xref: /dpdk/drivers/net/bnxt/bnxt_rxtx_vec_sse.c (revision e9fd1ebf981f361844aea9ec94e17f4bda5e1479)
1 /* SPDX-License-Identifier: BSD-3-Clause */
2 /* Copyright(c) 2019-2023 Broadcom All rights reserved. */
3 
4 #include <inttypes.h>
5 #include <stdbool.h>
6 
7 #include <rte_bitmap.h>
8 #include <rte_byteorder.h>
9 #include <rte_malloc.h>
10 #include <rte_memory.h>
11 #include <rte_vect.h>
12 
13 #include "bnxt.h"
14 #include "bnxt_cpr.h"
15 #include "bnxt_ring.h"
16 
17 #include "bnxt_txq.h"
18 #include "bnxt_txr.h"
19 #include "bnxt_rxtx_vec_common.h"
20 
21 /*
22  * RX Ring handling
23  */
24 
25 #define GET_OL_FLAGS(rss_flags, ol_index, errors, pi, ol_flags)		       \
26 {									       \
27 	uint32_t tmp, of;						       \
28 									       \
29 	of = _mm_extract_epi32((rss_flags), (pi)) |			       \
30 		rxr->ol_flags_table[_mm_extract_epi32((ol_index), (pi))];      \
31 									       \
32 	tmp = _mm_extract_epi32((errors), (pi));			       \
33 	if (tmp)							       \
34 		of |= rxr->ol_flags_err_table[tmp];			       \
35 	(ol_flags) = of;						       \
36 }
37 
38 #define GET_DESC_FIELDS(rxcmp, rxcmp1, shuf_msk, ptype_idx, pi, ret)	       \
39 {									       \
40 	uint32_t ptype;							       \
41 	__m128i r;							       \
42 									       \
43 	/* Set mbuf pkt_len, data_len, and rss_hash fields. */		       \
44 	r = _mm_shuffle_epi8((rxcmp), (shuf_msk));			       \
45 									       \
46 	/* Set packet type. */						       \
47 	ptype = bnxt_ptype_table[_mm_extract_epi32((ptype_idx), (pi))];	       \
48 	r = _mm_blend_epi16(r, _mm_set_epi32(0, 0, 0, ptype), 0x3);	       \
49 									       \
50 	/* Set vlan_tci. */						       \
51 	r = _mm_blend_epi16(r, _mm_slli_si128((rxcmp1), 6), 0x20);	       \
52 	(ret) = r;							       \
53 }
54 
55 static inline void
56 descs_to_mbufs(__m128i mm_rxcmp[4], __m128i mm_rxcmp1[4],
57 	       __m128i mbuf_init, const __m128i shuf_msk,
58 	       struct rte_mbuf **mbuf, struct bnxt_rx_ring_info *rxr)
59 {
60 	const __m128i flags_type_mask =
61 		_mm_set1_epi32(RX_PKT_CMPL_FLAGS_ITYPE_MASK);
62 	const __m128i flags2_mask1 =
63 		_mm_set1_epi32(CMPL_FLAGS2_VLAN_TUN_MSK);
64 	const __m128i flags2_mask2 =
65 		_mm_set1_epi32(RX_PKT_CMPL_FLAGS2_IP_TYPE);
66 	const __m128i rss_mask =
67 		_mm_set1_epi32(RX_PKT_CMPL_FLAGS_RSS_VALID);
68 	__m128i t0, t1, flags_type, flags2, index, errors, rss_flags;
69 	__m128i ptype_idx, is_tunnel;
70 	uint32_t ol_flags;
71 
72 	/* Validate ptype table indexing at build time. */
73 	bnxt_check_ptype_constants();
74 
75 	/* Compute packet type table indexes for four packets */
76 	t0 = _mm_unpacklo_epi32(mm_rxcmp[0], mm_rxcmp[1]);
77 	t1 = _mm_unpacklo_epi32(mm_rxcmp[2], mm_rxcmp[3]);
78 	flags_type = _mm_unpacklo_epi64(t0, t1);
79 	ptype_idx = _mm_srli_epi32(_mm_and_si128(flags_type, flags_type_mask),
80 			RX_PKT_CMPL_FLAGS_ITYPE_SFT - BNXT_PTYPE_TBL_TYPE_SFT);
81 
82 	t0 = _mm_unpacklo_epi32(mm_rxcmp1[0], mm_rxcmp1[1]);
83 	t1 = _mm_unpacklo_epi32(mm_rxcmp1[2], mm_rxcmp1[3]);
84 	flags2 = _mm_unpacklo_epi64(t0, t1);
85 
86 	ptype_idx = _mm_or_si128(ptype_idx,
87 			_mm_srli_epi32(_mm_and_si128(flags2, flags2_mask1),
88 				       RX_PKT_CMPL_FLAGS2_META_FORMAT_SFT -
89 				       BNXT_PTYPE_TBL_VLAN_SFT));
90 	ptype_idx = _mm_or_si128(ptype_idx,
91 			_mm_srli_epi32(_mm_and_si128(flags2, flags2_mask2),
92 				       RX_PKT_CMPL_FLAGS2_IP_TYPE_SFT -
93 				       BNXT_PTYPE_TBL_IP_VER_SFT));
94 
95 	/* Extract RSS valid flags for four packets. */
96 	rss_flags = _mm_srli_epi32(_mm_and_si128(flags_type, rss_mask), 9);
97 
98 	/* Extract errors_v2 fields for four packets. */
99 	t0 = _mm_unpackhi_epi32(mm_rxcmp1[0], mm_rxcmp1[1]);
100 	t1 = _mm_unpackhi_epi32(mm_rxcmp1[2], mm_rxcmp1[3]);
101 
102 	/* Compute ol_flags and checksum error indexes for four packets. */
103 	is_tunnel = _mm_and_si128(flags2, _mm_set1_epi32(4));
104 	is_tunnel = _mm_slli_epi32(is_tunnel, 3);
105 	flags2 = _mm_and_si128(flags2, _mm_set1_epi32(0x1F));
106 
107 	errors = _mm_srli_epi32(_mm_unpacklo_epi64(t0, t1), 4);
108 	errors = _mm_and_si128(errors, _mm_set1_epi32(0xF));
109 	errors = _mm_and_si128(errors, flags2);
110 
111 	index = _mm_andnot_si128(errors, flags2);
112 	errors = _mm_or_si128(errors, _mm_srli_epi32(is_tunnel, 1));
113 	index = _mm_or_si128(index, is_tunnel);
114 
115 	/* Update mbuf rearm_data for four packets. */
116 	GET_OL_FLAGS(rss_flags, index, errors, 0, ol_flags);
117 	_mm_store_si128((void *)&mbuf[0]->rearm_data,
118 			_mm_or_si128(mbuf_init, _mm_set_epi64x(ol_flags, 0)));
119 
120 	GET_OL_FLAGS(rss_flags, index, errors, 1, ol_flags);
121 	_mm_store_si128((void *)&mbuf[1]->rearm_data,
122 			_mm_or_si128(mbuf_init, _mm_set_epi64x(ol_flags, 0)));
123 
124 	GET_OL_FLAGS(rss_flags, index, errors, 2, ol_flags);
125 	_mm_store_si128((void *)&mbuf[2]->rearm_data,
126 			_mm_or_si128(mbuf_init, _mm_set_epi64x(ol_flags, 0)));
127 
128 	GET_OL_FLAGS(rss_flags, index, errors, 3, ol_flags);
129 	_mm_store_si128((void *)&mbuf[3]->rearm_data,
130 			_mm_or_si128(mbuf_init, _mm_set_epi64x(ol_flags, 0)));
131 
132 	/* Update mbuf rx_descriptor_fields1 for four packets. */
133 	GET_DESC_FIELDS(mm_rxcmp[0], mm_rxcmp1[0], shuf_msk, ptype_idx, 0, t0);
134 	_mm_store_si128((void *)&mbuf[0]->rx_descriptor_fields1, t0);
135 
136 	GET_DESC_FIELDS(mm_rxcmp[1], mm_rxcmp1[1], shuf_msk, ptype_idx, 1, t0);
137 	_mm_store_si128((void *)&mbuf[1]->rx_descriptor_fields1, t0);
138 
139 	GET_DESC_FIELDS(mm_rxcmp[2], mm_rxcmp1[2], shuf_msk, ptype_idx, 2, t0);
140 	_mm_store_si128((void *)&mbuf[2]->rx_descriptor_fields1, t0);
141 
142 	GET_DESC_FIELDS(mm_rxcmp[3], mm_rxcmp1[3], shuf_msk, ptype_idx, 3, t0);
143 	_mm_store_si128((void *)&mbuf[3]->rx_descriptor_fields1, t0);
144 }
145 
146 static inline void
147 crx_descs_to_mbufs(__m128i mm_rxcmp[4], __m128i mm_rxcmp1[4],
148 		   __m128i mbuf_init, const __m128i shuf_msk,
149 		   struct rte_mbuf **mbuf, struct bnxt_rx_ring_info *rxr)
150 {
151 	const __m128i flags_type_mask =
152 		_mm_set1_epi32(RX_PKT_COMPRESS_CMPL_FLAGS_ITYPE_MASK);
153 	const __m128i flags2_mask1 =
154 		_mm_set1_epi32(CMPL_FLAGS2_VLAN_TUN_MSK_CRX);
155 	const __m128i flags2_mask2 =
156 		_mm_set1_epi32(RX_PKT_COMPRESS_CMPL_FLAGS_IP_TYPE);
157 	const __m128i rss_mask =
158 		_mm_set1_epi32(RX_PKT_COMPRESS_CMPL_FLAGS_RSS_VALID);
159 	const __m128i cs_err_mask =
160 		_mm_set1_epi32(RX_PKT_COMPRESS_CMPL_CS_ERROR_CALC_MASK |
161 			       BNXT_RXC_METADATA1_VLAN_VALID);
162 	const __m128i crx_flags_mask =
163 		_mm_set1_epi32(BNXT_CRX_CQE_CSUM_CALC_MASK);
164 	const __m128i crx_tun_cs =
165 		_mm_set1_epi32(BNXT_CRX_TUN_CS_CALC);
166 	__m128i t0, t1, flags_type, flags, index, errors, rss_flags;
167 	__m128i ptype_idx, is_tunnel;
168 	uint32_t ol_flags;
169 	__m128i cs_err;
170 	__m128i t3, t4;
171 
172 	/* Validate ptype table indexing at build time. */
173 	bnxt_check_ptype_constants();
174 
175 	/* Compute packet type table indexes for four packets */
176 	t0 = _mm_unpacklo_epi32(mm_rxcmp[0], mm_rxcmp[1]);
177 	t3 = _mm_unpackhi_epi32(mm_rxcmp[0], mm_rxcmp[1]);
178 	t1 = _mm_unpacklo_epi32(mm_rxcmp[2], mm_rxcmp[3]);
179 	t4 = _mm_unpackhi_epi32(mm_rxcmp[2], mm_rxcmp[3]);
180 	flags_type = _mm_unpacklo_epi64(t0, t1);
181 	ptype_idx = _mm_srli_epi32(_mm_and_si128(flags_type, flags_type_mask),
182 			RX_PKT_CMPL_FLAGS_ITYPE_SFT - BNXT_PTYPE_TBL_TYPE_SFT);
183 
184 	flags = _mm_unpacklo_epi64(t0, t1);
185 
186 	ptype_idx = _mm_or_si128(ptype_idx,
187 			_mm_srli_epi32(_mm_and_si128(flags, flags2_mask1),
188 				       RX_PKT_CMPL_FLAGS2_META_FORMAT_SFT -
189 				       BNXT_PTYPE_TBL_VLAN_SFT));
190 	ptype_idx = _mm_or_si128(ptype_idx,
191 			_mm_srli_epi32(_mm_and_si128(flags, flags2_mask2),
192 				       RX_PKT_CMPL_FLAGS2_IP_TYPE_SFT -
193 				       BNXT_PTYPE_TBL_IP_VER_SFT));
194 
195 	/* Extract RSS valid flags for four packets. */
196 	rss_flags = _mm_srli_epi32(_mm_and_si128(flags, rss_mask), 9);
197 
198 	/* Extract cs_err fields for four packets. */
199 	cs_err = _mm_unpacklo_epi64(t3, t4);
200 	cs_err = _mm_and_si128(cs_err, cs_err_mask);
201 	flags = _mm_and_si128(cs_err, crx_flags_mask);
202 
203 	/* Compute ol_flags and checksum error indexes for four packets. */
204 	is_tunnel = _mm_and_si128(flags, crx_tun_cs);
205 	is_tunnel = _mm_slli_epi32(is_tunnel, 0x20);
206 	flags = _mm_or_si128(flags, is_tunnel);
207 
208 	flags = _mm_srli_si128(flags, 1);
209 
210 	errors = _mm_and_si128(cs_err, _mm_set1_epi32(0xF0));
211 	errors = _mm_and_si128(_mm_srli_epi32(errors, 4), flags);
212 
213 	index = _mm_andnot_si128(errors, flags);
214 	/* reuse is_tunnel - just shift right one bit to index correctly. */
215 	errors = _mm_or_si128(errors, _mm_srli_epi32(is_tunnel, 1));
216 	index = _mm_or_si128(index, is_tunnel);
217 
218 	/* Update mbuf rearm_data for four packets. */
219 	GET_OL_FLAGS(rss_flags, index, errors, 0, ol_flags);
220 	_mm_store_si128((void *)&mbuf[0]->rearm_data,
221 			_mm_or_si128(mbuf_init, _mm_set_epi64x(ol_flags, 0)));
222 
223 	GET_OL_FLAGS(rss_flags, index, errors, 1, ol_flags);
224 	_mm_store_si128((void *)&mbuf[1]->rearm_data,
225 			_mm_or_si128(mbuf_init, _mm_set_epi64x(ol_flags, 0)));
226 
227 	GET_OL_FLAGS(rss_flags, index, errors, 2, ol_flags);
228 	_mm_store_si128((void *)&mbuf[2]->rearm_data,
229 			_mm_or_si128(mbuf_init, _mm_set_epi64x(ol_flags, 0)));
230 
231 	GET_OL_FLAGS(rss_flags, index, errors, 3, ol_flags);
232 	_mm_store_si128((void *)&mbuf[3]->rearm_data,
233 			_mm_or_si128(mbuf_init, _mm_set_epi64x(ol_flags, 0)));
234 
235 	/* Update mbuf rx_descriptor_fields1 for four packes. */
236 	GET_DESC_FIELDS(mm_rxcmp[0], mm_rxcmp1[0], shuf_msk, ptype_idx, 0, t0);
237 	_mm_store_si128((void *)&mbuf[0]->rx_descriptor_fields1, t0);
238 
239 	GET_DESC_FIELDS(mm_rxcmp[1], mm_rxcmp1[1], shuf_msk, ptype_idx, 1, t0);
240 	_mm_store_si128((void *)&mbuf[1]->rx_descriptor_fields1, t0);
241 
242 	GET_DESC_FIELDS(mm_rxcmp[2], mm_rxcmp1[2], shuf_msk, ptype_idx, 2, t0);
243 	_mm_store_si128((void *)&mbuf[2]->rx_descriptor_fields1, t0);
244 
245 	GET_DESC_FIELDS(mm_rxcmp[3], mm_rxcmp1[3], shuf_msk, ptype_idx, 3, t0);
246 	_mm_store_si128((void *)&mbuf[3]->rx_descriptor_fields1, t0);
247 }
248 
249 static uint16_t
250 recv_burst_vec_sse(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
251 {
252 	struct bnxt_rx_queue *rxq = rx_queue;
253 	const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
254 	struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
255 	struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
256 	uint16_t cp_ring_size = cpr->cp_ring_struct->ring_size;
257 	uint16_t rx_ring_size = rxr->rx_ring_struct->ring_size;
258 	struct cmpl_base *cp_desc_ring = cpr->cp_desc_ring;
259 	uint64_t valid, desc_valid_mask = ~0ULL;
260 	const __m128i info3_v_mask = _mm_set1_epi32(CMPL_BASE_V);
261 	uint32_t raw_cons = cpr->cp_raw_cons;
262 	uint32_t cons, mbcons;
263 	int nb_rx_pkts = 0;
264 	const __m128i valid_target =
265 		_mm_set1_epi32(!!(raw_cons & cp_ring_size));
266 	const __m128i shuf_msk =
267 		_mm_set_epi8(15, 14, 13, 12,          /* rss */
268 			     0xFF, 0xFF,              /* vlan_tci (zeroes) */
269 			     3, 2,                    /* data_len */
270 			     0xFF, 0xFF, 3, 2,        /* pkt_len */
271 			     0xFF, 0xFF, 0xFF, 0xFF); /* pkt_type (zeroes) */
272 	int i;
273 
274 	/* If Rx Q was stopped return */
275 	if (unlikely(!rxq->rx_started))
276 		return 0;
277 
278 	if (rxq->rxrearm_nb >= rxq->rx_free_thresh)
279 		bnxt_rxq_rearm(rxq, rxr);
280 
281 	cons = raw_cons & (cp_ring_size - 1);
282 	mbcons = (raw_cons / 2) & (rx_ring_size - 1);
283 
284 	/* Prefetch first four descriptor pairs. */
285 	rte_prefetch0(&cp_desc_ring[cons]);
286 	rte_prefetch0(&cp_desc_ring[cons + 4]);
287 
288 	/* Ensure that we do not go past the ends of the rings. */
289 	nb_pkts = RTE_MIN(nb_pkts, RTE_MIN(rx_ring_size - mbcons,
290 					   (cp_ring_size - cons) / 2));
291 	/*
292 	 * If we are at the end of the ring, ensure that descriptors after the
293 	 * last valid entry are not treated as valid. Otherwise, force the
294 	 * maximum number of packets to receive to be a multiple of the per-
295 	 * loop count.
296 	 */
297 	if (nb_pkts < BNXT_RX_DESCS_PER_LOOP_VEC128) {
298 		desc_valid_mask >>=
299 			16 * (BNXT_RX_DESCS_PER_LOOP_VEC128 - nb_pkts);
300 	} else {
301 		nb_pkts =
302 			RTE_ALIGN_FLOOR(nb_pkts, BNXT_RX_DESCS_PER_LOOP_VEC128);
303 	}
304 
305 	/* Handle RX burst request */
306 	for (i = 0; i < nb_pkts; i += BNXT_RX_DESCS_PER_LOOP_VEC128,
307 				  cons += BNXT_RX_DESCS_PER_LOOP_VEC128 * 2,
308 				  mbcons += BNXT_RX_DESCS_PER_LOOP_VEC128) {
309 		__m128i rxcmp1[BNXT_RX_DESCS_PER_LOOP_VEC128];
310 		__m128i rxcmp[BNXT_RX_DESCS_PER_LOOP_VEC128];
311 		__m128i tmp0, tmp1, info3_v;
312 		uint32_t num_valid;
313 
314 		/* Copy four mbuf pointers to output array. */
315 		tmp0 = _mm_loadu_si128((void *)&rxr->rx_buf_ring[mbcons]);
316 #ifdef RTE_ARCH_X86_64
317 		tmp1 = _mm_loadu_si128((void *)&rxr->rx_buf_ring[mbcons + 2]);
318 #endif
319 		_mm_storeu_si128((void *)&rx_pkts[i], tmp0);
320 #ifdef RTE_ARCH_X86_64
321 		_mm_storeu_si128((void *)&rx_pkts[i + 2], tmp1);
322 #endif
323 
324 		/* Prefetch four descriptor pairs for next iteration. */
325 		if (i + BNXT_RX_DESCS_PER_LOOP_VEC128 < nb_pkts) {
326 			rte_prefetch0(&cp_desc_ring[cons + 8]);
327 			rte_prefetch0(&cp_desc_ring[cons + 12]);
328 		}
329 
330 		/*
331 		 * Load the four current descriptors into SSE registers in
332 		 * reverse order to ensure consistent state.
333 		 */
334 		rxcmp1[3] = _mm_load_si128((void *)&cp_desc_ring[cons + 7]);
335 		rte_compiler_barrier();
336 		rxcmp[3] = _mm_load_si128((void *)&cp_desc_ring[cons + 6]);
337 
338 		rxcmp1[2] = _mm_load_si128((void *)&cp_desc_ring[cons + 5]);
339 		rte_compiler_barrier();
340 		rxcmp[2] = _mm_load_si128((void *)&cp_desc_ring[cons + 4]);
341 
342 		tmp1 = _mm_unpackhi_epi32(rxcmp1[2], rxcmp1[3]);
343 
344 		rxcmp1[1] = _mm_load_si128((void *)&cp_desc_ring[cons + 3]);
345 		rte_compiler_barrier();
346 		rxcmp[1] = _mm_load_si128((void *)&cp_desc_ring[cons + 2]);
347 
348 		rxcmp1[0] = _mm_load_si128((void *)&cp_desc_ring[cons + 1]);
349 		rte_compiler_barrier();
350 		rxcmp[0] = _mm_load_si128((void *)&cp_desc_ring[cons + 0]);
351 
352 		tmp0 = _mm_unpackhi_epi32(rxcmp1[0], rxcmp1[1]);
353 
354 		/* Isolate descriptor valid flags. */
355 		info3_v = _mm_and_si128(_mm_unpacklo_epi64(tmp0, tmp1),
356 					info3_v_mask);
357 		info3_v = _mm_xor_si128(info3_v, valid_target);
358 
359 		/*
360 		 * Pack the 128-bit array of valid descriptor flags into 64
361 		 * bits and count the number of set bits in order to determine
362 		 * the number of valid descriptors.
363 		 */
364 		valid = _mm_cvtsi128_si64(_mm_packs_epi32(info3_v, info3_v));
365 		num_valid = rte_popcount64(valid & desc_valid_mask);
366 
367 		if (num_valid == 0)
368 			break;
369 
370 		descs_to_mbufs(rxcmp, rxcmp1, mbuf_init, shuf_msk, &rx_pkts[nb_rx_pkts],
371 			       rxr);
372 		nb_rx_pkts += num_valid;
373 
374 		if (num_valid < BNXT_RX_DESCS_PER_LOOP_VEC128)
375 			break;
376 	}
377 
378 	if (nb_rx_pkts) {
379 		rxr->rx_raw_prod = RING_ADV(rxr->rx_raw_prod, nb_rx_pkts);
380 
381 		rxq->rxrearm_nb += nb_rx_pkts;
382 		cpr->cp_raw_cons += 2 * nb_rx_pkts;
383 		bnxt_db_cq(cpr);
384 	}
385 
386 	return nb_rx_pkts;
387 }
388 
389 static uint16_t
390 crx_burst_vec_sse(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
391 {
392 	struct bnxt_rx_queue *rxq = rx_queue;
393 	const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
394 	struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
395 	struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
396 	uint16_t cp_ring_size = cpr->cp_ring_struct->ring_size;
397 	uint16_t rx_ring_size = rxr->rx_ring_struct->ring_size;
398 	struct cmpl_base *cp_desc_ring = cpr->cp_desc_ring;
399 	uint64_t valid, desc_valid_mask = ~0ULL;
400 	const __m128i info3_v_mask = _mm_set1_epi32(CMPL_BASE_V);
401 	uint32_t raw_cons = cpr->cp_raw_cons;
402 	uint32_t cons, mbcons;
403 	int nb_rx_pkts = 0;
404 	const __m128i valid_target =
405 		_mm_set1_epi32(!!(raw_cons & cp_ring_size));
406 	const __m128i shuf_msk =
407 		_mm_set_epi8(7, 6, 5, 4,          /* rss */
408 			     0xFF, 0xFF,              /* vlan_tci (zeroes) */
409 			     3, 2,                    /* data_len */
410 			     0xFF, 0xFF, 3, 2,        /* pkt_len */
411 			     0xFF, 0xFF, 0xFF, 0xFF); /* pkt_type (zeroes) */
412 	int i;
413 
414 	/* If Rx Q was stopped return */
415 	if (unlikely(!rxq->rx_started))
416 		return 0;
417 
418 	if (rxq->rxrearm_nb >= rxq->rx_free_thresh)
419 		bnxt_rxq_rearm(rxq, rxr);
420 
421 	cons = raw_cons & (cp_ring_size - 1);
422 	mbcons = raw_cons & (rx_ring_size - 1);
423 
424 	/* Prefetch first four descriptor pairs. */
425 	rte_prefetch0(&cp_desc_ring[cons]);
426 
427 	/* Ensure that we do not go past the ends of the rings. */
428 	nb_pkts = RTE_MIN(nb_pkts, RTE_MIN(rx_ring_size - mbcons,
429 					   cp_ring_size - cons));
430 	/*
431 	 * If we are at the end of the ring, ensure that descriptors after the
432 	 * last valid entry are not treated as valid. Otherwise, force the
433 	 * maximum number of packets to receive to be a multiple of the per-
434 	 * loop count.
435 	 */
436 	if (nb_pkts < BNXT_RX_DESCS_PER_LOOP_VEC128) {
437 		desc_valid_mask >>=
438 			16 * (BNXT_RX_DESCS_PER_LOOP_VEC128 - nb_pkts);
439 	} else {
440 		nb_pkts =
441 			RTE_ALIGN_FLOOR(nb_pkts, BNXT_RX_DESCS_PER_LOOP_VEC128);
442 	}
443 
444 	/* Handle RX burst request */
445 	for (i = 0; i < nb_pkts; i += BNXT_RX_DESCS_PER_LOOP_VEC128,
446 				  cons += BNXT_RX_DESCS_PER_LOOP_VEC128,
447 				  mbcons += BNXT_RX_DESCS_PER_LOOP_VEC128) {
448 		__m128i rxcmp1[BNXT_RX_DESCS_PER_LOOP_VEC128];
449 		__m128i rxcmp[BNXT_RX_DESCS_PER_LOOP_VEC128];
450 		__m128i tmp0, tmp1, info3_v;
451 		uint32_t num_valid;
452 
453 		/* Copy four mbuf pointers to output array. */
454 		tmp0 = _mm_loadu_si128((void *)&rxr->rx_buf_ring[mbcons]);
455 #ifdef RTE_ARCH_X86_64
456 		tmp1 = _mm_loadu_si128((void *)&rxr->rx_buf_ring[mbcons + 2]);
457 #endif
458 		_mm_storeu_si128((void *)&rx_pkts[i], tmp0);
459 #ifdef RTE_ARCH_X86_64
460 		_mm_storeu_si128((void *)&rx_pkts[i + 2], tmp1);
461 #endif
462 
463 		/* Prefetch four descriptor pairs for next iteration. */
464 		if (i + BNXT_RX_DESCS_PER_LOOP_VEC128 < nb_pkts)
465 			rte_prefetch0(&cp_desc_ring[cons + 4]);
466 
467 		/*
468 		 * Load the four current descriptors into SSE registers in
469 		 * reverse order to ensure consistent state.
470 		 */
471 		rxcmp[3] = _mm_load_si128((void *)&cp_desc_ring[cons + 3]);
472 		rte_compiler_barrier();
473 		rxcmp[2] = _mm_load_si128((void *)&cp_desc_ring[cons + 2]);
474 		rte_compiler_barrier();
475 		rxcmp[1] = _mm_load_si128((void *)&cp_desc_ring[cons + 1]);
476 		rte_compiler_barrier();
477 		rxcmp[0] = _mm_load_si128((void *)&cp_desc_ring[cons + 0]);
478 
479 		tmp1 = _mm_unpackhi_epi32(rxcmp[2], rxcmp[3]);
480 		tmp0 = _mm_unpackhi_epi32(rxcmp[0], rxcmp[1]);
481 
482 		/* Isolate descriptor valid flags. */
483 		info3_v = _mm_and_si128(_mm_unpacklo_epi64(tmp0, tmp1),
484 					info3_v_mask);
485 		info3_v = _mm_xor_si128(info3_v, valid_target);
486 
487 		/*
488 		 * Pack the 128-bit array of valid descriptor flags into 64
489 		 * bits and count the number of set bits in order to determine
490 		 * the number of valid descriptors.
491 		 */
492 		valid = _mm_cvtsi128_si64(_mm_packs_epi32(info3_v, info3_v));
493 		num_valid = rte_popcount64(valid & desc_valid_mask);
494 
495 		if (num_valid == 0)
496 			break;
497 
498 		crx_descs_to_mbufs(rxcmp, rxcmp1, mbuf_init, shuf_msk,
499 				   &rx_pkts[nb_rx_pkts], rxr);
500 		nb_rx_pkts += num_valid;
501 
502 		if (num_valid < BNXT_RX_DESCS_PER_LOOP_VEC128)
503 			break;
504 	}
505 
506 	if (nb_rx_pkts) {
507 		rxr->rx_raw_prod = RING_ADV(rxr->rx_raw_prod, nb_rx_pkts);
508 
509 		rxq->rxrearm_nb += nb_rx_pkts;
510 		cpr->cp_raw_cons += nb_rx_pkts;
511 		bnxt_db_cq(cpr);
512 	}
513 
514 	return nb_rx_pkts;
515 }
516 
517 uint16_t
518 bnxt_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
519 {
520 	uint16_t cnt = 0;
521 
522 	while (nb_pkts > RTE_BNXT_MAX_RX_BURST) {
523 		uint16_t burst;
524 
525 		burst = recv_burst_vec_sse(rx_queue, rx_pkts + cnt,
526 					   RTE_BNXT_MAX_RX_BURST);
527 
528 		cnt += burst;
529 		nb_pkts -= burst;
530 
531 		if (burst < RTE_BNXT_MAX_RX_BURST)
532 			return cnt;
533 	}
534 
535 	return cnt + recv_burst_vec_sse(rx_queue, rx_pkts + cnt, nb_pkts);
536 }
537 
538 uint16_t
539 bnxt_crx_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
540 {
541 	uint16_t cnt = 0;
542 
543 	while (nb_pkts > RTE_BNXT_MAX_RX_BURST) {
544 		uint16_t burst;
545 
546 		burst = crx_burst_vec_sse(rx_queue, rx_pkts + cnt,
547 					   RTE_BNXT_MAX_RX_BURST);
548 
549 		cnt += burst;
550 		nb_pkts -= burst;
551 
552 		if (burst < RTE_BNXT_MAX_RX_BURST)
553 			return cnt;
554 	}
555 
556 	return cnt + crx_burst_vec_sse(rx_queue, rx_pkts + cnt, nb_pkts);
557 }
558 
559 static void
560 bnxt_handle_tx_cp_vec(struct bnxt_tx_queue *txq)
561 {
562 	struct bnxt_cp_ring_info *cpr = txq->cp_ring;
563 	uint32_t raw_cons = cpr->cp_raw_cons;
564 	uint32_t cons;
565 	uint32_t nb_tx_pkts = 0;
566 	struct tx_cmpl *txcmp;
567 	struct cmpl_base *cp_desc_ring = cpr->cp_desc_ring;
568 	struct bnxt_ring *cp_ring_struct = cpr->cp_ring_struct;
569 	uint32_t ring_mask = cp_ring_struct->ring_mask;
570 
571 	do {
572 		cons = RING_CMPL(ring_mask, raw_cons);
573 		txcmp = (struct tx_cmpl *)&cp_desc_ring[cons];
574 
575 		if (!bnxt_cpr_cmp_valid(txcmp, raw_cons, ring_mask + 1))
576 			break;
577 
578 		if (likely(CMP_TYPE(txcmp) == TX_CMPL_TYPE_TX_L2))
579 			nb_tx_pkts += txcmp->opaque;
580 		else
581 			RTE_LOG_DP(ERR, BNXT,
582 				   "Unhandled CMP type %02x\n",
583 				   CMP_TYPE(txcmp));
584 		raw_cons = NEXT_RAW_CMP(raw_cons);
585 	} while (nb_tx_pkts < ring_mask);
586 
587 	if (nb_tx_pkts) {
588 		if (txq->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE)
589 			bnxt_tx_cmp_vec_fast(txq, nb_tx_pkts);
590 		else
591 			bnxt_tx_cmp_vec(txq, nb_tx_pkts);
592 		cpr->cp_raw_cons = raw_cons;
593 		bnxt_db_cq(cpr);
594 	}
595 }
596 
597 static inline void
598 bnxt_xmit_one(struct rte_mbuf *mbuf, struct tx_bd_long *txbd,
599 	      struct rte_mbuf **tx_buf)
600 {
601 	__m128i desc;
602 
603 	*tx_buf = mbuf;
604 
605 	desc = _mm_set_epi64x(mbuf->buf_iova + mbuf->data_off,
606 			      bnxt_xmit_flags_len(mbuf->data_len,
607 						  TX_BD_FLAGS_NOCMPL));
608 	desc = _mm_blend_epi16(desc, _mm_set_epi16(0, 0, 0, 0, 0, 0,
609 						   mbuf->data_len, 0), 0x02);
610 	_mm_store_si128((void *)txbd, desc);
611 }
612 
613 static uint16_t
614 bnxt_xmit_fixed_burst_vec(struct bnxt_tx_queue *txq, struct rte_mbuf **tx_pkts,
615 			  uint16_t nb_pkts)
616 {
617 	struct bnxt_tx_ring_info *txr = txq->tx_ring;
618 	uint16_t tx_prod, tx_raw_prod = txr->tx_raw_prod;
619 	struct tx_bd_long *txbd;
620 	struct rte_mbuf **tx_buf;
621 	uint16_t to_send;
622 
623 	tx_prod = RING_IDX(txr->tx_ring_struct, tx_raw_prod);
624 	txbd = &txr->tx_desc_ring[tx_prod];
625 	tx_buf = &txr->tx_buf_ring[tx_prod];
626 
627 	/* Prefetch next transmit buffer descriptors. */
628 	rte_prefetch0(txbd);
629 	rte_prefetch0(txbd + 3);
630 
631 	nb_pkts = RTE_MIN(nb_pkts, bnxt_tx_avail(txq));
632 
633 	if (unlikely(nb_pkts == 0))
634 		return 0;
635 
636 	/* Handle TX burst request */
637 	to_send = nb_pkts;
638 	while (to_send >= BNXT_TX_DESCS_PER_LOOP) {
639 		/* Prefetch next transmit buffer descriptors. */
640 		rte_prefetch0(txbd + 4);
641 		rte_prefetch0(txbd + 7);
642 
643 		bnxt_xmit_one(tx_pkts[0], txbd++, tx_buf++);
644 		bnxt_xmit_one(tx_pkts[1], txbd++, tx_buf++);
645 		bnxt_xmit_one(tx_pkts[2], txbd++, tx_buf++);
646 		bnxt_xmit_one(tx_pkts[3], txbd++, tx_buf++);
647 
648 		to_send -= BNXT_TX_DESCS_PER_LOOP;
649 		tx_pkts += BNXT_TX_DESCS_PER_LOOP;
650 	}
651 
652 	while (to_send) {
653 		bnxt_xmit_one(tx_pkts[0], txbd++, tx_buf++);
654 		to_send--;
655 		tx_pkts++;
656 	}
657 
658 	/* Request a completion for the final packet of burst. */
659 	rte_compiler_barrier();
660 	txbd[-1].opaque = nb_pkts;
661 	txbd[-1].flags_type &= ~TX_BD_LONG_FLAGS_NO_CMPL;
662 
663 	tx_raw_prod += nb_pkts;
664 	bnxt_db_write(&txr->tx_db, tx_raw_prod);
665 
666 	txr->tx_raw_prod = tx_raw_prod;
667 
668 	return nb_pkts;
669 }
670 
671 uint16_t
672 bnxt_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
673 		   uint16_t nb_pkts)
674 {
675 	int nb_sent = 0;
676 	struct bnxt_tx_queue *txq = tx_queue;
677 	struct bnxt_tx_ring_info *txr = txq->tx_ring;
678 	uint16_t ring_size = txr->tx_ring_struct->ring_size;
679 
680 	/* Tx queue was stopped; wait for it to be restarted */
681 	if (unlikely(!txq->tx_started)) {
682 		PMD_DRV_LOG(DEBUG, "Tx q stopped;return\n");
683 		return 0;
684 	}
685 
686 	/* Handle TX completions */
687 	if (bnxt_tx_bds_in_hw(txq) >= txq->tx_free_thresh)
688 		bnxt_handle_tx_cp_vec(txq);
689 
690 	while (nb_pkts) {
691 		uint16_t ret, num;
692 
693 		/*
694 		 * Ensure that no more than RTE_BNXT_MAX_TX_BURST packets
695 		 * are transmitted before the next completion.
696 		 */
697 		num = RTE_MIN(nb_pkts, RTE_BNXT_MAX_TX_BURST);
698 
699 		/*
700 		 * Ensure that a ring wrap does not occur within a call to
701 		 * bnxt_xmit_fixed_burst_vec().
702 		 */
703 		num = RTE_MIN(num, ring_size -
704 				   (txr->tx_raw_prod & (ring_size - 1)));
705 		ret = bnxt_xmit_fixed_burst_vec(txq, &tx_pkts[nb_sent], num);
706 		nb_sent += ret;
707 		nb_pkts -= ret;
708 		if (ret < num)
709 			break;
710 	}
711 
712 	return nb_sent;
713 }
714 
715 int __rte_cold
716 bnxt_rxq_vec_setup(struct bnxt_rx_queue *rxq)
717 {
718 	return bnxt_rxq_vec_setup_common(rxq);
719 }
720