xref: /dpdk/drivers/net/enic/base/vnic_dev.c (revision 081e42dab11d1add2d038fdf2bd4c86b20043d08)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2008-2017 Cisco Systems, Inc.  All rights reserved.
3  * Copyright 2007 Nuova Systems, Inc.  All rights reserved.
4  */
5 
6 #include <rte_memzone.h>
7 #include <rte_memcpy.h>
8 #include <rte_string_fns.h>
9 #include <rte_ether.h>
10 
11 #include "vnic_dev.h"
12 #include "vnic_resource.h"
13 #include "vnic_devcmd.h"
14 #include "vnic_nic.h"
15 #include "vnic_stats.h"
16 #include "vnic_flowman.h"
17 
18 
19 enum vnic_proxy_type {
20 	PROXY_NONE,
21 	PROXY_BY_BDF,
22 	PROXY_BY_INDEX,
23 };
24 
25 struct vnic_res {
26 	void __iomem *vaddr;
27 	dma_addr_t bus_addr;
28 	unsigned int count;
29 };
30 
31 struct vnic_intr_coal_timer_info {
32 	uint32_t mul;
33 	uint32_t div;
34 	uint32_t max_usec;
35 };
36 
37 struct vnic_dev {
38 	void *priv;
39 	struct rte_pci_device *pdev;
40 	struct vnic_res res[RES_TYPE_MAX];
41 	enum vnic_dev_intr_mode intr_mode;
42 	struct vnic_devcmd __iomem *devcmd;
43 	struct vnic_devcmd_notify *notify;
44 	struct vnic_devcmd_notify notify_copy;
45 	dma_addr_t notify_pa;
46 	uint32_t notify_sz;
47 	dma_addr_t linkstatus_pa;
48 	struct vnic_stats *stats;
49 	dma_addr_t stats_pa;
50 	struct vnic_devcmd_fw_info *fw_info;
51 	dma_addr_t fw_info_pa;
52 	struct fm_info *flowman_info;
53 	dma_addr_t flowman_info_pa;
54 	enum vnic_proxy_type proxy;
55 	uint32_t proxy_index;
56 	uint64_t args[VNIC_DEVCMD_NARGS];
57 	int in_reset;
58 	struct vnic_intr_coal_timer_info intr_coal_timer_info;
59 	void *(*alloc_consistent)(void *priv, size_t size,
60 		dma_addr_t *dma_handle, uint8_t *name);
61 	void (*free_consistent)(void *priv,
62 		size_t size, void *vaddr,
63 		dma_addr_t dma_handle);
64 	/*
65 	 * Used to serialize devcmd access, currently from PF and its
66 	 * VF representors. When there are no representors, lock is
67 	 * not used.
68 	 */
69 	int locked;
70 	void (*lock)(void *priv);
71 	void (*unlock)(void *priv);
72 	struct vnic_dev *pf_vdev;
73 	int vf_id;
74 };
75 
76 #define VNIC_MAX_RES_HDR_SIZE \
77 	(sizeof(struct vnic_resource_header) + \
78 	sizeof(struct vnic_resource) * RES_TYPE_MAX)
79 #define VNIC_RES_STRIDE	128
80 
81 void *vnic_dev_priv(struct vnic_dev *vdev)
82 {
83 	return vdev->priv;
84 }
85 
86 void vnic_register_cbacks(struct vnic_dev *vdev,
87 	void *(*alloc_consistent)(void *priv, size_t size,
88 	    dma_addr_t *dma_handle, uint8_t *name),
89 	void (*free_consistent)(void *priv,
90 	    size_t size, void *vaddr,
91 	    dma_addr_t dma_handle))
92 {
93 	vdev->alloc_consistent = alloc_consistent;
94 	vdev->free_consistent = free_consistent;
95 }
96 
97 void vnic_register_lock(struct vnic_dev *vdev, void (*lock)(void *priv),
98 	void (*unlock)(void *priv))
99 {
100 	vdev->lock = lock;
101 	vdev->unlock = unlock;
102 	vdev->locked = 0;
103 }
104 
105 static int vnic_dev_discover_res(struct vnic_dev *vdev,
106 	struct vnic_dev_bar *bar, unsigned int num_bars)
107 {
108 	struct vnic_resource_header __iomem *rh;
109 	struct mgmt_barmap_hdr __iomem *mrh;
110 	struct vnic_resource __iomem *r;
111 	uint8_t type;
112 
113 	if (num_bars == 0)
114 		return -EINVAL;
115 
116 	if (bar->len < VNIC_MAX_RES_HDR_SIZE) {
117 		pr_err("vNIC BAR0 res hdr length error\n");
118 		return -EINVAL;
119 	}
120 
121 	rh  = bar->vaddr;
122 	mrh = bar->vaddr;
123 	if (!rh) {
124 		pr_err("vNIC BAR0 res hdr not mem-mapped\n");
125 		return -EINVAL;
126 	}
127 
128 	/* Check for mgmt vnic in addition to normal vnic */
129 	if ((ioread32(&rh->magic) != VNIC_RES_MAGIC) ||
130 		(ioread32(&rh->version) != VNIC_RES_VERSION)) {
131 		if ((ioread32(&mrh->magic) != MGMTVNIC_MAGIC) ||
132 			(ioread32(&mrh->version) != MGMTVNIC_VERSION)) {
133 			pr_err("vNIC BAR0 res magic/version error " \
134 				"exp (%lx/%lx) or (%lx/%lx), curr (%x/%x)\n",
135 				VNIC_RES_MAGIC, VNIC_RES_VERSION,
136 				MGMTVNIC_MAGIC, MGMTVNIC_VERSION,
137 				ioread32(&rh->magic), ioread32(&rh->version));
138 			return -EINVAL;
139 		}
140 	}
141 
142 	if (ioread32(&mrh->magic) == MGMTVNIC_MAGIC)
143 		r = (struct vnic_resource __iomem *)(mrh + 1);
144 	else
145 		r = (struct vnic_resource __iomem *)(rh + 1);
146 
147 
148 	while ((type = ioread8(&r->type)) != RES_TYPE_EOL) {
149 		uint8_t bar_num = ioread8(&r->bar);
150 		uint32_t bar_offset = ioread32(&r->bar_offset);
151 		uint32_t count = ioread32(&r->count);
152 		uint32_t len;
153 
154 		r++;
155 
156 		if (bar_num >= num_bars)
157 			continue;
158 
159 		if (!bar[bar_num].len || !bar[bar_num].vaddr)
160 			continue;
161 
162 		switch (type) {
163 		case RES_TYPE_WQ:
164 		case RES_TYPE_RQ:
165 		case RES_TYPE_CQ:
166 		case RES_TYPE_INTR_CTRL:
167 			/* each count is stride bytes long */
168 			len = count * VNIC_RES_STRIDE;
169 			if (len + bar_offset > bar[bar_num].len) {
170 				pr_err("vNIC BAR0 resource %d " \
171 					"out-of-bounds, offset 0x%x + " \
172 					"size 0x%x > bar len 0x%lx\n",
173 					type, bar_offset,
174 					len,
175 					bar[bar_num].len);
176 				return -EINVAL;
177 			}
178 			break;
179 		case RES_TYPE_INTR_PBA_LEGACY:
180 		case RES_TYPE_DEVCMD:
181 			len = count;
182 			break;
183 		default:
184 			continue;
185 		}
186 
187 		vdev->res[type].count = count;
188 		vdev->res[type].vaddr = (char __iomem *)bar[bar_num].vaddr +
189 		    bar_offset;
190 		vdev->res[type].bus_addr = bar[bar_num].bus_addr + bar_offset;
191 	}
192 
193 	return 0;
194 }
195 
196 unsigned int vnic_dev_get_res_count(struct vnic_dev *vdev,
197 	enum vnic_res_type type)
198 {
199 	return vdev->res[type].count;
200 }
201 
202 void __iomem *vnic_dev_get_res(struct vnic_dev *vdev, enum vnic_res_type type,
203 	unsigned int index)
204 {
205 	if (!vdev->res[type].vaddr)
206 		return NULL;
207 
208 	switch (type) {
209 	case RES_TYPE_WQ:
210 	case RES_TYPE_RQ:
211 	case RES_TYPE_CQ:
212 	case RES_TYPE_INTR_CTRL:
213 		return (char __iomem *)vdev->res[type].vaddr +
214 			index * VNIC_RES_STRIDE;
215 	default:
216 		return (char __iomem *)vdev->res[type].vaddr;
217 	}
218 }
219 
220 unsigned int vnic_dev_desc_ring_size(struct vnic_dev_ring *ring,
221 	unsigned int desc_count, unsigned int desc_size)
222 {
223 	/* The base address of the desc rings must be 512 byte aligned.
224 	 * Descriptor count is aligned to groups of 32 descriptors.  A
225 	 * count of 0 means the maximum 4096 descriptors.  Descriptor
226 	 * size is aligned to 16 bytes.
227 	 */
228 
229 	unsigned int count_align = 32;
230 	unsigned int desc_align = 16;
231 
232 	ring->base_align = 512;
233 
234 	if (desc_count == 0)
235 		desc_count = 4096;
236 
237 	ring->desc_count = VNIC_ALIGN(desc_count, count_align);
238 
239 	ring->desc_size = VNIC_ALIGN(desc_size, desc_align);
240 
241 	ring->size = ring->desc_count * ring->desc_size;
242 	ring->size_unaligned = ring->size + ring->base_align;
243 
244 	return ring->size_unaligned;
245 }
246 
247 void vnic_dev_clear_desc_ring(struct vnic_dev_ring *ring)
248 {
249 	memset(ring->descs, 0, ring->size);
250 }
251 
252 int vnic_dev_alloc_desc_ring(struct vnic_dev *vdev,
253 	struct vnic_dev_ring *ring,
254 	unsigned int desc_count, unsigned int desc_size,
255 	__rte_unused unsigned int socket_id,
256 	char *z_name)
257 {
258 	void *alloc_addr;
259 	dma_addr_t alloc_pa = 0;
260 
261 	vnic_dev_desc_ring_size(ring, desc_count, desc_size);
262 	alloc_addr = vdev->alloc_consistent(vdev->priv,
263 					    ring->size_unaligned,
264 					    &alloc_pa, (uint8_t *)z_name);
265 	if (!alloc_addr) {
266 		pr_err("Failed to allocate ring (size=%d), aborting\n",
267 			(int)ring->size);
268 		return -ENOMEM;
269 	}
270 	ring->descs_unaligned = alloc_addr;
271 	if (!alloc_pa) {
272 		pr_err("Failed to map allocated ring (size=%d), aborting\n",
273 			(int)ring->size);
274 		vdev->free_consistent(vdev->priv,
275 				      ring->size_unaligned,
276 				      alloc_addr,
277 				      alloc_pa);
278 		return -ENOMEM;
279 	}
280 	ring->base_addr_unaligned = alloc_pa;
281 
282 	ring->base_addr = VNIC_ALIGN(ring->base_addr_unaligned,
283 		ring->base_align);
284 	ring->descs = (uint8_t *)ring->descs_unaligned +
285 	    (ring->base_addr - ring->base_addr_unaligned);
286 
287 	vnic_dev_clear_desc_ring(ring);
288 
289 	ring->desc_avail = ring->desc_count - 1;
290 
291 	return 0;
292 }
293 
294 void vnic_dev_free_desc_ring(__rte_unused  struct vnic_dev *vdev,
295 	struct vnic_dev_ring *ring)
296 {
297 	if (ring->descs) {
298 		vdev->free_consistent(vdev->priv,
299 				      ring->size_unaligned,
300 				      ring->descs_unaligned,
301 				      ring->base_addr_unaligned);
302 		ring->descs = NULL;
303 	}
304 }
305 
306 static int _vnic_dev_cmd(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd,
307 	int wait)
308 {
309 	struct vnic_devcmd __iomem *devcmd = vdev->devcmd;
310 	unsigned int i;
311 	int delay;
312 	uint32_t status;
313 	int err;
314 
315 	status = ioread32(&devcmd->status);
316 	if (status == 0xFFFFFFFF) {
317 		/* PCI-e target device is gone */
318 		return -ENODEV;
319 	}
320 	if (status & STAT_BUSY) {
321 
322 		pr_err("Busy devcmd %d\n",  _CMD_N(cmd));
323 		return -EBUSY;
324 	}
325 
326 	if (_CMD_DIR(cmd) & _CMD_DIR_WRITE) {
327 		for (i = 0; i < VNIC_DEVCMD_NARGS; i++)
328 			writeq(vdev->args[i], &devcmd->args[i]);
329 		rte_wmb(); /* complete all writes initiated till now */
330 	}
331 
332 	iowrite32(cmd, &devcmd->cmd);
333 
334 	if ((_CMD_FLAGS(cmd) & _CMD_FLAGS_NOWAIT))
335 		return 0;
336 
337 	for (delay = 0; delay < wait; delay++) {
338 
339 		usleep(100);
340 
341 		status = ioread32(&devcmd->status);
342 		if (status == 0xFFFFFFFF) {
343 			/* PCI-e target device is gone */
344 			return -ENODEV;
345 		}
346 
347 		if (!(status & STAT_BUSY)) {
348 			if (status & STAT_ERROR) {
349 				err = -(int)readq(&devcmd->args[0]);
350 				if (cmd != CMD_CAPABILITY &&
351 				    cmd != CMD_OVERLAY_OFFLOAD_CTRL &&
352 				    cmd != CMD_GET_SUPP_FEATURE_VER)
353 					pr_err("Devcmd %d failed " \
354 						"with error code %d\n",
355 						_CMD_N(cmd), err);
356 				return err;
357 			}
358 
359 			if (_CMD_DIR(cmd) & _CMD_DIR_READ) {
360 				rte_rmb();/* finish all reads */
361 				for (i = 0; i < VNIC_DEVCMD_NARGS; i++)
362 					vdev->args[i] = readq(&devcmd->args[i]);
363 			}
364 
365 			return 0;
366 		}
367 	}
368 
369 	pr_err("Timedout devcmd %d\n", _CMD_N(cmd));
370 	return -ETIMEDOUT;
371 }
372 
373 static int vnic_dev_cmd_proxy(struct vnic_dev *vdev,
374 	enum vnic_devcmd_cmd proxy_cmd, enum vnic_devcmd_cmd cmd,
375 	uint64_t *args, int nargs, int wait)
376 {
377 	uint32_t status;
378 	int err;
379 
380 	/*
381 	 * Proxy command consumes 2 arguments. One for proxy index,
382 	 * the other is for command to be proxied
383 	 */
384 	if (nargs > VNIC_DEVCMD_NARGS - 2) {
385 		pr_err("number of args %d exceeds the maximum\n", nargs);
386 		return -EINVAL;
387 	}
388 	memset(vdev->args, 0, sizeof(vdev->args));
389 
390 	vdev->args[0] = vdev->proxy_index;
391 	vdev->args[1] = cmd;
392 	memcpy(&vdev->args[2], args, nargs * sizeof(args[0]));
393 
394 	err = _vnic_dev_cmd(vdev, proxy_cmd, wait);
395 	if (err)
396 		return err;
397 
398 	status = (uint32_t)vdev->args[0];
399 	if (status & STAT_ERROR) {
400 		err = (int)vdev->args[1];
401 		if (err != ERR_ECMDUNKNOWN ||
402 		    cmd != CMD_CAPABILITY)
403 			pr_err("Error %d proxy devcmd %d\n", err, _CMD_N(cmd));
404 		return err;
405 	}
406 
407 	memcpy(args, &vdev->args[1], nargs * sizeof(args[0]));
408 
409 	return 0;
410 }
411 
412 static int vnic_dev_cmd_no_proxy(struct vnic_dev *vdev,
413 	enum vnic_devcmd_cmd cmd, uint64_t *args, int nargs, int wait)
414 {
415 	int err;
416 
417 	if (nargs > VNIC_DEVCMD_NARGS) {
418 		pr_err("number of args %d exceeds the maximum\n", nargs);
419 		return -EINVAL;
420 	}
421 	memset(vdev->args, 0, sizeof(vdev->args));
422 	memcpy(vdev->args, args, nargs * sizeof(args[0]));
423 
424 	err = _vnic_dev_cmd(vdev, cmd, wait);
425 
426 	memcpy(args, vdev->args, nargs * sizeof(args[0]));
427 
428 	return err;
429 }
430 
431 void vnic_dev_cmd_proxy_by_index_start(struct vnic_dev *vdev, uint16_t index)
432 {
433 	vdev->proxy = PROXY_BY_INDEX;
434 	vdev->proxy_index = index;
435 }
436 
437 void vnic_dev_cmd_proxy_end(struct vnic_dev *vdev)
438 {
439 	vdev->proxy = PROXY_NONE;
440 	vdev->proxy_index = 0;
441 }
442 
443 int vnic_dev_cmd(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd,
444 	uint64_t *a0, uint64_t *a1, int wait)
445 {
446 	uint64_t args[2];
447 	bool vf_rep;
448 	int vf_idx;
449 	int err;
450 
451 	vf_rep = false;
452 	if (vdev->pf_vdev) {
453 		vf_rep = true;
454 		vf_idx = vdev->vf_id;
455 		/* Everything below assumes PF vdev */
456 		vdev = vdev->pf_vdev;
457 	}
458 	if (vdev->lock)
459 		vdev->lock(vdev->priv);
460 	/* For VF representor, proxy devcmd to VF index */
461 	if (vf_rep)
462 		vnic_dev_cmd_proxy_by_index_start(vdev, vf_idx);
463 
464 	args[0] = *a0;
465 	args[1] = *a1;
466 	memset(vdev->args, 0, sizeof(vdev->args));
467 
468 	switch (vdev->proxy) {
469 	case PROXY_BY_INDEX:
470 		err =  vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_INDEX, cmd,
471 				args, ARRAY_SIZE(args), wait);
472 		break;
473 	case PROXY_BY_BDF:
474 		err =  vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_BDF, cmd,
475 				args, ARRAY_SIZE(args), wait);
476 		break;
477 	case PROXY_NONE:
478 	default:
479 		err = vnic_dev_cmd_no_proxy(vdev, cmd, args, 2, wait);
480 		break;
481 	}
482 
483 	if (vf_rep)
484 		vnic_dev_cmd_proxy_end(vdev);
485 	if (vdev->unlock)
486 		vdev->unlock(vdev->priv);
487 	if (err == 0) {
488 		*a0 = args[0];
489 		*a1 = args[1];
490 	}
491 
492 	return err;
493 }
494 
495 int vnic_dev_cmd_args(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd,
496 		      uint64_t *args, int nargs, int wait)
497 {
498 	bool vf_rep;
499 	int vf_idx;
500 	int err;
501 
502 	vf_rep = false;
503 	if (vdev->pf_vdev) {
504 		vf_rep = true;
505 		vf_idx = vdev->vf_id;
506 		vdev = vdev->pf_vdev;
507 	}
508 	if (vdev->lock)
509 		vdev->lock(vdev->priv);
510 	if (vf_rep)
511 		vnic_dev_cmd_proxy_by_index_start(vdev, vf_idx);
512 
513 	switch (vdev->proxy) {
514 	case PROXY_BY_INDEX:
515 		err = vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_INDEX, cmd,
516 				args, nargs, wait);
517 		break;
518 	case PROXY_BY_BDF:
519 		err = vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_BDF, cmd,
520 				args, nargs, wait);
521 		break;
522 	case PROXY_NONE:
523 	default:
524 		err = vnic_dev_cmd_no_proxy(vdev, cmd, args, nargs, wait);
525 		break;
526 	}
527 
528 	if (vf_rep)
529 		vnic_dev_cmd_proxy_end(vdev);
530 	if (vdev->unlock)
531 		vdev->unlock(vdev->priv);
532 	return err;
533 }
534 
535 int vnic_dev_fw_info(struct vnic_dev *vdev,
536 		     struct vnic_devcmd_fw_info **fw_info)
537 {
538 	char name[RTE_MEMZONE_NAMESIZE];
539 	uint64_t a0, a1 = 0;
540 	int wait = 1000;
541 	int err = 0;
542 	static uint32_t instance;
543 
544 	if (!vdev->fw_info) {
545 		snprintf((char *)name, sizeof(name), "vnic_fw_info-%u",
546 			 instance++);
547 		vdev->fw_info = vdev->alloc_consistent(vdev->priv,
548 			sizeof(struct vnic_devcmd_fw_info),
549 			&vdev->fw_info_pa, (uint8_t *)name);
550 		if (!vdev->fw_info)
551 			return -ENOMEM;
552 		a0 = vdev->fw_info_pa;
553 		a1 = sizeof(struct vnic_devcmd_fw_info);
554 		err = vnic_dev_cmd(vdev, CMD_MCPU_FW_INFO,
555 				   &a0, &a1, wait);
556 	}
557 	*fw_info = vdev->fw_info;
558 	return err;
559 }
560 
561 static int vnic_dev_advanced_filters_cap(struct vnic_dev *vdev, uint64_t *args,
562 		int nargs)
563 {
564 	memset(args, 0, nargs * sizeof(*args));
565 	args[0] = CMD_ADD_ADV_FILTER;
566 	args[1] = FILTER_CAP_MODE_V1_FLAG;
567 	return vnic_dev_cmd_args(vdev, CMD_CAPABILITY, args, nargs, 1000);
568 }
569 
570 int vnic_dev_capable_adv_filters(struct vnic_dev *vdev)
571 {
572 	uint64_t a0 = CMD_ADD_ADV_FILTER, a1 = 0;
573 	int wait = 1000;
574 	int err;
575 
576 	err = vnic_dev_cmd(vdev, CMD_CAPABILITY, &a0, &a1, wait);
577 	if (err)
578 		return 0;
579 	return (a1 >= (uint32_t)FILTER_DPDK_1);
580 }
581 
582 int vnic_dev_flowman_cmd(struct vnic_dev *vdev, uint64_t *args, int nargs)
583 {
584 	int wait = 1000;
585 
586 	return vnic_dev_cmd_args(vdev, CMD_FLOW_MANAGER_OP, args, nargs, wait);
587 }
588 
589 static int vnic_dev_flowman_enable(struct vnic_dev *vdev, uint32_t *mode,
590 				   uint8_t *filter_actions)
591 {
592 	char name[RTE_MEMZONE_NAMESIZE];
593 	uint64_t args[3];
594 	uint64_t ops;
595 	static uint32_t instance;
596 
597 	/* flowman devcmd available? */
598 	if (!vnic_dev_capable(vdev, CMD_FLOW_MANAGER_OP))
599 		return 0;
600 	/* Have the version we are using? */
601 	args[0] = FM_API_VERSION_QUERY;
602 	if (vnic_dev_flowman_cmd(vdev, args, 1))
603 		return 0;
604 	if ((args[0] & (1ULL << FM_VERSION)) == 0)
605 		return 0;
606 	/* Select the version */
607 	args[0] = FM_API_VERSION_SELECT;
608 	args[1] = FM_VERSION;
609 	if (vnic_dev_flowman_cmd(vdev, args, 2))
610 		return 0;
611 	/* Can we get fm_info? */
612 	if (!vdev->flowman_info) {
613 		snprintf((char *)name, sizeof(name), "vnic_fm_info-%u",
614 			 instance++);
615 		vdev->flowman_info = vdev->alloc_consistent(vdev->priv,
616 			sizeof(struct fm_info),
617 			&vdev->flowman_info_pa, (uint8_t *)name);
618 		if (!vdev->flowman_info)
619 			return 0;
620 	}
621 	args[0] = FM_INFO_QUERY;
622 	args[1] = vdev->flowman_info_pa;
623 	args[2] = sizeof(struct fm_info);
624 	if (vnic_dev_flowman_cmd(vdev, args, 3))
625 		return 0;
626 	/* Have required operations? */
627 	ops = (1ULL << FMOP_END) |
628 		(1ULL << FMOP_DROP) |
629 		(1ULL << FMOP_RQ_STEER) |
630 		(1ULL << FMOP_EXACT_MATCH) |
631 		(1ULL << FMOP_MARK) |
632 		(1ULL << FMOP_TAG) |
633 		(1ULL << FMOP_EG_HAIRPIN) |
634 		(1ULL << FMOP_ENCAP) |
635 		(1ULL << FMOP_DECAP_NOSTRIP);
636 	if ((vdev->flowman_info->fm_op_mask & ops) != ops)
637 		return 0;
638 	/* Good to use flowman now */
639 	*mode = FILTER_FLOWMAN;
640 	*filter_actions = FILTER_ACTION_RQ_STEERING_FLAG |
641 		FILTER_ACTION_FILTER_ID_FLAG |
642 		FILTER_ACTION_COUNTER_FLAG |
643 		FILTER_ACTION_DROP_FLAG;
644 	return 1;
645 }
646 
647 /*  Determine the "best" filtering mode VIC is capable of. Returns one of 4
648  *  value or 0 if filtering is unavailble:
649  *	FILTER_FLOWMAN- flowman api capable
650  *	FILTER_DPDK_1- advanced filters availabile
651  *	FILTER_USNIC_IP_FLAG - advanced filters but with the restriction that
652  *		the IP layer must explicitly specified. I.e. cannot have a UDP
653  *		filter that matches both IPv4 and IPv6.
654  *	FILTER_IPV4_5TUPLE - fallback if either of the 2 above aren't available.
655  *		all other filter types are not available.
656  *   Retrun true in filter_tags if supported
657  */
658 int vnic_dev_capable_filter_mode(struct vnic_dev *vdev, uint32_t *mode,
659 				 uint8_t *filter_actions)
660 {
661 	uint64_t args[4];
662 	int err;
663 	uint32_t max_level = 0;
664 
665 	/* If flowman is available, use it as it is the most capable API */
666 	if (vnic_dev_flowman_enable(vdev, mode, filter_actions))
667 		return 0;
668 
669 	err = vnic_dev_advanced_filters_cap(vdev, args, 4);
670 
671 	/* determine supported filter actions */
672 	*filter_actions = FILTER_ACTION_RQ_STEERING_FLAG; /* always available */
673 	if (args[2] == FILTER_CAP_MODE_V1)
674 		*filter_actions = args[3];
675 
676 	if (err || ((args[0] == 1) && (args[1] == 0))) {
677 		/* Adv filter Command not supported or adv filters available but
678 		 * not enabled. Try the normal filter capability command.
679 		 */
680 		args[0] = CMD_ADD_FILTER;
681 		args[1] = 0;
682 		err = vnic_dev_cmd_args(vdev, CMD_CAPABILITY, args, 2, 1000);
683 		/*
684 		 * ERR_EPERM may be returned if, for example, vNIC is
685 		 * on a VF. It simply means no filtering is available
686 		 */
687 		if (err == -ERR_EPERM) {
688 			*mode = 0;
689 			return 0;
690 		}
691 		if (err)
692 			return err;
693 		max_level = args[1];
694 		goto parse_max_level;
695 	} else if (args[2] == FILTER_CAP_MODE_V1) {
696 		/* parse filter capability mask in args[1] */
697 		if (args[1] & FILTER_DPDK_1_FLAG)
698 			*mode = FILTER_DPDK_1;
699 		else if (args[1] & FILTER_USNIC_IP_FLAG)
700 			*mode = FILTER_USNIC_IP;
701 		else if (args[1] & FILTER_IPV4_5TUPLE_FLAG)
702 			*mode = FILTER_IPV4_5TUPLE;
703 		return 0;
704 	}
705 	max_level = args[1];
706 parse_max_level:
707 	if (max_level >= (uint32_t)FILTER_USNIC_IP)
708 		*mode = FILTER_USNIC_IP;
709 	else
710 		*mode = FILTER_IPV4_5TUPLE;
711 	return 0;
712 }
713 
714 void vnic_dev_capable_udp_rss_weak(struct vnic_dev *vdev, bool *cfg_chk,
715 				   bool *weak)
716 {
717 	uint64_t a0 = CMD_NIC_CFG, a1 = 0;
718 	int wait = 1000;
719 	int err;
720 
721 	*cfg_chk = false;
722 	*weak = false;
723 	err = vnic_dev_cmd(vdev, CMD_CAPABILITY, &a0, &a1, wait);
724 	if (err == 0 && a0 != 0 && a1 != 0) {
725 		*cfg_chk = true;
726 		*weak = !!((a1 >> 32) & CMD_NIC_CFG_CAPF_UDP_WEAK);
727 	}
728 }
729 
730 int vnic_dev_capable(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd)
731 {
732 	uint64_t a0 = (uint32_t)cmd, a1 = 0;
733 	int wait = 1000;
734 	int err;
735 
736 	err = vnic_dev_cmd(vdev, CMD_CAPABILITY, &a0, &a1, wait);
737 
738 	return !(err || a0);
739 }
740 
741 int vnic_dev_spec(struct vnic_dev *vdev, unsigned int offset, size_t size,
742 	void *value)
743 {
744 	uint64_t a0, a1;
745 	int wait = 1000;
746 	int err;
747 
748 	a0 = offset;
749 	a1 = size;
750 
751 	err = vnic_dev_cmd(vdev, CMD_DEV_SPEC, &a0, &a1, wait);
752 
753 	switch (size) {
754 	case 1:
755 		*(uint8_t *)value = (uint8_t)a0;
756 		break;
757 	case 2:
758 		*(uint16_t *)value = (uint16_t)a0;
759 		break;
760 	case 4:
761 		*(uint32_t *)value = (uint32_t)a0;
762 		break;
763 	case 8:
764 		*(uint64_t *)value = a0;
765 		break;
766 	default:
767 		BUG();
768 		break;
769 	}
770 
771 	return err;
772 }
773 
774 int vnic_dev_stats_clear(struct vnic_dev *vdev)
775 {
776 	uint64_t a0 = 0, a1 = 0;
777 	int wait = 1000;
778 
779 	return vnic_dev_cmd(vdev, CMD_STATS_CLEAR, &a0, &a1, wait);
780 }
781 
782 int vnic_dev_stats_dump(struct vnic_dev *vdev, struct vnic_stats **stats)
783 {
784 	uint64_t a0, a1;
785 	int wait = 1000;
786 
787 	if (!vdev->stats)
788 		return -ENOMEM;
789 
790 	*stats = vdev->stats;
791 	a0 = vdev->stats_pa;
792 	a1 = sizeof(struct vnic_stats);
793 
794 	return vnic_dev_cmd(vdev, CMD_STATS_DUMP, &a0, &a1, wait);
795 }
796 
797 int vnic_dev_close(struct vnic_dev *vdev)
798 {
799 	uint64_t a0 = 0, a1 = 0;
800 	int wait = 1000;
801 
802 	return vnic_dev_cmd(vdev, CMD_CLOSE, &a0, &a1, wait);
803 }
804 
805 int vnic_dev_enable_wait(struct vnic_dev *vdev)
806 {
807 	uint64_t a0 = 0, a1 = 0;
808 	int wait = 1000;
809 
810 	if (vnic_dev_capable(vdev, CMD_ENABLE_WAIT))
811 		return vnic_dev_cmd(vdev, CMD_ENABLE_WAIT, &a0, &a1, wait);
812 	else
813 		return vnic_dev_cmd(vdev, CMD_ENABLE, &a0, &a1, wait);
814 }
815 
816 int vnic_dev_disable(struct vnic_dev *vdev)
817 {
818 	uint64_t a0 = 0, a1 = 0;
819 	int wait = 1000;
820 
821 	return vnic_dev_cmd(vdev, CMD_DISABLE, &a0, &a1, wait);
822 }
823 
824 int vnic_dev_open(struct vnic_dev *vdev, int arg)
825 {
826 	uint64_t a0 = (uint32_t)arg, a1 = 0;
827 	int wait = 1000;
828 
829 	return vnic_dev_cmd(vdev, CMD_OPEN, &a0, &a1, wait);
830 }
831 
832 int vnic_dev_open_done(struct vnic_dev *vdev, int *done)
833 {
834 	uint64_t a0 = 0, a1 = 0;
835 	int wait = 1000;
836 	int err;
837 
838 	*done = 0;
839 
840 	err = vnic_dev_cmd(vdev, CMD_OPEN_STATUS, &a0, &a1, wait);
841 	if (err)
842 		return err;
843 
844 	*done = (a0 == 0);
845 
846 	return 0;
847 }
848 
849 int vnic_dev_get_mac_addr(struct vnic_dev *vdev, uint8_t *mac_addr)
850 {
851 	uint64_t a0 = 0, a1 = 0;
852 	int wait = 1000;
853 	int err, i;
854 
855 	for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
856 		mac_addr[i] = 0;
857 
858 	err = vnic_dev_cmd(vdev, CMD_GET_MAC_ADDR, &a0, &a1, wait);
859 	if (err)
860 		return err;
861 
862 	for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
863 		mac_addr[i] = ((uint8_t *)&a0)[i];
864 
865 	return 0;
866 }
867 
868 int vnic_dev_packet_filter(struct vnic_dev *vdev, int directed, int multicast,
869 	int broadcast, int promisc, int allmulti)
870 {
871 	uint64_t a0, a1 = 0;
872 	int wait = 1000;
873 	int err;
874 
875 	a0 = (directed ? CMD_PFILTER_DIRECTED : 0) |
876 	     (multicast ? CMD_PFILTER_MULTICAST : 0) |
877 	     (broadcast ? CMD_PFILTER_BROADCAST : 0) |
878 	     (promisc ? CMD_PFILTER_PROMISCUOUS : 0) |
879 	     (allmulti ? CMD_PFILTER_ALL_MULTICAST : 0);
880 
881 	err = vnic_dev_cmd(vdev, CMD_PACKET_FILTER, &a0, &a1, wait);
882 	if (err)
883 		pr_err("Can't set packet filter\n");
884 
885 	return err;
886 }
887 
888 int vnic_dev_add_addr(struct vnic_dev *vdev, uint8_t *addr)
889 {
890 	uint64_t a0 = 0, a1 = 0;
891 	int wait = 1000;
892 	int err;
893 	int i;
894 
895 	for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
896 		((uint8_t *)&a0)[i] = addr[i];
897 
898 	err = vnic_dev_cmd(vdev, CMD_ADDR_ADD, &a0, &a1, wait);
899 	if (err)
900 		pr_err("Can't add addr [" RTE_ETHER_ADDR_PRT_FMT "], %d\n",
901 			addr[0], addr[1], addr[2], addr[3], addr[4], addr[5],
902 			err);
903 
904 	return err;
905 }
906 
907 int vnic_dev_del_addr(struct vnic_dev *vdev, uint8_t *addr)
908 {
909 	uint64_t a0 = 0, a1 = 0;
910 	int wait = 1000;
911 	int err;
912 	int i;
913 
914 	for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
915 		((uint8_t *)&a0)[i] = addr[i];
916 
917 	err = vnic_dev_cmd(vdev, CMD_ADDR_DEL, &a0, &a1, wait);
918 	if (err)
919 		pr_err("Can't del addr [" RTE_ETHER_ADDR_PRT_FMT "], %d\n",
920 			addr[0], addr[1], addr[2], addr[3], addr[4], addr[5],
921 			err);
922 
923 	return err;
924 }
925 
926 int vnic_dev_set_ig_vlan_rewrite_mode(struct vnic_dev *vdev,
927 	uint8_t ig_vlan_rewrite_mode)
928 {
929 	uint64_t a0 = ig_vlan_rewrite_mode, a1 = 0;
930 	int wait = 1000;
931 
932 	if (vnic_dev_capable(vdev, CMD_IG_VLAN_REWRITE_MODE))
933 		return vnic_dev_cmd(vdev, CMD_IG_VLAN_REWRITE_MODE,
934 				&a0, &a1, wait);
935 	else
936 		return 0;
937 }
938 
939 void vnic_dev_set_reset_flag(struct vnic_dev *vdev, int state)
940 {
941 	vdev->in_reset = state;
942 }
943 
944 static inline int vnic_dev_in_reset(struct vnic_dev *vdev)
945 {
946 	return vdev->in_reset;
947 }
948 
949 int vnic_dev_notify_setcmd(struct vnic_dev *vdev,
950 	void *notify_addr, dma_addr_t notify_pa, uint16_t intr)
951 {
952 	uint64_t a0, a1;
953 	int wait = 1000;
954 	int r;
955 
956 	memset(notify_addr, 0, sizeof(struct vnic_devcmd_notify));
957 	if (!vnic_dev_in_reset(vdev)) {
958 		vdev->notify = notify_addr;
959 		vdev->notify_pa = notify_pa;
960 	}
961 
962 	a0 = (uint64_t)notify_pa;
963 	a1 = ((uint64_t)intr << 32) & 0x0000ffff00000000ULL;
964 	a1 += sizeof(struct vnic_devcmd_notify);
965 
966 	r = vnic_dev_cmd(vdev, CMD_NOTIFY, &a0, &a1, wait);
967 	if (!vnic_dev_in_reset(vdev))
968 		vdev->notify_sz = (r == 0) ? (uint32_t)a1 : 0;
969 
970 	return r;
971 }
972 
973 int vnic_dev_notify_set(struct vnic_dev *vdev, uint16_t intr)
974 {
975 	void *notify_addr = NULL;
976 	dma_addr_t notify_pa = 0;
977 	char name[RTE_MEMZONE_NAMESIZE];
978 	static uint32_t instance;
979 
980 	if (vdev->notify || vdev->notify_pa) {
981 		return vnic_dev_notify_setcmd(vdev, vdev->notify,
982 					      vdev->notify_pa, intr);
983 	}
984 	if (!vnic_dev_in_reset(vdev)) {
985 		snprintf((char *)name, sizeof(name),
986 			"vnic_notify-%u", instance++);
987 		notify_addr = vdev->alloc_consistent(vdev->priv,
988 			sizeof(struct vnic_devcmd_notify),
989 			&notify_pa, (uint8_t *)name);
990 		if (!notify_addr)
991 			return -ENOMEM;
992 	}
993 
994 	return vnic_dev_notify_setcmd(vdev, notify_addr, notify_pa, intr);
995 }
996 
997 int vnic_dev_notify_unsetcmd(struct vnic_dev *vdev)
998 {
999 	uint64_t a0, a1;
1000 	int wait = 1000;
1001 	int err;
1002 
1003 	a0 = 0;  /* paddr = 0 to unset notify buffer */
1004 	a1 = 0x0000ffff00000000ULL; /* intr num = -1 to unreg for intr */
1005 	a1 += sizeof(struct vnic_devcmd_notify);
1006 
1007 	err = vnic_dev_cmd(vdev, CMD_NOTIFY, &a0, &a1, wait);
1008 	if (!vnic_dev_in_reset(vdev)) {
1009 		vdev->notify = NULL;
1010 		vdev->notify_pa = 0;
1011 		vdev->notify_sz = 0;
1012 	}
1013 
1014 	return err;
1015 }
1016 
1017 int vnic_dev_notify_unset(struct vnic_dev *vdev)
1018 {
1019 	if (vdev->notify && !vnic_dev_in_reset(vdev)) {
1020 		vdev->free_consistent(vdev->priv,
1021 			sizeof(struct vnic_devcmd_notify),
1022 			vdev->notify,
1023 			vdev->notify_pa);
1024 	}
1025 
1026 	return vnic_dev_notify_unsetcmd(vdev);
1027 }
1028 
1029 static int vnic_dev_notify_ready(struct vnic_dev *vdev)
1030 {
1031 	uint32_t *words;
1032 	unsigned int nwords = vdev->notify_sz / 4;
1033 	unsigned int i;
1034 	uint32_t csum;
1035 
1036 	if (!vdev->notify || !vdev->notify_sz)
1037 		return 0;
1038 
1039 	do {
1040 		csum = 0;
1041 		rte_memcpy(&vdev->notify_copy, vdev->notify, vdev->notify_sz);
1042 		words = (uint32_t *)&vdev->notify_copy;
1043 		for (i = 1; i < nwords; i++)
1044 			csum += words[i];
1045 	} while (csum != words[0]);
1046 
1047 	return 1;
1048 }
1049 
1050 int vnic_dev_init(struct vnic_dev *vdev, int arg)
1051 {
1052 	uint64_t a0 = (uint32_t)arg, a1 = 0;
1053 	int wait = 1000;
1054 	int r = 0;
1055 
1056 	if (vnic_dev_capable(vdev, CMD_INIT))
1057 		r = vnic_dev_cmd(vdev, CMD_INIT, &a0, &a1, wait);
1058 	else {
1059 		vnic_dev_cmd(vdev, CMD_INIT_v1, &a0, &a1, wait);
1060 		if (a0 & CMD_INITF_DEFAULT_MAC) {
1061 			/* Emulate these for old CMD_INIT_v1 which
1062 			 * didn't pass a0 so no CMD_INITF_*.
1063 			 */
1064 			vnic_dev_cmd(vdev, CMD_GET_MAC_ADDR, &a0, &a1, wait);
1065 			vnic_dev_cmd(vdev, CMD_ADDR_ADD, &a0, &a1, wait);
1066 		}
1067 	}
1068 	return r;
1069 }
1070 
1071 void vnic_dev_intr_coal_timer_info_default(struct vnic_dev *vdev)
1072 {
1073 	/* Default: hardware intr coal timer is in units of 1.5 usecs */
1074 	vdev->intr_coal_timer_info.mul = 2;
1075 	vdev->intr_coal_timer_info.div = 3;
1076 	vdev->intr_coal_timer_info.max_usec =
1077 		vnic_dev_intr_coal_timer_hw_to_usec(vdev, 0xffff);
1078 }
1079 
1080 int vnic_dev_link_status(struct vnic_dev *vdev)
1081 {
1082 	if (!vnic_dev_notify_ready(vdev))
1083 		return 0;
1084 
1085 	return vdev->notify_copy.link_state;
1086 }
1087 
1088 uint32_t vnic_dev_port_speed(struct vnic_dev *vdev)
1089 {
1090 	if (!vnic_dev_notify_ready(vdev))
1091 		return 0;
1092 
1093 	return vdev->notify_copy.port_speed;
1094 }
1095 
1096 uint32_t vnic_dev_mtu(struct vnic_dev *vdev)
1097 {
1098 	if (!vnic_dev_notify_ready(vdev))
1099 		return 0;
1100 
1101 	return vdev->notify_copy.mtu;
1102 }
1103 
1104 uint32_t vnic_dev_uif(struct vnic_dev *vdev)
1105 {
1106 	if (!vnic_dev_notify_ready(vdev))
1107 		return 0;
1108 
1109 	return vdev->notify_copy.uif;
1110 }
1111 
1112 uint32_t vnic_dev_intr_coal_timer_usec_to_hw(struct vnic_dev *vdev,
1113 					     uint32_t usec)
1114 {
1115 	return (usec * vdev->intr_coal_timer_info.mul) /
1116 		vdev->intr_coal_timer_info.div;
1117 }
1118 
1119 uint32_t vnic_dev_intr_coal_timer_hw_to_usec(struct vnic_dev *vdev,
1120 					     uint32_t hw_cycles)
1121 {
1122 	return (hw_cycles * vdev->intr_coal_timer_info.div) /
1123 		vdev->intr_coal_timer_info.mul;
1124 }
1125 
1126 uint32_t vnic_dev_get_intr_coal_timer_max(struct vnic_dev *vdev)
1127 {
1128 	return vdev->intr_coal_timer_info.max_usec;
1129 }
1130 
1131 int vnic_dev_alloc_stats_mem(struct vnic_dev *vdev)
1132 {
1133 	char name[RTE_MEMZONE_NAMESIZE];
1134 	static uint32_t instance;
1135 
1136 	snprintf((char *)name, sizeof(name), "vnic_stats-%u", instance++);
1137 	vdev->stats = vdev->alloc_consistent(vdev->priv,
1138 					     sizeof(struct vnic_stats),
1139 					     &vdev->stats_pa, (uint8_t *)name);
1140 	return vdev->stats == NULL ? -ENOMEM : 0;
1141 }
1142 
1143 void vnic_dev_unregister(struct vnic_dev *vdev)
1144 {
1145 	if (vdev) {
1146 		if (vdev->notify)
1147 			vdev->free_consistent(vdev->priv,
1148 				sizeof(struct vnic_devcmd_notify),
1149 				vdev->notify,
1150 				vdev->notify_pa);
1151 		if (vdev->stats)
1152 			vdev->free_consistent(vdev->priv,
1153 				sizeof(struct vnic_stats),
1154 				vdev->stats, vdev->stats_pa);
1155 		if (vdev->flowman_info)
1156 			vdev->free_consistent(vdev->priv,
1157 				sizeof(struct fm_info),
1158 				vdev->flowman_info, vdev->flowman_info_pa);
1159 		if (vdev->fw_info)
1160 			vdev->free_consistent(vdev->priv,
1161 				sizeof(struct vnic_devcmd_fw_info),
1162 				vdev->fw_info, vdev->fw_info_pa);
1163 		rte_free(vdev);
1164 	}
1165 }
1166 
1167 struct vnic_dev *vnic_dev_register(struct vnic_dev *vdev,
1168 	void *priv, struct rte_pci_device *pdev, struct vnic_dev_bar *bar,
1169 	unsigned int num_bars)
1170 {
1171 	if (!vdev) {
1172 		char name[RTE_MEMZONE_NAMESIZE];
1173 		snprintf((char *)name, sizeof(name), "%s-vnic",
1174 			  pdev->device.name);
1175 		vdev = (struct vnic_dev *)rte_zmalloc_socket(name,
1176 					sizeof(struct vnic_dev),
1177 					RTE_CACHE_LINE_SIZE,
1178 					pdev->device.numa_node);
1179 		if (!vdev)
1180 			return NULL;
1181 	}
1182 
1183 	vdev->priv = priv;
1184 	vdev->pdev = pdev;
1185 
1186 	if (vnic_dev_discover_res(vdev, bar, num_bars))
1187 		goto err_out;
1188 
1189 	vdev->devcmd = vnic_dev_get_res(vdev, RES_TYPE_DEVCMD, 0);
1190 	if (!vdev->devcmd)
1191 		goto err_out;
1192 
1193 	return vdev;
1194 
1195 err_out:
1196 	vnic_dev_unregister(vdev);
1197 	return NULL;
1198 }
1199 
1200 struct vnic_dev *vnic_vf_rep_register(void *priv, struct vnic_dev *pf_vdev,
1201 	int vf_id)
1202 {
1203 	struct vnic_dev *vdev;
1204 
1205 	vdev = (struct vnic_dev *)rte_zmalloc("enic-vf-rep-vdev",
1206 				sizeof(struct vnic_dev), RTE_CACHE_LINE_SIZE);
1207 	if (!vdev)
1208 		return NULL;
1209 	vdev->priv = priv;
1210 	vdev->pf_vdev = pf_vdev;
1211 	vdev->vf_id = vf_id;
1212 	vdev->alloc_consistent = pf_vdev->alloc_consistent;
1213 	vdev->free_consistent = pf_vdev->free_consistent;
1214 	return vdev;
1215 }
1216 
1217 /*
1218  *  vnic_dev_classifier: Add/Delete classifier entries
1219  *  @vdev: vdev of the device
1220  *  @cmd: CLSF_ADD for Add filter
1221  *        CLSF_DEL for Delete filter
1222  *  @entry: In case of ADD filter, the caller passes the RQ number in this
1223  *          variable.
1224  *          This function stores the filter_id returned by the
1225  *          firmware in the same variable before return;
1226  *
1227  *          In case of DEL filter, the caller passes the RQ number. Return
1228  *          value is irrelevant.
1229  * @data: filter data
1230  * @action: action data
1231  */
1232 int vnic_dev_classifier(struct vnic_dev *vdev, uint8_t cmd, uint16_t *entry,
1233 	struct filter_v2 *data, struct filter_action_v2 *action_v2)
1234 {
1235 	uint64_t a0 = 0, a1 = 0;
1236 	int wait = 1000;
1237 	dma_addr_t tlv_pa;
1238 	int ret = -EINVAL;
1239 	struct filter_tlv *tlv, *tlv_va;
1240 	uint64_t tlv_size;
1241 	uint32_t filter_size, action_size;
1242 	static unsigned int unique_id;
1243 	char z_name[RTE_MEMZONE_NAMESIZE];
1244 	enum vnic_devcmd_cmd dev_cmd;
1245 
1246 	if (cmd == CLSF_ADD) {
1247 		dev_cmd = (data->type >= FILTER_DPDK_1) ?
1248 			  CMD_ADD_ADV_FILTER : CMD_ADD_FILTER;
1249 
1250 		filter_size = vnic_filter_size(data);
1251 		action_size = vnic_action_size(action_v2);
1252 
1253 		tlv_size = filter_size + action_size +
1254 		    2*sizeof(struct filter_tlv);
1255 		snprintf((char *)z_name, sizeof(z_name),
1256 			"vnic_clsf_%u", unique_id++);
1257 		tlv_va = vdev->alloc_consistent(vdev->priv,
1258 			tlv_size, &tlv_pa, (uint8_t *)z_name);
1259 		if (!tlv_va)
1260 			return -ENOMEM;
1261 		tlv = tlv_va;
1262 		a0 = tlv_pa;
1263 		a1 = tlv_size;
1264 		memset(tlv, 0, tlv_size);
1265 		tlv->type = CLSF_TLV_FILTER;
1266 		tlv->length = filter_size;
1267 		memcpy(&tlv->val, (void *)data, filter_size);
1268 
1269 		tlv = (struct filter_tlv *)((char *)tlv +
1270 					 sizeof(struct filter_tlv) +
1271 					 filter_size);
1272 
1273 		tlv->type = CLSF_TLV_ACTION;
1274 		tlv->length = action_size;
1275 		memcpy(&tlv->val, (void *)action_v2, action_size);
1276 		ret = vnic_dev_cmd(vdev, dev_cmd, &a0, &a1, wait);
1277 		*entry = (uint16_t)a0;
1278 		vdev->free_consistent(vdev->priv, tlv_size, tlv_va, tlv_pa);
1279 	} else if (cmd == CLSF_DEL) {
1280 		a0 = *entry;
1281 		ret = vnic_dev_cmd(vdev, CMD_DEL_FILTER, &a0, &a1, wait);
1282 	}
1283 
1284 	return ret;
1285 }
1286 
1287 int vnic_dev_overlay_offload_ctrl(struct vnic_dev *vdev, uint8_t overlay,
1288 				  uint8_t config)
1289 {
1290 	uint64_t a0 = overlay;
1291 	uint64_t a1 = config;
1292 	int wait = 1000;
1293 
1294 	return vnic_dev_cmd(vdev, CMD_OVERLAY_OFFLOAD_CTRL, &a0, &a1, wait);
1295 }
1296 
1297 int vnic_dev_overlay_offload_cfg(struct vnic_dev *vdev, uint8_t overlay,
1298 				 uint16_t vxlan_udp_port_number)
1299 {
1300 	uint64_t a1 = vxlan_udp_port_number;
1301 	uint64_t a0 = overlay;
1302 	int wait = 1000;
1303 
1304 	return vnic_dev_cmd(vdev, CMD_OVERLAY_OFFLOAD_CFG, &a0, &a1, wait);
1305 }
1306 
1307 int vnic_dev_capable_vxlan(struct vnic_dev *vdev)
1308 {
1309 	uint64_t a0 = VIC_FEATURE_VXLAN;
1310 	uint64_t a1 = 0;
1311 	int wait = 1000;
1312 	int ret;
1313 
1314 	ret = vnic_dev_cmd(vdev, CMD_GET_SUPP_FEATURE_VER, &a0, &a1, wait);
1315 	/* 1 if the NIC can do VXLAN for both IPv4 and IPv6 with multiple WQs */
1316 	return ret == 0 &&
1317 		(a1 & (FEATURE_VXLAN_IPV6 | FEATURE_VXLAN_MULTI_WQ)) ==
1318 		(FEATURE_VXLAN_IPV6 | FEATURE_VXLAN_MULTI_WQ);
1319 }
1320 
1321 int vnic_dev_capable_geneve(struct vnic_dev *vdev)
1322 {
1323 	uint64_t a0 = VIC_FEATURE_GENEVE;
1324 	uint64_t a1 = 0;
1325 	int wait = 1000;
1326 	int ret;
1327 
1328 	ret = vnic_dev_cmd(vdev, CMD_GET_SUPP_FEATURE_VER, &a0, &a1, wait);
1329 	return ret == 0 && !!(a1 & FEATURE_GENEVE_OPTIONS);
1330 }
1331 
1332 uint64_t vnic_dev_capable_cq_entry_size(struct vnic_dev *vdev)
1333 {
1334 	uint64_t a0 = CMD_CQ_ENTRY_SIZE_SET;
1335 	uint64_t a1 = 0;
1336 	int wait = 1000;
1337 	int ret;
1338 
1339 	ret = vnic_dev_cmd(vdev, CMD_CAPABILITY, &a0, &a1, wait);
1340 	/* All models support 16B CQ entry by default */
1341 	if (!(ret == 0 && a0 == 0))
1342 		a1 = VNIC_RQ_CQ_ENTRY_SIZE_16_CAPABLE;
1343 	return a1;
1344 }
1345 
1346 int vnic_dev_set_cq_entry_size(struct vnic_dev *vdev, uint32_t rq_idx,
1347 			       uint32_t size_flag)
1348 {
1349 	uint64_t a0 = rq_idx;
1350 	uint64_t a1 = size_flag;
1351 	int wait = 1000;
1352 
1353 	return vnic_dev_cmd(vdev, CMD_CQ_ENTRY_SIZE_SET, &a0, &a1, wait);
1354 }
1355