xref: /dpdk/drivers/net/cxgbe/sge.c (revision 089e5ed727a15da2729cfee9b63533dd120bd04c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Chelsio Communications.
3  * All rights reserved.
4  */
5 
6 #include <sys/queue.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <string.h>
11 #include <unistd.h>
12 #include <stdarg.h>
13 #include <inttypes.h>
14 #include <netinet/in.h>
15 
16 #include <rte_byteorder.h>
17 #include <rte_common.h>
18 #include <rte_cycles.h>
19 #include <rte_interrupts.h>
20 #include <rte_log.h>
21 #include <rte_debug.h>
22 #include <rte_pci.h>
23 #include <rte_atomic.h>
24 #include <rte_branch_prediction.h>
25 #include <rte_memory.h>
26 #include <rte_memzone.h>
27 #include <rte_tailq.h>
28 #include <rte_eal.h>
29 #include <rte_alarm.h>
30 #include <rte_ether.h>
31 #include <rte_ethdev_driver.h>
32 #include <rte_malloc.h>
33 #include <rte_random.h>
34 #include <rte_dev.h>
35 
36 #include "base/common.h"
37 #include "base/t4_regs.h"
38 #include "base/t4_msg.h"
39 #include "cxgbe.h"
40 
41 static inline void ship_tx_pkt_coalesce_wr(struct adapter *adap,
42 					   struct sge_eth_txq *txq);
43 
44 /*
45  * Max number of Rx buffers we replenish at a time.
46  */
47 #define MAX_RX_REFILL 64U
48 
49 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
50 
51 /*
52  * Max Tx descriptor space we allow for an Ethernet packet to be inlined
53  * into a WR.
54  */
55 #define MAX_IMM_TX_PKT_LEN 256
56 
57 /*
58  * Max size of a WR sent through a control Tx queue.
59  */
60 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
61 
62 /*
63  * Rx buffer sizes for "usembufs" Free List buffers (one ingress packet
64  * per mbuf buffer).  We currently only support two sizes for 1500- and
65  * 9000-byte MTUs. We could easily support more but there doesn't seem to be
66  * much need for that ...
67  */
68 #define FL_MTU_SMALL 1500
69 #define FL_MTU_LARGE 9000
70 
71 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
72 					  unsigned int mtu)
73 {
74 	struct sge *s = &adapter->sge;
75 
76 	return CXGBE_ALIGN(s->pktshift + RTE_ETHER_HDR_LEN + VLAN_HLEN + mtu,
77 			   s->fl_align);
78 }
79 
80 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
81 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
82 
83 /*
84  * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses
85  * these to specify the buffer size as an index into the SGE Free List Buffer
86  * Size register array.  We also use bit 4, when the buffer has been unmapped
87  * for DMA, but this is of course never sent to the hardware and is only used
88  * to prevent double unmappings.  All of the above requires that the Free List
89  * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
90  * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal
91  * Free List Buffer alignment is 32 bytes, this works out for us ...
92  */
93 enum {
94 	RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */
95 	RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */
96 	RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */
97 
98 	/*
99 	 * XXX We shouldn't depend on being able to use these indices.
100 	 * XXX Especially when some other Master PF has initialized the
101 	 * XXX adapter or we use the Firmware Configuration File.  We
102 	 * XXX should really search through the Host Buffer Size register
103 	 * XXX array for the appropriately sized buffer indices.
104 	 */
105 	RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */
106 	RX_LARGE_PG_BUF  = 0x1,   /* buffer large page buffer */
107 
108 	RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */
109 	RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */
110 };
111 
112 /**
113  * txq_avail - return the number of available slots in a Tx queue
114  * @q: the Tx queue
115  *
116  * Returns the number of descriptors in a Tx queue available to write new
117  * packets.
118  */
119 static inline unsigned int txq_avail(const struct sge_txq *q)
120 {
121 	return q->size - 1 - q->in_use;
122 }
123 
124 static int map_mbuf(struct rte_mbuf *mbuf, dma_addr_t *addr)
125 {
126 	struct rte_mbuf *m = mbuf;
127 
128 	for (; m; m = m->next, addr++) {
129 		*addr = m->buf_iova + rte_pktmbuf_headroom(m);
130 		if (*addr == 0)
131 			goto out_err;
132 	}
133 	return 0;
134 
135 out_err:
136 	return -ENOMEM;
137 }
138 
139 /**
140  * free_tx_desc - reclaims Tx descriptors and their buffers
141  * @q: the Tx queue to reclaim descriptors from
142  * @n: the number of descriptors to reclaim
143  *
144  * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
145  * Tx buffers.  Called with the Tx queue lock held.
146  */
147 static void free_tx_desc(struct sge_txq *q, unsigned int n)
148 {
149 	struct tx_sw_desc *d;
150 	unsigned int cidx = 0;
151 
152 	d = &q->sdesc[cidx];
153 	while (n--) {
154 		if (d->mbuf) {                       /* an SGL is present */
155 			rte_pktmbuf_free(d->mbuf);
156 			d->mbuf = NULL;
157 		}
158 		if (d->coalesce.idx) {
159 			int i;
160 
161 			for (i = 0; i < d->coalesce.idx; i++) {
162 				rte_pktmbuf_free(d->coalesce.mbuf[i]);
163 				d->coalesce.mbuf[i] = NULL;
164 			}
165 			d->coalesce.idx = 0;
166 		}
167 		++d;
168 		if (++cidx == q->size) {
169 			cidx = 0;
170 			d = q->sdesc;
171 		}
172 		RTE_MBUF_PREFETCH_TO_FREE(&q->sdesc->mbuf->pool);
173 	}
174 }
175 
176 static void reclaim_tx_desc(struct sge_txq *q, unsigned int n)
177 {
178 	struct tx_sw_desc *d;
179 	unsigned int cidx = q->cidx;
180 
181 	d = &q->sdesc[cidx];
182 	while (n--) {
183 		if (d->mbuf) {                       /* an SGL is present */
184 			rte_pktmbuf_free(d->mbuf);
185 			d->mbuf = NULL;
186 		}
187 		++d;
188 		if (++cidx == q->size) {
189 			cidx = 0;
190 			d = q->sdesc;
191 		}
192 	}
193 	q->cidx = cidx;
194 }
195 
196 /**
197  * fl_cap - return the capacity of a free-buffer list
198  * @fl: the FL
199  *
200  * Returns the capacity of a free-buffer list.  The capacity is less than
201  * the size because one descriptor needs to be left unpopulated, otherwise
202  * HW will think the FL is empty.
203  */
204 static inline unsigned int fl_cap(const struct sge_fl *fl)
205 {
206 	return fl->size - 8;   /* 1 descriptor = 8 buffers */
207 }
208 
209 /**
210  * fl_starving - return whether a Free List is starving.
211  * @adapter: pointer to the adapter
212  * @fl: the Free List
213  *
214  * Tests specified Free List to see whether the number of buffers
215  * available to the hardware has falled below our "starvation"
216  * threshold.
217  */
218 static inline bool fl_starving(const struct adapter *adapter,
219 			       const struct sge_fl *fl)
220 {
221 	const struct sge *s = &adapter->sge;
222 
223 	return fl->avail - fl->pend_cred <= s->fl_starve_thres;
224 }
225 
226 static inline unsigned int get_buf_size(struct adapter *adapter,
227 					const struct rx_sw_desc *d)
228 {
229 	unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
230 	unsigned int buf_size = 0;
231 
232 	switch (rx_buf_size_idx) {
233 	case RX_SMALL_MTU_BUF:
234 		buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
235 		break;
236 
237 	case RX_LARGE_MTU_BUF:
238 		buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
239 		break;
240 
241 	default:
242 		BUG_ON(1);
243 		/* NOT REACHED */
244 	}
245 
246 	return buf_size;
247 }
248 
249 /**
250  * free_rx_bufs - free the Rx buffers on an SGE free list
251  * @q: the SGE free list to free buffers from
252  * @n: how many buffers to free
253  *
254  * Release the next @n buffers on an SGE free-buffer Rx queue.   The
255  * buffers must be made inaccessible to HW before calling this function.
256  */
257 static void free_rx_bufs(struct sge_fl *q, int n)
258 {
259 	unsigned int cidx = q->cidx;
260 	struct rx_sw_desc *d;
261 
262 	d = &q->sdesc[cidx];
263 	while (n--) {
264 		if (d->buf) {
265 			rte_pktmbuf_free(d->buf);
266 			d->buf = NULL;
267 		}
268 		++d;
269 		if (++cidx == q->size) {
270 			cidx = 0;
271 			d = q->sdesc;
272 		}
273 		q->avail--;
274 	}
275 	q->cidx = cidx;
276 }
277 
278 /**
279  * unmap_rx_buf - unmap the current Rx buffer on an SGE free list
280  * @q: the SGE free list
281  *
282  * Unmap the current buffer on an SGE free-buffer Rx queue.   The
283  * buffer must be made inaccessible to HW before calling this function.
284  *
285  * This is similar to @free_rx_bufs above but does not free the buffer.
286  * Do note that the FL still loses any further access to the buffer.
287  */
288 static void unmap_rx_buf(struct sge_fl *q)
289 {
290 	if (++q->cidx == q->size)
291 		q->cidx = 0;
292 	q->avail--;
293 }
294 
295 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
296 {
297 	if (q->pend_cred >= 64) {
298 		u32 val = adap->params.arch.sge_fl_db;
299 
300 		if (is_t4(adap->params.chip))
301 			val |= V_PIDX(q->pend_cred / 8);
302 		else
303 			val |= V_PIDX_T5(q->pend_cred / 8);
304 
305 		/*
306 		 * Make sure all memory writes to the Free List queue are
307 		 * committed before we tell the hardware about them.
308 		 */
309 		wmb();
310 
311 		/*
312 		 * If we don't have access to the new User Doorbell (T5+), use
313 		 * the old doorbell mechanism; otherwise use the new BAR2
314 		 * mechanism.
315 		 */
316 		if (unlikely(!q->bar2_addr)) {
317 			u32 reg = is_pf4(adap) ? MYPF_REG(A_SGE_PF_KDOORBELL) :
318 						 T4VF_SGE_BASE_ADDR +
319 						 A_SGE_VF_KDOORBELL;
320 
321 			t4_write_reg_relaxed(adap, reg,
322 					     val | V_QID(q->cntxt_id));
323 		} else {
324 			writel_relaxed(val | V_QID(q->bar2_qid),
325 				       (void *)((uintptr_t)q->bar2_addr +
326 				       SGE_UDB_KDOORBELL));
327 
328 			/*
329 			 * This Write memory Barrier will force the write to
330 			 * the User Doorbell area to be flushed.
331 			 */
332 			wmb();
333 		}
334 		q->pend_cred &= 7;
335 	}
336 }
337 
338 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, void *buf,
339 				  dma_addr_t mapping)
340 {
341 	sd->buf = buf;
342 	sd->dma_addr = mapping;      /* includes size low bits */
343 }
344 
345 /**
346  * refill_fl_usembufs - refill an SGE Rx buffer ring with mbufs
347  * @adap: the adapter
348  * @q: the ring to refill
349  * @n: the number of new buffers to allocate
350  *
351  * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
352  * allocated with the supplied gfp flags.  The caller must assure that
353  * @n does not exceed the queue's capacity.  If afterwards the queue is
354  * found critically low mark it as starving in the bitmap of starving FLs.
355  *
356  * Returns the number of buffers allocated.
357  */
358 static unsigned int refill_fl_usembufs(struct adapter *adap, struct sge_fl *q,
359 				       int n)
360 {
361 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, fl);
362 	unsigned int cred = q->avail;
363 	__be64 *d = &q->desc[q->pidx];
364 	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
365 	unsigned int buf_size_idx = RX_SMALL_MTU_BUF;
366 	struct rte_mbuf *buf_bulk[n];
367 	int ret, i;
368 	struct rte_pktmbuf_pool_private *mbp_priv;
369 	u8 jumbo_en = rxq->rspq.eth_dev->data->dev_conf.rxmode.offloads &
370 		DEV_RX_OFFLOAD_JUMBO_FRAME;
371 
372 	/* Use jumbo mtu buffers if mbuf data room size can fit jumbo data. */
373 	mbp_priv = rte_mempool_get_priv(rxq->rspq.mb_pool);
374 	if (jumbo_en &&
375 	    ((mbp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM) >= 9000))
376 		buf_size_idx = RX_LARGE_MTU_BUF;
377 
378 	ret = rte_mempool_get_bulk(rxq->rspq.mb_pool, (void *)buf_bulk, n);
379 	if (unlikely(ret != 0)) {
380 		dev_debug(adap, "%s: failed to allocated fl entries in bulk ..\n",
381 			  __func__);
382 		q->alloc_failed++;
383 		rxq->rspq.eth_dev->data->rx_mbuf_alloc_failed++;
384 		goto out;
385 	}
386 
387 	for (i = 0; i < n; i++) {
388 		struct rte_mbuf *mbuf = buf_bulk[i];
389 		dma_addr_t mapping;
390 
391 		if (!mbuf) {
392 			dev_debug(adap, "%s: mbuf alloc failed\n", __func__);
393 			q->alloc_failed++;
394 			rxq->rspq.eth_dev->data->rx_mbuf_alloc_failed++;
395 			goto out;
396 		}
397 
398 		rte_mbuf_refcnt_set(mbuf, 1);
399 		mbuf->data_off =
400 			(uint16_t)((char *)
401 				   RTE_PTR_ALIGN((char *)mbuf->buf_addr +
402 						 RTE_PKTMBUF_HEADROOM,
403 						 adap->sge.fl_align) -
404 				   (char *)mbuf->buf_addr);
405 		mbuf->next = NULL;
406 		mbuf->nb_segs = 1;
407 		mbuf->port = rxq->rspq.port_id;
408 
409 		mapping = (dma_addr_t)RTE_ALIGN(mbuf->buf_iova +
410 						mbuf->data_off,
411 						adap->sge.fl_align);
412 		mapping |= buf_size_idx;
413 		*d++ = cpu_to_be64(mapping);
414 		set_rx_sw_desc(sd, mbuf, mapping);
415 		sd++;
416 
417 		q->avail++;
418 		if (++q->pidx == q->size) {
419 			q->pidx = 0;
420 			sd = q->sdesc;
421 			d = q->desc;
422 		}
423 	}
424 
425 out:    cred = q->avail - cred;
426 	q->pend_cred += cred;
427 	ring_fl_db(adap, q);
428 
429 	if (unlikely(fl_starving(adap, q))) {
430 		/*
431 		 * Make sure data has been written to free list
432 		 */
433 		wmb();
434 		q->low++;
435 	}
436 
437 	return cred;
438 }
439 
440 /**
441  * refill_fl - refill an SGE Rx buffer ring with mbufs
442  * @adap: the adapter
443  * @q: the ring to refill
444  * @n: the number of new buffers to allocate
445  *
446  * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
447  * allocated with the supplied gfp flags.  The caller must assure that
448  * @n does not exceed the queue's capacity.  Returns the number of buffers
449  * allocated.
450  */
451 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n)
452 {
453 	return refill_fl_usembufs(adap, q, n);
454 }
455 
456 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
457 {
458 	refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail));
459 }
460 
461 /*
462  * Return the number of reclaimable descriptors in a Tx queue.
463  */
464 static inline int reclaimable(const struct sge_txq *q)
465 {
466 	int hw_cidx = ntohs(q->stat->cidx);
467 
468 	hw_cidx -= q->cidx;
469 	if (hw_cidx < 0)
470 		return hw_cidx + q->size;
471 	return hw_cidx;
472 }
473 
474 /**
475  * reclaim_completed_tx - reclaims completed Tx descriptors
476  * @q: the Tx queue to reclaim completed descriptors from
477  *
478  * Reclaims Tx descriptors that the SGE has indicated it has processed.
479  */
480 void reclaim_completed_tx(struct sge_txq *q)
481 {
482 	unsigned int avail = reclaimable(q);
483 
484 	do {
485 		/* reclaim as much as possible */
486 		reclaim_tx_desc(q, avail);
487 		q->in_use -= avail;
488 		avail = reclaimable(q);
489 	} while (avail);
490 }
491 
492 /**
493  * sgl_len - calculates the size of an SGL of the given capacity
494  * @n: the number of SGL entries
495  *
496  * Calculates the number of flits needed for a scatter/gather list that
497  * can hold the given number of entries.
498  */
499 static inline unsigned int sgl_len(unsigned int n)
500 {
501 	/*
502 	 * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
503 	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
504 	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
505 	 * repeated sequences of { Length[i], Length[i+1], Address[i],
506 	 * Address[i+1] } (this ensures that all addresses are on 64-bit
507 	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
508 	 * Address[N+1] is omitted.
509 	 *
510 	 * The following calculation incorporates all of the above.  It's
511 	 * somewhat hard to follow but, briefly: the "+2" accounts for the
512 	 * first two flits which include the DSGL header, Length0 and
513 	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
514 	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
515 	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
516 	 * (n-1) is odd ...
517 	 */
518 	n--;
519 	return (3 * n) / 2 + (n & 1) + 2;
520 }
521 
522 /**
523  * flits_to_desc - returns the num of Tx descriptors for the given flits
524  * @n: the number of flits
525  *
526  * Returns the number of Tx descriptors needed for the supplied number
527  * of flits.
528  */
529 static inline unsigned int flits_to_desc(unsigned int n)
530 {
531 	return DIV_ROUND_UP(n, 8);
532 }
533 
534 /**
535  * is_eth_imm - can an Ethernet packet be sent as immediate data?
536  * @m: the packet
537  *
538  * Returns whether an Ethernet packet is small enough to fit as
539  * immediate data. Return value corresponds to the headroom required.
540  */
541 static inline int is_eth_imm(const struct rte_mbuf *m)
542 {
543 	unsigned int hdrlen = (m->ol_flags & PKT_TX_TCP_SEG) ?
544 			      sizeof(struct cpl_tx_pkt_lso_core) : 0;
545 
546 	hdrlen += sizeof(struct cpl_tx_pkt);
547 	if (m->pkt_len <= MAX_IMM_TX_PKT_LEN - hdrlen)
548 		return hdrlen;
549 
550 	return 0;
551 }
552 
553 /**
554  * calc_tx_flits - calculate the number of flits for a packet Tx WR
555  * @m: the packet
556  * @adap: adapter structure pointer
557  *
558  * Returns the number of flits needed for a Tx WR for the given Ethernet
559  * packet, including the needed WR and CPL headers.
560  */
561 static inline unsigned int calc_tx_flits(const struct rte_mbuf *m,
562 					 struct adapter *adap)
563 {
564 	size_t wr_size = is_pf4(adap) ? sizeof(struct fw_eth_tx_pkt_wr) :
565 					sizeof(struct fw_eth_tx_pkt_vm_wr);
566 	unsigned int flits;
567 	int hdrlen;
568 
569 	/*
570 	 * If the mbuf is small enough, we can pump it out as a work request
571 	 * with only immediate data.  In that case we just have to have the
572 	 * TX Packet header plus the mbuf data in the Work Request.
573 	 */
574 
575 	hdrlen = is_eth_imm(m);
576 	if (hdrlen)
577 		return DIV_ROUND_UP(m->pkt_len + hdrlen, sizeof(__be64));
578 
579 	/*
580 	 * Otherwise, we're going to have to construct a Scatter gather list
581 	 * of the mbuf body and fragments.  We also include the flits necessary
582 	 * for the TX Packet Work Request and CPL.  We always have a firmware
583 	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
584 	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
585 	 * message or, if we're doing a Large Send Offload, an LSO CPL message
586 	 * with an embedded TX Packet Write CPL message.
587 	 */
588 	flits = sgl_len(m->nb_segs);
589 	if (m->tso_segsz)
590 		flits += (wr_size + sizeof(struct cpl_tx_pkt_lso_core) +
591 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
592 	else
593 		flits += (wr_size +
594 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
595 	return flits;
596 }
597 
598 /**
599  * write_sgl - populate a scatter/gather list for a packet
600  * @mbuf: the packet
601  * @q: the Tx queue we are writing into
602  * @sgl: starting location for writing the SGL
603  * @end: points right after the end of the SGL
604  * @start: start offset into mbuf main-body data to include in the SGL
605  * @addr: address of mapped region
606  *
607  * Generates a scatter/gather list for the buffers that make up a packet.
608  * The caller must provide adequate space for the SGL that will be written.
609  * The SGL includes all of the packet's page fragments and the data in its
610  * main body except for the first @start bytes.  @sgl must be 16-byte
611  * aligned and within a Tx descriptor with available space.  @end points
612  * write after the end of the SGL but does not account for any potential
613  * wrap around, i.e., @end > @sgl.
614  */
615 static void write_sgl(struct rte_mbuf *mbuf, struct sge_txq *q,
616 		      struct ulptx_sgl *sgl, u64 *end, unsigned int start,
617 		      const dma_addr_t *addr)
618 {
619 	unsigned int i, len;
620 	struct ulptx_sge_pair *to;
621 	struct rte_mbuf *m = mbuf;
622 	unsigned int nfrags = m->nb_segs;
623 	struct ulptx_sge_pair buf[nfrags / 2];
624 
625 	len = m->data_len - start;
626 	sgl->len0 = htonl(len);
627 	sgl->addr0 = rte_cpu_to_be_64(addr[0]);
628 
629 	sgl->cmd_nsge = htonl(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
630 			      V_ULPTX_NSGE(nfrags));
631 	if (likely(--nfrags == 0))
632 		return;
633 	/*
634 	 * Most of the complexity below deals with the possibility we hit the
635 	 * end of the queue in the middle of writing the SGL.  For this case
636 	 * only we create the SGL in a temporary buffer and then copy it.
637 	 */
638 	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
639 
640 	for (i = 0; nfrags >= 2; nfrags -= 2, to++) {
641 		m = m->next;
642 		to->len[0] = rte_cpu_to_be_32(m->data_len);
643 		to->addr[0] = rte_cpu_to_be_64(addr[++i]);
644 		m = m->next;
645 		to->len[1] = rte_cpu_to_be_32(m->data_len);
646 		to->addr[1] = rte_cpu_to_be_64(addr[++i]);
647 	}
648 	if (nfrags) {
649 		m = m->next;
650 		to->len[0] = rte_cpu_to_be_32(m->data_len);
651 		to->len[1] = rte_cpu_to_be_32(0);
652 		to->addr[0] = rte_cpu_to_be_64(addr[i + 1]);
653 	}
654 	if (unlikely((u8 *)end > (u8 *)q->stat)) {
655 		unsigned int part0 = RTE_PTR_DIFF((u8 *)q->stat,
656 						  (u8 *)sgl->sge);
657 		unsigned int part1;
658 
659 		if (likely(part0))
660 			memcpy(sgl->sge, buf, part0);
661 		part1 = RTE_PTR_DIFF((u8 *)end, (u8 *)q->stat);
662 		rte_memcpy(q->desc, RTE_PTR_ADD((u8 *)buf, part0), part1);
663 		end = RTE_PTR_ADD((void *)q->desc, part1);
664 	}
665 	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
666 		*(u64 *)end = 0;
667 }
668 
669 #define IDXDIFF(head, tail, wrap) \
670 	((head) >= (tail) ? (head) - (tail) : (wrap) - (tail) + (head))
671 
672 #define Q_IDXDIFF(q, idx) IDXDIFF((q)->pidx, (q)->idx, (q)->size)
673 #define R_IDXDIFF(q, idx) IDXDIFF((q)->cidx, (q)->idx, (q)->size)
674 
675 #define PIDXDIFF(head, tail, wrap) \
676 	((tail) >= (head) ? (tail) - (head) : (wrap) - (head) + (tail))
677 #define P_IDXDIFF(q, idx) PIDXDIFF((q)->cidx, idx, (q)->size)
678 
679 /**
680  * ring_tx_db - ring a Tx queue's doorbell
681  * @adap: the adapter
682  * @q: the Tx queue
683  * @n: number of new descriptors to give to HW
684  *
685  * Ring the doorbel for a Tx queue.
686  */
687 static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q)
688 {
689 	int n = Q_IDXDIFF(q, dbidx);
690 
691 	/*
692 	 * Make sure that all writes to the TX Descriptors are committed
693 	 * before we tell the hardware about them.
694 	 */
695 	rte_wmb();
696 
697 	/*
698 	 * If we don't have access to the new User Doorbell (T5+), use the old
699 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
700 	 */
701 	if (unlikely(!q->bar2_addr)) {
702 		u32 val = V_PIDX(n);
703 
704 		/*
705 		 * For T4 we need to participate in the Doorbell Recovery
706 		 * mechanism.
707 		 */
708 		if (!q->db_disabled)
709 			t4_write_reg(adap, MYPF_REG(A_SGE_PF_KDOORBELL),
710 				     V_QID(q->cntxt_id) | val);
711 		else
712 			q->db_pidx_inc += n;
713 		q->db_pidx = q->pidx;
714 	} else {
715 		u32 val = V_PIDX_T5(n);
716 
717 		/*
718 		 * T4 and later chips share the same PIDX field offset within
719 		 * the doorbell, but T5 and later shrank the field in order to
720 		 * gain a bit for Doorbell Priority.  The field was absurdly
721 		 * large in the first place (14 bits) so we just use the T5
722 		 * and later limits and warn if a Queue ID is too large.
723 		 */
724 		WARN_ON(val & F_DBPRIO);
725 
726 		writel(val | V_QID(q->bar2_qid),
727 		       (void *)((uintptr_t)q->bar2_addr + SGE_UDB_KDOORBELL));
728 
729 		/*
730 		 * This Write Memory Barrier will force the write to the User
731 		 * Doorbell area to be flushed.  This is needed to prevent
732 		 * writes on different CPUs for the same queue from hitting
733 		 * the adapter out of order.  This is required when some Work
734 		 * Requests take the Write Combine Gather Buffer path (user
735 		 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
736 		 * take the traditional path where we simply increment the
737 		 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
738 		 * hardware DMA read the actual Work Request.
739 		 */
740 		rte_wmb();
741 	}
742 	q->dbidx = q->pidx;
743 }
744 
745 /*
746  * Figure out what HW csum a packet wants and return the appropriate control
747  * bits.
748  */
749 static u64 hwcsum(enum chip_type chip, const struct rte_mbuf *m)
750 {
751 	int csum_type;
752 
753 	if (m->ol_flags & PKT_TX_IP_CKSUM) {
754 		switch (m->ol_flags & PKT_TX_L4_MASK) {
755 		case PKT_TX_TCP_CKSUM:
756 			csum_type = TX_CSUM_TCPIP;
757 			break;
758 		case PKT_TX_UDP_CKSUM:
759 			csum_type = TX_CSUM_UDPIP;
760 			break;
761 		default:
762 			goto nocsum;
763 		}
764 	} else {
765 		goto nocsum;
766 	}
767 
768 	if (likely(csum_type >= TX_CSUM_TCPIP)) {
769 		u64 hdr_len = V_TXPKT_IPHDR_LEN(m->l3_len);
770 		int eth_hdr_len = m->l2_len;
771 
772 		if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
773 			hdr_len |= V_TXPKT_ETHHDR_LEN(eth_hdr_len);
774 		else
775 			hdr_len |= V_T6_TXPKT_ETHHDR_LEN(eth_hdr_len);
776 		return V_TXPKT_CSUM_TYPE(csum_type) | hdr_len;
777 	}
778 nocsum:
779 	/*
780 	 * unknown protocol, disable HW csum
781 	 * and hope a bad packet is detected
782 	 */
783 	return F_TXPKT_L4CSUM_DIS;
784 }
785 
786 static inline void txq_advance(struct sge_txq *q, unsigned int n)
787 {
788 	q->in_use += n;
789 	q->pidx += n;
790 	if (q->pidx >= q->size)
791 		q->pidx -= q->size;
792 }
793 
794 #define MAX_COALESCE_LEN 64000
795 
796 static inline int wraps_around(struct sge_txq *q, int ndesc)
797 {
798 	return (q->pidx + ndesc) > q->size ? 1 : 0;
799 }
800 
801 static void tx_timer_cb(void *data)
802 {
803 	struct adapter *adap = (struct adapter *)data;
804 	struct sge_eth_txq *txq = &adap->sge.ethtxq[0];
805 	int i;
806 	unsigned int coal_idx;
807 
808 	/* monitor any pending tx */
809 	for (i = 0; i < adap->sge.max_ethqsets; i++, txq++) {
810 		if (t4_os_trylock(&txq->txq_lock)) {
811 			coal_idx = txq->q.coalesce.idx;
812 			if (coal_idx) {
813 				if (coal_idx == txq->q.last_coal_idx &&
814 				    txq->q.pidx == txq->q.last_pidx) {
815 					ship_tx_pkt_coalesce_wr(adap, txq);
816 				} else {
817 					txq->q.last_coal_idx = coal_idx;
818 					txq->q.last_pidx = txq->q.pidx;
819 				}
820 			}
821 			t4_os_unlock(&txq->txq_lock);
822 		}
823 	}
824 	rte_eal_alarm_set(50, tx_timer_cb, (void *)adap);
825 }
826 
827 /**
828  * ship_tx_pkt_coalesce_wr - finalizes and ships a coalesce WR
829  * @ adap: adapter structure
830  * @txq: tx queue
831  *
832  * writes the different fields of the pkts WR and sends it.
833  */
834 static inline void ship_tx_pkt_coalesce_wr(struct adapter *adap,
835 					   struct sge_eth_txq *txq)
836 {
837 	struct fw_eth_tx_pkts_vm_wr *vmwr;
838 	const size_t fw_hdr_copy_len = (sizeof(vmwr->ethmacdst) +
839 					sizeof(vmwr->ethmacsrc) +
840 					sizeof(vmwr->ethtype) +
841 					sizeof(vmwr->vlantci));
842 	struct fw_eth_tx_pkts_wr *wr;
843 	struct sge_txq *q = &txq->q;
844 	unsigned int ndesc;
845 	u32 wr_mid;
846 
847 	/* fill the pkts WR header */
848 	wr = (void *)&q->desc[q->pidx];
849 	wr->op_pkd = htonl(V_FW_WR_OP(FW_ETH_TX_PKTS2_WR));
850 	vmwr = (void *)&q->desc[q->pidx];
851 
852 	wr_mid = V_FW_WR_LEN16(DIV_ROUND_UP(q->coalesce.flits, 2));
853 	ndesc = flits_to_desc(q->coalesce.flits);
854 	wr->equiq_to_len16 = htonl(wr_mid);
855 	wr->plen = cpu_to_be16(q->coalesce.len);
856 	wr->npkt = q->coalesce.idx;
857 	wr->r3 = 0;
858 	if (is_pf4(adap)) {
859 		wr->op_pkd = htonl(V_FW_WR_OP(FW_ETH_TX_PKTS2_WR));
860 		wr->type = q->coalesce.type;
861 	} else {
862 		wr->op_pkd = htonl(V_FW_WR_OP(FW_ETH_TX_PKTS_VM_WR));
863 		vmwr->r4 = 0;
864 		memcpy((void *)vmwr->ethmacdst, (void *)q->coalesce.ethmacdst,
865 		       fw_hdr_copy_len);
866 	}
867 
868 	/* zero out coalesce structure members */
869 	memset((void *)&q->coalesce, 0, sizeof(struct eth_coalesce));
870 
871 	txq_advance(q, ndesc);
872 	txq->stats.coal_wr++;
873 	txq->stats.coal_pkts += wr->npkt;
874 
875 	if (Q_IDXDIFF(q, equeidx) >= q->size / 2) {
876 		q->equeidx = q->pidx;
877 		wr_mid |= F_FW_WR_EQUEQ;
878 		wr->equiq_to_len16 = htonl(wr_mid);
879 	}
880 	ring_tx_db(adap, q);
881 }
882 
883 /**
884  * should_tx_packet_coalesce - decides wether to coalesce an mbuf or not
885  * @txq: tx queue where the mbuf is sent
886  * @mbuf: mbuf to be sent
887  * @nflits: return value for number of flits needed
888  * @adap: adapter structure
889  *
890  * This function decides if a packet should be coalesced or not.
891  */
892 static inline int should_tx_packet_coalesce(struct sge_eth_txq *txq,
893 					    struct rte_mbuf *mbuf,
894 					    unsigned int *nflits,
895 					    struct adapter *adap)
896 {
897 	struct fw_eth_tx_pkts_vm_wr *wr;
898 	const size_t fw_hdr_copy_len = (sizeof(wr->ethmacdst) +
899 					sizeof(wr->ethmacsrc) +
900 					sizeof(wr->ethtype) +
901 					sizeof(wr->vlantci));
902 	struct sge_txq *q = &txq->q;
903 	unsigned int flits, ndesc;
904 	unsigned char type = 0;
905 	int credits, wr_size;
906 
907 	/* use coal WR type 1 when no frags are present */
908 	type = (mbuf->nb_segs == 1) ? 1 : 0;
909 	if (!is_pf4(adap)) {
910 		if (!type)
911 			return 0;
912 
913 		if (q->coalesce.idx && memcmp((void *)q->coalesce.ethmacdst,
914 					      rte_pktmbuf_mtod(mbuf, void *),
915 					      fw_hdr_copy_len))
916 			ship_tx_pkt_coalesce_wr(adap, txq);
917 	}
918 
919 	if (unlikely(type != q->coalesce.type && q->coalesce.idx))
920 		ship_tx_pkt_coalesce_wr(adap, txq);
921 
922 	/* calculate the number of flits required for coalescing this packet
923 	 * without the 2 flits of the WR header. These are added further down
924 	 * if we are just starting in new PKTS WR. sgl_len doesn't account for
925 	 * the possible 16 bytes alignment ULP TX commands so we do it here.
926 	 */
927 	flits = (sgl_len(mbuf->nb_segs) + 1) & ~1U;
928 	if (type == 0)
929 		flits += (sizeof(struct ulp_txpkt) +
930 			  sizeof(struct ulptx_idata)) / sizeof(__be64);
931 	flits += sizeof(struct cpl_tx_pkt_core) / sizeof(__be64);
932 	*nflits = flits;
933 
934 	/* If coalescing is on, the mbuf is added to a pkts WR */
935 	if (q->coalesce.idx) {
936 		ndesc = DIV_ROUND_UP(q->coalesce.flits + flits, 8);
937 		credits = txq_avail(q) - ndesc;
938 
939 		/* If we are wrapping or this is last mbuf then, send the
940 		 * already coalesced mbufs and let the non-coalesce pass
941 		 * handle the mbuf.
942 		 */
943 		if (unlikely(credits < 0 || wraps_around(q, ndesc))) {
944 			ship_tx_pkt_coalesce_wr(adap, txq);
945 			return 0;
946 		}
947 
948 		/* If the max coalesce len or the max WR len is reached
949 		 * ship the WR and keep coalescing on.
950 		 */
951 		if (unlikely((q->coalesce.len + mbuf->pkt_len >
952 						MAX_COALESCE_LEN) ||
953 			     (q->coalesce.flits + flits >
954 			      q->coalesce.max))) {
955 			ship_tx_pkt_coalesce_wr(adap, txq);
956 			goto new;
957 		}
958 		return 1;
959 	}
960 
961 new:
962 	/* start a new pkts WR, the WR header is not filled below */
963 	wr_size = is_pf4(adap) ? sizeof(struct fw_eth_tx_pkts_wr) :
964 				 sizeof(struct fw_eth_tx_pkts_vm_wr);
965 	flits += wr_size / sizeof(__be64);
966 	ndesc = flits_to_desc(q->coalesce.flits + flits);
967 	credits = txq_avail(q) - ndesc;
968 
969 	if (unlikely(credits < 0 || wraps_around(q, ndesc)))
970 		return 0;
971 	q->coalesce.flits += wr_size / sizeof(__be64);
972 	q->coalesce.type = type;
973 	q->coalesce.ptr = (unsigned char *)&q->desc[q->pidx] +
974 			   q->coalesce.flits * sizeof(__be64);
975 	if (!is_pf4(adap))
976 		memcpy((void *)q->coalesce.ethmacdst,
977 		       rte_pktmbuf_mtod(mbuf, void *), fw_hdr_copy_len);
978 	return 1;
979 }
980 
981 /**
982  * tx_do_packet_coalesce - add an mbuf to a coalesce WR
983  * @txq: sge_eth_txq used send the mbuf
984  * @mbuf: mbuf to be sent
985  * @flits: flits needed for this mbuf
986  * @adap: adapter structure
987  * @pi: port_info structure
988  * @addr: mapped address of the mbuf
989  *
990  * Adds an mbuf to be sent as part of a coalesce WR by filling a
991  * ulp_tx_pkt command, ulp_tx_sc_imm command, cpl message and
992  * ulp_tx_sc_dsgl command.
993  */
994 static inline int tx_do_packet_coalesce(struct sge_eth_txq *txq,
995 					struct rte_mbuf *mbuf,
996 					int flits, struct adapter *adap,
997 					const struct port_info *pi,
998 					dma_addr_t *addr, uint16_t nb_pkts)
999 {
1000 	u64 cntrl, *end;
1001 	struct sge_txq *q = &txq->q;
1002 	struct ulp_txpkt *mc;
1003 	struct ulptx_idata *sc_imm;
1004 	struct cpl_tx_pkt_core *cpl;
1005 	struct tx_sw_desc *sd;
1006 	unsigned int idx = q->coalesce.idx, len = mbuf->pkt_len;
1007 	unsigned int max_coal_pkt_num = is_pf4(adap) ? ETH_COALESCE_PKT_NUM :
1008 						       ETH_COALESCE_VF_PKT_NUM;
1009 
1010 #ifdef RTE_LIBRTE_CXGBE_TPUT
1011 	RTE_SET_USED(nb_pkts);
1012 #endif
1013 
1014 	if (q->coalesce.type == 0) {
1015 		mc = (struct ulp_txpkt *)q->coalesce.ptr;
1016 		mc->cmd_dest = htonl(V_ULPTX_CMD(4) | V_ULP_TXPKT_DEST(0) |
1017 				     V_ULP_TXPKT_FID(adap->sge.fw_evtq.cntxt_id) |
1018 				     F_ULP_TXPKT_RO);
1019 		mc->len = htonl(DIV_ROUND_UP(flits, 2));
1020 		sc_imm = (struct ulptx_idata *)(mc + 1);
1021 		sc_imm->cmd_more = htonl(V_ULPTX_CMD(ULP_TX_SC_IMM) |
1022 					 F_ULP_TX_SC_MORE);
1023 		sc_imm->len = htonl(sizeof(*cpl));
1024 		end = (u64 *)mc + flits;
1025 		cpl = (struct cpl_tx_pkt_core *)(sc_imm + 1);
1026 	} else {
1027 		end = (u64 *)q->coalesce.ptr + flits;
1028 		cpl = (struct cpl_tx_pkt_core *)q->coalesce.ptr;
1029 	}
1030 
1031 	/* update coalesce structure for this txq */
1032 	q->coalesce.flits += flits;
1033 	q->coalesce.ptr += flits * sizeof(__be64);
1034 	q->coalesce.len += mbuf->pkt_len;
1035 
1036 	/* fill the cpl message, same as in t4_eth_xmit, this should be kept
1037 	 * similar to t4_eth_xmit
1038 	 */
1039 	if (mbuf->ol_flags & PKT_TX_IP_CKSUM) {
1040 		cntrl = hwcsum(adap->params.chip, mbuf) |
1041 			       F_TXPKT_IPCSUM_DIS;
1042 		txq->stats.tx_cso++;
1043 	} else {
1044 		cntrl = F_TXPKT_L4CSUM_DIS | F_TXPKT_IPCSUM_DIS;
1045 	}
1046 
1047 	if (mbuf->ol_flags & PKT_TX_VLAN_PKT) {
1048 		txq->stats.vlan_ins++;
1049 		cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(mbuf->vlan_tci);
1050 	}
1051 
1052 	cpl->ctrl0 = htonl(V_TXPKT_OPCODE(CPL_TX_PKT_XT));
1053 	if (is_pf4(adap))
1054 		cpl->ctrl0 |= htonl(V_TXPKT_INTF(pi->tx_chan) |
1055 				    V_TXPKT_PF(adap->pf));
1056 	else
1057 		cpl->ctrl0 |= htonl(V_TXPKT_INTF(pi->port_id));
1058 	cpl->pack = htons(0);
1059 	cpl->len = htons(len);
1060 	cpl->ctrl1 = cpu_to_be64(cntrl);
1061 	write_sgl(mbuf, q, (struct ulptx_sgl *)(cpl + 1), end, 0,  addr);
1062 	txq->stats.pkts++;
1063 	txq->stats.tx_bytes += len;
1064 
1065 	sd = &q->sdesc[q->pidx + (idx >> 1)];
1066 	if (!(idx & 1)) {
1067 		if (sd->coalesce.idx) {
1068 			int i;
1069 
1070 			for (i = 0; i < sd->coalesce.idx; i++) {
1071 				rte_pktmbuf_free(sd->coalesce.mbuf[i]);
1072 				sd->coalesce.mbuf[i] = NULL;
1073 			}
1074 		}
1075 	}
1076 
1077 	/* store pointers to the mbuf and the sgl used in free_tx_desc.
1078 	 * each tx desc can hold two pointers corresponding to the value
1079 	 * of ETH_COALESCE_PKT_PER_DESC
1080 	 */
1081 	sd->coalesce.mbuf[idx & 1] = mbuf;
1082 	sd->coalesce.sgl[idx & 1] = (struct ulptx_sgl *)(cpl + 1);
1083 	sd->coalesce.idx = (idx & 1) + 1;
1084 
1085 	/* send the coaelsced work request if max reached */
1086 	if (++q->coalesce.idx == max_coal_pkt_num
1087 #ifndef RTE_LIBRTE_CXGBE_TPUT
1088 	    || q->coalesce.idx >= nb_pkts
1089 #endif
1090 	    )
1091 		ship_tx_pkt_coalesce_wr(adap, txq);
1092 	return 0;
1093 }
1094 
1095 /**
1096  * t4_eth_xmit - add a packet to an Ethernet Tx queue
1097  * @txq: the egress queue
1098  * @mbuf: the packet
1099  *
1100  * Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
1101  */
1102 int t4_eth_xmit(struct sge_eth_txq *txq, struct rte_mbuf *mbuf,
1103 		uint16_t nb_pkts)
1104 {
1105 	const struct port_info *pi;
1106 	struct cpl_tx_pkt_lso_core *lso;
1107 	struct adapter *adap;
1108 	struct rte_mbuf *m = mbuf;
1109 	struct fw_eth_tx_pkt_wr *wr;
1110 	struct fw_eth_tx_pkt_vm_wr *vmwr;
1111 	struct cpl_tx_pkt_core *cpl;
1112 	struct tx_sw_desc *d;
1113 	dma_addr_t addr[m->nb_segs];
1114 	unsigned int flits, ndesc, cflits;
1115 	int l3hdr_len, l4hdr_len, eth_xtra_len;
1116 	int len, last_desc;
1117 	int credits;
1118 	u32 wr_mid;
1119 	u64 cntrl, *end;
1120 	bool v6;
1121 	u32 max_pkt_len = txq->data->dev_conf.rxmode.max_rx_pkt_len;
1122 
1123 	/* Reject xmit if queue is stopped */
1124 	if (unlikely(txq->flags & EQ_STOPPED))
1125 		return -(EBUSY);
1126 
1127 	/*
1128 	 * The chip min packet length is 10 octets but play safe and reject
1129 	 * anything shorter than an Ethernet header.
1130 	 */
1131 	if (unlikely(m->pkt_len < RTE_ETHER_HDR_LEN)) {
1132 out_free:
1133 		rte_pktmbuf_free(m);
1134 		return 0;
1135 	}
1136 
1137 	if ((!(m->ol_flags & PKT_TX_TCP_SEG)) &&
1138 	    (unlikely(m->pkt_len > max_pkt_len)))
1139 		goto out_free;
1140 
1141 	pi = txq->data->dev_private;
1142 	adap = pi->adapter;
1143 
1144 	cntrl = F_TXPKT_L4CSUM_DIS | F_TXPKT_IPCSUM_DIS;
1145 	/* align the end of coalesce WR to a 512 byte boundary */
1146 	txq->q.coalesce.max = (8 - (txq->q.pidx & 7)) * 8;
1147 
1148 	if (!((m->ol_flags & PKT_TX_TCP_SEG) ||
1149 			m->pkt_len > RTE_ETHER_MAX_LEN)) {
1150 		if (should_tx_packet_coalesce(txq, mbuf, &cflits, adap)) {
1151 			if (unlikely(map_mbuf(mbuf, addr) < 0)) {
1152 				dev_warn(adap, "%s: mapping err for coalesce\n",
1153 					 __func__);
1154 				txq->stats.mapping_err++;
1155 				goto out_free;
1156 			}
1157 			rte_prefetch0((volatile void *)addr);
1158 			return tx_do_packet_coalesce(txq, mbuf, cflits, adap,
1159 						     pi, addr, nb_pkts);
1160 		} else {
1161 			return -EBUSY;
1162 		}
1163 	}
1164 
1165 	if (txq->q.coalesce.idx)
1166 		ship_tx_pkt_coalesce_wr(adap, txq);
1167 
1168 	flits = calc_tx_flits(m, adap);
1169 	ndesc = flits_to_desc(flits);
1170 	credits = txq_avail(&txq->q) - ndesc;
1171 
1172 	if (unlikely(credits < 0)) {
1173 		dev_debug(adap, "%s: Tx ring %u full; credits = %d\n",
1174 			  __func__, txq->q.cntxt_id, credits);
1175 		return -EBUSY;
1176 	}
1177 
1178 	if (unlikely(map_mbuf(m, addr) < 0)) {
1179 		txq->stats.mapping_err++;
1180 		goto out_free;
1181 	}
1182 
1183 	wr_mid = V_FW_WR_LEN16(DIV_ROUND_UP(flits, 2));
1184 	if (Q_IDXDIFF(&txq->q, equeidx)  >= 64) {
1185 		txq->q.equeidx = txq->q.pidx;
1186 		wr_mid |= F_FW_WR_EQUEQ;
1187 	}
1188 
1189 	wr = (void *)&txq->q.desc[txq->q.pidx];
1190 	vmwr = (void *)&txq->q.desc[txq->q.pidx];
1191 	wr->equiq_to_len16 = htonl(wr_mid);
1192 	if (is_pf4(adap)) {
1193 		wr->r3 = rte_cpu_to_be_64(0);
1194 		end = (u64 *)wr + flits;
1195 	} else {
1196 		const size_t fw_hdr_copy_len = (sizeof(vmwr->ethmacdst) +
1197 						sizeof(vmwr->ethmacsrc) +
1198 						sizeof(vmwr->ethtype) +
1199 						sizeof(vmwr->vlantci));
1200 
1201 		vmwr->r3[0] = rte_cpu_to_be_32(0);
1202 		vmwr->r3[1] = rte_cpu_to_be_32(0);
1203 		memcpy((void *)vmwr->ethmacdst, rte_pktmbuf_mtod(m, void *),
1204 		       fw_hdr_copy_len);
1205 		end = (u64 *)vmwr + flits;
1206 	}
1207 
1208 	len = 0;
1209 	len += sizeof(*cpl);
1210 
1211 	/* Coalescing skipped and we send through normal path */
1212 	if (!(m->ol_flags & PKT_TX_TCP_SEG)) {
1213 		wr->op_immdlen = htonl(V_FW_WR_OP(is_pf4(adap) ?
1214 						  FW_ETH_TX_PKT_WR :
1215 						  FW_ETH_TX_PKT_VM_WR) |
1216 				       V_FW_WR_IMMDLEN(len));
1217 		if (is_pf4(adap))
1218 			cpl = (void *)(wr + 1);
1219 		else
1220 			cpl = (void *)(vmwr + 1);
1221 		if (m->ol_flags & PKT_TX_IP_CKSUM) {
1222 			cntrl = hwcsum(adap->params.chip, m) |
1223 				F_TXPKT_IPCSUM_DIS;
1224 			txq->stats.tx_cso++;
1225 		}
1226 	} else {
1227 		if (is_pf4(adap))
1228 			lso = (void *)(wr + 1);
1229 		else
1230 			lso = (void *)(vmwr + 1);
1231 		v6 = (m->ol_flags & PKT_TX_IPV6) != 0;
1232 		l3hdr_len = m->l3_len;
1233 		l4hdr_len = m->l4_len;
1234 		eth_xtra_len = m->l2_len - RTE_ETHER_HDR_LEN;
1235 		len += sizeof(*lso);
1236 		wr->op_immdlen = htonl(V_FW_WR_OP(is_pf4(adap) ?
1237 						  FW_ETH_TX_PKT_WR :
1238 						  FW_ETH_TX_PKT_VM_WR) |
1239 				       V_FW_WR_IMMDLEN(len));
1240 		lso->lso_ctrl = htonl(V_LSO_OPCODE(CPL_TX_PKT_LSO) |
1241 				      F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
1242 				      V_LSO_IPV6(v6) |
1243 				      V_LSO_ETHHDR_LEN(eth_xtra_len / 4) |
1244 				      V_LSO_IPHDR_LEN(l3hdr_len / 4) |
1245 				      V_LSO_TCPHDR_LEN(l4hdr_len / 4));
1246 		lso->ipid_ofst = htons(0);
1247 		lso->mss = htons(m->tso_segsz);
1248 		lso->seqno_offset = htonl(0);
1249 		if (is_t4(adap->params.chip))
1250 			lso->len = htonl(m->pkt_len);
1251 		else
1252 			lso->len = htonl(V_LSO_T5_XFER_SIZE(m->pkt_len));
1253 		cpl = (void *)(lso + 1);
1254 
1255 		if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1256 			cntrl = V_TXPKT_ETHHDR_LEN(eth_xtra_len);
1257 		else
1258 			cntrl = V_T6_TXPKT_ETHHDR_LEN(eth_xtra_len);
1259 
1260 		cntrl |= V_TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 :
1261 						TX_CSUM_TCPIP) |
1262 			 V_TXPKT_IPHDR_LEN(l3hdr_len);
1263 		txq->stats.tso++;
1264 		txq->stats.tx_cso += m->tso_segsz;
1265 	}
1266 
1267 	if (m->ol_flags & PKT_TX_VLAN_PKT) {
1268 		txq->stats.vlan_ins++;
1269 		cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->vlan_tci);
1270 	}
1271 
1272 	cpl->ctrl0 = htonl(V_TXPKT_OPCODE(CPL_TX_PKT_XT));
1273 	if (is_pf4(adap))
1274 		cpl->ctrl0 |= htonl(V_TXPKT_INTF(pi->tx_chan) |
1275 				    V_TXPKT_PF(adap->pf));
1276 	else
1277 		cpl->ctrl0 |= htonl(V_TXPKT_INTF(pi->port_id) |
1278 				    V_TXPKT_PF(0));
1279 
1280 	cpl->pack = htons(0);
1281 	cpl->len = htons(m->pkt_len);
1282 	cpl->ctrl1 = cpu_to_be64(cntrl);
1283 
1284 	txq->stats.pkts++;
1285 	txq->stats.tx_bytes += m->pkt_len;
1286 	last_desc = txq->q.pidx + ndesc - 1;
1287 	if (last_desc >= (int)txq->q.size)
1288 		last_desc -= txq->q.size;
1289 
1290 	d = &txq->q.sdesc[last_desc];
1291 	if (d->coalesce.idx) {
1292 		int i;
1293 
1294 		for (i = 0; i < d->coalesce.idx; i++) {
1295 			rte_pktmbuf_free(d->coalesce.mbuf[i]);
1296 			d->coalesce.mbuf[i] = NULL;
1297 		}
1298 		d->coalesce.idx = 0;
1299 	}
1300 	write_sgl(m, &txq->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
1301 		  addr);
1302 	txq->q.sdesc[last_desc].mbuf = m;
1303 	txq->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
1304 	txq_advance(&txq->q, ndesc);
1305 	ring_tx_db(adap, &txq->q);
1306 	return 0;
1307 }
1308 
1309 /**
1310  * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1311  * @q: the SGE control Tx queue
1312  *
1313  * This is a variant of reclaim_completed_tx() that is used for Tx queues
1314  * that send only immediate data (presently just the control queues) and
1315  * thus do not have any mbufs to release.
1316  */
1317 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1318 {
1319 	int hw_cidx = ntohs(q->stat->cidx);
1320 	int reclaim = hw_cidx - q->cidx;
1321 
1322 	if (reclaim < 0)
1323 		reclaim += q->size;
1324 
1325 	q->in_use -= reclaim;
1326 	q->cidx = hw_cidx;
1327 }
1328 
1329 /**
1330  * is_imm - check whether a packet can be sent as immediate data
1331  * @mbuf: the packet
1332  *
1333  * Returns true if a packet can be sent as a WR with immediate data.
1334  */
1335 static inline int is_imm(const struct rte_mbuf *mbuf)
1336 {
1337 	return mbuf->pkt_len <= MAX_CTRL_WR_LEN;
1338 }
1339 
1340 /**
1341  * inline_tx_mbuf: inline a packet's data into TX descriptors
1342  * @q: the TX queue where the packet will be inlined
1343  * @from: pointer to data portion of packet
1344  * @to: pointer after cpl where data has to be inlined
1345  * @len: length of data to inline
1346  *
1347  * Inline a packet's contents directly to TX descriptors, starting at
1348  * the given position within the TX DMA ring.
1349  * Most of the complexity of this operation is dealing with wrap arounds
1350  * in the middle of the packet we want to inline.
1351  */
1352 static void inline_tx_mbuf(const struct sge_txq *q, caddr_t from, caddr_t *to,
1353 			   int len)
1354 {
1355 	int left = RTE_PTR_DIFF(q->stat, *to);
1356 
1357 	if (likely((uintptr_t)*to + len <= (uintptr_t)q->stat)) {
1358 		rte_memcpy(*to, from, len);
1359 		*to = RTE_PTR_ADD(*to, len);
1360 	} else {
1361 		rte_memcpy(*to, from, left);
1362 		from = RTE_PTR_ADD(from, left);
1363 		left = len - left;
1364 		rte_memcpy((void *)q->desc, from, left);
1365 		*to = RTE_PTR_ADD((void *)q->desc, left);
1366 	}
1367 }
1368 
1369 /**
1370  * ctrl_xmit - send a packet through an SGE control Tx queue
1371  * @q: the control queue
1372  * @mbuf: the packet
1373  *
1374  * Send a packet through an SGE control Tx queue.  Packets sent through
1375  * a control queue must fit entirely as immediate data.
1376  */
1377 static int ctrl_xmit(struct sge_ctrl_txq *q, struct rte_mbuf *mbuf)
1378 {
1379 	unsigned int ndesc;
1380 	struct fw_wr_hdr *wr;
1381 	caddr_t dst;
1382 
1383 	if (unlikely(!is_imm(mbuf))) {
1384 		WARN_ON(1);
1385 		rte_pktmbuf_free(mbuf);
1386 		return -1;
1387 	}
1388 
1389 	reclaim_completed_tx_imm(&q->q);
1390 	ndesc = DIV_ROUND_UP(mbuf->pkt_len, sizeof(struct tx_desc));
1391 	t4_os_lock(&q->ctrlq_lock);
1392 
1393 	q->full = txq_avail(&q->q) < ndesc ? 1 : 0;
1394 	if (unlikely(q->full)) {
1395 		t4_os_unlock(&q->ctrlq_lock);
1396 		return -1;
1397 	}
1398 
1399 	wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1400 	dst = (void *)wr;
1401 	inline_tx_mbuf(&q->q, rte_pktmbuf_mtod(mbuf, caddr_t),
1402 		       &dst, mbuf->data_len);
1403 
1404 	txq_advance(&q->q, ndesc);
1405 	if (unlikely(txq_avail(&q->q) < 64))
1406 		wr->lo |= htonl(F_FW_WR_EQUEQ);
1407 
1408 	q->txp++;
1409 
1410 	ring_tx_db(q->adapter, &q->q);
1411 	t4_os_unlock(&q->ctrlq_lock);
1412 
1413 	rte_pktmbuf_free(mbuf);
1414 	return 0;
1415 }
1416 
1417 /**
1418  * t4_mgmt_tx - send a management message
1419  * @q: the control queue
1420  * @mbuf: the packet containing the management message
1421  *
1422  * Send a management message through control queue.
1423  */
1424 int t4_mgmt_tx(struct sge_ctrl_txq *q, struct rte_mbuf *mbuf)
1425 {
1426 	return ctrl_xmit(q, mbuf);
1427 }
1428 
1429 /**
1430  * alloc_ring - allocate resources for an SGE descriptor ring
1431  * @dev: the PCI device's core device
1432  * @nelem: the number of descriptors
1433  * @elem_size: the size of each descriptor
1434  * @sw_size: the size of the SW state associated with each ring element
1435  * @phys: the physical address of the allocated ring
1436  * @metadata: address of the array holding the SW state for the ring
1437  * @stat_size: extra space in HW ring for status information
1438  * @node: preferred node for memory allocations
1439  *
1440  * Allocates resources for an SGE descriptor ring, such as Tx queues,
1441  * free buffer lists, or response queues.  Each SGE ring requires
1442  * space for its HW descriptors plus, optionally, space for the SW state
1443  * associated with each HW entry (the metadata).  The function returns
1444  * three values: the virtual address for the HW ring (the return value
1445  * of the function), the bus address of the HW ring, and the address
1446  * of the SW ring.
1447  */
1448 static void *alloc_ring(size_t nelem, size_t elem_size,
1449 			size_t sw_size, dma_addr_t *phys, void *metadata,
1450 			size_t stat_size, __rte_unused uint16_t queue_id,
1451 			int socket_id, const char *z_name,
1452 			const char *z_name_sw)
1453 {
1454 	size_t len = CXGBE_MAX_RING_DESC_SIZE * elem_size + stat_size;
1455 	const struct rte_memzone *tz;
1456 	void *s = NULL;
1457 
1458 	dev_debug(adapter, "%s: nelem = %zu; elem_size = %zu; sw_size = %zu; "
1459 		  "stat_size = %zu; queue_id = %u; socket_id = %d; z_name = %s;"
1460 		  " z_name_sw = %s\n", __func__, nelem, elem_size, sw_size,
1461 		  stat_size, queue_id, socket_id, z_name, z_name_sw);
1462 
1463 	tz = rte_memzone_lookup(z_name);
1464 	if (tz) {
1465 		dev_debug(adapter, "%s: tz exists...returning existing..\n",
1466 			  __func__);
1467 		goto alloc_sw_ring;
1468 	}
1469 
1470 	/*
1471 	 * Allocate TX/RX ring hardware descriptors. A memzone large enough to
1472 	 * handle the maximum ring size is allocated in order to allow for
1473 	 * resizing in later calls to the queue setup function.
1474 	 */
1475 	tz = rte_memzone_reserve_aligned(z_name, len, socket_id,
1476 			RTE_MEMZONE_IOVA_CONTIG, 4096);
1477 	if (!tz)
1478 		return NULL;
1479 
1480 alloc_sw_ring:
1481 	memset(tz->addr, 0, len);
1482 	if (sw_size) {
1483 		s = rte_zmalloc_socket(z_name_sw, nelem * sw_size,
1484 				       RTE_CACHE_LINE_SIZE, socket_id);
1485 
1486 		if (!s) {
1487 			dev_err(adapter, "%s: failed to get sw_ring memory\n",
1488 				__func__);
1489 			return NULL;
1490 		}
1491 	}
1492 	if (metadata)
1493 		*(void **)metadata = s;
1494 
1495 	*phys = (uint64_t)tz->iova;
1496 	return tz->addr;
1497 }
1498 
1499 #define CXGB4_MSG_AN ((void *)1)
1500 
1501 /**
1502  * rspq_next - advance to the next entry in a response queue
1503  * @q: the queue
1504  *
1505  * Updates the state of a response queue to advance it to the next entry.
1506  */
1507 static inline void rspq_next(struct sge_rspq *q)
1508 {
1509 	q->cur_desc = (const __be64 *)((const char *)q->cur_desc + q->iqe_len);
1510 	if (unlikely(++q->cidx == q->size)) {
1511 		q->cidx = 0;
1512 		q->gen ^= 1;
1513 		q->cur_desc = q->desc;
1514 	}
1515 }
1516 
1517 static inline void cxgbe_set_mbuf_info(struct rte_mbuf *pkt, uint32_t ptype,
1518 				       uint64_t ol_flags)
1519 {
1520 	pkt->packet_type |= ptype;
1521 	pkt->ol_flags |= ol_flags;
1522 }
1523 
1524 static inline void cxgbe_fill_mbuf_info(struct adapter *adap,
1525 					const struct cpl_rx_pkt *cpl,
1526 					struct rte_mbuf *pkt)
1527 {
1528 	bool csum_ok;
1529 	u16 err_vec;
1530 
1531 	if (adap->params.tp.rx_pkt_encap)
1532 		err_vec = G_T6_COMPR_RXERR_VEC(ntohs(cpl->err_vec));
1533 	else
1534 		err_vec = ntohs(cpl->err_vec);
1535 
1536 	csum_ok = cpl->csum_calc && !err_vec;
1537 
1538 	if (cpl->vlan_ex)
1539 		cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L2_ETHER_VLAN,
1540 				    PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED);
1541 	else
1542 		cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L2_ETHER, 0);
1543 
1544 	if (cpl->l2info & htonl(F_RXF_IP))
1545 		cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L3_IPV4,
1546 				    csum_ok ? PKT_RX_IP_CKSUM_GOOD :
1547 					      PKT_RX_IP_CKSUM_BAD);
1548 	else if (cpl->l2info & htonl(F_RXF_IP6))
1549 		cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L3_IPV6,
1550 				    csum_ok ? PKT_RX_IP_CKSUM_GOOD :
1551 					      PKT_RX_IP_CKSUM_BAD);
1552 
1553 	if (cpl->l2info & htonl(F_RXF_TCP))
1554 		cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L4_TCP,
1555 				    csum_ok ? PKT_RX_L4_CKSUM_GOOD :
1556 					      PKT_RX_L4_CKSUM_BAD);
1557 	else if (cpl->l2info & htonl(F_RXF_UDP))
1558 		cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L4_UDP,
1559 				    csum_ok ? PKT_RX_L4_CKSUM_GOOD :
1560 					      PKT_RX_L4_CKSUM_BAD);
1561 }
1562 
1563 /**
1564  * process_responses - process responses from an SGE response queue
1565  * @q: the ingress queue to process
1566  * @budget: how many responses can be processed in this round
1567  * @rx_pkts: mbuf to put the pkts
1568  *
1569  * Process responses from an SGE response queue up to the supplied budget.
1570  * Responses include received packets as well as control messages from FW
1571  * or HW.
1572  *
1573  * Additionally choose the interrupt holdoff time for the next interrupt
1574  * on this queue.  If the system is under memory shortage use a fairly
1575  * long delay to help recovery.
1576  */
1577 static int process_responses(struct sge_rspq *q, int budget,
1578 			     struct rte_mbuf **rx_pkts)
1579 {
1580 	int ret = 0, rsp_type;
1581 	int budget_left = budget;
1582 	const struct rsp_ctrl *rc;
1583 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1584 
1585 	while (likely(budget_left)) {
1586 		if (q->cidx == ntohs(q->stat->pidx))
1587 			break;
1588 
1589 		rc = (const struct rsp_ctrl *)
1590 		     ((const char *)q->cur_desc + (q->iqe_len - sizeof(*rc)));
1591 
1592 		/*
1593 		 * Ensure response has been read
1594 		 */
1595 		rmb();
1596 		rsp_type = G_RSPD_TYPE(rc->u.type_gen);
1597 
1598 		if (likely(rsp_type == X_RSPD_TYPE_FLBUF)) {
1599 			struct sge *s = &q->adapter->sge;
1600 			unsigned int stat_pidx;
1601 			int stat_pidx_diff;
1602 
1603 			stat_pidx = ntohs(q->stat->pidx);
1604 			stat_pidx_diff = P_IDXDIFF(q, stat_pidx);
1605 			while (stat_pidx_diff && budget_left) {
1606 				const struct rx_sw_desc *rsd =
1607 					&rxq->fl.sdesc[rxq->fl.cidx];
1608 				const struct rss_header *rss_hdr =
1609 					(const void *)q->cur_desc;
1610 				const struct cpl_rx_pkt *cpl =
1611 					(const void *)&q->cur_desc[1];
1612 				struct rte_mbuf *pkt, *npkt;
1613 				u32 len, bufsz;
1614 
1615 				rc = (const struct rsp_ctrl *)
1616 				     ((const char *)q->cur_desc +
1617 				      (q->iqe_len - sizeof(*rc)));
1618 
1619 				rsp_type = G_RSPD_TYPE(rc->u.type_gen);
1620 				if (unlikely(rsp_type != X_RSPD_TYPE_FLBUF))
1621 					break;
1622 
1623 				len = ntohl(rc->pldbuflen_qid);
1624 				BUG_ON(!(len & F_RSPD_NEWBUF));
1625 				pkt = rsd->buf;
1626 				npkt = pkt;
1627 				len = G_RSPD_LEN(len);
1628 				pkt->pkt_len = len;
1629 
1630 				/* Chain mbufs into len if necessary */
1631 				while (len) {
1632 					struct rte_mbuf *new_pkt = rsd->buf;
1633 
1634 					bufsz = min(get_buf_size(q->adapter,
1635 								 rsd), len);
1636 					new_pkt->data_len = bufsz;
1637 					unmap_rx_buf(&rxq->fl);
1638 					len -= bufsz;
1639 					npkt->next = new_pkt;
1640 					npkt = new_pkt;
1641 					pkt->nb_segs++;
1642 					rsd = &rxq->fl.sdesc[rxq->fl.cidx];
1643 				}
1644 				npkt->next = NULL;
1645 				pkt->nb_segs--;
1646 
1647 				cxgbe_fill_mbuf_info(q->adapter, cpl, pkt);
1648 
1649 				if (!rss_hdr->filter_tid &&
1650 				    rss_hdr->hash_type) {
1651 					pkt->ol_flags |= PKT_RX_RSS_HASH;
1652 					pkt->hash.rss =
1653 						ntohl(rss_hdr->hash_val);
1654 				}
1655 
1656 				if (cpl->vlan_ex)
1657 					pkt->vlan_tci = ntohs(cpl->vlan);
1658 
1659 				rte_pktmbuf_adj(pkt, s->pktshift);
1660 				rxq->stats.pkts++;
1661 				rxq->stats.rx_bytes += pkt->pkt_len;
1662 				rx_pkts[budget - budget_left] = pkt;
1663 
1664 				rspq_next(q);
1665 				budget_left--;
1666 				stat_pidx_diff--;
1667 			}
1668 			continue;
1669 		} else if (likely(rsp_type == X_RSPD_TYPE_CPL)) {
1670 			ret = q->handler(q, q->cur_desc, NULL);
1671 		} else {
1672 			ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
1673 		}
1674 
1675 		if (unlikely(ret)) {
1676 			/* couldn't process descriptor, back off for recovery */
1677 			q->next_intr_params = V_QINTR_TIMER_IDX(NOMEM_TMR_IDX);
1678 			break;
1679 		}
1680 
1681 		rspq_next(q);
1682 		budget_left--;
1683 	}
1684 
1685 	/*
1686 	 * If this is a Response Queue with an associated Free List and
1687 	 * there's room for another chunk of new Free List buffer pointers,
1688 	 * refill the Free List.
1689 	 */
1690 
1691 	if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 64)
1692 		__refill_fl(q->adapter, &rxq->fl);
1693 
1694 	return budget - budget_left;
1695 }
1696 
1697 int cxgbe_poll(struct sge_rspq *q, struct rte_mbuf **rx_pkts,
1698 	       unsigned int budget, unsigned int *work_done)
1699 {
1700 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1701 	unsigned int cidx_inc;
1702 	unsigned int params;
1703 	u32 val;
1704 
1705 	*work_done = process_responses(q, budget, rx_pkts);
1706 
1707 	if (*work_done) {
1708 		cidx_inc = R_IDXDIFF(q, gts_idx);
1709 
1710 		if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 64)
1711 			__refill_fl(q->adapter, &rxq->fl);
1712 
1713 		params = q->intr_params;
1714 		q->next_intr_params = params;
1715 		val = V_CIDXINC(cidx_inc) | V_SEINTARM(params);
1716 
1717 		if (unlikely(!q->bar2_addr)) {
1718 			u32 reg = is_pf4(q->adapter) ? MYPF_REG(A_SGE_PF_GTS) :
1719 						       T4VF_SGE_BASE_ADDR +
1720 						       A_SGE_VF_GTS;
1721 
1722 			t4_write_reg(q->adapter, reg,
1723 				     val | V_INGRESSQID((u32)q->cntxt_id));
1724 		} else {
1725 			writel(val | V_INGRESSQID(q->bar2_qid),
1726 			       (void *)((uintptr_t)q->bar2_addr + SGE_UDB_GTS));
1727 			/* This Write memory Barrier will force the
1728 			 * write to the User Doorbell area to be
1729 			 * flushed.
1730 			 */
1731 			wmb();
1732 		}
1733 		q->gts_idx = q->cidx;
1734 	}
1735 	return 0;
1736 }
1737 
1738 /**
1739  * bar2_address - return the BAR2 address for an SGE Queue's Registers
1740  * @adapter: the adapter
1741  * @qid: the SGE Queue ID
1742  * @qtype: the SGE Queue Type (Egress or Ingress)
1743  * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
1744  *
1745  * Returns the BAR2 address for the SGE Queue Registers associated with
1746  * @qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
1747  * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
1748  * Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
1749  * Registers are supported (e.g. the Write Combining Doorbell Buffer).
1750  */
1751 static void __iomem *bar2_address(struct adapter *adapter, unsigned int qid,
1752 				  enum t4_bar2_qtype qtype,
1753 				  unsigned int *pbar2_qid)
1754 {
1755 	u64 bar2_qoffset;
1756 	int ret;
1757 
1758 	ret = t4_bar2_sge_qregs(adapter, qid, qtype, &bar2_qoffset, pbar2_qid);
1759 	if (ret)
1760 		return NULL;
1761 
1762 	return adapter->bar2 + bar2_qoffset;
1763 }
1764 
1765 int t4_sge_eth_rxq_start(struct adapter *adap, struct sge_rspq *rq)
1766 {
1767 	struct sge_eth_rxq *rxq = container_of(rq, struct sge_eth_rxq, rspq);
1768 	unsigned int fl_id = rxq->fl.size ? rxq->fl.cntxt_id : 0xffff;
1769 
1770 	return t4_iq_start_stop(adap, adap->mbox, true, adap->pf, 0,
1771 				rq->cntxt_id, fl_id, 0xffff);
1772 }
1773 
1774 int t4_sge_eth_rxq_stop(struct adapter *adap, struct sge_rspq *rq)
1775 {
1776 	struct sge_eth_rxq *rxq = container_of(rq, struct sge_eth_rxq, rspq);
1777 	unsigned int fl_id = rxq->fl.size ? rxq->fl.cntxt_id : 0xffff;
1778 
1779 	return t4_iq_start_stop(adap, adap->mbox, false, adap->pf, 0,
1780 				rq->cntxt_id, fl_id, 0xffff);
1781 }
1782 
1783 /*
1784  * @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
1785  * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
1786  */
1787 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
1788 		     struct rte_eth_dev *eth_dev, int intr_idx,
1789 		     struct sge_fl *fl, rspq_handler_t hnd, int cong,
1790 		     struct rte_mempool *mp, int queue_id, int socket_id)
1791 {
1792 	int ret, flsz = 0;
1793 	struct fw_iq_cmd c;
1794 	struct sge *s = &adap->sge;
1795 	struct port_info *pi = eth_dev->data->dev_private;
1796 	char z_name[RTE_MEMZONE_NAMESIZE];
1797 	char z_name_sw[RTE_MEMZONE_NAMESIZE];
1798 	unsigned int nb_refill;
1799 	u8 pciechan;
1800 
1801 	/* Size needs to be multiple of 16, including status entry. */
1802 	iq->size = cxgbe_roundup(iq->size, 16);
1803 
1804 	snprintf(z_name, sizeof(z_name), "eth_p%d_q%d_%s",
1805 			eth_dev->data->port_id, queue_id,
1806 			fwevtq ? "fwq_ring" : "rx_ring");
1807 	snprintf(z_name_sw, sizeof(z_name_sw), "%s_sw_ring", z_name);
1808 
1809 	iq->desc = alloc_ring(iq->size, iq->iqe_len, 0, &iq->phys_addr, NULL, 0,
1810 			      queue_id, socket_id, z_name, z_name_sw);
1811 	if (!iq->desc)
1812 		return -ENOMEM;
1813 
1814 	memset(&c, 0, sizeof(c));
1815 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
1816 			    F_FW_CMD_WRITE | F_FW_CMD_EXEC);
1817 
1818 	if (is_pf4(adap)) {
1819 		pciechan = pi->tx_chan;
1820 		c.op_to_vfn |= htonl(V_FW_IQ_CMD_PFN(adap->pf) |
1821 				     V_FW_IQ_CMD_VFN(0));
1822 		if (cong >= 0)
1823 			c.iqns_to_fl0congen =
1824 				htonl(F_FW_IQ_CMD_IQFLINTCONGEN |
1825 				      V_FW_IQ_CMD_IQTYPE(cong ?
1826 							 FW_IQ_IQTYPE_NIC :
1827 							 FW_IQ_IQTYPE_OFLD) |
1828 				      F_FW_IQ_CMD_IQRO);
1829 	} else {
1830 		pciechan = pi->port_id;
1831 	}
1832 
1833 	c.alloc_to_len16 = htonl(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
1834 				 (sizeof(c) / 16));
1835 	c.type_to_iqandstindex =
1836 		htonl(V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
1837 		      V_FW_IQ_CMD_IQASYNCH(fwevtq) |
1838 		      V_FW_IQ_CMD_VIID(pi->viid) |
1839 		      V_FW_IQ_CMD_IQANDST(intr_idx < 0) |
1840 		      V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_STATUS_PAGE) |
1841 		      V_FW_IQ_CMD_IQANDSTINDEX(intr_idx >= 0 ? intr_idx :
1842 							       -intr_idx - 1));
1843 	c.iqdroprss_to_iqesize =
1844 		htons(V_FW_IQ_CMD_IQPCIECH(pciechan) |
1845 		      F_FW_IQ_CMD_IQGTSMODE |
1846 		      V_FW_IQ_CMD_IQINTCNTTHRESH(iq->pktcnt_idx) |
1847 		      V_FW_IQ_CMD_IQESIZE(ilog2(iq->iqe_len) - 4));
1848 	c.iqsize = htons(iq->size);
1849 	c.iqaddr = cpu_to_be64(iq->phys_addr);
1850 
1851 	if (fl) {
1852 		struct sge_eth_rxq *rxq = container_of(fl, struct sge_eth_rxq,
1853 						       fl);
1854 		unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1855 
1856 		/*
1857 		 * Allocate the ring for the hardware free list (with space
1858 		 * for its status page) along with the associated software
1859 		 * descriptor ring.  The free list size needs to be a multiple
1860 		 * of the Egress Queue Unit and at least 2 Egress Units larger
1861 		 * than the SGE's Egress Congrestion Threshold
1862 		 * (fl_starve_thres - 1).
1863 		 */
1864 		if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
1865 			fl->size = s->fl_starve_thres - 1 + 2 * 8;
1866 		fl->size = cxgbe_roundup(fl->size, 8);
1867 
1868 		snprintf(z_name, sizeof(z_name), "eth_p%d_q%d_%s",
1869 				eth_dev->data->port_id, queue_id,
1870 				fwevtq ? "fwq_ring" : "fl_ring");
1871 		snprintf(z_name_sw, sizeof(z_name_sw), "%s_sw_ring", z_name);
1872 
1873 		fl->desc = alloc_ring(fl->size, sizeof(__be64),
1874 				      sizeof(struct rx_sw_desc),
1875 				      &fl->addr, &fl->sdesc, s->stat_len,
1876 				      queue_id, socket_id, z_name, z_name_sw);
1877 
1878 		if (!fl->desc)
1879 			goto fl_nomem;
1880 
1881 		flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
1882 		c.iqns_to_fl0congen |=
1883 			htonl(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
1884 			      (unlikely(rxq->usembufs) ?
1885 			       0 : F_FW_IQ_CMD_FL0PACKEN) |
1886 			      F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
1887 			      F_FW_IQ_CMD_FL0PADEN);
1888 		if (is_pf4(adap) && cong >= 0)
1889 			c.iqns_to_fl0congen |=
1890 				htonl(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
1891 				      F_FW_IQ_CMD_FL0CONGCIF |
1892 				      F_FW_IQ_CMD_FL0CONGEN);
1893 
1894 		/* In T6, for egress queue type FL there is internal overhead
1895 		 * of 16B for header going into FLM module.
1896 		 * Hence maximum allowed burst size will be 448 bytes.
1897 		 */
1898 		c.fl0dcaen_to_fl0cidxfthresh =
1899 			htons(V_FW_IQ_CMD_FL0FBMIN(chip_ver <= CHELSIO_T5 ?
1900 						   X_FETCHBURSTMIN_128B :
1901 						   X_FETCHBURSTMIN_64B) |
1902 			      V_FW_IQ_CMD_FL0FBMAX(chip_ver <= CHELSIO_T5 ?
1903 						   X_FETCHBURSTMAX_512B :
1904 						   X_FETCHBURSTMAX_256B));
1905 		c.fl0size = htons(flsz);
1906 		c.fl0addr = cpu_to_be64(fl->addr);
1907 	}
1908 
1909 	if (is_pf4(adap))
1910 		ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
1911 	else
1912 		ret = t4vf_wr_mbox(adap, &c, sizeof(c), &c);
1913 	if (ret)
1914 		goto err;
1915 
1916 	iq->cur_desc = iq->desc;
1917 	iq->cidx = 0;
1918 	iq->gts_idx = 0;
1919 	iq->gen = 1;
1920 	iq->next_intr_params = iq->intr_params;
1921 	iq->cntxt_id = ntohs(c.iqid);
1922 	iq->abs_id = ntohs(c.physiqid);
1923 	iq->bar2_addr = bar2_address(adap, iq->cntxt_id, T4_BAR2_QTYPE_INGRESS,
1924 				     &iq->bar2_qid);
1925 	iq->size--;                           /* subtract status entry */
1926 	iq->stat = (void *)&iq->desc[iq->size * 8];
1927 	iq->eth_dev = eth_dev;
1928 	iq->handler = hnd;
1929 	iq->port_id = pi->pidx;
1930 	iq->mb_pool = mp;
1931 
1932 	/* set offset to -1 to distinguish ingress queues without FL */
1933 	iq->offset = fl ? 0 : -1;
1934 
1935 	if (fl) {
1936 		fl->cntxt_id = ntohs(c.fl0id);
1937 		fl->avail = 0;
1938 		fl->pend_cred = 0;
1939 		fl->pidx = 0;
1940 		fl->cidx = 0;
1941 		fl->alloc_failed = 0;
1942 
1943 		/*
1944 		 * Note, we must initialize the BAR2 Free List User Doorbell
1945 		 * information before refilling the Free List!
1946 		 */
1947 		fl->bar2_addr = bar2_address(adap, fl->cntxt_id,
1948 					     T4_BAR2_QTYPE_EGRESS,
1949 					     &fl->bar2_qid);
1950 
1951 		nb_refill = refill_fl(adap, fl, fl_cap(fl));
1952 		if (nb_refill != fl_cap(fl)) {
1953 			ret = -ENOMEM;
1954 			dev_err(adap, "%s: mbuf alloc failed with error: %d\n",
1955 				__func__, ret);
1956 			goto refill_fl_err;
1957 		}
1958 	}
1959 
1960 	/*
1961 	 * For T5 and later we attempt to set up the Congestion Manager values
1962 	 * of the new RX Ethernet Queue.  This should really be handled by
1963 	 * firmware because it's more complex than any host driver wants to
1964 	 * get involved with and it's different per chip and this is almost
1965 	 * certainly wrong.  Formware would be wrong as well, but it would be
1966 	 * a lot easier to fix in one place ...  For now we do something very
1967 	 * simple (and hopefully less wrong).
1968 	 */
1969 	if (is_pf4(adap) && !is_t4(adap->params.chip) && cong >= 0) {
1970 		u32 param, val;
1971 		int i;
1972 
1973 		param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1974 			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
1975 			 V_FW_PARAMS_PARAM_YZ(iq->cntxt_id));
1976 		if (cong == 0) {
1977 			val = V_CONMCTXT_CNGTPMODE(X_CONMCTXT_CNGTPMODE_QUEUE);
1978 		} else {
1979 			val = V_CONMCTXT_CNGTPMODE(
1980 					X_CONMCTXT_CNGTPMODE_CHANNEL);
1981 			for (i = 0; i < 4; i++) {
1982 				if (cong & (1 << i))
1983 					val |= V_CONMCTXT_CNGCHMAP(1 <<
1984 								   (i << 2));
1985 			}
1986 		}
1987 		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1988 				    &param, &val);
1989 		if (ret)
1990 			dev_warn(adap->pdev_dev, "Failed to set Congestion Manager Context for Ingress Queue %d: %d\n",
1991 				 iq->cntxt_id, -ret);
1992 	}
1993 
1994 	return 0;
1995 
1996 refill_fl_err:
1997 	t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
1998 		   iq->cntxt_id, fl->cntxt_id, 0xffff);
1999 fl_nomem:
2000 	ret = -ENOMEM;
2001 err:
2002 	iq->cntxt_id = 0;
2003 	iq->abs_id = 0;
2004 	if (iq->desc)
2005 		iq->desc = NULL;
2006 
2007 	if (fl && fl->desc) {
2008 		rte_free(fl->sdesc);
2009 		fl->cntxt_id = 0;
2010 		fl->sdesc = NULL;
2011 		fl->desc = NULL;
2012 	}
2013 	return ret;
2014 }
2015 
2016 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id,
2017 		     unsigned int abs_id)
2018 {
2019 	q->cntxt_id = id;
2020 	q->abs_id = abs_id;
2021 	q->bar2_addr = bar2_address(adap, q->cntxt_id, T4_BAR2_QTYPE_EGRESS,
2022 				    &q->bar2_qid);
2023 	q->cidx = 0;
2024 	q->pidx = 0;
2025 	q->dbidx = 0;
2026 	q->in_use = 0;
2027 	q->equeidx = 0;
2028 	q->coalesce.idx = 0;
2029 	q->coalesce.len = 0;
2030 	q->coalesce.flits = 0;
2031 	q->last_coal_idx = 0;
2032 	q->last_pidx = 0;
2033 	q->stat = (void *)&q->desc[q->size];
2034 }
2035 
2036 int t4_sge_eth_txq_start(struct sge_eth_txq *txq)
2037 {
2038 	/*
2039 	 *  TODO: For flow-control, queue may be stopped waiting to reclaim
2040 	 *  credits.
2041 	 *  Ensure queue is in EQ_STOPPED state before starting it.
2042 	 */
2043 	if (!(txq->flags & EQ_STOPPED))
2044 		return -(EBUSY);
2045 
2046 	txq->flags &= ~EQ_STOPPED;
2047 
2048 	return 0;
2049 }
2050 
2051 int t4_sge_eth_txq_stop(struct sge_eth_txq *txq)
2052 {
2053 	txq->flags |= EQ_STOPPED;
2054 
2055 	return 0;
2056 }
2057 
2058 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
2059 			 struct rte_eth_dev *eth_dev, uint16_t queue_id,
2060 			 unsigned int iqid, int socket_id)
2061 {
2062 	int ret, nentries;
2063 	struct fw_eq_eth_cmd c;
2064 	struct sge *s = &adap->sge;
2065 	struct port_info *pi = eth_dev->data->dev_private;
2066 	char z_name[RTE_MEMZONE_NAMESIZE];
2067 	char z_name_sw[RTE_MEMZONE_NAMESIZE];
2068 	u8 pciechan;
2069 
2070 	/* Add status entries */
2071 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2072 
2073 	snprintf(z_name, sizeof(z_name), "eth_p%d_q%d_%s",
2074 			eth_dev->data->port_id, queue_id, "tx_ring");
2075 	snprintf(z_name_sw, sizeof(z_name_sw), "%s_sw_ring", z_name);
2076 
2077 	txq->q.desc = alloc_ring(txq->q.size, sizeof(struct tx_desc),
2078 				 sizeof(struct tx_sw_desc), &txq->q.phys_addr,
2079 				 &txq->q.sdesc, s->stat_len, queue_id,
2080 				 socket_id, z_name, z_name_sw);
2081 	if (!txq->q.desc)
2082 		return -ENOMEM;
2083 
2084 	memset(&c, 0, sizeof(c));
2085 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
2086 			    F_FW_CMD_WRITE | F_FW_CMD_EXEC);
2087 	if (is_pf4(adap)) {
2088 		pciechan = pi->tx_chan;
2089 		c.op_to_vfn |= htonl(V_FW_EQ_ETH_CMD_PFN(adap->pf) |
2090 				     V_FW_EQ_ETH_CMD_VFN(0));
2091 	} else {
2092 		pciechan = pi->port_id;
2093 	}
2094 
2095 	c.alloc_to_len16 = htonl(F_FW_EQ_ETH_CMD_ALLOC |
2096 				 F_FW_EQ_ETH_CMD_EQSTART | (sizeof(c) / 16));
2097 	c.autoequiqe_to_viid = htonl(F_FW_EQ_ETH_CMD_AUTOEQUEQE |
2098 				     V_FW_EQ_ETH_CMD_VIID(pi->viid));
2099 	c.fetchszm_to_iqid =
2100 		htonl(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
2101 		      V_FW_EQ_ETH_CMD_PCIECHN(pciechan) |
2102 		      F_FW_EQ_ETH_CMD_FETCHRO | V_FW_EQ_ETH_CMD_IQID(iqid));
2103 	c.dcaen_to_eqsize =
2104 		htonl(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2105 		      V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2106 		      V_FW_EQ_ETH_CMD_EQSIZE(nentries));
2107 	c.eqaddr = rte_cpu_to_be_64(txq->q.phys_addr);
2108 
2109 	if (is_pf4(adap))
2110 		ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2111 	else
2112 		ret = t4vf_wr_mbox(adap, &c, sizeof(c), &c);
2113 	if (ret) {
2114 		rte_free(txq->q.sdesc);
2115 		txq->q.sdesc = NULL;
2116 		txq->q.desc = NULL;
2117 		return ret;
2118 	}
2119 
2120 	init_txq(adap, &txq->q, G_FW_EQ_ETH_CMD_EQID(ntohl(c.eqid_pkd)),
2121 		 G_FW_EQ_ETH_CMD_PHYSEQID(ntohl(c.physeqid_pkd)));
2122 	txq->stats.tso = 0;
2123 	txq->stats.pkts = 0;
2124 	txq->stats.tx_cso = 0;
2125 	txq->stats.coal_wr = 0;
2126 	txq->stats.vlan_ins = 0;
2127 	txq->stats.tx_bytes = 0;
2128 	txq->stats.coal_pkts = 0;
2129 	txq->stats.mapping_err = 0;
2130 	txq->flags |= EQ_STOPPED;
2131 	txq->eth_dev = eth_dev;
2132 	txq->data = eth_dev->data;
2133 	t4_os_lock_init(&txq->txq_lock);
2134 	return 0;
2135 }
2136 
2137 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
2138 			  struct rte_eth_dev *eth_dev, uint16_t queue_id,
2139 			  unsigned int iqid, int socket_id)
2140 {
2141 	int ret, nentries;
2142 	struct fw_eq_ctrl_cmd c;
2143 	struct sge *s = &adap->sge;
2144 	struct port_info *pi = eth_dev->data->dev_private;
2145 	char z_name[RTE_MEMZONE_NAMESIZE];
2146 	char z_name_sw[RTE_MEMZONE_NAMESIZE];
2147 
2148 	/* Add status entries */
2149 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2150 
2151 	snprintf(z_name, sizeof(z_name), "eth_p%d_q%d_%s",
2152 			eth_dev->data->port_id, queue_id, "ctrl_tx_ring");
2153 	snprintf(z_name_sw, sizeof(z_name_sw), "%s_sw_ring", z_name);
2154 
2155 	txq->q.desc = alloc_ring(txq->q.size, sizeof(struct tx_desc),
2156 				 0, &txq->q.phys_addr,
2157 				 NULL, 0, queue_id,
2158 				 socket_id, z_name, z_name_sw);
2159 	if (!txq->q.desc)
2160 		return -ENOMEM;
2161 
2162 	memset(&c, 0, sizeof(c));
2163 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
2164 			    F_FW_CMD_WRITE | F_FW_CMD_EXEC |
2165 			    V_FW_EQ_CTRL_CMD_PFN(adap->pf) |
2166 			    V_FW_EQ_CTRL_CMD_VFN(0));
2167 	c.alloc_to_len16 = htonl(F_FW_EQ_CTRL_CMD_ALLOC |
2168 				 F_FW_EQ_CTRL_CMD_EQSTART | (sizeof(c) / 16));
2169 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(0));
2170 	c.physeqid_pkd = htonl(0);
2171 	c.fetchszm_to_iqid =
2172 		htonl(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
2173 		      V_FW_EQ_CTRL_CMD_PCIECHN(pi->tx_chan) |
2174 		      F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(iqid));
2175 	c.dcaen_to_eqsize =
2176 		htonl(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2177 		      V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2178 		      V_FW_EQ_CTRL_CMD_EQSIZE(nentries));
2179 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2180 
2181 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2182 	if (ret) {
2183 		txq->q.desc = NULL;
2184 		return ret;
2185 	}
2186 
2187 	init_txq(adap, &txq->q, G_FW_EQ_CTRL_CMD_EQID(ntohl(c.cmpliqid_eqid)),
2188 		 G_FW_EQ_CTRL_CMD_EQID(ntohl(c. physeqid_pkd)));
2189 	txq->adapter = adap;
2190 	txq->full = 0;
2191 	return 0;
2192 }
2193 
2194 static void free_txq(struct sge_txq *q)
2195 {
2196 	q->cntxt_id = 0;
2197 	q->sdesc = NULL;
2198 	q->desc = NULL;
2199 }
2200 
2201 static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
2202 			 struct sge_fl *fl)
2203 {
2204 	unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
2205 
2206 	t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
2207 		   rq->cntxt_id, fl_id, 0xffff);
2208 	rq->cntxt_id = 0;
2209 	rq->abs_id = 0;
2210 	rq->desc = NULL;
2211 
2212 	if (fl) {
2213 		free_rx_bufs(fl, fl->avail);
2214 		rte_free(fl->sdesc);
2215 		fl->sdesc = NULL;
2216 		fl->cntxt_id = 0;
2217 		fl->desc = NULL;
2218 	}
2219 }
2220 
2221 /*
2222  * Clear all queues of the port
2223  *
2224  * Note:  This function must only be called after rx and tx path
2225  * of the port have been disabled.
2226  */
2227 void t4_sge_eth_clear_queues(struct port_info *pi)
2228 {
2229 	int i;
2230 	struct adapter *adap = pi->adapter;
2231 	struct sge_eth_rxq *rxq = &adap->sge.ethrxq[pi->first_qset];
2232 	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
2233 
2234 	for (i = 0; i < pi->n_rx_qsets; i++, rxq++) {
2235 		if (rxq->rspq.desc)
2236 			t4_sge_eth_rxq_stop(adap, &rxq->rspq);
2237 	}
2238 	for (i = 0; i < pi->n_tx_qsets; i++, txq++) {
2239 		if (txq->q.desc) {
2240 			struct sge_txq *q = &txq->q;
2241 
2242 			t4_sge_eth_txq_stop(txq);
2243 			reclaim_completed_tx(q);
2244 			free_tx_desc(q, q->size);
2245 			q->equeidx = q->pidx;
2246 		}
2247 	}
2248 }
2249 
2250 void t4_sge_eth_rxq_release(struct adapter *adap, struct sge_eth_rxq *rxq)
2251 {
2252 	if (rxq->rspq.desc) {
2253 		t4_sge_eth_rxq_stop(adap, &rxq->rspq);
2254 		free_rspq_fl(adap, &rxq->rspq, rxq->fl.size ? &rxq->fl : NULL);
2255 	}
2256 }
2257 
2258 void t4_sge_eth_txq_release(struct adapter *adap, struct sge_eth_txq *txq)
2259 {
2260 	if (txq->q.desc) {
2261 		t4_sge_eth_txq_stop(txq);
2262 		reclaim_completed_tx(&txq->q);
2263 		t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, txq->q.cntxt_id);
2264 		free_tx_desc(&txq->q, txq->q.size);
2265 		rte_free(txq->q.sdesc);
2266 		free_txq(&txq->q);
2267 	}
2268 }
2269 
2270 void t4_sge_tx_monitor_start(struct adapter *adap)
2271 {
2272 	rte_eal_alarm_set(50, tx_timer_cb, (void *)adap);
2273 }
2274 
2275 void t4_sge_tx_monitor_stop(struct adapter *adap)
2276 {
2277 	rte_eal_alarm_cancel(tx_timer_cb, (void *)adap);
2278 }
2279 
2280 /**
2281  * t4_free_sge_resources - free SGE resources
2282  * @adap: the adapter
2283  *
2284  * Frees resources used by the SGE queue sets.
2285  */
2286 void t4_free_sge_resources(struct adapter *adap)
2287 {
2288 	unsigned int i;
2289 	struct sge_eth_rxq *rxq = &adap->sge.ethrxq[0];
2290 	struct sge_eth_txq *txq = &adap->sge.ethtxq[0];
2291 
2292 	/* clean up Ethernet Tx/Rx queues */
2293 	for (i = 0; i < adap->sge.max_ethqsets; i++, rxq++, txq++) {
2294 		/* Free only the queues allocated */
2295 		if (rxq->rspq.desc) {
2296 			t4_sge_eth_rxq_release(adap, rxq);
2297 			rxq->rspq.eth_dev = NULL;
2298 		}
2299 		if (txq->q.desc) {
2300 			t4_sge_eth_txq_release(adap, txq);
2301 			txq->eth_dev = NULL;
2302 		}
2303 	}
2304 
2305 	/* clean up control Tx queues */
2306 	for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
2307 		struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
2308 
2309 		if (cq->q.desc) {
2310 			reclaim_completed_tx_imm(&cq->q);
2311 			t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
2312 					cq->q.cntxt_id);
2313 			free_txq(&cq->q);
2314 		}
2315 	}
2316 
2317 	if (adap->sge.fw_evtq.desc)
2318 		free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
2319 }
2320 
2321 /**
2322  * t4_sge_init - initialize SGE
2323  * @adap: the adapter
2324  *
2325  * Performs SGE initialization needed every time after a chip reset.
2326  * We do not initialize any of the queues here, instead the driver
2327  * top-level must request those individually.
2328  *
2329  * Called in two different modes:
2330  *
2331  *  1. Perform actual hardware initialization and record hard-coded
2332  *     parameters which were used.  This gets used when we're the
2333  *     Master PF and the Firmware Configuration File support didn't
2334  *     work for some reason.
2335  *
2336  *  2. We're not the Master PF or initialization was performed with
2337  *     a Firmware Configuration File.  In this case we need to grab
2338  *     any of the SGE operating parameters that we need to have in
2339  *     order to do our job and make sure we can live with them ...
2340  */
2341 static int t4_sge_init_soft(struct adapter *adap)
2342 {
2343 	struct sge *s = &adap->sge;
2344 	u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
2345 	u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
2346 	u32 ingress_rx_threshold;
2347 
2348 	/*
2349 	 * Verify that CPL messages are going to the Ingress Queue for
2350 	 * process_responses() and that only packet data is going to the
2351 	 * Free Lists.
2352 	 */
2353 	if ((t4_read_reg(adap, A_SGE_CONTROL) & F_RXPKTCPLMODE) !=
2354 	    V_RXPKTCPLMODE(X_RXPKTCPLMODE_SPLIT)) {
2355 		dev_err(adap, "bad SGE CPL MODE\n");
2356 		return -EINVAL;
2357 	}
2358 
2359 	/*
2360 	 * Validate the Host Buffer Register Array indices that we want to
2361 	 * use ...
2362 	 *
2363 	 * XXX Note that we should really read through the Host Buffer Size
2364 	 * XXX register array and find the indices of the Buffer Sizes which
2365 	 * XXX meet our needs!
2366 	 */
2367 #define READ_FL_BUF(x) \
2368 	t4_read_reg(adap, A_SGE_FL_BUFFER_SIZE0 + (x) * sizeof(u32))
2369 
2370 	fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
2371 	fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
2372 	fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
2373 	fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
2374 
2375 	/*
2376 	 * We only bother using the Large Page logic if the Large Page Buffer
2377 	 * is larger than our Page Size Buffer.
2378 	 */
2379 	if (fl_large_pg <= fl_small_pg)
2380 		fl_large_pg = 0;
2381 
2382 #undef READ_FL_BUF
2383 
2384 	/*
2385 	 * The Page Size Buffer must be exactly equal to our Page Size and the
2386 	 * Large Page Size Buffer should be 0 (per above) or a power of 2.
2387 	 */
2388 	if (fl_small_pg != CXGBE_PAGE_SIZE ||
2389 	    (fl_large_pg & (fl_large_pg - 1)) != 0) {
2390 		dev_err(adap, "bad SGE FL page buffer sizes [%d, %d]\n",
2391 			fl_small_pg, fl_large_pg);
2392 		return -EINVAL;
2393 	}
2394 	if (fl_large_pg)
2395 		s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
2396 
2397 	if (adap->use_unpacked_mode) {
2398 		int err = 0;
2399 
2400 		if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap)) {
2401 			dev_err(adap, "bad SGE FL small MTU %d\n",
2402 				fl_small_mtu);
2403 			err = -EINVAL;
2404 		}
2405 		if (fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
2406 			dev_err(adap, "bad SGE FL large MTU %d\n",
2407 				fl_large_mtu);
2408 			err = -EINVAL;
2409 		}
2410 		if (err)
2411 			return err;
2412 	}
2413 
2414 	/*
2415 	 * Retrieve our RX interrupt holdoff timer values and counter
2416 	 * threshold values from the SGE parameters.
2417 	 */
2418 	timer_value_0_and_1 = t4_read_reg(adap, A_SGE_TIMER_VALUE_0_AND_1);
2419 	timer_value_2_and_3 = t4_read_reg(adap, A_SGE_TIMER_VALUE_2_AND_3);
2420 	timer_value_4_and_5 = t4_read_reg(adap, A_SGE_TIMER_VALUE_4_AND_5);
2421 	s->timer_val[0] = core_ticks_to_us(adap,
2422 					   G_TIMERVALUE0(timer_value_0_and_1));
2423 	s->timer_val[1] = core_ticks_to_us(adap,
2424 					   G_TIMERVALUE1(timer_value_0_and_1));
2425 	s->timer_val[2] = core_ticks_to_us(adap,
2426 					   G_TIMERVALUE2(timer_value_2_and_3));
2427 	s->timer_val[3] = core_ticks_to_us(adap,
2428 					   G_TIMERVALUE3(timer_value_2_and_3));
2429 	s->timer_val[4] = core_ticks_to_us(adap,
2430 					   G_TIMERVALUE4(timer_value_4_and_5));
2431 	s->timer_val[5] = core_ticks_to_us(adap,
2432 					   G_TIMERVALUE5(timer_value_4_and_5));
2433 
2434 	ingress_rx_threshold = t4_read_reg(adap, A_SGE_INGRESS_RX_THRESHOLD);
2435 	s->counter_val[0] = G_THRESHOLD_0(ingress_rx_threshold);
2436 	s->counter_val[1] = G_THRESHOLD_1(ingress_rx_threshold);
2437 	s->counter_val[2] = G_THRESHOLD_2(ingress_rx_threshold);
2438 	s->counter_val[3] = G_THRESHOLD_3(ingress_rx_threshold);
2439 
2440 	return 0;
2441 }
2442 
2443 int t4_sge_init(struct adapter *adap)
2444 {
2445 	struct sge *s = &adap->sge;
2446 	u32 sge_control, sge_conm_ctrl;
2447 	int ret, egress_threshold;
2448 
2449 	/*
2450 	 * Ingress Padding Boundary and Egress Status Page Size are set up by
2451 	 * t4_fixup_host_params().
2452 	 */
2453 	sge_control = t4_read_reg(adap, A_SGE_CONTROL);
2454 	s->pktshift = G_PKTSHIFT(sge_control);
2455 	s->stat_len = (sge_control & F_EGRSTATUSPAGESIZE) ? 128 : 64;
2456 	s->fl_align = t4_fl_pkt_align(adap);
2457 	ret = t4_sge_init_soft(adap);
2458 	if (ret < 0) {
2459 		dev_err(adap, "%s: t4_sge_init_soft failed, error %d\n",
2460 			__func__, -ret);
2461 		return ret;
2462 	}
2463 
2464 	/*
2465 	 * A FL with <= fl_starve_thres buffers is starving and a periodic
2466 	 * timer will attempt to refill it.  This needs to be larger than the
2467 	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
2468 	 * stuck waiting for new packets while the SGE is waiting for us to
2469 	 * give it more Free List entries.  (Note that the SGE's Egress
2470 	 * Congestion Threshold is in units of 2 Free List pointers.)  For T4,
2471 	 * there was only a single field to control this.  For T5 there's the
2472 	 * original field which now only applies to Unpacked Mode Free List
2473 	 * buffers and a new field which only applies to Packed Mode Free List
2474 	 * buffers.
2475 	 */
2476 	sge_conm_ctrl = t4_read_reg(adap, A_SGE_CONM_CTRL);
2477 	if (is_t4(adap->params.chip) || adap->use_unpacked_mode)
2478 		egress_threshold = G_EGRTHRESHOLD(sge_conm_ctrl);
2479 	else
2480 		egress_threshold = G_EGRTHRESHOLDPACKING(sge_conm_ctrl);
2481 	s->fl_starve_thres = 2 * egress_threshold + 1;
2482 
2483 	return 0;
2484 }
2485 
2486 int t4vf_sge_init(struct adapter *adap)
2487 {
2488 	struct sge_params *sge_params = &adap->params.sge;
2489 	u32 sge_ingress_queues_per_page;
2490 	u32 sge_egress_queues_per_page;
2491 	u32 sge_control, sge_control2;
2492 	u32 fl_small_pg, fl_large_pg;
2493 	u32 sge_ingress_rx_threshold;
2494 	u32 sge_timer_value_0_and_1;
2495 	u32 sge_timer_value_2_and_3;
2496 	u32 sge_timer_value_4_and_5;
2497 	u32 sge_congestion_control;
2498 	struct sge *s = &adap->sge;
2499 	unsigned int s_hps, s_qpp;
2500 	u32 sge_host_page_size;
2501 	u32 params[7], vals[7];
2502 	int v;
2503 
2504 	/* query basic params from fw */
2505 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2506 		     V_FW_PARAMS_PARAM_XYZ(A_SGE_CONTROL));
2507 	params[1] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2508 		     V_FW_PARAMS_PARAM_XYZ(A_SGE_HOST_PAGE_SIZE));
2509 	params[2] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2510 		     V_FW_PARAMS_PARAM_XYZ(A_SGE_FL_BUFFER_SIZE0));
2511 	params[3] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2512 		     V_FW_PARAMS_PARAM_XYZ(A_SGE_FL_BUFFER_SIZE1));
2513 	params[4] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2514 		     V_FW_PARAMS_PARAM_XYZ(A_SGE_TIMER_VALUE_0_AND_1));
2515 	params[5] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2516 		     V_FW_PARAMS_PARAM_XYZ(A_SGE_TIMER_VALUE_2_AND_3));
2517 	params[6] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2518 		     V_FW_PARAMS_PARAM_XYZ(A_SGE_TIMER_VALUE_4_AND_5));
2519 	v = t4vf_query_params(adap, 7, params, vals);
2520 	if (v != FW_SUCCESS)
2521 		return v;
2522 
2523 	sge_control = vals[0];
2524 	sge_host_page_size = vals[1];
2525 	fl_small_pg = vals[2];
2526 	fl_large_pg = vals[3];
2527 	sge_timer_value_0_and_1 = vals[4];
2528 	sge_timer_value_2_and_3 = vals[5];
2529 	sge_timer_value_4_and_5 = vals[6];
2530 
2531 	/*
2532 	 * Start by vetting the basic SGE parameters which have been set up by
2533 	 * the Physical Function Driver.
2534 	 */
2535 
2536 	/* We only bother using the Large Page logic if the Large Page Buffer
2537 	 * is larger than our Page Size Buffer.
2538 	 */
2539 	if (fl_large_pg <= fl_small_pg)
2540 		fl_large_pg = 0;
2541 
2542 	/* The Page Size Buffer must be exactly equal to our Page Size and the
2543 	 * Large Page Size Buffer should be 0 (per above) or a power of 2.
2544 	 */
2545 	if (fl_small_pg != CXGBE_PAGE_SIZE ||
2546 	    (fl_large_pg & (fl_large_pg - 1)) != 0) {
2547 		dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n",
2548 			fl_small_pg, fl_large_pg);
2549 		return -EINVAL;
2550 	}
2551 
2552 	if ((sge_control & F_RXPKTCPLMODE) !=
2553 	    V_RXPKTCPLMODE(X_RXPKTCPLMODE_SPLIT)) {
2554 		dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n");
2555 		return -EINVAL;
2556 	}
2557 
2558 
2559 	/* Grab ingress packing boundary from SGE_CONTROL2 for */
2560 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2561 		     V_FW_PARAMS_PARAM_XYZ(A_SGE_CONTROL2));
2562 	v = t4vf_query_params(adap, 1, params, vals);
2563 	if (v != FW_SUCCESS) {
2564 		dev_err(adapter, "Unable to get SGE Control2; "
2565 			"probably old firmware.\n");
2566 		return v;
2567 	}
2568 	sge_control2 = vals[0];
2569 
2570 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2571 		     V_FW_PARAMS_PARAM_XYZ(A_SGE_INGRESS_RX_THRESHOLD));
2572 	params[1] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2573 		     V_FW_PARAMS_PARAM_XYZ(A_SGE_CONM_CTRL));
2574 	v = t4vf_query_params(adap, 2, params, vals);
2575 	if (v != FW_SUCCESS)
2576 		return v;
2577 	sge_ingress_rx_threshold = vals[0];
2578 	sge_congestion_control = vals[1];
2579 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2580 		     V_FW_PARAMS_PARAM_XYZ(A_SGE_EGRESS_QUEUES_PER_PAGE_VF));
2581 	params[1] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2582 		     V_FW_PARAMS_PARAM_XYZ(A_SGE_INGRESS_QUEUES_PER_PAGE_VF));
2583 	v = t4vf_query_params(adap, 2, params, vals);
2584 	if (v != FW_SUCCESS) {
2585 		dev_warn(adap, "Unable to get VF SGE Queues/Page; "
2586 			 "probably old firmware.\n");
2587 		return v;
2588 	}
2589 	sge_egress_queues_per_page = vals[0];
2590 	sge_ingress_queues_per_page = vals[1];
2591 
2592 	/*
2593 	 * We need the Queues/Page for our VF.  This is based on the
2594 	 * PF from which we're instantiated and is indexed in the
2595 	 * register we just read.
2596 	 */
2597 	s_hps = (S_HOSTPAGESIZEPF0 +
2598 		 (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adap->pf);
2599 	sge_params->hps =
2600 		((sge_host_page_size >> s_hps) & M_HOSTPAGESIZEPF0);
2601 
2602 	s_qpp = (S_QUEUESPERPAGEPF0 +
2603 		 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adap->pf);
2604 	sge_params->eq_qpp =
2605 		((sge_egress_queues_per_page >> s_qpp)
2606 		 & M_QUEUESPERPAGEPF0);
2607 	sge_params->iq_qpp =
2608 		((sge_ingress_queues_per_page >> s_qpp)
2609 		 & M_QUEUESPERPAGEPF0);
2610 
2611 	/*
2612 	 * Now translate the queried parameters into our internal forms.
2613 	 */
2614 	if (fl_large_pg)
2615 		s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
2616 	s->stat_len = ((sge_control & F_EGRSTATUSPAGESIZE)
2617 			? 128 : 64);
2618 	s->pktshift = G_PKTSHIFT(sge_control);
2619 	s->fl_align = t4vf_fl_pkt_align(adap, sge_control, sge_control2);
2620 
2621 	/*
2622 	 * A FL with <= fl_starve_thres buffers is starving and a periodic
2623 	 * timer will attempt to refill it.  This needs to be larger than the
2624 	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
2625 	 * stuck waiting for new packets while the SGE is waiting for us to
2626 	 * give it more Free List entries.  (Note that the SGE's Egress
2627 	 * Congestion Threshold is in units of 2 Free List pointers.)
2628 	 */
2629 	switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
2630 	case CHELSIO_T5:
2631 		s->fl_starve_thres =
2632 			G_EGRTHRESHOLDPACKING(sge_congestion_control);
2633 		break;
2634 	case CHELSIO_T6:
2635 	default:
2636 		s->fl_starve_thres =
2637 			G_T6_EGRTHRESHOLDPACKING(sge_congestion_control);
2638 		break;
2639 	}
2640 	s->fl_starve_thres = s->fl_starve_thres * 2 + 1;
2641 
2642 	/*
2643 	 * Save RX interrupt holdoff timer values and counter
2644 	 * threshold values from the SGE parameters.
2645 	 */
2646 	s->timer_val[0] = core_ticks_to_us(adap,
2647 			G_TIMERVALUE0(sge_timer_value_0_and_1));
2648 	s->timer_val[1] = core_ticks_to_us(adap,
2649 			G_TIMERVALUE1(sge_timer_value_0_and_1));
2650 	s->timer_val[2] = core_ticks_to_us(adap,
2651 			G_TIMERVALUE2(sge_timer_value_2_and_3));
2652 	s->timer_val[3] = core_ticks_to_us(adap,
2653 			G_TIMERVALUE3(sge_timer_value_2_and_3));
2654 	s->timer_val[4] = core_ticks_to_us(adap,
2655 			G_TIMERVALUE4(sge_timer_value_4_and_5));
2656 	s->timer_val[5] = core_ticks_to_us(adap,
2657 			G_TIMERVALUE5(sge_timer_value_4_and_5));
2658 	s->counter_val[0] = G_THRESHOLD_0(sge_ingress_rx_threshold);
2659 	s->counter_val[1] = G_THRESHOLD_1(sge_ingress_rx_threshold);
2660 	s->counter_val[2] = G_THRESHOLD_2(sge_ingress_rx_threshold);
2661 	s->counter_val[3] = G_THRESHOLD_3(sge_ingress_rx_threshold);
2662 	return 0;
2663 }
2664