xref: /dpdk/drivers/net/enic/base/vnic_dev.c (revision b53d106d34b5c638f5a2cbdfee0da5bd42d4383f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2008-2017 Cisco Systems, Inc.  All rights reserved.
3  * Copyright 2007 Nuova Systems, Inc.  All rights reserved.
4  */
5 
6 #include <rte_memzone.h>
7 #include <rte_memcpy.h>
8 #include <rte_string_fns.h>
9 #include <rte_ether.h>
10 
11 #include "vnic_dev.h"
12 #include "vnic_resource.h"
13 #include "vnic_devcmd.h"
14 #include "vnic_nic.h"
15 #include "vnic_stats.h"
16 #include "vnic_flowman.h"
17 
18 
19 enum vnic_proxy_type {
20 	PROXY_NONE,
21 	PROXY_BY_BDF,
22 	PROXY_BY_INDEX,
23 };
24 
25 struct vnic_res {
26 	void __iomem *vaddr;
27 	dma_addr_t bus_addr;
28 	unsigned int count;
29 };
30 
31 struct vnic_intr_coal_timer_info {
32 	uint32_t mul;
33 	uint32_t div;
34 	uint32_t max_usec;
35 };
36 
37 struct vnic_dev {
38 	void *priv;
39 	struct rte_pci_device *pdev;
40 	struct vnic_res res[RES_TYPE_MAX];
41 	enum vnic_dev_intr_mode intr_mode;
42 	struct vnic_devcmd __iomem *devcmd;
43 	struct vnic_devcmd_notify *notify;
44 	struct vnic_devcmd_notify notify_copy;
45 	dma_addr_t notify_pa;
46 	uint32_t notify_sz;
47 	dma_addr_t linkstatus_pa;
48 	struct vnic_stats *stats;
49 	dma_addr_t stats_pa;
50 	struct vnic_devcmd_fw_info *fw_info;
51 	dma_addr_t fw_info_pa;
52 	struct fm_info *flowman_info;
53 	dma_addr_t flowman_info_pa;
54 	enum vnic_proxy_type proxy;
55 	uint32_t proxy_index;
56 	uint64_t args[VNIC_DEVCMD_NARGS];
57 	int in_reset;
58 	struct vnic_intr_coal_timer_info intr_coal_timer_info;
59 	void *(*alloc_consistent)(void *priv, size_t size,
60 		dma_addr_t *dma_handle, uint8_t *name);
61 	void (*free_consistent)(void *priv,
62 		size_t size, void *vaddr,
63 		dma_addr_t dma_handle);
64 	/*
65 	 * Used to serialize devcmd access, currently from PF and its
66 	 * VF representors. When there are no representors, lock is
67 	 * not used.
68 	 */
69 	int locked;
70 	void (*lock)(void *priv);
71 	void (*unlock)(void *priv);
72 	struct vnic_dev *pf_vdev;
73 	int vf_id;
74 };
75 
76 #define VNIC_MAX_RES_HDR_SIZE \
77 	(sizeof(struct vnic_resource_header) + \
78 	sizeof(struct vnic_resource) * RES_TYPE_MAX)
79 #define VNIC_RES_STRIDE	128
80 
81 void *vnic_dev_priv(struct vnic_dev *vdev)
82 {
83 	return vdev->priv;
84 }
85 
86 void vnic_register_cbacks(struct vnic_dev *vdev,
87 	void *(*alloc_consistent)(void *priv, size_t size,
88 	    dma_addr_t *dma_handle, uint8_t *name),
89 	void (*free_consistent)(void *priv,
90 	    size_t size, void *vaddr,
91 	    dma_addr_t dma_handle))
92 {
93 	vdev->alloc_consistent = alloc_consistent;
94 	vdev->free_consistent = free_consistent;
95 }
96 
97 void vnic_register_lock(struct vnic_dev *vdev, void (*lock)(void *priv),
98 	void (*unlock)(void *priv))
99 {
100 	vdev->lock = lock;
101 	vdev->unlock = unlock;
102 	vdev->locked = 0;
103 }
104 
105 static int vnic_dev_discover_res(struct vnic_dev *vdev,
106 	struct vnic_dev_bar *bar, unsigned int num_bars)
107 {
108 	struct vnic_resource_header __iomem *rh;
109 	struct mgmt_barmap_hdr __iomem *mrh;
110 	struct vnic_resource __iomem *r;
111 	uint8_t type;
112 
113 	if (num_bars == 0)
114 		return -EINVAL;
115 
116 	if (bar->len < VNIC_MAX_RES_HDR_SIZE) {
117 		pr_err("vNIC BAR0 res hdr length error\n");
118 		return -EINVAL;
119 	}
120 
121 	rh  = bar->vaddr;
122 	mrh = bar->vaddr;
123 	if (!rh) {
124 		pr_err("vNIC BAR0 res hdr not mem-mapped\n");
125 		return -EINVAL;
126 	}
127 
128 	/* Check for mgmt vnic in addition to normal vnic */
129 	if ((ioread32(&rh->magic) != VNIC_RES_MAGIC) ||
130 		(ioread32(&rh->version) != VNIC_RES_VERSION)) {
131 		if ((ioread32(&mrh->magic) != MGMTVNIC_MAGIC) ||
132 			(ioread32(&mrh->version) != MGMTVNIC_VERSION)) {
133 			pr_err("vNIC BAR0 res magic/version error " \
134 				"exp (%lx/%lx) or (%lx/%lx), curr (%x/%x)\n",
135 				VNIC_RES_MAGIC, VNIC_RES_VERSION,
136 				MGMTVNIC_MAGIC, MGMTVNIC_VERSION,
137 				ioread32(&rh->magic), ioread32(&rh->version));
138 			return -EINVAL;
139 		}
140 	}
141 
142 	if (ioread32(&mrh->magic) == MGMTVNIC_MAGIC)
143 		r = (struct vnic_resource __iomem *)(mrh + 1);
144 	else
145 		r = (struct vnic_resource __iomem *)(rh + 1);
146 
147 
148 	while ((type = ioread8(&r->type)) != RES_TYPE_EOL) {
149 		uint8_t bar_num = ioread8(&r->bar);
150 		uint32_t bar_offset = ioread32(&r->bar_offset);
151 		uint32_t count = ioread32(&r->count);
152 		uint32_t len;
153 
154 		r++;
155 
156 		if (bar_num >= num_bars)
157 			continue;
158 
159 		if (!bar[bar_num].len || !bar[bar_num].vaddr)
160 			continue;
161 
162 		switch (type) {
163 		case RES_TYPE_WQ:
164 		case RES_TYPE_RQ:
165 		case RES_TYPE_CQ:
166 		case RES_TYPE_INTR_CTRL:
167 			/* each count is stride bytes long */
168 			len = count * VNIC_RES_STRIDE;
169 			if (len + bar_offset > bar[bar_num].len) {
170 				pr_err("vNIC BAR0 resource %d " \
171 					"out-of-bounds, offset 0x%x + " \
172 					"size 0x%x > bar len 0x%lx\n",
173 					type, bar_offset,
174 					len,
175 					bar[bar_num].len);
176 				return -EINVAL;
177 			}
178 			break;
179 		case RES_TYPE_INTR_PBA_LEGACY:
180 		case RES_TYPE_DEVCMD:
181 			len = count;
182 			break;
183 		default:
184 			continue;
185 		}
186 
187 		vdev->res[type].count = count;
188 		vdev->res[type].vaddr = (char __iomem *)bar[bar_num].vaddr +
189 		    bar_offset;
190 		vdev->res[type].bus_addr = bar[bar_num].bus_addr + bar_offset;
191 	}
192 
193 	return 0;
194 }
195 
196 unsigned int vnic_dev_get_res_count(struct vnic_dev *vdev,
197 	enum vnic_res_type type)
198 {
199 	return vdev->res[type].count;
200 }
201 
202 void __iomem *vnic_dev_get_res(struct vnic_dev *vdev, enum vnic_res_type type,
203 	unsigned int index)
204 {
205 	if (!vdev->res[type].vaddr)
206 		return NULL;
207 
208 	switch (type) {
209 	case RES_TYPE_WQ:
210 	case RES_TYPE_RQ:
211 	case RES_TYPE_CQ:
212 	case RES_TYPE_INTR_CTRL:
213 		return (char __iomem *)vdev->res[type].vaddr +
214 			index * VNIC_RES_STRIDE;
215 	default:
216 		return (char __iomem *)vdev->res[type].vaddr;
217 	}
218 }
219 
220 unsigned int vnic_dev_desc_ring_size(struct vnic_dev_ring *ring,
221 	unsigned int desc_count, unsigned int desc_size)
222 {
223 	/* The base address of the desc rings must be 512 byte aligned.
224 	 * Descriptor count is aligned to groups of 32 descriptors.  A
225 	 * count of 0 means the maximum 4096 descriptors.  Descriptor
226 	 * size is aligned to 16 bytes.
227 	 */
228 
229 	unsigned int count_align = 32;
230 	unsigned int desc_align = 16;
231 
232 	ring->base_align = 512;
233 
234 	if (desc_count == 0)
235 		desc_count = 4096;
236 
237 	ring->desc_count = VNIC_ALIGN(desc_count, count_align);
238 
239 	ring->desc_size = VNIC_ALIGN(desc_size, desc_align);
240 
241 	ring->size = ring->desc_count * ring->desc_size;
242 	ring->size_unaligned = ring->size + ring->base_align;
243 
244 	return ring->size_unaligned;
245 }
246 
247 void vnic_dev_clear_desc_ring(struct vnic_dev_ring *ring)
248 {
249 	memset(ring->descs, 0, ring->size);
250 }
251 
252 int vnic_dev_alloc_desc_ring(struct vnic_dev *vdev,
253 	struct vnic_dev_ring *ring,
254 	unsigned int desc_count, unsigned int desc_size,
255 	__rte_unused unsigned int socket_id,
256 	char *z_name)
257 {
258 	void *alloc_addr;
259 	dma_addr_t alloc_pa = 0;
260 
261 	vnic_dev_desc_ring_size(ring, desc_count, desc_size);
262 	alloc_addr = vdev->alloc_consistent(vdev->priv,
263 					    ring->size_unaligned,
264 					    &alloc_pa, (uint8_t *)z_name);
265 	if (!alloc_addr) {
266 		pr_err("Failed to allocate ring (size=%d), aborting\n",
267 			(int)ring->size);
268 		return -ENOMEM;
269 	}
270 	ring->descs_unaligned = alloc_addr;
271 	if (!alloc_pa) {
272 		pr_err("Failed to map allocated ring (size=%d), aborting\n",
273 			(int)ring->size);
274 		vdev->free_consistent(vdev->priv,
275 				      ring->size_unaligned,
276 				      alloc_addr,
277 				      alloc_pa);
278 		return -ENOMEM;
279 	}
280 	ring->base_addr_unaligned = alloc_pa;
281 
282 	ring->base_addr = VNIC_ALIGN(ring->base_addr_unaligned,
283 		ring->base_align);
284 	ring->descs = (uint8_t *)ring->descs_unaligned +
285 	    (ring->base_addr - ring->base_addr_unaligned);
286 
287 	vnic_dev_clear_desc_ring(ring);
288 
289 	ring->desc_avail = ring->desc_count - 1;
290 
291 	return 0;
292 }
293 
294 void vnic_dev_free_desc_ring(__rte_unused  struct vnic_dev *vdev,
295 	struct vnic_dev_ring *ring)
296 {
297 	if (ring->descs) {
298 		vdev->free_consistent(vdev->priv,
299 				      ring->size_unaligned,
300 				      ring->descs_unaligned,
301 				      ring->base_addr_unaligned);
302 		ring->descs = NULL;
303 	}
304 }
305 
306 static int _vnic_dev_cmd(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd,
307 	int wait)
308 {
309 	struct vnic_devcmd __iomem *devcmd = vdev->devcmd;
310 	unsigned int i;
311 	int delay;
312 	uint32_t status;
313 	int err;
314 
315 	status = ioread32(&devcmd->status);
316 	if (status == 0xFFFFFFFF) {
317 		/* PCI-e target device is gone */
318 		return -ENODEV;
319 	}
320 	if (status & STAT_BUSY) {
321 
322 		pr_err("Busy devcmd %d\n",  _CMD_N(cmd));
323 		return -EBUSY;
324 	}
325 
326 	if (_CMD_DIR(cmd) & _CMD_DIR_WRITE) {
327 		for (i = 0; i < VNIC_DEVCMD_NARGS; i++)
328 			writeq(vdev->args[i], &devcmd->args[i]);
329 		rte_wmb(); /* complete all writes initiated till now */
330 	}
331 
332 	iowrite32(cmd, &devcmd->cmd);
333 
334 	if ((_CMD_FLAGS(cmd) & _CMD_FLAGS_NOWAIT))
335 		return 0;
336 
337 	for (delay = 0; delay < wait; delay++) {
338 
339 		usleep(100);
340 
341 		status = ioread32(&devcmd->status);
342 		if (status == 0xFFFFFFFF) {
343 			/* PCI-e target device is gone */
344 			return -ENODEV;
345 		}
346 
347 		if (!(status & STAT_BUSY)) {
348 			if (status & STAT_ERROR) {
349 				err = -(int)readq(&devcmd->args[0]);
350 				if (cmd != CMD_CAPABILITY &&
351 				    cmd != CMD_OVERLAY_OFFLOAD_CTRL &&
352 				    cmd != CMD_GET_SUPP_FEATURE_VER)
353 					pr_err("Devcmd %d failed " \
354 						"with error code %d\n",
355 						_CMD_N(cmd), err);
356 				return err;
357 			}
358 
359 			if (_CMD_DIR(cmd) & _CMD_DIR_READ) {
360 				rte_rmb();/* finish all reads */
361 				for (i = 0; i < VNIC_DEVCMD_NARGS; i++)
362 					vdev->args[i] = readq(&devcmd->args[i]);
363 			}
364 
365 			return 0;
366 		}
367 	}
368 
369 	pr_err("Timedout devcmd %d\n", _CMD_N(cmd));
370 	return -ETIMEDOUT;
371 }
372 
373 static int vnic_dev_cmd_proxy(struct vnic_dev *vdev,
374 	enum vnic_devcmd_cmd proxy_cmd, enum vnic_devcmd_cmd cmd,
375 	uint64_t *args, int nargs, int wait)
376 {
377 	uint32_t status;
378 	int err;
379 
380 	/*
381 	 * Proxy command consumes 2 arguments. One for proxy index,
382 	 * the other is for command to be proxied
383 	 */
384 	if (nargs > VNIC_DEVCMD_NARGS - 2) {
385 		pr_err("number of args %d exceeds the maximum\n", nargs);
386 		return -EINVAL;
387 	}
388 	memset(vdev->args, 0, sizeof(vdev->args));
389 
390 	vdev->args[0] = vdev->proxy_index;
391 	vdev->args[1] = cmd;
392 	memcpy(&vdev->args[2], args, nargs * sizeof(args[0]));
393 
394 	err = _vnic_dev_cmd(vdev, proxy_cmd, wait);
395 	if (err)
396 		return err;
397 
398 	status = (uint32_t)vdev->args[0];
399 	if (status & STAT_ERROR) {
400 		err = (int)vdev->args[1];
401 		if (err != ERR_ECMDUNKNOWN ||
402 		    cmd != CMD_CAPABILITY)
403 			pr_err("Error %d proxy devcmd %d\n", err, _CMD_N(cmd));
404 		return err;
405 	}
406 
407 	memcpy(args, &vdev->args[1], nargs * sizeof(args[0]));
408 
409 	return 0;
410 }
411 
412 static int vnic_dev_cmd_no_proxy(struct vnic_dev *vdev,
413 	enum vnic_devcmd_cmd cmd, uint64_t *args, int nargs, int wait)
414 {
415 	int err;
416 
417 	if (nargs > VNIC_DEVCMD_NARGS) {
418 		pr_err("number of args %d exceeds the maximum\n", nargs);
419 		return -EINVAL;
420 	}
421 	memset(vdev->args, 0, sizeof(vdev->args));
422 	memcpy(vdev->args, args, nargs * sizeof(args[0]));
423 
424 	err = _vnic_dev_cmd(vdev, cmd, wait);
425 
426 	memcpy(args, vdev->args, nargs * sizeof(args[0]));
427 
428 	return err;
429 }
430 
431 void vnic_dev_cmd_proxy_by_index_start(struct vnic_dev *vdev, uint16_t index)
432 {
433 	vdev->proxy = PROXY_BY_INDEX;
434 	vdev->proxy_index = index;
435 }
436 
437 void vnic_dev_cmd_proxy_end(struct vnic_dev *vdev)
438 {
439 	vdev->proxy = PROXY_NONE;
440 	vdev->proxy_index = 0;
441 }
442 
443 int vnic_dev_cmd(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd,
444 	uint64_t *a0, uint64_t *a1, int wait)
445 {
446 	uint64_t args[2];
447 	bool vf_rep;
448 	int vf_idx;
449 	int err;
450 
451 	vf_rep = false;
452 	if (vdev->pf_vdev) {
453 		vf_rep = true;
454 		vf_idx = vdev->vf_id;
455 		/* Everything below assumes PF vdev */
456 		vdev = vdev->pf_vdev;
457 	}
458 	if (vdev->lock)
459 		vdev->lock(vdev->priv);
460 	/* For VF representor, proxy devcmd to VF index */
461 	if (vf_rep)
462 		vnic_dev_cmd_proxy_by_index_start(vdev, vf_idx);
463 
464 	args[0] = *a0;
465 	args[1] = *a1;
466 	memset(vdev->args, 0, sizeof(vdev->args));
467 
468 	switch (vdev->proxy) {
469 	case PROXY_BY_INDEX:
470 		err =  vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_INDEX, cmd,
471 				args, ARRAY_SIZE(args), wait);
472 		break;
473 	case PROXY_BY_BDF:
474 		err =  vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_BDF, cmd,
475 				args, ARRAY_SIZE(args), wait);
476 		break;
477 	case PROXY_NONE:
478 	default:
479 		err = vnic_dev_cmd_no_proxy(vdev, cmd, args, 2, wait);
480 		break;
481 	}
482 
483 	if (vf_rep)
484 		vnic_dev_cmd_proxy_end(vdev);
485 	if (vdev->unlock)
486 		vdev->unlock(vdev->priv);
487 	if (err == 0) {
488 		*a0 = args[0];
489 		*a1 = args[1];
490 	}
491 
492 	return err;
493 }
494 
495 int vnic_dev_cmd_args(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd,
496 		      uint64_t *args, int nargs, int wait)
497 {
498 	bool vf_rep;
499 	int vf_idx;
500 	int err;
501 
502 	vf_rep = false;
503 	if (vdev->pf_vdev) {
504 		vf_rep = true;
505 		vf_idx = vdev->vf_id;
506 		vdev = vdev->pf_vdev;
507 	}
508 	if (vdev->lock)
509 		vdev->lock(vdev->priv);
510 	if (vf_rep)
511 		vnic_dev_cmd_proxy_by_index_start(vdev, vf_idx);
512 
513 	switch (vdev->proxy) {
514 	case PROXY_BY_INDEX:
515 		err = vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_INDEX, cmd,
516 				args, nargs, wait);
517 		break;
518 	case PROXY_BY_BDF:
519 		err = vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_BDF, cmd,
520 				args, nargs, wait);
521 		break;
522 	case PROXY_NONE:
523 	default:
524 		err = vnic_dev_cmd_no_proxy(vdev, cmd, args, nargs, wait);
525 		break;
526 	}
527 
528 	if (vf_rep)
529 		vnic_dev_cmd_proxy_end(vdev);
530 	if (vdev->unlock)
531 		vdev->unlock(vdev->priv);
532 	return err;
533 }
534 
535 int vnic_dev_fw_info(struct vnic_dev *vdev,
536 		     struct vnic_devcmd_fw_info **fw_info)
537 {
538 	char name[RTE_MEMZONE_NAMESIZE];
539 	uint64_t a0, a1 = 0;
540 	int wait = 1000;
541 	int err = 0;
542 	static uint32_t instance;
543 
544 	if (!vdev->fw_info) {
545 		snprintf((char *)name, sizeof(name), "vnic_fw_info-%u",
546 			 instance++);
547 		vdev->fw_info = vdev->alloc_consistent(vdev->priv,
548 			sizeof(struct vnic_devcmd_fw_info),
549 			&vdev->fw_info_pa, (uint8_t *)name);
550 		if (!vdev->fw_info)
551 			return -ENOMEM;
552 		a0 = vdev->fw_info_pa;
553 		a1 = sizeof(struct vnic_devcmd_fw_info);
554 		err = vnic_dev_cmd(vdev, CMD_MCPU_FW_INFO,
555 				   &a0, &a1, wait);
556 	}
557 	*fw_info = vdev->fw_info;
558 	return err;
559 }
560 
561 static int vnic_dev_advanced_filters_cap(struct vnic_dev *vdev, uint64_t *args,
562 		int nargs)
563 {
564 	memset(args, 0, nargs * sizeof(*args));
565 	args[0] = CMD_ADD_ADV_FILTER;
566 	args[1] = FILTER_CAP_MODE_V1_FLAG;
567 	return vnic_dev_cmd_args(vdev, CMD_CAPABILITY, args, nargs, 1000);
568 }
569 
570 int vnic_dev_capable_adv_filters(struct vnic_dev *vdev)
571 {
572 	uint64_t a0 = CMD_ADD_ADV_FILTER, a1 = 0;
573 	int wait = 1000;
574 	int err;
575 
576 	err = vnic_dev_cmd(vdev, CMD_CAPABILITY, &a0, &a1, wait);
577 	if (err)
578 		return 0;
579 	return (a1 >= (uint32_t)FILTER_DPDK_1);
580 }
581 
582 int vnic_dev_flowman_cmd(struct vnic_dev *vdev, uint64_t *args, int nargs)
583 {
584 	int wait = 1000;
585 
586 	return vnic_dev_cmd_args(vdev, CMD_FLOW_MANAGER_OP, args, nargs, wait);
587 }
588 
589 static int vnic_dev_flowman_enable(struct vnic_dev *vdev, uint32_t *mode,
590 				   uint8_t *filter_actions)
591 {
592 	char name[RTE_MEMZONE_NAMESIZE];
593 	uint64_t args[3];
594 	uint64_t ops;
595 	static uint32_t instance;
596 
597 	/* Advanced filtering is a prerequisite */
598 	if (!vnic_dev_capable_adv_filters(vdev))
599 		return 0;
600 	/* flowman devcmd available? */
601 	if (!vnic_dev_capable(vdev, CMD_FLOW_MANAGER_OP))
602 		return 0;
603 	/* Have the version we are using? */
604 	args[0] = FM_API_VERSION_QUERY;
605 	if (vnic_dev_flowman_cmd(vdev, args, 1))
606 		return 0;
607 	if ((args[0] & (1ULL << FM_VERSION)) == 0)
608 		return 0;
609 	/* Select the version */
610 	args[0] = FM_API_VERSION_SELECT;
611 	args[1] = FM_VERSION;
612 	if (vnic_dev_flowman_cmd(vdev, args, 2))
613 		return 0;
614 	/* Can we get fm_info? */
615 	if (!vdev->flowman_info) {
616 		snprintf((char *)name, sizeof(name), "vnic_fm_info-%u",
617 			 instance++);
618 		vdev->flowman_info = vdev->alloc_consistent(vdev->priv,
619 			sizeof(struct fm_info),
620 			&vdev->flowman_info_pa, (uint8_t *)name);
621 		if (!vdev->flowman_info)
622 			return 0;
623 	}
624 	args[0] = FM_INFO_QUERY;
625 	args[1] = vdev->flowman_info_pa;
626 	args[2] = sizeof(struct fm_info);
627 	if (vnic_dev_flowman_cmd(vdev, args, 3))
628 		return 0;
629 	/* Have required operations? */
630 	ops = (1ULL << FMOP_END) |
631 		(1ULL << FMOP_DROP) |
632 		(1ULL << FMOP_RQ_STEER) |
633 		(1ULL << FMOP_EXACT_MATCH) |
634 		(1ULL << FMOP_MARK) |
635 		(1ULL << FMOP_TAG) |
636 		(1ULL << FMOP_EG_HAIRPIN) |
637 		(1ULL << FMOP_ENCAP) |
638 		(1ULL << FMOP_DECAP_NOSTRIP);
639 	if ((vdev->flowman_info->fm_op_mask & ops) != ops)
640 		return 0;
641 	/* Good to use flowman now */
642 	*mode = FILTER_FLOWMAN;
643 	*filter_actions = FILTER_ACTION_RQ_STEERING_FLAG |
644 		FILTER_ACTION_FILTER_ID_FLAG |
645 		FILTER_ACTION_COUNTER_FLAG |
646 		FILTER_ACTION_DROP_FLAG;
647 	return 1;
648 }
649 
650 /*  Determine the "best" filtering mode VIC is capable of. Returns one of 4
651  *  value or 0 if filtering is unavailble:
652  *	FILTER_FLOWMAN- flowman api capable
653  *	FILTER_DPDK_1- advanced filters availabile
654  *	FILTER_USNIC_IP_FLAG - advanced filters but with the restriction that
655  *		the IP layer must explicitly specified. I.e. cannot have a UDP
656  *		filter that matches both IPv4 and IPv6.
657  *	FILTER_IPV4_5TUPLE - fallback if either of the 2 above aren't available.
658  *		all other filter types are not available.
659  *   Retrun true in filter_tags if supported
660  */
661 int vnic_dev_capable_filter_mode(struct vnic_dev *vdev, uint32_t *mode,
662 				 uint8_t *filter_actions)
663 {
664 	uint64_t args[4];
665 	int err;
666 	uint32_t max_level = 0;
667 
668 	/* If flowman is available, use it as it is the most capable API */
669 	if (vnic_dev_flowman_enable(vdev, mode, filter_actions))
670 		return 0;
671 
672 	err = vnic_dev_advanced_filters_cap(vdev, args, 4);
673 
674 	/* determine supported filter actions */
675 	*filter_actions = FILTER_ACTION_RQ_STEERING_FLAG; /* always available */
676 	if (args[2] == FILTER_CAP_MODE_V1)
677 		*filter_actions = args[3];
678 
679 	if (err || ((args[0] == 1) && (args[1] == 0))) {
680 		/* Adv filter Command not supported or adv filters available but
681 		 * not enabled. Try the normal filter capability command.
682 		 */
683 		args[0] = CMD_ADD_FILTER;
684 		args[1] = 0;
685 		err = vnic_dev_cmd_args(vdev, CMD_CAPABILITY, args, 2, 1000);
686 		/*
687 		 * ERR_EPERM may be returned if, for example, vNIC is
688 		 * on a VF. It simply means no filtering is available
689 		 */
690 		if (err == -ERR_EPERM) {
691 			*mode = 0;
692 			return 0;
693 		}
694 		if (err)
695 			return err;
696 		max_level = args[1];
697 		goto parse_max_level;
698 	} else if (args[2] == FILTER_CAP_MODE_V1) {
699 		/* parse filter capability mask in args[1] */
700 		if (args[1] & FILTER_DPDK_1_FLAG)
701 			*mode = FILTER_DPDK_1;
702 		else if (args[1] & FILTER_USNIC_IP_FLAG)
703 			*mode = FILTER_USNIC_IP;
704 		else if (args[1] & FILTER_IPV4_5TUPLE_FLAG)
705 			*mode = FILTER_IPV4_5TUPLE;
706 		return 0;
707 	}
708 	max_level = args[1];
709 parse_max_level:
710 	if (max_level >= (uint32_t)FILTER_USNIC_IP)
711 		*mode = FILTER_USNIC_IP;
712 	else
713 		*mode = FILTER_IPV4_5TUPLE;
714 	return 0;
715 }
716 
717 void vnic_dev_capable_udp_rss_weak(struct vnic_dev *vdev, bool *cfg_chk,
718 				   bool *weak)
719 {
720 	uint64_t a0 = CMD_NIC_CFG, a1 = 0;
721 	int wait = 1000;
722 	int err;
723 
724 	*cfg_chk = false;
725 	*weak = false;
726 	err = vnic_dev_cmd(vdev, CMD_CAPABILITY, &a0, &a1, wait);
727 	if (err == 0 && a0 != 0 && a1 != 0) {
728 		*cfg_chk = true;
729 		*weak = !!((a1 >> 32) & CMD_NIC_CFG_CAPF_UDP_WEAK);
730 	}
731 }
732 
733 int vnic_dev_capable(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd)
734 {
735 	uint64_t a0 = (uint32_t)cmd, a1 = 0;
736 	int wait = 1000;
737 	int err;
738 
739 	err = vnic_dev_cmd(vdev, CMD_CAPABILITY, &a0, &a1, wait);
740 
741 	return !(err || a0);
742 }
743 
744 int vnic_dev_spec(struct vnic_dev *vdev, unsigned int offset, size_t size,
745 	void *value)
746 {
747 	uint64_t a0, a1;
748 	int wait = 1000;
749 	int err;
750 
751 	a0 = offset;
752 	a1 = size;
753 
754 	err = vnic_dev_cmd(vdev, CMD_DEV_SPEC, &a0, &a1, wait);
755 
756 	switch (size) {
757 	case 1:
758 		*(uint8_t *)value = (uint8_t)a0;
759 		break;
760 	case 2:
761 		*(uint16_t *)value = (uint16_t)a0;
762 		break;
763 	case 4:
764 		*(uint32_t *)value = (uint32_t)a0;
765 		break;
766 	case 8:
767 		*(uint64_t *)value = a0;
768 		break;
769 	default:
770 		BUG();
771 		break;
772 	}
773 
774 	return err;
775 }
776 
777 int vnic_dev_stats_clear(struct vnic_dev *vdev)
778 {
779 	uint64_t a0 = 0, a1 = 0;
780 	int wait = 1000;
781 
782 	return vnic_dev_cmd(vdev, CMD_STATS_CLEAR, &a0, &a1, wait);
783 }
784 
785 int vnic_dev_stats_dump(struct vnic_dev *vdev, struct vnic_stats **stats)
786 {
787 	uint64_t a0, a1;
788 	int wait = 1000;
789 
790 	if (!vdev->stats)
791 		return -ENOMEM;
792 
793 	*stats = vdev->stats;
794 	a0 = vdev->stats_pa;
795 	a1 = sizeof(struct vnic_stats);
796 
797 	return vnic_dev_cmd(vdev, CMD_STATS_DUMP, &a0, &a1, wait);
798 }
799 
800 int vnic_dev_close(struct vnic_dev *vdev)
801 {
802 	uint64_t a0 = 0, a1 = 0;
803 	int wait = 1000;
804 
805 	return vnic_dev_cmd(vdev, CMD_CLOSE, &a0, &a1, wait);
806 }
807 
808 int vnic_dev_enable_wait(struct vnic_dev *vdev)
809 {
810 	uint64_t a0 = 0, a1 = 0;
811 	int wait = 1000;
812 
813 	if (vnic_dev_capable(vdev, CMD_ENABLE_WAIT))
814 		return vnic_dev_cmd(vdev, CMD_ENABLE_WAIT, &a0, &a1, wait);
815 	else
816 		return vnic_dev_cmd(vdev, CMD_ENABLE, &a0, &a1, wait);
817 }
818 
819 int vnic_dev_disable(struct vnic_dev *vdev)
820 {
821 	uint64_t a0 = 0, a1 = 0;
822 	int wait = 1000;
823 
824 	return vnic_dev_cmd(vdev, CMD_DISABLE, &a0, &a1, wait);
825 }
826 
827 int vnic_dev_open(struct vnic_dev *vdev, int arg)
828 {
829 	uint64_t a0 = (uint32_t)arg, a1 = 0;
830 	int wait = 1000;
831 
832 	return vnic_dev_cmd(vdev, CMD_OPEN, &a0, &a1, wait);
833 }
834 
835 int vnic_dev_open_done(struct vnic_dev *vdev, int *done)
836 {
837 	uint64_t a0 = 0, a1 = 0;
838 	int wait = 1000;
839 	int err;
840 
841 	*done = 0;
842 
843 	err = vnic_dev_cmd(vdev, CMD_OPEN_STATUS, &a0, &a1, wait);
844 	if (err)
845 		return err;
846 
847 	*done = (a0 == 0);
848 
849 	return 0;
850 }
851 
852 int vnic_dev_get_mac_addr(struct vnic_dev *vdev, uint8_t *mac_addr)
853 {
854 	uint64_t a0 = 0, a1 = 0;
855 	int wait = 1000;
856 	int err, i;
857 
858 	for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
859 		mac_addr[i] = 0;
860 
861 	err = vnic_dev_cmd(vdev, CMD_GET_MAC_ADDR, &a0, &a1, wait);
862 	if (err)
863 		return err;
864 
865 	for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
866 		mac_addr[i] = ((uint8_t *)&a0)[i];
867 
868 	return 0;
869 }
870 
871 int vnic_dev_packet_filter(struct vnic_dev *vdev, int directed, int multicast,
872 	int broadcast, int promisc, int allmulti)
873 {
874 	uint64_t a0, a1 = 0;
875 	int wait = 1000;
876 	int err;
877 
878 	a0 = (directed ? CMD_PFILTER_DIRECTED : 0) |
879 	     (multicast ? CMD_PFILTER_MULTICAST : 0) |
880 	     (broadcast ? CMD_PFILTER_BROADCAST : 0) |
881 	     (promisc ? CMD_PFILTER_PROMISCUOUS : 0) |
882 	     (allmulti ? CMD_PFILTER_ALL_MULTICAST : 0);
883 
884 	err = vnic_dev_cmd(vdev, CMD_PACKET_FILTER, &a0, &a1, wait);
885 	if (err)
886 		pr_err("Can't set packet filter\n");
887 
888 	return err;
889 }
890 
891 int vnic_dev_add_addr(struct vnic_dev *vdev, uint8_t *addr)
892 {
893 	uint64_t a0 = 0, a1 = 0;
894 	int wait = 1000;
895 	int err;
896 	int i;
897 
898 	for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
899 		((uint8_t *)&a0)[i] = addr[i];
900 
901 	err = vnic_dev_cmd(vdev, CMD_ADDR_ADD, &a0, &a1, wait);
902 	if (err)
903 		pr_err("Can't add addr [" RTE_ETHER_ADDR_PRT_FMT "], %d\n",
904 			addr[0], addr[1], addr[2], addr[3], addr[4], addr[5],
905 			err);
906 
907 	return err;
908 }
909 
910 int vnic_dev_del_addr(struct vnic_dev *vdev, uint8_t *addr)
911 {
912 	uint64_t a0 = 0, a1 = 0;
913 	int wait = 1000;
914 	int err;
915 	int i;
916 
917 	for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
918 		((uint8_t *)&a0)[i] = addr[i];
919 
920 	err = vnic_dev_cmd(vdev, CMD_ADDR_DEL, &a0, &a1, wait);
921 	if (err)
922 		pr_err("Can't del addr [" RTE_ETHER_ADDR_PRT_FMT "], %d\n",
923 			addr[0], addr[1], addr[2], addr[3], addr[4], addr[5],
924 			err);
925 
926 	return err;
927 }
928 
929 int vnic_dev_set_ig_vlan_rewrite_mode(struct vnic_dev *vdev,
930 	uint8_t ig_vlan_rewrite_mode)
931 {
932 	uint64_t a0 = ig_vlan_rewrite_mode, a1 = 0;
933 	int wait = 1000;
934 
935 	if (vnic_dev_capable(vdev, CMD_IG_VLAN_REWRITE_MODE))
936 		return vnic_dev_cmd(vdev, CMD_IG_VLAN_REWRITE_MODE,
937 				&a0, &a1, wait);
938 	else
939 		return 0;
940 }
941 
942 void vnic_dev_set_reset_flag(struct vnic_dev *vdev, int state)
943 {
944 	vdev->in_reset = state;
945 }
946 
947 static inline int vnic_dev_in_reset(struct vnic_dev *vdev)
948 {
949 	return vdev->in_reset;
950 }
951 
952 int vnic_dev_notify_setcmd(struct vnic_dev *vdev,
953 	void *notify_addr, dma_addr_t notify_pa, uint16_t intr)
954 {
955 	uint64_t a0, a1;
956 	int wait = 1000;
957 	int r;
958 
959 	memset(notify_addr, 0, sizeof(struct vnic_devcmd_notify));
960 	if (!vnic_dev_in_reset(vdev)) {
961 		vdev->notify = notify_addr;
962 		vdev->notify_pa = notify_pa;
963 	}
964 
965 	a0 = (uint64_t)notify_pa;
966 	a1 = ((uint64_t)intr << 32) & 0x0000ffff00000000ULL;
967 	a1 += sizeof(struct vnic_devcmd_notify);
968 
969 	r = vnic_dev_cmd(vdev, CMD_NOTIFY, &a0, &a1, wait);
970 	if (!vnic_dev_in_reset(vdev))
971 		vdev->notify_sz = (r == 0) ? (uint32_t)a1 : 0;
972 
973 	return r;
974 }
975 
976 int vnic_dev_notify_set(struct vnic_dev *vdev, uint16_t intr)
977 {
978 	void *notify_addr = NULL;
979 	dma_addr_t notify_pa = 0;
980 	char name[RTE_MEMZONE_NAMESIZE];
981 	static uint32_t instance;
982 
983 	if (vdev->notify || vdev->notify_pa) {
984 		return vnic_dev_notify_setcmd(vdev, vdev->notify,
985 					      vdev->notify_pa, intr);
986 	}
987 	if (!vnic_dev_in_reset(vdev)) {
988 		snprintf((char *)name, sizeof(name),
989 			"vnic_notify-%u", instance++);
990 		notify_addr = vdev->alloc_consistent(vdev->priv,
991 			sizeof(struct vnic_devcmd_notify),
992 			&notify_pa, (uint8_t *)name);
993 		if (!notify_addr)
994 			return -ENOMEM;
995 	}
996 
997 	return vnic_dev_notify_setcmd(vdev, notify_addr, notify_pa, intr);
998 }
999 
1000 int vnic_dev_notify_unsetcmd(struct vnic_dev *vdev)
1001 {
1002 	uint64_t a0, a1;
1003 	int wait = 1000;
1004 	int err;
1005 
1006 	a0 = 0;  /* paddr = 0 to unset notify buffer */
1007 	a1 = 0x0000ffff00000000ULL; /* intr num = -1 to unreg for intr */
1008 	a1 += sizeof(struct vnic_devcmd_notify);
1009 
1010 	err = vnic_dev_cmd(vdev, CMD_NOTIFY, &a0, &a1, wait);
1011 	if (!vnic_dev_in_reset(vdev)) {
1012 		vdev->notify = NULL;
1013 		vdev->notify_pa = 0;
1014 		vdev->notify_sz = 0;
1015 	}
1016 
1017 	return err;
1018 }
1019 
1020 int vnic_dev_notify_unset(struct vnic_dev *vdev)
1021 {
1022 	if (vdev->notify && !vnic_dev_in_reset(vdev)) {
1023 		vdev->free_consistent(vdev->priv,
1024 			sizeof(struct vnic_devcmd_notify),
1025 			vdev->notify,
1026 			vdev->notify_pa);
1027 	}
1028 
1029 	return vnic_dev_notify_unsetcmd(vdev);
1030 }
1031 
1032 static int vnic_dev_notify_ready(struct vnic_dev *vdev)
1033 {
1034 	uint32_t *words;
1035 	unsigned int nwords = vdev->notify_sz / 4;
1036 	unsigned int i;
1037 	uint32_t csum;
1038 
1039 	if (!vdev->notify || !vdev->notify_sz)
1040 		return 0;
1041 
1042 	do {
1043 		csum = 0;
1044 		rte_memcpy(&vdev->notify_copy, vdev->notify, vdev->notify_sz);
1045 		words = (uint32_t *)&vdev->notify_copy;
1046 		for (i = 1; i < nwords; i++)
1047 			csum += words[i];
1048 	} while (csum != words[0]);
1049 
1050 	return 1;
1051 }
1052 
1053 int vnic_dev_init(struct vnic_dev *vdev, int arg)
1054 {
1055 	uint64_t a0 = (uint32_t)arg, a1 = 0;
1056 	int wait = 1000;
1057 	int r = 0;
1058 
1059 	if (vnic_dev_capable(vdev, CMD_INIT))
1060 		r = vnic_dev_cmd(vdev, CMD_INIT, &a0, &a1, wait);
1061 	else {
1062 		vnic_dev_cmd(vdev, CMD_INIT_v1, &a0, &a1, wait);
1063 		if (a0 & CMD_INITF_DEFAULT_MAC) {
1064 			/* Emulate these for old CMD_INIT_v1 which
1065 			 * didn't pass a0 so no CMD_INITF_*.
1066 			 */
1067 			vnic_dev_cmd(vdev, CMD_GET_MAC_ADDR, &a0, &a1, wait);
1068 			vnic_dev_cmd(vdev, CMD_ADDR_ADD, &a0, &a1, wait);
1069 		}
1070 	}
1071 	return r;
1072 }
1073 
1074 void vnic_dev_intr_coal_timer_info_default(struct vnic_dev *vdev)
1075 {
1076 	/* Default: hardware intr coal timer is in units of 1.5 usecs */
1077 	vdev->intr_coal_timer_info.mul = 2;
1078 	vdev->intr_coal_timer_info.div = 3;
1079 	vdev->intr_coal_timer_info.max_usec =
1080 		vnic_dev_intr_coal_timer_hw_to_usec(vdev, 0xffff);
1081 }
1082 
1083 int vnic_dev_link_status(struct vnic_dev *vdev)
1084 {
1085 	if (!vnic_dev_notify_ready(vdev))
1086 		return 0;
1087 
1088 	return vdev->notify_copy.link_state;
1089 }
1090 
1091 uint32_t vnic_dev_port_speed(struct vnic_dev *vdev)
1092 {
1093 	if (!vnic_dev_notify_ready(vdev))
1094 		return 0;
1095 
1096 	return vdev->notify_copy.port_speed;
1097 }
1098 
1099 uint32_t vnic_dev_mtu(struct vnic_dev *vdev)
1100 {
1101 	if (!vnic_dev_notify_ready(vdev))
1102 		return 0;
1103 
1104 	return vdev->notify_copy.mtu;
1105 }
1106 
1107 uint32_t vnic_dev_uif(struct vnic_dev *vdev)
1108 {
1109 	if (!vnic_dev_notify_ready(vdev))
1110 		return 0;
1111 
1112 	return vdev->notify_copy.uif;
1113 }
1114 
1115 uint32_t vnic_dev_intr_coal_timer_usec_to_hw(struct vnic_dev *vdev,
1116 					     uint32_t usec)
1117 {
1118 	return (usec * vdev->intr_coal_timer_info.mul) /
1119 		vdev->intr_coal_timer_info.div;
1120 }
1121 
1122 uint32_t vnic_dev_intr_coal_timer_hw_to_usec(struct vnic_dev *vdev,
1123 					     uint32_t hw_cycles)
1124 {
1125 	return (hw_cycles * vdev->intr_coal_timer_info.div) /
1126 		vdev->intr_coal_timer_info.mul;
1127 }
1128 
1129 uint32_t vnic_dev_get_intr_coal_timer_max(struct vnic_dev *vdev)
1130 {
1131 	return vdev->intr_coal_timer_info.max_usec;
1132 }
1133 
1134 int vnic_dev_alloc_stats_mem(struct vnic_dev *vdev)
1135 {
1136 	char name[RTE_MEMZONE_NAMESIZE];
1137 	static uint32_t instance;
1138 
1139 	snprintf((char *)name, sizeof(name), "vnic_stats-%u", instance++);
1140 	vdev->stats = vdev->alloc_consistent(vdev->priv,
1141 					     sizeof(struct vnic_stats),
1142 					     &vdev->stats_pa, (uint8_t *)name);
1143 	return vdev->stats == NULL ? -ENOMEM : 0;
1144 }
1145 
1146 void vnic_dev_unregister(struct vnic_dev *vdev)
1147 {
1148 	if (vdev) {
1149 		if (vdev->notify)
1150 			vdev->free_consistent(vdev->priv,
1151 				sizeof(struct vnic_devcmd_notify),
1152 				vdev->notify,
1153 				vdev->notify_pa);
1154 		if (vdev->stats)
1155 			vdev->free_consistent(vdev->priv,
1156 				sizeof(struct vnic_stats),
1157 				vdev->stats, vdev->stats_pa);
1158 		if (vdev->flowman_info)
1159 			vdev->free_consistent(vdev->priv,
1160 				sizeof(struct fm_info),
1161 				vdev->flowman_info, vdev->flowman_info_pa);
1162 		if (vdev->fw_info)
1163 			vdev->free_consistent(vdev->priv,
1164 				sizeof(struct vnic_devcmd_fw_info),
1165 				vdev->fw_info, vdev->fw_info_pa);
1166 		rte_free(vdev);
1167 	}
1168 }
1169 
1170 struct vnic_dev *vnic_dev_register(struct vnic_dev *vdev,
1171 	void *priv, struct rte_pci_device *pdev, struct vnic_dev_bar *bar,
1172 	unsigned int num_bars)
1173 {
1174 	if (!vdev) {
1175 		char name[RTE_MEMZONE_NAMESIZE];
1176 		snprintf((char *)name, sizeof(name), "%s-vnic",
1177 			  pdev->device.name);
1178 		vdev = (struct vnic_dev *)rte_zmalloc_socket(name,
1179 					sizeof(struct vnic_dev),
1180 					RTE_CACHE_LINE_SIZE,
1181 					pdev->device.numa_node);
1182 		if (!vdev)
1183 			return NULL;
1184 	}
1185 
1186 	vdev->priv = priv;
1187 	vdev->pdev = pdev;
1188 
1189 	if (vnic_dev_discover_res(vdev, bar, num_bars))
1190 		goto err_out;
1191 
1192 	vdev->devcmd = vnic_dev_get_res(vdev, RES_TYPE_DEVCMD, 0);
1193 	if (!vdev->devcmd)
1194 		goto err_out;
1195 
1196 	return vdev;
1197 
1198 err_out:
1199 	vnic_dev_unregister(vdev);
1200 	return NULL;
1201 }
1202 
1203 struct vnic_dev *vnic_vf_rep_register(void *priv, struct vnic_dev *pf_vdev,
1204 	int vf_id)
1205 {
1206 	struct vnic_dev *vdev;
1207 
1208 	vdev = (struct vnic_dev *)rte_zmalloc("enic-vf-rep-vdev",
1209 				sizeof(struct vnic_dev), RTE_CACHE_LINE_SIZE);
1210 	if (!vdev)
1211 		return NULL;
1212 	vdev->priv = priv;
1213 	vdev->pf_vdev = pf_vdev;
1214 	vdev->vf_id = vf_id;
1215 	vdev->alloc_consistent = pf_vdev->alloc_consistent;
1216 	vdev->free_consistent = pf_vdev->free_consistent;
1217 	return vdev;
1218 }
1219 
1220 /*
1221  *  vnic_dev_classifier: Add/Delete classifier entries
1222  *  @vdev: vdev of the device
1223  *  @cmd: CLSF_ADD for Add filter
1224  *        CLSF_DEL for Delete filter
1225  *  @entry: In case of ADD filter, the caller passes the RQ number in this
1226  *          variable.
1227  *          This function stores the filter_id returned by the
1228  *          firmware in the same variable before return;
1229  *
1230  *          In case of DEL filter, the caller passes the RQ number. Return
1231  *          value is irrelevant.
1232  * @data: filter data
1233  * @action: action data
1234  */
1235 int vnic_dev_classifier(struct vnic_dev *vdev, uint8_t cmd, uint16_t *entry,
1236 	struct filter_v2 *data, struct filter_action_v2 *action_v2)
1237 {
1238 	uint64_t a0 = 0, a1 = 0;
1239 	int wait = 1000;
1240 	dma_addr_t tlv_pa;
1241 	int ret = -EINVAL;
1242 	struct filter_tlv *tlv, *tlv_va;
1243 	uint64_t tlv_size;
1244 	uint32_t filter_size, action_size;
1245 	static unsigned int unique_id;
1246 	char z_name[RTE_MEMZONE_NAMESIZE];
1247 	enum vnic_devcmd_cmd dev_cmd;
1248 
1249 	if (cmd == CLSF_ADD) {
1250 		dev_cmd = (data->type >= FILTER_DPDK_1) ?
1251 			  CMD_ADD_ADV_FILTER : CMD_ADD_FILTER;
1252 
1253 		filter_size = vnic_filter_size(data);
1254 		action_size = vnic_action_size(action_v2);
1255 
1256 		tlv_size = filter_size + action_size +
1257 		    2*sizeof(struct filter_tlv);
1258 		snprintf((char *)z_name, sizeof(z_name),
1259 			"vnic_clsf_%u", unique_id++);
1260 		tlv_va = vdev->alloc_consistent(vdev->priv,
1261 			tlv_size, &tlv_pa, (uint8_t *)z_name);
1262 		if (!tlv_va)
1263 			return -ENOMEM;
1264 		tlv = tlv_va;
1265 		a0 = tlv_pa;
1266 		a1 = tlv_size;
1267 		memset(tlv, 0, tlv_size);
1268 		tlv->type = CLSF_TLV_FILTER;
1269 		tlv->length = filter_size;
1270 		memcpy(&tlv->val, (void *)data, filter_size);
1271 
1272 		tlv = (struct filter_tlv *)((char *)tlv +
1273 					 sizeof(struct filter_tlv) +
1274 					 filter_size);
1275 
1276 		tlv->type = CLSF_TLV_ACTION;
1277 		tlv->length = action_size;
1278 		memcpy(&tlv->val, (void *)action_v2, action_size);
1279 		ret = vnic_dev_cmd(vdev, dev_cmd, &a0, &a1, wait);
1280 		*entry = (uint16_t)a0;
1281 		vdev->free_consistent(vdev->priv, tlv_size, tlv_va, tlv_pa);
1282 	} else if (cmd == CLSF_DEL) {
1283 		a0 = *entry;
1284 		ret = vnic_dev_cmd(vdev, CMD_DEL_FILTER, &a0, &a1, wait);
1285 	}
1286 
1287 	return ret;
1288 }
1289 
1290 int vnic_dev_overlay_offload_ctrl(struct vnic_dev *vdev, uint8_t overlay,
1291 				  uint8_t config)
1292 {
1293 	uint64_t a0 = overlay;
1294 	uint64_t a1 = config;
1295 	int wait = 1000;
1296 
1297 	return vnic_dev_cmd(vdev, CMD_OVERLAY_OFFLOAD_CTRL, &a0, &a1, wait);
1298 }
1299 
1300 int vnic_dev_overlay_offload_cfg(struct vnic_dev *vdev, uint8_t overlay,
1301 				 uint16_t vxlan_udp_port_number)
1302 {
1303 	uint64_t a1 = vxlan_udp_port_number;
1304 	uint64_t a0 = overlay;
1305 	int wait = 1000;
1306 
1307 	return vnic_dev_cmd(vdev, CMD_OVERLAY_OFFLOAD_CFG, &a0, &a1, wait);
1308 }
1309 
1310 int vnic_dev_capable_vxlan(struct vnic_dev *vdev)
1311 {
1312 	uint64_t a0 = VIC_FEATURE_VXLAN;
1313 	uint64_t a1 = 0;
1314 	int wait = 1000;
1315 	int ret;
1316 
1317 	ret = vnic_dev_cmd(vdev, CMD_GET_SUPP_FEATURE_VER, &a0, &a1, wait);
1318 	/* 1 if the NIC can do VXLAN for both IPv4 and IPv6 with multiple WQs */
1319 	return ret == 0 &&
1320 		(a1 & (FEATURE_VXLAN_IPV6 | FEATURE_VXLAN_MULTI_WQ)) ==
1321 		(FEATURE_VXLAN_IPV6 | FEATURE_VXLAN_MULTI_WQ);
1322 }
1323 
1324 int vnic_dev_capable_geneve(struct vnic_dev *vdev)
1325 {
1326 	uint64_t a0 = VIC_FEATURE_GENEVE;
1327 	uint64_t a1 = 0;
1328 	int wait = 1000;
1329 	int ret;
1330 
1331 	ret = vnic_dev_cmd(vdev, CMD_GET_SUPP_FEATURE_VER, &a0, &a1, wait);
1332 	return ret == 0 && !!(a1 & FEATURE_GENEVE_OPTIONS);
1333 }
1334 
1335 uint64_t vnic_dev_capable_cq_entry_size(struct vnic_dev *vdev)
1336 {
1337 	uint64_t a0 = CMD_CQ_ENTRY_SIZE_SET;
1338 	uint64_t a1 = 0;
1339 	int wait = 1000;
1340 	int ret;
1341 
1342 	ret = vnic_dev_cmd(vdev, CMD_CAPABILITY, &a0, &a1, wait);
1343 	/* All models support 16B CQ entry by default */
1344 	if (!(ret == 0 && a0 == 0))
1345 		a1 = VNIC_RQ_CQ_ENTRY_SIZE_16_CAPABLE;
1346 	return a1;
1347 }
1348 
1349 int vnic_dev_set_cq_entry_size(struct vnic_dev *vdev, uint32_t rq_idx,
1350 			       uint32_t size_flag)
1351 {
1352 	uint64_t a0 = rq_idx;
1353 	uint64_t a1 = size_flag;
1354 	int wait = 1000;
1355 
1356 	return vnic_dev_cmd(vdev, CMD_CQ_ENTRY_SIZE_SET, &a0, &a1, wait);
1357 }
1358