xref: /dpdk/drivers/net/cxgbe/cxgbe_flow.c (revision daa02b5cddbb8e11b31d41e2bf7bb1ae64dcae2f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Chelsio Communications.
3  * All rights reserved.
4  */
5 #include "base/common.h"
6 #include "cxgbe_flow.h"
7 
8 #define __CXGBE_FILL_FS(__v, __m, fs, elem, e) \
9 do { \
10 	if ((fs)->mask.elem && ((fs)->val.elem != (__v))) \
11 		return rte_flow_error_set(e, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, \
12 					  NULL, "Redefined match item with" \
13 					  " different values found"); \
14 	(fs)->val.elem = (__v); \
15 	(fs)->mask.elem = (__m); \
16 } while (0)
17 
18 #define __CXGBE_FILL_FS_MEMCPY(__v, __m, fs, elem) \
19 do { \
20 	memcpy(&(fs)->val.elem, &(__v), sizeof(__v)); \
21 	memcpy(&(fs)->mask.elem, &(__m), sizeof(__m)); \
22 } while (0)
23 
24 #define CXGBE_FILL_FS(v, m, elem) \
25 	__CXGBE_FILL_FS(v, m, fs, elem, e)
26 
27 #define CXGBE_FILL_FS_MEMCPY(v, m, elem) \
28 	__CXGBE_FILL_FS_MEMCPY(v, m, fs, elem)
29 
30 static int
31 cxgbe_validate_item(const struct rte_flow_item *i, struct rte_flow_error *e)
32 {
33 	/* rte_flow specification does not allow it. */
34 	if (!i->spec && (i->mask ||  i->last))
35 		return rte_flow_error_set(e, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
36 				   i, "last or mask given without spec");
37 	/*
38 	 * We don't support it.
39 	 * Although, we can support values in last as 0's or last == spec.
40 	 * But this will not provide user with any additional functionality
41 	 * and will only increase the complexity for us.
42 	 */
43 	if (i->last)
44 		return rte_flow_error_set(e, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM,
45 				   i, "last is not supported by chelsio pmd");
46 	return 0;
47 }
48 
49 /**
50  * Apart from the 4-tuple IPv4/IPv6 - TCP/UDP information,
51  * there's only 40-bits available to store match fields.
52  * So, to save space, optimize filter spec for some common
53  * known fields that hardware can parse against incoming
54  * packets automatically.
55  */
56 static void
57 cxgbe_tweak_filter_spec(struct adapter *adap,
58 			struct ch_filter_specification *fs)
59 {
60 	/* Save 16-bit ethertype field space, by setting corresponding
61 	 * 1-bit flags in the filter spec for common known ethertypes.
62 	 * When hardware sees these flags, it automatically infers and
63 	 * matches incoming packets against the corresponding ethertype.
64 	 */
65 	if (fs->mask.ethtype == 0xffff) {
66 		switch (fs->val.ethtype) {
67 		case RTE_ETHER_TYPE_IPV4:
68 			if (adap->params.tp.ethertype_shift < 0) {
69 				fs->type = FILTER_TYPE_IPV4;
70 				fs->val.ethtype = 0;
71 				fs->mask.ethtype = 0;
72 			}
73 			break;
74 		case RTE_ETHER_TYPE_IPV6:
75 			if (adap->params.tp.ethertype_shift < 0) {
76 				fs->type = FILTER_TYPE_IPV6;
77 				fs->val.ethtype = 0;
78 				fs->mask.ethtype = 0;
79 			}
80 			break;
81 		case RTE_ETHER_TYPE_VLAN:
82 			if (adap->params.tp.ethertype_shift < 0 &&
83 			    adap->params.tp.vlan_shift >= 0) {
84 				fs->val.ivlan_vld = 1;
85 				fs->mask.ivlan_vld = 1;
86 				fs->val.ethtype = 0;
87 				fs->mask.ethtype = 0;
88 			}
89 			break;
90 		case RTE_ETHER_TYPE_QINQ:
91 			if (adap->params.tp.ethertype_shift < 0 &&
92 			    adap->params.tp.vnic_shift >= 0) {
93 				fs->val.ovlan_vld = 1;
94 				fs->mask.ovlan_vld = 1;
95 				fs->val.ethtype = 0;
96 				fs->mask.ethtype = 0;
97 			}
98 			break;
99 		default:
100 			break;
101 		}
102 	}
103 }
104 
105 static void
106 cxgbe_fill_filter_region(struct adapter *adap,
107 			 struct ch_filter_specification *fs)
108 {
109 	struct tp_params *tp = &adap->params.tp;
110 	u64 hash_filter_mask = tp->hash_filter_mask;
111 	u64 ntuple_mask = 0;
112 
113 	fs->cap = 0;
114 
115 	if (!is_hashfilter(adap))
116 		return;
117 
118 	if (fs->type) {
119 		uint8_t biton[16] = {0xff, 0xff, 0xff, 0xff,
120 				     0xff, 0xff, 0xff, 0xff,
121 				     0xff, 0xff, 0xff, 0xff,
122 				     0xff, 0xff, 0xff, 0xff};
123 		uint8_t bitoff[16] = {0};
124 
125 		if (!memcmp(fs->val.lip, bitoff, sizeof(bitoff)) ||
126 		    !memcmp(fs->val.fip, bitoff, sizeof(bitoff)) ||
127 		    memcmp(fs->mask.lip, biton, sizeof(biton)) ||
128 		    memcmp(fs->mask.fip, biton, sizeof(biton)))
129 			return;
130 	} else {
131 		uint32_t biton  = 0xffffffff;
132 		uint32_t bitoff = 0x0U;
133 
134 		if (!memcmp(fs->val.lip, &bitoff, sizeof(bitoff)) ||
135 		    !memcmp(fs->val.fip, &bitoff, sizeof(bitoff)) ||
136 		    memcmp(fs->mask.lip, &biton, sizeof(biton)) ||
137 		    memcmp(fs->mask.fip, &biton, sizeof(biton)))
138 			return;
139 	}
140 
141 	if (!fs->val.lport || fs->mask.lport != 0xffff)
142 		return;
143 	if (!fs->val.fport || fs->mask.fport != 0xffff)
144 		return;
145 
146 	if (tp->protocol_shift >= 0)
147 		ntuple_mask |= (u64)fs->mask.proto << tp->protocol_shift;
148 	if (tp->ethertype_shift >= 0)
149 		ntuple_mask |= (u64)fs->mask.ethtype << tp->ethertype_shift;
150 	if (tp->port_shift >= 0)
151 		ntuple_mask |= (u64)fs->mask.iport << tp->port_shift;
152 	if (tp->macmatch_shift >= 0)
153 		ntuple_mask |= (u64)fs->mask.macidx << tp->macmatch_shift;
154 	if (tp->vlan_shift >= 0 && fs->mask.ivlan_vld)
155 		ntuple_mask |= (u64)(F_FT_VLAN_VLD | fs->mask.ivlan) <<
156 			       tp->vlan_shift;
157 	if (tp->vnic_shift >= 0) {
158 		if (fs->mask.ovlan_vld)
159 			ntuple_mask |= (u64)(fs->val.ovlan_vld << 16 |
160 					     fs->mask.ovlan) << tp->vnic_shift;
161 		else if (fs->mask.pfvf_vld)
162 			ntuple_mask |= (u64)(fs->mask.pfvf_vld << 16 |
163 					     fs->mask.pf << 13 |
164 					     fs->mask.vf) << tp->vnic_shift;
165 	}
166 	if (tp->tos_shift >= 0)
167 		ntuple_mask |= (u64)fs->mask.tos << tp->tos_shift;
168 
169 	if (ntuple_mask != hash_filter_mask)
170 		return;
171 
172 	fs->cap = 1;	/* use hash region */
173 }
174 
175 static int
176 ch_rte_parsetype_eth(const void *dmask, const struct rte_flow_item *item,
177 		     struct ch_filter_specification *fs,
178 		     struct rte_flow_error *e)
179 {
180 	const struct rte_flow_item_eth *spec = item->spec;
181 	const struct rte_flow_item_eth *umask = item->mask;
182 	const struct rte_flow_item_eth *mask;
183 
184 	/* If user has not given any mask, then use chelsio supported mask. */
185 	mask = umask ? umask : (const struct rte_flow_item_eth *)dmask;
186 
187 	if (!spec)
188 		return 0;
189 
190 	/* we don't support SRC_MAC filtering*/
191 	if (!rte_is_zero_ether_addr(&spec->src) ||
192 	    (umask && !rte_is_zero_ether_addr(&umask->src)))
193 		return rte_flow_error_set(e, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM,
194 					  item,
195 					  "src mac filtering not supported");
196 
197 	if (!rte_is_zero_ether_addr(&spec->dst) ||
198 	    (umask && !rte_is_zero_ether_addr(&umask->dst))) {
199 		CXGBE_FILL_FS(0, 0x1ff, macidx);
200 		CXGBE_FILL_FS_MEMCPY(spec->dst.addr_bytes, mask->dst.addr_bytes,
201 				     dmac);
202 	}
203 
204 	if (spec->type || (umask && umask->type))
205 		CXGBE_FILL_FS(be16_to_cpu(spec->type),
206 			      be16_to_cpu(mask->type), ethtype);
207 
208 	return 0;
209 }
210 
211 static int
212 ch_rte_parsetype_port(const void *dmask, const struct rte_flow_item *item,
213 		      struct ch_filter_specification *fs,
214 		      struct rte_flow_error *e)
215 {
216 	const struct rte_flow_item_phy_port *val = item->spec;
217 	const struct rte_flow_item_phy_port *umask = item->mask;
218 	const struct rte_flow_item_phy_port *mask;
219 
220 	mask = umask ? umask : (const struct rte_flow_item_phy_port *)dmask;
221 
222 	if (!val)
223 		return 0; /* Wildcard, match all physical ports */
224 
225 	if (val->index > 0x7)
226 		return rte_flow_error_set(e, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
227 					  item,
228 					  "port index up to 0x7 is supported");
229 
230 	if (val->index || (umask && umask->index))
231 		CXGBE_FILL_FS(val->index, mask->index, iport);
232 
233 	return 0;
234 }
235 
236 static int
237 ch_rte_parsetype_vlan(const void *dmask, const struct rte_flow_item *item,
238 		      struct ch_filter_specification *fs,
239 		      struct rte_flow_error *e)
240 {
241 	const struct rte_flow_item_vlan *spec = item->spec;
242 	const struct rte_flow_item_vlan *umask = item->mask;
243 	const struct rte_flow_item_vlan *mask;
244 
245 	/* If user has not given any mask, then use chelsio supported mask. */
246 	mask = umask ? umask : (const struct rte_flow_item_vlan *)dmask;
247 
248 	/* If ethertype is already set and is not VLAN (0x8100) or
249 	 * QINQ(0x88A8), then don't proceed further. Otherwise,
250 	 * reset the outer ethertype, so that it can be replaced by
251 	 * innermost ethertype. Note that hardware will automatically
252 	 * match against VLAN or QINQ packets, based on 'ivlan_vld' or
253 	 * 'ovlan_vld' bit set in Chelsio filter spec, respectively.
254 	 */
255 	if (fs->mask.ethtype) {
256 		if (fs->val.ethtype != RTE_ETHER_TYPE_VLAN &&
257 		    fs->val.ethtype != RTE_ETHER_TYPE_QINQ)
258 			return rte_flow_error_set(e, EINVAL,
259 						  RTE_FLOW_ERROR_TYPE_ITEM,
260 						  item,
261 						  "Ethertype must be 0x8100 or 0x88a8");
262 	}
263 
264 	if (fs->val.ethtype == RTE_ETHER_TYPE_QINQ) {
265 		CXGBE_FILL_FS(1, 1, ovlan_vld);
266 		if (spec) {
267 			if (spec->tci || (umask && umask->tci))
268 				CXGBE_FILL_FS(be16_to_cpu(spec->tci),
269 					      be16_to_cpu(mask->tci), ovlan);
270 			fs->mask.ethtype = 0;
271 			fs->val.ethtype = 0;
272 		}
273 	} else {
274 		CXGBE_FILL_FS(1, 1, ivlan_vld);
275 		if (spec) {
276 			if (spec->tci || (umask && umask->tci))
277 				CXGBE_FILL_FS(be16_to_cpu(spec->tci),
278 					      be16_to_cpu(mask->tci), ivlan);
279 			fs->mask.ethtype = 0;
280 			fs->val.ethtype = 0;
281 		}
282 	}
283 
284 	if (spec && (spec->inner_type || (umask && umask->inner_type)))
285 		CXGBE_FILL_FS(be16_to_cpu(spec->inner_type),
286 			      be16_to_cpu(mask->inner_type), ethtype);
287 
288 	return 0;
289 }
290 
291 static int
292 ch_rte_parsetype_pf(const void *dmask __rte_unused,
293 		    const struct rte_flow_item *item __rte_unused,
294 		    struct ch_filter_specification *fs,
295 		    struct rte_flow_error *e __rte_unused)
296 {
297 	struct rte_flow *flow = (struct rte_flow *)fs->private;
298 	struct rte_eth_dev *dev = flow->dev;
299 	struct adapter *adap = ethdev2adap(dev);
300 
301 	CXGBE_FILL_FS(1, 1, pfvf_vld);
302 
303 	CXGBE_FILL_FS(adap->pf, 0x7, pf);
304 	return 0;
305 }
306 
307 static int
308 ch_rte_parsetype_vf(const void *dmask, const struct rte_flow_item *item,
309 		    struct ch_filter_specification *fs,
310 		    struct rte_flow_error *e)
311 {
312 	const struct rte_flow_item_vf *umask = item->mask;
313 	const struct rte_flow_item_vf *val = item->spec;
314 	const struct rte_flow_item_vf *mask;
315 
316 	/* If user has not given any mask, then use chelsio supported mask. */
317 	mask = umask ? umask : (const struct rte_flow_item_vf *)dmask;
318 
319 	CXGBE_FILL_FS(1, 1, pfvf_vld);
320 
321 	if (!val)
322 		return 0; /* Wildcard, match all Vf */
323 
324 	if (val->id > UCHAR_MAX)
325 		return rte_flow_error_set(e, EINVAL,
326 					  RTE_FLOW_ERROR_TYPE_ITEM,
327 					  item,
328 					  "VF ID > MAX(255)");
329 
330 	if (val->id || (umask && umask->id))
331 		CXGBE_FILL_FS(val->id, mask->id, vf);
332 
333 	return 0;
334 }
335 
336 static int
337 ch_rte_parsetype_udp(const void *dmask, const struct rte_flow_item *item,
338 		     struct ch_filter_specification *fs,
339 		     struct rte_flow_error *e)
340 {
341 	const struct rte_flow_item_udp *val = item->spec;
342 	const struct rte_flow_item_udp *umask = item->mask;
343 	const struct rte_flow_item_udp *mask;
344 
345 	mask = umask ? umask : (const struct rte_flow_item_udp *)dmask;
346 
347 	if (mask->hdr.dgram_len || mask->hdr.dgram_cksum)
348 		return rte_flow_error_set(e, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM,
349 					  item,
350 					  "udp: only src/dst port supported");
351 
352 	CXGBE_FILL_FS(IPPROTO_UDP, 0xff, proto);
353 	if (!val)
354 		return 0;
355 
356 	if (val->hdr.src_port || (umask && umask->hdr.src_port))
357 		CXGBE_FILL_FS(be16_to_cpu(val->hdr.src_port),
358 			      be16_to_cpu(mask->hdr.src_port), fport);
359 
360 	if (val->hdr.dst_port || (umask && umask->hdr.dst_port))
361 		CXGBE_FILL_FS(be16_to_cpu(val->hdr.dst_port),
362 			      be16_to_cpu(mask->hdr.dst_port), lport);
363 
364 	return 0;
365 }
366 
367 static int
368 ch_rte_parsetype_tcp(const void *dmask, const struct rte_flow_item *item,
369 		     struct ch_filter_specification *fs,
370 		     struct rte_flow_error *e)
371 {
372 	const struct rte_flow_item_tcp *val = item->spec;
373 	const struct rte_flow_item_tcp *umask = item->mask;
374 	const struct rte_flow_item_tcp *mask;
375 
376 	mask = umask ? umask : (const struct rte_flow_item_tcp *)dmask;
377 
378 	if (mask->hdr.sent_seq || mask->hdr.recv_ack || mask->hdr.data_off ||
379 	    mask->hdr.tcp_flags || mask->hdr.rx_win || mask->hdr.cksum ||
380 	    mask->hdr.tcp_urp)
381 		return rte_flow_error_set(e, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM,
382 					  item,
383 					  "tcp: only src/dst port supported");
384 
385 	CXGBE_FILL_FS(IPPROTO_TCP, 0xff, proto);
386 	if (!val)
387 		return 0;
388 
389 	if (val->hdr.src_port || (umask && umask->hdr.src_port))
390 		CXGBE_FILL_FS(be16_to_cpu(val->hdr.src_port),
391 			      be16_to_cpu(mask->hdr.src_port), fport);
392 
393 	if (val->hdr.dst_port || (umask && umask->hdr.dst_port))
394 		CXGBE_FILL_FS(be16_to_cpu(val->hdr.dst_port),
395 			      be16_to_cpu(mask->hdr.dst_port), lport);
396 
397 	return 0;
398 }
399 
400 static int
401 ch_rte_parsetype_ipv4(const void *dmask, const struct rte_flow_item *item,
402 		      struct ch_filter_specification *fs,
403 		      struct rte_flow_error *e)
404 {
405 	const struct rte_flow_item_ipv4 *val = item->spec;
406 	const struct rte_flow_item_ipv4 *umask = item->mask;
407 	const struct rte_flow_item_ipv4 *mask;
408 
409 	mask = umask ? umask : (const struct rte_flow_item_ipv4 *)dmask;
410 
411 	if (mask->hdr.time_to_live)
412 		return rte_flow_error_set(e, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM,
413 					  item, "ttl is not supported");
414 
415 	if (fs->mask.ethtype &&
416 	    (fs->val.ethtype != RTE_ETHER_TYPE_IPV4))
417 		return rte_flow_error_set(e, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
418 					  item,
419 					  "Couldn't find IPv4 ethertype");
420 	fs->type = FILTER_TYPE_IPV4;
421 	if (!val)
422 		return 0; /* ipv4 wild card */
423 
424 	if (val->hdr.next_proto_id || (umask && umask->hdr.next_proto_id))
425 		CXGBE_FILL_FS(val->hdr.next_proto_id, mask->hdr.next_proto_id,
426 			      proto);
427 
428 	if (val->hdr.dst_addr || (umask && umask->hdr.dst_addr))
429 		CXGBE_FILL_FS_MEMCPY(val->hdr.dst_addr, mask->hdr.dst_addr,
430 				     lip);
431 
432 	if (val->hdr.src_addr || (umask && umask->hdr.src_addr))
433 		CXGBE_FILL_FS_MEMCPY(val->hdr.src_addr, mask->hdr.src_addr,
434 				     fip);
435 
436 	if (val->hdr.type_of_service || (umask && umask->hdr.type_of_service))
437 		CXGBE_FILL_FS(val->hdr.type_of_service,
438 			      mask->hdr.type_of_service, tos);
439 
440 	return 0;
441 }
442 
443 static int
444 ch_rte_parsetype_ipv6(const void *dmask, const struct rte_flow_item *item,
445 		      struct ch_filter_specification *fs,
446 		      struct rte_flow_error *e)
447 {
448 	const struct rte_flow_item_ipv6 *val = item->spec;
449 	const struct rte_flow_item_ipv6 *umask = item->mask;
450 	const struct rte_flow_item_ipv6 *mask;
451 	u32 vtc_flow, vtc_flow_mask;
452 	u8 z[16] = { 0 };
453 
454 	mask = umask ? umask : (const struct rte_flow_item_ipv6 *)dmask;
455 
456 	vtc_flow_mask = be32_to_cpu(mask->hdr.vtc_flow);
457 
458 	if (vtc_flow_mask & RTE_IPV6_HDR_FL_MASK ||
459 	    mask->hdr.payload_len || mask->hdr.hop_limits)
460 		return rte_flow_error_set(e, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM,
461 					  item,
462 					  "flow/hop are not supported");
463 
464 	if (fs->mask.ethtype &&
465 	    (fs->val.ethtype != RTE_ETHER_TYPE_IPV6))
466 		return rte_flow_error_set(e, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
467 					  item,
468 					  "Couldn't find IPv6 ethertype");
469 	fs->type = FILTER_TYPE_IPV6;
470 	if (!val)
471 		return 0; /* ipv6 wild card */
472 
473 	if (val->hdr.proto || (umask && umask->hdr.proto))
474 		CXGBE_FILL_FS(val->hdr.proto, mask->hdr.proto, proto);
475 
476 	vtc_flow = be32_to_cpu(val->hdr.vtc_flow);
477 	if (val->hdr.vtc_flow || (umask && umask->hdr.vtc_flow))
478 		CXGBE_FILL_FS((vtc_flow & RTE_IPV6_HDR_TC_MASK) >>
479 			      RTE_IPV6_HDR_TC_SHIFT,
480 			      (vtc_flow_mask & RTE_IPV6_HDR_TC_MASK) >>
481 			      RTE_IPV6_HDR_TC_SHIFT,
482 			      tos);
483 
484 	if (memcmp(val->hdr.dst_addr, z, sizeof(val->hdr.dst_addr)) ||
485 	    (umask &&
486 	     memcmp(umask->hdr.dst_addr, z, sizeof(umask->hdr.dst_addr))))
487 		CXGBE_FILL_FS_MEMCPY(val->hdr.dst_addr, mask->hdr.dst_addr,
488 				     lip);
489 
490 	if (memcmp(val->hdr.src_addr, z, sizeof(val->hdr.src_addr)) ||
491 	    (umask &&
492 	     memcmp(umask->hdr.src_addr, z, sizeof(umask->hdr.src_addr))))
493 		CXGBE_FILL_FS_MEMCPY(val->hdr.src_addr, mask->hdr.src_addr,
494 				     fip);
495 
496 	return 0;
497 }
498 
499 static int
500 cxgbe_rtef_parse_attr(struct rte_flow *flow, const struct rte_flow_attr *attr,
501 		      struct rte_flow_error *e)
502 {
503 	if (attr->egress)
504 		return rte_flow_error_set(e, ENOTSUP, RTE_FLOW_ERROR_TYPE_ATTR,
505 					  attr, "attribute:<egress> is"
506 					  " not supported !");
507 	if (attr->group > 0)
508 		return rte_flow_error_set(e, ENOTSUP, RTE_FLOW_ERROR_TYPE_ATTR,
509 					  attr, "group parameter is"
510 					  " not supported.");
511 
512 	flow->fidx = attr->priority ? attr->priority - 1 : FILTER_ID_MAX;
513 
514 	return 0;
515 }
516 
517 static inline int check_rxq(struct rte_eth_dev *dev, uint16_t rxq)
518 {
519 	struct port_info *pi = ethdev2pinfo(dev);
520 
521 	if (rxq > pi->n_rx_qsets)
522 		return -EINVAL;
523 	return 0;
524 }
525 
526 static int cxgbe_validate_fidxondel(struct filter_entry *f, unsigned int fidx)
527 {
528 	struct adapter *adap = ethdev2adap(f->dev);
529 	struct ch_filter_specification fs = f->fs;
530 	u8 nentries;
531 
532 	if (fidx >= adap->tids.nftids) {
533 		dev_err(adap, "invalid flow index %d.\n", fidx);
534 		return -EINVAL;
535 	}
536 
537 	nentries = cxgbe_filter_slots(adap, fs.type);
538 	if (!cxgbe_is_filter_set(&adap->tids, fidx, nentries)) {
539 		dev_err(adap, "Already free fidx:%d f:%p\n", fidx, f);
540 		return -EINVAL;
541 	}
542 
543 	return 0;
544 }
545 
546 static int
547 cxgbe_validate_fidxonadd(struct ch_filter_specification *fs,
548 			 struct adapter *adap, unsigned int fidx)
549 {
550 	u8 nentries;
551 
552 	nentries = cxgbe_filter_slots(adap, fs->type);
553 	if (cxgbe_is_filter_set(&adap->tids, fidx, nentries)) {
554 		dev_err(adap, "filter index: %d is busy.\n", fidx);
555 		return -EBUSY;
556 	}
557 
558 	if (fidx >= adap->tids.nftids) {
559 		dev_err(adap, "filter index (%u) >= max(%u)\n",
560 			fidx, adap->tids.nftids);
561 		return -ERANGE;
562 	}
563 
564 	return 0;
565 }
566 
567 static int
568 cxgbe_verify_fidx(struct rte_flow *flow, unsigned int fidx, uint8_t del)
569 {
570 	if (flow->fs.cap)
571 		return 0; /* Hash filters */
572 	return del ? cxgbe_validate_fidxondel(flow->f, fidx) :
573 		cxgbe_validate_fidxonadd(&flow->fs,
574 					 ethdev2adap(flow->dev), fidx);
575 }
576 
577 static int cxgbe_get_fidx(struct rte_flow *flow, unsigned int *fidx)
578 {
579 	struct ch_filter_specification *fs = &flow->fs;
580 	struct adapter *adap = ethdev2adap(flow->dev);
581 
582 	/* For tcam get the next available slot, if default value specified */
583 	if (flow->fidx == FILTER_ID_MAX) {
584 		u8 nentries;
585 		int idx;
586 
587 		nentries = cxgbe_filter_slots(adap, fs->type);
588 		idx = cxgbe_alloc_ftid(adap, nentries);
589 		if (idx < 0) {
590 			dev_err(adap, "unable to get a filter index in tcam\n");
591 			return -ENOMEM;
592 		}
593 		*fidx = (unsigned int)idx;
594 	} else {
595 		*fidx = flow->fidx;
596 	}
597 
598 	return 0;
599 }
600 
601 static int
602 cxgbe_get_flow_item_index(const struct rte_flow_item items[], u32 type)
603 {
604 	const struct rte_flow_item *i;
605 	int j, index = -ENOENT;
606 
607 	for (i = items, j = 0; i->type != RTE_FLOW_ITEM_TYPE_END; i++, j++) {
608 		if (i->type == type) {
609 			index = j;
610 			break;
611 		}
612 	}
613 
614 	return index;
615 }
616 
617 static int
618 ch_rte_parse_nat(uint8_t nmode, struct ch_filter_specification *fs)
619 {
620 	/* nmode:
621 	 * BIT_0 = [src_ip],   BIT_1 = [dst_ip]
622 	 * BIT_2 = [src_port], BIT_3 = [dst_port]
623 	 *
624 	 * Only below cases are supported as per our spec.
625 	 */
626 	switch (nmode) {
627 	case 0:  /* 0000b */
628 		fs->nat_mode = NAT_MODE_NONE;
629 		break;
630 	case 2:  /* 0010b */
631 		fs->nat_mode = NAT_MODE_DIP;
632 		break;
633 	case 5:  /* 0101b */
634 		fs->nat_mode = NAT_MODE_SIP_SP;
635 		break;
636 	case 7:  /* 0111b */
637 		fs->nat_mode = NAT_MODE_DIP_SIP_SP;
638 		break;
639 	case 10: /* 1010b */
640 		fs->nat_mode = NAT_MODE_DIP_DP;
641 		break;
642 	case 11: /* 1011b */
643 		fs->nat_mode = NAT_MODE_DIP_DP_SIP;
644 		break;
645 	case 14: /* 1110b */
646 		fs->nat_mode = NAT_MODE_DIP_DP_SP;
647 		break;
648 	case 15: /* 1111b */
649 		fs->nat_mode = NAT_MODE_ALL;
650 		break;
651 	default:
652 		return -EINVAL;
653 	}
654 
655 	return 0;
656 }
657 
658 static int
659 ch_rte_parse_atype_switch(const struct rte_flow_action *a,
660 			  const struct rte_flow_item items[],
661 			  uint8_t *nmode,
662 			  struct ch_filter_specification *fs,
663 			  struct rte_flow_error *e)
664 {
665 	const struct rte_flow_action_of_set_vlan_vid *vlanid;
666 	const struct rte_flow_action_of_set_vlan_pcp *vlanpcp;
667 	const struct rte_flow_action_of_push_vlan *pushvlan;
668 	const struct rte_flow_action_set_ipv4 *ipv4;
669 	const struct rte_flow_action_set_ipv6 *ipv6;
670 	const struct rte_flow_action_set_tp *tp_port;
671 	const struct rte_flow_action_phy_port *port;
672 	const struct rte_flow_action_set_mac *mac;
673 	int item_index;
674 	u16 tmp_vlan;
675 
676 	switch (a->type) {
677 	case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
678 		vlanid = (const struct rte_flow_action_of_set_vlan_vid *)
679 			  a->conf;
680 		/* If explicitly asked to push a new VLAN header,
681 		 * then don't set rewrite mode. Otherwise, the
682 		 * incoming VLAN packets will get their VLAN fields
683 		 * rewritten, instead of adding an additional outer
684 		 * VLAN header.
685 		 */
686 		if (fs->newvlan != VLAN_INSERT)
687 			fs->newvlan = VLAN_REWRITE;
688 		tmp_vlan = fs->vlan & 0xe000;
689 		fs->vlan = (be16_to_cpu(vlanid->vlan_vid) & 0xfff) | tmp_vlan;
690 		break;
691 	case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
692 		vlanpcp = (const struct rte_flow_action_of_set_vlan_pcp *)
693 			  a->conf;
694 		/* If explicitly asked to push a new VLAN header,
695 		 * then don't set rewrite mode. Otherwise, the
696 		 * incoming VLAN packets will get their VLAN fields
697 		 * rewritten, instead of adding an additional outer
698 		 * VLAN header.
699 		 */
700 		if (fs->newvlan != VLAN_INSERT)
701 			fs->newvlan = VLAN_REWRITE;
702 		tmp_vlan = fs->vlan & 0xfff;
703 		fs->vlan = (vlanpcp->vlan_pcp << 13) | tmp_vlan;
704 		break;
705 	case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
706 		pushvlan = (const struct rte_flow_action_of_push_vlan *)
707 			    a->conf;
708 		if (be16_to_cpu(pushvlan->ethertype) != RTE_ETHER_TYPE_VLAN)
709 			return rte_flow_error_set(e, EINVAL,
710 						  RTE_FLOW_ERROR_TYPE_ACTION, a,
711 						  "only ethertype 0x8100 "
712 						  "supported for push vlan.");
713 		fs->newvlan = VLAN_INSERT;
714 		break;
715 	case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN:
716 		fs->newvlan = VLAN_REMOVE;
717 		break;
718 	case RTE_FLOW_ACTION_TYPE_PHY_PORT:
719 		port = (const struct rte_flow_action_phy_port *)a->conf;
720 		fs->eport = port->index;
721 		break;
722 	case RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC:
723 		item_index = cxgbe_get_flow_item_index(items,
724 						       RTE_FLOW_ITEM_TYPE_IPV4);
725 		if (item_index < 0)
726 			return rte_flow_error_set(e, EINVAL,
727 						  RTE_FLOW_ERROR_TYPE_ACTION, a,
728 						  "No RTE_FLOW_ITEM_TYPE_IPV4 "
729 						  "found.");
730 
731 		ipv4 = (const struct rte_flow_action_set_ipv4 *)a->conf;
732 		memcpy(fs->nat_fip, &ipv4->ipv4_addr, sizeof(ipv4->ipv4_addr));
733 		*nmode |= 1 << 0;
734 		break;
735 	case RTE_FLOW_ACTION_TYPE_SET_IPV4_DST:
736 		item_index = cxgbe_get_flow_item_index(items,
737 						       RTE_FLOW_ITEM_TYPE_IPV4);
738 		if (item_index < 0)
739 			return rte_flow_error_set(e, EINVAL,
740 						  RTE_FLOW_ERROR_TYPE_ACTION, a,
741 						  "No RTE_FLOW_ITEM_TYPE_IPV4 "
742 						  "found.");
743 
744 		ipv4 = (const struct rte_flow_action_set_ipv4 *)a->conf;
745 		memcpy(fs->nat_lip, &ipv4->ipv4_addr, sizeof(ipv4->ipv4_addr));
746 		*nmode |= 1 << 1;
747 		break;
748 	case RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC:
749 		item_index = cxgbe_get_flow_item_index(items,
750 						       RTE_FLOW_ITEM_TYPE_IPV6);
751 		if (item_index < 0)
752 			return rte_flow_error_set(e, EINVAL,
753 						  RTE_FLOW_ERROR_TYPE_ACTION, a,
754 						  "No RTE_FLOW_ITEM_TYPE_IPV6 "
755 						  "found.");
756 
757 		ipv6 = (const struct rte_flow_action_set_ipv6 *)a->conf;
758 		memcpy(fs->nat_fip, ipv6->ipv6_addr, sizeof(ipv6->ipv6_addr));
759 		*nmode |= 1 << 0;
760 		break;
761 	case RTE_FLOW_ACTION_TYPE_SET_IPV6_DST:
762 		item_index = cxgbe_get_flow_item_index(items,
763 						       RTE_FLOW_ITEM_TYPE_IPV6);
764 		if (item_index < 0)
765 			return rte_flow_error_set(e, EINVAL,
766 						  RTE_FLOW_ERROR_TYPE_ACTION, a,
767 						  "No RTE_FLOW_ITEM_TYPE_IPV6 "
768 						  "found.");
769 
770 		ipv6 = (const struct rte_flow_action_set_ipv6 *)a->conf;
771 		memcpy(fs->nat_lip, ipv6->ipv6_addr, sizeof(ipv6->ipv6_addr));
772 		*nmode |= 1 << 1;
773 		break;
774 	case RTE_FLOW_ACTION_TYPE_SET_TP_SRC:
775 		item_index = cxgbe_get_flow_item_index(items,
776 						       RTE_FLOW_ITEM_TYPE_TCP);
777 		if (item_index < 0) {
778 			item_index =
779 				cxgbe_get_flow_item_index(items,
780 						RTE_FLOW_ITEM_TYPE_UDP);
781 			if (item_index < 0)
782 				return rte_flow_error_set(e, EINVAL,
783 						RTE_FLOW_ERROR_TYPE_ACTION, a,
784 						"No RTE_FLOW_ITEM_TYPE_TCP or "
785 						"RTE_FLOW_ITEM_TYPE_UDP found");
786 		}
787 
788 		tp_port = (const struct rte_flow_action_set_tp *)a->conf;
789 		fs->nat_fport = be16_to_cpu(tp_port->port);
790 		*nmode |= 1 << 2;
791 		break;
792 	case RTE_FLOW_ACTION_TYPE_SET_TP_DST:
793 		item_index = cxgbe_get_flow_item_index(items,
794 						       RTE_FLOW_ITEM_TYPE_TCP);
795 		if (item_index < 0) {
796 			item_index =
797 				cxgbe_get_flow_item_index(items,
798 						RTE_FLOW_ITEM_TYPE_UDP);
799 			if (item_index < 0)
800 				return rte_flow_error_set(e, EINVAL,
801 						RTE_FLOW_ERROR_TYPE_ACTION, a,
802 						"No RTE_FLOW_ITEM_TYPE_TCP or "
803 						"RTE_FLOW_ITEM_TYPE_UDP found");
804 		}
805 
806 		tp_port = (const struct rte_flow_action_set_tp *)a->conf;
807 		fs->nat_lport = be16_to_cpu(tp_port->port);
808 		*nmode |= 1 << 3;
809 		break;
810 	case RTE_FLOW_ACTION_TYPE_MAC_SWAP:
811 		item_index = cxgbe_get_flow_item_index(items,
812 						       RTE_FLOW_ITEM_TYPE_ETH);
813 		if (item_index < 0)
814 			return rte_flow_error_set(e, EINVAL,
815 						  RTE_FLOW_ERROR_TYPE_ACTION, a,
816 						  "No RTE_FLOW_ITEM_TYPE_ETH "
817 						  "found");
818 		fs->swapmac = 1;
819 		break;
820 	case RTE_FLOW_ACTION_TYPE_SET_MAC_SRC:
821 		item_index = cxgbe_get_flow_item_index(items,
822 						       RTE_FLOW_ITEM_TYPE_ETH);
823 		if (item_index < 0)
824 			return rte_flow_error_set(e, EINVAL,
825 						  RTE_FLOW_ERROR_TYPE_ACTION, a,
826 						  "No RTE_FLOW_ITEM_TYPE_ETH "
827 						  "found");
828 		mac = (const struct rte_flow_action_set_mac *)a->conf;
829 
830 		fs->newsmac = 1;
831 		memcpy(fs->smac, mac->mac_addr, sizeof(fs->smac));
832 		break;
833 	case RTE_FLOW_ACTION_TYPE_SET_MAC_DST:
834 		item_index = cxgbe_get_flow_item_index(items,
835 						       RTE_FLOW_ITEM_TYPE_ETH);
836 		if (item_index < 0)
837 			return rte_flow_error_set(e, EINVAL,
838 						  RTE_FLOW_ERROR_TYPE_ACTION, a,
839 						  "No RTE_FLOW_ITEM_TYPE_ETH found");
840 		mac = (const struct rte_flow_action_set_mac *)a->conf;
841 
842 		fs->newdmac = 1;
843 		memcpy(fs->dmac, mac->mac_addr, sizeof(fs->dmac));
844 		break;
845 	default:
846 		/* We are not supposed to come here */
847 		return rte_flow_error_set(e, EINVAL,
848 					  RTE_FLOW_ERROR_TYPE_ACTION, a,
849 					  "Action not supported");
850 	}
851 
852 	return 0;
853 }
854 
855 static int
856 cxgbe_rtef_parse_actions(struct rte_flow *flow,
857 			 const struct rte_flow_item items[],
858 			 const struct rte_flow_action action[],
859 			 struct rte_flow_error *e)
860 {
861 	struct ch_filter_specification *fs = &flow->fs;
862 	uint8_t nmode = 0, nat_ipv4 = 0, nat_ipv6 = 0;
863 	uint8_t vlan_set_vid = 0, vlan_set_pcp = 0;
864 	const struct rte_flow_action_queue *q;
865 	const struct rte_flow_action *a;
866 	char abit = 0;
867 	int ret;
868 
869 	for (a = action; a->type != RTE_FLOW_ACTION_TYPE_END; a++) {
870 		switch (a->type) {
871 		case RTE_FLOW_ACTION_TYPE_VOID:
872 			continue;
873 		case RTE_FLOW_ACTION_TYPE_DROP:
874 			if (abit++)
875 				return rte_flow_error_set(e, EINVAL,
876 						RTE_FLOW_ERROR_TYPE_ACTION, a,
877 						"specify only 1 pass/drop");
878 			fs->action = FILTER_DROP;
879 			break;
880 		case RTE_FLOW_ACTION_TYPE_QUEUE:
881 			q = (const struct rte_flow_action_queue *)a->conf;
882 			if (!q)
883 				return rte_flow_error_set(e, EINVAL,
884 						RTE_FLOW_ERROR_TYPE_ACTION, q,
885 						"specify rx queue index");
886 			if (check_rxq(flow->dev, q->index))
887 				return rte_flow_error_set(e, EINVAL,
888 						RTE_FLOW_ERROR_TYPE_ACTION, q,
889 						"Invalid rx queue");
890 			if (abit++)
891 				return rte_flow_error_set(e, EINVAL,
892 						RTE_FLOW_ERROR_TYPE_ACTION, a,
893 						"specify only 1 pass/drop");
894 			fs->action = FILTER_PASS;
895 			fs->dirsteer = 1;
896 			fs->iq = q->index;
897 			break;
898 		case RTE_FLOW_ACTION_TYPE_COUNT:
899 			fs->hitcnts = 1;
900 			break;
901 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
902 			vlan_set_vid++;
903 			goto action_switch;
904 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
905 			vlan_set_pcp++;
906 			goto action_switch;
907 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
908 		case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN:
909 		case RTE_FLOW_ACTION_TYPE_PHY_PORT:
910 		case RTE_FLOW_ACTION_TYPE_MAC_SWAP:
911 		case RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC:
912 		case RTE_FLOW_ACTION_TYPE_SET_IPV4_DST:
913 			nat_ipv4++;
914 			goto action_switch;
915 		case RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC:
916 		case RTE_FLOW_ACTION_TYPE_SET_IPV6_DST:
917 			nat_ipv6++;
918 			goto action_switch;
919 		case RTE_FLOW_ACTION_TYPE_SET_TP_SRC:
920 		case RTE_FLOW_ACTION_TYPE_SET_TP_DST:
921 		case RTE_FLOW_ACTION_TYPE_SET_MAC_SRC:
922 		case RTE_FLOW_ACTION_TYPE_SET_MAC_DST:
923 action_switch:
924 			/* We allow multiple switch actions, but switch is
925 			 * not compatible with either queue or drop
926 			 */
927 			if (abit++ && fs->action != FILTER_SWITCH)
928 				return rte_flow_error_set(e, EINVAL,
929 						RTE_FLOW_ERROR_TYPE_ACTION, a,
930 						"overlapping action specified");
931 			if (nat_ipv4 && nat_ipv6)
932 				return rte_flow_error_set(e, EINVAL,
933 					RTE_FLOW_ERROR_TYPE_ACTION, a,
934 					"Can't have one address ipv4 and the"
935 					" other ipv6");
936 
937 			ret = ch_rte_parse_atype_switch(a, items, &nmode, fs,
938 							e);
939 			if (ret)
940 				return ret;
941 			fs->action = FILTER_SWITCH;
942 			break;
943 		default:
944 			/* Not supported action : return error */
945 			return rte_flow_error_set(e, ENOTSUP,
946 						  RTE_FLOW_ERROR_TYPE_ACTION,
947 						  a, "Action not supported");
948 		}
949 	}
950 
951 	if (fs->newvlan == VLAN_REWRITE && (!vlan_set_vid || !vlan_set_pcp))
952 		return rte_flow_error_set(e, EINVAL,
953 					  RTE_FLOW_ERROR_TYPE_ACTION, a,
954 					  "Both OF_SET_VLAN_VID and "
955 					  "OF_SET_VLAN_PCP must be specified");
956 
957 	if (ch_rte_parse_nat(nmode, fs))
958 		return rte_flow_error_set(e, EINVAL,
959 					  RTE_FLOW_ERROR_TYPE_ACTION, a,
960 					  "invalid settings for swich action");
961 	return 0;
962 }
963 
964 static struct chrte_fparse parseitem[] = {
965 	[RTE_FLOW_ITEM_TYPE_ETH] = {
966 		.fptr  = ch_rte_parsetype_eth,
967 		.dmask = &(const struct rte_flow_item_eth){
968 			.dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
969 			.src.addr_bytes = "\x00\x00\x00\x00\x00\x00",
970 			.type = 0xffff,
971 		}
972 	},
973 
974 	[RTE_FLOW_ITEM_TYPE_PHY_PORT] = {
975 		.fptr = ch_rte_parsetype_port,
976 		.dmask = &(const struct rte_flow_item_phy_port){
977 			.index = 0x7,
978 		}
979 	},
980 
981 	[RTE_FLOW_ITEM_TYPE_VLAN] = {
982 		.fptr = ch_rte_parsetype_vlan,
983 		.dmask = &(const struct rte_flow_item_vlan){
984 			.tci = 0xffff,
985 			.inner_type = 0xffff,
986 		}
987 	},
988 
989 	[RTE_FLOW_ITEM_TYPE_IPV4] = {
990 		.fptr  = ch_rte_parsetype_ipv4,
991 		.dmask = &(const struct rte_flow_item_ipv4) {
992 			.hdr = {
993 				.src_addr = RTE_BE32(0xffffffff),
994 				.dst_addr = RTE_BE32(0xffffffff),
995 				.type_of_service = 0xff,
996 			},
997 		},
998 	},
999 
1000 	[RTE_FLOW_ITEM_TYPE_IPV6] = {
1001 		.fptr  = ch_rte_parsetype_ipv6,
1002 		.dmask = &(const struct rte_flow_item_ipv6) {
1003 			.hdr = {
1004 				.src_addr =
1005 					"\xff\xff\xff\xff\xff\xff\xff\xff"
1006 					"\xff\xff\xff\xff\xff\xff\xff\xff",
1007 				.dst_addr =
1008 					"\xff\xff\xff\xff\xff\xff\xff\xff"
1009 					"\xff\xff\xff\xff\xff\xff\xff\xff",
1010 				.vtc_flow = RTE_BE32(0xff000000),
1011 			},
1012 		},
1013 	},
1014 
1015 	[RTE_FLOW_ITEM_TYPE_UDP] = {
1016 		.fptr  = ch_rte_parsetype_udp,
1017 		.dmask = &rte_flow_item_udp_mask,
1018 	},
1019 
1020 	[RTE_FLOW_ITEM_TYPE_TCP] = {
1021 		.fptr  = ch_rte_parsetype_tcp,
1022 		.dmask = &rte_flow_item_tcp_mask,
1023 	},
1024 
1025 	[RTE_FLOW_ITEM_TYPE_PF] = {
1026 		.fptr = ch_rte_parsetype_pf,
1027 		.dmask = NULL,
1028 	},
1029 
1030 	[RTE_FLOW_ITEM_TYPE_VF] = {
1031 		.fptr = ch_rte_parsetype_vf,
1032 		.dmask = &(const struct rte_flow_item_vf){
1033 			.id = 0xffffffff,
1034 		}
1035 	},
1036 };
1037 
1038 static int
1039 cxgbe_rtef_parse_items(struct rte_flow *flow,
1040 		       const struct rte_flow_item items[],
1041 		       struct rte_flow_error *e)
1042 {
1043 	struct adapter *adap = ethdev2adap(flow->dev);
1044 	const struct rte_flow_item *i;
1045 	char repeat[ARRAY_SIZE(parseitem)] = {0};
1046 
1047 	for (i = items; i->type != RTE_FLOW_ITEM_TYPE_END; i++) {
1048 		struct chrte_fparse *idx;
1049 		int ret;
1050 
1051 		if (i->type >= ARRAY_SIZE(parseitem))
1052 			return rte_flow_error_set(e, ENOTSUP,
1053 						  RTE_FLOW_ERROR_TYPE_ITEM,
1054 						  i, "Item not supported");
1055 
1056 		switch (i->type) {
1057 		case RTE_FLOW_ITEM_TYPE_VOID:
1058 			continue;
1059 		default:
1060 			/* check if item is repeated */
1061 			if (repeat[i->type] &&
1062 			    i->type != RTE_FLOW_ITEM_TYPE_VLAN)
1063 				return rte_flow_error_set(e, ENOTSUP,
1064 						RTE_FLOW_ERROR_TYPE_ITEM, i,
1065 						"parse items cannot be repeated(except void/vlan)");
1066 
1067 			repeat[i->type] = 1;
1068 
1069 			/* validate the item */
1070 			ret = cxgbe_validate_item(i, e);
1071 			if (ret)
1072 				return ret;
1073 
1074 			idx = &flow->item_parser[i->type];
1075 			if (!idx || !idx->fptr) {
1076 				return rte_flow_error_set(e, ENOTSUP,
1077 						RTE_FLOW_ERROR_TYPE_ITEM, i,
1078 						"Item not supported");
1079 			} else {
1080 				ret = idx->fptr(idx->dmask, i, &flow->fs, e);
1081 				if (ret)
1082 					return ret;
1083 			}
1084 		}
1085 	}
1086 
1087 	cxgbe_tweak_filter_spec(adap, &flow->fs);
1088 	cxgbe_fill_filter_region(adap, &flow->fs);
1089 
1090 	return 0;
1091 }
1092 
1093 static int
1094 cxgbe_flow_parse(struct rte_flow *flow,
1095 		 const struct rte_flow_attr *attr,
1096 		 const struct rte_flow_item item[],
1097 		 const struct rte_flow_action action[],
1098 		 struct rte_flow_error *e)
1099 {
1100 	int ret;
1101 	/* parse user request into ch_filter_specification */
1102 	ret = cxgbe_rtef_parse_attr(flow, attr, e);
1103 	if (ret)
1104 		return ret;
1105 	ret = cxgbe_rtef_parse_items(flow, item, e);
1106 	if (ret)
1107 		return ret;
1108 	return cxgbe_rtef_parse_actions(flow, item, action, e);
1109 }
1110 
1111 static int __cxgbe_flow_create(struct rte_eth_dev *dev, struct rte_flow *flow)
1112 {
1113 	struct ch_filter_specification *fs = &flow->fs;
1114 	struct adapter *adap = ethdev2adap(dev);
1115 	struct tid_info *t = &adap->tids;
1116 	struct filter_ctx ctx;
1117 	unsigned int fidx;
1118 	int err;
1119 
1120 	if (cxgbe_get_fidx(flow, &fidx))
1121 		return -ENOMEM;
1122 	if (cxgbe_verify_fidx(flow, fidx, 0))
1123 		return -1;
1124 
1125 	t4_init_completion(&ctx.completion);
1126 	/* go create the filter */
1127 	err = cxgbe_set_filter(dev, fidx, fs, &ctx);
1128 	if (err) {
1129 		dev_err(adap, "Error %d while creating filter.\n", err);
1130 		return err;
1131 	}
1132 
1133 	/* Poll the FW for reply */
1134 	err = cxgbe_poll_for_completion(&adap->sge.fw_evtq,
1135 					CXGBE_FLOW_POLL_MS,
1136 					CXGBE_FLOW_POLL_CNT,
1137 					&ctx.completion);
1138 	if (err) {
1139 		dev_err(adap, "Filter set operation timed out (%d)\n", err);
1140 		return err;
1141 	}
1142 	if (ctx.result) {
1143 		dev_err(adap, "Hardware error %d while creating the filter.\n",
1144 			ctx.result);
1145 		return ctx.result;
1146 	}
1147 
1148 	if (fs->cap) { /* to destroy the filter */
1149 		flow->fidx = ctx.tid;
1150 		flow->f = lookup_tid(t, ctx.tid);
1151 	} else {
1152 		flow->fidx = fidx;
1153 		flow->f = &adap->tids.ftid_tab[fidx];
1154 	}
1155 
1156 	return 0;
1157 }
1158 
1159 static struct rte_flow *
1160 cxgbe_flow_create(struct rte_eth_dev *dev,
1161 		  const struct rte_flow_attr *attr,
1162 		  const struct rte_flow_item item[],
1163 		  const struct rte_flow_action action[],
1164 		  struct rte_flow_error *e)
1165 {
1166 	struct adapter *adap = ethdev2adap(dev);
1167 	struct rte_flow *flow;
1168 	int ret;
1169 
1170 	flow = t4_os_alloc(sizeof(struct rte_flow));
1171 	if (!flow) {
1172 		rte_flow_error_set(e, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE,
1173 				   NULL, "Unable to allocate memory for"
1174 				   " filter_entry");
1175 		return NULL;
1176 	}
1177 
1178 	flow->item_parser = parseitem;
1179 	flow->dev = dev;
1180 	flow->fs.private = (void *)flow;
1181 
1182 	if (cxgbe_flow_parse(flow, attr, item, action, e)) {
1183 		t4_os_free(flow);
1184 		return NULL;
1185 	}
1186 
1187 	t4_os_lock(&adap->flow_lock);
1188 	/* go, interact with cxgbe_filter */
1189 	ret = __cxgbe_flow_create(dev, flow);
1190 	t4_os_unlock(&adap->flow_lock);
1191 	if (ret) {
1192 		rte_flow_error_set(e, ret, RTE_FLOW_ERROR_TYPE_HANDLE,
1193 				   NULL, "Unable to create flow rule");
1194 		t4_os_free(flow);
1195 		return NULL;
1196 	}
1197 
1198 	flow->f->private = flow; /* Will be used during flush */
1199 
1200 	return flow;
1201 }
1202 
1203 static int __cxgbe_flow_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
1204 {
1205 	struct adapter *adap = ethdev2adap(dev);
1206 	struct filter_entry *f = flow->f;
1207 	struct ch_filter_specification *fs;
1208 	struct filter_ctx ctx;
1209 	int err;
1210 
1211 	fs = &f->fs;
1212 	if (cxgbe_verify_fidx(flow, flow->fidx, 1))
1213 		return -1;
1214 
1215 	t4_init_completion(&ctx.completion);
1216 	err = cxgbe_del_filter(dev, flow->fidx, fs, &ctx);
1217 	if (err) {
1218 		dev_err(adap, "Error %d while deleting filter.\n", err);
1219 		return err;
1220 	}
1221 
1222 	/* Poll the FW for reply */
1223 	err = cxgbe_poll_for_completion(&adap->sge.fw_evtq,
1224 					CXGBE_FLOW_POLL_MS,
1225 					CXGBE_FLOW_POLL_CNT,
1226 					&ctx.completion);
1227 	if (err) {
1228 		dev_err(adap, "Filter delete operation timed out (%d)\n", err);
1229 		return err;
1230 	}
1231 	if (ctx.result) {
1232 		dev_err(adap, "Hardware error %d while deleting the filter.\n",
1233 			ctx.result);
1234 		return ctx.result;
1235 	}
1236 
1237 	return 0;
1238 }
1239 
1240 static int
1241 cxgbe_flow_destroy(struct rte_eth_dev *dev, struct rte_flow *flow,
1242 		   struct rte_flow_error *e)
1243 {
1244 	struct adapter *adap = ethdev2adap(dev);
1245 	int ret;
1246 
1247 	t4_os_lock(&adap->flow_lock);
1248 	ret = __cxgbe_flow_destroy(dev, flow);
1249 	t4_os_unlock(&adap->flow_lock);
1250 	if (ret)
1251 		return rte_flow_error_set(e, ret, RTE_FLOW_ERROR_TYPE_HANDLE,
1252 					  flow, "error destroying filter.");
1253 	t4_os_free(flow);
1254 	return 0;
1255 }
1256 
1257 static int __cxgbe_flow_query(struct rte_flow *flow, u64 *count,
1258 			      u64 *byte_count)
1259 {
1260 	struct adapter *adap = ethdev2adap(flow->dev);
1261 	struct ch_filter_specification fs = flow->f->fs;
1262 	unsigned int fidx = flow->fidx;
1263 	int ret = 0;
1264 
1265 	ret = cxgbe_get_filter_count(adap, fidx, count, fs.cap, 0);
1266 	if (ret)
1267 		return ret;
1268 	return cxgbe_get_filter_count(adap, fidx, byte_count, fs.cap, 1);
1269 }
1270 
1271 static int
1272 cxgbe_flow_query(struct rte_eth_dev *dev, struct rte_flow *flow,
1273 		 const struct rte_flow_action *action, void *data,
1274 		 struct rte_flow_error *e)
1275 {
1276 	struct adapter *adap = ethdev2adap(flow->dev);
1277 	struct ch_filter_specification fs;
1278 	struct rte_flow_query_count *c;
1279 	struct filter_entry *f;
1280 	int ret;
1281 
1282 	RTE_SET_USED(dev);
1283 
1284 	f = flow->f;
1285 	fs = f->fs;
1286 
1287 	if (action->type != RTE_FLOW_ACTION_TYPE_COUNT)
1288 		return rte_flow_error_set(e, ENOTSUP,
1289 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1290 					  "only count supported for query");
1291 
1292 	/*
1293 	 * This is a valid operation, Since we are allowed to do chelsio
1294 	 * specific operations in rte side of our code but not vise-versa
1295 	 *
1296 	 * So, fs can be queried/modified here BUT rte_flow_query_count
1297 	 * cannot be worked on by the lower layer since we want to maintain
1298 	 * it as rte_flow agnostic.
1299 	 */
1300 	if (!fs.hitcnts)
1301 		return rte_flow_error_set(e, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION,
1302 					  &fs, "filter hit counters were not"
1303 					  " enabled during filter creation");
1304 
1305 	c = (struct rte_flow_query_count *)data;
1306 
1307 	t4_os_lock(&adap->flow_lock);
1308 	ret = __cxgbe_flow_query(flow, &c->hits, &c->bytes);
1309 	if (ret) {
1310 		rte_flow_error_set(e, -ret, RTE_FLOW_ERROR_TYPE_ACTION,
1311 				   f, "cxgbe pmd failed to perform query");
1312 		goto out;
1313 	}
1314 
1315 	/* Query was successful */
1316 	c->bytes_set = 1;
1317 	c->hits_set = 1;
1318 	if (c->reset)
1319 		cxgbe_clear_filter_count(adap, flow->fidx, f->fs.cap, true);
1320 
1321 out:
1322 	t4_os_unlock(&adap->flow_lock);
1323 	return ret;
1324 }
1325 
1326 static int
1327 cxgbe_flow_validate(struct rte_eth_dev *dev,
1328 		    const struct rte_flow_attr *attr,
1329 		    const struct rte_flow_item item[],
1330 		    const struct rte_flow_action action[],
1331 		    struct rte_flow_error *e)
1332 {
1333 	struct adapter *adap = ethdev2adap(dev);
1334 	struct rte_flow *flow;
1335 	unsigned int fidx;
1336 	int ret = 0;
1337 
1338 	flow = t4_os_alloc(sizeof(struct rte_flow));
1339 	if (!flow)
1340 		return rte_flow_error_set(e, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE,
1341 				NULL,
1342 				"Unable to allocate memory for filter_entry");
1343 
1344 	flow->item_parser = parseitem;
1345 	flow->dev = dev;
1346 	flow->fs.private = (void *)flow;
1347 
1348 	ret = cxgbe_flow_parse(flow, attr, item, action, e);
1349 	if (ret) {
1350 		t4_os_free(flow);
1351 		return ret;
1352 	}
1353 
1354 	if (cxgbe_validate_filter(adap, &flow->fs)) {
1355 		t4_os_free(flow);
1356 		return rte_flow_error_set(e, EINVAL, RTE_FLOW_ERROR_TYPE_HANDLE,
1357 				NULL,
1358 				"validation failed. Check f/w config file.");
1359 	}
1360 
1361 	t4_os_lock(&adap->flow_lock);
1362 	if (cxgbe_get_fidx(flow, &fidx)) {
1363 		ret = rte_flow_error_set(e, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE,
1364 					 NULL, "no memory in tcam.");
1365 		goto out;
1366 	}
1367 
1368 	if (cxgbe_verify_fidx(flow, fidx, 0)) {
1369 		ret = rte_flow_error_set(e, EINVAL, RTE_FLOW_ERROR_TYPE_HANDLE,
1370 					 NULL, "validation failed");
1371 		goto out;
1372 	}
1373 
1374 out:
1375 	t4_os_unlock(&adap->flow_lock);
1376 	t4_os_free(flow);
1377 	return ret;
1378 }
1379 
1380 /*
1381  * @ret : > 0 filter destroyed succsesfully
1382  *        < 0 error destroying filter
1383  *        == 1 filter not active / not found
1384  */
1385 static int
1386 cxgbe_check_n_destroy(struct filter_entry *f, struct rte_eth_dev *dev)
1387 {
1388 	if (f && (f->valid || f->pending) &&
1389 	    f->dev == dev && /* Only if user has asked for this port */
1390 	     f->private) /* We (rte_flow) created this filter */
1391 		return __cxgbe_flow_destroy(dev, (struct rte_flow *)f->private);
1392 	return 1;
1393 }
1394 
1395 static int cxgbe_flow_flush(struct rte_eth_dev *dev, struct rte_flow_error *e)
1396 {
1397 	struct adapter *adap = ethdev2adap(dev);
1398 	unsigned int i;
1399 	int ret = 0;
1400 
1401 	t4_os_lock(&adap->flow_lock);
1402 	if (adap->tids.ftid_tab) {
1403 		struct filter_entry *f = &adap->tids.ftid_tab[0];
1404 
1405 		for (i = 0; i < adap->tids.nftids; i++, f++) {
1406 			ret = cxgbe_check_n_destroy(f, dev);
1407 			if (ret < 0) {
1408 				rte_flow_error_set(e, ret,
1409 						   RTE_FLOW_ERROR_TYPE_HANDLE,
1410 						   f->private,
1411 						   "error destroying TCAM "
1412 						   "filter.");
1413 				goto out;
1414 			}
1415 		}
1416 	}
1417 
1418 	if (is_hashfilter(adap) && adap->tids.tid_tab) {
1419 		struct filter_entry *f;
1420 
1421 		for (i = adap->tids.hash_base; i <= adap->tids.ntids; i++) {
1422 			f = (struct filter_entry *)adap->tids.tid_tab[i];
1423 
1424 			ret = cxgbe_check_n_destroy(f, dev);
1425 			if (ret < 0) {
1426 				rte_flow_error_set(e, ret,
1427 						   RTE_FLOW_ERROR_TYPE_HANDLE,
1428 						   f->private,
1429 						   "error destroying HASH "
1430 						   "filter.");
1431 				goto out;
1432 			}
1433 		}
1434 	}
1435 
1436 out:
1437 	t4_os_unlock(&adap->flow_lock);
1438 	return ret >= 0 ? 0 : ret;
1439 }
1440 
1441 static const struct rte_flow_ops cxgbe_flow_ops = {
1442 	.validate	= cxgbe_flow_validate,
1443 	.create		= cxgbe_flow_create,
1444 	.destroy	= cxgbe_flow_destroy,
1445 	.flush		= cxgbe_flow_flush,
1446 	.query		= cxgbe_flow_query,
1447 	.isolate	= NULL,
1448 };
1449 
1450 int
1451 cxgbe_dev_flow_ops_get(struct rte_eth_dev *dev __rte_unused,
1452 		       const struct rte_flow_ops **ops)
1453 {
1454 	*ops = &cxgbe_flow_ops;
1455 	return 0;
1456 }
1457