xref: /dpdk/drivers/net/bnxt/bnxt_rxtx_vec_neon.c (revision 68a03efeed657e6e05f281479b33b51102797e15)
1 /* SPDX-License-Identifier: BSD-3-Clause */
2 /* Copyright(c) 2019-2021 Broadcom All rights reserved. */
3 
4 #include <inttypes.h>
5 #include <stdbool.h>
6 
7 #include <rte_bitmap.h>
8 #include <rte_byteorder.h>
9 #include <rte_malloc.h>
10 #include <rte_memory.h>
11 #include <rte_vect.h>
12 
13 #include "bnxt.h"
14 #include "bnxt_cpr.h"
15 #include "bnxt_ring.h"
16 
17 #include "bnxt_txq.h"
18 #include "bnxt_txr.h"
19 #include "bnxt_rxtx_vec_common.h"
20 
21 /*
22  * RX Ring handling
23  */
24 
25 #define GET_OL_FLAGS(rss_flags, ol_idx, errors, pi, ol_flags)		       \
26 {									       \
27 	uint32_t tmp, of;						       \
28 									       \
29 	of = vgetq_lane_u32((rss_flags), (pi)) |			       \
30 		   rxr->ol_flags_table[vgetq_lane_u32((ol_idx), (pi))];	       \
31 									       \
32 	tmp = vgetq_lane_u32((errors), (pi));				       \
33 	if (tmp)							       \
34 		of |= rxr->ol_flags_err_table[tmp];			       \
35 	(ol_flags) = of;						       \
36 }
37 
38 #define GET_DESC_FIELDS(rxcmp, rxcmp1, shuf_msk, ptype_idx, pkt_idx, ret)      \
39 {									       \
40 	uint32_t ptype;							       \
41 	uint16_t vlan_tci;						       \
42 	uint32x4_t r;							       \
43 									       \
44 	/* Set mbuf pkt_len, data_len, and rss_hash fields. */		       \
45 	r = vreinterpretq_u32_u8(vqtbl1q_u8(vreinterpretq_u8_u32(rxcmp),       \
46 					      (shuf_msk)));		       \
47 									       \
48 	/* Set packet type. */						       \
49 	ptype = bnxt_ptype_table[vgetq_lane_u32((ptype_idx), (pkt_idx))];      \
50 	r = vsetq_lane_u32(ptype, r, 0);				       \
51 									       \
52 	/* Set vlan_tci. */						       \
53 	vlan_tci = vgetq_lane_u32((rxcmp1), 1);				       \
54 	r = vreinterpretq_u32_u16(vsetq_lane_u16(vlan_tci,		       \
55 				vreinterpretq_u16_u32(r), 5));		       \
56 	(ret) = r;							       \
57 }
58 
59 static void
60 descs_to_mbufs(uint32x4_t mm_rxcmp[4], uint32x4_t mm_rxcmp1[4],
61 	       uint64x2_t mb_init, struct rte_mbuf **mbuf,
62 	       struct bnxt_rx_ring_info *rxr)
63 {
64 	const uint8x16_t shuf_msk = {
65 		0xFF, 0xFF, 0xFF, 0xFF,    /* pkt_type (zeroes) */
66 		2, 3, 0xFF, 0xFF,          /* pkt_len */
67 		2, 3,                      /* data_len */
68 		0xFF, 0xFF,                /* vlan_tci (zeroes) */
69 		12, 13, 14, 15             /* rss hash */
70 	};
71 	const uint32x4_t flags_type_mask =
72 		vdupq_n_u32(RX_PKT_CMPL_FLAGS_ITYPE_MASK);
73 	const uint32x4_t flags2_mask1 =
74 		vdupq_n_u32(RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN |
75 			    RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC);
76 	const uint32x4_t flags2_mask2 =
77 		vdupq_n_u32(RX_PKT_CMPL_FLAGS2_IP_TYPE);
78 	const uint32x4_t rss_mask =
79 		vdupq_n_u32(RX_PKT_CMPL_FLAGS_RSS_VALID);
80 	const uint32x4_t flags2_index_mask = vdupq_n_u32(0x1F);
81 	const uint32x4_t flags2_error_mask = vdupq_n_u32(0x0F);
82 	uint32x4_t flags_type, flags2, index, errors, rss_flags;
83 	uint32x4_t tmp, ptype_idx, is_tunnel;
84 	uint64x2_t t0, t1;
85 	uint32_t ol_flags;
86 
87 	/* Compute packet type table indexes for four packets */
88 	t0 = vreinterpretq_u64_u32(vzip1q_u32(mm_rxcmp[0], mm_rxcmp[1]));
89 	t1 = vreinterpretq_u64_u32(vzip1q_u32(mm_rxcmp[2], mm_rxcmp[3]));
90 
91 	flags_type = vreinterpretq_u32_u64(vcombine_u64(vget_low_u64(t0),
92 							vget_low_u64(t1)));
93 	ptype_idx =
94 		vshrq_n_u32(vandq_u32(flags_type, flags_type_mask), 9);
95 
96 	t0 = vreinterpretq_u64_u32(vzip1q_u32(mm_rxcmp1[0], mm_rxcmp1[1]));
97 	t1 = vreinterpretq_u64_u32(vzip1q_u32(mm_rxcmp1[2], mm_rxcmp1[3]));
98 
99 	flags2 = vreinterpretq_u32_u64(vcombine_u64(vget_low_u64(t0),
100 						    vget_low_u64(t1)));
101 
102 	ptype_idx = vorrq_u32(ptype_idx,
103 			vshrq_n_u32(vandq_u32(flags2, flags2_mask1), 2));
104 	ptype_idx = vorrq_u32(ptype_idx,
105 			vshrq_n_u32(vandq_u32(flags2, flags2_mask2), 7));
106 
107 	/* Extract RSS valid flags for four packets. */
108 	rss_flags = vshrq_n_u32(vandq_u32(flags_type, rss_mask), 9);
109 
110 	flags2 = vandq_u32(flags2, flags2_index_mask);
111 
112 	/* Extract errors_v2 fields for four packets. */
113 	t0 = vreinterpretq_u64_u32(vzip2q_u32(mm_rxcmp1[0], mm_rxcmp1[1]));
114 	t1 = vreinterpretq_u64_u32(vzip2q_u32(mm_rxcmp1[2], mm_rxcmp1[3]));
115 
116 	errors = vreinterpretq_u32_u64(vcombine_u64(vget_low_u64(t0),
117 						    vget_low_u64(t1)));
118 
119 	/* Compute ol_flags and checksum error indexes for four packets. */
120 	is_tunnel = vandq_u32(flags2, vdupq_n_u32(4));
121 	is_tunnel = vshlq_n_u32(is_tunnel, 3);
122 	errors = vandq_u32(vshrq_n_u32(errors, 4), flags2_error_mask);
123 	errors = vandq_u32(errors, flags2);
124 
125 	index = vbicq_u32(flags2, errors);
126 	errors = vorrq_u32(errors, vshrq_n_u32(is_tunnel, 1));
127 	index = vorrq_u32(index, is_tunnel);
128 
129 	/* Update mbuf rearm_data for four packets. */
130 	GET_OL_FLAGS(rss_flags, index, errors, 0, ol_flags);
131 	vst1q_u32((uint32_t *)&mbuf[0]->rearm_data,
132 		  vsetq_lane_u32(ol_flags, vreinterpretq_u32_u64(mb_init), 2));
133 	GET_OL_FLAGS(rss_flags, index, errors, 1, ol_flags);
134 	vst1q_u32((uint32_t *)&mbuf[1]->rearm_data,
135 		  vsetq_lane_u32(ol_flags, vreinterpretq_u32_u64(mb_init), 2));
136 	GET_OL_FLAGS(rss_flags, index, errors, 2, ol_flags);
137 	vst1q_u32((uint32_t *)&mbuf[2]->rearm_data,
138 		  vsetq_lane_u32(ol_flags, vreinterpretq_u32_u64(mb_init), 2));
139 	GET_OL_FLAGS(rss_flags, index, errors, 3, ol_flags);
140 	vst1q_u32((uint32_t *)&mbuf[3]->rearm_data,
141 		  vsetq_lane_u32(ol_flags, vreinterpretq_u32_u64(mb_init), 2));
142 
143 	/* Update mbuf rx_descriptor_fields1 for four packets. */
144 	GET_DESC_FIELDS(mm_rxcmp[0], mm_rxcmp1[0], shuf_msk, ptype_idx, 0, tmp);
145 	vst1q_u32((uint32_t *)&mbuf[0]->rx_descriptor_fields1, tmp);
146 	GET_DESC_FIELDS(mm_rxcmp[1], mm_rxcmp1[1], shuf_msk, ptype_idx, 1, tmp);
147 	vst1q_u32((uint32_t *)&mbuf[1]->rx_descriptor_fields1, tmp);
148 	GET_DESC_FIELDS(mm_rxcmp[2], mm_rxcmp1[2], shuf_msk, ptype_idx, 2, tmp);
149 	vst1q_u32((uint32_t *)&mbuf[2]->rx_descriptor_fields1, tmp);
150 	GET_DESC_FIELDS(mm_rxcmp[3], mm_rxcmp1[3], shuf_msk, ptype_idx, 3, tmp);
151 	vst1q_u32((uint32_t *)&mbuf[3]->rx_descriptor_fields1, tmp);
152 }
153 
154 uint16_t
155 bnxt_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
156 		   uint16_t nb_pkts)
157 {
158 	struct bnxt_rx_queue *rxq = rx_queue;
159 	struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
160 	struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
161 	uint16_t cp_ring_size = cpr->cp_ring_struct->ring_size;
162 	uint16_t rx_ring_size = rxr->rx_ring_struct->ring_size;
163 	struct cmpl_base *cp_desc_ring = cpr->cp_desc_ring;
164 	uint64_t valid, desc_valid_mask = ~0UL;
165 	const uint32x4_t info3_v_mask = vdupq_n_u32(CMPL_BASE_V);
166 	uint32_t raw_cons = cpr->cp_raw_cons;
167 	uint32_t cons, mbcons;
168 	int nb_rx_pkts = 0;
169 	const uint64x2_t mb_init = {rxq->mbuf_initializer, 0};
170 	const uint32x4_t valid_target =
171 		vdupq_n_u32(!!(raw_cons & cp_ring_size));
172 	int i;
173 
174 	/* If Rx Q was stopped return */
175 	if (unlikely(!rxq->rx_started))
176 		return 0;
177 
178 	if (rxq->rxrearm_nb >= rxq->rx_free_thresh)
179 		bnxt_rxq_rearm(rxq, rxr);
180 
181 	/* Return no more than RTE_BNXT_MAX_RX_BURST per call. */
182 	nb_pkts = RTE_MIN(nb_pkts, RTE_BNXT_MAX_RX_BURST);
183 
184 	cons = raw_cons & (cp_ring_size - 1);
185 	mbcons = (raw_cons / 2) & (rx_ring_size - 1);
186 
187 	/* Prefetch first four descriptor pairs. */
188 	rte_prefetch0(&cp_desc_ring[cons]);
189 	rte_prefetch0(&cp_desc_ring[cons + 4]);
190 
191 	/* Ensure that we do not go past the ends of the rings. */
192 	nb_pkts = RTE_MIN(nb_pkts, RTE_MIN(rx_ring_size - mbcons,
193 					   (cp_ring_size - cons) / 2));
194 	/*
195 	 * If we are at the end of the ring, ensure that descriptors after the
196 	 * last valid entry are not treated as valid. Otherwise, force the
197 	 * maximum number of packets to receive to be a multiple of the per-
198 	 * loop count.
199 	 */
200 	if (nb_pkts < RTE_BNXT_DESCS_PER_LOOP)
201 		desc_valid_mask >>= 16 * (RTE_BNXT_DESCS_PER_LOOP - nb_pkts);
202 	else
203 		nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_BNXT_DESCS_PER_LOOP);
204 
205 	/* Handle RX burst request */
206 	for (i = 0; i < nb_pkts; i += RTE_BNXT_DESCS_PER_LOOP,
207 				  cons += RTE_BNXT_DESCS_PER_LOOP * 2,
208 				  mbcons += RTE_BNXT_DESCS_PER_LOOP) {
209 		uint32x4_t rxcmp1[RTE_BNXT_DESCS_PER_LOOP];
210 		uint32x4_t rxcmp[RTE_BNXT_DESCS_PER_LOOP];
211 		uint32x4_t info3_v;
212 		uint64x2_t t0, t1;
213 		uint32_t num_valid;
214 
215 		/* Copy four mbuf pointers to output array. */
216 		t0 = vld1q_u64((void *)&rxr->rx_buf_ring[mbcons]);
217 #ifdef RTE_ARCH_ARM64
218 		t1 = vld1q_u64((void *)&rxr->rx_buf_ring[mbcons + 2]);
219 #endif
220 		vst1q_u64((void *)&rx_pkts[i], t0);
221 #ifdef RTE_ARCH_ARM64
222 		vst1q_u64((void *)&rx_pkts[i + 2], t1);
223 #endif
224 
225 		/* Prefetch four descriptor pairs for next iteration. */
226 		if (i + RTE_BNXT_DESCS_PER_LOOP < nb_pkts) {
227 			rte_prefetch0(&cp_desc_ring[cons + 8]);
228 			rte_prefetch0(&cp_desc_ring[cons + 12]);
229 		}
230 
231 		/*
232 		 * Load the four current descriptors into SSE registers in
233 		 * reverse order to ensure consistent state.
234 		 */
235 		rxcmp1[3] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 7]);
236 		rte_io_rmb();
237 		rxcmp[3] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 6]);
238 
239 		rxcmp1[2] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 5]);
240 		rte_io_rmb();
241 		rxcmp[2] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 4]);
242 
243 		t1 = vreinterpretq_u64_u32(vzip2q_u32(rxcmp1[2], rxcmp1[3]));
244 
245 		rxcmp1[1] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 3]);
246 		rte_io_rmb();
247 		rxcmp[1] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 2]);
248 
249 		rxcmp1[0] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 1]);
250 		rte_io_rmb();
251 		rxcmp[0] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 0]);
252 
253 		t0 = vreinterpretq_u64_u32(vzip2q_u32(rxcmp1[0], rxcmp1[1]));
254 
255 		/* Isolate descriptor status flags. */
256 		info3_v = vreinterpretq_u32_u64(vcombine_u64(vget_low_u64(t0),
257 							     vget_low_u64(t1)));
258 		info3_v = vandq_u32(info3_v, info3_v_mask);
259 		info3_v = veorq_u32(info3_v, valid_target);
260 
261 		/*
262 		 * Pack the 128-bit array of valid descriptor flags into 64
263 		 * bits and count the number of set bits in order to determine
264 		 * the number of valid descriptors.
265 		 */
266 		valid = vget_lane_u64(vreinterpret_u64_u16(vqmovn_u32(info3_v)),
267 				      0);
268 		/*
269 		 * At this point, 'valid' is a 64-bit value containing four
270 		 * 16-bit fields, each of which is either 0x0001 or 0x0000.
271 		 * Compute number of valid descriptors from the index of
272 		 * the highest non-zero field.
273 		 */
274 		num_valid = (sizeof(uint64_t) / sizeof(uint16_t)) -
275 				(__builtin_clzl(valid & desc_valid_mask) / 16);
276 
277 		if (num_valid == 0)
278 			break;
279 
280 		descs_to_mbufs(rxcmp, rxcmp1, mb_init, &rx_pkts[nb_rx_pkts],
281 			       rxr);
282 		nb_rx_pkts += num_valid;
283 
284 		if (num_valid < RTE_BNXT_DESCS_PER_LOOP)
285 			break;
286 	}
287 
288 	if (nb_rx_pkts) {
289 		rxr->rx_raw_prod = RING_ADV(rxr->rx_raw_prod, nb_rx_pkts);
290 
291 		rxq->rxrearm_nb += nb_rx_pkts;
292 		cpr->cp_raw_cons += 2 * nb_rx_pkts;
293 		cpr->valid =
294 			!!(cpr->cp_raw_cons & cpr->cp_ring_struct->ring_size);
295 		bnxt_db_cq(cpr);
296 	}
297 
298 	return nb_rx_pkts;
299 }
300 
301 static void
302 bnxt_handle_tx_cp_vec(struct bnxt_tx_queue *txq)
303 {
304 	struct bnxt_cp_ring_info *cpr = txq->cp_ring;
305 	uint32_t raw_cons = cpr->cp_raw_cons;
306 	uint32_t cons;
307 	uint32_t nb_tx_pkts = 0;
308 	struct tx_cmpl *txcmp;
309 	struct cmpl_base *cp_desc_ring = cpr->cp_desc_ring;
310 	struct bnxt_ring *cp_ring_struct = cpr->cp_ring_struct;
311 	uint32_t ring_mask = cp_ring_struct->ring_mask;
312 
313 	do {
314 		cons = RING_CMPL(ring_mask, raw_cons);
315 		txcmp = (struct tx_cmpl *)&cp_desc_ring[cons];
316 
317 		if (!CMP_VALID(txcmp, raw_cons, cp_ring_struct))
318 			break;
319 
320 		if (likely(CMP_TYPE(txcmp) == TX_CMPL_TYPE_TX_L2))
321 			nb_tx_pkts += txcmp->opaque;
322 		else
323 			RTE_LOG_DP(ERR, PMD,
324 				   "Unhandled CMP type %02x\n",
325 				   CMP_TYPE(txcmp));
326 		raw_cons = NEXT_RAW_CMP(raw_cons);
327 	} while (nb_tx_pkts < ring_mask);
328 
329 	cpr->valid = !!(raw_cons & cp_ring_struct->ring_size);
330 	if (nb_tx_pkts) {
331 		if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
332 			bnxt_tx_cmp_vec_fast(txq, nb_tx_pkts);
333 		else
334 			bnxt_tx_cmp_vec(txq, nb_tx_pkts);
335 		cpr->cp_raw_cons = raw_cons;
336 		bnxt_db_cq(cpr);
337 	}
338 }
339 
340 static uint16_t
341 bnxt_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
342 			  uint16_t nb_pkts)
343 {
344 	struct bnxt_tx_queue *txq = tx_queue;
345 	struct bnxt_tx_ring_info *txr = txq->tx_ring;
346 	uint16_t tx_prod, tx_raw_prod = txr->tx_raw_prod;
347 	struct rte_mbuf *tx_mbuf;
348 	struct tx_bd_long *txbd = NULL;
349 	struct rte_mbuf **tx_buf;
350 	uint16_t to_send;
351 
352 	nb_pkts = RTE_MIN(nb_pkts, bnxt_tx_avail(txq));
353 
354 	if (unlikely(nb_pkts == 0))
355 		return 0;
356 
357 	/* Handle TX burst request */
358 	to_send = nb_pkts;
359 	while (to_send) {
360 		tx_mbuf = *tx_pkts++;
361 		rte_prefetch0(tx_mbuf);
362 
363 		tx_prod = RING_IDX(txr->tx_ring_struct, tx_raw_prod);
364 		tx_buf = &txr->tx_buf_ring[tx_prod];
365 		*tx_buf = tx_mbuf;
366 
367 		txbd = &txr->tx_desc_ring[tx_prod];
368 		txbd->address = tx_mbuf->buf_iova + tx_mbuf->data_off;
369 		txbd->len = tx_mbuf->data_len;
370 		txbd->flags_type = bnxt_xmit_flags_len(tx_mbuf->data_len,
371 						       TX_BD_FLAGS_NOCMPL);
372 		tx_raw_prod = RING_NEXT(tx_raw_prod);
373 		to_send--;
374 	}
375 
376 	/* Request a completion for last packet in burst */
377 	if (txbd) {
378 		txbd->opaque = nb_pkts;
379 		txbd->flags_type &= ~TX_BD_LONG_FLAGS_NO_CMPL;
380 	}
381 
382 	rte_compiler_barrier();
383 	bnxt_db_write(&txr->tx_db, tx_raw_prod);
384 
385 	txr->tx_raw_prod = tx_raw_prod;
386 
387 	return nb_pkts;
388 }
389 
390 uint16_t
391 bnxt_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
392 		   uint16_t nb_pkts)
393 {
394 	int nb_sent = 0;
395 	struct bnxt_tx_queue *txq = tx_queue;
396 
397 	/* Tx queue was stopped; wait for it to be restarted */
398 	if (unlikely(!txq->tx_started)) {
399 		PMD_DRV_LOG(DEBUG, "Tx q stopped;return\n");
400 		return 0;
401 	}
402 
403 	/* Handle TX completions */
404 	if (bnxt_tx_bds_in_hw(txq) >= txq->tx_free_thresh)
405 		bnxt_handle_tx_cp_vec(txq);
406 
407 	while (nb_pkts) {
408 		uint16_t ret, num;
409 
410 		num = RTE_MIN(nb_pkts, RTE_BNXT_MAX_TX_BURST);
411 		ret = bnxt_xmit_fixed_burst_vec(tx_queue,
412 						&tx_pkts[nb_sent],
413 						num);
414 		nb_sent += ret;
415 		nb_pkts -= ret;
416 		if (ret < num)
417 			break;
418 	}
419 
420 	return nb_sent;
421 }
422 
423 int __rte_cold
424 bnxt_rxq_vec_setup(struct bnxt_rx_queue *rxq)
425 {
426 	return bnxt_rxq_vec_setup_common(rxq);
427 }
428