1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright 2008-2017 Cisco Systems, Inc. All rights reserved. 3 * Copyright 2007 Nuova Systems, Inc. All rights reserved. 4 */ 5 6 #include <rte_memzone.h> 7 #include <rte_memcpy.h> 8 #include <rte_string_fns.h> 9 #include <rte_ether.h> 10 11 #include "vnic_dev.h" 12 #include "vnic_resource.h" 13 #include "vnic_devcmd.h" 14 #include "vnic_nic.h" 15 #include "vnic_stats.h" 16 #include "vnic_flowman.h" 17 18 19 enum vnic_proxy_type { 20 PROXY_NONE, 21 PROXY_BY_BDF, 22 PROXY_BY_INDEX, 23 }; 24 25 struct vnic_res { 26 void __iomem *vaddr; 27 dma_addr_t bus_addr; 28 unsigned int count; 29 }; 30 31 struct vnic_intr_coal_timer_info { 32 uint32_t mul; 33 uint32_t div; 34 uint32_t max_usec; 35 }; 36 37 struct vnic_dev { 38 void *priv; 39 struct rte_pci_device *pdev; 40 struct vnic_res res[RES_TYPE_MAX]; 41 enum vnic_dev_intr_mode intr_mode; 42 struct vnic_devcmd __iomem *devcmd; 43 struct vnic_devcmd_notify *notify; 44 struct vnic_devcmd_notify notify_copy; 45 dma_addr_t notify_pa; 46 uint32_t notify_sz; 47 dma_addr_t linkstatus_pa; 48 struct vnic_stats *stats; 49 dma_addr_t stats_pa; 50 struct vnic_devcmd_fw_info *fw_info; 51 dma_addr_t fw_info_pa; 52 struct fm_info *flowman_info; 53 dma_addr_t flowman_info_pa; 54 enum vnic_proxy_type proxy; 55 uint32_t proxy_index; 56 uint64_t args[VNIC_DEVCMD_NARGS]; 57 int in_reset; 58 struct vnic_intr_coal_timer_info intr_coal_timer_info; 59 void *(*alloc_consistent)(void *priv, size_t size, 60 dma_addr_t *dma_handle, uint8_t *name); 61 void (*free_consistent)(void *priv, 62 size_t size, void *vaddr, 63 dma_addr_t dma_handle); 64 }; 65 66 #define VNIC_MAX_RES_HDR_SIZE \ 67 (sizeof(struct vnic_resource_header) + \ 68 sizeof(struct vnic_resource) * RES_TYPE_MAX) 69 #define VNIC_RES_STRIDE 128 70 71 void *vnic_dev_priv(struct vnic_dev *vdev) 72 { 73 return vdev->priv; 74 } 75 76 void vnic_register_cbacks(struct vnic_dev *vdev, 77 void *(*alloc_consistent)(void *priv, size_t size, 78 dma_addr_t *dma_handle, uint8_t *name), 79 void (*free_consistent)(void *priv, 80 size_t size, void *vaddr, 81 dma_addr_t dma_handle)) 82 { 83 vdev->alloc_consistent = alloc_consistent; 84 vdev->free_consistent = free_consistent; 85 } 86 87 static int vnic_dev_discover_res(struct vnic_dev *vdev, 88 struct vnic_dev_bar *bar, unsigned int num_bars) 89 { 90 struct vnic_resource_header __iomem *rh; 91 struct mgmt_barmap_hdr __iomem *mrh; 92 struct vnic_resource __iomem *r; 93 uint8_t type; 94 95 if (num_bars == 0) 96 return -EINVAL; 97 98 if (bar->len < VNIC_MAX_RES_HDR_SIZE) { 99 pr_err("vNIC BAR0 res hdr length error\n"); 100 return -EINVAL; 101 } 102 103 rh = bar->vaddr; 104 mrh = bar->vaddr; 105 if (!rh) { 106 pr_err("vNIC BAR0 res hdr not mem-mapped\n"); 107 return -EINVAL; 108 } 109 110 /* Check for mgmt vnic in addition to normal vnic */ 111 if ((ioread32(&rh->magic) != VNIC_RES_MAGIC) || 112 (ioread32(&rh->version) != VNIC_RES_VERSION)) { 113 if ((ioread32(&mrh->magic) != MGMTVNIC_MAGIC) || 114 (ioread32(&mrh->version) != MGMTVNIC_VERSION)) { 115 pr_err("vNIC BAR0 res magic/version error " \ 116 "exp (%lx/%lx) or (%lx/%lx), curr (%x/%x)\n", 117 VNIC_RES_MAGIC, VNIC_RES_VERSION, 118 MGMTVNIC_MAGIC, MGMTVNIC_VERSION, 119 ioread32(&rh->magic), ioread32(&rh->version)); 120 return -EINVAL; 121 } 122 } 123 124 if (ioread32(&mrh->magic) == MGMTVNIC_MAGIC) 125 r = (struct vnic_resource __iomem *)(mrh + 1); 126 else 127 r = (struct vnic_resource __iomem *)(rh + 1); 128 129 130 while ((type = ioread8(&r->type)) != RES_TYPE_EOL) { 131 uint8_t bar_num = ioread8(&r->bar); 132 uint32_t bar_offset = ioread32(&r->bar_offset); 133 uint32_t count = ioread32(&r->count); 134 uint32_t len; 135 136 r++; 137 138 if (bar_num >= num_bars) 139 continue; 140 141 if (!bar[bar_num].len || !bar[bar_num].vaddr) 142 continue; 143 144 switch (type) { 145 case RES_TYPE_WQ: 146 case RES_TYPE_RQ: 147 case RES_TYPE_CQ: 148 case RES_TYPE_INTR_CTRL: 149 /* each count is stride bytes long */ 150 len = count * VNIC_RES_STRIDE; 151 if (len + bar_offset > bar[bar_num].len) { 152 pr_err("vNIC BAR0 resource %d " \ 153 "out-of-bounds, offset 0x%x + " \ 154 "size 0x%x > bar len 0x%lx\n", 155 type, bar_offset, 156 len, 157 bar[bar_num].len); 158 return -EINVAL; 159 } 160 break; 161 case RES_TYPE_INTR_PBA_LEGACY: 162 case RES_TYPE_DEVCMD: 163 len = count; 164 break; 165 default: 166 continue; 167 } 168 169 vdev->res[type].count = count; 170 vdev->res[type].vaddr = (char __iomem *)bar[bar_num].vaddr + 171 bar_offset; 172 vdev->res[type].bus_addr = bar[bar_num].bus_addr + bar_offset; 173 } 174 175 return 0; 176 } 177 178 unsigned int vnic_dev_get_res_count(struct vnic_dev *vdev, 179 enum vnic_res_type type) 180 { 181 return vdev->res[type].count; 182 } 183 184 void __iomem *vnic_dev_get_res(struct vnic_dev *vdev, enum vnic_res_type type, 185 unsigned int index) 186 { 187 if (!vdev->res[type].vaddr) 188 return NULL; 189 190 switch (type) { 191 case RES_TYPE_WQ: 192 case RES_TYPE_RQ: 193 case RES_TYPE_CQ: 194 case RES_TYPE_INTR_CTRL: 195 return (char __iomem *)vdev->res[type].vaddr + 196 index * VNIC_RES_STRIDE; 197 default: 198 return (char __iomem *)vdev->res[type].vaddr; 199 } 200 } 201 202 unsigned int vnic_dev_desc_ring_size(struct vnic_dev_ring *ring, 203 unsigned int desc_count, unsigned int desc_size) 204 { 205 /* The base address of the desc rings must be 512 byte aligned. 206 * Descriptor count is aligned to groups of 32 descriptors. A 207 * count of 0 means the maximum 4096 descriptors. Descriptor 208 * size is aligned to 16 bytes. 209 */ 210 211 unsigned int count_align = 32; 212 unsigned int desc_align = 16; 213 214 ring->base_align = 512; 215 216 if (desc_count == 0) 217 desc_count = 4096; 218 219 ring->desc_count = VNIC_ALIGN(desc_count, count_align); 220 221 ring->desc_size = VNIC_ALIGN(desc_size, desc_align); 222 223 ring->size = ring->desc_count * ring->desc_size; 224 ring->size_unaligned = ring->size + ring->base_align; 225 226 return ring->size_unaligned; 227 } 228 229 void vnic_dev_clear_desc_ring(struct vnic_dev_ring *ring) 230 { 231 memset(ring->descs, 0, ring->size); 232 } 233 234 int vnic_dev_alloc_desc_ring(struct vnic_dev *vdev, 235 struct vnic_dev_ring *ring, 236 unsigned int desc_count, unsigned int desc_size, 237 __attribute__((unused)) unsigned int socket_id, 238 char *z_name) 239 { 240 void *alloc_addr; 241 dma_addr_t alloc_pa = 0; 242 243 vnic_dev_desc_ring_size(ring, desc_count, desc_size); 244 alloc_addr = vdev->alloc_consistent(vdev->priv, 245 ring->size_unaligned, 246 &alloc_pa, (uint8_t *)z_name); 247 if (!alloc_addr) { 248 pr_err("Failed to allocate ring (size=%d), aborting\n", 249 (int)ring->size); 250 return -ENOMEM; 251 } 252 ring->descs_unaligned = alloc_addr; 253 if (!alloc_pa) { 254 pr_err("Failed to map allocated ring (size=%d), aborting\n", 255 (int)ring->size); 256 vdev->free_consistent(vdev->priv, 257 ring->size_unaligned, 258 alloc_addr, 259 alloc_pa); 260 return -ENOMEM; 261 } 262 ring->base_addr_unaligned = alloc_pa; 263 264 ring->base_addr = VNIC_ALIGN(ring->base_addr_unaligned, 265 ring->base_align); 266 ring->descs = (uint8_t *)ring->descs_unaligned + 267 (ring->base_addr - ring->base_addr_unaligned); 268 269 vnic_dev_clear_desc_ring(ring); 270 271 ring->desc_avail = ring->desc_count - 1; 272 273 return 0; 274 } 275 276 void vnic_dev_free_desc_ring(__attribute__((unused)) struct vnic_dev *vdev, 277 struct vnic_dev_ring *ring) 278 { 279 if (ring->descs) { 280 vdev->free_consistent(vdev->priv, 281 ring->size_unaligned, 282 ring->descs_unaligned, 283 ring->base_addr_unaligned); 284 ring->descs = NULL; 285 } 286 } 287 288 static int _vnic_dev_cmd(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd, 289 int wait) 290 { 291 struct vnic_devcmd __iomem *devcmd = vdev->devcmd; 292 unsigned int i; 293 int delay; 294 uint32_t status; 295 int err; 296 297 status = ioread32(&devcmd->status); 298 if (status == 0xFFFFFFFF) { 299 /* PCI-e target device is gone */ 300 return -ENODEV; 301 } 302 if (status & STAT_BUSY) { 303 304 pr_err("Busy devcmd %d\n", _CMD_N(cmd)); 305 return -EBUSY; 306 } 307 308 if (_CMD_DIR(cmd) & _CMD_DIR_WRITE) { 309 for (i = 0; i < VNIC_DEVCMD_NARGS; i++) 310 writeq(vdev->args[i], &devcmd->args[i]); 311 rte_wmb(); /* complete all writes initiated till now */ 312 } 313 314 iowrite32(cmd, &devcmd->cmd); 315 316 if ((_CMD_FLAGS(cmd) & _CMD_FLAGS_NOWAIT)) 317 return 0; 318 319 for (delay = 0; delay < wait; delay++) { 320 321 usleep(100); 322 323 status = ioread32(&devcmd->status); 324 if (status == 0xFFFFFFFF) { 325 /* PCI-e target device is gone */ 326 return -ENODEV; 327 } 328 329 if (!(status & STAT_BUSY)) { 330 if (status & STAT_ERROR) { 331 err = -(int)readq(&devcmd->args[0]); 332 if (cmd != CMD_CAPABILITY && 333 cmd != CMD_OVERLAY_OFFLOAD_CTRL && 334 cmd != CMD_GET_SUPP_FEATURE_VER) 335 pr_err("Devcmd %d failed " \ 336 "with error code %d\n", 337 _CMD_N(cmd), err); 338 return err; 339 } 340 341 if (_CMD_DIR(cmd) & _CMD_DIR_READ) { 342 rte_rmb();/* finish all reads */ 343 for (i = 0; i < VNIC_DEVCMD_NARGS; i++) 344 vdev->args[i] = readq(&devcmd->args[i]); 345 } 346 347 return 0; 348 } 349 } 350 351 pr_err("Timedout devcmd %d\n", _CMD_N(cmd)); 352 return -ETIMEDOUT; 353 } 354 355 static int vnic_dev_cmd_proxy(struct vnic_dev *vdev, 356 enum vnic_devcmd_cmd proxy_cmd, enum vnic_devcmd_cmd cmd, 357 uint64_t *args, int nargs, int wait) 358 { 359 uint32_t status; 360 int err; 361 362 /* 363 * Proxy command consumes 2 arguments. One for proxy index, 364 * the other is for command to be proxied 365 */ 366 if (nargs > VNIC_DEVCMD_NARGS - 2) { 367 pr_err("number of args %d exceeds the maximum\n", nargs); 368 return -EINVAL; 369 } 370 memset(vdev->args, 0, sizeof(vdev->args)); 371 372 vdev->args[0] = vdev->proxy_index; 373 vdev->args[1] = cmd; 374 memcpy(&vdev->args[2], args, nargs * sizeof(args[0])); 375 376 err = _vnic_dev_cmd(vdev, proxy_cmd, wait); 377 if (err) 378 return err; 379 380 status = (uint32_t)vdev->args[0]; 381 if (status & STAT_ERROR) { 382 err = (int)vdev->args[1]; 383 if (err != ERR_ECMDUNKNOWN || 384 cmd != CMD_CAPABILITY) 385 pr_err("Error %d proxy devcmd %d\n", err, _CMD_N(cmd)); 386 return err; 387 } 388 389 memcpy(args, &vdev->args[1], nargs * sizeof(args[0])); 390 391 return 0; 392 } 393 394 static int vnic_dev_cmd_no_proxy(struct vnic_dev *vdev, 395 enum vnic_devcmd_cmd cmd, uint64_t *args, int nargs, int wait) 396 { 397 int err; 398 399 if (nargs > VNIC_DEVCMD_NARGS) { 400 pr_err("number of args %d exceeds the maximum\n", nargs); 401 return -EINVAL; 402 } 403 memset(vdev->args, 0, sizeof(vdev->args)); 404 memcpy(vdev->args, args, nargs * sizeof(args[0])); 405 406 err = _vnic_dev_cmd(vdev, cmd, wait); 407 408 memcpy(args, vdev->args, nargs * sizeof(args[0])); 409 410 return err; 411 } 412 413 int vnic_dev_cmd(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd, 414 uint64_t *a0, uint64_t *a1, int wait) 415 { 416 uint64_t args[2]; 417 int err; 418 419 args[0] = *a0; 420 args[1] = *a1; 421 memset(vdev->args, 0, sizeof(vdev->args)); 422 423 switch (vdev->proxy) { 424 case PROXY_BY_INDEX: 425 err = vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_INDEX, cmd, 426 args, ARRAY_SIZE(args), wait); 427 break; 428 case PROXY_BY_BDF: 429 err = vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_BDF, cmd, 430 args, ARRAY_SIZE(args), wait); 431 break; 432 case PROXY_NONE: 433 default: 434 err = vnic_dev_cmd_no_proxy(vdev, cmd, args, 2, wait); 435 break; 436 } 437 438 if (err == 0) { 439 *a0 = args[0]; 440 *a1 = args[1]; 441 } 442 443 return err; 444 } 445 446 int vnic_dev_cmd_args(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd, 447 uint64_t *args, int nargs, int wait) 448 { 449 switch (vdev->proxy) { 450 case PROXY_BY_INDEX: 451 return vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_INDEX, cmd, 452 args, nargs, wait); 453 case PROXY_BY_BDF: 454 return vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_BDF, cmd, 455 args, nargs, wait); 456 case PROXY_NONE: 457 default: 458 return vnic_dev_cmd_no_proxy(vdev, cmd, args, nargs, wait); 459 } 460 } 461 462 int vnic_dev_fw_info(struct vnic_dev *vdev, 463 struct vnic_devcmd_fw_info **fw_info) 464 { 465 char name[RTE_MEMZONE_NAMESIZE]; 466 uint64_t a0, a1 = 0; 467 int wait = 1000; 468 int err = 0; 469 static uint32_t instance; 470 471 if (!vdev->fw_info) { 472 snprintf((char *)name, sizeof(name), "vnic_fw_info-%u", 473 instance++); 474 vdev->fw_info = vdev->alloc_consistent(vdev->priv, 475 sizeof(struct vnic_devcmd_fw_info), 476 &vdev->fw_info_pa, (uint8_t *)name); 477 if (!vdev->fw_info) 478 return -ENOMEM; 479 a0 = vdev->fw_info_pa; 480 a1 = sizeof(struct vnic_devcmd_fw_info); 481 err = vnic_dev_cmd(vdev, CMD_MCPU_FW_INFO, 482 &a0, &a1, wait); 483 } 484 *fw_info = vdev->fw_info; 485 return err; 486 } 487 488 static int vnic_dev_advanced_filters_cap(struct vnic_dev *vdev, uint64_t *args, 489 int nargs) 490 { 491 memset(args, 0, nargs * sizeof(*args)); 492 args[0] = CMD_ADD_ADV_FILTER; 493 args[1] = FILTER_CAP_MODE_V1_FLAG; 494 return vnic_dev_cmd_args(vdev, CMD_CAPABILITY, args, nargs, 1000); 495 } 496 497 int vnic_dev_capable_adv_filters(struct vnic_dev *vdev) 498 { 499 uint64_t a0 = CMD_ADD_ADV_FILTER, a1 = 0; 500 int wait = 1000; 501 int err; 502 503 err = vnic_dev_cmd(vdev, CMD_CAPABILITY, &a0, &a1, wait); 504 if (err) 505 return 0; 506 return (a1 >= (uint32_t)FILTER_DPDK_1); 507 } 508 509 int vnic_dev_flowman_cmd(struct vnic_dev *vdev, uint64_t *args, int nargs) 510 { 511 int wait = 1000; 512 513 return vnic_dev_cmd_args(vdev, CMD_FLOW_MANAGER_OP, args, nargs, wait); 514 } 515 516 static int vnic_dev_flowman_enable(struct vnic_dev *vdev, uint32_t *mode, 517 uint8_t *filter_actions) 518 { 519 char name[RTE_MEMZONE_NAMESIZE]; 520 uint64_t args[3]; 521 uint64_t ops; 522 static uint32_t instance; 523 524 /* flowman devcmd available? */ 525 if (!vnic_dev_capable(vdev, CMD_FLOW_MANAGER_OP)) 526 return 0; 527 /* Have the version we are using? */ 528 args[0] = FM_API_VERSION_QUERY; 529 if (vnic_dev_flowman_cmd(vdev, args, 1)) 530 return 0; 531 if ((args[0] & (1ULL << FM_VERSION)) == 0) 532 return 0; 533 /* Select the version */ 534 args[0] = FM_API_VERSION_SELECT; 535 args[1] = FM_VERSION; 536 if (vnic_dev_flowman_cmd(vdev, args, 2)) 537 return 0; 538 /* Can we get fm_info? */ 539 if (!vdev->flowman_info) { 540 snprintf((char *)name, sizeof(name), "vnic_fm_info-%u", 541 instance++); 542 vdev->flowman_info = vdev->alloc_consistent(vdev->priv, 543 sizeof(struct fm_info), 544 &vdev->flowman_info_pa, (uint8_t *)name); 545 if (!vdev->flowman_info) 546 return 0; 547 } 548 args[0] = FM_INFO_QUERY; 549 args[1] = vdev->flowman_info_pa; 550 args[2] = sizeof(struct fm_info); 551 if (vnic_dev_flowman_cmd(vdev, args, 3)) 552 return 0; 553 /* Have required operations? */ 554 ops = (1ULL << FMOP_END) | 555 (1ULL << FMOP_DROP) | 556 (1ULL << FMOP_RQ_STEER) | 557 (1ULL << FMOP_EXACT_MATCH) | 558 (1ULL << FMOP_MARK) | 559 (1ULL << FMOP_TAG) | 560 (1ULL << FMOP_EG_HAIRPIN) | 561 (1ULL << FMOP_ENCAP) | 562 (1ULL << FMOP_DECAP_NOSTRIP); 563 if ((vdev->flowman_info->fm_op_mask & ops) != ops) 564 return 0; 565 /* Good to use flowman now */ 566 *mode = FILTER_FLOWMAN; 567 *filter_actions = FILTER_ACTION_RQ_STEERING_FLAG | 568 FILTER_ACTION_FILTER_ID_FLAG | 569 FILTER_ACTION_COUNTER_FLAG | 570 FILTER_ACTION_DROP_FLAG; 571 return 1; 572 } 573 574 /* Determine the "best" filtering mode VIC is capaible of. Returns one of 4 575 * value or 0 on error: 576 * FILTER_FLOWMAN- flowman api capable 577 * FILTER_DPDK_1- advanced filters availabile 578 * FILTER_USNIC_IP_FLAG - advanced filters but with the restriction that 579 * the IP layer must explicitly specified. I.e. cannot have a UDP 580 * filter that matches both IPv4 and IPv6. 581 * FILTER_IPV4_5TUPLE - fallback if either of the 2 above aren't available. 582 * all other filter types are not available. 583 * Retrun true in filter_tags if supported 584 */ 585 int vnic_dev_capable_filter_mode(struct vnic_dev *vdev, uint32_t *mode, 586 uint8_t *filter_actions) 587 { 588 uint64_t args[4]; 589 int err; 590 uint32_t max_level = 0; 591 592 /* If flowman is available, use it as it is the most capable API */ 593 if (vnic_dev_flowman_enable(vdev, mode, filter_actions)) 594 return 0; 595 596 err = vnic_dev_advanced_filters_cap(vdev, args, 4); 597 598 /* determine supported filter actions */ 599 *filter_actions = FILTER_ACTION_RQ_STEERING_FLAG; /* always available */ 600 if (args[2] == FILTER_CAP_MODE_V1) 601 *filter_actions = args[3]; 602 603 if (err || ((args[0] == 1) && (args[1] == 0))) { 604 /* Adv filter Command not supported or adv filters available but 605 * not enabled. Try the normal filter capability command. 606 */ 607 args[0] = CMD_ADD_FILTER; 608 args[1] = 0; 609 err = vnic_dev_cmd_args(vdev, CMD_CAPABILITY, args, 2, 1000); 610 if (err) 611 return err; 612 max_level = args[1]; 613 goto parse_max_level; 614 } else if (args[2] == FILTER_CAP_MODE_V1) { 615 /* parse filter capability mask in args[1] */ 616 if (args[1] & FILTER_DPDK_1_FLAG) 617 *mode = FILTER_DPDK_1; 618 else if (args[1] & FILTER_USNIC_IP_FLAG) 619 *mode = FILTER_USNIC_IP; 620 else if (args[1] & FILTER_IPV4_5TUPLE_FLAG) 621 *mode = FILTER_IPV4_5TUPLE; 622 return 0; 623 } 624 max_level = args[1]; 625 parse_max_level: 626 if (max_level >= (uint32_t)FILTER_USNIC_IP) 627 *mode = FILTER_USNIC_IP; 628 else 629 *mode = FILTER_IPV4_5TUPLE; 630 return 0; 631 } 632 633 void vnic_dev_capable_udp_rss_weak(struct vnic_dev *vdev, bool *cfg_chk, 634 bool *weak) 635 { 636 uint64_t a0 = CMD_NIC_CFG, a1 = 0; 637 int wait = 1000; 638 int err; 639 640 *cfg_chk = false; 641 *weak = false; 642 err = vnic_dev_cmd(vdev, CMD_CAPABILITY, &a0, &a1, wait); 643 if (err == 0 && a0 != 0 && a1 != 0) { 644 *cfg_chk = true; 645 *weak = !!((a1 >> 32) & CMD_NIC_CFG_CAPF_UDP_WEAK); 646 } 647 } 648 649 int vnic_dev_capable(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd) 650 { 651 uint64_t a0 = (uint32_t)cmd, a1 = 0; 652 int wait = 1000; 653 int err; 654 655 err = vnic_dev_cmd(vdev, CMD_CAPABILITY, &a0, &a1, wait); 656 657 return !(err || a0); 658 } 659 660 int vnic_dev_spec(struct vnic_dev *vdev, unsigned int offset, size_t size, 661 void *value) 662 { 663 uint64_t a0, a1; 664 int wait = 1000; 665 int err; 666 667 a0 = offset; 668 a1 = size; 669 670 err = vnic_dev_cmd(vdev, CMD_DEV_SPEC, &a0, &a1, wait); 671 672 switch (size) { 673 case 1: 674 *(uint8_t *)value = (uint8_t)a0; 675 break; 676 case 2: 677 *(uint16_t *)value = (uint16_t)a0; 678 break; 679 case 4: 680 *(uint32_t *)value = (uint32_t)a0; 681 break; 682 case 8: 683 *(uint64_t *)value = a0; 684 break; 685 default: 686 BUG(); 687 break; 688 } 689 690 return err; 691 } 692 693 int vnic_dev_stats_clear(struct vnic_dev *vdev) 694 { 695 uint64_t a0 = 0, a1 = 0; 696 int wait = 1000; 697 698 return vnic_dev_cmd(vdev, CMD_STATS_CLEAR, &a0, &a1, wait); 699 } 700 701 int vnic_dev_stats_dump(struct vnic_dev *vdev, struct vnic_stats **stats) 702 { 703 uint64_t a0, a1; 704 int wait = 1000; 705 706 if (!vdev->stats) 707 return -ENOMEM; 708 709 *stats = vdev->stats; 710 a0 = vdev->stats_pa; 711 a1 = sizeof(struct vnic_stats); 712 713 return vnic_dev_cmd(vdev, CMD_STATS_DUMP, &a0, &a1, wait); 714 } 715 716 int vnic_dev_close(struct vnic_dev *vdev) 717 { 718 uint64_t a0 = 0, a1 = 0; 719 int wait = 1000; 720 721 return vnic_dev_cmd(vdev, CMD_CLOSE, &a0, &a1, wait); 722 } 723 724 int vnic_dev_enable_wait(struct vnic_dev *vdev) 725 { 726 uint64_t a0 = 0, a1 = 0; 727 int wait = 1000; 728 729 if (vnic_dev_capable(vdev, CMD_ENABLE_WAIT)) 730 return vnic_dev_cmd(vdev, CMD_ENABLE_WAIT, &a0, &a1, wait); 731 else 732 return vnic_dev_cmd(vdev, CMD_ENABLE, &a0, &a1, wait); 733 } 734 735 int vnic_dev_disable(struct vnic_dev *vdev) 736 { 737 uint64_t a0 = 0, a1 = 0; 738 int wait = 1000; 739 740 return vnic_dev_cmd(vdev, CMD_DISABLE, &a0, &a1, wait); 741 } 742 743 int vnic_dev_open(struct vnic_dev *vdev, int arg) 744 { 745 uint64_t a0 = (uint32_t)arg, a1 = 0; 746 int wait = 1000; 747 748 return vnic_dev_cmd(vdev, CMD_OPEN, &a0, &a1, wait); 749 } 750 751 int vnic_dev_open_done(struct vnic_dev *vdev, int *done) 752 { 753 uint64_t a0 = 0, a1 = 0; 754 int wait = 1000; 755 int err; 756 757 *done = 0; 758 759 err = vnic_dev_cmd(vdev, CMD_OPEN_STATUS, &a0, &a1, wait); 760 if (err) 761 return err; 762 763 *done = (a0 == 0); 764 765 return 0; 766 } 767 768 int vnic_dev_get_mac_addr(struct vnic_dev *vdev, uint8_t *mac_addr) 769 { 770 uint64_t a0 = 0, a1 = 0; 771 int wait = 1000; 772 int err, i; 773 774 for (i = 0; i < RTE_ETHER_ADDR_LEN; i++) 775 mac_addr[i] = 0; 776 777 err = vnic_dev_cmd(vdev, CMD_GET_MAC_ADDR, &a0, &a1, wait); 778 if (err) 779 return err; 780 781 for (i = 0; i < RTE_ETHER_ADDR_LEN; i++) 782 mac_addr[i] = ((uint8_t *)&a0)[i]; 783 784 return 0; 785 } 786 787 int vnic_dev_packet_filter(struct vnic_dev *vdev, int directed, int multicast, 788 int broadcast, int promisc, int allmulti) 789 { 790 uint64_t a0, a1 = 0; 791 int wait = 1000; 792 int err; 793 794 a0 = (directed ? CMD_PFILTER_DIRECTED : 0) | 795 (multicast ? CMD_PFILTER_MULTICAST : 0) | 796 (broadcast ? CMD_PFILTER_BROADCAST : 0) | 797 (promisc ? CMD_PFILTER_PROMISCUOUS : 0) | 798 (allmulti ? CMD_PFILTER_ALL_MULTICAST : 0); 799 800 err = vnic_dev_cmd(vdev, CMD_PACKET_FILTER, &a0, &a1, wait); 801 if (err) 802 pr_err("Can't set packet filter\n"); 803 804 return err; 805 } 806 807 int vnic_dev_add_addr(struct vnic_dev *vdev, uint8_t *addr) 808 { 809 uint64_t a0 = 0, a1 = 0; 810 int wait = 1000; 811 int err; 812 int i; 813 814 for (i = 0; i < RTE_ETHER_ADDR_LEN; i++) 815 ((uint8_t *)&a0)[i] = addr[i]; 816 817 err = vnic_dev_cmd(vdev, CMD_ADDR_ADD, &a0, &a1, wait); 818 if (err) 819 pr_err("Can't add addr [%02x:%02x:%02x:%02x:%02x:%02x], %d\n", 820 addr[0], addr[1], addr[2], addr[3], addr[4], addr[5], 821 err); 822 823 return err; 824 } 825 826 int vnic_dev_del_addr(struct vnic_dev *vdev, uint8_t *addr) 827 { 828 uint64_t a0 = 0, a1 = 0; 829 int wait = 1000; 830 int err; 831 int i; 832 833 for (i = 0; i < RTE_ETHER_ADDR_LEN; i++) 834 ((uint8_t *)&a0)[i] = addr[i]; 835 836 err = vnic_dev_cmd(vdev, CMD_ADDR_DEL, &a0, &a1, wait); 837 if (err) 838 pr_err("Can't del addr [%02x:%02x:%02x:%02x:%02x:%02x], %d\n", 839 addr[0], addr[1], addr[2], addr[3], addr[4], addr[5], 840 err); 841 842 return err; 843 } 844 845 int vnic_dev_set_ig_vlan_rewrite_mode(struct vnic_dev *vdev, 846 uint8_t ig_vlan_rewrite_mode) 847 { 848 uint64_t a0 = ig_vlan_rewrite_mode, a1 = 0; 849 int wait = 1000; 850 851 if (vnic_dev_capable(vdev, CMD_IG_VLAN_REWRITE_MODE)) 852 return vnic_dev_cmd(vdev, CMD_IG_VLAN_REWRITE_MODE, 853 &a0, &a1, wait); 854 else 855 return 0; 856 } 857 858 void vnic_dev_set_reset_flag(struct vnic_dev *vdev, int state) 859 { 860 vdev->in_reset = state; 861 } 862 863 static inline int vnic_dev_in_reset(struct vnic_dev *vdev) 864 { 865 return vdev->in_reset; 866 } 867 868 int vnic_dev_notify_setcmd(struct vnic_dev *vdev, 869 void *notify_addr, dma_addr_t notify_pa, uint16_t intr) 870 { 871 uint64_t a0, a1; 872 int wait = 1000; 873 int r; 874 875 memset(notify_addr, 0, sizeof(struct vnic_devcmd_notify)); 876 if (!vnic_dev_in_reset(vdev)) { 877 vdev->notify = notify_addr; 878 vdev->notify_pa = notify_pa; 879 } 880 881 a0 = (uint64_t)notify_pa; 882 a1 = ((uint64_t)intr << 32) & 0x0000ffff00000000ULL; 883 a1 += sizeof(struct vnic_devcmd_notify); 884 885 r = vnic_dev_cmd(vdev, CMD_NOTIFY, &a0, &a1, wait); 886 if (!vnic_dev_in_reset(vdev)) 887 vdev->notify_sz = (r == 0) ? (uint32_t)a1 : 0; 888 889 return r; 890 } 891 892 int vnic_dev_notify_set(struct vnic_dev *vdev, uint16_t intr) 893 { 894 void *notify_addr = NULL; 895 dma_addr_t notify_pa = 0; 896 char name[RTE_MEMZONE_NAMESIZE]; 897 static uint32_t instance; 898 899 if (vdev->notify || vdev->notify_pa) { 900 return vnic_dev_notify_setcmd(vdev, vdev->notify, 901 vdev->notify_pa, intr); 902 } 903 if (!vnic_dev_in_reset(vdev)) { 904 snprintf((char *)name, sizeof(name), 905 "vnic_notify-%u", instance++); 906 notify_addr = vdev->alloc_consistent(vdev->priv, 907 sizeof(struct vnic_devcmd_notify), 908 ¬ify_pa, (uint8_t *)name); 909 if (!notify_addr) 910 return -ENOMEM; 911 } 912 913 return vnic_dev_notify_setcmd(vdev, notify_addr, notify_pa, intr); 914 } 915 916 int vnic_dev_notify_unsetcmd(struct vnic_dev *vdev) 917 { 918 uint64_t a0, a1; 919 int wait = 1000; 920 int err; 921 922 a0 = 0; /* paddr = 0 to unset notify buffer */ 923 a1 = 0x0000ffff00000000ULL; /* intr num = -1 to unreg for intr */ 924 a1 += sizeof(struct vnic_devcmd_notify); 925 926 err = vnic_dev_cmd(vdev, CMD_NOTIFY, &a0, &a1, wait); 927 if (!vnic_dev_in_reset(vdev)) { 928 vdev->notify = NULL; 929 vdev->notify_pa = 0; 930 vdev->notify_sz = 0; 931 } 932 933 return err; 934 } 935 936 int vnic_dev_notify_unset(struct vnic_dev *vdev) 937 { 938 if (vdev->notify && !vnic_dev_in_reset(vdev)) { 939 vdev->free_consistent(vdev->priv, 940 sizeof(struct vnic_devcmd_notify), 941 vdev->notify, 942 vdev->notify_pa); 943 } 944 945 return vnic_dev_notify_unsetcmd(vdev); 946 } 947 948 static int vnic_dev_notify_ready(struct vnic_dev *vdev) 949 { 950 uint32_t *words; 951 unsigned int nwords = vdev->notify_sz / 4; 952 unsigned int i; 953 uint32_t csum; 954 955 if (!vdev->notify || !vdev->notify_sz) 956 return 0; 957 958 do { 959 csum = 0; 960 rte_memcpy(&vdev->notify_copy, vdev->notify, vdev->notify_sz); 961 words = (uint32_t *)&vdev->notify_copy; 962 for (i = 1; i < nwords; i++) 963 csum += words[i]; 964 } while (csum != words[0]); 965 966 return 1; 967 } 968 969 int vnic_dev_init(struct vnic_dev *vdev, int arg) 970 { 971 uint64_t a0 = (uint32_t)arg, a1 = 0; 972 int wait = 1000; 973 int r = 0; 974 975 if (vnic_dev_capable(vdev, CMD_INIT)) 976 r = vnic_dev_cmd(vdev, CMD_INIT, &a0, &a1, wait); 977 else { 978 vnic_dev_cmd(vdev, CMD_INIT_v1, &a0, &a1, wait); 979 if (a0 & CMD_INITF_DEFAULT_MAC) { 980 /* Emulate these for old CMD_INIT_v1 which 981 * didn't pass a0 so no CMD_INITF_*. 982 */ 983 vnic_dev_cmd(vdev, CMD_GET_MAC_ADDR, &a0, &a1, wait); 984 vnic_dev_cmd(vdev, CMD_ADDR_ADD, &a0, &a1, wait); 985 } 986 } 987 return r; 988 } 989 990 void vnic_dev_intr_coal_timer_info_default(struct vnic_dev *vdev) 991 { 992 /* Default: hardware intr coal timer is in units of 1.5 usecs */ 993 vdev->intr_coal_timer_info.mul = 2; 994 vdev->intr_coal_timer_info.div = 3; 995 vdev->intr_coal_timer_info.max_usec = 996 vnic_dev_intr_coal_timer_hw_to_usec(vdev, 0xffff); 997 } 998 999 int vnic_dev_link_status(struct vnic_dev *vdev) 1000 { 1001 if (!vnic_dev_notify_ready(vdev)) 1002 return 0; 1003 1004 return vdev->notify_copy.link_state; 1005 } 1006 1007 uint32_t vnic_dev_port_speed(struct vnic_dev *vdev) 1008 { 1009 if (!vnic_dev_notify_ready(vdev)) 1010 return 0; 1011 1012 return vdev->notify_copy.port_speed; 1013 } 1014 1015 uint32_t vnic_dev_intr_coal_timer_usec_to_hw(struct vnic_dev *vdev, 1016 uint32_t usec) 1017 { 1018 return (usec * vdev->intr_coal_timer_info.mul) / 1019 vdev->intr_coal_timer_info.div; 1020 } 1021 1022 uint32_t vnic_dev_intr_coal_timer_hw_to_usec(struct vnic_dev *vdev, 1023 uint32_t hw_cycles) 1024 { 1025 return (hw_cycles * vdev->intr_coal_timer_info.div) / 1026 vdev->intr_coal_timer_info.mul; 1027 } 1028 1029 uint32_t vnic_dev_get_intr_coal_timer_max(struct vnic_dev *vdev) 1030 { 1031 return vdev->intr_coal_timer_info.max_usec; 1032 } 1033 1034 int vnic_dev_alloc_stats_mem(struct vnic_dev *vdev) 1035 { 1036 char name[RTE_MEMZONE_NAMESIZE]; 1037 static uint32_t instance; 1038 1039 snprintf((char *)name, sizeof(name), "vnic_stats-%u", instance++); 1040 vdev->stats = vdev->alloc_consistent(vdev->priv, 1041 sizeof(struct vnic_stats), 1042 &vdev->stats_pa, (uint8_t *)name); 1043 return vdev->stats == NULL ? -ENOMEM : 0; 1044 } 1045 1046 void vnic_dev_unregister(struct vnic_dev *vdev) 1047 { 1048 if (vdev) { 1049 if (vdev->notify) 1050 vdev->free_consistent(vdev->priv, 1051 sizeof(struct vnic_devcmd_notify), 1052 vdev->notify, 1053 vdev->notify_pa); 1054 if (vdev->stats) 1055 vdev->free_consistent(vdev->priv, 1056 sizeof(struct vnic_stats), 1057 vdev->stats, vdev->stats_pa); 1058 if (vdev->flowman_info) 1059 vdev->free_consistent(vdev->priv, 1060 sizeof(struct fm_info), 1061 vdev->flowman_info, vdev->flowman_info_pa); 1062 if (vdev->fw_info) 1063 vdev->free_consistent(vdev->priv, 1064 sizeof(struct vnic_devcmd_fw_info), 1065 vdev->fw_info, vdev->fw_info_pa); 1066 rte_free(vdev); 1067 } 1068 } 1069 1070 struct vnic_dev *vnic_dev_register(struct vnic_dev *vdev, 1071 void *priv, struct rte_pci_device *pdev, struct vnic_dev_bar *bar, 1072 unsigned int num_bars) 1073 { 1074 if (!vdev) { 1075 char name[RTE_MEMZONE_NAMESIZE]; 1076 snprintf((char *)name, sizeof(name), "%s-vnic", 1077 pdev->device.name); 1078 vdev = (struct vnic_dev *)rte_zmalloc_socket(name, 1079 sizeof(struct vnic_dev), 1080 RTE_CACHE_LINE_SIZE, 1081 pdev->device.numa_node); 1082 if (!vdev) 1083 return NULL; 1084 } 1085 1086 vdev->priv = priv; 1087 vdev->pdev = pdev; 1088 1089 if (vnic_dev_discover_res(vdev, bar, num_bars)) 1090 goto err_out; 1091 1092 vdev->devcmd = vnic_dev_get_res(vdev, RES_TYPE_DEVCMD, 0); 1093 if (!vdev->devcmd) 1094 goto err_out; 1095 1096 return vdev; 1097 1098 err_out: 1099 vnic_dev_unregister(vdev); 1100 return NULL; 1101 } 1102 1103 /* 1104 * vnic_dev_classifier: Add/Delete classifier entries 1105 * @vdev: vdev of the device 1106 * @cmd: CLSF_ADD for Add filter 1107 * CLSF_DEL for Delete filter 1108 * @entry: In case of ADD filter, the caller passes the RQ number in this 1109 * variable. 1110 * This function stores the filter_id returned by the 1111 * firmware in the same variable before return; 1112 * 1113 * In case of DEL filter, the caller passes the RQ number. Return 1114 * value is irrelevant. 1115 * @data: filter data 1116 * @action: action data 1117 */ 1118 int vnic_dev_classifier(struct vnic_dev *vdev, uint8_t cmd, uint16_t *entry, 1119 struct filter_v2 *data, struct filter_action_v2 *action_v2) 1120 { 1121 uint64_t a0 = 0, a1 = 0; 1122 int wait = 1000; 1123 dma_addr_t tlv_pa; 1124 int ret = -EINVAL; 1125 struct filter_tlv *tlv, *tlv_va; 1126 uint64_t tlv_size; 1127 uint32_t filter_size, action_size; 1128 static unsigned int unique_id; 1129 char z_name[RTE_MEMZONE_NAMESIZE]; 1130 enum vnic_devcmd_cmd dev_cmd; 1131 1132 if (cmd == CLSF_ADD) { 1133 dev_cmd = (data->type >= FILTER_DPDK_1) ? 1134 CMD_ADD_ADV_FILTER : CMD_ADD_FILTER; 1135 1136 filter_size = vnic_filter_size(data); 1137 action_size = vnic_action_size(action_v2); 1138 1139 tlv_size = filter_size + action_size + 1140 2*sizeof(struct filter_tlv); 1141 snprintf((char *)z_name, sizeof(z_name), 1142 "vnic_clsf_%u", unique_id++); 1143 tlv_va = vdev->alloc_consistent(vdev->priv, 1144 tlv_size, &tlv_pa, (uint8_t *)z_name); 1145 if (!tlv_va) 1146 return -ENOMEM; 1147 tlv = tlv_va; 1148 a0 = tlv_pa; 1149 a1 = tlv_size; 1150 memset(tlv, 0, tlv_size); 1151 tlv->type = CLSF_TLV_FILTER; 1152 tlv->length = filter_size; 1153 memcpy(&tlv->val, (void *)data, filter_size); 1154 1155 tlv = (struct filter_tlv *)((char *)tlv + 1156 sizeof(struct filter_tlv) + 1157 filter_size); 1158 1159 tlv->type = CLSF_TLV_ACTION; 1160 tlv->length = action_size; 1161 memcpy(&tlv->val, (void *)action_v2, action_size); 1162 ret = vnic_dev_cmd(vdev, dev_cmd, &a0, &a1, wait); 1163 *entry = (uint16_t)a0; 1164 vdev->free_consistent(vdev->priv, tlv_size, tlv_va, tlv_pa); 1165 } else if (cmd == CLSF_DEL) { 1166 a0 = *entry; 1167 ret = vnic_dev_cmd(vdev, CMD_DEL_FILTER, &a0, &a1, wait); 1168 } 1169 1170 return ret; 1171 } 1172 1173 int vnic_dev_overlay_offload_ctrl(struct vnic_dev *vdev, uint8_t overlay, 1174 uint8_t config) 1175 { 1176 uint64_t a0 = overlay; 1177 uint64_t a1 = config; 1178 int wait = 1000; 1179 1180 return vnic_dev_cmd(vdev, CMD_OVERLAY_OFFLOAD_CTRL, &a0, &a1, wait); 1181 } 1182 1183 int vnic_dev_overlay_offload_cfg(struct vnic_dev *vdev, uint8_t overlay, 1184 uint16_t vxlan_udp_port_number) 1185 { 1186 uint64_t a1 = vxlan_udp_port_number; 1187 uint64_t a0 = overlay; 1188 int wait = 1000; 1189 1190 return vnic_dev_cmd(vdev, CMD_OVERLAY_OFFLOAD_CFG, &a0, &a1, wait); 1191 } 1192 1193 int vnic_dev_capable_vxlan(struct vnic_dev *vdev) 1194 { 1195 uint64_t a0 = VIC_FEATURE_VXLAN; 1196 uint64_t a1 = 0; 1197 int wait = 1000; 1198 int ret; 1199 1200 ret = vnic_dev_cmd(vdev, CMD_GET_SUPP_FEATURE_VER, &a0, &a1, wait); 1201 /* 1 if the NIC can do VXLAN for both IPv4 and IPv6 with multiple WQs */ 1202 return ret == 0 && 1203 (a1 & (FEATURE_VXLAN_IPV6 | FEATURE_VXLAN_MULTI_WQ)) == 1204 (FEATURE_VXLAN_IPV6 | FEATURE_VXLAN_MULTI_WQ); 1205 } 1206 1207 int vnic_dev_capable_geneve(struct vnic_dev *vdev) 1208 { 1209 uint64_t a0 = VIC_FEATURE_GENEVE; 1210 uint64_t a1 = 0; 1211 int wait = 1000; 1212 int ret; 1213 1214 ret = vnic_dev_cmd(vdev, CMD_GET_SUPP_FEATURE_VER, &a0, &a1, wait); 1215 return ret == 0 && (a1 & FEATURE_GENEVE_OPTIONS); 1216 } 1217