1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2014-2015 Chelsio Communications. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Chelsio Communications nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/queue.h> 35 #include <stdio.h> 36 #include <errno.h> 37 #include <stdint.h> 38 #include <string.h> 39 #include <unistd.h> 40 #include <stdarg.h> 41 #include <inttypes.h> 42 #include <netinet/in.h> 43 44 #include <rte_byteorder.h> 45 #include <rte_common.h> 46 #include <rte_cycles.h> 47 #include <rte_interrupts.h> 48 #include <rte_log.h> 49 #include <rte_debug.h> 50 #include <rte_pci.h> 51 #include <rte_atomic.h> 52 #include <rte_branch_prediction.h> 53 #include <rte_memory.h> 54 #include <rte_memzone.h> 55 #include <rte_tailq.h> 56 #include <rte_eal.h> 57 #include <rte_alarm.h> 58 #include <rte_ether.h> 59 #include <rte_ethdev.h> 60 #include <rte_atomic.h> 61 #include <rte_malloc.h> 62 #include <rte_random.h> 63 #include <rte_dev.h> 64 65 #include "common.h" 66 #include "t4_regs.h" 67 #include "t4_msg.h" 68 #include "cxgbe.h" 69 70 static inline void ship_tx_pkt_coalesce_wr(struct adapter *adap, 71 struct sge_eth_txq *txq); 72 73 /* 74 * Max number of Rx buffers we replenish at a time. 75 */ 76 #define MAX_RX_REFILL 64U 77 78 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1) 79 80 /* 81 * Max Tx descriptor space we allow for an Ethernet packet to be inlined 82 * into a WR. 83 */ 84 #define MAX_IMM_TX_PKT_LEN 256 85 86 /* 87 * Rx buffer sizes for "usembufs" Free List buffers (one ingress packet 88 * per mbuf buffer). We currently only support two sizes for 1500- and 89 * 9000-byte MTUs. We could easily support more but there doesn't seem to be 90 * much need for that ... 91 */ 92 #define FL_MTU_SMALL 1500 93 #define FL_MTU_LARGE 9000 94 95 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter, 96 unsigned int mtu) 97 { 98 struct sge *s = &adapter->sge; 99 100 return CXGBE_ALIGN(s->pktshift + ETHER_HDR_LEN + VLAN_HLEN + mtu, 101 s->fl_align); 102 } 103 104 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL) 105 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE) 106 107 /* 108 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses 109 * these to specify the buffer size as an index into the SGE Free List Buffer 110 * Size register array. We also use bit 4, when the buffer has been unmapped 111 * for DMA, but this is of course never sent to the hardware and is only used 112 * to prevent double unmappings. All of the above requires that the Free List 113 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are 114 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal 115 * Free List Buffer alignment is 32 bytes, this works out for us ... 116 */ 117 enum { 118 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */ 119 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */ 120 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */ 121 122 /* 123 * XXX We shouldn't depend on being able to use these indices. 124 * XXX Especially when some other Master PF has initialized the 125 * XXX adapter or we use the Firmware Configuration File. We 126 * XXX should really search through the Host Buffer Size register 127 * XXX array for the appropriately sized buffer indices. 128 */ 129 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */ 130 RX_LARGE_PG_BUF = 0x1, /* buffer large page buffer */ 131 132 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */ 133 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */ 134 }; 135 136 /** 137 * txq_avail - return the number of available slots in a Tx queue 138 * @q: the Tx queue 139 * 140 * Returns the number of descriptors in a Tx queue available to write new 141 * packets. 142 */ 143 static inline unsigned int txq_avail(const struct sge_txq *q) 144 { 145 return q->size - 1 - q->in_use; 146 } 147 148 static int map_mbuf(struct rte_mbuf *mbuf, dma_addr_t *addr) 149 { 150 struct rte_mbuf *m = mbuf; 151 152 for (; m; m = m->next, addr++) { 153 *addr = m->buf_physaddr + rte_pktmbuf_headroom(m); 154 if (*addr == 0) 155 goto out_err; 156 } 157 return 0; 158 159 out_err: 160 return -ENOMEM; 161 } 162 163 /** 164 * free_tx_desc - reclaims Tx descriptors and their buffers 165 * @q: the Tx queue to reclaim descriptors from 166 * @n: the number of descriptors to reclaim 167 * 168 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated 169 * Tx buffers. Called with the Tx queue lock held. 170 */ 171 static void free_tx_desc(struct sge_txq *q, unsigned int n) 172 { 173 struct tx_sw_desc *d; 174 unsigned int cidx = 0; 175 176 d = &q->sdesc[cidx]; 177 while (n--) { 178 if (d->mbuf) { /* an SGL is present */ 179 rte_pktmbuf_free(d->mbuf); 180 d->mbuf = NULL; 181 } 182 if (d->coalesce.idx) { 183 int i; 184 185 for (i = 0; i < d->coalesce.idx; i++) { 186 rte_pktmbuf_free(d->coalesce.mbuf[i]); 187 d->coalesce.mbuf[i] = NULL; 188 } 189 d->coalesce.idx = 0; 190 } 191 ++d; 192 if (++cidx == q->size) { 193 cidx = 0; 194 d = q->sdesc; 195 } 196 RTE_MBUF_PREFETCH_TO_FREE(&q->sdesc->mbuf->pool); 197 } 198 } 199 200 static void reclaim_tx_desc(struct sge_txq *q, unsigned int n) 201 { 202 struct tx_sw_desc *d; 203 unsigned int cidx = q->cidx; 204 205 d = &q->sdesc[cidx]; 206 while (n--) { 207 if (d->mbuf) { /* an SGL is present */ 208 rte_pktmbuf_free(d->mbuf); 209 d->mbuf = NULL; 210 } 211 ++d; 212 if (++cidx == q->size) { 213 cidx = 0; 214 d = q->sdesc; 215 } 216 } 217 q->cidx = cidx; 218 } 219 220 /** 221 * fl_cap - return the capacity of a free-buffer list 222 * @fl: the FL 223 * 224 * Returns the capacity of a free-buffer list. The capacity is less than 225 * the size because one descriptor needs to be left unpopulated, otherwise 226 * HW will think the FL is empty. 227 */ 228 static inline unsigned int fl_cap(const struct sge_fl *fl) 229 { 230 return fl->size - 8; /* 1 descriptor = 8 buffers */ 231 } 232 233 /** 234 * fl_starving - return whether a Free List is starving. 235 * @adapter: pointer to the adapter 236 * @fl: the Free List 237 * 238 * Tests specified Free List to see whether the number of buffers 239 * available to the hardware has falled below our "starvation" 240 * threshold. 241 */ 242 static inline bool fl_starving(const struct adapter *adapter, 243 const struct sge_fl *fl) 244 { 245 const struct sge *s = &adapter->sge; 246 247 return fl->avail - fl->pend_cred <= s->fl_starve_thres; 248 } 249 250 static inline unsigned int get_buf_size(struct adapter *adapter, 251 const struct rx_sw_desc *d) 252 { 253 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE; 254 unsigned int buf_size = 0; 255 256 switch (rx_buf_size_idx) { 257 case RX_SMALL_MTU_BUF: 258 buf_size = FL_MTU_SMALL_BUFSIZE(adapter); 259 break; 260 261 case RX_LARGE_MTU_BUF: 262 buf_size = FL_MTU_LARGE_BUFSIZE(adapter); 263 break; 264 265 default: 266 BUG_ON(1); 267 /* NOT REACHED */ 268 } 269 270 return buf_size; 271 } 272 273 /** 274 * free_rx_bufs - free the Rx buffers on an SGE free list 275 * @q: the SGE free list to free buffers from 276 * @n: how many buffers to free 277 * 278 * Release the next @n buffers on an SGE free-buffer Rx queue. The 279 * buffers must be made inaccessible to HW before calling this function. 280 */ 281 static void free_rx_bufs(struct sge_fl *q, int n) 282 { 283 unsigned int cidx = q->cidx; 284 struct rx_sw_desc *d; 285 286 d = &q->sdesc[cidx]; 287 while (n--) { 288 if (d->buf) { 289 rte_pktmbuf_free(d->buf); 290 d->buf = NULL; 291 } 292 ++d; 293 if (++cidx == q->size) { 294 cidx = 0; 295 d = q->sdesc; 296 } 297 q->avail--; 298 } 299 q->cidx = cidx; 300 } 301 302 /** 303 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list 304 * @q: the SGE free list 305 * 306 * Unmap the current buffer on an SGE free-buffer Rx queue. The 307 * buffer must be made inaccessible to HW before calling this function. 308 * 309 * This is similar to @free_rx_bufs above but does not free the buffer. 310 * Do note that the FL still loses any further access to the buffer. 311 */ 312 static void unmap_rx_buf(struct sge_fl *q) 313 { 314 if (++q->cidx == q->size) 315 q->cidx = 0; 316 q->avail--; 317 } 318 319 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) 320 { 321 if (q->pend_cred >= 64) { 322 u32 val = adap->params.arch.sge_fl_db; 323 324 if (is_t4(adap->params.chip)) 325 val |= V_PIDX(q->pend_cred / 8); 326 else 327 val |= V_PIDX_T5(q->pend_cred / 8); 328 329 /* 330 * Make sure all memory writes to the Free List queue are 331 * committed before we tell the hardware about them. 332 */ 333 wmb(); 334 335 /* 336 * If we don't have access to the new User Doorbell (T5+), use 337 * the old doorbell mechanism; otherwise use the new BAR2 338 * mechanism. 339 */ 340 if (unlikely(!q->bar2_addr)) { 341 t4_write_reg_relaxed(adap, MYPF_REG(A_SGE_PF_KDOORBELL), 342 val | V_QID(q->cntxt_id)); 343 } else { 344 writel_relaxed(val | V_QID(q->bar2_qid), 345 (void *)((uintptr_t)q->bar2_addr + 346 SGE_UDB_KDOORBELL)); 347 348 /* 349 * This Write memory Barrier will force the write to 350 * the User Doorbell area to be flushed. 351 */ 352 wmb(); 353 } 354 q->pend_cred &= 7; 355 } 356 } 357 358 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, void *buf, 359 dma_addr_t mapping) 360 { 361 sd->buf = buf; 362 sd->dma_addr = mapping; /* includes size low bits */ 363 } 364 365 /** 366 * refill_fl_usembufs - refill an SGE Rx buffer ring with mbufs 367 * @adap: the adapter 368 * @q: the ring to refill 369 * @n: the number of new buffers to allocate 370 * 371 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, 372 * allocated with the supplied gfp flags. The caller must assure that 373 * @n does not exceed the queue's capacity. If afterwards the queue is 374 * found critically low mark it as starving in the bitmap of starving FLs. 375 * 376 * Returns the number of buffers allocated. 377 */ 378 static unsigned int refill_fl_usembufs(struct adapter *adap, struct sge_fl *q, 379 int n) 380 { 381 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, fl); 382 unsigned int cred = q->avail; 383 __be64 *d = &q->desc[q->pidx]; 384 struct rx_sw_desc *sd = &q->sdesc[q->pidx]; 385 unsigned int buf_size_idx = RX_SMALL_MTU_BUF; 386 struct rte_mbuf *buf_bulk[n]; 387 int ret, i; 388 struct rte_pktmbuf_pool_private *mbp_priv; 389 u8 jumbo_en = rxq->rspq.eth_dev->data->dev_conf.rxmode.jumbo_frame; 390 391 /* Use jumbo mtu buffers if mbuf data room size can fit jumbo data. */ 392 mbp_priv = rte_mempool_get_priv(rxq->rspq.mb_pool); 393 if (jumbo_en && 394 ((mbp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM) >= 9000)) 395 buf_size_idx = RX_LARGE_MTU_BUF; 396 397 ret = rte_mempool_get_bulk(rxq->rspq.mb_pool, (void *)buf_bulk, n); 398 if (unlikely(ret != 0)) { 399 dev_debug(adap, "%s: failed to allocated fl entries in bulk ..\n", 400 __func__); 401 q->alloc_failed++; 402 rxq->rspq.eth_dev->data->rx_mbuf_alloc_failed++; 403 goto out; 404 } 405 406 for (i = 0; i < n; i++) { 407 struct rte_mbuf *mbuf = buf_bulk[i]; 408 dma_addr_t mapping; 409 410 if (!mbuf) { 411 dev_debug(adap, "%s: mbuf alloc failed\n", __func__); 412 q->alloc_failed++; 413 rxq->rspq.eth_dev->data->rx_mbuf_alloc_failed++; 414 goto out; 415 } 416 417 rte_mbuf_refcnt_set(mbuf, 1); 418 mbuf->data_off = RTE_PKTMBUF_HEADROOM; 419 mbuf->next = NULL; 420 mbuf->nb_segs = 1; 421 mbuf->port = rxq->rspq.port_id; 422 423 mapping = (dma_addr_t)RTE_ALIGN(mbuf->buf_physaddr + 424 mbuf->data_off, 425 adap->sge.fl_align); 426 mapping |= buf_size_idx; 427 *d++ = cpu_to_be64(mapping); 428 set_rx_sw_desc(sd, mbuf, mapping); 429 sd++; 430 431 q->avail++; 432 if (++q->pidx == q->size) { 433 q->pidx = 0; 434 sd = q->sdesc; 435 d = q->desc; 436 } 437 } 438 439 out: cred = q->avail - cred; 440 q->pend_cred += cred; 441 ring_fl_db(adap, q); 442 443 if (unlikely(fl_starving(adap, q))) { 444 /* 445 * Make sure data has been written to free list 446 */ 447 wmb(); 448 q->low++; 449 } 450 451 return cred; 452 } 453 454 /** 455 * refill_fl - refill an SGE Rx buffer ring with mbufs 456 * @adap: the adapter 457 * @q: the ring to refill 458 * @n: the number of new buffers to allocate 459 * 460 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, 461 * allocated with the supplied gfp flags. The caller must assure that 462 * @n does not exceed the queue's capacity. Returns the number of buffers 463 * allocated. 464 */ 465 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n) 466 { 467 return refill_fl_usembufs(adap, q, n); 468 } 469 470 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) 471 { 472 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail)); 473 } 474 475 /* 476 * Return the number of reclaimable descriptors in a Tx queue. 477 */ 478 static inline int reclaimable(const struct sge_txq *q) 479 { 480 int hw_cidx = ntohs(q->stat->cidx); 481 482 hw_cidx -= q->cidx; 483 if (hw_cidx < 0) 484 return hw_cidx + q->size; 485 return hw_cidx; 486 } 487 488 /** 489 * reclaim_completed_tx - reclaims completed Tx descriptors 490 * @q: the Tx queue to reclaim completed descriptors from 491 * 492 * Reclaims Tx descriptors that the SGE has indicated it has processed. 493 */ 494 void reclaim_completed_tx(struct sge_txq *q) 495 { 496 unsigned int avail = reclaimable(q); 497 498 do { 499 /* reclaim as much as possible */ 500 reclaim_tx_desc(q, avail); 501 q->in_use -= avail; 502 avail = reclaimable(q); 503 } while (avail); 504 } 505 506 /** 507 * sgl_len - calculates the size of an SGL of the given capacity 508 * @n: the number of SGL entries 509 * 510 * Calculates the number of flits needed for a scatter/gather list that 511 * can hold the given number of entries. 512 */ 513 static inline unsigned int sgl_len(unsigned int n) 514 { 515 /* 516 * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA 517 * addresses. The DSGL Work Request starts off with a 32-bit DSGL 518 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N, 519 * repeated sequences of { Length[i], Length[i+1], Address[i], 520 * Address[i+1] } (this ensures that all addresses are on 64-bit 521 * boundaries). If N is even, then Length[N+1] should be set to 0 and 522 * Address[N+1] is omitted. 523 * 524 * The following calculation incorporates all of the above. It's 525 * somewhat hard to follow but, briefly: the "+2" accounts for the 526 * first two flits which include the DSGL header, Length0 and 527 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3 528 * flits for every pair of the remaining N) +1 if (n-1) is odd; and 529 * finally the "+((n-1)&1)" adds the one remaining flit needed if 530 * (n-1) is odd ... 531 */ 532 n--; 533 return (3 * n) / 2 + (n & 1) + 2; 534 } 535 536 /** 537 * flits_to_desc - returns the num of Tx descriptors for the given flits 538 * @n: the number of flits 539 * 540 * Returns the number of Tx descriptors needed for the supplied number 541 * of flits. 542 */ 543 static inline unsigned int flits_to_desc(unsigned int n) 544 { 545 return DIV_ROUND_UP(n, 8); 546 } 547 548 /** 549 * is_eth_imm - can an Ethernet packet be sent as immediate data? 550 * @m: the packet 551 * 552 * Returns whether an Ethernet packet is small enough to fit as 553 * immediate data. Return value corresponds to the headroom required. 554 */ 555 static inline int is_eth_imm(const struct rte_mbuf *m) 556 { 557 unsigned int hdrlen = (m->ol_flags & PKT_TX_TCP_SEG) ? 558 sizeof(struct cpl_tx_pkt_lso_core) : 0; 559 560 hdrlen += sizeof(struct cpl_tx_pkt); 561 if (m->pkt_len <= MAX_IMM_TX_PKT_LEN - hdrlen) 562 return hdrlen; 563 564 return 0; 565 } 566 567 /** 568 * calc_tx_flits - calculate the number of flits for a packet Tx WR 569 * @m: the packet 570 * 571 * Returns the number of flits needed for a Tx WR for the given Ethernet 572 * packet, including the needed WR and CPL headers. 573 */ 574 static inline unsigned int calc_tx_flits(const struct rte_mbuf *m) 575 { 576 unsigned int flits; 577 int hdrlen; 578 579 /* 580 * If the mbuf is small enough, we can pump it out as a work request 581 * with only immediate data. In that case we just have to have the 582 * TX Packet header plus the mbuf data in the Work Request. 583 */ 584 585 hdrlen = is_eth_imm(m); 586 if (hdrlen) 587 return DIV_ROUND_UP(m->pkt_len + hdrlen, sizeof(__be64)); 588 589 /* 590 * Otherwise, we're going to have to construct a Scatter gather list 591 * of the mbuf body and fragments. We also include the flits necessary 592 * for the TX Packet Work Request and CPL. We always have a firmware 593 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 594 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 595 * message or, if we're doing a Large Send Offload, an LSO CPL message 596 * with an embedded TX Packet Write CPL message. 597 */ 598 flits = sgl_len(m->nb_segs); 599 if (m->tso_segsz) 600 flits += (sizeof(struct fw_eth_tx_pkt_wr) + 601 sizeof(struct cpl_tx_pkt_lso_core) + 602 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 603 else 604 flits += (sizeof(struct fw_eth_tx_pkt_wr) + 605 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 606 return flits; 607 } 608 609 /** 610 * write_sgl - populate a scatter/gather list for a packet 611 * @mbuf: the packet 612 * @q: the Tx queue we are writing into 613 * @sgl: starting location for writing the SGL 614 * @end: points right after the end of the SGL 615 * @start: start offset into mbuf main-body data to include in the SGL 616 * @addr: address of mapped region 617 * 618 * Generates a scatter/gather list for the buffers that make up a packet. 619 * The caller must provide adequate space for the SGL that will be written. 620 * The SGL includes all of the packet's page fragments and the data in its 621 * main body except for the first @start bytes. @sgl must be 16-byte 622 * aligned and within a Tx descriptor with available space. @end points 623 * write after the end of the SGL but does not account for any potential 624 * wrap around, i.e., @end > @sgl. 625 */ 626 static void write_sgl(struct rte_mbuf *mbuf, struct sge_txq *q, 627 struct ulptx_sgl *sgl, u64 *end, unsigned int start, 628 const dma_addr_t *addr) 629 { 630 unsigned int i, len; 631 struct ulptx_sge_pair *to; 632 struct rte_mbuf *m = mbuf; 633 unsigned int nfrags = m->nb_segs; 634 struct ulptx_sge_pair buf[nfrags / 2]; 635 636 len = m->data_len - start; 637 sgl->len0 = htonl(len); 638 sgl->addr0 = rte_cpu_to_be_64(addr[0]); 639 640 sgl->cmd_nsge = htonl(V_ULPTX_CMD(ULP_TX_SC_DSGL) | 641 V_ULPTX_NSGE(nfrags)); 642 if (likely(--nfrags == 0)) 643 return; 644 /* 645 * Most of the complexity below deals with the possibility we hit the 646 * end of the queue in the middle of writing the SGL. For this case 647 * only we create the SGL in a temporary buffer and then copy it. 648 */ 649 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; 650 651 for (i = 0; nfrags >= 2; nfrags -= 2, to++) { 652 m = m->next; 653 to->len[0] = rte_cpu_to_be_32(m->data_len); 654 to->addr[0] = rte_cpu_to_be_64(addr[++i]); 655 m = m->next; 656 to->len[1] = rte_cpu_to_be_32(m->data_len); 657 to->addr[1] = rte_cpu_to_be_64(addr[++i]); 658 } 659 if (nfrags) { 660 m = m->next; 661 to->len[0] = rte_cpu_to_be_32(m->data_len); 662 to->len[1] = rte_cpu_to_be_32(0); 663 to->addr[0] = rte_cpu_to_be_64(addr[i + 1]); 664 } 665 if (unlikely((u8 *)end > (u8 *)q->stat)) { 666 unsigned int part0 = RTE_PTR_DIFF((u8 *)q->stat, 667 (u8 *)sgl->sge); 668 unsigned int part1; 669 670 if (likely(part0)) 671 memcpy(sgl->sge, buf, part0); 672 part1 = RTE_PTR_DIFF((u8 *)end, (u8 *)q->stat); 673 rte_memcpy(q->desc, RTE_PTR_ADD((u8 *)buf, part0), part1); 674 end = RTE_PTR_ADD((void *)q->desc, part1); 675 } 676 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ 677 *(u64 *)end = 0; 678 } 679 680 #define IDXDIFF(head, tail, wrap) \ 681 ((head) >= (tail) ? (head) - (tail) : (wrap) - (tail) + (head)) 682 683 #define Q_IDXDIFF(q, idx) IDXDIFF((q)->pidx, (q)->idx, (q)->size) 684 #define R_IDXDIFF(q, idx) IDXDIFF((q)->cidx, (q)->idx, (q)->size) 685 686 #define PIDXDIFF(head, tail, wrap) \ 687 ((tail) >= (head) ? (tail) - (head) : (wrap) - (head) + (tail)) 688 #define P_IDXDIFF(q, idx) PIDXDIFF((q)->cidx, idx, (q)->size) 689 690 /** 691 * ring_tx_db - ring a Tx queue's doorbell 692 * @adap: the adapter 693 * @q: the Tx queue 694 * @n: number of new descriptors to give to HW 695 * 696 * Ring the doorbel for a Tx queue. 697 */ 698 static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q) 699 { 700 int n = Q_IDXDIFF(q, dbidx); 701 702 /* 703 * Make sure that all writes to the TX Descriptors are committed 704 * before we tell the hardware about them. 705 */ 706 rte_wmb(); 707 708 /* 709 * If we don't have access to the new User Doorbell (T5+), use the old 710 * doorbell mechanism; otherwise use the new BAR2 mechanism. 711 */ 712 if (unlikely(!q->bar2_addr)) { 713 u32 val = V_PIDX(n); 714 715 /* 716 * For T4 we need to participate in the Doorbell Recovery 717 * mechanism. 718 */ 719 if (!q->db_disabled) 720 t4_write_reg(adap, MYPF_REG(A_SGE_PF_KDOORBELL), 721 V_QID(q->cntxt_id) | val); 722 else 723 q->db_pidx_inc += n; 724 q->db_pidx = q->pidx; 725 } else { 726 u32 val = V_PIDX_T5(n); 727 728 /* 729 * T4 and later chips share the same PIDX field offset within 730 * the doorbell, but T5 and later shrank the field in order to 731 * gain a bit for Doorbell Priority. The field was absurdly 732 * large in the first place (14 bits) so we just use the T5 733 * and later limits and warn if a Queue ID is too large. 734 */ 735 WARN_ON(val & F_DBPRIO); 736 737 writel(val | V_QID(q->bar2_qid), 738 (void *)((uintptr_t)q->bar2_addr + SGE_UDB_KDOORBELL)); 739 740 /* 741 * This Write Memory Barrier will force the write to the User 742 * Doorbell area to be flushed. This is needed to prevent 743 * writes on different CPUs for the same queue from hitting 744 * the adapter out of order. This is required when some Work 745 * Requests take the Write Combine Gather Buffer path (user 746 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some 747 * take the traditional path where we simply increment the 748 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the 749 * hardware DMA read the actual Work Request. 750 */ 751 rte_wmb(); 752 } 753 q->dbidx = q->pidx; 754 } 755 756 /* 757 * Figure out what HW csum a packet wants and return the appropriate control 758 * bits. 759 */ 760 static u64 hwcsum(enum chip_type chip, const struct rte_mbuf *m) 761 { 762 int csum_type; 763 764 if (m->ol_flags & PKT_TX_IP_CKSUM) { 765 switch (m->ol_flags & PKT_TX_L4_MASK) { 766 case PKT_TX_TCP_CKSUM: 767 csum_type = TX_CSUM_TCPIP; 768 break; 769 case PKT_TX_UDP_CKSUM: 770 csum_type = TX_CSUM_UDPIP; 771 break; 772 default: 773 goto nocsum; 774 } 775 } else { 776 goto nocsum; 777 } 778 779 if (likely(csum_type >= TX_CSUM_TCPIP)) { 780 u64 hdr_len = V_TXPKT_IPHDR_LEN(m->l3_len); 781 int eth_hdr_len = m->l2_len; 782 783 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 784 hdr_len |= V_TXPKT_ETHHDR_LEN(eth_hdr_len); 785 else 786 hdr_len |= V_T6_TXPKT_ETHHDR_LEN(eth_hdr_len); 787 return V_TXPKT_CSUM_TYPE(csum_type) | hdr_len; 788 } 789 nocsum: 790 /* 791 * unknown protocol, disable HW csum 792 * and hope a bad packet is detected 793 */ 794 return F_TXPKT_L4CSUM_DIS; 795 } 796 797 static inline void txq_advance(struct sge_txq *q, unsigned int n) 798 { 799 q->in_use += n; 800 q->pidx += n; 801 if (q->pidx >= q->size) 802 q->pidx -= q->size; 803 } 804 805 #define MAX_COALESCE_LEN 64000 806 807 static inline int wraps_around(struct sge_txq *q, int ndesc) 808 { 809 return (q->pidx + ndesc) > q->size ? 1 : 0; 810 } 811 812 static void tx_timer_cb(void *data) 813 { 814 struct adapter *adap = (struct adapter *)data; 815 struct sge_eth_txq *txq = &adap->sge.ethtxq[0]; 816 int i; 817 unsigned int coal_idx; 818 819 /* monitor any pending tx */ 820 for (i = 0; i < adap->sge.max_ethqsets; i++, txq++) { 821 if (t4_os_trylock(&txq->txq_lock)) { 822 coal_idx = txq->q.coalesce.idx; 823 if (coal_idx) { 824 if (coal_idx == txq->q.last_coal_idx && 825 txq->q.pidx == txq->q.last_pidx) { 826 ship_tx_pkt_coalesce_wr(adap, txq); 827 } else { 828 txq->q.last_coal_idx = coal_idx; 829 txq->q.last_pidx = txq->q.pidx; 830 } 831 } 832 t4_os_unlock(&txq->txq_lock); 833 } 834 } 835 rte_eal_alarm_set(50, tx_timer_cb, (void *)adap); 836 } 837 838 /** 839 * ship_tx_pkt_coalesce_wr - finalizes and ships a coalesce WR 840 * @ adap: adapter structure 841 * @txq: tx queue 842 * 843 * writes the different fields of the pkts WR and sends it. 844 */ 845 static inline void ship_tx_pkt_coalesce_wr(struct adapter *adap, 846 struct sge_eth_txq *txq) 847 { 848 u32 wr_mid; 849 struct sge_txq *q = &txq->q; 850 struct fw_eth_tx_pkts_wr *wr; 851 unsigned int ndesc; 852 853 /* fill the pkts WR header */ 854 wr = (void *)&q->desc[q->pidx]; 855 wr->op_pkd = htonl(V_FW_WR_OP(FW_ETH_TX_PKTS2_WR)); 856 857 wr_mid = V_FW_WR_LEN16(DIV_ROUND_UP(q->coalesce.flits, 2)); 858 ndesc = flits_to_desc(q->coalesce.flits); 859 wr->equiq_to_len16 = htonl(wr_mid); 860 wr->plen = cpu_to_be16(q->coalesce.len); 861 wr->npkt = q->coalesce.idx; 862 wr->r3 = 0; 863 wr->type = q->coalesce.type; 864 865 /* zero out coalesce structure members */ 866 q->coalesce.idx = 0; 867 q->coalesce.flits = 0; 868 q->coalesce.len = 0; 869 870 txq_advance(q, ndesc); 871 txq->stats.coal_wr++; 872 txq->stats.coal_pkts += wr->npkt; 873 874 if (Q_IDXDIFF(q, equeidx) >= q->size / 2) { 875 q->equeidx = q->pidx; 876 wr_mid |= F_FW_WR_EQUEQ; 877 wr->equiq_to_len16 = htonl(wr_mid); 878 } 879 ring_tx_db(adap, q); 880 } 881 882 /** 883 * should_tx_packet_coalesce - decides wether to coalesce an mbuf or not 884 * @txq: tx queue where the mbuf is sent 885 * @mbuf: mbuf to be sent 886 * @nflits: return value for number of flits needed 887 * @adap: adapter structure 888 * 889 * This function decides if a packet should be coalesced or not. 890 */ 891 static inline int should_tx_packet_coalesce(struct sge_eth_txq *txq, 892 struct rte_mbuf *mbuf, 893 unsigned int *nflits, 894 struct adapter *adap) 895 { 896 struct sge_txq *q = &txq->q; 897 unsigned int flits, ndesc; 898 unsigned char type = 0; 899 int credits; 900 901 /* use coal WR type 1 when no frags are present */ 902 type = (mbuf->nb_segs == 1) ? 1 : 0; 903 904 if (unlikely(type != q->coalesce.type && q->coalesce.idx)) 905 ship_tx_pkt_coalesce_wr(adap, txq); 906 907 /* calculate the number of flits required for coalescing this packet 908 * without the 2 flits of the WR header. These are added further down 909 * if we are just starting in new PKTS WR. sgl_len doesn't account for 910 * the possible 16 bytes alignment ULP TX commands so we do it here. 911 */ 912 flits = (sgl_len(mbuf->nb_segs) + 1) & ~1U; 913 if (type == 0) 914 flits += (sizeof(struct ulp_txpkt) + 915 sizeof(struct ulptx_idata)) / sizeof(__be64); 916 flits += sizeof(struct cpl_tx_pkt_core) / sizeof(__be64); 917 *nflits = flits; 918 919 /* If coalescing is on, the mbuf is added to a pkts WR */ 920 if (q->coalesce.idx) { 921 ndesc = DIV_ROUND_UP(q->coalesce.flits + flits, 8); 922 credits = txq_avail(q) - ndesc; 923 924 /* If we are wrapping or this is last mbuf then, send the 925 * already coalesced mbufs and let the non-coalesce pass 926 * handle the mbuf. 927 */ 928 if (unlikely(credits < 0 || wraps_around(q, ndesc))) { 929 ship_tx_pkt_coalesce_wr(adap, txq); 930 return 0; 931 } 932 933 /* If the max coalesce len or the max WR len is reached 934 * ship the WR and keep coalescing on. 935 */ 936 if (unlikely((q->coalesce.len + mbuf->pkt_len > 937 MAX_COALESCE_LEN) || 938 (q->coalesce.flits + flits > 939 q->coalesce.max))) { 940 ship_tx_pkt_coalesce_wr(adap, txq); 941 goto new; 942 } 943 return 1; 944 } 945 946 new: 947 /* start a new pkts WR, the WR header is not filled below */ 948 flits += sizeof(struct fw_eth_tx_pkts_wr) / sizeof(__be64); 949 ndesc = flits_to_desc(q->coalesce.flits + flits); 950 credits = txq_avail(q) - ndesc; 951 952 if (unlikely(credits < 0 || wraps_around(q, ndesc))) 953 return 0; 954 q->coalesce.flits += 2; 955 q->coalesce.type = type; 956 q->coalesce.ptr = (unsigned char *)&q->desc[q->pidx] + 957 2 * sizeof(__be64); 958 return 1; 959 } 960 961 /** 962 * tx_do_packet_coalesce - add an mbuf to a coalesce WR 963 * @txq: sge_eth_txq used send the mbuf 964 * @mbuf: mbuf to be sent 965 * @flits: flits needed for this mbuf 966 * @adap: adapter structure 967 * @pi: port_info structure 968 * @addr: mapped address of the mbuf 969 * 970 * Adds an mbuf to be sent as part of a coalesce WR by filling a 971 * ulp_tx_pkt command, ulp_tx_sc_imm command, cpl message and 972 * ulp_tx_sc_dsgl command. 973 */ 974 static inline int tx_do_packet_coalesce(struct sge_eth_txq *txq, 975 struct rte_mbuf *mbuf, 976 int flits, struct adapter *adap, 977 const struct port_info *pi, 978 dma_addr_t *addr, uint16_t nb_pkts) 979 { 980 u64 cntrl, *end; 981 struct sge_txq *q = &txq->q; 982 struct ulp_txpkt *mc; 983 struct ulptx_idata *sc_imm; 984 struct cpl_tx_pkt_core *cpl; 985 struct tx_sw_desc *sd; 986 unsigned int idx = q->coalesce.idx, len = mbuf->pkt_len; 987 988 #ifdef RTE_LIBRTE_CXGBE_TPUT 989 RTE_SET_USED(nb_pkts); 990 #endif 991 992 if (q->coalesce.type == 0) { 993 mc = (struct ulp_txpkt *)q->coalesce.ptr; 994 mc->cmd_dest = htonl(V_ULPTX_CMD(4) | V_ULP_TXPKT_DEST(0) | 995 V_ULP_TXPKT_FID(adap->sge.fw_evtq.cntxt_id) | 996 F_ULP_TXPKT_RO); 997 mc->len = htonl(DIV_ROUND_UP(flits, 2)); 998 sc_imm = (struct ulptx_idata *)(mc + 1); 999 sc_imm->cmd_more = htonl(V_ULPTX_CMD(ULP_TX_SC_IMM) | 1000 F_ULP_TX_SC_MORE); 1001 sc_imm->len = htonl(sizeof(*cpl)); 1002 end = (u64 *)mc + flits; 1003 cpl = (struct cpl_tx_pkt_core *)(sc_imm + 1); 1004 } else { 1005 end = (u64 *)q->coalesce.ptr + flits; 1006 cpl = (struct cpl_tx_pkt_core *)q->coalesce.ptr; 1007 } 1008 1009 /* update coalesce structure for this txq */ 1010 q->coalesce.flits += flits; 1011 q->coalesce.ptr += flits * sizeof(__be64); 1012 q->coalesce.len += mbuf->pkt_len; 1013 1014 /* fill the cpl message, same as in t4_eth_xmit, this should be kept 1015 * similar to t4_eth_xmit 1016 */ 1017 if (mbuf->ol_flags & PKT_TX_IP_CKSUM) { 1018 cntrl = hwcsum(adap->params.chip, mbuf) | 1019 F_TXPKT_IPCSUM_DIS; 1020 txq->stats.tx_cso++; 1021 } else { 1022 cntrl = F_TXPKT_L4CSUM_DIS | F_TXPKT_IPCSUM_DIS; 1023 } 1024 1025 if (mbuf->ol_flags & PKT_TX_VLAN_PKT) { 1026 txq->stats.vlan_ins++; 1027 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(mbuf->vlan_tci); 1028 } 1029 1030 cpl->ctrl0 = htonl(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 1031 V_TXPKT_INTF(pi->tx_chan) | 1032 V_TXPKT_PF(adap->pf)); 1033 cpl->pack = htons(0); 1034 cpl->len = htons(len); 1035 cpl->ctrl1 = cpu_to_be64(cntrl); 1036 write_sgl(mbuf, q, (struct ulptx_sgl *)(cpl + 1), end, 0, addr); 1037 txq->stats.pkts++; 1038 txq->stats.tx_bytes += len; 1039 1040 sd = &q->sdesc[q->pidx + (idx >> 1)]; 1041 if (!(idx & 1)) { 1042 if (sd->coalesce.idx) { 1043 int i; 1044 1045 for (i = 0; i < sd->coalesce.idx; i++) { 1046 rte_pktmbuf_free(sd->coalesce.mbuf[i]); 1047 sd->coalesce.mbuf[i] = NULL; 1048 } 1049 } 1050 } 1051 1052 /* store pointers to the mbuf and the sgl used in free_tx_desc. 1053 * each tx desc can hold two pointers corresponding to the value 1054 * of ETH_COALESCE_PKT_PER_DESC 1055 */ 1056 sd->coalesce.mbuf[idx & 1] = mbuf; 1057 sd->coalesce.sgl[idx & 1] = (struct ulptx_sgl *)(cpl + 1); 1058 sd->coalesce.idx = (idx & 1) + 1; 1059 1060 /* send the coaelsced work request if max reached */ 1061 if (++q->coalesce.idx == ETH_COALESCE_PKT_NUM 1062 #ifndef RTE_LIBRTE_CXGBE_TPUT 1063 || q->coalesce.idx >= nb_pkts 1064 #endif 1065 ) 1066 ship_tx_pkt_coalesce_wr(adap, txq); 1067 return 0; 1068 } 1069 1070 /** 1071 * t4_eth_xmit - add a packet to an Ethernet Tx queue 1072 * @txq: the egress queue 1073 * @mbuf: the packet 1074 * 1075 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled. 1076 */ 1077 int t4_eth_xmit(struct sge_eth_txq *txq, struct rte_mbuf *mbuf, 1078 uint16_t nb_pkts) 1079 { 1080 const struct port_info *pi; 1081 struct cpl_tx_pkt_lso_core *lso; 1082 struct adapter *adap; 1083 struct rte_mbuf *m = mbuf; 1084 struct fw_eth_tx_pkt_wr *wr; 1085 struct cpl_tx_pkt_core *cpl; 1086 struct tx_sw_desc *d; 1087 dma_addr_t addr[m->nb_segs]; 1088 unsigned int flits, ndesc, cflits; 1089 int l3hdr_len, l4hdr_len, eth_xtra_len; 1090 int len, last_desc; 1091 int credits; 1092 u32 wr_mid; 1093 u64 cntrl, *end; 1094 bool v6; 1095 u32 max_pkt_len = txq->eth_dev->data->dev_conf.rxmode.max_rx_pkt_len; 1096 1097 /* Reject xmit if queue is stopped */ 1098 if (unlikely(txq->flags & EQ_STOPPED)) 1099 return -(EBUSY); 1100 1101 /* 1102 * The chip min packet length is 10 octets but play safe and reject 1103 * anything shorter than an Ethernet header. 1104 */ 1105 if (unlikely(m->pkt_len < ETHER_HDR_LEN)) { 1106 out_free: 1107 rte_pktmbuf_free(m); 1108 return 0; 1109 } 1110 1111 if ((!(m->ol_flags & PKT_TX_TCP_SEG)) && 1112 (unlikely(m->pkt_len > max_pkt_len))) 1113 goto out_free; 1114 1115 pi = (struct port_info *)txq->eth_dev->data->dev_private; 1116 adap = pi->adapter; 1117 1118 cntrl = F_TXPKT_L4CSUM_DIS | F_TXPKT_IPCSUM_DIS; 1119 /* align the end of coalesce WR to a 512 byte boundary */ 1120 txq->q.coalesce.max = (8 - (txq->q.pidx & 7)) * 8; 1121 1122 if (!((m->ol_flags & PKT_TX_TCP_SEG) || (m->pkt_len > ETHER_MAX_LEN))) { 1123 if (should_tx_packet_coalesce(txq, mbuf, &cflits, adap)) { 1124 if (unlikely(map_mbuf(mbuf, addr) < 0)) { 1125 dev_warn(adap, "%s: mapping err for coalesce\n", 1126 __func__); 1127 txq->stats.mapping_err++; 1128 goto out_free; 1129 } 1130 rte_prefetch0((volatile void *)addr); 1131 return tx_do_packet_coalesce(txq, mbuf, cflits, adap, 1132 pi, addr, nb_pkts); 1133 } else { 1134 return -EBUSY; 1135 } 1136 } 1137 1138 if (txq->q.coalesce.idx) 1139 ship_tx_pkt_coalesce_wr(adap, txq); 1140 1141 flits = calc_tx_flits(m); 1142 ndesc = flits_to_desc(flits); 1143 credits = txq_avail(&txq->q) - ndesc; 1144 1145 if (unlikely(credits < 0)) { 1146 dev_debug(adap, "%s: Tx ring %u full; credits = %d\n", 1147 __func__, txq->q.cntxt_id, credits); 1148 return -EBUSY; 1149 } 1150 1151 if (unlikely(map_mbuf(m, addr) < 0)) { 1152 txq->stats.mapping_err++; 1153 goto out_free; 1154 } 1155 1156 wr_mid = V_FW_WR_LEN16(DIV_ROUND_UP(flits, 2)); 1157 if (Q_IDXDIFF(&txq->q, equeidx) >= 64) { 1158 txq->q.equeidx = txq->q.pidx; 1159 wr_mid |= F_FW_WR_EQUEQ; 1160 } 1161 1162 wr = (void *)&txq->q.desc[txq->q.pidx]; 1163 wr->equiq_to_len16 = htonl(wr_mid); 1164 wr->r3 = rte_cpu_to_be_64(0); 1165 end = (u64 *)wr + flits; 1166 1167 len = 0; 1168 len += sizeof(*cpl); 1169 1170 /* Coalescing skipped and we send through normal path */ 1171 if (!(m->ol_flags & PKT_TX_TCP_SEG)) { 1172 wr->op_immdlen = htonl(V_FW_WR_OP(FW_ETH_TX_PKT_WR) | 1173 V_FW_WR_IMMDLEN(len)); 1174 cpl = (void *)(wr + 1); 1175 if (m->ol_flags & PKT_TX_IP_CKSUM) { 1176 cntrl = hwcsum(adap->params.chip, m) | 1177 F_TXPKT_IPCSUM_DIS; 1178 txq->stats.tx_cso++; 1179 } 1180 } else { 1181 lso = (void *)(wr + 1); 1182 v6 = (m->ol_flags & PKT_TX_IPV6) != 0; 1183 l3hdr_len = m->l3_len; 1184 l4hdr_len = m->l4_len; 1185 eth_xtra_len = m->l2_len - ETHER_HDR_LEN; 1186 len += sizeof(*lso); 1187 wr->op_immdlen = htonl(V_FW_WR_OP(FW_ETH_TX_PKT_WR) | 1188 V_FW_WR_IMMDLEN(len)); 1189 lso->lso_ctrl = htonl(V_LSO_OPCODE(CPL_TX_PKT_LSO) | 1190 F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE | 1191 V_LSO_IPV6(v6) | 1192 V_LSO_ETHHDR_LEN(eth_xtra_len / 4) | 1193 V_LSO_IPHDR_LEN(l3hdr_len / 4) | 1194 V_LSO_TCPHDR_LEN(l4hdr_len / 4)); 1195 lso->ipid_ofst = htons(0); 1196 lso->mss = htons(m->tso_segsz); 1197 lso->seqno_offset = htonl(0); 1198 if (is_t4(adap->params.chip)) 1199 lso->len = htonl(m->pkt_len); 1200 else 1201 lso->len = htonl(V_LSO_T5_XFER_SIZE(m->pkt_len)); 1202 cpl = (void *)(lso + 1); 1203 1204 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1205 cntrl = V_TXPKT_ETHHDR_LEN(eth_xtra_len); 1206 else 1207 cntrl = V_T6_TXPKT_ETHHDR_LEN(eth_xtra_len); 1208 1209 cntrl |= V_TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : 1210 TX_CSUM_TCPIP) | 1211 V_TXPKT_IPHDR_LEN(l3hdr_len); 1212 txq->stats.tso++; 1213 txq->stats.tx_cso += m->tso_segsz; 1214 } 1215 1216 if (m->ol_flags & PKT_TX_VLAN_PKT) { 1217 txq->stats.vlan_ins++; 1218 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->vlan_tci); 1219 } 1220 1221 cpl->ctrl0 = htonl(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 1222 V_TXPKT_INTF(pi->tx_chan) | 1223 V_TXPKT_PF(adap->pf)); 1224 cpl->pack = htons(0); 1225 cpl->len = htons(m->pkt_len); 1226 cpl->ctrl1 = cpu_to_be64(cntrl); 1227 1228 txq->stats.pkts++; 1229 txq->stats.tx_bytes += m->pkt_len; 1230 last_desc = txq->q.pidx + ndesc - 1; 1231 if (last_desc >= (int)txq->q.size) 1232 last_desc -= txq->q.size; 1233 1234 d = &txq->q.sdesc[last_desc]; 1235 if (d->coalesce.idx) { 1236 int i; 1237 1238 for (i = 0; i < d->coalesce.idx; i++) { 1239 rte_pktmbuf_free(d->coalesce.mbuf[i]); 1240 d->coalesce.mbuf[i] = NULL; 1241 } 1242 d->coalesce.idx = 0; 1243 } 1244 write_sgl(m, &txq->q, (struct ulptx_sgl *)(cpl + 1), end, 0, 1245 addr); 1246 txq->q.sdesc[last_desc].mbuf = m; 1247 txq->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1); 1248 txq_advance(&txq->q, ndesc); 1249 ring_tx_db(adap, &txq->q); 1250 return 0; 1251 } 1252 1253 /** 1254 * alloc_ring - allocate resources for an SGE descriptor ring 1255 * @dev: the PCI device's core device 1256 * @nelem: the number of descriptors 1257 * @elem_size: the size of each descriptor 1258 * @sw_size: the size of the SW state associated with each ring element 1259 * @phys: the physical address of the allocated ring 1260 * @metadata: address of the array holding the SW state for the ring 1261 * @stat_size: extra space in HW ring for status information 1262 * @node: preferred node for memory allocations 1263 * 1264 * Allocates resources for an SGE descriptor ring, such as Tx queues, 1265 * free buffer lists, or response queues. Each SGE ring requires 1266 * space for its HW descriptors plus, optionally, space for the SW state 1267 * associated with each HW entry (the metadata). The function returns 1268 * three values: the virtual address for the HW ring (the return value 1269 * of the function), the bus address of the HW ring, and the address 1270 * of the SW ring. 1271 */ 1272 static void *alloc_ring(size_t nelem, size_t elem_size, 1273 size_t sw_size, dma_addr_t *phys, void *metadata, 1274 size_t stat_size, __rte_unused uint16_t queue_id, 1275 int socket_id, const char *z_name, 1276 const char *z_name_sw) 1277 { 1278 size_t len = CXGBE_MAX_RING_DESC_SIZE * elem_size + stat_size; 1279 const struct rte_memzone *tz; 1280 void *s = NULL; 1281 1282 dev_debug(adapter, "%s: nelem = %zu; elem_size = %zu; sw_size = %zu; " 1283 "stat_size = %zu; queue_id = %u; socket_id = %d; z_name = %s;" 1284 " z_name_sw = %s\n", __func__, nelem, elem_size, sw_size, 1285 stat_size, queue_id, socket_id, z_name, z_name_sw); 1286 1287 tz = rte_memzone_lookup(z_name); 1288 if (tz) { 1289 dev_debug(adapter, "%s: tz exists...returning existing..\n", 1290 __func__); 1291 goto alloc_sw_ring; 1292 } 1293 1294 /* 1295 * Allocate TX/RX ring hardware descriptors. A memzone large enough to 1296 * handle the maximum ring size is allocated in order to allow for 1297 * resizing in later calls to the queue setup function. 1298 */ 1299 tz = rte_memzone_reserve_aligned(z_name, len, socket_id, 0, 4096); 1300 if (!tz) 1301 return NULL; 1302 1303 alloc_sw_ring: 1304 memset(tz->addr, 0, len); 1305 if (sw_size) { 1306 s = rte_zmalloc_socket(z_name_sw, nelem * sw_size, 1307 RTE_CACHE_LINE_SIZE, socket_id); 1308 1309 if (!s) { 1310 dev_err(adapter, "%s: failed to get sw_ring memory\n", 1311 __func__); 1312 return NULL; 1313 } 1314 } 1315 if (metadata) 1316 *(void **)metadata = s; 1317 1318 *phys = (uint64_t)tz->phys_addr; 1319 return tz->addr; 1320 } 1321 1322 /** 1323 * t4_pktgl_to_mbuf_usembufs - build an mbuf from a packet gather list 1324 * @gl: the gather list 1325 * 1326 * Builds an mbuf from the given packet gather list. Returns the mbuf or 1327 * %NULL if mbuf allocation failed. 1328 */ 1329 static struct rte_mbuf *t4_pktgl_to_mbuf_usembufs(const struct pkt_gl *gl) 1330 { 1331 /* 1332 * If there's only one mbuf fragment, just return that. 1333 */ 1334 if (likely(gl->nfrags == 1)) 1335 return gl->mbufs[0]; 1336 1337 return NULL; 1338 } 1339 1340 /** 1341 * t4_pktgl_to_mbuf - build an mbuf from a packet gather list 1342 * @gl: the gather list 1343 * 1344 * Builds an mbuf from the given packet gather list. Returns the mbuf or 1345 * %NULL if mbuf allocation failed. 1346 */ 1347 static struct rte_mbuf *t4_pktgl_to_mbuf(const struct pkt_gl *gl) 1348 { 1349 return t4_pktgl_to_mbuf_usembufs(gl); 1350 } 1351 1352 /** 1353 * t4_ethrx_handler - process an ingress ethernet packet 1354 * @q: the response queue that received the packet 1355 * @rsp: the response queue descriptor holding the RX_PKT message 1356 * @si: the gather list of packet fragments 1357 * 1358 * Process an ingress ethernet packet and deliver it to the stack. 1359 */ 1360 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp, 1361 const struct pkt_gl *si) 1362 { 1363 struct rte_mbuf *mbuf; 1364 const struct cpl_rx_pkt *pkt; 1365 const struct rss_header *rss_hdr; 1366 bool csum_ok; 1367 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 1368 u16 err_vec; 1369 1370 rss_hdr = (const void *)rsp; 1371 pkt = (const void *)&rsp[1]; 1372 /* Compressed error vector is enabled for T6 only */ 1373 if (q->adapter->params.tp.rx_pkt_encap) 1374 err_vec = G_T6_COMPR_RXERR_VEC(ntohs(pkt->err_vec)); 1375 else 1376 err_vec = ntohs(pkt->err_vec); 1377 csum_ok = pkt->csum_calc && !err_vec; 1378 1379 mbuf = t4_pktgl_to_mbuf(si); 1380 if (unlikely(!mbuf)) { 1381 rxq->stats.rx_drops++; 1382 return 0; 1383 } 1384 1385 mbuf->port = pkt->iff; 1386 if (pkt->l2info & htonl(F_RXF_IP)) { 1387 mbuf->packet_type = RTE_PTYPE_L3_IPV4; 1388 if (unlikely(!csum_ok)) 1389 mbuf->ol_flags |= PKT_RX_IP_CKSUM_BAD; 1390 1391 if ((pkt->l2info & htonl(F_RXF_UDP | F_RXF_TCP)) && !csum_ok) 1392 mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD; 1393 } else if (pkt->l2info & htonl(F_RXF_IP6)) { 1394 mbuf->packet_type = RTE_PTYPE_L3_IPV6; 1395 } 1396 1397 mbuf->port = pkt->iff; 1398 1399 if (!rss_hdr->filter_tid && rss_hdr->hash_type) { 1400 mbuf->ol_flags |= PKT_RX_RSS_HASH; 1401 mbuf->hash.rss = ntohl(rss_hdr->hash_val); 1402 } 1403 1404 if (pkt->vlan_ex) { 1405 mbuf->ol_flags |= PKT_RX_VLAN_PKT; 1406 mbuf->vlan_tci = ntohs(pkt->vlan); 1407 } 1408 rxq->stats.pkts++; 1409 rxq->stats.rx_bytes += mbuf->pkt_len; 1410 1411 return 0; 1412 } 1413 1414 #define CXGB4_MSG_AN ((void *)1) 1415 1416 /** 1417 * rspq_next - advance to the next entry in a response queue 1418 * @q: the queue 1419 * 1420 * Updates the state of a response queue to advance it to the next entry. 1421 */ 1422 static inline void rspq_next(struct sge_rspq *q) 1423 { 1424 q->cur_desc = (const __be64 *)((const char *)q->cur_desc + q->iqe_len); 1425 if (unlikely(++q->cidx == q->size)) { 1426 q->cidx = 0; 1427 q->gen ^= 1; 1428 q->cur_desc = q->desc; 1429 } 1430 } 1431 1432 /** 1433 * process_responses - process responses from an SGE response queue 1434 * @q: the ingress queue to process 1435 * @budget: how many responses can be processed in this round 1436 * @rx_pkts: mbuf to put the pkts 1437 * 1438 * Process responses from an SGE response queue up to the supplied budget. 1439 * Responses include received packets as well as control messages from FW 1440 * or HW. 1441 * 1442 * Additionally choose the interrupt holdoff time for the next interrupt 1443 * on this queue. If the system is under memory shortage use a fairly 1444 * long delay to help recovery. 1445 */ 1446 static int process_responses(struct sge_rspq *q, int budget, 1447 struct rte_mbuf **rx_pkts) 1448 { 1449 int ret = 0, rsp_type; 1450 int budget_left = budget; 1451 const struct rsp_ctrl *rc; 1452 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 1453 1454 while (likely(budget_left)) { 1455 if (q->cidx == ntohs(q->stat->pidx)) 1456 break; 1457 1458 rc = (const struct rsp_ctrl *) 1459 ((const char *)q->cur_desc + (q->iqe_len - sizeof(*rc))); 1460 1461 /* 1462 * Ensure response has been read 1463 */ 1464 rmb(); 1465 rsp_type = G_RSPD_TYPE(rc->u.type_gen); 1466 1467 if (likely(rsp_type == X_RSPD_TYPE_FLBUF)) { 1468 unsigned int stat_pidx; 1469 int stat_pidx_diff; 1470 1471 stat_pidx = ntohs(q->stat->pidx); 1472 stat_pidx_diff = P_IDXDIFF(q, stat_pidx); 1473 while (stat_pidx_diff && budget_left) { 1474 const struct rx_sw_desc *rsd = 1475 &rxq->fl.sdesc[rxq->fl.cidx]; 1476 const struct rss_header *rss_hdr = 1477 (const void *)q->cur_desc; 1478 const struct cpl_rx_pkt *cpl = 1479 (const void *)&q->cur_desc[1]; 1480 struct rte_mbuf *pkt, *npkt; 1481 u32 len, bufsz; 1482 bool csum_ok; 1483 u16 err_vec; 1484 1485 rc = (const struct rsp_ctrl *) 1486 ((const char *)q->cur_desc + 1487 (q->iqe_len - sizeof(*rc))); 1488 1489 rsp_type = G_RSPD_TYPE(rc->u.type_gen); 1490 if (unlikely(rsp_type != X_RSPD_TYPE_FLBUF)) 1491 break; 1492 1493 len = ntohl(rc->pldbuflen_qid); 1494 BUG_ON(!(len & F_RSPD_NEWBUF)); 1495 pkt = rsd->buf; 1496 npkt = pkt; 1497 len = G_RSPD_LEN(len); 1498 pkt->pkt_len = len; 1499 1500 /* Compressed error vector is enabled for 1501 * T6 only 1502 */ 1503 if (q->adapter->params.tp.rx_pkt_encap) 1504 err_vec = G_T6_COMPR_RXERR_VEC( 1505 ntohs(cpl->err_vec)); 1506 else 1507 err_vec = ntohs(cpl->err_vec); 1508 csum_ok = cpl->csum_calc && !err_vec; 1509 1510 /* Chain mbufs into len if necessary */ 1511 while (len) { 1512 struct rte_mbuf *new_pkt = rsd->buf; 1513 1514 bufsz = min(get_buf_size(q->adapter, 1515 rsd), len); 1516 new_pkt->data_len = bufsz; 1517 unmap_rx_buf(&rxq->fl); 1518 len -= bufsz; 1519 npkt->next = new_pkt; 1520 npkt = new_pkt; 1521 pkt->nb_segs++; 1522 rsd = &rxq->fl.sdesc[rxq->fl.cidx]; 1523 } 1524 npkt->next = NULL; 1525 pkt->nb_segs--; 1526 1527 if (cpl->l2info & htonl(F_RXF_IP)) { 1528 pkt->packet_type = RTE_PTYPE_L3_IPV4; 1529 if (unlikely(!csum_ok)) 1530 pkt->ol_flags |= 1531 PKT_RX_IP_CKSUM_BAD; 1532 1533 if ((cpl->l2info & 1534 htonl(F_RXF_UDP | F_RXF_TCP)) && 1535 !csum_ok) 1536 pkt->ol_flags |= 1537 PKT_RX_L4_CKSUM_BAD; 1538 } else if (cpl->l2info & htonl(F_RXF_IP6)) { 1539 pkt->packet_type = RTE_PTYPE_L3_IPV6; 1540 } 1541 1542 if (!rss_hdr->filter_tid && 1543 rss_hdr->hash_type) { 1544 pkt->ol_flags |= PKT_RX_RSS_HASH; 1545 pkt->hash.rss = 1546 ntohl(rss_hdr->hash_val); 1547 } 1548 1549 if (cpl->vlan_ex) { 1550 pkt->ol_flags |= PKT_RX_VLAN_PKT; 1551 pkt->vlan_tci = ntohs(cpl->vlan); 1552 } 1553 1554 rxq->stats.pkts++; 1555 rxq->stats.rx_bytes += pkt->pkt_len; 1556 rx_pkts[budget - budget_left] = pkt; 1557 1558 rspq_next(q); 1559 budget_left--; 1560 stat_pidx_diff--; 1561 } 1562 continue; 1563 } else if (likely(rsp_type == X_RSPD_TYPE_CPL)) { 1564 ret = q->handler(q, q->cur_desc, NULL); 1565 } else { 1566 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN); 1567 } 1568 1569 if (unlikely(ret)) { 1570 /* couldn't process descriptor, back off for recovery */ 1571 q->next_intr_params = V_QINTR_TIMER_IDX(NOMEM_TMR_IDX); 1572 break; 1573 } 1574 1575 rspq_next(q); 1576 budget_left--; 1577 } 1578 1579 /* 1580 * If this is a Response Queue with an associated Free List and 1581 * there's room for another chunk of new Free List buffer pointers, 1582 * refill the Free List. 1583 */ 1584 1585 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 64) 1586 __refill_fl(q->adapter, &rxq->fl); 1587 1588 return budget - budget_left; 1589 } 1590 1591 int cxgbe_poll(struct sge_rspq *q, struct rte_mbuf **rx_pkts, 1592 unsigned int budget, unsigned int *work_done) 1593 { 1594 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 1595 unsigned int cidx_inc; 1596 unsigned int params; 1597 u32 val; 1598 1599 *work_done = process_responses(q, budget, rx_pkts); 1600 1601 if (*work_done) { 1602 cidx_inc = R_IDXDIFF(q, gts_idx); 1603 1604 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 64) 1605 __refill_fl(q->adapter, &rxq->fl); 1606 1607 params = q->intr_params; 1608 q->next_intr_params = params; 1609 val = V_CIDXINC(cidx_inc) | V_SEINTARM(params); 1610 1611 if (unlikely(!q->bar2_addr)) { 1612 t4_write_reg(q->adapter, MYPF_REG(A_SGE_PF_GTS), 1613 val | V_INGRESSQID((u32)q->cntxt_id)); 1614 } else { 1615 writel(val | V_INGRESSQID(q->bar2_qid), 1616 (void *)((uintptr_t)q->bar2_addr + SGE_UDB_GTS)); 1617 /* This Write memory Barrier will force the 1618 * write to the User Doorbell area to be 1619 * flushed. 1620 */ 1621 wmb(); 1622 } 1623 q->gts_idx = q->cidx; 1624 } 1625 return 0; 1626 } 1627 1628 /** 1629 * bar2_address - return the BAR2 address for an SGE Queue's Registers 1630 * @adapter: the adapter 1631 * @qid: the SGE Queue ID 1632 * @qtype: the SGE Queue Type (Egress or Ingress) 1633 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 1634 * 1635 * Returns the BAR2 address for the SGE Queue Registers associated with 1636 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also 1637 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE 1638 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID" 1639 * Registers are supported (e.g. the Write Combining Doorbell Buffer). 1640 */ 1641 static void __iomem *bar2_address(struct adapter *adapter, unsigned int qid, 1642 enum t4_bar2_qtype qtype, 1643 unsigned int *pbar2_qid) 1644 { 1645 u64 bar2_qoffset; 1646 int ret; 1647 1648 ret = t4_bar2_sge_qregs(adapter, qid, qtype, &bar2_qoffset, pbar2_qid); 1649 if (ret) 1650 return NULL; 1651 1652 return adapter->bar2 + bar2_qoffset; 1653 } 1654 1655 int t4_sge_eth_rxq_start(struct adapter *adap, struct sge_rspq *rq) 1656 { 1657 struct sge_eth_rxq *rxq = container_of(rq, struct sge_eth_rxq, rspq); 1658 unsigned int fl_id = rxq->fl.size ? rxq->fl.cntxt_id : 0xffff; 1659 1660 return t4_iq_start_stop(adap, adap->mbox, true, adap->pf, 0, 1661 rq->cntxt_id, fl_id, 0xffff); 1662 } 1663 1664 int t4_sge_eth_rxq_stop(struct adapter *adap, struct sge_rspq *rq) 1665 { 1666 struct sge_eth_rxq *rxq = container_of(rq, struct sge_eth_rxq, rspq); 1667 unsigned int fl_id = rxq->fl.size ? rxq->fl.cntxt_id : 0xffff; 1668 1669 return t4_iq_start_stop(adap, adap->mbox, false, adap->pf, 0, 1670 rq->cntxt_id, fl_id, 0xffff); 1671 } 1672 1673 /* 1674 * @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0 1675 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map 1676 */ 1677 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq, 1678 struct rte_eth_dev *eth_dev, int intr_idx, 1679 struct sge_fl *fl, rspq_handler_t hnd, int cong, 1680 struct rte_mempool *mp, int queue_id, int socket_id) 1681 { 1682 int ret, flsz = 0; 1683 struct fw_iq_cmd c; 1684 struct sge *s = &adap->sge; 1685 struct port_info *pi = (struct port_info *)(eth_dev->data->dev_private); 1686 char z_name[RTE_MEMZONE_NAMESIZE]; 1687 char z_name_sw[RTE_MEMZONE_NAMESIZE]; 1688 unsigned int nb_refill; 1689 1690 /* Size needs to be multiple of 16, including status entry. */ 1691 iq->size = cxgbe_roundup(iq->size, 16); 1692 1693 snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d", 1694 eth_dev->device->driver->name, 1695 fwevtq ? "fwq_ring" : "rx_ring", 1696 eth_dev->data->port_id, queue_id); 1697 snprintf(z_name_sw, sizeof(z_name_sw), "%s_sw_ring", z_name); 1698 1699 iq->desc = alloc_ring(iq->size, iq->iqe_len, 0, &iq->phys_addr, NULL, 0, 1700 queue_id, socket_id, z_name, z_name_sw); 1701 if (!iq->desc) 1702 return -ENOMEM; 1703 1704 memset(&c, 0, sizeof(c)); 1705 c.op_to_vfn = htonl(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | 1706 F_FW_CMD_WRITE | F_FW_CMD_EXEC | 1707 V_FW_IQ_CMD_PFN(adap->pf) | V_FW_IQ_CMD_VFN(0)); 1708 c.alloc_to_len16 = htonl(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART | 1709 (sizeof(c) / 16)); 1710 c.type_to_iqandstindex = 1711 htonl(V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) | 1712 V_FW_IQ_CMD_IQASYNCH(fwevtq) | 1713 V_FW_IQ_CMD_VIID(pi->viid) | 1714 V_FW_IQ_CMD_IQANDST(intr_idx < 0) | 1715 V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_STATUS_PAGE) | 1716 V_FW_IQ_CMD_IQANDSTINDEX(intr_idx >= 0 ? intr_idx : 1717 -intr_idx - 1)); 1718 c.iqdroprss_to_iqesize = 1719 htons(V_FW_IQ_CMD_IQPCIECH(cong > 0 ? cxgbe_ffs(cong) - 1 : 1720 pi->tx_chan) | 1721 F_FW_IQ_CMD_IQGTSMODE | 1722 V_FW_IQ_CMD_IQINTCNTTHRESH(iq->pktcnt_idx) | 1723 V_FW_IQ_CMD_IQESIZE(ilog2(iq->iqe_len) - 4)); 1724 c.iqsize = htons(iq->size); 1725 c.iqaddr = cpu_to_be64(iq->phys_addr); 1726 if (cong >= 0) 1727 c.iqns_to_fl0congen = htonl(F_FW_IQ_CMD_IQFLINTCONGEN | 1728 F_FW_IQ_CMD_IQRO); 1729 1730 if (fl) { 1731 struct sge_eth_rxq *rxq = container_of(fl, struct sge_eth_rxq, 1732 fl); 1733 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 1734 1735 /* 1736 * Allocate the ring for the hardware free list (with space 1737 * for its status page) along with the associated software 1738 * descriptor ring. The free list size needs to be a multiple 1739 * of the Egress Queue Unit and at least 2 Egress Units larger 1740 * than the SGE's Egress Congrestion Threshold 1741 * (fl_starve_thres - 1). 1742 */ 1743 if (fl->size < s->fl_starve_thres - 1 + 2 * 8) 1744 fl->size = s->fl_starve_thres - 1 + 2 * 8; 1745 fl->size = cxgbe_roundup(fl->size, 8); 1746 1747 snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d", 1748 eth_dev->device->driver->name, 1749 fwevtq ? "fwq_ring" : "fl_ring", 1750 eth_dev->data->port_id, queue_id); 1751 snprintf(z_name_sw, sizeof(z_name_sw), "%s_sw_ring", z_name); 1752 1753 fl->desc = alloc_ring(fl->size, sizeof(__be64), 1754 sizeof(struct rx_sw_desc), 1755 &fl->addr, &fl->sdesc, s->stat_len, 1756 queue_id, socket_id, z_name, z_name_sw); 1757 1758 if (!fl->desc) 1759 goto fl_nomem; 1760 1761 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc); 1762 c.iqns_to_fl0congen |= 1763 htonl(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) | 1764 (unlikely(rxq->usembufs) ? 1765 0 : F_FW_IQ_CMD_FL0PACKEN) | 1766 F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO | 1767 F_FW_IQ_CMD_FL0PADEN); 1768 if (cong >= 0) 1769 c.iqns_to_fl0congen |= 1770 htonl(V_FW_IQ_CMD_FL0CNGCHMAP(cong) | 1771 F_FW_IQ_CMD_FL0CONGCIF | 1772 F_FW_IQ_CMD_FL0CONGEN); 1773 1774 /* In T6, for egress queue type FL there is internal overhead 1775 * of 16B for header going into FLM module. 1776 * Hence maximum allowed burst size will be 448 bytes. 1777 */ 1778 c.fl0dcaen_to_fl0cidxfthresh = 1779 htons(V_FW_IQ_CMD_FL0FBMIN(chip_ver <= CHELSIO_T5 ? 1780 X_FETCHBURSTMIN_128B : 1781 X_FETCHBURSTMIN_64B) | 1782 V_FW_IQ_CMD_FL0FBMAX(chip_ver <= CHELSIO_T5 ? 1783 X_FETCHBURSTMAX_512B : 1784 X_FETCHBURSTMAX_256B)); 1785 c.fl0size = htons(flsz); 1786 c.fl0addr = cpu_to_be64(fl->addr); 1787 } 1788 1789 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 1790 if (ret) 1791 goto err; 1792 1793 iq->cur_desc = iq->desc; 1794 iq->cidx = 0; 1795 iq->gts_idx = 0; 1796 iq->gen = 1; 1797 iq->next_intr_params = iq->intr_params; 1798 iq->cntxt_id = ntohs(c.iqid); 1799 iq->abs_id = ntohs(c.physiqid); 1800 iq->bar2_addr = bar2_address(adap, iq->cntxt_id, T4_BAR2_QTYPE_INGRESS, 1801 &iq->bar2_qid); 1802 iq->size--; /* subtract status entry */ 1803 iq->stat = (void *)&iq->desc[iq->size * 8]; 1804 iq->eth_dev = eth_dev; 1805 iq->handler = hnd; 1806 iq->port_id = pi->port_id; 1807 iq->mb_pool = mp; 1808 1809 /* set offset to -1 to distinguish ingress queues without FL */ 1810 iq->offset = fl ? 0 : -1; 1811 1812 if (fl) { 1813 fl->cntxt_id = ntohs(c.fl0id); 1814 fl->avail = 0; 1815 fl->pend_cred = 0; 1816 fl->pidx = 0; 1817 fl->cidx = 0; 1818 fl->alloc_failed = 0; 1819 1820 /* 1821 * Note, we must initialize the BAR2 Free List User Doorbell 1822 * information before refilling the Free List! 1823 */ 1824 fl->bar2_addr = bar2_address(adap, fl->cntxt_id, 1825 T4_BAR2_QTYPE_EGRESS, 1826 &fl->bar2_qid); 1827 1828 nb_refill = refill_fl(adap, fl, fl_cap(fl)); 1829 if (nb_refill != fl_cap(fl)) { 1830 ret = -ENOMEM; 1831 dev_err(adap, "%s: mbuf alloc failed with error: %d\n", 1832 __func__, ret); 1833 goto refill_fl_err; 1834 } 1835 } 1836 1837 /* 1838 * For T5 and later we attempt to set up the Congestion Manager values 1839 * of the new RX Ethernet Queue. This should really be handled by 1840 * firmware because it's more complex than any host driver wants to 1841 * get involved with and it's different per chip and this is almost 1842 * certainly wrong. Formware would be wrong as well, but it would be 1843 * a lot easier to fix in one place ... For now we do something very 1844 * simple (and hopefully less wrong). 1845 */ 1846 if (!is_t4(adap->params.chip) && cong >= 0) { 1847 u32 param, val; 1848 int i; 1849 1850 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | 1851 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | 1852 V_FW_PARAMS_PARAM_YZ(iq->cntxt_id)); 1853 if (cong == 0) { 1854 val = V_CONMCTXT_CNGTPMODE(X_CONMCTXT_CNGTPMODE_QUEUE); 1855 } else { 1856 val = V_CONMCTXT_CNGTPMODE( 1857 X_CONMCTXT_CNGTPMODE_CHANNEL); 1858 for (i = 0; i < 4; i++) { 1859 if (cong & (1 << i)) 1860 val |= V_CONMCTXT_CNGCHMAP(1 << 1861 (i << 2)); 1862 } 1863 } 1864 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 1865 ¶m, &val); 1866 if (ret) 1867 dev_warn(adap->pdev_dev, "Failed to set Congestion Manager Context for Ingress Queue %d: %d\n", 1868 iq->cntxt_id, -ret); 1869 } 1870 1871 return 0; 1872 1873 refill_fl_err: 1874 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP, 1875 iq->cntxt_id, fl->cntxt_id, 0xffff); 1876 fl_nomem: 1877 ret = -ENOMEM; 1878 err: 1879 iq->cntxt_id = 0; 1880 iq->abs_id = 0; 1881 if (iq->desc) 1882 iq->desc = NULL; 1883 1884 if (fl && fl->desc) { 1885 rte_free(fl->sdesc); 1886 fl->cntxt_id = 0; 1887 fl->sdesc = NULL; 1888 fl->desc = NULL; 1889 } 1890 return ret; 1891 } 1892 1893 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id) 1894 { 1895 q->cntxt_id = id; 1896 q->bar2_addr = bar2_address(adap, q->cntxt_id, T4_BAR2_QTYPE_EGRESS, 1897 &q->bar2_qid); 1898 q->cidx = 0; 1899 q->pidx = 0; 1900 q->dbidx = 0; 1901 q->in_use = 0; 1902 q->equeidx = 0; 1903 q->coalesce.idx = 0; 1904 q->coalesce.len = 0; 1905 q->coalesce.flits = 0; 1906 q->last_coal_idx = 0; 1907 q->last_pidx = 0; 1908 q->stat = (void *)&q->desc[q->size]; 1909 } 1910 1911 int t4_sge_eth_txq_start(struct sge_eth_txq *txq) 1912 { 1913 /* 1914 * TODO: For flow-control, queue may be stopped waiting to reclaim 1915 * credits. 1916 * Ensure queue is in EQ_STOPPED state before starting it. 1917 */ 1918 if (!(txq->flags & EQ_STOPPED)) 1919 return -(EBUSY); 1920 1921 txq->flags &= ~EQ_STOPPED; 1922 1923 return 0; 1924 } 1925 1926 int t4_sge_eth_txq_stop(struct sge_eth_txq *txq) 1927 { 1928 txq->flags |= EQ_STOPPED; 1929 1930 return 0; 1931 } 1932 1933 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq, 1934 struct rte_eth_dev *eth_dev, uint16_t queue_id, 1935 unsigned int iqid, int socket_id) 1936 { 1937 int ret, nentries; 1938 struct fw_eq_eth_cmd c; 1939 struct sge *s = &adap->sge; 1940 struct port_info *pi = (struct port_info *)(eth_dev->data->dev_private); 1941 char z_name[RTE_MEMZONE_NAMESIZE]; 1942 char z_name_sw[RTE_MEMZONE_NAMESIZE]; 1943 1944 /* Add status entries */ 1945 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 1946 1947 snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d", 1948 eth_dev->device->driver->name, "tx_ring", 1949 eth_dev->data->port_id, queue_id); 1950 snprintf(z_name_sw, sizeof(z_name_sw), "%s_sw_ring", z_name); 1951 1952 txq->q.desc = alloc_ring(txq->q.size, sizeof(struct tx_desc), 1953 sizeof(struct tx_sw_desc), &txq->q.phys_addr, 1954 &txq->q.sdesc, s->stat_len, queue_id, 1955 socket_id, z_name, z_name_sw); 1956 if (!txq->q.desc) 1957 return -ENOMEM; 1958 1959 memset(&c, 0, sizeof(c)); 1960 c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST | 1961 F_FW_CMD_WRITE | F_FW_CMD_EXEC | 1962 V_FW_EQ_ETH_CMD_PFN(adap->pf) | 1963 V_FW_EQ_ETH_CMD_VFN(0)); 1964 c.alloc_to_len16 = htonl(F_FW_EQ_ETH_CMD_ALLOC | 1965 F_FW_EQ_ETH_CMD_EQSTART | (sizeof(c) / 16)); 1966 c.autoequiqe_to_viid = htonl(F_FW_EQ_ETH_CMD_AUTOEQUEQE | 1967 V_FW_EQ_ETH_CMD_VIID(pi->viid)); 1968 c.fetchszm_to_iqid = 1969 htonl(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) | 1970 V_FW_EQ_ETH_CMD_PCIECHN(pi->tx_chan) | 1971 F_FW_EQ_ETH_CMD_FETCHRO | V_FW_EQ_ETH_CMD_IQID(iqid)); 1972 c.dcaen_to_eqsize = 1973 htonl(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 1974 V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 1975 V_FW_EQ_ETH_CMD_EQSIZE(nentries)); 1976 c.eqaddr = rte_cpu_to_be_64(txq->q.phys_addr); 1977 1978 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 1979 if (ret) { 1980 rte_free(txq->q.sdesc); 1981 txq->q.sdesc = NULL; 1982 txq->q.desc = NULL; 1983 return ret; 1984 } 1985 1986 init_txq(adap, &txq->q, G_FW_EQ_ETH_CMD_EQID(ntohl(c.eqid_pkd))); 1987 txq->stats.tso = 0; 1988 txq->stats.pkts = 0; 1989 txq->stats.tx_cso = 0; 1990 txq->stats.coal_wr = 0; 1991 txq->stats.vlan_ins = 0; 1992 txq->stats.tx_bytes = 0; 1993 txq->stats.coal_pkts = 0; 1994 txq->stats.mapping_err = 0; 1995 txq->flags |= EQ_STOPPED; 1996 txq->eth_dev = eth_dev; 1997 t4_os_lock_init(&txq->txq_lock); 1998 return 0; 1999 } 2000 2001 static void free_txq(struct sge_txq *q) 2002 { 2003 q->cntxt_id = 0; 2004 q->sdesc = NULL; 2005 q->desc = NULL; 2006 } 2007 2008 static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq, 2009 struct sge_fl *fl) 2010 { 2011 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff; 2012 2013 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP, 2014 rq->cntxt_id, fl_id, 0xffff); 2015 rq->cntxt_id = 0; 2016 rq->abs_id = 0; 2017 rq->desc = NULL; 2018 2019 if (fl) { 2020 free_rx_bufs(fl, fl->avail); 2021 rte_free(fl->sdesc); 2022 fl->sdesc = NULL; 2023 fl->cntxt_id = 0; 2024 fl->desc = NULL; 2025 } 2026 } 2027 2028 /* 2029 * Clear all queues of the port 2030 * 2031 * Note: This function must only be called after rx and tx path 2032 * of the port have been disabled. 2033 */ 2034 void t4_sge_eth_clear_queues(struct port_info *pi) 2035 { 2036 int i; 2037 struct adapter *adap = pi->adapter; 2038 struct sge_eth_rxq *rxq = &adap->sge.ethrxq[pi->first_qset]; 2039 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 2040 2041 for (i = 0; i < pi->n_rx_qsets; i++, rxq++) { 2042 if (rxq->rspq.desc) 2043 t4_sge_eth_rxq_stop(adap, &rxq->rspq); 2044 } 2045 for (i = 0; i < pi->n_tx_qsets; i++, txq++) { 2046 if (txq->q.desc) { 2047 struct sge_txq *q = &txq->q; 2048 2049 t4_sge_eth_txq_stop(txq); 2050 reclaim_completed_tx(q); 2051 free_tx_desc(q, q->size); 2052 q->equeidx = q->pidx; 2053 } 2054 } 2055 } 2056 2057 void t4_sge_eth_rxq_release(struct adapter *adap, struct sge_eth_rxq *rxq) 2058 { 2059 if (rxq->rspq.desc) { 2060 t4_sge_eth_rxq_stop(adap, &rxq->rspq); 2061 free_rspq_fl(adap, &rxq->rspq, rxq->fl.size ? &rxq->fl : NULL); 2062 } 2063 } 2064 2065 void t4_sge_eth_txq_release(struct adapter *adap, struct sge_eth_txq *txq) 2066 { 2067 if (txq->q.desc) { 2068 t4_sge_eth_txq_stop(txq); 2069 reclaim_completed_tx(&txq->q); 2070 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, txq->q.cntxt_id); 2071 free_tx_desc(&txq->q, txq->q.size); 2072 rte_free(txq->q.sdesc); 2073 free_txq(&txq->q); 2074 } 2075 } 2076 2077 void t4_sge_tx_monitor_start(struct adapter *adap) 2078 { 2079 rte_eal_alarm_set(50, tx_timer_cb, (void *)adap); 2080 } 2081 2082 void t4_sge_tx_monitor_stop(struct adapter *adap) 2083 { 2084 rte_eal_alarm_cancel(tx_timer_cb, (void *)adap); 2085 } 2086 2087 /** 2088 * t4_free_sge_resources - free SGE resources 2089 * @adap: the adapter 2090 * 2091 * Frees resources used by the SGE queue sets. 2092 */ 2093 void t4_free_sge_resources(struct adapter *adap) 2094 { 2095 int i; 2096 struct sge_eth_rxq *rxq = &adap->sge.ethrxq[0]; 2097 struct sge_eth_txq *txq = &adap->sge.ethtxq[0]; 2098 2099 /* clean up Ethernet Tx/Rx queues */ 2100 for (i = 0; i < adap->sge.max_ethqsets; i++, rxq++, txq++) { 2101 /* Free only the queues allocated */ 2102 if (rxq->rspq.desc) { 2103 t4_sge_eth_rxq_release(adap, rxq); 2104 rxq->rspq.eth_dev = NULL; 2105 } 2106 if (txq->q.desc) { 2107 t4_sge_eth_txq_release(adap, txq); 2108 txq->eth_dev = NULL; 2109 } 2110 } 2111 2112 if (adap->sge.fw_evtq.desc) 2113 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL); 2114 } 2115 2116 /** 2117 * t4_sge_init - initialize SGE 2118 * @adap: the adapter 2119 * 2120 * Performs SGE initialization needed every time after a chip reset. 2121 * We do not initialize any of the queues here, instead the driver 2122 * top-level must request those individually. 2123 * 2124 * Called in two different modes: 2125 * 2126 * 1. Perform actual hardware initialization and record hard-coded 2127 * parameters which were used. This gets used when we're the 2128 * Master PF and the Firmware Configuration File support didn't 2129 * work for some reason. 2130 * 2131 * 2. We're not the Master PF or initialization was performed with 2132 * a Firmware Configuration File. In this case we need to grab 2133 * any of the SGE operating parameters that we need to have in 2134 * order to do our job and make sure we can live with them ... 2135 */ 2136 static int t4_sge_init_soft(struct adapter *adap) 2137 { 2138 struct sge *s = &adap->sge; 2139 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu; 2140 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5; 2141 u32 ingress_rx_threshold; 2142 2143 /* 2144 * Verify that CPL messages are going to the Ingress Queue for 2145 * process_responses() and that only packet data is going to the 2146 * Free Lists. 2147 */ 2148 if ((t4_read_reg(adap, A_SGE_CONTROL) & F_RXPKTCPLMODE) != 2149 V_RXPKTCPLMODE(X_RXPKTCPLMODE_SPLIT)) { 2150 dev_err(adap, "bad SGE CPL MODE\n"); 2151 return -EINVAL; 2152 } 2153 2154 /* 2155 * Validate the Host Buffer Register Array indices that we want to 2156 * use ... 2157 * 2158 * XXX Note that we should really read through the Host Buffer Size 2159 * XXX register array and find the indices of the Buffer Sizes which 2160 * XXX meet our needs! 2161 */ 2162 #define READ_FL_BUF(x) \ 2163 t4_read_reg(adap, A_SGE_FL_BUFFER_SIZE0 + (x) * sizeof(u32)) 2164 2165 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF); 2166 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF); 2167 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF); 2168 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF); 2169 2170 /* 2171 * We only bother using the Large Page logic if the Large Page Buffer 2172 * is larger than our Page Size Buffer. 2173 */ 2174 if (fl_large_pg <= fl_small_pg) 2175 fl_large_pg = 0; 2176 2177 #undef READ_FL_BUF 2178 2179 /* 2180 * The Page Size Buffer must be exactly equal to our Page Size and the 2181 * Large Page Size Buffer should be 0 (per above) or a power of 2. 2182 */ 2183 if (fl_small_pg != CXGBE_PAGE_SIZE || 2184 (fl_large_pg & (fl_large_pg - 1)) != 0) { 2185 dev_err(adap, "bad SGE FL page buffer sizes [%d, %d]\n", 2186 fl_small_pg, fl_large_pg); 2187 return -EINVAL; 2188 } 2189 if (fl_large_pg) 2190 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT; 2191 2192 if (adap->use_unpacked_mode) { 2193 int err = 0; 2194 2195 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap)) { 2196 dev_err(adap, "bad SGE FL small MTU %d\n", 2197 fl_small_mtu); 2198 err = -EINVAL; 2199 } 2200 if (fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) { 2201 dev_err(adap, "bad SGE FL large MTU %d\n", 2202 fl_large_mtu); 2203 err = -EINVAL; 2204 } 2205 if (err) 2206 return err; 2207 } 2208 2209 /* 2210 * Retrieve our RX interrupt holdoff timer values and counter 2211 * threshold values from the SGE parameters. 2212 */ 2213 timer_value_0_and_1 = t4_read_reg(adap, A_SGE_TIMER_VALUE_0_AND_1); 2214 timer_value_2_and_3 = t4_read_reg(adap, A_SGE_TIMER_VALUE_2_AND_3); 2215 timer_value_4_and_5 = t4_read_reg(adap, A_SGE_TIMER_VALUE_4_AND_5); 2216 s->timer_val[0] = core_ticks_to_us(adap, 2217 G_TIMERVALUE0(timer_value_0_and_1)); 2218 s->timer_val[1] = core_ticks_to_us(adap, 2219 G_TIMERVALUE1(timer_value_0_and_1)); 2220 s->timer_val[2] = core_ticks_to_us(adap, 2221 G_TIMERVALUE2(timer_value_2_and_3)); 2222 s->timer_val[3] = core_ticks_to_us(adap, 2223 G_TIMERVALUE3(timer_value_2_and_3)); 2224 s->timer_val[4] = core_ticks_to_us(adap, 2225 G_TIMERVALUE4(timer_value_4_and_5)); 2226 s->timer_val[5] = core_ticks_to_us(adap, 2227 G_TIMERVALUE5(timer_value_4_and_5)); 2228 2229 ingress_rx_threshold = t4_read_reg(adap, A_SGE_INGRESS_RX_THRESHOLD); 2230 s->counter_val[0] = G_THRESHOLD_0(ingress_rx_threshold); 2231 s->counter_val[1] = G_THRESHOLD_1(ingress_rx_threshold); 2232 s->counter_val[2] = G_THRESHOLD_2(ingress_rx_threshold); 2233 s->counter_val[3] = G_THRESHOLD_3(ingress_rx_threshold); 2234 2235 return 0; 2236 } 2237 2238 int t4_sge_init(struct adapter *adap) 2239 { 2240 struct sge *s = &adap->sge; 2241 u32 sge_control, sge_conm_ctrl; 2242 int ret, egress_threshold; 2243 2244 /* 2245 * Ingress Padding Boundary and Egress Status Page Size are set up by 2246 * t4_fixup_host_params(). 2247 */ 2248 sge_control = t4_read_reg(adap, A_SGE_CONTROL); 2249 s->pktshift = G_PKTSHIFT(sge_control); 2250 s->stat_len = (sge_control & F_EGRSTATUSPAGESIZE) ? 128 : 64; 2251 s->fl_align = t4_fl_pkt_align(adap); 2252 ret = t4_sge_init_soft(adap); 2253 if (ret < 0) { 2254 dev_err(adap, "%s: t4_sge_init_soft failed, error %d\n", 2255 __func__, -ret); 2256 return ret; 2257 } 2258 2259 /* 2260 * A FL with <= fl_starve_thres buffers is starving and a periodic 2261 * timer will attempt to refill it. This needs to be larger than the 2262 * SGE's Egress Congestion Threshold. If it isn't, then we can get 2263 * stuck waiting for new packets while the SGE is waiting for us to 2264 * give it more Free List entries. (Note that the SGE's Egress 2265 * Congestion Threshold is in units of 2 Free List pointers.) For T4, 2266 * there was only a single field to control this. For T5 there's the 2267 * original field which now only applies to Unpacked Mode Free List 2268 * buffers and a new field which only applies to Packed Mode Free List 2269 * buffers. 2270 */ 2271 sge_conm_ctrl = t4_read_reg(adap, A_SGE_CONM_CTRL); 2272 if (is_t4(adap->params.chip) || adap->use_unpacked_mode) 2273 egress_threshold = G_EGRTHRESHOLD(sge_conm_ctrl); 2274 else 2275 egress_threshold = G_EGRTHRESHOLDPACKING(sge_conm_ctrl); 2276 s->fl_starve_thres = 2 * egress_threshold + 1; 2277 2278 return 0; 2279 } 2280