xref: /dpdk/drivers/net/cxgbe/sge.c (revision a3a2e2c8f7de433e10b1548df65b20bf10086d9c)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2014-2015 Chelsio Communications.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Chelsio Communications nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/queue.h>
35 #include <stdio.h>
36 #include <errno.h>
37 #include <stdint.h>
38 #include <string.h>
39 #include <unistd.h>
40 #include <stdarg.h>
41 #include <inttypes.h>
42 #include <netinet/in.h>
43 
44 #include <rte_byteorder.h>
45 #include <rte_common.h>
46 #include <rte_cycles.h>
47 #include <rte_interrupts.h>
48 #include <rte_log.h>
49 #include <rte_debug.h>
50 #include <rte_pci.h>
51 #include <rte_atomic.h>
52 #include <rte_branch_prediction.h>
53 #include <rte_memory.h>
54 #include <rte_memzone.h>
55 #include <rte_tailq.h>
56 #include <rte_eal.h>
57 #include <rte_alarm.h>
58 #include <rte_ether.h>
59 #include <rte_ethdev.h>
60 #include <rte_atomic.h>
61 #include <rte_malloc.h>
62 #include <rte_random.h>
63 #include <rte_dev.h>
64 
65 #include "common.h"
66 #include "t4_regs.h"
67 #include "t4_msg.h"
68 #include "cxgbe.h"
69 
70 static inline void ship_tx_pkt_coalesce_wr(struct adapter *adap,
71 					   struct sge_eth_txq *txq);
72 
73 /*
74  * Max number of Rx buffers we replenish at a time.
75  */
76 #define MAX_RX_REFILL 64U
77 
78 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
79 
80 /*
81  * Max Tx descriptor space we allow for an Ethernet packet to be inlined
82  * into a WR.
83  */
84 #define MAX_IMM_TX_PKT_LEN 256
85 
86 /*
87  * Rx buffer sizes for "usembufs" Free List buffers (one ingress packet
88  * per mbuf buffer).  We currently only support two sizes for 1500- and
89  * 9000-byte MTUs. We could easily support more but there doesn't seem to be
90  * much need for that ...
91  */
92 #define FL_MTU_SMALL 1500
93 #define FL_MTU_LARGE 9000
94 
95 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
96 					  unsigned int mtu)
97 {
98 	struct sge *s = &adapter->sge;
99 
100 	return CXGBE_ALIGN(s->pktshift + ETHER_HDR_LEN + VLAN_HLEN + mtu,
101 			   s->fl_align);
102 }
103 
104 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
105 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
106 
107 /*
108  * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses
109  * these to specify the buffer size as an index into the SGE Free List Buffer
110  * Size register array.  We also use bit 4, when the buffer has been unmapped
111  * for DMA, but this is of course never sent to the hardware and is only used
112  * to prevent double unmappings.  All of the above requires that the Free List
113  * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
114  * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal
115  * Free List Buffer alignment is 32 bytes, this works out for us ...
116  */
117 enum {
118 	RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */
119 	RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */
120 	RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */
121 
122 	/*
123 	 * XXX We shouldn't depend on being able to use these indices.
124 	 * XXX Especially when some other Master PF has initialized the
125 	 * XXX adapter or we use the Firmware Configuration File.  We
126 	 * XXX should really search through the Host Buffer Size register
127 	 * XXX array for the appropriately sized buffer indices.
128 	 */
129 	RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */
130 	RX_LARGE_PG_BUF  = 0x1,   /* buffer large page buffer */
131 
132 	RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */
133 	RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */
134 };
135 
136 /**
137  * txq_avail - return the number of available slots in a Tx queue
138  * @q: the Tx queue
139  *
140  * Returns the number of descriptors in a Tx queue available to write new
141  * packets.
142  */
143 static inline unsigned int txq_avail(const struct sge_txq *q)
144 {
145 	return q->size - 1 - q->in_use;
146 }
147 
148 static int map_mbuf(struct rte_mbuf *mbuf, dma_addr_t *addr)
149 {
150 	struct rte_mbuf *m = mbuf;
151 
152 	for (; m; m = m->next, addr++) {
153 		*addr = m->buf_physaddr + rte_pktmbuf_headroom(m);
154 		if (*addr == 0)
155 			goto out_err;
156 	}
157 	return 0;
158 
159 out_err:
160 	return -ENOMEM;
161 }
162 
163 /**
164  * free_tx_desc - reclaims Tx descriptors and their buffers
165  * @q: the Tx queue to reclaim descriptors from
166  * @n: the number of descriptors to reclaim
167  *
168  * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
169  * Tx buffers.  Called with the Tx queue lock held.
170  */
171 static void free_tx_desc(struct sge_txq *q, unsigned int n)
172 {
173 	struct tx_sw_desc *d;
174 	unsigned int cidx = 0;
175 
176 	d = &q->sdesc[cidx];
177 	while (n--) {
178 		if (d->mbuf) {                       /* an SGL is present */
179 			rte_pktmbuf_free(d->mbuf);
180 			d->mbuf = NULL;
181 		}
182 		if (d->coalesce.idx) {
183 			int i;
184 
185 			for (i = 0; i < d->coalesce.idx; i++) {
186 				rte_pktmbuf_free(d->coalesce.mbuf[i]);
187 				d->coalesce.mbuf[i] = NULL;
188 			}
189 			d->coalesce.idx = 0;
190 		}
191 		++d;
192 		if (++cidx == q->size) {
193 			cidx = 0;
194 			d = q->sdesc;
195 		}
196 		RTE_MBUF_PREFETCH_TO_FREE(&q->sdesc->mbuf->pool);
197 	}
198 }
199 
200 static void reclaim_tx_desc(struct sge_txq *q, unsigned int n)
201 {
202 	struct tx_sw_desc *d;
203 	unsigned int cidx = q->cidx;
204 
205 	d = &q->sdesc[cidx];
206 	while (n--) {
207 		if (d->mbuf) {                       /* an SGL is present */
208 			rte_pktmbuf_free(d->mbuf);
209 			d->mbuf = NULL;
210 		}
211 		++d;
212 		if (++cidx == q->size) {
213 			cidx = 0;
214 			d = q->sdesc;
215 		}
216 	}
217 	q->cidx = cidx;
218 }
219 
220 /**
221  * fl_cap - return the capacity of a free-buffer list
222  * @fl: the FL
223  *
224  * Returns the capacity of a free-buffer list.  The capacity is less than
225  * the size because one descriptor needs to be left unpopulated, otherwise
226  * HW will think the FL is empty.
227  */
228 static inline unsigned int fl_cap(const struct sge_fl *fl)
229 {
230 	return fl->size - 8;   /* 1 descriptor = 8 buffers */
231 }
232 
233 /**
234  * fl_starving - return whether a Free List is starving.
235  * @adapter: pointer to the adapter
236  * @fl: the Free List
237  *
238  * Tests specified Free List to see whether the number of buffers
239  * available to the hardware has falled below our "starvation"
240  * threshold.
241  */
242 static inline bool fl_starving(const struct adapter *adapter,
243 			       const struct sge_fl *fl)
244 {
245 	const struct sge *s = &adapter->sge;
246 
247 	return fl->avail - fl->pend_cred <= s->fl_starve_thres;
248 }
249 
250 static inline unsigned int get_buf_size(struct adapter *adapter,
251 					const struct rx_sw_desc *d)
252 {
253 	unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
254 	unsigned int buf_size = 0;
255 
256 	switch (rx_buf_size_idx) {
257 	case RX_SMALL_MTU_BUF:
258 		buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
259 		break;
260 
261 	case RX_LARGE_MTU_BUF:
262 		buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
263 		break;
264 
265 	default:
266 		BUG_ON(1);
267 		/* NOT REACHED */
268 	}
269 
270 	return buf_size;
271 }
272 
273 /**
274  * free_rx_bufs - free the Rx buffers on an SGE free list
275  * @q: the SGE free list to free buffers from
276  * @n: how many buffers to free
277  *
278  * Release the next @n buffers on an SGE free-buffer Rx queue.   The
279  * buffers must be made inaccessible to HW before calling this function.
280  */
281 static void free_rx_bufs(struct sge_fl *q, int n)
282 {
283 	unsigned int cidx = q->cidx;
284 	struct rx_sw_desc *d;
285 
286 	d = &q->sdesc[cidx];
287 	while (n--) {
288 		if (d->buf) {
289 			rte_pktmbuf_free(d->buf);
290 			d->buf = NULL;
291 		}
292 		++d;
293 		if (++cidx == q->size) {
294 			cidx = 0;
295 			d = q->sdesc;
296 		}
297 		q->avail--;
298 	}
299 	q->cidx = cidx;
300 }
301 
302 /**
303  * unmap_rx_buf - unmap the current Rx buffer on an SGE free list
304  * @q: the SGE free list
305  *
306  * Unmap the current buffer on an SGE free-buffer Rx queue.   The
307  * buffer must be made inaccessible to HW before calling this function.
308  *
309  * This is similar to @free_rx_bufs above but does not free the buffer.
310  * Do note that the FL still loses any further access to the buffer.
311  */
312 static void unmap_rx_buf(struct sge_fl *q)
313 {
314 	if (++q->cidx == q->size)
315 		q->cidx = 0;
316 	q->avail--;
317 }
318 
319 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
320 {
321 	if (q->pend_cred >= 64) {
322 		u32 val = adap->params.arch.sge_fl_db;
323 
324 		if (is_t4(adap->params.chip))
325 			val |= V_PIDX(q->pend_cred / 8);
326 		else
327 			val |= V_PIDX_T5(q->pend_cred / 8);
328 
329 		/*
330 		 * Make sure all memory writes to the Free List queue are
331 		 * committed before we tell the hardware about them.
332 		 */
333 		wmb();
334 
335 		/*
336 		 * If we don't have access to the new User Doorbell (T5+), use
337 		 * the old doorbell mechanism; otherwise use the new BAR2
338 		 * mechanism.
339 		 */
340 		if (unlikely(!q->bar2_addr)) {
341 			t4_write_reg_relaxed(adap, MYPF_REG(A_SGE_PF_KDOORBELL),
342 					     val | V_QID(q->cntxt_id));
343 		} else {
344 			writel_relaxed(val | V_QID(q->bar2_qid),
345 				       (void *)((uintptr_t)q->bar2_addr +
346 				       SGE_UDB_KDOORBELL));
347 
348 			/*
349 			 * This Write memory Barrier will force the write to
350 			 * the User Doorbell area to be flushed.
351 			 */
352 			wmb();
353 		}
354 		q->pend_cred &= 7;
355 	}
356 }
357 
358 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, void *buf,
359 				  dma_addr_t mapping)
360 {
361 	sd->buf = buf;
362 	sd->dma_addr = mapping;      /* includes size low bits */
363 }
364 
365 /**
366  * refill_fl_usembufs - refill an SGE Rx buffer ring with mbufs
367  * @adap: the adapter
368  * @q: the ring to refill
369  * @n: the number of new buffers to allocate
370  *
371  * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
372  * allocated with the supplied gfp flags.  The caller must assure that
373  * @n does not exceed the queue's capacity.  If afterwards the queue is
374  * found critically low mark it as starving in the bitmap of starving FLs.
375  *
376  * Returns the number of buffers allocated.
377  */
378 static unsigned int refill_fl_usembufs(struct adapter *adap, struct sge_fl *q,
379 				       int n)
380 {
381 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, fl);
382 	unsigned int cred = q->avail;
383 	__be64 *d = &q->desc[q->pidx];
384 	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
385 	unsigned int buf_size_idx = RX_SMALL_MTU_BUF;
386 	struct rte_mbuf *buf_bulk[n];
387 	int ret, i;
388 	struct rte_pktmbuf_pool_private *mbp_priv;
389 	u8 jumbo_en = rxq->rspq.eth_dev->data->dev_conf.rxmode.jumbo_frame;
390 
391 	/* Use jumbo mtu buffers if mbuf data room size can fit jumbo data. */
392 	mbp_priv = rte_mempool_get_priv(rxq->rspq.mb_pool);
393 	if (jumbo_en &&
394 	    ((mbp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM) >= 9000))
395 		buf_size_idx = RX_LARGE_MTU_BUF;
396 
397 	ret = rte_mempool_get_bulk(rxq->rspq.mb_pool, (void *)buf_bulk, n);
398 	if (unlikely(ret != 0)) {
399 		dev_debug(adap, "%s: failed to allocated fl entries in bulk ..\n",
400 			  __func__);
401 		q->alloc_failed++;
402 		rxq->rspq.eth_dev->data->rx_mbuf_alloc_failed++;
403 		goto out;
404 	}
405 
406 	for (i = 0; i < n; i++) {
407 		struct rte_mbuf *mbuf = buf_bulk[i];
408 		dma_addr_t mapping;
409 
410 		if (!mbuf) {
411 			dev_debug(adap, "%s: mbuf alloc failed\n", __func__);
412 			q->alloc_failed++;
413 			rxq->rspq.eth_dev->data->rx_mbuf_alloc_failed++;
414 			goto out;
415 		}
416 
417 		rte_mbuf_refcnt_set(mbuf, 1);
418 		mbuf->data_off = RTE_PKTMBUF_HEADROOM;
419 		mbuf->next = NULL;
420 		mbuf->nb_segs = 1;
421 		mbuf->port = rxq->rspq.port_id;
422 
423 		mapping = (dma_addr_t)RTE_ALIGN(mbuf->buf_physaddr +
424 						mbuf->data_off,
425 						adap->sge.fl_align);
426 		mapping |= buf_size_idx;
427 		*d++ = cpu_to_be64(mapping);
428 		set_rx_sw_desc(sd, mbuf, mapping);
429 		sd++;
430 
431 		q->avail++;
432 		if (++q->pidx == q->size) {
433 			q->pidx = 0;
434 			sd = q->sdesc;
435 			d = q->desc;
436 		}
437 	}
438 
439 out:    cred = q->avail - cred;
440 	q->pend_cred += cred;
441 	ring_fl_db(adap, q);
442 
443 	if (unlikely(fl_starving(adap, q))) {
444 		/*
445 		 * Make sure data has been written to free list
446 		 */
447 		wmb();
448 		q->low++;
449 	}
450 
451 	return cred;
452 }
453 
454 /**
455  * refill_fl - refill an SGE Rx buffer ring with mbufs
456  * @adap: the adapter
457  * @q: the ring to refill
458  * @n: the number of new buffers to allocate
459  *
460  * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
461  * allocated with the supplied gfp flags.  The caller must assure that
462  * @n does not exceed the queue's capacity.  Returns the number of buffers
463  * allocated.
464  */
465 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n)
466 {
467 	return refill_fl_usembufs(adap, q, n);
468 }
469 
470 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
471 {
472 	refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail));
473 }
474 
475 /*
476  * Return the number of reclaimable descriptors in a Tx queue.
477  */
478 static inline int reclaimable(const struct sge_txq *q)
479 {
480 	int hw_cidx = ntohs(q->stat->cidx);
481 
482 	hw_cidx -= q->cidx;
483 	if (hw_cidx < 0)
484 		return hw_cidx + q->size;
485 	return hw_cidx;
486 }
487 
488 /**
489  * reclaim_completed_tx - reclaims completed Tx descriptors
490  * @q: the Tx queue to reclaim completed descriptors from
491  *
492  * Reclaims Tx descriptors that the SGE has indicated it has processed.
493  */
494 void reclaim_completed_tx(struct sge_txq *q)
495 {
496 	unsigned int avail = reclaimable(q);
497 
498 	do {
499 		/* reclaim as much as possible */
500 		reclaim_tx_desc(q, avail);
501 		q->in_use -= avail;
502 		avail = reclaimable(q);
503 	} while (avail);
504 }
505 
506 /**
507  * sgl_len - calculates the size of an SGL of the given capacity
508  * @n: the number of SGL entries
509  *
510  * Calculates the number of flits needed for a scatter/gather list that
511  * can hold the given number of entries.
512  */
513 static inline unsigned int sgl_len(unsigned int n)
514 {
515 	/*
516 	 * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
517 	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
518 	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
519 	 * repeated sequences of { Length[i], Length[i+1], Address[i],
520 	 * Address[i+1] } (this ensures that all addresses are on 64-bit
521 	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
522 	 * Address[N+1] is omitted.
523 	 *
524 	 * The following calculation incorporates all of the above.  It's
525 	 * somewhat hard to follow but, briefly: the "+2" accounts for the
526 	 * first two flits which include the DSGL header, Length0 and
527 	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
528 	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
529 	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
530 	 * (n-1) is odd ...
531 	 */
532 	n--;
533 	return (3 * n) / 2 + (n & 1) + 2;
534 }
535 
536 /**
537  * flits_to_desc - returns the num of Tx descriptors for the given flits
538  * @n: the number of flits
539  *
540  * Returns the number of Tx descriptors needed for the supplied number
541  * of flits.
542  */
543 static inline unsigned int flits_to_desc(unsigned int n)
544 {
545 	return DIV_ROUND_UP(n, 8);
546 }
547 
548 /**
549  * is_eth_imm - can an Ethernet packet be sent as immediate data?
550  * @m: the packet
551  *
552  * Returns whether an Ethernet packet is small enough to fit as
553  * immediate data. Return value corresponds to the headroom required.
554  */
555 static inline int is_eth_imm(const struct rte_mbuf *m)
556 {
557 	unsigned int hdrlen = (m->ol_flags & PKT_TX_TCP_SEG) ?
558 			      sizeof(struct cpl_tx_pkt_lso_core) : 0;
559 
560 	hdrlen += sizeof(struct cpl_tx_pkt);
561 	if (m->pkt_len <= MAX_IMM_TX_PKT_LEN - hdrlen)
562 		return hdrlen;
563 
564 	return 0;
565 }
566 
567 /**
568  * calc_tx_flits - calculate the number of flits for a packet Tx WR
569  * @m: the packet
570  *
571  * Returns the number of flits needed for a Tx WR for the given Ethernet
572  * packet, including the needed WR and CPL headers.
573  */
574 static inline unsigned int calc_tx_flits(const struct rte_mbuf *m)
575 {
576 	unsigned int flits;
577 	int hdrlen;
578 
579 	/*
580 	 * If the mbuf is small enough, we can pump it out as a work request
581 	 * with only immediate data.  In that case we just have to have the
582 	 * TX Packet header plus the mbuf data in the Work Request.
583 	 */
584 
585 	hdrlen = is_eth_imm(m);
586 	if (hdrlen)
587 		return DIV_ROUND_UP(m->pkt_len + hdrlen, sizeof(__be64));
588 
589 	/*
590 	 * Otherwise, we're going to have to construct a Scatter gather list
591 	 * of the mbuf body and fragments.  We also include the flits necessary
592 	 * for the TX Packet Work Request and CPL.  We always have a firmware
593 	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
594 	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
595 	 * message or, if we're doing a Large Send Offload, an LSO CPL message
596 	 * with an embedded TX Packet Write CPL message.
597 	 */
598 	flits = sgl_len(m->nb_segs);
599 	if (m->tso_segsz)
600 		flits += (sizeof(struct fw_eth_tx_pkt_wr) +
601 			  sizeof(struct cpl_tx_pkt_lso_core) +
602 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
603 	else
604 		flits += (sizeof(struct fw_eth_tx_pkt_wr) +
605 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
606 	return flits;
607 }
608 
609 /**
610  * write_sgl - populate a scatter/gather list for a packet
611  * @mbuf: the packet
612  * @q: the Tx queue we are writing into
613  * @sgl: starting location for writing the SGL
614  * @end: points right after the end of the SGL
615  * @start: start offset into mbuf main-body data to include in the SGL
616  * @addr: address of mapped region
617  *
618  * Generates a scatter/gather list for the buffers that make up a packet.
619  * The caller must provide adequate space for the SGL that will be written.
620  * The SGL includes all of the packet's page fragments and the data in its
621  * main body except for the first @start bytes.  @sgl must be 16-byte
622  * aligned and within a Tx descriptor with available space.  @end points
623  * write after the end of the SGL but does not account for any potential
624  * wrap around, i.e., @end > @sgl.
625  */
626 static void write_sgl(struct rte_mbuf *mbuf, struct sge_txq *q,
627 		      struct ulptx_sgl *sgl, u64 *end, unsigned int start,
628 		      const dma_addr_t *addr)
629 {
630 	unsigned int i, len;
631 	struct ulptx_sge_pair *to;
632 	struct rte_mbuf *m = mbuf;
633 	unsigned int nfrags = m->nb_segs;
634 	struct ulptx_sge_pair buf[nfrags / 2];
635 
636 	len = m->data_len - start;
637 	sgl->len0 = htonl(len);
638 	sgl->addr0 = rte_cpu_to_be_64(addr[0]);
639 
640 	sgl->cmd_nsge = htonl(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
641 			      V_ULPTX_NSGE(nfrags));
642 	if (likely(--nfrags == 0))
643 		return;
644 	/*
645 	 * Most of the complexity below deals with the possibility we hit the
646 	 * end of the queue in the middle of writing the SGL.  For this case
647 	 * only we create the SGL in a temporary buffer and then copy it.
648 	 */
649 	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
650 
651 	for (i = 0; nfrags >= 2; nfrags -= 2, to++) {
652 		m = m->next;
653 		to->len[0] = rte_cpu_to_be_32(m->data_len);
654 		to->addr[0] = rte_cpu_to_be_64(addr[++i]);
655 		m = m->next;
656 		to->len[1] = rte_cpu_to_be_32(m->data_len);
657 		to->addr[1] = rte_cpu_to_be_64(addr[++i]);
658 	}
659 	if (nfrags) {
660 		m = m->next;
661 		to->len[0] = rte_cpu_to_be_32(m->data_len);
662 		to->len[1] = rte_cpu_to_be_32(0);
663 		to->addr[0] = rte_cpu_to_be_64(addr[i + 1]);
664 	}
665 	if (unlikely((u8 *)end > (u8 *)q->stat)) {
666 		unsigned int part0 = RTE_PTR_DIFF((u8 *)q->stat,
667 						  (u8 *)sgl->sge);
668 		unsigned int part1;
669 
670 		if (likely(part0))
671 			memcpy(sgl->sge, buf, part0);
672 		part1 = RTE_PTR_DIFF((u8 *)end, (u8 *)q->stat);
673 		rte_memcpy(q->desc, RTE_PTR_ADD((u8 *)buf, part0), part1);
674 		end = RTE_PTR_ADD((void *)q->desc, part1);
675 	}
676 	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
677 		*(u64 *)end = 0;
678 }
679 
680 #define IDXDIFF(head, tail, wrap) \
681 	((head) >= (tail) ? (head) - (tail) : (wrap) - (tail) + (head))
682 
683 #define Q_IDXDIFF(q, idx) IDXDIFF((q)->pidx, (q)->idx, (q)->size)
684 #define R_IDXDIFF(q, idx) IDXDIFF((q)->cidx, (q)->idx, (q)->size)
685 
686 #define PIDXDIFF(head, tail, wrap) \
687 	((tail) >= (head) ? (tail) - (head) : (wrap) - (head) + (tail))
688 #define P_IDXDIFF(q, idx) PIDXDIFF((q)->cidx, idx, (q)->size)
689 
690 /**
691  * ring_tx_db - ring a Tx queue's doorbell
692  * @adap: the adapter
693  * @q: the Tx queue
694  * @n: number of new descriptors to give to HW
695  *
696  * Ring the doorbel for a Tx queue.
697  */
698 static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q)
699 {
700 	int n = Q_IDXDIFF(q, dbidx);
701 
702 	/*
703 	 * Make sure that all writes to the TX Descriptors are committed
704 	 * before we tell the hardware about them.
705 	 */
706 	rte_wmb();
707 
708 	/*
709 	 * If we don't have access to the new User Doorbell (T5+), use the old
710 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
711 	 */
712 	if (unlikely(!q->bar2_addr)) {
713 		u32 val = V_PIDX(n);
714 
715 		/*
716 		 * For T4 we need to participate in the Doorbell Recovery
717 		 * mechanism.
718 		 */
719 		if (!q->db_disabled)
720 			t4_write_reg(adap, MYPF_REG(A_SGE_PF_KDOORBELL),
721 				     V_QID(q->cntxt_id) | val);
722 		else
723 			q->db_pidx_inc += n;
724 		q->db_pidx = q->pidx;
725 	} else {
726 		u32 val = V_PIDX_T5(n);
727 
728 		/*
729 		 * T4 and later chips share the same PIDX field offset within
730 		 * the doorbell, but T5 and later shrank the field in order to
731 		 * gain a bit for Doorbell Priority.  The field was absurdly
732 		 * large in the first place (14 bits) so we just use the T5
733 		 * and later limits and warn if a Queue ID is too large.
734 		 */
735 		WARN_ON(val & F_DBPRIO);
736 
737 		writel(val | V_QID(q->bar2_qid),
738 		       (void *)((uintptr_t)q->bar2_addr + SGE_UDB_KDOORBELL));
739 
740 		/*
741 		 * This Write Memory Barrier will force the write to the User
742 		 * Doorbell area to be flushed.  This is needed to prevent
743 		 * writes on different CPUs for the same queue from hitting
744 		 * the adapter out of order.  This is required when some Work
745 		 * Requests take the Write Combine Gather Buffer path (user
746 		 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
747 		 * take the traditional path where we simply increment the
748 		 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
749 		 * hardware DMA read the actual Work Request.
750 		 */
751 		rte_wmb();
752 	}
753 	q->dbidx = q->pidx;
754 }
755 
756 /*
757  * Figure out what HW csum a packet wants and return the appropriate control
758  * bits.
759  */
760 static u64 hwcsum(enum chip_type chip, const struct rte_mbuf *m)
761 {
762 	int csum_type;
763 
764 	if (m->ol_flags & PKT_TX_IP_CKSUM) {
765 		switch (m->ol_flags & PKT_TX_L4_MASK) {
766 		case PKT_TX_TCP_CKSUM:
767 			csum_type = TX_CSUM_TCPIP;
768 			break;
769 		case PKT_TX_UDP_CKSUM:
770 			csum_type = TX_CSUM_UDPIP;
771 			break;
772 		default:
773 			goto nocsum;
774 		}
775 	} else {
776 		goto nocsum;
777 	}
778 
779 	if (likely(csum_type >= TX_CSUM_TCPIP)) {
780 		u64 hdr_len = V_TXPKT_IPHDR_LEN(m->l3_len);
781 		int eth_hdr_len = m->l2_len;
782 
783 		if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
784 			hdr_len |= V_TXPKT_ETHHDR_LEN(eth_hdr_len);
785 		else
786 			hdr_len |= V_T6_TXPKT_ETHHDR_LEN(eth_hdr_len);
787 		return V_TXPKT_CSUM_TYPE(csum_type) | hdr_len;
788 	}
789 nocsum:
790 	/*
791 	 * unknown protocol, disable HW csum
792 	 * and hope a bad packet is detected
793 	 */
794 	return F_TXPKT_L4CSUM_DIS;
795 }
796 
797 static inline void txq_advance(struct sge_txq *q, unsigned int n)
798 {
799 	q->in_use += n;
800 	q->pidx += n;
801 	if (q->pidx >= q->size)
802 		q->pidx -= q->size;
803 }
804 
805 #define MAX_COALESCE_LEN 64000
806 
807 static inline int wraps_around(struct sge_txq *q, int ndesc)
808 {
809 	return (q->pidx + ndesc) > q->size ? 1 : 0;
810 }
811 
812 static void tx_timer_cb(void *data)
813 {
814 	struct adapter *adap = (struct adapter *)data;
815 	struct sge_eth_txq *txq = &adap->sge.ethtxq[0];
816 	int i;
817 	unsigned int coal_idx;
818 
819 	/* monitor any pending tx */
820 	for (i = 0; i < adap->sge.max_ethqsets; i++, txq++) {
821 		if (t4_os_trylock(&txq->txq_lock)) {
822 			coal_idx = txq->q.coalesce.idx;
823 			if (coal_idx) {
824 				if (coal_idx == txq->q.last_coal_idx &&
825 				    txq->q.pidx == txq->q.last_pidx) {
826 					ship_tx_pkt_coalesce_wr(adap, txq);
827 				} else {
828 					txq->q.last_coal_idx = coal_idx;
829 					txq->q.last_pidx = txq->q.pidx;
830 				}
831 			}
832 			t4_os_unlock(&txq->txq_lock);
833 		}
834 	}
835 	rte_eal_alarm_set(50, tx_timer_cb, (void *)adap);
836 }
837 
838 /**
839  * ship_tx_pkt_coalesce_wr - finalizes and ships a coalesce WR
840  * @ adap: adapter structure
841  * @txq: tx queue
842  *
843  * writes the different fields of the pkts WR and sends it.
844  */
845 static inline void ship_tx_pkt_coalesce_wr(struct adapter *adap,
846 					   struct sge_eth_txq *txq)
847 {
848 	u32 wr_mid;
849 	struct sge_txq *q = &txq->q;
850 	struct fw_eth_tx_pkts_wr *wr;
851 	unsigned int ndesc;
852 
853 	/* fill the pkts WR header */
854 	wr = (void *)&q->desc[q->pidx];
855 	wr->op_pkd = htonl(V_FW_WR_OP(FW_ETH_TX_PKTS2_WR));
856 
857 	wr_mid = V_FW_WR_LEN16(DIV_ROUND_UP(q->coalesce.flits, 2));
858 	ndesc = flits_to_desc(q->coalesce.flits);
859 	wr->equiq_to_len16 = htonl(wr_mid);
860 	wr->plen = cpu_to_be16(q->coalesce.len);
861 	wr->npkt = q->coalesce.idx;
862 	wr->r3 = 0;
863 	wr->type = q->coalesce.type;
864 
865 	/* zero out coalesce structure members */
866 	q->coalesce.idx = 0;
867 	q->coalesce.flits = 0;
868 	q->coalesce.len = 0;
869 
870 	txq_advance(q, ndesc);
871 	txq->stats.coal_wr++;
872 	txq->stats.coal_pkts += wr->npkt;
873 
874 	if (Q_IDXDIFF(q, equeidx) >= q->size / 2) {
875 		q->equeidx = q->pidx;
876 		wr_mid |= F_FW_WR_EQUEQ;
877 		wr->equiq_to_len16 = htonl(wr_mid);
878 	}
879 	ring_tx_db(adap, q);
880 }
881 
882 /**
883  * should_tx_packet_coalesce - decides wether to coalesce an mbuf or not
884  * @txq: tx queue where the mbuf is sent
885  * @mbuf: mbuf to be sent
886  * @nflits: return value for number of flits needed
887  * @adap: adapter structure
888  *
889  * This function decides if a packet should be coalesced or not.
890  */
891 static inline int should_tx_packet_coalesce(struct sge_eth_txq *txq,
892 					    struct rte_mbuf *mbuf,
893 					    unsigned int *nflits,
894 					    struct adapter *adap)
895 {
896 	struct sge_txq *q = &txq->q;
897 	unsigned int flits, ndesc;
898 	unsigned char type = 0;
899 	int credits;
900 
901 	/* use coal WR type 1 when no frags are present */
902 	type = (mbuf->nb_segs == 1) ? 1 : 0;
903 
904 	if (unlikely(type != q->coalesce.type && q->coalesce.idx))
905 		ship_tx_pkt_coalesce_wr(adap, txq);
906 
907 	/* calculate the number of flits required for coalescing this packet
908 	 * without the 2 flits of the WR header. These are added further down
909 	 * if we are just starting in new PKTS WR. sgl_len doesn't account for
910 	 * the possible 16 bytes alignment ULP TX commands so we do it here.
911 	 */
912 	flits = (sgl_len(mbuf->nb_segs) + 1) & ~1U;
913 	if (type == 0)
914 		flits += (sizeof(struct ulp_txpkt) +
915 			  sizeof(struct ulptx_idata)) / sizeof(__be64);
916 	flits += sizeof(struct cpl_tx_pkt_core) / sizeof(__be64);
917 	*nflits = flits;
918 
919 	/* If coalescing is on, the mbuf is added to a pkts WR */
920 	if (q->coalesce.idx) {
921 		ndesc = DIV_ROUND_UP(q->coalesce.flits + flits, 8);
922 		credits = txq_avail(q) - ndesc;
923 
924 		/* If we are wrapping or this is last mbuf then, send the
925 		 * already coalesced mbufs and let the non-coalesce pass
926 		 * handle the mbuf.
927 		 */
928 		if (unlikely(credits < 0 || wraps_around(q, ndesc))) {
929 			ship_tx_pkt_coalesce_wr(adap, txq);
930 			return 0;
931 		}
932 
933 		/* If the max coalesce len or the max WR len is reached
934 		 * ship the WR and keep coalescing on.
935 		 */
936 		if (unlikely((q->coalesce.len + mbuf->pkt_len >
937 						MAX_COALESCE_LEN) ||
938 			     (q->coalesce.flits + flits >
939 			      q->coalesce.max))) {
940 			ship_tx_pkt_coalesce_wr(adap, txq);
941 			goto new;
942 		}
943 		return 1;
944 	}
945 
946 new:
947 	/* start a new pkts WR, the WR header is not filled below */
948 	flits += sizeof(struct fw_eth_tx_pkts_wr) / sizeof(__be64);
949 	ndesc = flits_to_desc(q->coalesce.flits + flits);
950 	credits = txq_avail(q) - ndesc;
951 
952 	if (unlikely(credits < 0 || wraps_around(q, ndesc)))
953 		return 0;
954 	q->coalesce.flits += 2;
955 	q->coalesce.type = type;
956 	q->coalesce.ptr = (unsigned char *)&q->desc[q->pidx] +
957 			   2 * sizeof(__be64);
958 	return 1;
959 }
960 
961 /**
962  * tx_do_packet_coalesce - add an mbuf to a coalesce WR
963  * @txq: sge_eth_txq used send the mbuf
964  * @mbuf: mbuf to be sent
965  * @flits: flits needed for this mbuf
966  * @adap: adapter structure
967  * @pi: port_info structure
968  * @addr: mapped address of the mbuf
969  *
970  * Adds an mbuf to be sent as part of a coalesce WR by filling a
971  * ulp_tx_pkt command, ulp_tx_sc_imm command, cpl message and
972  * ulp_tx_sc_dsgl command.
973  */
974 static inline int tx_do_packet_coalesce(struct sge_eth_txq *txq,
975 					struct rte_mbuf *mbuf,
976 					int flits, struct adapter *adap,
977 					const struct port_info *pi,
978 					dma_addr_t *addr, uint16_t nb_pkts)
979 {
980 	u64 cntrl, *end;
981 	struct sge_txq *q = &txq->q;
982 	struct ulp_txpkt *mc;
983 	struct ulptx_idata *sc_imm;
984 	struct cpl_tx_pkt_core *cpl;
985 	struct tx_sw_desc *sd;
986 	unsigned int idx = q->coalesce.idx, len = mbuf->pkt_len;
987 
988 #ifdef RTE_LIBRTE_CXGBE_TPUT
989 	RTE_SET_USED(nb_pkts);
990 #endif
991 
992 	if (q->coalesce.type == 0) {
993 		mc = (struct ulp_txpkt *)q->coalesce.ptr;
994 		mc->cmd_dest = htonl(V_ULPTX_CMD(4) | V_ULP_TXPKT_DEST(0) |
995 				     V_ULP_TXPKT_FID(adap->sge.fw_evtq.cntxt_id) |
996 				     F_ULP_TXPKT_RO);
997 		mc->len = htonl(DIV_ROUND_UP(flits, 2));
998 		sc_imm = (struct ulptx_idata *)(mc + 1);
999 		sc_imm->cmd_more = htonl(V_ULPTX_CMD(ULP_TX_SC_IMM) |
1000 					 F_ULP_TX_SC_MORE);
1001 		sc_imm->len = htonl(sizeof(*cpl));
1002 		end = (u64 *)mc + flits;
1003 		cpl = (struct cpl_tx_pkt_core *)(sc_imm + 1);
1004 	} else {
1005 		end = (u64 *)q->coalesce.ptr + flits;
1006 		cpl = (struct cpl_tx_pkt_core *)q->coalesce.ptr;
1007 	}
1008 
1009 	/* update coalesce structure for this txq */
1010 	q->coalesce.flits += flits;
1011 	q->coalesce.ptr += flits * sizeof(__be64);
1012 	q->coalesce.len += mbuf->pkt_len;
1013 
1014 	/* fill the cpl message, same as in t4_eth_xmit, this should be kept
1015 	 * similar to t4_eth_xmit
1016 	 */
1017 	if (mbuf->ol_flags & PKT_TX_IP_CKSUM) {
1018 		cntrl = hwcsum(adap->params.chip, mbuf) |
1019 			       F_TXPKT_IPCSUM_DIS;
1020 		txq->stats.tx_cso++;
1021 	} else {
1022 		cntrl = F_TXPKT_L4CSUM_DIS | F_TXPKT_IPCSUM_DIS;
1023 	}
1024 
1025 	if (mbuf->ol_flags & PKT_TX_VLAN_PKT) {
1026 		txq->stats.vlan_ins++;
1027 		cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(mbuf->vlan_tci);
1028 	}
1029 
1030 	cpl->ctrl0 = htonl(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
1031 			   V_TXPKT_INTF(pi->tx_chan) |
1032 			   V_TXPKT_PF(adap->pf));
1033 	cpl->pack = htons(0);
1034 	cpl->len = htons(len);
1035 	cpl->ctrl1 = cpu_to_be64(cntrl);
1036 	write_sgl(mbuf, q, (struct ulptx_sgl *)(cpl + 1), end, 0,  addr);
1037 	txq->stats.pkts++;
1038 	txq->stats.tx_bytes += len;
1039 
1040 	sd = &q->sdesc[q->pidx + (idx >> 1)];
1041 	if (!(idx & 1)) {
1042 		if (sd->coalesce.idx) {
1043 			int i;
1044 
1045 			for (i = 0; i < sd->coalesce.idx; i++) {
1046 				rte_pktmbuf_free(sd->coalesce.mbuf[i]);
1047 				sd->coalesce.mbuf[i] = NULL;
1048 			}
1049 		}
1050 	}
1051 
1052 	/* store pointers to the mbuf and the sgl used in free_tx_desc.
1053 	 * each tx desc can hold two pointers corresponding to the value
1054 	 * of ETH_COALESCE_PKT_PER_DESC
1055 	 */
1056 	sd->coalesce.mbuf[idx & 1] = mbuf;
1057 	sd->coalesce.sgl[idx & 1] = (struct ulptx_sgl *)(cpl + 1);
1058 	sd->coalesce.idx = (idx & 1) + 1;
1059 
1060 	/* send the coaelsced work request if max reached */
1061 	if (++q->coalesce.idx == ETH_COALESCE_PKT_NUM
1062 #ifndef RTE_LIBRTE_CXGBE_TPUT
1063 	    || q->coalesce.idx >= nb_pkts
1064 #endif
1065 	    )
1066 		ship_tx_pkt_coalesce_wr(adap, txq);
1067 	return 0;
1068 }
1069 
1070 /**
1071  * t4_eth_xmit - add a packet to an Ethernet Tx queue
1072  * @txq: the egress queue
1073  * @mbuf: the packet
1074  *
1075  * Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
1076  */
1077 int t4_eth_xmit(struct sge_eth_txq *txq, struct rte_mbuf *mbuf,
1078 		uint16_t nb_pkts)
1079 {
1080 	const struct port_info *pi;
1081 	struct cpl_tx_pkt_lso_core *lso;
1082 	struct adapter *adap;
1083 	struct rte_mbuf *m = mbuf;
1084 	struct fw_eth_tx_pkt_wr *wr;
1085 	struct cpl_tx_pkt_core *cpl;
1086 	struct tx_sw_desc *d;
1087 	dma_addr_t addr[m->nb_segs];
1088 	unsigned int flits, ndesc, cflits;
1089 	int l3hdr_len, l4hdr_len, eth_xtra_len;
1090 	int len, last_desc;
1091 	int credits;
1092 	u32 wr_mid;
1093 	u64 cntrl, *end;
1094 	bool v6;
1095 	u32 max_pkt_len = txq->eth_dev->data->dev_conf.rxmode.max_rx_pkt_len;
1096 
1097 	/* Reject xmit if queue is stopped */
1098 	if (unlikely(txq->flags & EQ_STOPPED))
1099 		return -(EBUSY);
1100 
1101 	/*
1102 	 * The chip min packet length is 10 octets but play safe and reject
1103 	 * anything shorter than an Ethernet header.
1104 	 */
1105 	if (unlikely(m->pkt_len < ETHER_HDR_LEN)) {
1106 out_free:
1107 		rte_pktmbuf_free(m);
1108 		return 0;
1109 	}
1110 
1111 	if ((!(m->ol_flags & PKT_TX_TCP_SEG)) &&
1112 	    (unlikely(m->pkt_len > max_pkt_len)))
1113 		goto out_free;
1114 
1115 	pi = (struct port_info *)txq->eth_dev->data->dev_private;
1116 	adap = pi->adapter;
1117 
1118 	cntrl = F_TXPKT_L4CSUM_DIS | F_TXPKT_IPCSUM_DIS;
1119 	/* align the end of coalesce WR to a 512 byte boundary */
1120 	txq->q.coalesce.max = (8 - (txq->q.pidx & 7)) * 8;
1121 
1122 	if (!((m->ol_flags & PKT_TX_TCP_SEG) || (m->pkt_len > ETHER_MAX_LEN))) {
1123 		if (should_tx_packet_coalesce(txq, mbuf, &cflits, adap)) {
1124 			if (unlikely(map_mbuf(mbuf, addr) < 0)) {
1125 				dev_warn(adap, "%s: mapping err for coalesce\n",
1126 					 __func__);
1127 				txq->stats.mapping_err++;
1128 				goto out_free;
1129 			}
1130 			rte_prefetch0((volatile void *)addr);
1131 			return tx_do_packet_coalesce(txq, mbuf, cflits, adap,
1132 						     pi, addr, nb_pkts);
1133 		} else {
1134 			return -EBUSY;
1135 		}
1136 	}
1137 
1138 	if (txq->q.coalesce.idx)
1139 		ship_tx_pkt_coalesce_wr(adap, txq);
1140 
1141 	flits = calc_tx_flits(m);
1142 	ndesc = flits_to_desc(flits);
1143 	credits = txq_avail(&txq->q) - ndesc;
1144 
1145 	if (unlikely(credits < 0)) {
1146 		dev_debug(adap, "%s: Tx ring %u full; credits = %d\n",
1147 			  __func__, txq->q.cntxt_id, credits);
1148 		return -EBUSY;
1149 	}
1150 
1151 	if (unlikely(map_mbuf(m, addr) < 0)) {
1152 		txq->stats.mapping_err++;
1153 		goto out_free;
1154 	}
1155 
1156 	wr_mid = V_FW_WR_LEN16(DIV_ROUND_UP(flits, 2));
1157 	if (Q_IDXDIFF(&txq->q, equeidx)  >= 64) {
1158 		txq->q.equeidx = txq->q.pidx;
1159 		wr_mid |= F_FW_WR_EQUEQ;
1160 	}
1161 
1162 	wr = (void *)&txq->q.desc[txq->q.pidx];
1163 	wr->equiq_to_len16 = htonl(wr_mid);
1164 	wr->r3 = rte_cpu_to_be_64(0);
1165 	end = (u64 *)wr + flits;
1166 
1167 	len = 0;
1168 	len += sizeof(*cpl);
1169 
1170 	/* Coalescing skipped and we send through normal path */
1171 	if (!(m->ol_flags & PKT_TX_TCP_SEG)) {
1172 		wr->op_immdlen = htonl(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
1173 				       V_FW_WR_IMMDLEN(len));
1174 		cpl = (void *)(wr + 1);
1175 		if (m->ol_flags & PKT_TX_IP_CKSUM) {
1176 			cntrl = hwcsum(adap->params.chip, m) |
1177 				F_TXPKT_IPCSUM_DIS;
1178 			txq->stats.tx_cso++;
1179 		}
1180 	} else {
1181 		lso = (void *)(wr + 1);
1182 		v6 = (m->ol_flags & PKT_TX_IPV6) != 0;
1183 		l3hdr_len = m->l3_len;
1184 		l4hdr_len = m->l4_len;
1185 		eth_xtra_len = m->l2_len - ETHER_HDR_LEN;
1186 		len += sizeof(*lso);
1187 		wr->op_immdlen = htonl(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
1188 				       V_FW_WR_IMMDLEN(len));
1189 		lso->lso_ctrl = htonl(V_LSO_OPCODE(CPL_TX_PKT_LSO) |
1190 				      F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
1191 				      V_LSO_IPV6(v6) |
1192 				      V_LSO_ETHHDR_LEN(eth_xtra_len / 4) |
1193 				      V_LSO_IPHDR_LEN(l3hdr_len / 4) |
1194 				      V_LSO_TCPHDR_LEN(l4hdr_len / 4));
1195 		lso->ipid_ofst = htons(0);
1196 		lso->mss = htons(m->tso_segsz);
1197 		lso->seqno_offset = htonl(0);
1198 		if (is_t4(adap->params.chip))
1199 			lso->len = htonl(m->pkt_len);
1200 		else
1201 			lso->len = htonl(V_LSO_T5_XFER_SIZE(m->pkt_len));
1202 		cpl = (void *)(lso + 1);
1203 
1204 		if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1205 			cntrl = V_TXPKT_ETHHDR_LEN(eth_xtra_len);
1206 		else
1207 			cntrl = V_T6_TXPKT_ETHHDR_LEN(eth_xtra_len);
1208 
1209 		cntrl |= V_TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 :
1210 						TX_CSUM_TCPIP) |
1211 			 V_TXPKT_IPHDR_LEN(l3hdr_len);
1212 		txq->stats.tso++;
1213 		txq->stats.tx_cso += m->tso_segsz;
1214 	}
1215 
1216 	if (m->ol_flags & PKT_TX_VLAN_PKT) {
1217 		txq->stats.vlan_ins++;
1218 		cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->vlan_tci);
1219 	}
1220 
1221 	cpl->ctrl0 = htonl(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
1222 			   V_TXPKT_INTF(pi->tx_chan) |
1223 			   V_TXPKT_PF(adap->pf));
1224 	cpl->pack = htons(0);
1225 	cpl->len = htons(m->pkt_len);
1226 	cpl->ctrl1 = cpu_to_be64(cntrl);
1227 
1228 	txq->stats.pkts++;
1229 	txq->stats.tx_bytes += m->pkt_len;
1230 	last_desc = txq->q.pidx + ndesc - 1;
1231 	if (last_desc >= (int)txq->q.size)
1232 		last_desc -= txq->q.size;
1233 
1234 	d = &txq->q.sdesc[last_desc];
1235 	if (d->coalesce.idx) {
1236 		int i;
1237 
1238 		for (i = 0; i < d->coalesce.idx; i++) {
1239 			rte_pktmbuf_free(d->coalesce.mbuf[i]);
1240 			d->coalesce.mbuf[i] = NULL;
1241 		}
1242 		d->coalesce.idx = 0;
1243 	}
1244 	write_sgl(m, &txq->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
1245 		  addr);
1246 	txq->q.sdesc[last_desc].mbuf = m;
1247 	txq->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
1248 	txq_advance(&txq->q, ndesc);
1249 	ring_tx_db(adap, &txq->q);
1250 	return 0;
1251 }
1252 
1253 /**
1254  * alloc_ring - allocate resources for an SGE descriptor ring
1255  * @dev: the PCI device's core device
1256  * @nelem: the number of descriptors
1257  * @elem_size: the size of each descriptor
1258  * @sw_size: the size of the SW state associated with each ring element
1259  * @phys: the physical address of the allocated ring
1260  * @metadata: address of the array holding the SW state for the ring
1261  * @stat_size: extra space in HW ring for status information
1262  * @node: preferred node for memory allocations
1263  *
1264  * Allocates resources for an SGE descriptor ring, such as Tx queues,
1265  * free buffer lists, or response queues.  Each SGE ring requires
1266  * space for its HW descriptors plus, optionally, space for the SW state
1267  * associated with each HW entry (the metadata).  The function returns
1268  * three values: the virtual address for the HW ring (the return value
1269  * of the function), the bus address of the HW ring, and the address
1270  * of the SW ring.
1271  */
1272 static void *alloc_ring(size_t nelem, size_t elem_size,
1273 			size_t sw_size, dma_addr_t *phys, void *metadata,
1274 			size_t stat_size, __rte_unused uint16_t queue_id,
1275 			int socket_id, const char *z_name,
1276 			const char *z_name_sw)
1277 {
1278 	size_t len = CXGBE_MAX_RING_DESC_SIZE * elem_size + stat_size;
1279 	const struct rte_memzone *tz;
1280 	void *s = NULL;
1281 
1282 	dev_debug(adapter, "%s: nelem = %zu; elem_size = %zu; sw_size = %zu; "
1283 		  "stat_size = %zu; queue_id = %u; socket_id = %d; z_name = %s;"
1284 		  " z_name_sw = %s\n", __func__, nelem, elem_size, sw_size,
1285 		  stat_size, queue_id, socket_id, z_name, z_name_sw);
1286 
1287 	tz = rte_memzone_lookup(z_name);
1288 	if (tz) {
1289 		dev_debug(adapter, "%s: tz exists...returning existing..\n",
1290 			  __func__);
1291 		goto alloc_sw_ring;
1292 	}
1293 
1294 	/*
1295 	 * Allocate TX/RX ring hardware descriptors. A memzone large enough to
1296 	 * handle the maximum ring size is allocated in order to allow for
1297 	 * resizing in later calls to the queue setup function.
1298 	 */
1299 	tz = rte_memzone_reserve_aligned(z_name, len, socket_id, 0, 4096);
1300 	if (!tz)
1301 		return NULL;
1302 
1303 alloc_sw_ring:
1304 	memset(tz->addr, 0, len);
1305 	if (sw_size) {
1306 		s = rte_zmalloc_socket(z_name_sw, nelem * sw_size,
1307 				       RTE_CACHE_LINE_SIZE, socket_id);
1308 
1309 		if (!s) {
1310 			dev_err(adapter, "%s: failed to get sw_ring memory\n",
1311 				__func__);
1312 			return NULL;
1313 		}
1314 	}
1315 	if (metadata)
1316 		*(void **)metadata = s;
1317 
1318 	*phys = (uint64_t)tz->phys_addr;
1319 	return tz->addr;
1320 }
1321 
1322 /**
1323  * t4_pktgl_to_mbuf_usembufs - build an mbuf from a packet gather list
1324  * @gl: the gather list
1325  *
1326  * Builds an mbuf from the given packet gather list.  Returns the mbuf or
1327  * %NULL if mbuf allocation failed.
1328  */
1329 static struct rte_mbuf *t4_pktgl_to_mbuf_usembufs(const struct pkt_gl *gl)
1330 {
1331 	/*
1332 	 * If there's only one mbuf fragment, just return that.
1333 	 */
1334 	if (likely(gl->nfrags == 1))
1335 		return gl->mbufs[0];
1336 
1337 	return NULL;
1338 }
1339 
1340 /**
1341  * t4_pktgl_to_mbuf - build an mbuf from a packet gather list
1342  * @gl: the gather list
1343  *
1344  * Builds an mbuf from the given packet gather list.  Returns the mbuf or
1345  * %NULL if mbuf allocation failed.
1346  */
1347 static struct rte_mbuf *t4_pktgl_to_mbuf(const struct pkt_gl *gl)
1348 {
1349 	return t4_pktgl_to_mbuf_usembufs(gl);
1350 }
1351 
1352 /**
1353  * t4_ethrx_handler - process an ingress ethernet packet
1354  * @q: the response queue that received the packet
1355  * @rsp: the response queue descriptor holding the RX_PKT message
1356  * @si: the gather list of packet fragments
1357  *
1358  * Process an ingress ethernet packet and deliver it to the stack.
1359  */
1360 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
1361 		     const struct pkt_gl *si)
1362 {
1363 	struct rte_mbuf *mbuf;
1364 	const struct cpl_rx_pkt *pkt;
1365 	const struct rss_header *rss_hdr;
1366 	bool csum_ok;
1367 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1368 	u16 err_vec;
1369 
1370 	rss_hdr = (const void *)rsp;
1371 	pkt = (const void *)&rsp[1];
1372 	/* Compressed error vector is enabled for T6 only */
1373 	if (q->adapter->params.tp.rx_pkt_encap)
1374 		err_vec = G_T6_COMPR_RXERR_VEC(ntohs(pkt->err_vec));
1375 	else
1376 		err_vec = ntohs(pkt->err_vec);
1377 	csum_ok = pkt->csum_calc && !err_vec;
1378 
1379 	mbuf = t4_pktgl_to_mbuf(si);
1380 	if (unlikely(!mbuf)) {
1381 		rxq->stats.rx_drops++;
1382 		return 0;
1383 	}
1384 
1385 	mbuf->port = pkt->iff;
1386 	if (pkt->l2info & htonl(F_RXF_IP)) {
1387 		mbuf->packet_type = RTE_PTYPE_L3_IPV4;
1388 		if (unlikely(!csum_ok))
1389 			mbuf->ol_flags |= PKT_RX_IP_CKSUM_BAD;
1390 
1391 		if ((pkt->l2info & htonl(F_RXF_UDP | F_RXF_TCP)) && !csum_ok)
1392 			mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD;
1393 	} else if (pkt->l2info & htonl(F_RXF_IP6)) {
1394 		mbuf->packet_type = RTE_PTYPE_L3_IPV6;
1395 	}
1396 
1397 	mbuf->port = pkt->iff;
1398 
1399 	if (!rss_hdr->filter_tid && rss_hdr->hash_type) {
1400 		mbuf->ol_flags |= PKT_RX_RSS_HASH;
1401 		mbuf->hash.rss = ntohl(rss_hdr->hash_val);
1402 	}
1403 
1404 	if (pkt->vlan_ex) {
1405 		mbuf->ol_flags |= PKT_RX_VLAN_PKT;
1406 		mbuf->vlan_tci = ntohs(pkt->vlan);
1407 	}
1408 	rxq->stats.pkts++;
1409 	rxq->stats.rx_bytes += mbuf->pkt_len;
1410 
1411 	return 0;
1412 }
1413 
1414 #define CXGB4_MSG_AN ((void *)1)
1415 
1416 /**
1417  * rspq_next - advance to the next entry in a response queue
1418  * @q: the queue
1419  *
1420  * Updates the state of a response queue to advance it to the next entry.
1421  */
1422 static inline void rspq_next(struct sge_rspq *q)
1423 {
1424 	q->cur_desc = (const __be64 *)((const char *)q->cur_desc + q->iqe_len);
1425 	if (unlikely(++q->cidx == q->size)) {
1426 		q->cidx = 0;
1427 		q->gen ^= 1;
1428 		q->cur_desc = q->desc;
1429 	}
1430 }
1431 
1432 /**
1433  * process_responses - process responses from an SGE response queue
1434  * @q: the ingress queue to process
1435  * @budget: how many responses can be processed in this round
1436  * @rx_pkts: mbuf to put the pkts
1437  *
1438  * Process responses from an SGE response queue up to the supplied budget.
1439  * Responses include received packets as well as control messages from FW
1440  * or HW.
1441  *
1442  * Additionally choose the interrupt holdoff time for the next interrupt
1443  * on this queue.  If the system is under memory shortage use a fairly
1444  * long delay to help recovery.
1445  */
1446 static int process_responses(struct sge_rspq *q, int budget,
1447 			     struct rte_mbuf **rx_pkts)
1448 {
1449 	int ret = 0, rsp_type;
1450 	int budget_left = budget;
1451 	const struct rsp_ctrl *rc;
1452 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1453 
1454 	while (likely(budget_left)) {
1455 		if (q->cidx == ntohs(q->stat->pidx))
1456 			break;
1457 
1458 		rc = (const struct rsp_ctrl *)
1459 		     ((const char *)q->cur_desc + (q->iqe_len - sizeof(*rc)));
1460 
1461 		/*
1462 		 * Ensure response has been read
1463 		 */
1464 		rmb();
1465 		rsp_type = G_RSPD_TYPE(rc->u.type_gen);
1466 
1467 		if (likely(rsp_type == X_RSPD_TYPE_FLBUF)) {
1468 			unsigned int stat_pidx;
1469 			int stat_pidx_diff;
1470 
1471 			stat_pidx = ntohs(q->stat->pidx);
1472 			stat_pidx_diff = P_IDXDIFF(q, stat_pidx);
1473 			while (stat_pidx_diff && budget_left) {
1474 				const struct rx_sw_desc *rsd =
1475 					&rxq->fl.sdesc[rxq->fl.cidx];
1476 				const struct rss_header *rss_hdr =
1477 					(const void *)q->cur_desc;
1478 				const struct cpl_rx_pkt *cpl =
1479 					(const void *)&q->cur_desc[1];
1480 				struct rte_mbuf *pkt, *npkt;
1481 				u32 len, bufsz;
1482 				bool csum_ok;
1483 				u16 err_vec;
1484 
1485 				rc = (const struct rsp_ctrl *)
1486 				     ((const char *)q->cur_desc +
1487 				      (q->iqe_len - sizeof(*rc)));
1488 
1489 				rsp_type = G_RSPD_TYPE(rc->u.type_gen);
1490 				if (unlikely(rsp_type != X_RSPD_TYPE_FLBUF))
1491 					break;
1492 
1493 				len = ntohl(rc->pldbuflen_qid);
1494 				BUG_ON(!(len & F_RSPD_NEWBUF));
1495 				pkt = rsd->buf;
1496 				npkt = pkt;
1497 				len = G_RSPD_LEN(len);
1498 				pkt->pkt_len = len;
1499 
1500 				/* Compressed error vector is enabled for
1501 				 * T6 only
1502 				 */
1503 				if (q->adapter->params.tp.rx_pkt_encap)
1504 					err_vec = G_T6_COMPR_RXERR_VEC(
1505 							ntohs(cpl->err_vec));
1506 				else
1507 					err_vec = ntohs(cpl->err_vec);
1508 				csum_ok = cpl->csum_calc && !err_vec;
1509 
1510 				/* Chain mbufs into len if necessary */
1511 				while (len) {
1512 					struct rte_mbuf *new_pkt = rsd->buf;
1513 
1514 					bufsz = min(get_buf_size(q->adapter,
1515 								 rsd), len);
1516 					new_pkt->data_len = bufsz;
1517 					unmap_rx_buf(&rxq->fl);
1518 					len -= bufsz;
1519 					npkt->next = new_pkt;
1520 					npkt = new_pkt;
1521 					pkt->nb_segs++;
1522 					rsd = &rxq->fl.sdesc[rxq->fl.cidx];
1523 				}
1524 				npkt->next = NULL;
1525 				pkt->nb_segs--;
1526 
1527 				if (cpl->l2info & htonl(F_RXF_IP)) {
1528 					pkt->packet_type = RTE_PTYPE_L3_IPV4;
1529 					if (unlikely(!csum_ok))
1530 						pkt->ol_flags |=
1531 							PKT_RX_IP_CKSUM_BAD;
1532 
1533 					if ((cpl->l2info &
1534 					     htonl(F_RXF_UDP | F_RXF_TCP)) &&
1535 					    !csum_ok)
1536 						pkt->ol_flags |=
1537 							PKT_RX_L4_CKSUM_BAD;
1538 				} else if (cpl->l2info & htonl(F_RXF_IP6)) {
1539 					pkt->packet_type = RTE_PTYPE_L3_IPV6;
1540 				}
1541 
1542 				if (!rss_hdr->filter_tid &&
1543 				    rss_hdr->hash_type) {
1544 					pkt->ol_flags |= PKT_RX_RSS_HASH;
1545 					pkt->hash.rss =
1546 						ntohl(rss_hdr->hash_val);
1547 				}
1548 
1549 				if (cpl->vlan_ex) {
1550 					pkt->ol_flags |= PKT_RX_VLAN_PKT;
1551 					pkt->vlan_tci = ntohs(cpl->vlan);
1552 				}
1553 
1554 				rxq->stats.pkts++;
1555 				rxq->stats.rx_bytes += pkt->pkt_len;
1556 				rx_pkts[budget - budget_left] = pkt;
1557 
1558 				rspq_next(q);
1559 				budget_left--;
1560 				stat_pidx_diff--;
1561 			}
1562 			continue;
1563 		} else if (likely(rsp_type == X_RSPD_TYPE_CPL)) {
1564 			ret = q->handler(q, q->cur_desc, NULL);
1565 		} else {
1566 			ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
1567 		}
1568 
1569 		if (unlikely(ret)) {
1570 			/* couldn't process descriptor, back off for recovery */
1571 			q->next_intr_params = V_QINTR_TIMER_IDX(NOMEM_TMR_IDX);
1572 			break;
1573 		}
1574 
1575 		rspq_next(q);
1576 		budget_left--;
1577 	}
1578 
1579 	/*
1580 	 * If this is a Response Queue with an associated Free List and
1581 	 * there's room for another chunk of new Free List buffer pointers,
1582 	 * refill the Free List.
1583 	 */
1584 
1585 	if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 64)
1586 		__refill_fl(q->adapter, &rxq->fl);
1587 
1588 	return budget - budget_left;
1589 }
1590 
1591 int cxgbe_poll(struct sge_rspq *q, struct rte_mbuf **rx_pkts,
1592 	       unsigned int budget, unsigned int *work_done)
1593 {
1594 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1595 	unsigned int cidx_inc;
1596 	unsigned int params;
1597 	u32 val;
1598 
1599 	*work_done = process_responses(q, budget, rx_pkts);
1600 
1601 	if (*work_done) {
1602 		cidx_inc = R_IDXDIFF(q, gts_idx);
1603 
1604 		if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 64)
1605 			__refill_fl(q->adapter, &rxq->fl);
1606 
1607 		params = q->intr_params;
1608 		q->next_intr_params = params;
1609 		val = V_CIDXINC(cidx_inc) | V_SEINTARM(params);
1610 
1611 		if (unlikely(!q->bar2_addr)) {
1612 			t4_write_reg(q->adapter, MYPF_REG(A_SGE_PF_GTS),
1613 				     val | V_INGRESSQID((u32)q->cntxt_id));
1614 		} else {
1615 			writel(val | V_INGRESSQID(q->bar2_qid),
1616 			       (void *)((uintptr_t)q->bar2_addr + SGE_UDB_GTS));
1617 			/* This Write memory Barrier will force the
1618 			 * write to the User Doorbell area to be
1619 			 * flushed.
1620 			 */
1621 			wmb();
1622 		}
1623 		q->gts_idx = q->cidx;
1624 	}
1625 	return 0;
1626 }
1627 
1628 /**
1629  * bar2_address - return the BAR2 address for an SGE Queue's Registers
1630  * @adapter: the adapter
1631  * @qid: the SGE Queue ID
1632  * @qtype: the SGE Queue Type (Egress or Ingress)
1633  * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
1634  *
1635  * Returns the BAR2 address for the SGE Queue Registers associated with
1636  * @qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
1637  * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
1638  * Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
1639  * Registers are supported (e.g. the Write Combining Doorbell Buffer).
1640  */
1641 static void __iomem *bar2_address(struct adapter *adapter, unsigned int qid,
1642 				  enum t4_bar2_qtype qtype,
1643 				  unsigned int *pbar2_qid)
1644 {
1645 	u64 bar2_qoffset;
1646 	int ret;
1647 
1648 	ret = t4_bar2_sge_qregs(adapter, qid, qtype, &bar2_qoffset, pbar2_qid);
1649 	if (ret)
1650 		return NULL;
1651 
1652 	return adapter->bar2 + bar2_qoffset;
1653 }
1654 
1655 int t4_sge_eth_rxq_start(struct adapter *adap, struct sge_rspq *rq)
1656 {
1657 	struct sge_eth_rxq *rxq = container_of(rq, struct sge_eth_rxq, rspq);
1658 	unsigned int fl_id = rxq->fl.size ? rxq->fl.cntxt_id : 0xffff;
1659 
1660 	return t4_iq_start_stop(adap, adap->mbox, true, adap->pf, 0,
1661 				rq->cntxt_id, fl_id, 0xffff);
1662 }
1663 
1664 int t4_sge_eth_rxq_stop(struct adapter *adap, struct sge_rspq *rq)
1665 {
1666 	struct sge_eth_rxq *rxq = container_of(rq, struct sge_eth_rxq, rspq);
1667 	unsigned int fl_id = rxq->fl.size ? rxq->fl.cntxt_id : 0xffff;
1668 
1669 	return t4_iq_start_stop(adap, adap->mbox, false, adap->pf, 0,
1670 				rq->cntxt_id, fl_id, 0xffff);
1671 }
1672 
1673 /*
1674  * @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
1675  * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
1676  */
1677 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
1678 		     struct rte_eth_dev *eth_dev, int intr_idx,
1679 		     struct sge_fl *fl, rspq_handler_t hnd, int cong,
1680 		     struct rte_mempool *mp, int queue_id, int socket_id)
1681 {
1682 	int ret, flsz = 0;
1683 	struct fw_iq_cmd c;
1684 	struct sge *s = &adap->sge;
1685 	struct port_info *pi = (struct port_info *)(eth_dev->data->dev_private);
1686 	char z_name[RTE_MEMZONE_NAMESIZE];
1687 	char z_name_sw[RTE_MEMZONE_NAMESIZE];
1688 	unsigned int nb_refill;
1689 
1690 	/* Size needs to be multiple of 16, including status entry. */
1691 	iq->size = cxgbe_roundup(iq->size, 16);
1692 
1693 	snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
1694 		 eth_dev->device->driver->name,
1695 		 fwevtq ? "fwq_ring" : "rx_ring",
1696 		 eth_dev->data->port_id, queue_id);
1697 	snprintf(z_name_sw, sizeof(z_name_sw), "%s_sw_ring", z_name);
1698 
1699 	iq->desc = alloc_ring(iq->size, iq->iqe_len, 0, &iq->phys_addr, NULL, 0,
1700 			      queue_id, socket_id, z_name, z_name_sw);
1701 	if (!iq->desc)
1702 		return -ENOMEM;
1703 
1704 	memset(&c, 0, sizeof(c));
1705 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
1706 			    F_FW_CMD_WRITE | F_FW_CMD_EXEC |
1707 			    V_FW_IQ_CMD_PFN(adap->pf) | V_FW_IQ_CMD_VFN(0));
1708 	c.alloc_to_len16 = htonl(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
1709 				 (sizeof(c) / 16));
1710 	c.type_to_iqandstindex =
1711 		htonl(V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
1712 		      V_FW_IQ_CMD_IQASYNCH(fwevtq) |
1713 		      V_FW_IQ_CMD_VIID(pi->viid) |
1714 		      V_FW_IQ_CMD_IQANDST(intr_idx < 0) |
1715 		      V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_STATUS_PAGE) |
1716 		      V_FW_IQ_CMD_IQANDSTINDEX(intr_idx >= 0 ? intr_idx :
1717 							       -intr_idx - 1));
1718 	c.iqdroprss_to_iqesize =
1719 		htons(V_FW_IQ_CMD_IQPCIECH(cong > 0 ? cxgbe_ffs(cong) - 1 :
1720 						      pi->tx_chan) |
1721 		      F_FW_IQ_CMD_IQGTSMODE |
1722 		      V_FW_IQ_CMD_IQINTCNTTHRESH(iq->pktcnt_idx) |
1723 		      V_FW_IQ_CMD_IQESIZE(ilog2(iq->iqe_len) - 4));
1724 	c.iqsize = htons(iq->size);
1725 	c.iqaddr = cpu_to_be64(iq->phys_addr);
1726 	if (cong >= 0)
1727 		c.iqns_to_fl0congen = htonl(F_FW_IQ_CMD_IQFLINTCONGEN |
1728 					    F_FW_IQ_CMD_IQRO);
1729 
1730 	if (fl) {
1731 		struct sge_eth_rxq *rxq = container_of(fl, struct sge_eth_rxq,
1732 						       fl);
1733 		unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1734 
1735 		/*
1736 		 * Allocate the ring for the hardware free list (with space
1737 		 * for its status page) along with the associated software
1738 		 * descriptor ring.  The free list size needs to be a multiple
1739 		 * of the Egress Queue Unit and at least 2 Egress Units larger
1740 		 * than the SGE's Egress Congrestion Threshold
1741 		 * (fl_starve_thres - 1).
1742 		 */
1743 		if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
1744 			fl->size = s->fl_starve_thres - 1 + 2 * 8;
1745 		fl->size = cxgbe_roundup(fl->size, 8);
1746 
1747 		snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
1748 			 eth_dev->device->driver->name,
1749 			 fwevtq ? "fwq_ring" : "fl_ring",
1750 			 eth_dev->data->port_id, queue_id);
1751 		snprintf(z_name_sw, sizeof(z_name_sw), "%s_sw_ring", z_name);
1752 
1753 		fl->desc = alloc_ring(fl->size, sizeof(__be64),
1754 				      sizeof(struct rx_sw_desc),
1755 				      &fl->addr, &fl->sdesc, s->stat_len,
1756 				      queue_id, socket_id, z_name, z_name_sw);
1757 
1758 		if (!fl->desc)
1759 			goto fl_nomem;
1760 
1761 		flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
1762 		c.iqns_to_fl0congen |=
1763 			htonl(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
1764 			      (unlikely(rxq->usembufs) ?
1765 			       0 : F_FW_IQ_CMD_FL0PACKEN) |
1766 			      F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
1767 			      F_FW_IQ_CMD_FL0PADEN);
1768 		if (cong >= 0)
1769 			c.iqns_to_fl0congen |=
1770 				htonl(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
1771 				      F_FW_IQ_CMD_FL0CONGCIF |
1772 				      F_FW_IQ_CMD_FL0CONGEN);
1773 
1774 		/* In T6, for egress queue type FL there is internal overhead
1775 		 * of 16B for header going into FLM module.
1776 		 * Hence maximum allowed burst size will be 448 bytes.
1777 		 */
1778 		c.fl0dcaen_to_fl0cidxfthresh =
1779 			htons(V_FW_IQ_CMD_FL0FBMIN(chip_ver <= CHELSIO_T5 ?
1780 						   X_FETCHBURSTMIN_128B :
1781 						   X_FETCHBURSTMIN_64B) |
1782 			      V_FW_IQ_CMD_FL0FBMAX(chip_ver <= CHELSIO_T5 ?
1783 						   X_FETCHBURSTMAX_512B :
1784 						   X_FETCHBURSTMAX_256B));
1785 		c.fl0size = htons(flsz);
1786 		c.fl0addr = cpu_to_be64(fl->addr);
1787 	}
1788 
1789 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
1790 	if (ret)
1791 		goto err;
1792 
1793 	iq->cur_desc = iq->desc;
1794 	iq->cidx = 0;
1795 	iq->gts_idx = 0;
1796 	iq->gen = 1;
1797 	iq->next_intr_params = iq->intr_params;
1798 	iq->cntxt_id = ntohs(c.iqid);
1799 	iq->abs_id = ntohs(c.physiqid);
1800 	iq->bar2_addr = bar2_address(adap, iq->cntxt_id, T4_BAR2_QTYPE_INGRESS,
1801 				     &iq->bar2_qid);
1802 	iq->size--;                           /* subtract status entry */
1803 	iq->stat = (void *)&iq->desc[iq->size * 8];
1804 	iq->eth_dev = eth_dev;
1805 	iq->handler = hnd;
1806 	iq->port_id = pi->port_id;
1807 	iq->mb_pool = mp;
1808 
1809 	/* set offset to -1 to distinguish ingress queues without FL */
1810 	iq->offset = fl ? 0 : -1;
1811 
1812 	if (fl) {
1813 		fl->cntxt_id = ntohs(c.fl0id);
1814 		fl->avail = 0;
1815 		fl->pend_cred = 0;
1816 		fl->pidx = 0;
1817 		fl->cidx = 0;
1818 		fl->alloc_failed = 0;
1819 
1820 		/*
1821 		 * Note, we must initialize the BAR2 Free List User Doorbell
1822 		 * information before refilling the Free List!
1823 		 */
1824 		fl->bar2_addr = bar2_address(adap, fl->cntxt_id,
1825 					     T4_BAR2_QTYPE_EGRESS,
1826 					     &fl->bar2_qid);
1827 
1828 		nb_refill = refill_fl(adap, fl, fl_cap(fl));
1829 		if (nb_refill != fl_cap(fl)) {
1830 			ret = -ENOMEM;
1831 			dev_err(adap, "%s: mbuf alloc failed with error: %d\n",
1832 				__func__, ret);
1833 			goto refill_fl_err;
1834 		}
1835 	}
1836 
1837 	/*
1838 	 * For T5 and later we attempt to set up the Congestion Manager values
1839 	 * of the new RX Ethernet Queue.  This should really be handled by
1840 	 * firmware because it's more complex than any host driver wants to
1841 	 * get involved with and it's different per chip and this is almost
1842 	 * certainly wrong.  Formware would be wrong as well, but it would be
1843 	 * a lot easier to fix in one place ...  For now we do something very
1844 	 * simple (and hopefully less wrong).
1845 	 */
1846 	if (!is_t4(adap->params.chip) && cong >= 0) {
1847 		u32 param, val;
1848 		int i;
1849 
1850 		param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1851 			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
1852 			 V_FW_PARAMS_PARAM_YZ(iq->cntxt_id));
1853 		if (cong == 0) {
1854 			val = V_CONMCTXT_CNGTPMODE(X_CONMCTXT_CNGTPMODE_QUEUE);
1855 		} else {
1856 			val = V_CONMCTXT_CNGTPMODE(
1857 					X_CONMCTXT_CNGTPMODE_CHANNEL);
1858 			for (i = 0; i < 4; i++) {
1859 				if (cong & (1 << i))
1860 					val |= V_CONMCTXT_CNGCHMAP(1 <<
1861 								   (i << 2));
1862 			}
1863 		}
1864 		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1865 				    &param, &val);
1866 		if (ret)
1867 			dev_warn(adap->pdev_dev, "Failed to set Congestion Manager Context for Ingress Queue %d: %d\n",
1868 				 iq->cntxt_id, -ret);
1869 	}
1870 
1871 	return 0;
1872 
1873 refill_fl_err:
1874 	t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
1875 		   iq->cntxt_id, fl->cntxt_id, 0xffff);
1876 fl_nomem:
1877 	ret = -ENOMEM;
1878 err:
1879 	iq->cntxt_id = 0;
1880 	iq->abs_id = 0;
1881 	if (iq->desc)
1882 		iq->desc = NULL;
1883 
1884 	if (fl && fl->desc) {
1885 		rte_free(fl->sdesc);
1886 		fl->cntxt_id = 0;
1887 		fl->sdesc = NULL;
1888 		fl->desc = NULL;
1889 	}
1890 	return ret;
1891 }
1892 
1893 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
1894 {
1895 	q->cntxt_id = id;
1896 	q->bar2_addr = bar2_address(adap, q->cntxt_id, T4_BAR2_QTYPE_EGRESS,
1897 				    &q->bar2_qid);
1898 	q->cidx = 0;
1899 	q->pidx = 0;
1900 	q->dbidx = 0;
1901 	q->in_use = 0;
1902 	q->equeidx = 0;
1903 	q->coalesce.idx = 0;
1904 	q->coalesce.len = 0;
1905 	q->coalesce.flits = 0;
1906 	q->last_coal_idx = 0;
1907 	q->last_pidx = 0;
1908 	q->stat = (void *)&q->desc[q->size];
1909 }
1910 
1911 int t4_sge_eth_txq_start(struct sge_eth_txq *txq)
1912 {
1913 	/*
1914 	 *  TODO: For flow-control, queue may be stopped waiting to reclaim
1915 	 *  credits.
1916 	 *  Ensure queue is in EQ_STOPPED state before starting it.
1917 	 */
1918 	if (!(txq->flags & EQ_STOPPED))
1919 		return -(EBUSY);
1920 
1921 	txq->flags &= ~EQ_STOPPED;
1922 
1923 	return 0;
1924 }
1925 
1926 int t4_sge_eth_txq_stop(struct sge_eth_txq *txq)
1927 {
1928 	txq->flags |= EQ_STOPPED;
1929 
1930 	return 0;
1931 }
1932 
1933 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
1934 			 struct rte_eth_dev *eth_dev, uint16_t queue_id,
1935 			 unsigned int iqid, int socket_id)
1936 {
1937 	int ret, nentries;
1938 	struct fw_eq_eth_cmd c;
1939 	struct sge *s = &adap->sge;
1940 	struct port_info *pi = (struct port_info *)(eth_dev->data->dev_private);
1941 	char z_name[RTE_MEMZONE_NAMESIZE];
1942 	char z_name_sw[RTE_MEMZONE_NAMESIZE];
1943 
1944 	/* Add status entries */
1945 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
1946 
1947 	snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
1948 		 eth_dev->device->driver->name, "tx_ring",
1949 		 eth_dev->data->port_id, queue_id);
1950 	snprintf(z_name_sw, sizeof(z_name_sw), "%s_sw_ring", z_name);
1951 
1952 	txq->q.desc = alloc_ring(txq->q.size, sizeof(struct tx_desc),
1953 				 sizeof(struct tx_sw_desc), &txq->q.phys_addr,
1954 				 &txq->q.sdesc, s->stat_len, queue_id,
1955 				 socket_id, z_name, z_name_sw);
1956 	if (!txq->q.desc)
1957 		return -ENOMEM;
1958 
1959 	memset(&c, 0, sizeof(c));
1960 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
1961 			    F_FW_CMD_WRITE | F_FW_CMD_EXEC |
1962 			    V_FW_EQ_ETH_CMD_PFN(adap->pf) |
1963 			    V_FW_EQ_ETH_CMD_VFN(0));
1964 	c.alloc_to_len16 = htonl(F_FW_EQ_ETH_CMD_ALLOC |
1965 				 F_FW_EQ_ETH_CMD_EQSTART | (sizeof(c) / 16));
1966 	c.autoequiqe_to_viid = htonl(F_FW_EQ_ETH_CMD_AUTOEQUEQE |
1967 				     V_FW_EQ_ETH_CMD_VIID(pi->viid));
1968 	c.fetchszm_to_iqid =
1969 		htonl(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
1970 		      V_FW_EQ_ETH_CMD_PCIECHN(pi->tx_chan) |
1971 		      F_FW_EQ_ETH_CMD_FETCHRO | V_FW_EQ_ETH_CMD_IQID(iqid));
1972 	c.dcaen_to_eqsize =
1973 		htonl(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
1974 		      V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
1975 		      V_FW_EQ_ETH_CMD_EQSIZE(nentries));
1976 	c.eqaddr = rte_cpu_to_be_64(txq->q.phys_addr);
1977 
1978 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
1979 	if (ret) {
1980 		rte_free(txq->q.sdesc);
1981 		txq->q.sdesc = NULL;
1982 		txq->q.desc = NULL;
1983 		return ret;
1984 	}
1985 
1986 	init_txq(adap, &txq->q, G_FW_EQ_ETH_CMD_EQID(ntohl(c.eqid_pkd)));
1987 	txq->stats.tso = 0;
1988 	txq->stats.pkts = 0;
1989 	txq->stats.tx_cso = 0;
1990 	txq->stats.coal_wr = 0;
1991 	txq->stats.vlan_ins = 0;
1992 	txq->stats.tx_bytes = 0;
1993 	txq->stats.coal_pkts = 0;
1994 	txq->stats.mapping_err = 0;
1995 	txq->flags |= EQ_STOPPED;
1996 	txq->eth_dev = eth_dev;
1997 	t4_os_lock_init(&txq->txq_lock);
1998 	return 0;
1999 }
2000 
2001 static void free_txq(struct sge_txq *q)
2002 {
2003 	q->cntxt_id = 0;
2004 	q->sdesc = NULL;
2005 	q->desc = NULL;
2006 }
2007 
2008 static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
2009 			 struct sge_fl *fl)
2010 {
2011 	unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
2012 
2013 	t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
2014 		   rq->cntxt_id, fl_id, 0xffff);
2015 	rq->cntxt_id = 0;
2016 	rq->abs_id = 0;
2017 	rq->desc = NULL;
2018 
2019 	if (fl) {
2020 		free_rx_bufs(fl, fl->avail);
2021 		rte_free(fl->sdesc);
2022 		fl->sdesc = NULL;
2023 		fl->cntxt_id = 0;
2024 		fl->desc = NULL;
2025 	}
2026 }
2027 
2028 /*
2029  * Clear all queues of the port
2030  *
2031  * Note:  This function must only be called after rx and tx path
2032  * of the port have been disabled.
2033  */
2034 void t4_sge_eth_clear_queues(struct port_info *pi)
2035 {
2036 	int i;
2037 	struct adapter *adap = pi->adapter;
2038 	struct sge_eth_rxq *rxq = &adap->sge.ethrxq[pi->first_qset];
2039 	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
2040 
2041 	for (i = 0; i < pi->n_rx_qsets; i++, rxq++) {
2042 		if (rxq->rspq.desc)
2043 			t4_sge_eth_rxq_stop(adap, &rxq->rspq);
2044 	}
2045 	for (i = 0; i < pi->n_tx_qsets; i++, txq++) {
2046 		if (txq->q.desc) {
2047 			struct sge_txq *q = &txq->q;
2048 
2049 			t4_sge_eth_txq_stop(txq);
2050 			reclaim_completed_tx(q);
2051 			free_tx_desc(q, q->size);
2052 			q->equeidx = q->pidx;
2053 		}
2054 	}
2055 }
2056 
2057 void t4_sge_eth_rxq_release(struct adapter *adap, struct sge_eth_rxq *rxq)
2058 {
2059 	if (rxq->rspq.desc) {
2060 		t4_sge_eth_rxq_stop(adap, &rxq->rspq);
2061 		free_rspq_fl(adap, &rxq->rspq, rxq->fl.size ? &rxq->fl : NULL);
2062 	}
2063 }
2064 
2065 void t4_sge_eth_txq_release(struct adapter *adap, struct sge_eth_txq *txq)
2066 {
2067 	if (txq->q.desc) {
2068 		t4_sge_eth_txq_stop(txq);
2069 		reclaim_completed_tx(&txq->q);
2070 		t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, txq->q.cntxt_id);
2071 		free_tx_desc(&txq->q, txq->q.size);
2072 		rte_free(txq->q.sdesc);
2073 		free_txq(&txq->q);
2074 	}
2075 }
2076 
2077 void t4_sge_tx_monitor_start(struct adapter *adap)
2078 {
2079 	rte_eal_alarm_set(50, tx_timer_cb, (void *)adap);
2080 }
2081 
2082 void t4_sge_tx_monitor_stop(struct adapter *adap)
2083 {
2084 	rte_eal_alarm_cancel(tx_timer_cb, (void *)adap);
2085 }
2086 
2087 /**
2088  * t4_free_sge_resources - free SGE resources
2089  * @adap: the adapter
2090  *
2091  * Frees resources used by the SGE queue sets.
2092  */
2093 void t4_free_sge_resources(struct adapter *adap)
2094 {
2095 	int i;
2096 	struct sge_eth_rxq *rxq = &adap->sge.ethrxq[0];
2097 	struct sge_eth_txq *txq = &adap->sge.ethtxq[0];
2098 
2099 	/* clean up Ethernet Tx/Rx queues */
2100 	for (i = 0; i < adap->sge.max_ethqsets; i++, rxq++, txq++) {
2101 		/* Free only the queues allocated */
2102 		if (rxq->rspq.desc) {
2103 			t4_sge_eth_rxq_release(adap, rxq);
2104 			rxq->rspq.eth_dev = NULL;
2105 		}
2106 		if (txq->q.desc) {
2107 			t4_sge_eth_txq_release(adap, txq);
2108 			txq->eth_dev = NULL;
2109 		}
2110 	}
2111 
2112 	if (adap->sge.fw_evtq.desc)
2113 		free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
2114 }
2115 
2116 /**
2117  * t4_sge_init - initialize SGE
2118  * @adap: the adapter
2119  *
2120  * Performs SGE initialization needed every time after a chip reset.
2121  * We do not initialize any of the queues here, instead the driver
2122  * top-level must request those individually.
2123  *
2124  * Called in two different modes:
2125  *
2126  *  1. Perform actual hardware initialization and record hard-coded
2127  *     parameters which were used.  This gets used when we're the
2128  *     Master PF and the Firmware Configuration File support didn't
2129  *     work for some reason.
2130  *
2131  *  2. We're not the Master PF or initialization was performed with
2132  *     a Firmware Configuration File.  In this case we need to grab
2133  *     any of the SGE operating parameters that we need to have in
2134  *     order to do our job and make sure we can live with them ...
2135  */
2136 static int t4_sge_init_soft(struct adapter *adap)
2137 {
2138 	struct sge *s = &adap->sge;
2139 	u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
2140 	u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
2141 	u32 ingress_rx_threshold;
2142 
2143 	/*
2144 	 * Verify that CPL messages are going to the Ingress Queue for
2145 	 * process_responses() and that only packet data is going to the
2146 	 * Free Lists.
2147 	 */
2148 	if ((t4_read_reg(adap, A_SGE_CONTROL) & F_RXPKTCPLMODE) !=
2149 	    V_RXPKTCPLMODE(X_RXPKTCPLMODE_SPLIT)) {
2150 		dev_err(adap, "bad SGE CPL MODE\n");
2151 		return -EINVAL;
2152 	}
2153 
2154 	/*
2155 	 * Validate the Host Buffer Register Array indices that we want to
2156 	 * use ...
2157 	 *
2158 	 * XXX Note that we should really read through the Host Buffer Size
2159 	 * XXX register array and find the indices of the Buffer Sizes which
2160 	 * XXX meet our needs!
2161 	 */
2162 #define READ_FL_BUF(x) \
2163 	t4_read_reg(adap, A_SGE_FL_BUFFER_SIZE0 + (x) * sizeof(u32))
2164 
2165 	fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
2166 	fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
2167 	fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
2168 	fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
2169 
2170 	/*
2171 	 * We only bother using the Large Page logic if the Large Page Buffer
2172 	 * is larger than our Page Size Buffer.
2173 	 */
2174 	if (fl_large_pg <= fl_small_pg)
2175 		fl_large_pg = 0;
2176 
2177 #undef READ_FL_BUF
2178 
2179 	/*
2180 	 * The Page Size Buffer must be exactly equal to our Page Size and the
2181 	 * Large Page Size Buffer should be 0 (per above) or a power of 2.
2182 	 */
2183 	if (fl_small_pg != CXGBE_PAGE_SIZE ||
2184 	    (fl_large_pg & (fl_large_pg - 1)) != 0) {
2185 		dev_err(adap, "bad SGE FL page buffer sizes [%d, %d]\n",
2186 			fl_small_pg, fl_large_pg);
2187 		return -EINVAL;
2188 	}
2189 	if (fl_large_pg)
2190 		s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
2191 
2192 	if (adap->use_unpacked_mode) {
2193 		int err = 0;
2194 
2195 		if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap)) {
2196 			dev_err(adap, "bad SGE FL small MTU %d\n",
2197 				fl_small_mtu);
2198 			err = -EINVAL;
2199 		}
2200 		if (fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
2201 			dev_err(adap, "bad SGE FL large MTU %d\n",
2202 				fl_large_mtu);
2203 			err = -EINVAL;
2204 		}
2205 		if (err)
2206 			return err;
2207 	}
2208 
2209 	/*
2210 	 * Retrieve our RX interrupt holdoff timer values and counter
2211 	 * threshold values from the SGE parameters.
2212 	 */
2213 	timer_value_0_and_1 = t4_read_reg(adap, A_SGE_TIMER_VALUE_0_AND_1);
2214 	timer_value_2_and_3 = t4_read_reg(adap, A_SGE_TIMER_VALUE_2_AND_3);
2215 	timer_value_4_and_5 = t4_read_reg(adap, A_SGE_TIMER_VALUE_4_AND_5);
2216 	s->timer_val[0] = core_ticks_to_us(adap,
2217 					   G_TIMERVALUE0(timer_value_0_and_1));
2218 	s->timer_val[1] = core_ticks_to_us(adap,
2219 					   G_TIMERVALUE1(timer_value_0_and_1));
2220 	s->timer_val[2] = core_ticks_to_us(adap,
2221 					   G_TIMERVALUE2(timer_value_2_and_3));
2222 	s->timer_val[3] = core_ticks_to_us(adap,
2223 					   G_TIMERVALUE3(timer_value_2_and_3));
2224 	s->timer_val[4] = core_ticks_to_us(adap,
2225 					   G_TIMERVALUE4(timer_value_4_and_5));
2226 	s->timer_val[5] = core_ticks_to_us(adap,
2227 					   G_TIMERVALUE5(timer_value_4_and_5));
2228 
2229 	ingress_rx_threshold = t4_read_reg(adap, A_SGE_INGRESS_RX_THRESHOLD);
2230 	s->counter_val[0] = G_THRESHOLD_0(ingress_rx_threshold);
2231 	s->counter_val[1] = G_THRESHOLD_1(ingress_rx_threshold);
2232 	s->counter_val[2] = G_THRESHOLD_2(ingress_rx_threshold);
2233 	s->counter_val[3] = G_THRESHOLD_3(ingress_rx_threshold);
2234 
2235 	return 0;
2236 }
2237 
2238 int t4_sge_init(struct adapter *adap)
2239 {
2240 	struct sge *s = &adap->sge;
2241 	u32 sge_control, sge_conm_ctrl;
2242 	int ret, egress_threshold;
2243 
2244 	/*
2245 	 * Ingress Padding Boundary and Egress Status Page Size are set up by
2246 	 * t4_fixup_host_params().
2247 	 */
2248 	sge_control = t4_read_reg(adap, A_SGE_CONTROL);
2249 	s->pktshift = G_PKTSHIFT(sge_control);
2250 	s->stat_len = (sge_control & F_EGRSTATUSPAGESIZE) ? 128 : 64;
2251 	s->fl_align = t4_fl_pkt_align(adap);
2252 	ret = t4_sge_init_soft(adap);
2253 	if (ret < 0) {
2254 		dev_err(adap, "%s: t4_sge_init_soft failed, error %d\n",
2255 			__func__, -ret);
2256 		return ret;
2257 	}
2258 
2259 	/*
2260 	 * A FL with <= fl_starve_thres buffers is starving and a periodic
2261 	 * timer will attempt to refill it.  This needs to be larger than the
2262 	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
2263 	 * stuck waiting for new packets while the SGE is waiting for us to
2264 	 * give it more Free List entries.  (Note that the SGE's Egress
2265 	 * Congestion Threshold is in units of 2 Free List pointers.)  For T4,
2266 	 * there was only a single field to control this.  For T5 there's the
2267 	 * original field which now only applies to Unpacked Mode Free List
2268 	 * buffers and a new field which only applies to Packed Mode Free List
2269 	 * buffers.
2270 	 */
2271 	sge_conm_ctrl = t4_read_reg(adap, A_SGE_CONM_CTRL);
2272 	if (is_t4(adap->params.chip) || adap->use_unpacked_mode)
2273 		egress_threshold = G_EGRTHRESHOLD(sge_conm_ctrl);
2274 	else
2275 		egress_threshold = G_EGRTHRESHOLDPACKING(sge_conm_ctrl);
2276 	s->fl_starve_thres = 2 * egress_threshold + 1;
2277 
2278 	return 0;
2279 }
2280