uint8_t i;
474 	int ret;
475 	int rc = 0;
476 
477 	fs_lock(dev, 0);
478 	if (idx >= dev->data->nb_rx_queues) {
479 		rc = -EINVAL;
480 		goto unlock;
481 	}
482 	rxq = dev->data->rx_queues[idx];
483 	if (rxq == NULL || rxq->event_fd <= 0) {
484 		rc = -EINVAL;
485 		goto unlock;
486 	}
487 	/* Fail if proxy service is nor running. */
488 	if (PRIV(dev)->rxp.sstate != SS_RUNNING) {
489 		ERROR("failsafe interrupt services are not running");
490 		rc = -EAGAIN;
491 		goto unlock;
492 	}
493 	rxq->enable_events = 1;
494 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
495 		ret = rte_eth_dev_rx_intr_enable(PORT_ID(sdev), idx);
496 		ret = fs_err(sdev, ret);
497 		if (ret)
498 			rc = ret;
499 	}
500 unlock:
501 	fs_unlock(dev, 0);
502 	if (rc)
503 		rte_errno = -rc;
504 	return rc;
505 }
506 
507 static int
508 fs_rx_intr_disable(struct rte_eth_dev *dev, uint16_t idx)
509 {
510 	struct rxq *rxq;
511 	struct sub_device *sdev;
512 	uint64_t u64;
513 	uint8_t i;
514 	int rc = 0;
515 	int ret;
516 
517 	fs_lock(dev, 0);
518 	if (idx >= dev->data->nb_rx_queues) {
519 		rc = -EINVAL;
520 		goto unlock;
521 	}
522 	rxq = dev->data->rx_queues[idx];
523 	if (rxq == NULL || rxq->event_fd <= 0) {
524 		rc = -EINVAL;
525 		goto unlock;
526 	}
527 	rxq->enable_events = 0;
528 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
529 		ret = rte_eth_dev_rx_intr_disable(PORT_ID(sdev), idx);
530 		ret = fs_err(sdev, ret);
531 		if (ret)
532 			rc = ret;
533 	}
534 	/* Clear pending events */
535 	while (read(rxq->event_fd, &u64, sizeof(uint64_t)) >  0)
536 		;
537 unlock:
538 	fs_unlock(dev, 0);
539 	if (rc)
540 		rte_errno = -rc;
541 	return rc;
542 }
543 
544 static void
545 fs_tx_queue_release(void *queue)
546 {
547 	struct rte_eth_dev *dev;
548 	struct sub_device *sdev;
549 	uint8_t i;
550 	struct txq *txq;
551 
552 	if (queue == NULL)
553 		return;
554 	txq = queue;
555 	dev = &rte_eth_devices[txq->priv->data->port_id];
556 	fs_lock(dev, 0);
557 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
558 		if (ETH(sdev)->data->tx_queues != NULL &&
559 		    ETH(sdev)->data->tx_queues[txq->qid] != NULL) {
560 			SUBOPS(sdev, tx_queue_release)
561 				(ETH(sdev)->data->tx_queues[txq->qid]);
562 		}
563 	}
564 	dev->data->tx_queues[txq->qid] = NULL;
565 	rte_free(txq);
566 	fs_unlock(dev, 0);
567 }
568 
569 static int
570 fs_tx_queue_setup(struct rte_eth_dev *dev,
571 		uint16_t tx_queue_id,
572 		uint16_t nb_tx_desc,
573 		unsigned int socket_id,
574 		const struct rte_eth_txconf *tx_conf)
575 {
576 	struct sub_device *sdev;
577 	struct txq *txq;
578 	uint8_t i;
579 	int ret;
580 
581 	fs_lock(dev, 0);
582 	if (tx_conf->tx_deferred_start) {
583 		FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_PROBED) {
584 			if (SUBOPS(sdev, tx_queue_start) == NULL) {
585 				ERROR("Tx queue deferred start is not "
586 					"supported for subdevice %d", i);
587 				fs_unlock(dev, 0);
588 				return -EINVAL;
589 			}
590 		}
591 	}
592 	txq = dev->data->tx_queues[tx_queue_id];
593 	if (txq != NULL) {
594 		fs_tx_queue_release(txq);
595 		dev->data->tx_queues[tx_queue_id] = NULL;
596 	}
597 	txq = rte_zmalloc("ethdev TX queue",
598 			  sizeof(*txq) +
599 			  sizeof(rte_atomic64_t) * PRIV(dev)->subs_tail,
600 			  RTE_CACHE_LINE_SIZE);
601 	if (txq == NULL) {
602 		fs_unlock(dev, 0);
603 		return -ENOMEM;
604 	}
605 	FOREACH_SUBDEV(sdev, i, dev)
606 		rte_atomic64_init(&txq->refcnt[i]);
607 	txq->qid = tx_queue_id;
608 	txq->socket_id = socket_id;
609 	txq->info.conf = *tx_conf;
610 	txq->info.nb_desc = nb_tx_desc;
611 	txq->priv = PRIV(dev);
612 	dev->data->tx_queues[tx_queue_id] = txq;
613 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
614 		ret = rte_eth_tx_queue_setup(PORT_ID(sdev),
615 				tx_queue_id,
616 				nb_tx_desc, socket_id,
617 				tx_conf);
618 		if ((ret = fs_err(sdev, ret))) {
619 			ERROR("TX queue setup failed for sub_device %d", i);
620 			goto free_txq;
621 		}
622 	}
623 	fs_unlock(dev, 0);
624 	return 0;
625 free_txq:
626 	fs_tx_queue_release(txq);
627 	fs_unlock(dev, 0);
628 	return ret;
629 }
630 
631 static void
632 fs_dev_free_queues(struct rte_eth_dev *dev)
633 {
634 	uint16_t i;
635 
636 	for (i = 0; i < dev->data->nb_rx_queues; i++) {
637 		fs_rx_queue_release(dev->data->rx_queues[i]);
638 		dev->data->rx_queues[i] = NULL;
639 	}
640 	dev->data->nb_rx_queues = 0;
641 	for (i = 0; i < dev->data->nb_tx_queues; i++) {
642 		fs_tx_queue_release(dev->data->tx_queues[i]);
643 		dev->data->tx_queues[i] = NULL;
644 	}
645 	dev->data->nb_tx_queues = 0;
646 }
647 
648 int
649 failsafe_eth_dev_close(struct rte_eth_dev *dev)
650 {
651 	struct sub_device *sdev;
652 	uint8_t i;
653 	int err, ret = 0;
654 
655 	fs_lock(dev, 0);
656 	failsafe_hotplug_alarm_cancel(dev);
657 	if (PRIV(dev)->state == DEV_STARTED) {
658 		ret = dev->dev_ops->dev_stop(dev);
659 		if (ret != 0) {
660 			fs_unlock(dev, 0);
661 			return ret;
662 		}
663 	}
664 	PRIV(dev)->state = DEV_ACTIVE - 1;
665 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
666 		DEBUG("Closing sub_device %d", i);
667 		failsafe_eth_dev_unregister_callbacks(sdev);
668 		err = rte_eth_dev_close(PORT_ID(sdev));
669 		if (err) {
670 			ret = ret ? ret : err;
671 			ERROR("Error while closing sub-device %u",
672 					PORT_ID(sdev));
673 		}
674 		sdev->state = DEV_ACTIVE - 1;
675 	}
676 	rte_eth_dev_callback_unregister(RTE_ETH_ALL, RTE_ETH_EVENT_NEW,
677 					failsafe_eth_new_event_callback, dev);
678 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
679 		fs_unlock(dev, 0);
680 		return ret;
681 	}
682 	fs_dev_free_queues(dev);
683 	err = failsafe_eal_uninit(dev);
684 	if (err) {
685 		ret = ret ? ret : err;
686 		ERROR("Error while uninitializing sub-EAL");
687 	}
688 	failsafe_args_free(dev);
689 	rte_free(PRIV(dev)->subs);
690 	rte_free(PRIV(dev)->mcast_addrs);
691 	/* mac_addrs must not be freed alone because part of dev_private */
692 	dev->data->mac_addrs = NULL;
693 	fs_unlock(dev, 0);
694 	err = pthread_mutex_destroy(&PRIV(dev)->hotplug_mutex);
695 	if (err) {
696 		ret = ret ? ret : err;
697 		ERROR("Error while destroying hotplug mutex");
698 	}
699 	return ret;
700 }
701 
702 static int
703 fs_promiscuous_enable(struct rte_eth_dev *dev)
704 {
705 	struct sub_device *sdev;
706 	uint8_t i;
707 	int ret = 0;
708 
709 	fs_lock(dev, 0);
710 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
711 		ret = rte_eth_promiscuous_enable(PORT_ID(sdev));
712 		ret = fs_err(sdev, ret);
713 		if (ret != 0) {
714 			ERROR("Promiscuous mode enable failed for subdevice %d",
715 				PORT_ID(sdev));
716 			break;
717 		}
718 	}
719 	if (ret != 0) {
720 		/* Rollback in the case of failure */
721 		FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
722 			ret = rte_eth_promiscuous_disable(PORT_ID(sdev));
723 			ret = fs_err(sdev, ret);
724 			if (ret != 0)
725 				ERROR("Promiscuous mode disable during rollback failed for subdevice %d",
726 					PORT_ID(sdev));
727 		}
728 	}
729 	fs_unlock(dev, 0);
730 
731 	return ret;
732 }
733 
734 static int
735 fs_promiscuous_disable(struct rte_eth_dev *dev)
736 {
737 	struct sub_device *sdev;
738 	uint8_t i;
739 	int ret = 0;
740 
741 	fs_lock(dev, 0);
742 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
743 		ret = rte_eth_promiscuous_disable(PORT_ID(sdev));
744 		ret = fs_err(sdev, ret);
745 		if (ret != 0) {
746 			ERROR("Promiscuous mode disable failed for subdevice %d",
747 				PORT_ID(sdev));
748 			break;
749 		}
750 	}
751 	if (ret != 0) {
752 		/* Rollback in the case of failure */
753 		FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
754 			ret = rte_eth_promiscuous_enable(PORT_ID(sdev));
755 			ret = fs_err(sdev, ret);
756 			if (ret != 0)
757 				ERROR("Promiscuous mode enable during rollback failed for subdevice %d",
758 					PORT_ID(sdev));
759 		}
760 	}
761 	fs_unlock(dev, 0);
762 
763 	return ret;
764 }
765 
766 static int
767 fs_allmulticast_enable(struct rte_eth_dev *dev)
768 {
769 	struct sub_device *sdev;
770 	uint8_t i;
771 	int ret = 0;
772 
773 	fs_lock(dev, 0);
774 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
775 		ret = rte_eth_allmulticast_enable(PORT_ID(sdev));
776 		ret = fs_err(sdev, ret);
777 		if (ret != 0) {
778 			ERROR("All-multicast mode enable failed for subdevice %d",
779 				PORT_ID(sdev));
780 			break;
781 		}
782 	}
783 	if (ret != 0) {
784 		/* Rollback in the case of failure */
785 		FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
786 			ret = rte_eth_allmulticast_disable(PORT_ID(sdev));
787 			ret = fs_err(sdev, ret);
788 			if (ret != 0)
789 				ERROR("All-multicast mode disable during rollback failed for subdevice %d",
790 					PORT_ID(sdev));
791 		}
792 	}
793 	fs_unlock(dev, 0);
794 
795 	return ret;
796 }
797 
798 static int
799 fs_allmulticast_disable(struct rte_eth_dev *dev)
800 {
801 	struct sub_device *sdev;
802 	uint8_t i;
803 	int ret = 0;
804 
805 	fs_lock(dev, 0);
806 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
807 		ret = rte_eth_allmulticast_disable(PORT_ID(sdev));
808 		ret = fs_err(sdev, ret);
809 		if (ret != 0) {
810 			ERROR("All-multicast mode disable failed for subdevice %d",
811 				PORT_ID(sdev));
812 			break;
813 		}
814 	}
815 	if (ret != 0) {
816 		/* Rollback in the case of failure */
817 		FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
818 			ret = rte_eth_allmulticast_enable(PORT_ID(sdev));
819 			ret = fs_err(sdev, ret);
820 			if (ret != 0)
821 				ERROR("All-multicast mode enable during rollback failed for subdevice %d",
822 					PORT_ID(sdev));
823 		}
824 	}
825 	fs_unlock(dev, 0);
826 
827 	return ret;
828 }
829 
830 static int
831 fs_link_update(struct rte_eth_dev *dev,
832 		int wait_to_complete)
833 {
834 	struct sub_device *sdev;
835 	uint8_t i;
836 	int ret;
837 
838 	fs_lock(dev, 0);
839 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
840 		DEBUG("Calling link_update on sub_device %d", i);
841 		ret = (SUBOPS(sdev, link_update))(ETH(sdev), wait_to_complete);
842 		if (ret && ret != -1 && sdev->remove == 0 &&
843 		    rte_eth_dev_is_removed(PORT_ID(sdev)) == 0) {
844 			ERROR("Link update failed for sub_device %d with error %d",
845 			      i, ret);
846 			fs_unlock(dev, 0);
847 			return ret;
848 		}
849 	}
850 	if (TX_SUBDEV(dev)) {
851 		struct rte_eth_link *l1;
852 		struct rte_eth_link *l2;
853 
854 		l1 = &dev->data->dev_link;
855 		l2 = &ETH(TX_SUBDEV(dev))->data->dev_link;
856 		if (memcmp(l1, l2, sizeof(*l1))) {
857 			*l1 = *l2;
858 			fs_unlock(dev, 0);
859 			return 0;
860 		}
861 	}
862 	fs_unlock(dev, 0);
863 	return -1;
864 }
865 
866 static int
867 fs_stats_get(struct rte_eth_dev *dev,
868 	     struct rte_eth_stats *stats)
869 {
870 	struct rte_eth_stats backup;
871 	struct sub_device *sdev;
872 	uint8_t i;
873 	int ret;
874 
875 	fs_lock(dev, 0);
876 	rte_memcpy(stats, &PRIV(dev)->stats_accumulator, sizeof(*stats));
877 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
878 		struct rte_eth_stats *snapshot = &sdev->stats_snapshot.stats;
879 		uint64_t *timestamp = &sdev->stats_snapshot.timestamp;
880 
881 		rte_memcpy(&backup, snapshot, sizeof(backup));
882 		ret = rte_eth_stats_get(PORT_ID(sdev), snapshot);
883 		if (ret) {
884 			if (!fs_err(sdev, ret)) {
885 				rte_memcpy(snapshot, &backup, sizeof(backup));
886 				goto inc;
887 			}
888 			ERROR("Operation rte_eth_stats_get failed for sub_device %d with error %d",
889 				  i, ret);
890 			*timestamp = 0;
891 			fs_unlock(dev, 0);
892 			return ret;
893 		}
894 		*timestamp = rte_rdtsc();
895 inc:
896 		failsafe_stats_increment(stats, snapshot);
897 	}
898 	fs_unlock(dev, 0);
899 	return 0;
900 }
901 
902 static int
903 fs_stats_reset(struct rte_eth_dev *dev)
904 {
905 	struct sub_device *sdev;
906 	uint8_t i;
907 	int ret;
908 
909 	fs_lock(dev, 0);
910 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
911 		ret = rte_eth_stats_reset(PORT_ID(sdev));
912 		if (ret) {
913 			if (!fs_err(sdev, ret))
914 				continue;
915 
916 			ERROR("Operation rte_eth_stats_reset failed for sub_device %d with error %d",
917 			      i, ret);
918 			fs_unlock(dev, 0);
919 			return ret;
920 		}
921 		memset(&sdev->stats_snapshot, 0, sizeof(struct rte_eth_stats));
922 	}
923 	memset(&PRIV(dev)->stats_accumulator, 0, sizeof(struct rte_eth_stats));
924 	fs_unlock(dev, 0);
925 
926 	return 0;
927 }
928 
929 static int
930 __fs_xstats_count(struct rte_eth_dev *dev)
931 {
932 	struct sub_device *sdev;
933 	int count = 0;
934 	uint8_t i;
935 	int ret;
936 
937 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
938 		ret = rte_eth_xstats_get_names(PORT_ID(sdev), NULL, 0);
939 		if (ret < 0)
940 			return ret;
941 		count += ret;
942 	}
943 
944 	return count;
945 }
946 
947 static int
948 __fs_xstats_get_names(struct rte_eth_dev *dev,
949 		    struct rte_eth_xstat_name *xstats_names,
950 		    unsigned int limit)
951 {
952 	struct sub_device *sdev;
953 	unsigned int count = 0;
954 	uint8_t i;
955 
956 	/* Caller only cares about count */
957 	if (!xstats_names)
958 		return  __fs_xstats_count(dev);
959 
960 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
961 		struct rte_eth_xstat_name *sub_names = xstats_names + count;
962 		int j, r;
963 
964 		if (count >= limit)
965 			break;
966 
967 		r = rte_eth_xstats_get_names(PORT_ID(sdev),
968 					     sub_names, limit - count);
969 		if (r < 0)
970 			return r;
971 
972 		/* add subN_ prefix to names */
973 		for (j = 0; j < r; j++) {
974 			char *xname = sub_names[j].name;
975 			char tmp[RTE_ETH_XSTATS_NAME_SIZE];
976 
977 			if ((xname[0] == 't' || xname[0] == 'r') &&
978 			    xname[1] == 'x' && xname[2] == '_')
979 				snprintf(tmp, sizeof(tmp), "%.3ssub%u_%s",
980 					 xname, i, xname + 3);
981 			else
982 				snprintf(tmp, sizeof(tmp), "sub%u_%s",
983 					 i, xname);
984 
985 			strlcpy(xname, tmp, RTE_ETH_XSTATS_NAME_SIZE);
986 		}
987 		count += r;
988 	}
989 	return count;
990 }
991 
992 static int
993 fs_xstats_get_names(struct rte_eth_dev *dev,
994 		    struct rte_eth_xstat_name *xstats_names,
995 		    unsigned int limit)
996 {
997 	int ret;
998 
999 	fs_lock(dev, 0);
1000 	ret = __fs_xstats_get_names(dev, xstats_names, limit);
1001 	fs_unlock(dev, 0);
1002 	return ret;
1003 }
1004 
1005 static int
1006 __fs_xstats_get(struct rte_eth_dev *dev,
1007 	      struct rte_eth_xstat *xstats,
1008 	      unsigned int n)
1009 {
1010 	unsigned int count = 0;
1011 	struct sub_device *sdev;
1012 	uint8_t i;
1013 	int j, ret;
1014 
1015 	ret = __fs_xstats_count(dev);
1016 	/*
1017 	 * if error
1018 	 * or caller did not give enough space
1019 	 * or just querying
1020 	 */
1021 	if (ret < 0 || ret > (int)n || xstats == NULL)
1022 		return ret;
1023 
1024 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
1025 		ret = rte_eth_xstats_get(PORT_ID(sdev), xstats, n);
1026 		if (ret < 0)
1027 			return ret;
1028 
1029 		if (ret > (int)n)
1030 			return n + count;
1031 
1032 		/* add offset to id's from sub-device */
1033 		for (j = 0; j < ret; j++)
1034 			xstats[j].id += count;
1035 
1036 		xstats += ret;
1037 		n -= ret;
1038 		count += ret;
1039 	}
1040 
1041 	return count;
1042 }
1043 
1044 static int
1045 fs_xstats_get(struct rte_eth_dev *dev,
1046 	      struct rte_eth_xstat *xstats,
1047 	      unsigned int n)
1048 {
1049 	int ret;
1050 
1051 	fs_lock(dev, 0);
1052 	ret = __fs_xstats_get(dev, xstats, n);
1053 	fs_unlock(dev, 0);
1054 
1055 	return ret;
1056 }
1057 
1058 
1059 static int
1060 fs_xstats_reset(struct rte_eth_dev *dev)
1061 {
1062 	struct sub_device *sdev;
1063 	uint8_t i;
1064 	int r = 0;
1065 
1066 	fs_lock(dev, 0);
1067 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
1068 		r = rte_eth_xstats_reset(PORT_ID(sdev));
1069 		if (r < 0)
1070 			break;
1071 	}
1072 	fs_unlock(dev, 0);
1073 
1074 	return r;
1075 }
1076 
1077 static void
1078 fs_dev_merge_desc_lim(struct rte_eth_desc_lim *to,
1079 		      const struct rte_eth_desc_lim *from)
1080 {
1081 	to->nb_max = RTE_MIN(to->nb_max, from->nb_max);
1082 	to->nb_min = RTE_MAX(to->nb_min, from->nb_min);
1083 	to->nb_align = RTE_MAX(to->nb_align, from->nb_align);
1084 
1085 	to->nb_seg_max = RTE_MIN(to->nb_seg_max, from->nb_seg_max);
1086 	to->nb_mtu_seg_max = RTE_MIN(to->nb_mtu_seg_max, from->nb_mtu_seg_max);
1087 }
1088 
1089 /*
1090  * Merge the information from sub-devices.
1091  *
1092  * The reported values must be the common subset of all sub devices
1093  */
1094 static void
1095 fs_dev_merge_info(struct rte_eth_dev_info *info,
1096 		  const struct rte_eth_dev_info *sinfo)
1097 {
1098 	info->max_rx_pktlen = RTE_MIN(info->max_rx_pktlen, sinfo->max_rx_pktlen);
1099 	info->max_rx_queues = RTE_MIN(info->max_rx_queues, sinfo->max_rx_queues);
1100 	info->max_tx_queues = RTE_MIN(info->max_tx_queues, sinfo->max_tx_queues);
1101 	info->max_mac_addrs = RTE_MIN(info->max_mac_addrs, sinfo->max_mac_addrs);
1102 	info->max_hash_mac_addrs = RTE_MIN(info->max_hash_mac_addrs,
1103 					sinfo->max_hash_mac_addrs);
1104 	info->max_vmdq_pools = RTE_MIN(info->max_vmdq_pools, sinfo->max_vmdq_pools);
1105 	info->max_vfs = RTE_MIN(info->max_vfs, sinfo->max_vfs);
1106 
1107 	fs_dev_merge_desc_lim(&info->rx_desc_lim, &sinfo->rx_desc_lim);
1108 	fs_dev_merge_desc_lim(&info->tx_desc_lim, &sinfo->tx_desc_lim);
1109 
1110 	info->rx_offload_capa &= sinfo->rx_offload_capa;
1111 	info->tx_offload_capa &= sinfo->tx_offload_capa;
1112 	info->rx_queue_offload_capa &= sinfo->rx_queue_offload_capa;
1113 	info->tx_queue_offload_capa &= sinfo->tx_queue_offload_capa;
1114 	info->flow_type_rss_offloads &= sinfo->flow_type_rss_offloads;
1115 
1116 	/*
1117 	 * RETA size is a GCD of RETA sizes indicated by sub-devices.
1118 	 * Each of these sizes is a power of 2, so use the lower one.
1119 	 */
1120 	info->reta_size = RTE_MIN(info->reta_size, sinfo->reta_size);
1121 
1122 	info->hash_key_size = RTE_MIN(info->hash_key_size,
1123 				      sinfo->hash_key_size);
1124 }
1125 
1126 /**
1127  * Fail-safe dev_infos_get rules:
1128  *
1129  * No sub_device:
1130  *   Numerables:
1131  *      Use the maximum possible values for any field, so as not
1132  *      to impede any further configuration effort.
1133  *   Capabilities:
1134  *      Limits capabilities to those that are understood by the
1135  *      fail-safe PMD. This understanding stems from the fail-safe
1136  *      being capable of verifying that the related capability is
1137  *      expressed within the device configuration (struct rte_eth_conf).
1138  *
1139  * At least one probed sub_device:
1140  *   Numerables:
1141  *      Uses values from the active probed sub_device
1142  *      The rationale here is that if any sub_device is less capable
1143  *      (for example concerning the number of queues) than the active
1144  *      sub_device, then its subsequent configuration will fail.
1145  *      It is impossible to foresee this failure when the failing sub_device
1146  *      is supposed to be plugged-in later on, so the configuration process
1147  *      is the single point of failure and error reporting.
1148  *   Capabilities:
1149  *      Uses a logical AND of RX capabilities among
1150  *      all sub_devices and the default capabilities.
1151  *      Uses a logical AND of TX capabilities among
1152  *      the active probed sub_device and the default capabilities.
1153  *      Uses a logical AND of device capabilities among
1154  *      all sub_devices and the default capabilities.
1155  *
1156  */
1157 static int
1158 fs_dev_infos_get(struct rte_eth_dev *dev,
1159 		  struct rte_eth_dev_info *infos)
1160 {
1161 	struct sub_device *sdev;
1162 	uint8_t i;
1163 	int ret;
1164 
1165 	/* Use maximum upper bounds by default */
1166 	infos->max_rx_pktlen = UINT32_MAX;
1167 	infos->max_rx_queues = RTE_MAX_QUEUES_PER_PORT;
1168 	infos->max_tx_queues = RTE_MAX_QUEUES_PER_PORT;
1169 	infos->max_mac_addrs = FAILSAFE_MAX_ETHADDR;
1170 	infos->max_hash_mac_addrs = UINT32_MAX;
1171 	infos->max_vfs = UINT16_MAX;
1172 	infos->max_vmdq_pools = UINT16_MAX;
1173 	infos->reta_size = UINT16_MAX;
1174 	infos->hash_key_size = UINT8_MAX;
1175 
1176 	/*
1177 	 * Set of capabilities that can be verified upon
1178 	 * configuring a sub-device.
1179 	 */
1180 	infos->rx_offload_capa =
1181 		DEV_RX_OFFLOAD_VLAN_STRIP |
1182 		DEV_RX_OFFLOAD_IPV4_CKSUM |
1183 		DEV_RX_OFFLOAD_UDP_CKSUM |
1184 		DEV_RX_OFFLOAD_TCP_CKSUM |
1185 		DEV_RX_OFFLOAD_TCP_LRO |
1186 		DEV_RX_OFFLOAD_QINQ_STRIP |
1187 		DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
1188 		DEV_RX_OFFLOAD_MACSEC_STRIP |
1189 		DEV_RX_OFFLOAD_HEADER_SPLIT |
1190 		DEV_RX_OFFLOAD_VLAN_FILTER |
1191 		DEV_RX_OFFLOAD_VLAN_EXTEND |
1192 		DEV_RX_OFFLOAD_JUMBO_FRAME |
1193 		DEV_RX_OFFLOAD_SCATTER |
1194 		DEV_RX_OFFLOAD_TIMESTAMP |
1195 		DEV_RX_OFFLOAD_SECURITY;
1196 
1197 	infos->rx_queue_offload_capa =
1198 		DEV_RX_OFFLOAD_VLAN_STRIP |
1199 		DEV_RX_OFFLOAD_IPV4_CKSUM |
1200 		DEV_RX_OFFLOAD_UDP_CKSUM |
1201 		DEV_RX_OFFLOAD_TCP_CKSUM |
1202 		DEV_RX_OFFLOAD_TCP_LRO |
1203 		DEV_RX_OFFLOAD_QINQ_STRIP |
1204 		DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
1205 		DEV_RX_OFFLOAD_MACSEC_STRIP |
1206 		DEV_RX_OFFLOAD_HEADER_SPLIT |
1207 		DEV_RX_OFFLOAD_VLAN_FILTER |
1208 		DEV_RX_OFFLOAD_VLAN_EXTEND |
1209 		DEV_RX_OFFLOAD_JUMBO_FRAME |
1210 		DEV_RX_OFFLOAD_SCATTER |
1211 		DEV_RX_OFFLOAD_TIMESTAMP |
1212 		DEV_RX_OFFLOAD_SECURITY;
1213 
1214 	infos->tx_offload_capa =
1215 		DEV_TX_OFFLOAD_MULTI_SEGS |
1216 		DEV_TX_OFFLOAD_MBUF_FAST_FREE |
1217 		DEV_TX_OFFLOAD_IPV4_CKSUM |
1218 		DEV_TX_OFFLOAD_UDP_CKSUM |
1219 		DEV_TX_OFFLOAD_TCP_CKSUM |
1220 		DEV_TX_OFFLOAD_TCP_TSO;
1221 
1222 	infos->flow_type_rss_offloads =
1223 		ETH_RSS_IP |
1224 		ETH_RSS_UDP |
1225 		ETH_RSS_TCP;
1226 	infos->dev_capa =
1227 		RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
1228 		RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
1229 
1230 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_PROBED) {
1231 		struct rte_eth_dev_info sub_info;
1232 
1233 		ret = rte_eth_dev_info_get(PORT_ID(sdev), &sub_info);
1234 		ret = fs_err(sdev, ret);
1235 		if (ret != 0)
1236 			return ret;
1237 
1238 		fs_dev_merge_info(infos, &sub_info);
1239 	}
1240 
1241 	return 0;
1242 }
1243 
1244 static const uint32_t *
1245 fs_dev_supported_ptypes_get(struct rte_eth_dev *dev)
1246 {
1247 	struct sub_device *sdev;
1248 	struct rte_eth_dev *edev;
1249 	const uint32_t *ret;
1250 
1251 	fs_lock(dev, 0);
1252 	sdev = TX_SUBDEV(dev);
1253 	if (sdev == NULL) {
1254 		ret = NULL;
1255 		goto unlock;
1256 	}
1257 	edev = ETH(sdev);
1258 	/* ENOTSUP: counts as no supported ptypes */
1259 	if (SUBOPS(sdev, dev_supported_ptypes_get) == NULL) {
1260 		ret = NULL;
1261 		goto unlock;
1262 	}
1263 	/*
1264 	 * The API does not permit to do a clean AND of all ptypes,
1265 	 * It is also incomplete by design and we do not really care
1266 	 * to have a best possible value in this context.
1267 	 * We just return the ptypes of the device of highest
1268 	 * priority, usually the PREFERRED device.
1269 	 */
1270 	ret = SUBOPS(sdev, dev_supported_ptypes_get)(edev);
1271 unlock:
1272 	fs_unlock(dev, 0);
1273 	return ret;
1274 }
1275 
1276 static int
1277 fs_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1278 {
1279 	struct sub_device *sdev;
1280 	uint8_t i;
1281 	int ret;
1282 
1283 	fs_lock(dev, 0);
1284 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
1285 		DEBUG("Calling rte_eth_dev_set_mtu on sub_device %d", i);
1286 		ret = rte_eth_dev_set_mtu(PORT_ID(sdev), mtu);
1287 		if ((ret = fs_err(sdev, ret))) {
1288 			ERROR("Operation rte_eth_dev_set_mtu failed for sub_device %d with error %d",
1289 			      i, ret);
1290 			fs_unlock(dev, 0);
1291 			return ret;
1292 		}
1293 	}
1294 	fs_unlock(dev, 0);
1295 	return 0;
1296 }
1297 
1298 static int
1299 fs_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1300 {
1301 	struct sub_device *sdev;
1302 	uint8_t i;
1303 	int ret;
1304 
1305 	fs_lock(dev, 0);
1306 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
1307 		DEBUG("Calling rte_eth_dev_vlan_filter on sub_device %d", i);
1308 		ret = rte_eth_dev_vlan_filter(PORT_ID(sdev), vlan_id, on);
1309 		if ((ret = fs_err(sdev, ret))) {
1310 			ERROR("Operation rte_eth_dev_vlan_filter failed for sub_device %d"
1311 			      " with error %d", i, ret);
1312 			fs_unlock(dev, 0);
1313 			return ret;
1314 		}
1315 	}
1316 	fs_unlock(dev, 0);
1317 	return 0;
1318 }
1319 
1320 static int
1321 fs_flow_ctrl_get(struct rte_eth_dev *dev,
1322 		struct rte_eth_fc_conf *fc_conf)
1323 {
1324 	struct sub_device *sdev;
1325 	int ret;
1326 
1327 	fs_lock(dev, 0);
1328 	sdev = TX_SUBDEV(dev);
1329 	if (sdev == NULL) {
1330 		ret = 0;
1331 		goto unlock;
1332 	}
1333 	if (SUBOPS(sdev, flow_ctrl_get) == NULL) {
1334 		ret = -ENOTSUP;
1335 		goto unlock;
1336 	}
1337 	ret = SUBOPS(sdev, flow_ctrl_get)(ETH(sdev), fc_conf);
1338 unlock:
1339 	fs_unlock(dev, 0);
1340 	return ret;
1341 }
1342 
1343 static int
1344 fs_flow_ctrl_set(struct rte_eth_dev *dev,
1345 		struct rte_eth_fc_conf *fc_conf)
1346 {
1347 	struct sub_device *sdev;
1348 	uint8_t i;
1349 	int ret;
1350 
1351 	fs_lock(dev, 0);
1352 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
1353 		DEBUG("Calling rte_eth_dev_flow_ctrl_set on sub_device %d", i);
1354 		ret = rte_eth_dev_flow_ctrl_set(PORT_ID(sdev), fc_conf);
1355 		if ((ret = fs_err(sdev, ret))) {
1356 			ERROR("Operation rte_eth_dev_flow_ctrl_set failed for sub_device %d"
1357 			      " with error %d", i, ret);
1358 			fs_unlock(dev, 0);
1359 			return ret;
1360 		}
1361 	}
1362 	fs_unlock(dev, 0);
1363 	return 0;
1364 }
1365 
1366 static void
1367 fs_mac_addr_remove(struct rte_eth_dev *dev, uint32_t index)
1368 {
1369 	struct sub_device *sdev;
1370 	uint8_t i;
1371 
1372 	fs_lock(dev, 0);
1373 	/* No check: already done within the rte_eth_dev_mac_addr_remove
1374 	 * call for the fail-safe device.
1375 	 */
1376 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE)
1377 		rte_eth_dev_mac_addr_remove(PORT_ID(sdev),
1378 				&dev->data->mac_addrs[index]);
1379 	PRIV(dev)->mac_addr_pool[index] = 0;
1380 	fs_unlock(dev, 0);
1381 }
1382 
1383 static int
1384 fs_mac_addr_add(struct rte_eth_dev *dev,
1385 		struct rte_ether_addr *mac_addr,
1386 		uint32_t index,
1387 		uint32_t vmdq)
1388 {
1389 	struct sub_device *sdev;
1390 	int ret;
1391 	uint8_t i;
1392 
1393 	RTE_ASSERT(index < FAILSAFE_MAX_ETHADDR);
1394 	fs_lock(dev, 0);
1395 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
1396 		ret = rte_eth_dev_mac_addr_add(PORT_ID(sdev), mac_addr, vmdq);
1397 		if ((ret = fs_err(sdev, ret))) {
1398 			ERROR("Operation rte_eth_dev_mac_addr_add failed for sub_device %"
1399 			      PRIu8 " with error %d", i, ret);
1400 			fs_unlock(dev, 0);
1401 			return ret;
1402 		}
1403 	}
1404 	if (index >= PRIV(dev)->nb_mac_addr) {
1405 		DEBUG("Growing mac_addrs array");
1406 		PRIV(dev)->nb_mac_addr = index;
1407 	}
1408 	PRIV(dev)->mac_addr_pool[index] = vmdq;
1409 	fs_unlock(dev, 0);
1410 	return 0;
1411 }
1412 
1413 static int
1414 fs_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
1415 {
1416 	struct sub_device *sdev;
1417 	uint8_t i;
1418 	int ret;
1419 
1420 	fs_lock(dev, 0);
1421 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
1422 		ret = rte_eth_dev_default_mac_addr_set(PORT_ID(sdev), mac_addr);
1423 		ret = fs_err(sdev, ret);
1424 		if (ret) {
1425 			ERROR("Operation rte_eth_dev_mac_addr_set failed for sub_device %d with error %d",
1426 				i, ret);
1427 			fs_unlock(dev, 0);
1428 			return ret;
1429 		}
1430 	}
1431 	fs_unlock(dev, 0);
1432 
1433 	return 0;
1434 }
1435 
1436 static int
1437 fs_set_mc_addr_list(struct rte_eth_dev *dev,
1438 		    struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr)
1439 {
1440 	struct sub_device *sdev;
1441 	uint8_t i;
1442 	int ret;
1443 	void *mcast_addrs;
1444 
1445 	fs_lock(dev, 0);
1446 
1447 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
1448 		ret = rte_eth_dev_set_mc_addr_list(PORT_ID(sdev),
1449 						   mc_addr_set, nb_mc_addr);
1450 		if (ret != 0) {
1451 			ERROR("Operation rte_eth_dev_set_mc_addr_list failed for sub_device %d with error %d",
1452 			      i, ret);
1453 			goto rollback;
1454 		}
1455 	}
1456 
1457 	mcast_addrs = rte_realloc(PRIV(dev)->mcast_addrs,
1458 		nb_mc_addr * sizeof(PRIV(dev)->mcast_addrs[0]), 0);
1459 	if (mcast_addrs == NULL && nb_mc_addr > 0) {
1460 		ret = -ENOMEM;
1461 		goto rollback;
1462 	}
1463 	rte_memcpy(mcast_addrs, mc_addr_set,
1464 		   nb_mc_addr * sizeof(PRIV(dev)->mcast_addrs[0]));
1465 	PRIV(dev)->nb_mcast_addr = nb_mc_addr;
1466 	PRIV(dev)->mcast_addrs = mcast_addrs;
1467 
1468 	fs_unlock(dev, 0);
1469 	return 0;
1470 
1471 rollback:
1472 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
1473 		int rc = rte_eth_dev_set_mc_addr_list(PORT_ID(sdev),
1474 			PRIV(dev)->mcast_addrs,	PRIV(dev)->nb_mcast_addr);
1475 		if (rc != 0) {
1476 			ERROR("Multicast MAC address list rollback for sub_device %d failed with error %d",
1477 			      i, rc);
1478 		}
1479 	}
1480 
1481 	fs_unlock(dev, 0);
1482 	return ret;
1483 }
1484 
1485 static int
1486 fs_rss_hash_update(struct rte_eth_dev *dev,
1487 			struct rte_eth_rss_conf *rss_conf)
1488 {
1489 	struct sub_device *sdev;
1490 	uint8_t i;
1491 	int ret;
1492 
1493 	fs_lock(dev, 0);
1494 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
1495 		ret = rte_eth_dev_rss_hash_update(PORT_ID(sdev), rss_conf);
1496 		ret = fs_err(sdev, ret);
1497 		if (ret) {
1498 			ERROR("Operation rte_eth_dev_rss_hash_update"
1499 				" failed for sub_device %d with error %d",
1500 				i, ret);
1501 			fs_unlock(dev, 0);
1502 			return ret;
1503 		}
1504 	}
1505 	fs_unlock(dev, 0);
1506 
1507 	return 0;
1508 }
1509 
1510 static int
1511 fs_filter_ctrl(struct rte_eth_dev *dev __rte_unused,
1512 		enum rte_filter_type type,
1513 		enum rte_filter_op op,
1514 		void *arg)
1515 {
1516 	if (type == RTE_ETH_FILTER_GENERIC &&
1517 	    op == RTE_ETH_FILTER_GET) {
1518 		*(const void **)arg = &fs_flow_ops;
1519 		return 0;
1520 	}
1521 	return -ENOTSUP;
1522 }
1523 
1524 const struct eth_dev_ops failsafe_ops = {
1525 	.dev_configure = fs_dev_configure,
1526 	.dev_start = fs_dev_start,
1527 	.dev_stop = fs_dev_stop,
1528 	.dev_set_link_down = fs_dev_set_link_down,
1529 	.dev_set_link_up = fs_dev_set_link_up,
1530 	.dev_close = failsafe_eth_dev_close,
1531 	.promiscuous_enable = fs_promiscuous_enable,
1532 	.promiscuous_disable = fs_promiscuous_disable,
1533 	.allmulticast_enable = fs_allmulticast_enable,
1534 	.allmulticast_disable = fs_allmulticast_disable,
1535 	.link_update = fs_link_update,
1536 	.stats_get = fs_stats_get,
1537 	.stats_reset = fs_stats_reset,
1538 	.xstats_get = fs_xstats_get,
1539 	.xstats_get_names = fs_xstats_get_names,
1540 	.xstats_reset = fs_xstats_reset,
1541 	.dev_infos_get = fs_dev_infos_get,
1542 	.dev_supported_ptypes_get = fs_dev_supported_ptypes_get,
1543 	.mtu_set = fs_mtu_set,
1544 	.vlan_filter_set = fs_vlan_filter_set,
1545 	.rx_queue_start = fs_rx_queue_start,
1546 	.rx_queue_stop = fs_rx_queue_stop,
1547 	.tx_queue_start = fs_tx_queue_start,
1548 	.tx_queue_stop = fs_tx_queue_stop,
1549 	.rx_queue_setup = fs_rx_queue_setup,
1550 	.tx_queue_setup = fs_tx_queue_setup,
1551 	.rx_queue_release = fs_rx_queue_release,
1552 	.tx_queue_release = fs_tx_queue_release,
1553 	.rx_queue_intr_enable = fs_rx_intr_enable,
1554 	.rx_queue_intr_disable = fs_rx_intr_disable,
1555 	.flow_ctrl_get = fs_flow_ctrl_get,
1556 	.flow_ctrl_set = fs_flow_ctrl_set,
1557 	.mac_addr_remove = fs_mac_addr_remove,
1558 	.mac_addr_add = fs_mac_addr_add,
1559 	.mac_addr_set = fs_mac_addr_set,
1560 	.set_mc_addr_list = fs_set_mc_addr_list,
1561 	.rss_hash_update = fs_rss_hash_update,
1562 	.filter_ctrl = fs_filter_ctrl,
1563 };
1564