xref: /dpdk/drivers/net/failsafe/failsafe_ops.c (revision 14ad4f01845331a0ae98c681efa3086eeed3343a)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2017 6WIND S.A.
3  * Copyright 2017 Mellanox Technologies, Ltd
4  */
5 
6 #include <stdbool.h>
7 #include <stdint.h>
8 #include <unistd.h>
9 
10 #include <rte_debug.h>
11 #include <rte_atomic.h>
12 #include <rte_ethdev_driver.h>
13 #include <rte_malloc.h>
14 #include <rte_flow.h>
15 #include <rte_cycles.h>
16 #include <rte_ethdev.h>
17 
18 #include "failsafe_private.h"
19 
20 static int
21 fs_dev_configure(struct rte_eth_dev *dev)
22 {
23 	struct sub_device *sdev;
24 	uint8_t i;
25 	int ret;
26 
27 	fs_lock(dev, 0);
28 	FOREACH_SUBDEV(sdev, i, dev) {
29 		int rmv_interrupt = 0;
30 		int lsc_interrupt = 0;
31 		int lsc_enabled;
32 
33 		if (sdev->state != DEV_PROBED &&
34 		    !(PRIV(dev)->alarm_lock == 0 && sdev->state == DEV_ACTIVE))
35 			continue;
36 
37 		rmv_interrupt = ETH(sdev)->data->dev_flags &
38 				RTE_ETH_DEV_INTR_RMV;
39 		if (rmv_interrupt) {
40 			DEBUG("Enabling RMV interrupts for sub_device %d", i);
41 			dev->data->dev_conf.intr_conf.rmv = 1;
42 		} else {
43 			DEBUG("sub_device %d does not support RMV event", i);
44 		}
45 		lsc_enabled = dev->data->dev_conf.intr_conf.lsc;
46 		lsc_interrupt = lsc_enabled &&
47 				(ETH(sdev)->data->dev_flags &
48 				 RTE_ETH_DEV_INTR_LSC);
49 		if (lsc_interrupt) {
50 			DEBUG("Enabling LSC interrupts for sub_device %d", i);
51 			dev->data->dev_conf.intr_conf.lsc = 1;
52 		} else if (lsc_enabled && !lsc_interrupt) {
53 			DEBUG("Disabling LSC interrupts for sub_device %d", i);
54 			dev->data->dev_conf.intr_conf.lsc = 0;
55 		}
56 		DEBUG("Configuring sub-device %d", i);
57 		ret = rte_eth_dev_configure(PORT_ID(sdev),
58 					dev->data->nb_rx_queues,
59 					dev->data->nb_tx_queues,
60 					&dev->data->dev_conf);
61 		if (ret) {
62 			if (!fs_err(sdev, ret))
63 				continue;
64 			ERROR("Could not configure sub_device %d", i);
65 			fs_unlock(dev, 0);
66 			return ret;
67 		}
68 		if (rmv_interrupt && sdev->rmv_callback == 0) {
69 			ret = rte_eth_dev_callback_register(PORT_ID(sdev),
70 					RTE_ETH_EVENT_INTR_RMV,
71 					failsafe_eth_rmv_event_callback,
72 					sdev);
73 			if (ret)
74 				WARN("Failed to register RMV callback for sub_device %d",
75 				     SUB_ID(sdev));
76 			else
77 				sdev->rmv_callback = 1;
78 		}
79 		dev->data->dev_conf.intr_conf.rmv = 0;
80 		if (lsc_interrupt && sdev->lsc_callback == 0) {
81 			ret = rte_eth_dev_callback_register(PORT_ID(sdev),
82 						RTE_ETH_EVENT_INTR_LSC,
83 						failsafe_eth_lsc_event_callback,
84 						dev);
85 			if (ret)
86 				WARN("Failed to register LSC callback for sub_device %d",
87 				     SUB_ID(sdev));
88 			else
89 				sdev->lsc_callback = 1;
90 		}
91 		dev->data->dev_conf.intr_conf.lsc = lsc_enabled;
92 		sdev->state = DEV_ACTIVE;
93 	}
94 	if (PRIV(dev)->state < DEV_ACTIVE)
95 		PRIV(dev)->state = DEV_ACTIVE;
96 	fs_unlock(dev, 0);
97 	return 0;
98 }
99 
100 static void
101 fs_set_queues_state_start(struct rte_eth_dev *dev)
102 {
103 	struct rxq *rxq;
104 	struct txq *txq;
105 	uint16_t i;
106 
107 	for (i = 0; i < dev->data->nb_rx_queues; i++) {
108 		rxq = dev->data->rx_queues[i];
109 		if (rxq != NULL && !rxq->info.conf.rx_deferred_start)
110 			dev->data->rx_queue_state[i] =
111 						RTE_ETH_QUEUE_STATE_STARTED;
112 	}
113 	for (i = 0; i < dev->data->nb_tx_queues; i++) {
114 		txq = dev->data->tx_queues[i];
115 		if (txq != NULL && !txq->info.conf.tx_deferred_start)
116 			dev->data->tx_queue_state[i] =
117 						RTE_ETH_QUEUE_STATE_STARTED;
118 	}
119 }
120 
121 static int
122 fs_dev_start(struct rte_eth_dev *dev)
123 {
124 	struct sub_device *sdev;
125 	uint8_t i;
126 	int ret;
127 
128 	fs_lock(dev, 0);
129 	ret = failsafe_rx_intr_install(dev);
130 	if (ret) {
131 		fs_unlock(dev, 0);
132 		return ret;
133 	}
134 	FOREACH_SUBDEV(sdev, i, dev) {
135 		if (sdev->state != DEV_ACTIVE)
136 			continue;
137 		DEBUG("Starting sub_device %d", i);
138 		ret = rte_eth_dev_start(PORT_ID(sdev));
139 		if (ret) {
140 			if (!fs_err(sdev, ret))
141 				continue;
142 			fs_unlock(dev, 0);
143 			return ret;
144 		}
145 		ret = failsafe_rx_intr_install_subdevice(sdev);
146 		if (ret) {
147 			if (!fs_err(sdev, ret))
148 				continue;
149 			rte_eth_dev_stop(PORT_ID(sdev));
150 			fs_unlock(dev, 0);
151 			return ret;
152 		}
153 		sdev->state = DEV_STARTED;
154 	}
155 	if (PRIV(dev)->state < DEV_STARTED) {
156 		PRIV(dev)->state = DEV_STARTED;
157 		fs_set_queues_state_start(dev);
158 	}
159 	fs_switch_dev(dev, NULL);
160 	fs_unlock(dev, 0);
161 	return 0;
162 }
163 
164 static void
165 fs_set_queues_state_stop(struct rte_eth_dev *dev)
166 {
167 	uint16_t i;
168 
169 	for (i = 0; i < dev->data->nb_rx_queues; i++)
170 		if (dev->data->rx_queues[i] != NULL)
171 			dev->data->rx_queue_state[i] =
172 						RTE_ETH_QUEUE_STATE_STOPPED;
173 	for (i = 0; i < dev->data->nb_tx_queues; i++)
174 		if (dev->data->tx_queues[i] != NULL)
175 			dev->data->tx_queue_state[i] =
176 						RTE_ETH_QUEUE_STATE_STOPPED;
177 }
178 
179 static void
180 fs_dev_stop(struct rte_eth_dev *dev)
181 {
182 	struct sub_device *sdev;
183 	uint8_t i;
184 
185 	fs_lock(dev, 0);
186 	PRIV(dev)->state = DEV_STARTED - 1;
187 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_STARTED) {
188 		rte_eth_dev_stop(PORT_ID(sdev));
189 		failsafe_rx_intr_uninstall_subdevice(sdev);
190 		sdev->state = DEV_STARTED - 1;
191 	}
192 	failsafe_rx_intr_uninstall(dev);
193 	fs_set_queues_state_stop(dev);
194 	fs_unlock(dev, 0);
195 }
196 
197 static int
198 fs_dev_set_link_up(struct rte_eth_dev *dev)
199 {
200 	struct sub_device *sdev;
201 	uint8_t i;
202 	int ret;
203 
204 	fs_lock(dev, 0);
205 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
206 		DEBUG("Calling rte_eth_dev_set_link_up on sub_device %d", i);
207 		ret = rte_eth_dev_set_link_up(PORT_ID(sdev));
208 		if ((ret = fs_err(sdev, ret))) {
209 			ERROR("Operation rte_eth_dev_set_link_up failed for sub_device %d"
210 			      " with error %d", i, ret);
211 			fs_unlock(dev, 0);
212 			return ret;
213 		}
214 	}
215 	fs_unlock(dev, 0);
216 	return 0;
217 }
218 
219 static int
220 fs_dev_set_link_down(struct rte_eth_dev *dev)
221 {
222 	struct sub_device *sdev;
223 	uint8_t i;
224 	int ret;
225 
226 	fs_lock(dev, 0);
227 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
228 		DEBUG("Calling rte_eth_dev_set_link_down on sub_device %d", i);
229 		ret = rte_eth_dev_set_link_down(PORT_ID(sdev));
230 		if ((ret = fs_err(sdev, ret))) {
231 			ERROR("Operation rte_eth_dev_set_link_down failed for sub_device %d"
232 			      " with error %d", i, ret);
233 			fs_unlock(dev, 0);
234 			return ret;
235 		}
236 	}
237 	fs_unlock(dev, 0);
238 	return 0;
239 }
240 
241 static void fs_dev_free_queues(struct rte_eth_dev *dev);
242 static void
243 fs_dev_close(struct rte_eth_dev *dev)
244 {
245 	struct sub_device *sdev;
246 	uint8_t i;
247 
248 	fs_lock(dev, 0);
249 	failsafe_hotplug_alarm_cancel(dev);
250 	if (PRIV(dev)->state == DEV_STARTED)
251 		dev->dev_ops->dev_stop(dev);
252 	PRIV(dev)->state = DEV_ACTIVE - 1;
253 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
254 		DEBUG("Closing sub_device %d", i);
255 		failsafe_eth_dev_unregister_callbacks(sdev);
256 		rte_eth_dev_close(PORT_ID(sdev));
257 		sdev->state = DEV_ACTIVE - 1;
258 	}
259 	fs_dev_free_queues(dev);
260 	fs_unlock(dev, 0);
261 }
262 
263 static int
264 fs_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
265 {
266 	struct sub_device *sdev;
267 	uint8_t i;
268 	int ret;
269 	int err = 0;
270 	bool failure = true;
271 
272 	fs_lock(dev, 0);
273 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
274 		uint16_t port_id = ETH(sdev)->data->port_id;
275 
276 		ret = rte_eth_dev_rx_queue_stop(port_id, rx_queue_id);
277 		ret = fs_err(sdev, ret);
278 		if (ret) {
279 			ERROR("Rx queue stop failed for subdevice %d", i);
280 			err = ret;
281 		} else {
282 			failure = false;
283 		}
284 	}
285 	dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
286 	fs_unlock(dev, 0);
287 	/* Return 0 in case of at least one successful queue stop */
288 	return (failure) ? err : 0;
289 }
290 
291 static int
292 fs_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
293 {
294 	struct sub_device *sdev;
295 	uint8_t i;
296 	int ret;
297 
298 	fs_lock(dev, 0);
299 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
300 		uint16_t port_id = ETH(sdev)->data->port_id;
301 
302 		ret = rte_eth_dev_rx_queue_start(port_id, rx_queue_id);
303 		ret = fs_err(sdev, ret);
304 		if (ret) {
305 			ERROR("Rx queue start failed for subdevice %d", i);
306 			fs_rx_queue_stop(dev, rx_queue_id);
307 			fs_unlock(dev, 0);
308 			return ret;
309 		}
310 	}
311 	dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
312 	fs_unlock(dev, 0);
313 	return 0;
314 }
315 
316 static int
317 fs_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
318 {
319 	struct sub_device *sdev;
320 	uint8_t i;
321 	int ret;
322 	int err = 0;
323 	bool failure = true;
324 
325 	fs_lock(dev, 0);
326 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
327 		uint16_t port_id = ETH(sdev)->data->port_id;
328 
329 		ret = rte_eth_dev_tx_queue_stop(port_id, tx_queue_id);
330 		ret = fs_err(sdev, ret);
331 		if (ret) {
332 			ERROR("Tx queue stop failed for subdevice %d", i);
333 			err = ret;
334 		} else {
335 			failure = false;
336 		}
337 	}
338 	dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
339 	fs_unlock(dev, 0);
340 	/* Return 0 in case of at least one successful queue stop */
341 	return (failure) ? err : 0;
342 }
343 
344 static int
345 fs_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
346 {
347 	struct sub_device *sdev;
348 	uint8_t i;
349 	int ret;
350 
351 	fs_lock(dev, 0);
352 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
353 		uint16_t port_id = ETH(sdev)->data->port_id;
354 
355 		ret = rte_eth_dev_tx_queue_start(port_id, tx_queue_id);
356 		ret = fs_err(sdev, ret);
357 		if (ret) {
358 			ERROR("Tx queue start failed for subdevice %d", i);
359 			fs_tx_queue_stop(dev, tx_queue_id);
360 			fs_unlock(dev, 0);
361 			return ret;
362 		}
363 	}
364 	dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
365 	fs_unlock(dev, 0);
366 	return 0;
367 }
368 
369 static void
370 fs_rx_queue_release(void *queue)
371 {
372 	struct rte_eth_dev *dev;
373 	struct sub_device *sdev;
374 	uint8_t i;
375 	struct rxq *rxq;
376 
377 	if (queue == NULL)
378 		return;
379 	rxq = queue;
380 	dev = &rte_eth_devices[rxq->priv->data->port_id];
381 	fs_lock(dev, 0);
382 	if (rxq->event_fd > 0)
383 		close(rxq->event_fd);
384 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
385 		if (ETH(sdev)->data->rx_queues != NULL &&
386 		    ETH(sdev)->data->rx_queues[rxq->qid] != NULL) {
387 			SUBOPS(sdev, rx_queue_release)
388 				(ETH(sdev)->data->rx_queues[rxq->qid]);
389 		}
390 	}
391 	dev->data->rx_queues[rxq->qid] = NULL;
392 	rte_free(rxq);
393 	fs_unlock(dev, 0);
394 }
395 
396 static int
397 fs_rx_queue_setup(struct rte_eth_dev *dev,
398 		uint16_t rx_queue_id,
399 		uint16_t nb_rx_desc,
400 		unsigned int socket_id,
401 		const struct rte_eth_rxconf *rx_conf,
402 		struct rte_mempool *mb_pool)
403 {
404 	/*
405 	 * FIXME: Add a proper interface in rte_eal_interrupts for
406 	 * allocating eventfd as an interrupt vector.
407 	 * For the time being, fake as if we are using MSIX interrupts,
408 	 * this will cause rte_intr_efd_enable to allocate an eventfd for us.
409 	 */
410 	struct rte_intr_handle intr_handle = {
411 		.type = RTE_INTR_HANDLE_VFIO_MSIX,
412 		.efds = { -1, },
413 	};
414 	struct sub_device *sdev;
415 	struct rxq *rxq;
416 	uint8_t i;
417 	int ret;
418 
419 	fs_lock(dev, 0);
420 	if (rx_conf->rx_deferred_start) {
421 		FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_PROBED) {
422 			if (SUBOPS(sdev, rx_queue_start) == NULL) {
423 				ERROR("Rx queue deferred start is not "
424 					"supported for subdevice %d", i);
425 				fs_unlock(dev, 0);
426 				return -EINVAL;
427 			}
428 		}
429 	}
430 	rxq = dev->data->rx_queues[rx_queue_id];
431 	if (rxq != NULL) {
432 		fs_rx_queue_release(rxq);
433 		dev->data->rx_queues[rx_queue_id] = NULL;
434 	}
435 	rxq = rte_zmalloc(NULL,
436 			  sizeof(*rxq) +
437 			  sizeof(rte_atomic64_t) * PRIV(dev)->subs_tail,
438 			  RTE_CACHE_LINE_SIZE);
439 	if (rxq == NULL) {
440 		fs_unlock(dev, 0);
441 		return -ENOMEM;
442 	}
443 	FOREACH_SUBDEV(sdev, i, dev)
444 		rte_atomic64_init(&rxq->refcnt[i]);
445 	rxq->qid = rx_queue_id;
446 	rxq->socket_id = socket_id;
447 	rxq->info.mp = mb_pool;
448 	rxq->info.conf = *rx_conf;
449 	rxq->info.nb_desc = nb_rx_desc;
450 	rxq->priv = PRIV(dev);
451 	rxq->sdev = PRIV(dev)->subs;
452 	ret = rte_intr_efd_enable(&intr_handle, 1);
453 	if (ret < 0) {
454 		fs_unlock(dev, 0);
455 		return ret;
456 	}
457 	rxq->event_fd = intr_handle.efds[0];
458 	dev->data->rx_queues[rx_queue_id] = rxq;
459 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
460 		ret = rte_eth_rx_queue_setup(PORT_ID(sdev),
461 				rx_queue_id,
462 				nb_rx_desc, socket_id,
463 				rx_conf, mb_pool);
464 		if ((ret = fs_err(sdev, ret))) {
465 			ERROR("RX queue setup failed for sub_device %d", i);
466 			goto free_rxq;
467 		}
468 	}
469 	fs_unlock(dev, 0);
470 	return 0;
471 free_rxq:
472 	fs_rx_queue_release(rxq);
473 	fs_unlock(dev, 0);
474 	return ret;
475 }
476 
477 static int
478 fs_rx_intr_enable(struct rte_eth_dev *dev, uint16_t idx)
479 {
480 	struct rxq *rxq;
481 	struct sub_device *sdev;
482 	uint8_t i;
483 	int ret;
484 	int rc = 0;
485 
486 	fs_lock(dev, 0);
487 	if (idx >= dev->data->nb_rx_queues) {
488 		rc = -EINVAL;
489 		goto unlock;
490 	}
491 	rxq = dev->data->rx_queues[idx];
492 	if (rxq == NULL || rxq->event_fd <= 0) {
493 		rc = -EINVAL;
494 		goto unlock;
495 	}
496 	/* Fail if proxy service is nor running. */
497 	if (PRIV(dev)->rxp.sstate != SS_RUNNING) {
498 		ERROR("failsafe interrupt services are not running");
499 		rc = -EAGAIN;
500 		goto unlock;
501 	}
502 	rxq->enable_events = 1;
503 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
504 		ret = rte_eth_dev_rx_intr_enable(PORT_ID(sdev), idx);
505 		ret = fs_err(sdev, ret);
506 		if (ret)
507 			rc = ret;
508 	}
509 unlock:
510 	fs_unlock(dev, 0);
511 	if (rc)
512 		rte_errno = -rc;
513 	return rc;
514 }
515 
516 static int
517 fs_rx_intr_disable(struct rte_eth_dev *dev, uint16_t idx)
518 {
519 	struct rxq *rxq;
520 	struct sub_device *sdev;
521 	uint64_t u64;
522 	uint8_t i;
523 	int rc = 0;
524 	int ret;
525 
526 	fs_lock(dev, 0);
527 	if (idx >= dev->data->nb_rx_queues) {
528 		rc = -EINVAL;
529 		goto unlock;
530 	}
531 	rxq = dev->data->rx_queues[idx];
532 	if (rxq == NULL || rxq->event_fd <= 0) {
533 		rc = -EINVAL;
534 		goto unlock;
535 	}
536 	rxq->enable_events = 0;
537 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
538 		ret = rte_eth_dev_rx_intr_disable(PORT_ID(sdev), idx);
539 		ret = fs_err(sdev, ret);
540 		if (ret)
541 			rc = ret;
542 	}
543 	/* Clear pending events */
544 	while (read(rxq->event_fd, &u64, sizeof(uint64_t)) >  0)
545 		;
546 unlock:
547 	fs_unlock(dev, 0);
548 	if (rc)
549 		rte_errno = -rc;
550 	return rc;
551 }
552 
553 static void
554 fs_tx_queue_release(void *queue)
555 {
556 	struct rte_eth_dev *dev;
557 	struct sub_device *sdev;
558 	uint8_t i;
559 	struct txq *txq;
560 
561 	if (queue == NULL)
562 		return;
563 	txq = queue;
564 	dev = &rte_eth_devices[txq->priv->data->port_id];
565 	fs_lock(dev, 0);
566 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
567 		if (ETH(sdev)->data->tx_queues != NULL &&
568 		    ETH(sdev)->data->tx_queues[txq->qid] != NULL) {
569 			SUBOPS(sdev, tx_queue_release)
570 				(ETH(sdev)->data->tx_queues[txq->qid]);
571 		}
572 	}
573 	dev->data->tx_queues[txq->qid] = NULL;
574 	rte_free(txq);
575 	fs_unlock(dev, 0);
576 }
577 
578 static int
579 fs_tx_queue_setup(struct rte_eth_dev *dev,
580 		uint16_t tx_queue_id,
581 		uint16_t nb_tx_desc,
582 		unsigned int socket_id,
583 		const struct rte_eth_txconf *tx_conf)
584 {
585 	struct sub_device *sdev;
586 	struct txq *txq;
587 	uint8_t i;
588 	int ret;
589 
590 	fs_lock(dev, 0);
591 	if (tx_conf->tx_deferred_start) {
592 		FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_PROBED) {
593 			if (SUBOPS(sdev, tx_queue_start) == NULL) {
594 				ERROR("Tx queue deferred start is not "
595 					"supported for subdevice %d", i);
596 				fs_unlock(dev, 0);
597 				return -EINVAL;
598 			}
599 		}
600 	}
601 	txq = dev->data->tx_queues[tx_queue_id];
602 	if (txq != NULL) {
603 		fs_tx_queue_release(txq);
604 		dev->data->tx_queues[tx_queue_id] = NULL;
605 	}
606 	txq = rte_zmalloc("ethdev TX queue",
607 			  sizeof(*txq) +
608 			  sizeof(rte_atomic64_t) * PRIV(dev)->subs_tail,
609 			  RTE_CACHE_LINE_SIZE);
610 	if (txq == NULL) {
611 		fs_unlock(dev, 0);
612 		return -ENOMEM;
613 	}
614 	FOREACH_SUBDEV(sdev, i, dev)
615 		rte_atomic64_init(&txq->refcnt[i]);
616 	txq->qid = tx_queue_id;
617 	txq->socket_id = socket_id;
618 	txq->info.conf = *tx_conf;
619 	txq->info.nb_desc = nb_tx_desc;
620 	txq->priv = PRIV(dev);
621 	dev->data->tx_queues[tx_queue_id] = txq;
622 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
623 		ret = rte_eth_tx_queue_setup(PORT_ID(sdev),
624 				tx_queue_id,
625 				nb_tx_desc, socket_id,
626 				tx_conf);
627 		if ((ret = fs_err(sdev, ret))) {
628 			ERROR("TX queue setup failed for sub_device %d", i);
629 			goto free_txq;
630 		}
631 	}
632 	fs_unlock(dev, 0);
633 	return 0;
634 free_txq:
635 	fs_tx_queue_release(txq);
636 	fs_unlock(dev, 0);
637 	return ret;
638 }
639 
640 static void
641 fs_dev_free_queues(struct rte_eth_dev *dev)
642 {
643 	uint16_t i;
644 
645 	for (i = 0; i < dev->data->nb_rx_queues; i++) {
646 		fs_rx_queue_release(dev->data->rx_queues[i]);
647 		dev->data->rx_queues[i] = NULL;
648 	}
649 	dev->data->nb_rx_queues = 0;
650 	for (i = 0; i < dev->data->nb_tx_queues; i++) {
651 		fs_tx_queue_release(dev->data->tx_queues[i]);
652 		dev->data->tx_queues[i] = NULL;
653 	}
654 	dev->data->nb_tx_queues = 0;
655 }
656 
657 static void
658 fs_promiscuous_enable(struct rte_eth_dev *dev)
659 {
660 	struct sub_device *sdev;
661 	uint8_t i;
662 
663 	fs_lock(dev, 0);
664 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE)
665 		rte_eth_promiscuous_enable(PORT_ID(sdev));
666 	fs_unlock(dev, 0);
667 }
668 
669 static void
670 fs_promiscuous_disable(struct rte_eth_dev *dev)
671 {
672 	struct sub_device *sdev;
673 	uint8_t i;
674 
675 	fs_lock(dev, 0);
676 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE)
677 		rte_eth_promiscuous_disable(PORT_ID(sdev));
678 	fs_unlock(dev, 0);
679 }
680 
681 static void
682 fs_allmulticast_enable(struct rte_eth_dev *dev)
683 {
684 	struct sub_device *sdev;
685 	uint8_t i;
686 
687 	fs_lock(dev, 0);
688 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE)
689 		rte_eth_allmulticast_enable(PORT_ID(sdev));
690 	fs_unlock(dev, 0);
691 }
692 
693 static void
694 fs_allmulticast_disable(struct rte_eth_dev *dev)
695 {
696 	struct sub_device *sdev;
697 	uint8_t i;
698 
699 	fs_lock(dev, 0);
700 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE)
701 		rte_eth_allmulticast_disable(PORT_ID(sdev));
702 	fs_unlock(dev, 0);
703 }
704 
705 static int
706 fs_link_update(struct rte_eth_dev *dev,
707 		int wait_to_complete)
708 {
709 	struct sub_device *sdev;
710 	uint8_t i;
711 	int ret;
712 
713 	fs_lock(dev, 0);
714 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
715 		DEBUG("Calling link_update on sub_device %d", i);
716 		ret = (SUBOPS(sdev, link_update))(ETH(sdev), wait_to_complete);
717 		if (ret && ret != -1 && sdev->remove == 0 &&
718 		    rte_eth_dev_is_removed(PORT_ID(sdev)) == 0) {
719 			ERROR("Link update failed for sub_device %d with error %d",
720 			      i, ret);
721 			fs_unlock(dev, 0);
722 			return ret;
723 		}
724 	}
725 	if (TX_SUBDEV(dev)) {
726 		struct rte_eth_link *l1;
727 		struct rte_eth_link *l2;
728 
729 		l1 = &dev->data->dev_link;
730 		l2 = &ETH(TX_SUBDEV(dev))->data->dev_link;
731 		if (memcmp(l1, l2, sizeof(*l1))) {
732 			*l1 = *l2;
733 			fs_unlock(dev, 0);
734 			return 0;
735 		}
736 	}
737 	fs_unlock(dev, 0);
738 	return -1;
739 }
740 
741 static int
742 fs_stats_get(struct rte_eth_dev *dev,
743 	     struct rte_eth_stats *stats)
744 {
745 	struct rte_eth_stats backup;
746 	struct sub_device *sdev;
747 	uint8_t i;
748 	int ret;
749 
750 	fs_lock(dev, 0);
751 	rte_memcpy(stats, &PRIV(dev)->stats_accumulator, sizeof(*stats));
752 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
753 		struct rte_eth_stats *snapshot = &sdev->stats_snapshot.stats;
754 		uint64_t *timestamp = &sdev->stats_snapshot.timestamp;
755 
756 		rte_memcpy(&backup, snapshot, sizeof(backup));
757 		ret = rte_eth_stats_get(PORT_ID(sdev), snapshot);
758 		if (ret) {
759 			if (!fs_err(sdev, ret)) {
760 				rte_memcpy(snapshot, &backup, sizeof(backup));
761 				goto inc;
762 			}
763 			ERROR("Operation rte_eth_stats_get failed for sub_device %d with error %d",
764 				  i, ret);
765 			*timestamp = 0;
766 			fs_unlock(dev, 0);
767 			return ret;
768 		}
769 		*timestamp = rte_rdtsc();
770 inc:
771 		failsafe_stats_increment(stats, snapshot);
772 	}
773 	fs_unlock(dev, 0);
774 	return 0;
775 }
776 
777 static void
778 fs_stats_reset(struct rte_eth_dev *dev)
779 {
780 	struct sub_device *sdev;
781 	uint8_t i;
782 
783 	fs_lock(dev, 0);
784 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
785 		rte_eth_stats_reset(PORT_ID(sdev));
786 		memset(&sdev->stats_snapshot, 0, sizeof(struct rte_eth_stats));
787 	}
788 	memset(&PRIV(dev)->stats_accumulator, 0, sizeof(struct rte_eth_stats));
789 	fs_unlock(dev, 0);
790 }
791 
792 static void
793 fs_dev_merge_desc_lim(struct rte_eth_desc_lim *to,
794 		      const struct rte_eth_desc_lim *from)
795 {
796 	to->nb_max = RTE_MIN(to->nb_max, from->nb_max);
797 	to->nb_min = RTE_MAX(to->nb_min, from->nb_min);
798 	to->nb_align = RTE_MAX(to->nb_align, from->nb_align);
799 
800 	to->nb_seg_max = RTE_MIN(to->nb_seg_max, from->nb_seg_max);
801 	to->nb_mtu_seg_max = RTE_MIN(to->nb_mtu_seg_max, from->nb_mtu_seg_max);
802 }
803 
804 /*
805  * Merge the information from sub-devices.
806  *
807  * The reported values must be the common subset of all sub devices
808  */
809 static void
810 fs_dev_merge_info(struct rte_eth_dev_info *info,
811 		  const struct rte_eth_dev_info *sinfo)
812 {
813 	info->max_rx_pktlen = RTE_MIN(info->max_rx_pktlen, sinfo->max_rx_pktlen);
814 	info->max_rx_queues = RTE_MIN(info->max_rx_queues, sinfo->max_rx_queues);
815 	info->max_tx_queues = RTE_MIN(info->max_tx_queues, sinfo->max_tx_queues);
816 	info->max_mac_addrs = RTE_MIN(info->max_mac_addrs, sinfo->max_mac_addrs);
817 	info->max_hash_mac_addrs = RTE_MIN(info->max_hash_mac_addrs,
818 					sinfo->max_hash_mac_addrs);
819 	info->max_vmdq_pools = RTE_MIN(info->max_vmdq_pools, sinfo->max_vmdq_pools);
820 	info->max_vfs = RTE_MIN(info->max_vfs, sinfo->max_vfs);
821 
822 	fs_dev_merge_desc_lim(&info->rx_desc_lim, &sinfo->rx_desc_lim);
823 	fs_dev_merge_desc_lim(&info->tx_desc_lim, &sinfo->tx_desc_lim);
824 
825 	info->rx_offload_capa &= sinfo->rx_offload_capa;
826 	info->tx_offload_capa &= sinfo->tx_offload_capa;
827 	info->rx_queue_offload_capa &= sinfo->rx_queue_offload_capa;
828 	info->tx_queue_offload_capa &= sinfo->tx_queue_offload_capa;
829 	info->flow_type_rss_offloads &= sinfo->flow_type_rss_offloads;
830 }
831 
832 /**
833  * Fail-safe dev_infos_get rules:
834  *
835  * No sub_device:
836  *   Numerables:
837  *      Use the maximum possible values for any field, so as not
838  *      to impede any further configuration effort.
839  *   Capabilities:
840  *      Limits capabilities to those that are understood by the
841  *      fail-safe PMD. This understanding stems from the fail-safe
842  *      being capable of verifying that the related capability is
843  *      expressed within the device configuration (struct rte_eth_conf).
844  *
845  * At least one probed sub_device:
846  *   Numerables:
847  *      Uses values from the active probed sub_device
848  *      The rationale here is that if any sub_device is less capable
849  *      (for example concerning the number of queues) than the active
850  *      sub_device, then its subsequent configuration will fail.
851  *      It is impossible to foresee this failure when the failing sub_device
852  *      is supposed to be plugged-in later on, so the configuration process
853  *      is the single point of failure and error reporting.
854  *   Capabilities:
855  *      Uses a logical AND of RX capabilities among
856  *      all sub_devices and the default capabilities.
857  *      Uses a logical AND of TX capabilities among
858  *      the active probed sub_device and the default capabilities.
859  *      Uses a logical AND of device capabilities among
860  *      all sub_devices and the default capabilities.
861  *
862  */
863 static void
864 fs_dev_infos_get(struct rte_eth_dev *dev,
865 		  struct rte_eth_dev_info *infos)
866 {
867 	struct sub_device *sdev;
868 	uint8_t i;
869 
870 	/* Use maximum upper bounds by default */
871 	infos->max_rx_pktlen = UINT32_MAX;
872 	infos->max_rx_queues = RTE_MAX_QUEUES_PER_PORT;
873 	infos->max_tx_queues = RTE_MAX_QUEUES_PER_PORT;
874 	infos->max_mac_addrs = FAILSAFE_MAX_ETHADDR;
875 	infos->max_hash_mac_addrs = UINT32_MAX;
876 	infos->max_vfs = UINT16_MAX;
877 	infos->max_vmdq_pools = UINT16_MAX;
878 
879 	/*
880 	 * Set of capabilities that can be verified upon
881 	 * configuring a sub-device.
882 	 */
883 	infos->rx_offload_capa =
884 		DEV_RX_OFFLOAD_VLAN_STRIP |
885 		DEV_RX_OFFLOAD_IPV4_CKSUM |
886 		DEV_RX_OFFLOAD_UDP_CKSUM |
887 		DEV_RX_OFFLOAD_TCP_CKSUM |
888 		DEV_RX_OFFLOAD_TCP_LRO |
889 		DEV_RX_OFFLOAD_QINQ_STRIP |
890 		DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
891 		DEV_RX_OFFLOAD_MACSEC_STRIP |
892 		DEV_RX_OFFLOAD_HEADER_SPLIT |
893 		DEV_RX_OFFLOAD_VLAN_FILTER |
894 		DEV_RX_OFFLOAD_VLAN_EXTEND |
895 		DEV_RX_OFFLOAD_JUMBO_FRAME |
896 		DEV_RX_OFFLOAD_SCATTER |
897 		DEV_RX_OFFLOAD_TIMESTAMP |
898 		DEV_RX_OFFLOAD_SECURITY;
899 
900 	infos->rx_queue_offload_capa =
901 		DEV_RX_OFFLOAD_VLAN_STRIP |
902 		DEV_RX_OFFLOAD_IPV4_CKSUM |
903 		DEV_RX_OFFLOAD_UDP_CKSUM |
904 		DEV_RX_OFFLOAD_TCP_CKSUM |
905 		DEV_RX_OFFLOAD_TCP_LRO |
906 		DEV_RX_OFFLOAD_QINQ_STRIP |
907 		DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
908 		DEV_RX_OFFLOAD_MACSEC_STRIP |
909 		DEV_RX_OFFLOAD_HEADER_SPLIT |
910 		DEV_RX_OFFLOAD_VLAN_FILTER |
911 		DEV_RX_OFFLOAD_VLAN_EXTEND |
912 		DEV_RX_OFFLOAD_JUMBO_FRAME |
913 		DEV_RX_OFFLOAD_SCATTER |
914 		DEV_RX_OFFLOAD_TIMESTAMP |
915 		DEV_RX_OFFLOAD_SECURITY;
916 
917 	infos->tx_offload_capa =
918 		DEV_TX_OFFLOAD_MULTI_SEGS |
919 		DEV_TX_OFFLOAD_MBUF_FAST_FREE |
920 		DEV_TX_OFFLOAD_IPV4_CKSUM |
921 		DEV_TX_OFFLOAD_UDP_CKSUM |
922 		DEV_TX_OFFLOAD_TCP_CKSUM |
923 		DEV_TX_OFFLOAD_TCP_TSO;
924 
925 	infos->flow_type_rss_offloads =
926 		ETH_RSS_IP |
927 		ETH_RSS_UDP |
928 		ETH_RSS_TCP;
929 	infos->dev_capa =
930 		RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
931 		RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
932 
933 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_PROBED) {
934 		struct rte_eth_dev_info sub_info;
935 
936 		rte_eth_dev_info_get(PORT_ID(sdev), &sub_info);
937 
938 		fs_dev_merge_info(infos, &sub_info);
939 	}
940 }
941 
942 static const uint32_t *
943 fs_dev_supported_ptypes_get(struct rte_eth_dev *dev)
944 {
945 	struct sub_device *sdev;
946 	struct rte_eth_dev *edev;
947 	const uint32_t *ret;
948 
949 	fs_lock(dev, 0);
950 	sdev = TX_SUBDEV(dev);
951 	if (sdev == NULL) {
952 		ret = NULL;
953 		goto unlock;
954 	}
955 	edev = ETH(sdev);
956 	/* ENOTSUP: counts as no supported ptypes */
957 	if (SUBOPS(sdev, dev_supported_ptypes_get) == NULL) {
958 		ret = NULL;
959 		goto unlock;
960 	}
961 	/*
962 	 * The API does not permit to do a clean AND of all ptypes,
963 	 * It is also incomplete by design and we do not really care
964 	 * to have a best possible value in this context.
965 	 * We just return the ptypes of the device of highest
966 	 * priority, usually the PREFERRED device.
967 	 */
968 	ret = SUBOPS(sdev, dev_supported_ptypes_get)(edev);
969 unlock:
970 	fs_unlock(dev, 0);
971 	return ret;
972 }
973 
974 static int
975 fs_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
976 {
977 	struct sub_device *sdev;
978 	uint8_t i;
979 	int ret;
980 
981 	fs_lock(dev, 0);
982 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
983 		DEBUG("Calling rte_eth_dev_set_mtu on sub_device %d", i);
984 		ret = rte_eth_dev_set_mtu(PORT_ID(sdev), mtu);
985 		if ((ret = fs_err(sdev, ret))) {
986 			ERROR("Operation rte_eth_dev_set_mtu failed for sub_device %d with error %d",
987 			      i, ret);
988 			fs_unlock(dev, 0);
989 			return ret;
990 		}
991 	}
992 	fs_unlock(dev, 0);
993 	return 0;
994 }
995 
996 static int
997 fs_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
998 {
999 	struct sub_device *sdev;
1000 	uint8_t i;
1001 	int ret;
1002 
1003 	fs_lock(dev, 0);
1004 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
1005 		DEBUG("Calling rte_eth_dev_vlan_filter on sub_device %d", i);
1006 		ret = rte_eth_dev_vlan_filter(PORT_ID(sdev), vlan_id, on);
1007 		if ((ret = fs_err(sdev, ret))) {
1008 			ERROR("Operation rte_eth_dev_vlan_filter failed for sub_device %d"
1009 			      " with error %d", i, ret);
1010 			fs_unlock(dev, 0);
1011 			return ret;
1012 		}
1013 	}
1014 	fs_unlock(dev, 0);
1015 	return 0;
1016 }
1017 
1018 static int
1019 fs_flow_ctrl_get(struct rte_eth_dev *dev,
1020 		struct rte_eth_fc_conf *fc_conf)
1021 {
1022 	struct sub_device *sdev;
1023 	int ret;
1024 
1025 	fs_lock(dev, 0);
1026 	sdev = TX_SUBDEV(dev);
1027 	if (sdev == NULL) {
1028 		ret = 0;
1029 		goto unlock;
1030 	}
1031 	if (SUBOPS(sdev, flow_ctrl_get) == NULL) {
1032 		ret = -ENOTSUP;
1033 		goto unlock;
1034 	}
1035 	ret = SUBOPS(sdev, flow_ctrl_get)(ETH(sdev), fc_conf);
1036 unlock:
1037 	fs_unlock(dev, 0);
1038 	return ret;
1039 }
1040 
1041 static int
1042 fs_flow_ctrl_set(struct rte_eth_dev *dev,
1043 		struct rte_eth_fc_conf *fc_conf)
1044 {
1045 	struct sub_device *sdev;
1046 	uint8_t i;
1047 	int ret;
1048 
1049 	fs_lock(dev, 0);
1050 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
1051 		DEBUG("Calling rte_eth_dev_flow_ctrl_set on sub_device %d", i);
1052 		ret = rte_eth_dev_flow_ctrl_set(PORT_ID(sdev), fc_conf);
1053 		if ((ret = fs_err(sdev, ret))) {
1054 			ERROR("Operation rte_eth_dev_flow_ctrl_set failed for sub_device %d"
1055 			      " with error %d", i, ret);
1056 			fs_unlock(dev, 0);
1057 			return ret;
1058 		}
1059 	}
1060 	fs_unlock(dev, 0);
1061 	return 0;
1062 }
1063 
1064 static void
1065 fs_mac_addr_remove(struct rte_eth_dev *dev, uint32_t index)
1066 {
1067 	struct sub_device *sdev;
1068 	uint8_t i;
1069 
1070 	fs_lock(dev, 0);
1071 	/* No check: already done within the rte_eth_dev_mac_addr_remove
1072 	 * call for the fail-safe device.
1073 	 */
1074 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE)
1075 		rte_eth_dev_mac_addr_remove(PORT_ID(sdev),
1076 				&dev->data->mac_addrs[index]);
1077 	PRIV(dev)->mac_addr_pool[index] = 0;
1078 	fs_unlock(dev, 0);
1079 }
1080 
1081 static int
1082 fs_mac_addr_add(struct rte_eth_dev *dev,
1083 		struct rte_ether_addr *mac_addr,
1084 		uint32_t index,
1085 		uint32_t vmdq)
1086 {
1087 	struct sub_device *sdev;
1088 	int ret;
1089 	uint8_t i;
1090 
1091 	RTE_ASSERT(index < FAILSAFE_MAX_ETHADDR);
1092 	fs_lock(dev, 0);
1093 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
1094 		ret = rte_eth_dev_mac_addr_add(PORT_ID(sdev), mac_addr, vmdq);
1095 		if ((ret = fs_err(sdev, ret))) {
1096 			ERROR("Operation rte_eth_dev_mac_addr_add failed for sub_device %"
1097 			      PRIu8 " with error %d", i, ret);
1098 			fs_unlock(dev, 0);
1099 			return ret;
1100 		}
1101 	}
1102 	if (index >= PRIV(dev)->nb_mac_addr) {
1103 		DEBUG("Growing mac_addrs array");
1104 		PRIV(dev)->nb_mac_addr = index;
1105 	}
1106 	PRIV(dev)->mac_addr_pool[index] = vmdq;
1107 	fs_unlock(dev, 0);
1108 	return 0;
1109 }
1110 
1111 static int
1112 fs_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
1113 {
1114 	struct sub_device *sdev;
1115 	uint8_t i;
1116 	int ret;
1117 
1118 	fs_lock(dev, 0);
1119 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
1120 		ret = rte_eth_dev_default_mac_addr_set(PORT_ID(sdev), mac_addr);
1121 		ret = fs_err(sdev, ret);
1122 		if (ret) {
1123 			ERROR("Operation rte_eth_dev_mac_addr_set failed for sub_device %d with error %d",
1124 				i, ret);
1125 			fs_unlock(dev, 0);
1126 			return ret;
1127 		}
1128 	}
1129 	fs_unlock(dev, 0);
1130 
1131 	return 0;
1132 }
1133 
1134 static int
1135 fs_set_mc_addr_list(struct rte_eth_dev *dev,
1136 		    struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr)
1137 {
1138 	struct sub_device *sdev;
1139 	uint8_t i;
1140 	int ret;
1141 	void *mcast_addrs;
1142 
1143 	fs_lock(dev, 0);
1144 
1145 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
1146 		ret = rte_eth_dev_set_mc_addr_list(PORT_ID(sdev),
1147 						   mc_addr_set, nb_mc_addr);
1148 		if (ret != 0) {
1149 			ERROR("Operation rte_eth_dev_set_mc_addr_list failed for sub_device %d with error %d",
1150 			      i, ret);
1151 			goto rollback;
1152 		}
1153 	}
1154 
1155 	mcast_addrs = rte_realloc(PRIV(dev)->mcast_addrs,
1156 		nb_mc_addr * sizeof(PRIV(dev)->mcast_addrs[0]), 0);
1157 	if (mcast_addrs == NULL && nb_mc_addr > 0) {
1158 		ret = -ENOMEM;
1159 		goto rollback;
1160 	}
1161 	rte_memcpy(mcast_addrs, mc_addr_set,
1162 		   nb_mc_addr * sizeof(PRIV(dev)->mcast_addrs[0]));
1163 	PRIV(dev)->nb_mcast_addr = nb_mc_addr;
1164 	PRIV(dev)->mcast_addrs = mcast_addrs;
1165 
1166 	fs_unlock(dev, 0);
1167 	return 0;
1168 
1169 rollback:
1170 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
1171 		int rc = rte_eth_dev_set_mc_addr_list(PORT_ID(sdev),
1172 			PRIV(dev)->mcast_addrs,	PRIV(dev)->nb_mcast_addr);
1173 		if (rc != 0) {
1174 			ERROR("Multicast MAC address list rollback for sub_device %d failed with error %d",
1175 			      i, rc);
1176 		}
1177 	}
1178 
1179 	fs_unlock(dev, 0);
1180 	return ret;
1181 }
1182 
1183 static int
1184 fs_rss_hash_update(struct rte_eth_dev *dev,
1185 			struct rte_eth_rss_conf *rss_conf)
1186 {
1187 	struct sub_device *sdev;
1188 	uint8_t i;
1189 	int ret;
1190 
1191 	fs_lock(dev, 0);
1192 	FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_ACTIVE) {
1193 		ret = rte_eth_dev_rss_hash_update(PORT_ID(sdev), rss_conf);
1194 		ret = fs_err(sdev, ret);
1195 		if (ret) {
1196 			ERROR("Operation rte_eth_dev_rss_hash_update"
1197 				" failed for sub_device %d with error %d",
1198 				i, ret);
1199 			fs_unlock(dev, 0);
1200 			return ret;
1201 		}
1202 	}
1203 	fs_unlock(dev, 0);
1204 
1205 	return 0;
1206 }
1207 
1208 static int
1209 fs_filter_ctrl(struct rte_eth_dev *dev __rte_unused,
1210 		enum rte_filter_type type,
1211 		enum rte_filter_op op,
1212 		void *arg)
1213 {
1214 	if (type == RTE_ETH_FILTER_GENERIC &&
1215 	    op == RTE_ETH_FILTER_GET) {
1216 		*(const void **)arg = &fs_flow_ops;
1217 		return 0;
1218 	}
1219 	return -ENOTSUP;
1220 }
1221 
1222 const struct eth_dev_ops failsafe_ops = {
1223 	.dev_configure = fs_dev_configure,
1224 	.dev_start = fs_dev_start,
1225 	.dev_stop = fs_dev_stop,
1226 	.dev_set_link_down = fs_dev_set_link_down,
1227 	.dev_set_link_up = fs_dev_set_link_up,
1228 	.dev_close = fs_dev_close,
1229 	.promiscuous_enable = fs_promiscuous_enable,
1230 	.promiscuous_disable = fs_promiscuous_disable,
1231 	.allmulticast_enable = fs_allmulticast_enable,
1232 	.allmulticast_disable = fs_allmulticast_disable,
1233 	.link_update = fs_link_update,
1234 	.stats_get = fs_stats_get,
1235 	.stats_reset = fs_stats_reset,
1236 	.dev_infos_get = fs_dev_infos_get,
1237 	.dev_supported_ptypes_get = fs_dev_supported_ptypes_get,
1238 	.mtu_set = fs_mtu_set,
1239 	.vlan_filter_set = fs_vlan_filter_set,
1240 	.rx_queue_start = fs_rx_queue_start,
1241 	.rx_queue_stop = fs_rx_queue_stop,
1242 	.tx_queue_start = fs_tx_queue_start,
1243 	.tx_queue_stop = fs_tx_queue_stop,
1244 	.rx_queue_setup = fs_rx_queue_setup,
1245 	.tx_queue_setup = fs_tx_queue_setup,
1246 	.rx_queue_release = fs_rx_queue_release,
1247 	.tx_queue_release = fs_tx_queue_release,
1248 	.rx_queue_intr_enable = fs_rx_intr_enable,
1249 	.rx_queue_intr_disable = fs_rx_intr_disable,
1250 	.flow_ctrl_get = fs_flow_ctrl_get,
1251 	.flow_ctrl_set = fs_flow_ctrl_set,
1252 	.mac_addr_remove = fs_mac_addr_remove,
1253 	.mac_addr_add = fs_mac_addr_add,
1254 	.mac_addr_set = fs_mac_addr_set,
1255 	.set_mc_addr_list = fs_set_mc_addr_list,
1256 	.rss_hash_update = fs_rss_hash_update,
1257 	.filter_ctrl = fs_filter_ctrl,
1258 };
1259