xref: /dpdk/drivers/net/bnxt/bnxt_ethdev.c (revision f5057be340e44f3edc0fe90fa875eb89a4c49b4f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Broadcom
3  * All rights reserved.
4  */
5 
6 #include <inttypes.h>
7 #include <stdbool.h>
8 
9 #include <rte_dev.h>
10 #include <rte_ethdev_driver.h>
11 #include <rte_ethdev_pci.h>
12 #include <rte_malloc.h>
13 #include <rte_cycles.h>
14 #include <rte_alarm.h>
15 #include <rte_kvargs.h>
16 
17 #include "bnxt.h"
18 #include "bnxt_filter.h"
19 #include "bnxt_hwrm.h"
20 #include "bnxt_irq.h"
21 #include "bnxt_reps.h"
22 #include "bnxt_ring.h"
23 #include "bnxt_rxq.h"
24 #include "bnxt_rxr.h"
25 #include "bnxt_stats.h"
26 #include "bnxt_txq.h"
27 #include "bnxt_txr.h"
28 #include "bnxt_vnic.h"
29 #include "hsi_struct_def_dpdk.h"
30 #include "bnxt_nvm_defs.h"
31 #include "bnxt_tf_common.h"
32 #include "ulp_flow_db.h"
33 
34 #define DRV_MODULE_NAME		"bnxt"
35 static const char bnxt_version[] =
36 	"Broadcom NetXtreme driver " DRV_MODULE_NAME;
37 
38 /*
39  * The set of PCI devices this driver supports
40  */
41 static const struct rte_pci_id bnxt_pci_id_map[] = {
42 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
43 			 BROADCOM_DEV_ID_STRATUS_NIC_VF1) },
44 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
45 			 BROADCOM_DEV_ID_STRATUS_NIC_VF2) },
46 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_STRATUS_NIC) },
47 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_VF) },
48 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57301) },
49 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57302) },
50 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_PF) },
51 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_VF) },
52 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_NS2) },
53 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402) },
54 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404) },
55 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_PF) },
56 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_VF) },
57 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402_MF) },
58 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_RJ45) },
59 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404_MF) },
60 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_MF) },
61 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_SFP) },
62 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_MF) },
63 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5741X_VF) },
64 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5731X_VF) },
65 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57314) },
66 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_MF) },
67 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57311) },
68 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57312) },
69 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412) },
70 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414) },
71 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_RJ45) },
72 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_RJ45) },
73 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412_MF) },
74 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_RJ45) },
75 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_SFP) },
76 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_SFP) },
77 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_SFP) },
78 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_MF) },
79 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_MF) },
80 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58802) },
81 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58804) },
82 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58808) },
83 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58802_VF) },
84 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57508) },
85 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57504) },
86 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57502) },
87 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57500_VF1) },
88 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57500_VF2) },
89 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57508_MF1) },
90 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57504_MF1) },
91 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57502_MF1) },
92 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57508_MF2) },
93 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57504_MF2) },
94 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57502_MF2) },
95 	{ .vendor_id = 0, /* sentinel */ },
96 };
97 
98 #define BNXT_DEVARG_TRUFLOW	"host-based-truflow"
99 #define BNXT_DEVARG_FLOW_XSTAT	"flow-xstat"
100 #define BNXT_DEVARG_MAX_NUM_KFLOWS  "max-num-kflows"
101 #define BNXT_DEVARG_REPRESENTOR	"representor"
102 #define BNXT_DEVARG_REP_BASED_PF  "rep-based-pf"
103 #define BNXT_DEVARG_REP_IS_PF  "rep-is-pf"
104 #define BNXT_DEVARG_REP_Q_R2F  "rep-q-r2f"
105 #define BNXT_DEVARG_REP_Q_F2R  "rep-q-f2r"
106 #define BNXT_DEVARG_REP_FC_R2F  "rep-fc-r2f"
107 #define BNXT_DEVARG_REP_FC_F2R  "rep-fc-f2r"
108 
109 static const char *const bnxt_dev_args[] = {
110 	BNXT_DEVARG_REPRESENTOR,
111 	BNXT_DEVARG_TRUFLOW,
112 	BNXT_DEVARG_FLOW_XSTAT,
113 	BNXT_DEVARG_MAX_NUM_KFLOWS,
114 	BNXT_DEVARG_REP_BASED_PF,
115 	BNXT_DEVARG_REP_IS_PF,
116 	BNXT_DEVARG_REP_Q_R2F,
117 	BNXT_DEVARG_REP_Q_F2R,
118 	BNXT_DEVARG_REP_FC_R2F,
119 	BNXT_DEVARG_REP_FC_F2R,
120 	NULL
121 };
122 
123 /*
124  * truflow == false to disable the feature
125  * truflow == true to enable the feature
126  */
127 #define	BNXT_DEVARG_TRUFLOW_INVALID(truflow)	((truflow) > 1)
128 
129 /*
130  * flow_xstat == false to disable the feature
131  * flow_xstat == true to enable the feature
132  */
133 #define	BNXT_DEVARG_FLOW_XSTAT_INVALID(flow_xstat)	((flow_xstat) > 1)
134 
135 /*
136  * rep_is_pf == false to indicate VF representor
137  * rep_is_pf == true to indicate PF representor
138  */
139 #define	BNXT_DEVARG_REP_IS_PF_INVALID(rep_is_pf)	((rep_is_pf) > 1)
140 
141 /*
142  * rep_based_pf == Physical index of the PF
143  */
144 #define	BNXT_DEVARG_REP_BASED_PF_INVALID(rep_based_pf)	((rep_based_pf) > 15)
145 /*
146  * rep_q_r2f == Logical COS Queue index for the rep to endpoint direction
147  */
148 #define	BNXT_DEVARG_REP_Q_R2F_INVALID(rep_q_r2f)	((rep_q_r2f) > 3)
149 
150 /*
151  * rep_q_f2r == Logical COS Queue index for the endpoint to rep direction
152  */
153 #define	BNXT_DEVARG_REP_Q_F2R_INVALID(rep_q_f2r)	((rep_q_f2r) > 3)
154 
155 /*
156  * rep_fc_r2f == Flow control for the representor to endpoint direction
157  */
158 #define BNXT_DEVARG_REP_FC_R2F_INVALID(rep_fc_r2f)	((rep_fc_r2f) > 1)
159 
160 /*
161  * rep_fc_f2r == Flow control for the endpoint to representor direction
162  */
163 #define BNXT_DEVARG_REP_FC_F2R_INVALID(rep_fc_f2r)	((rep_fc_f2r) > 1)
164 
165 /*
166  * max_num_kflows must be >= 32
167  * and must be a power-of-2 supported value
168  * return: 1 -> invalid
169  *         0 -> valid
170  */
171 static int bnxt_devarg_max_num_kflow_invalid(uint16_t max_num_kflows)
172 {
173 	if (max_num_kflows < 32 || !rte_is_power_of_2(max_num_kflows))
174 		return 1;
175 	return 0;
176 }
177 
178 static int bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask);
179 static int bnxt_dev_uninit(struct rte_eth_dev *eth_dev);
180 static int bnxt_init_resources(struct bnxt *bp, bool reconfig_dev);
181 static int bnxt_uninit_resources(struct bnxt *bp, bool reconfig_dev);
182 static void bnxt_cancel_fw_health_check(struct bnxt *bp);
183 static int bnxt_restore_vlan_filters(struct bnxt *bp);
184 static void bnxt_dev_recover(void *arg);
185 static void bnxt_free_error_recovery_info(struct bnxt *bp);
186 static void bnxt_free_rep_info(struct bnxt *bp);
187 
188 int is_bnxt_in_error(struct bnxt *bp)
189 {
190 	if (bp->flags & BNXT_FLAG_FATAL_ERROR)
191 		return -EIO;
192 	if (bp->flags & BNXT_FLAG_FW_RESET)
193 		return -EBUSY;
194 
195 	return 0;
196 }
197 
198 /***********************/
199 
200 /*
201  * High level utility functions
202  */
203 
204 static uint16_t bnxt_rss_ctxts(const struct bnxt *bp)
205 {
206 	if (!BNXT_CHIP_THOR(bp))
207 		return 1;
208 
209 	return RTE_ALIGN_MUL_CEIL(bp->rx_nr_rings,
210 				  BNXT_RSS_ENTRIES_PER_CTX_THOR) /
211 				    BNXT_RSS_ENTRIES_PER_CTX_THOR;
212 }
213 
214 uint16_t bnxt_rss_hash_tbl_size(const struct bnxt *bp)
215 {
216 	if (!BNXT_CHIP_THOR(bp))
217 		return HW_HASH_INDEX_SIZE;
218 
219 	return bnxt_rss_ctxts(bp) * BNXT_RSS_ENTRIES_PER_CTX_THOR;
220 }
221 
222 static void bnxt_free_parent_info(struct bnxt *bp)
223 {
224 	rte_free(bp->parent);
225 }
226 
227 static void bnxt_free_pf_info(struct bnxt *bp)
228 {
229 	rte_free(bp->pf);
230 }
231 
232 static void bnxt_free_link_info(struct bnxt *bp)
233 {
234 	rte_free(bp->link_info);
235 }
236 
237 static void bnxt_free_leds_info(struct bnxt *bp)
238 {
239 	if (BNXT_VF(bp))
240 		return;
241 
242 	rte_free(bp->leds);
243 	bp->leds = NULL;
244 }
245 
246 static void bnxt_free_flow_stats_info(struct bnxt *bp)
247 {
248 	rte_free(bp->flow_stat);
249 	bp->flow_stat = NULL;
250 }
251 
252 static void bnxt_free_cos_queues(struct bnxt *bp)
253 {
254 	rte_free(bp->rx_cos_queue);
255 	rte_free(bp->tx_cos_queue);
256 }
257 
258 static void bnxt_free_mem(struct bnxt *bp, bool reconfig)
259 {
260 	bnxt_free_filter_mem(bp);
261 	bnxt_free_vnic_attributes(bp);
262 	bnxt_free_vnic_mem(bp);
263 
264 	/* tx/rx rings are configured as part of *_queue_setup callbacks.
265 	 * If the number of rings change across fw update,
266 	 * we don't have much choice except to warn the user.
267 	 */
268 	if (!reconfig) {
269 		bnxt_free_stats(bp);
270 		bnxt_free_tx_rings(bp);
271 		bnxt_free_rx_rings(bp);
272 	}
273 	bnxt_free_async_cp_ring(bp);
274 	bnxt_free_rxtx_nq_ring(bp);
275 
276 	rte_free(bp->grp_info);
277 	bp->grp_info = NULL;
278 }
279 
280 static int bnxt_alloc_parent_info(struct bnxt *bp)
281 {
282 	bp->parent = rte_zmalloc("bnxt_parent_info",
283 				 sizeof(struct bnxt_parent_info), 0);
284 	if (bp->parent == NULL)
285 		return -ENOMEM;
286 
287 	return 0;
288 }
289 
290 static int bnxt_alloc_pf_info(struct bnxt *bp)
291 {
292 	bp->pf = rte_zmalloc("bnxt_pf_info", sizeof(struct bnxt_pf_info), 0);
293 	if (bp->pf == NULL)
294 		return -ENOMEM;
295 
296 	return 0;
297 }
298 
299 static int bnxt_alloc_link_info(struct bnxt *bp)
300 {
301 	bp->link_info =
302 		rte_zmalloc("bnxt_link_info", sizeof(struct bnxt_link_info), 0);
303 	if (bp->link_info == NULL)
304 		return -ENOMEM;
305 
306 	return 0;
307 }
308 
309 static int bnxt_alloc_leds_info(struct bnxt *bp)
310 {
311 	if (BNXT_VF(bp))
312 		return 0;
313 
314 	bp->leds = rte_zmalloc("bnxt_leds",
315 			       BNXT_MAX_LED * sizeof(struct bnxt_led_info),
316 			       0);
317 	if (bp->leds == NULL)
318 		return -ENOMEM;
319 
320 	return 0;
321 }
322 
323 static int bnxt_alloc_cos_queues(struct bnxt *bp)
324 {
325 	bp->rx_cos_queue =
326 		rte_zmalloc("bnxt_rx_cosq",
327 			    BNXT_COS_QUEUE_COUNT *
328 			    sizeof(struct bnxt_cos_queue_info),
329 			    0);
330 	if (bp->rx_cos_queue == NULL)
331 		return -ENOMEM;
332 
333 	bp->tx_cos_queue =
334 		rte_zmalloc("bnxt_tx_cosq",
335 			    BNXT_COS_QUEUE_COUNT *
336 			    sizeof(struct bnxt_cos_queue_info),
337 			    0);
338 	if (bp->tx_cos_queue == NULL)
339 		return -ENOMEM;
340 
341 	return 0;
342 }
343 
344 static int bnxt_alloc_flow_stats_info(struct bnxt *bp)
345 {
346 	bp->flow_stat = rte_zmalloc("bnxt_flow_xstat",
347 				    sizeof(struct bnxt_flow_stat_info), 0);
348 	if (bp->flow_stat == NULL)
349 		return -ENOMEM;
350 
351 	return 0;
352 }
353 
354 static int bnxt_alloc_mem(struct bnxt *bp, bool reconfig)
355 {
356 	int rc;
357 
358 	rc = bnxt_alloc_ring_grps(bp);
359 	if (rc)
360 		goto alloc_mem_err;
361 
362 	rc = bnxt_alloc_async_ring_struct(bp);
363 	if (rc)
364 		goto alloc_mem_err;
365 
366 	rc = bnxt_alloc_vnic_mem(bp);
367 	if (rc)
368 		goto alloc_mem_err;
369 
370 	rc = bnxt_alloc_vnic_attributes(bp);
371 	if (rc)
372 		goto alloc_mem_err;
373 
374 	rc = bnxt_alloc_filter_mem(bp);
375 	if (rc)
376 		goto alloc_mem_err;
377 
378 	rc = bnxt_alloc_async_cp_ring(bp);
379 	if (rc)
380 		goto alloc_mem_err;
381 
382 	rc = bnxt_alloc_rxtx_nq_ring(bp);
383 	if (rc)
384 		goto alloc_mem_err;
385 
386 	if (BNXT_FLOW_XSTATS_EN(bp)) {
387 		rc = bnxt_alloc_flow_stats_info(bp);
388 		if (rc)
389 			goto alloc_mem_err;
390 	}
391 
392 	return 0;
393 
394 alloc_mem_err:
395 	bnxt_free_mem(bp, reconfig);
396 	return rc;
397 }
398 
399 static int bnxt_setup_one_vnic(struct bnxt *bp, uint16_t vnic_id)
400 {
401 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
402 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
403 	uint64_t rx_offloads = dev_conf->rxmode.offloads;
404 	struct bnxt_rx_queue *rxq;
405 	unsigned int j;
406 	int rc;
407 
408 	rc = bnxt_vnic_grp_alloc(bp, vnic);
409 	if (rc)
410 		goto err_out;
411 
412 	PMD_DRV_LOG(DEBUG, "vnic[%d] = %p vnic->fw_grp_ids = %p\n",
413 		    vnic_id, vnic, vnic->fw_grp_ids);
414 
415 	rc = bnxt_hwrm_vnic_alloc(bp, vnic);
416 	if (rc)
417 		goto err_out;
418 
419 	/* Alloc RSS context only if RSS mode is enabled */
420 	if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS) {
421 		int j, nr_ctxs = bnxt_rss_ctxts(bp);
422 
423 		rc = 0;
424 		for (j = 0; j < nr_ctxs; j++) {
425 			rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, j);
426 			if (rc)
427 				break;
428 		}
429 		if (rc) {
430 			PMD_DRV_LOG(ERR,
431 				    "HWRM vnic %d ctx %d alloc failure rc: %x\n",
432 				    vnic_id, j, rc);
433 			goto err_out;
434 		}
435 		vnic->num_lb_ctxts = nr_ctxs;
436 	}
437 
438 	/*
439 	 * Firmware sets pf pair in default vnic cfg. If the VLAN strip
440 	 * setting is not available at this time, it will not be
441 	 * configured correctly in the CFA.
442 	 */
443 	if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
444 		vnic->vlan_strip = true;
445 	else
446 		vnic->vlan_strip = false;
447 
448 	rc = bnxt_hwrm_vnic_cfg(bp, vnic);
449 	if (rc)
450 		goto err_out;
451 
452 	rc = bnxt_set_hwrm_vnic_filters(bp, vnic);
453 	if (rc)
454 		goto err_out;
455 
456 	for (j = 0; j < bp->rx_num_qs_per_vnic; j++) {
457 		rxq = bp->eth_dev->data->rx_queues[j];
458 
459 		PMD_DRV_LOG(DEBUG,
460 			    "rxq[%d]->vnic=%p vnic->fw_grp_ids=%p\n",
461 			    j, rxq->vnic, rxq->vnic->fw_grp_ids);
462 
463 		if (BNXT_HAS_RING_GRPS(bp) && rxq->rx_deferred_start)
464 			rxq->vnic->fw_grp_ids[j] = INVALID_HW_RING_ID;
465 		else
466 			vnic->rx_queue_cnt++;
467 	}
468 
469 	PMD_DRV_LOG(DEBUG, "vnic->rx_queue_cnt = %d\n", vnic->rx_queue_cnt);
470 
471 	rc = bnxt_vnic_rss_configure(bp, vnic);
472 	if (rc)
473 		goto err_out;
474 
475 	bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
476 
477 	if (rx_offloads & DEV_RX_OFFLOAD_TCP_LRO)
478 		bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 1);
479 	else
480 		bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 0);
481 
482 	return 0;
483 err_out:
484 	PMD_DRV_LOG(ERR, "HWRM vnic %d cfg failure rc: %x\n",
485 		    vnic_id, rc);
486 	return rc;
487 }
488 
489 static int bnxt_register_fc_ctx_mem(struct bnxt *bp)
490 {
491 	int rc = 0;
492 
493 	rc = bnxt_hwrm_ctx_rgtr(bp, bp->flow_stat->rx_fc_in_tbl.dma,
494 				&bp->flow_stat->rx_fc_in_tbl.ctx_id);
495 	if (rc)
496 		return rc;
497 
498 	PMD_DRV_LOG(DEBUG,
499 		    "rx_fc_in_tbl.va = %p rx_fc_in_tbl.dma = %p"
500 		    " rx_fc_in_tbl.ctx_id = %d\n",
501 		    bp->flow_stat->rx_fc_in_tbl.va,
502 		    (void *)((uintptr_t)bp->flow_stat->rx_fc_in_tbl.dma),
503 		    bp->flow_stat->rx_fc_in_tbl.ctx_id);
504 
505 	rc = bnxt_hwrm_ctx_rgtr(bp, bp->flow_stat->rx_fc_out_tbl.dma,
506 				&bp->flow_stat->rx_fc_out_tbl.ctx_id);
507 	if (rc)
508 		return rc;
509 
510 	PMD_DRV_LOG(DEBUG,
511 		    "rx_fc_out_tbl.va = %p rx_fc_out_tbl.dma = %p"
512 		    " rx_fc_out_tbl.ctx_id = %d\n",
513 		    bp->flow_stat->rx_fc_out_tbl.va,
514 		    (void *)((uintptr_t)bp->flow_stat->rx_fc_out_tbl.dma),
515 		    bp->flow_stat->rx_fc_out_tbl.ctx_id);
516 
517 	rc = bnxt_hwrm_ctx_rgtr(bp, bp->flow_stat->tx_fc_in_tbl.dma,
518 				&bp->flow_stat->tx_fc_in_tbl.ctx_id);
519 	if (rc)
520 		return rc;
521 
522 	PMD_DRV_LOG(DEBUG,
523 		    "tx_fc_in_tbl.va = %p tx_fc_in_tbl.dma = %p"
524 		    " tx_fc_in_tbl.ctx_id = %d\n",
525 		    bp->flow_stat->tx_fc_in_tbl.va,
526 		    (void *)((uintptr_t)bp->flow_stat->tx_fc_in_tbl.dma),
527 		    bp->flow_stat->tx_fc_in_tbl.ctx_id);
528 
529 	rc = bnxt_hwrm_ctx_rgtr(bp, bp->flow_stat->tx_fc_out_tbl.dma,
530 				&bp->flow_stat->tx_fc_out_tbl.ctx_id);
531 	if (rc)
532 		return rc;
533 
534 	PMD_DRV_LOG(DEBUG,
535 		    "tx_fc_out_tbl.va = %p tx_fc_out_tbl.dma = %p"
536 		    " tx_fc_out_tbl.ctx_id = %d\n",
537 		    bp->flow_stat->tx_fc_out_tbl.va,
538 		    (void *)((uintptr_t)bp->flow_stat->tx_fc_out_tbl.dma),
539 		    bp->flow_stat->tx_fc_out_tbl.ctx_id);
540 
541 	memset(bp->flow_stat->rx_fc_out_tbl.va,
542 	       0,
543 	       bp->flow_stat->rx_fc_out_tbl.size);
544 	rc = bnxt_hwrm_cfa_counter_cfg(bp, BNXT_DIR_RX,
545 				       CFA_COUNTER_CFG_IN_COUNTER_TYPE_FC,
546 				       bp->flow_stat->rx_fc_out_tbl.ctx_id,
547 				       bp->flow_stat->max_fc,
548 				       true);
549 	if (rc)
550 		return rc;
551 
552 	memset(bp->flow_stat->tx_fc_out_tbl.va,
553 	       0,
554 	       bp->flow_stat->tx_fc_out_tbl.size);
555 	rc = bnxt_hwrm_cfa_counter_cfg(bp, BNXT_DIR_TX,
556 				       CFA_COUNTER_CFG_IN_COUNTER_TYPE_FC,
557 				       bp->flow_stat->tx_fc_out_tbl.ctx_id,
558 				       bp->flow_stat->max_fc,
559 				       true);
560 
561 	return rc;
562 }
563 
564 static int bnxt_alloc_ctx_mem_buf(char *type, size_t size,
565 				  struct bnxt_ctx_mem_buf_info *ctx)
566 {
567 	if (!ctx)
568 		return -EINVAL;
569 
570 	ctx->va = rte_zmalloc(type, size, 0);
571 	if (ctx->va == NULL)
572 		return -ENOMEM;
573 	rte_mem_lock_page(ctx->va);
574 	ctx->size = size;
575 	ctx->dma = rte_mem_virt2iova(ctx->va);
576 	if (ctx->dma == RTE_BAD_IOVA)
577 		return -ENOMEM;
578 
579 	return 0;
580 }
581 
582 static int bnxt_init_fc_ctx_mem(struct bnxt *bp)
583 {
584 	struct rte_pci_device *pdev = bp->pdev;
585 	char type[RTE_MEMZONE_NAMESIZE];
586 	uint16_t max_fc;
587 	int rc = 0;
588 
589 	max_fc = bp->flow_stat->max_fc;
590 
591 	sprintf(type, "bnxt_rx_fc_in_" PCI_PRI_FMT, pdev->addr.domain,
592 		pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
593 	/* 4 bytes for each counter-id */
594 	rc = bnxt_alloc_ctx_mem_buf(type,
595 				    max_fc * 4,
596 				    &bp->flow_stat->rx_fc_in_tbl);
597 	if (rc)
598 		return rc;
599 
600 	sprintf(type, "bnxt_rx_fc_out_" PCI_PRI_FMT, pdev->addr.domain,
601 		pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
602 	/* 16 bytes for each counter - 8 bytes pkt_count, 8 bytes byte_count */
603 	rc = bnxt_alloc_ctx_mem_buf(type,
604 				    max_fc * 16,
605 				    &bp->flow_stat->rx_fc_out_tbl);
606 	if (rc)
607 		return rc;
608 
609 	sprintf(type, "bnxt_tx_fc_in_" PCI_PRI_FMT, pdev->addr.domain,
610 		pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
611 	/* 4 bytes for each counter-id */
612 	rc = bnxt_alloc_ctx_mem_buf(type,
613 				    max_fc * 4,
614 				    &bp->flow_stat->tx_fc_in_tbl);
615 	if (rc)
616 		return rc;
617 
618 	sprintf(type, "bnxt_tx_fc_out_" PCI_PRI_FMT, pdev->addr.domain,
619 		pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
620 	/* 16 bytes for each counter - 8 bytes pkt_count, 8 bytes byte_count */
621 	rc = bnxt_alloc_ctx_mem_buf(type,
622 				    max_fc * 16,
623 				    &bp->flow_stat->tx_fc_out_tbl);
624 	if (rc)
625 		return rc;
626 
627 	rc = bnxt_register_fc_ctx_mem(bp);
628 
629 	return rc;
630 }
631 
632 static int bnxt_init_ctx_mem(struct bnxt *bp)
633 {
634 	int rc = 0;
635 
636 	if (!(bp->fw_cap & BNXT_FW_CAP_ADV_FLOW_COUNTERS) ||
637 	    !(BNXT_PF(bp) || BNXT_VF_IS_TRUSTED(bp)) ||
638 	    !BNXT_FLOW_XSTATS_EN(bp))
639 		return 0;
640 
641 	rc = bnxt_hwrm_cfa_counter_qcaps(bp, &bp->flow_stat->max_fc);
642 	if (rc)
643 		return rc;
644 
645 	rc = bnxt_init_fc_ctx_mem(bp);
646 
647 	return rc;
648 }
649 
650 static int bnxt_update_phy_setting(struct bnxt *bp)
651 {
652 	struct rte_eth_link new;
653 	int rc;
654 
655 	rc = bnxt_get_hwrm_link_config(bp, &new);
656 	if (rc) {
657 		PMD_DRV_LOG(ERR, "Failed to get link settings\n");
658 		return rc;
659 	}
660 
661 	/*
662 	 * On BCM957508-N2100 adapters, FW will not allow any user other
663 	 * than BMC to shutdown the port. bnxt_get_hwrm_link_config() call
664 	 * always returns link up. Force phy update always in that case.
665 	 */
666 	if (!new.link_status || IS_BNXT_DEV_957508_N2100(bp)) {
667 		rc = bnxt_set_hwrm_link_config(bp, true);
668 		if (rc) {
669 			PMD_DRV_LOG(ERR, "Failed to update PHY settings\n");
670 			return rc;
671 		}
672 	}
673 
674 	return rc;
675 }
676 
677 static int bnxt_init_chip(struct bnxt *bp)
678 {
679 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(bp->eth_dev);
680 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
681 	uint32_t intr_vector = 0;
682 	uint32_t queue_id, base = BNXT_MISC_VEC_ID;
683 	uint32_t vec = BNXT_MISC_VEC_ID;
684 	unsigned int i, j;
685 	int rc;
686 
687 	if (bp->eth_dev->data->mtu > RTE_ETHER_MTU) {
688 		bp->eth_dev->data->dev_conf.rxmode.offloads |=
689 			DEV_RX_OFFLOAD_JUMBO_FRAME;
690 		bp->flags |= BNXT_FLAG_JUMBO;
691 	} else {
692 		bp->eth_dev->data->dev_conf.rxmode.offloads &=
693 			~DEV_RX_OFFLOAD_JUMBO_FRAME;
694 		bp->flags &= ~BNXT_FLAG_JUMBO;
695 	}
696 
697 	/* THOR does not support ring groups.
698 	 * But we will use the array to save RSS context IDs.
699 	 */
700 	if (BNXT_CHIP_THOR(bp))
701 		bp->max_ring_grps = BNXT_MAX_RSS_CTXTS_THOR;
702 
703 	rc = bnxt_alloc_all_hwrm_stat_ctxs(bp);
704 	if (rc) {
705 		PMD_DRV_LOG(ERR, "HWRM stat ctx alloc failure rc: %x\n", rc);
706 		goto err_out;
707 	}
708 
709 	rc = bnxt_alloc_hwrm_rings(bp);
710 	if (rc) {
711 		PMD_DRV_LOG(ERR, "HWRM ring alloc failure rc: %x\n", rc);
712 		goto err_out;
713 	}
714 
715 	rc = bnxt_alloc_all_hwrm_ring_grps(bp);
716 	if (rc) {
717 		PMD_DRV_LOG(ERR, "HWRM ring grp alloc failure: %x\n", rc);
718 		goto err_out;
719 	}
720 
721 	if (!(bp->vnic_cap_flags & BNXT_VNIC_CAP_COS_CLASSIFY))
722 		goto skip_cosq_cfg;
723 
724 	for (j = 0, i = 0; i < BNXT_COS_QUEUE_COUNT; i++) {
725 		if (bp->rx_cos_queue[i].id != 0xff) {
726 			struct bnxt_vnic_info *vnic = &bp->vnic_info[j++];
727 
728 			if (!vnic) {
729 				PMD_DRV_LOG(ERR,
730 					    "Num pools more than FW profile\n");
731 				rc = -EINVAL;
732 				goto err_out;
733 			}
734 			vnic->cos_queue_id = bp->rx_cos_queue[i].id;
735 			bp->rx_cosq_cnt++;
736 		}
737 	}
738 
739 skip_cosq_cfg:
740 	rc = bnxt_mq_rx_configure(bp);
741 	if (rc) {
742 		PMD_DRV_LOG(ERR, "MQ mode configure failure rc: %x\n", rc);
743 		goto err_out;
744 	}
745 
746 	/* VNIC configuration */
747 	for (i = 0; i < bp->nr_vnics; i++) {
748 		rc = bnxt_setup_one_vnic(bp, i);
749 		if (rc)
750 			goto err_out;
751 	}
752 
753 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, &bp->vnic_info[0], 0, NULL);
754 	if (rc) {
755 		PMD_DRV_LOG(ERR,
756 			"HWRM cfa l2 rx mask failure rc: %x\n", rc);
757 		goto err_out;
758 	}
759 
760 	/* check and configure queue intr-vector mapping */
761 	if ((rte_intr_cap_multiple(intr_handle) ||
762 	     !RTE_ETH_DEV_SRIOV(bp->eth_dev).active) &&
763 	    bp->eth_dev->data->dev_conf.intr_conf.rxq != 0) {
764 		intr_vector = bp->eth_dev->data->nb_rx_queues;
765 		PMD_DRV_LOG(DEBUG, "intr_vector = %d\n", intr_vector);
766 		if (intr_vector > bp->rx_cp_nr_rings) {
767 			PMD_DRV_LOG(ERR, "At most %d intr queues supported",
768 					bp->rx_cp_nr_rings);
769 			return -ENOTSUP;
770 		}
771 		rc = rte_intr_efd_enable(intr_handle, intr_vector);
772 		if (rc)
773 			return rc;
774 	}
775 
776 	if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
777 		intr_handle->intr_vec =
778 			rte_zmalloc("intr_vec",
779 				    bp->eth_dev->data->nb_rx_queues *
780 				    sizeof(int), 0);
781 		if (intr_handle->intr_vec == NULL) {
782 			PMD_DRV_LOG(ERR, "Failed to allocate %d rx_queues"
783 				" intr_vec", bp->eth_dev->data->nb_rx_queues);
784 			rc = -ENOMEM;
785 			goto err_disable;
786 		}
787 		PMD_DRV_LOG(DEBUG, "intr_handle->intr_vec = %p "
788 			"intr_handle->nb_efd = %d intr_handle->max_intr = %d\n",
789 			 intr_handle->intr_vec, intr_handle->nb_efd,
790 			intr_handle->max_intr);
791 		for (queue_id = 0; queue_id < bp->eth_dev->data->nb_rx_queues;
792 		     queue_id++) {
793 			intr_handle->intr_vec[queue_id] =
794 							vec + BNXT_RX_VEC_START;
795 			if (vec < base + intr_handle->nb_efd - 1)
796 				vec++;
797 		}
798 	}
799 
800 	/* enable uio/vfio intr/eventfd mapping */
801 	rc = rte_intr_enable(intr_handle);
802 #ifndef RTE_EXEC_ENV_FREEBSD
803 	/* In FreeBSD OS, nic_uio driver does not support interrupts */
804 	if (rc)
805 		goto err_free;
806 #endif
807 
808 	rc = bnxt_update_phy_setting(bp);
809 	if (rc)
810 		goto err_free;
811 
812 	bp->mark_table = rte_zmalloc("bnxt_mark_table", BNXT_MARK_TABLE_SZ, 0);
813 	if (!bp->mark_table)
814 		PMD_DRV_LOG(ERR, "Allocation of mark table failed\n");
815 
816 	return 0;
817 
818 err_free:
819 	rte_free(intr_handle->intr_vec);
820 err_disable:
821 	rte_intr_efd_disable(intr_handle);
822 err_out:
823 	/* Some of the error status returned by FW may not be from errno.h */
824 	if (rc > 0)
825 		rc = -EIO;
826 
827 	return rc;
828 }
829 
830 static int bnxt_shutdown_nic(struct bnxt *bp)
831 {
832 	bnxt_free_all_hwrm_resources(bp);
833 	bnxt_free_all_filters(bp);
834 	bnxt_free_all_vnics(bp);
835 	return 0;
836 }
837 
838 /*
839  * Device configuration and status function
840  */
841 
842 uint32_t bnxt_get_speed_capabilities(struct bnxt *bp)
843 {
844 	uint32_t link_speed = bp->link_info->support_speeds;
845 	uint32_t speed_capa = 0;
846 
847 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_100MB)
848 		speed_capa |= ETH_LINK_SPEED_100M;
849 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_100MBHD)
850 		speed_capa |= ETH_LINK_SPEED_100M_HD;
851 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_1GB)
852 		speed_capa |= ETH_LINK_SPEED_1G;
853 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_2_5GB)
854 		speed_capa |= ETH_LINK_SPEED_2_5G;
855 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_10GB)
856 		speed_capa |= ETH_LINK_SPEED_10G;
857 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_20GB)
858 		speed_capa |= ETH_LINK_SPEED_20G;
859 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_25GB)
860 		speed_capa |= ETH_LINK_SPEED_25G;
861 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_40GB)
862 		speed_capa |= ETH_LINK_SPEED_40G;
863 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_50GB)
864 		speed_capa |= ETH_LINK_SPEED_50G;
865 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_100GB)
866 		speed_capa |= ETH_LINK_SPEED_100G;
867 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_PAM4_SPEEDS_50G)
868 		speed_capa |= ETH_LINK_SPEED_50G;
869 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_PAM4_SPEEDS_100G)
870 		speed_capa |= ETH_LINK_SPEED_100G;
871 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_PAM4_SPEEDS_200G)
872 		speed_capa |= ETH_LINK_SPEED_200G;
873 
874 	if (bp->link_info->auto_mode ==
875 	    HWRM_PORT_PHY_QCFG_OUTPUT_AUTO_MODE_NONE)
876 		speed_capa |= ETH_LINK_SPEED_FIXED;
877 	else
878 		speed_capa |= ETH_LINK_SPEED_AUTONEG;
879 
880 	return speed_capa;
881 }
882 
883 static int bnxt_dev_info_get_op(struct rte_eth_dev *eth_dev,
884 				struct rte_eth_dev_info *dev_info)
885 {
886 	struct rte_pci_device *pdev = RTE_DEV_TO_PCI(eth_dev->device);
887 	struct bnxt *bp = eth_dev->data->dev_private;
888 	uint16_t max_vnics, i, j, vpool, vrxq;
889 	unsigned int max_rx_rings;
890 	int rc;
891 
892 	rc = is_bnxt_in_error(bp);
893 	if (rc)
894 		return rc;
895 
896 	/* MAC Specifics */
897 	dev_info->max_mac_addrs = bp->max_l2_ctx;
898 	dev_info->max_hash_mac_addrs = 0;
899 
900 	/* PF/VF specifics */
901 	if (BNXT_PF(bp))
902 		dev_info->max_vfs = pdev->max_vfs;
903 
904 	max_rx_rings = BNXT_MAX_RINGS(bp);
905 	/* For the sake of symmetry, max_rx_queues = max_tx_queues */
906 	dev_info->max_rx_queues = max_rx_rings;
907 	dev_info->max_tx_queues = max_rx_rings;
908 	dev_info->reta_size = bnxt_rss_hash_tbl_size(bp);
909 	dev_info->hash_key_size = 40;
910 	max_vnics = bp->max_vnics;
911 
912 	/* MTU specifics */
913 	dev_info->min_mtu = RTE_ETHER_MIN_MTU;
914 	dev_info->max_mtu = BNXT_MAX_MTU;
915 
916 	/* Fast path specifics */
917 	dev_info->min_rx_bufsize = 1;
918 	dev_info->max_rx_pktlen = BNXT_MAX_PKT_LEN;
919 
920 	dev_info->rx_offload_capa = BNXT_DEV_RX_OFFLOAD_SUPPORT;
921 	if (bp->flags & BNXT_FLAG_PTP_SUPPORTED)
922 		dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_TIMESTAMP;
923 	dev_info->tx_offload_capa = BNXT_DEV_TX_OFFLOAD_SUPPORT;
924 	dev_info->flow_type_rss_offloads = BNXT_ETH_RSS_SUPPORT;
925 
926 	dev_info->speed_capa = bnxt_get_speed_capabilities(bp);
927 
928 	/* *INDENT-OFF* */
929 	dev_info->default_rxconf = (struct rte_eth_rxconf) {
930 		.rx_thresh = {
931 			.pthresh = 8,
932 			.hthresh = 8,
933 			.wthresh = 0,
934 		},
935 		.rx_free_thresh = 32,
936 		.rx_drop_en = BNXT_DEFAULT_RX_DROP_EN,
937 	};
938 
939 	dev_info->default_txconf = (struct rte_eth_txconf) {
940 		.tx_thresh = {
941 			.pthresh = 32,
942 			.hthresh = 0,
943 			.wthresh = 0,
944 		},
945 		.tx_free_thresh = 32,
946 		.tx_rs_thresh = 32,
947 	};
948 	eth_dev->data->dev_conf.intr_conf.lsc = 1;
949 
950 	eth_dev->data->dev_conf.intr_conf.rxq = 1;
951 	dev_info->rx_desc_lim.nb_min = BNXT_MIN_RING_DESC;
952 	dev_info->rx_desc_lim.nb_max = BNXT_MAX_RX_RING_DESC;
953 	dev_info->tx_desc_lim.nb_min = BNXT_MIN_RING_DESC;
954 	dev_info->tx_desc_lim.nb_max = BNXT_MAX_TX_RING_DESC;
955 
956 	if (BNXT_PF(bp) || BNXT_VF_IS_TRUSTED(bp)) {
957 		dev_info->switch_info.name = eth_dev->device->name;
958 		dev_info->switch_info.domain_id = bp->switch_domain_id;
959 		dev_info->switch_info.port_id =
960 				BNXT_PF(bp) ? BNXT_SWITCH_PORT_ID_PF :
961 				    BNXT_SWITCH_PORT_ID_TRUSTED_VF;
962 	}
963 
964 	/* *INDENT-ON* */
965 
966 	/*
967 	 * TODO: default_rxconf, default_txconf, rx_desc_lim, and tx_desc_lim
968 	 *       need further investigation.
969 	 */
970 
971 	/* VMDq resources */
972 	vpool = 64; /* ETH_64_POOLS */
973 	vrxq = 128; /* ETH_VMDQ_DCB_NUM_QUEUES */
974 	for (i = 0; i < 4; vpool >>= 1, i++) {
975 		if (max_vnics > vpool) {
976 			for (j = 0; j < 5; vrxq >>= 1, j++) {
977 				if (dev_info->max_rx_queues > vrxq) {
978 					if (vpool > vrxq)
979 						vpool = vrxq;
980 					goto found;
981 				}
982 			}
983 			/* Not enough resources to support VMDq */
984 			break;
985 		}
986 	}
987 	/* Not enough resources to support VMDq */
988 	vpool = 0;
989 	vrxq = 0;
990 found:
991 	dev_info->max_vmdq_pools = vpool;
992 	dev_info->vmdq_queue_num = vrxq;
993 
994 	dev_info->vmdq_pool_base = 0;
995 	dev_info->vmdq_queue_base = 0;
996 
997 	return 0;
998 }
999 
1000 /* Configure the device based on the configuration provided */
1001 static int bnxt_dev_configure_op(struct rte_eth_dev *eth_dev)
1002 {
1003 	struct bnxt *bp = eth_dev->data->dev_private;
1004 	uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads;
1005 	int rc;
1006 
1007 	bp->rx_queues = (void *)eth_dev->data->rx_queues;
1008 	bp->tx_queues = (void *)eth_dev->data->tx_queues;
1009 	bp->tx_nr_rings = eth_dev->data->nb_tx_queues;
1010 	bp->rx_nr_rings = eth_dev->data->nb_rx_queues;
1011 
1012 	rc = is_bnxt_in_error(bp);
1013 	if (rc)
1014 		return rc;
1015 
1016 	if (BNXT_VF(bp) && (bp->flags & BNXT_FLAG_NEW_RM)) {
1017 		rc = bnxt_hwrm_check_vf_rings(bp);
1018 		if (rc) {
1019 			PMD_DRV_LOG(ERR, "HWRM insufficient resources\n");
1020 			return -ENOSPC;
1021 		}
1022 
1023 		/* If a resource has already been allocated - in this case
1024 		 * it is the async completion ring, free it. Reallocate it after
1025 		 * resource reservation. This will ensure the resource counts
1026 		 * are calculated correctly.
1027 		 */
1028 
1029 		pthread_mutex_lock(&bp->def_cp_lock);
1030 
1031 		if (!BNXT_HAS_NQ(bp) && bp->async_cp_ring) {
1032 			bnxt_disable_int(bp);
1033 			bnxt_free_cp_ring(bp, bp->async_cp_ring);
1034 		}
1035 
1036 		rc = bnxt_hwrm_func_reserve_vf_resc(bp, false);
1037 		if (rc) {
1038 			PMD_DRV_LOG(ERR, "HWRM resource alloc fail:%x\n", rc);
1039 			pthread_mutex_unlock(&bp->def_cp_lock);
1040 			return -ENOSPC;
1041 		}
1042 
1043 		if (!BNXT_HAS_NQ(bp) && bp->async_cp_ring) {
1044 			rc = bnxt_alloc_async_cp_ring(bp);
1045 			if (rc) {
1046 				pthread_mutex_unlock(&bp->def_cp_lock);
1047 				return rc;
1048 			}
1049 			bnxt_enable_int(bp);
1050 		}
1051 
1052 		pthread_mutex_unlock(&bp->def_cp_lock);
1053 	} else {
1054 		/* legacy driver needs to get updated values */
1055 		rc = bnxt_hwrm_func_qcaps(bp);
1056 		if (rc) {
1057 			PMD_DRV_LOG(ERR, "hwrm func qcaps fail:%d\n", rc);
1058 			return rc;
1059 		}
1060 	}
1061 
1062 	/* Inherit new configurations */
1063 	if (eth_dev->data->nb_rx_queues > bp->max_rx_rings ||
1064 	    eth_dev->data->nb_tx_queues > bp->max_tx_rings ||
1065 	    eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues
1066 		+ BNXT_NUM_ASYNC_CPR(bp) > bp->max_cp_rings ||
1067 	    eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues >
1068 	    bp->max_stat_ctx)
1069 		goto resource_error;
1070 
1071 	if (BNXT_HAS_RING_GRPS(bp) &&
1072 	    (uint32_t)(eth_dev->data->nb_rx_queues) > bp->max_ring_grps)
1073 		goto resource_error;
1074 
1075 	if (!(eth_dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS) &&
1076 	    bp->max_vnics < eth_dev->data->nb_rx_queues)
1077 		goto resource_error;
1078 
1079 	bp->rx_cp_nr_rings = bp->rx_nr_rings;
1080 	bp->tx_cp_nr_rings = bp->tx_nr_rings;
1081 
1082 	if (eth_dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
1083 		rx_offloads |= DEV_RX_OFFLOAD_RSS_HASH;
1084 	eth_dev->data->dev_conf.rxmode.offloads = rx_offloads;
1085 
1086 	if (rx_offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
1087 		eth_dev->data->mtu =
1088 			eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
1089 			RTE_ETHER_HDR_LEN - RTE_ETHER_CRC_LEN - VLAN_TAG_SIZE *
1090 			BNXT_NUM_VLANS;
1091 		bnxt_mtu_set_op(eth_dev, eth_dev->data->mtu);
1092 	}
1093 	return 0;
1094 
1095 resource_error:
1096 	PMD_DRV_LOG(ERR,
1097 		    "Insufficient resources to support requested config\n");
1098 	PMD_DRV_LOG(ERR,
1099 		    "Num Queues Requested: Tx %d, Rx %d\n",
1100 		    eth_dev->data->nb_tx_queues,
1101 		    eth_dev->data->nb_rx_queues);
1102 	PMD_DRV_LOG(ERR,
1103 		    "MAX: TxQ %d, RxQ %d, CQ %d Stat %d, Grp %d, Vnic %d\n",
1104 		    bp->max_tx_rings, bp->max_rx_rings, bp->max_cp_rings,
1105 		    bp->max_stat_ctx, bp->max_ring_grps, bp->max_vnics);
1106 	return -ENOSPC;
1107 }
1108 
1109 void bnxt_print_link_info(struct rte_eth_dev *eth_dev)
1110 {
1111 	struct rte_eth_link *link = &eth_dev->data->dev_link;
1112 
1113 	if (link->link_status)
1114 		PMD_DRV_LOG(INFO, "Port %d Link Up - speed %u Mbps - %s\n",
1115 			eth_dev->data->port_id,
1116 			(uint32_t)link->link_speed,
1117 			(link->link_duplex == ETH_LINK_FULL_DUPLEX) ?
1118 			("full-duplex") : ("half-duplex\n"));
1119 	else
1120 		PMD_DRV_LOG(INFO, "Port %d Link Down\n",
1121 			eth_dev->data->port_id);
1122 }
1123 
1124 /*
1125  * Determine whether the current configuration requires support for scattered
1126  * receive; return 1 if scattered receive is required and 0 if not.
1127  */
1128 static int bnxt_scattered_rx(struct rte_eth_dev *eth_dev)
1129 {
1130 	uint16_t buf_size;
1131 	int i;
1132 
1133 	if (eth_dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER)
1134 		return 1;
1135 
1136 	for (i = 0; i < eth_dev->data->nb_rx_queues; i++) {
1137 		struct bnxt_rx_queue *rxq = eth_dev->data->rx_queues[i];
1138 
1139 		buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
1140 				      RTE_PKTMBUF_HEADROOM);
1141 		if (eth_dev->data->dev_conf.rxmode.max_rx_pkt_len > buf_size)
1142 			return 1;
1143 	}
1144 	return 0;
1145 }
1146 
1147 static eth_rx_burst_t
1148 bnxt_receive_function(struct rte_eth_dev *eth_dev)
1149 {
1150 	struct bnxt *bp = eth_dev->data->dev_private;
1151 
1152 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
1153 #ifndef RTE_LIBRTE_IEEE1588
1154 	/*
1155 	 * Vector mode receive can be enabled only if scatter rx is not
1156 	 * in use and rx offloads are limited to VLAN stripping and
1157 	 * CRC stripping.
1158 	 */
1159 	if (!eth_dev->data->scattered_rx &&
1160 	    !(eth_dev->data->dev_conf.rxmode.offloads &
1161 	      ~(DEV_RX_OFFLOAD_VLAN_STRIP |
1162 		DEV_RX_OFFLOAD_KEEP_CRC |
1163 		DEV_RX_OFFLOAD_JUMBO_FRAME |
1164 		DEV_RX_OFFLOAD_IPV4_CKSUM |
1165 		DEV_RX_OFFLOAD_UDP_CKSUM |
1166 		DEV_RX_OFFLOAD_TCP_CKSUM |
1167 		DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
1168 		DEV_RX_OFFLOAD_RSS_HASH |
1169 		DEV_RX_OFFLOAD_VLAN_FILTER)) &&
1170 	    !BNXT_TRUFLOW_EN(bp) && BNXT_NUM_ASYNC_CPR(bp)) {
1171 		PMD_DRV_LOG(INFO, "Using vector mode receive for port %d\n",
1172 			    eth_dev->data->port_id);
1173 		bp->flags |= BNXT_FLAG_RX_VECTOR_PKT_MODE;
1174 		return bnxt_recv_pkts_vec;
1175 	}
1176 	PMD_DRV_LOG(INFO, "Vector mode receive disabled for port %d\n",
1177 		    eth_dev->data->port_id);
1178 	PMD_DRV_LOG(INFO,
1179 		    "Port %d scatter: %d rx offload: %" PRIX64 "\n",
1180 		    eth_dev->data->port_id,
1181 		    eth_dev->data->scattered_rx,
1182 		    eth_dev->data->dev_conf.rxmode.offloads);
1183 #endif
1184 #endif
1185 	bp->flags &= ~BNXT_FLAG_RX_VECTOR_PKT_MODE;
1186 	return bnxt_recv_pkts;
1187 }
1188 
1189 static eth_tx_burst_t
1190 bnxt_transmit_function(__rte_unused struct rte_eth_dev *eth_dev)
1191 {
1192 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
1193 #ifndef RTE_LIBRTE_IEEE1588
1194 	struct bnxt *bp = eth_dev->data->dev_private;
1195 
1196 	/*
1197 	 * Vector mode transmit can be enabled only if not using scatter rx
1198 	 * or tx offloads.
1199 	 */
1200 	if (!eth_dev->data->scattered_rx &&
1201 	    !eth_dev->data->dev_conf.txmode.offloads &&
1202 	    !BNXT_TRUFLOW_EN(bp)) {
1203 		PMD_DRV_LOG(INFO, "Using vector mode transmit for port %d\n",
1204 			    eth_dev->data->port_id);
1205 		return bnxt_xmit_pkts_vec;
1206 	}
1207 	PMD_DRV_LOG(INFO, "Vector mode transmit disabled for port %d\n",
1208 		    eth_dev->data->port_id);
1209 	PMD_DRV_LOG(INFO,
1210 		    "Port %d scatter: %d tx offload: %" PRIX64 "\n",
1211 		    eth_dev->data->port_id,
1212 		    eth_dev->data->scattered_rx,
1213 		    eth_dev->data->dev_conf.txmode.offloads);
1214 #endif
1215 #endif
1216 	return bnxt_xmit_pkts;
1217 }
1218 
1219 static int bnxt_handle_if_change_status(struct bnxt *bp)
1220 {
1221 	int rc;
1222 
1223 	/* Since fw has undergone a reset and lost all contexts,
1224 	 * set fatal flag to not issue hwrm during cleanup
1225 	 */
1226 	bp->flags |= BNXT_FLAG_FATAL_ERROR;
1227 	bnxt_uninit_resources(bp, true);
1228 
1229 	/* clear fatal flag so that re-init happens */
1230 	bp->flags &= ~BNXT_FLAG_FATAL_ERROR;
1231 	rc = bnxt_init_resources(bp, true);
1232 
1233 	bp->flags &= ~BNXT_FLAG_IF_CHANGE_HOT_FW_RESET_DONE;
1234 
1235 	return rc;
1236 }
1237 
1238 static int bnxt_dev_start_op(struct rte_eth_dev *eth_dev)
1239 {
1240 	struct bnxt *bp = eth_dev->data->dev_private;
1241 	uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads;
1242 	int vlan_mask = 0;
1243 	int rc, retry_cnt = BNXT_IF_CHANGE_RETRY_COUNT;
1244 
1245 	if (!eth_dev->data->nb_tx_queues || !eth_dev->data->nb_rx_queues) {
1246 		PMD_DRV_LOG(ERR, "Queues are not configured yet!\n");
1247 		return -EINVAL;
1248 	}
1249 
1250 	if (bp->rx_cp_nr_rings > RTE_ETHDEV_QUEUE_STAT_CNTRS) {
1251 		PMD_DRV_LOG(ERR,
1252 			"RxQ cnt %d > CONFIG_RTE_ETHDEV_QUEUE_STAT_CNTRS %d\n",
1253 			bp->rx_cp_nr_rings, RTE_ETHDEV_QUEUE_STAT_CNTRS);
1254 	}
1255 
1256 	do {
1257 		rc = bnxt_hwrm_if_change(bp, true);
1258 		if (rc == 0 || rc != -EAGAIN)
1259 			break;
1260 
1261 		rte_delay_ms(BNXT_IF_CHANGE_RETRY_INTERVAL);
1262 	} while (retry_cnt--);
1263 
1264 	if (rc)
1265 		return rc;
1266 
1267 	if (bp->flags & BNXT_FLAG_IF_CHANGE_HOT_FW_RESET_DONE) {
1268 		rc = bnxt_handle_if_change_status(bp);
1269 		if (rc)
1270 			return rc;
1271 	}
1272 
1273 	bnxt_enable_int(bp);
1274 
1275 	rc = bnxt_init_chip(bp);
1276 	if (rc)
1277 		goto error;
1278 
1279 	eth_dev->data->scattered_rx = bnxt_scattered_rx(eth_dev);
1280 	eth_dev->data->dev_started = 1;
1281 
1282 	bnxt_link_update(eth_dev, 1, ETH_LINK_UP);
1283 
1284 	if (rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
1285 		vlan_mask |= ETH_VLAN_FILTER_MASK;
1286 	if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1287 		vlan_mask |= ETH_VLAN_STRIP_MASK;
1288 	rc = bnxt_vlan_offload_set_op(eth_dev, vlan_mask);
1289 	if (rc)
1290 		goto error;
1291 
1292 	/* Initialize bnxt ULP port details */
1293 	rc = bnxt_ulp_port_init(bp);
1294 	if (rc)
1295 		goto error;
1296 
1297 	eth_dev->rx_pkt_burst = bnxt_receive_function(eth_dev);
1298 	eth_dev->tx_pkt_burst = bnxt_transmit_function(eth_dev);
1299 
1300 	bnxt_schedule_fw_health_check(bp);
1301 
1302 	return 0;
1303 
1304 error:
1305 	bnxt_shutdown_nic(bp);
1306 	bnxt_free_tx_mbufs(bp);
1307 	bnxt_free_rx_mbufs(bp);
1308 	bnxt_hwrm_if_change(bp, false);
1309 	eth_dev->data->dev_started = 0;
1310 	return rc;
1311 }
1312 
1313 static int bnxt_dev_set_link_up_op(struct rte_eth_dev *eth_dev)
1314 {
1315 	struct bnxt *bp = eth_dev->data->dev_private;
1316 	int rc = 0;
1317 
1318 	if (!bp->link_info->link_up)
1319 		rc = bnxt_set_hwrm_link_config(bp, true);
1320 	if (!rc)
1321 		eth_dev->data->dev_link.link_status = 1;
1322 
1323 	bnxt_print_link_info(eth_dev);
1324 	return rc;
1325 }
1326 
1327 static int bnxt_dev_set_link_down_op(struct rte_eth_dev *eth_dev)
1328 {
1329 	struct bnxt *bp = eth_dev->data->dev_private;
1330 
1331 	eth_dev->data->dev_link.link_status = 0;
1332 	bnxt_set_hwrm_link_config(bp, false);
1333 	bp->link_info->link_up = 0;
1334 
1335 	return 0;
1336 }
1337 
1338 static void bnxt_free_switch_domain(struct bnxt *bp)
1339 {
1340 	if (bp->switch_domain_id)
1341 		rte_eth_switch_domain_free(bp->switch_domain_id);
1342 }
1343 
1344 /* Unload the driver, release resources */
1345 static void bnxt_dev_stop_op(struct rte_eth_dev *eth_dev)
1346 {
1347 	struct bnxt *bp = eth_dev->data->dev_private;
1348 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1349 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1350 
1351 	eth_dev->data->dev_started = 0;
1352 	eth_dev->data->scattered_rx = 0;
1353 
1354 	/* Prevent crashes when queues are still in use */
1355 	eth_dev->rx_pkt_burst = &bnxt_dummy_recv_pkts;
1356 	eth_dev->tx_pkt_burst = &bnxt_dummy_xmit_pkts;
1357 
1358 	bnxt_disable_int(bp);
1359 
1360 	/* disable uio/vfio intr/eventfd mapping */
1361 	rte_intr_disable(intr_handle);
1362 
1363 	/* Stop the child representors for this device */
1364 	bnxt_rep_stop_all(bp);
1365 
1366 	/* delete the bnxt ULP port details */
1367 	bnxt_ulp_port_deinit(bp);
1368 
1369 	bnxt_cancel_fw_health_check(bp);
1370 
1371 	/* Do not bring link down during reset recovery */
1372 	if (!is_bnxt_in_error(bp))
1373 		bnxt_dev_set_link_down_op(eth_dev);
1374 
1375 	/* Wait for link to be reset and the async notification to process.
1376 	 * During reset recovery, there is no need to wait and
1377 	 * VF/NPAR functions do not have privilege to change PHY config.
1378 	 */
1379 	if (!is_bnxt_in_error(bp) && BNXT_SINGLE_PF(bp))
1380 		bnxt_link_update(eth_dev, 1, ETH_LINK_DOWN);
1381 
1382 	/* Clean queue intr-vector mapping */
1383 	rte_intr_efd_disable(intr_handle);
1384 	if (intr_handle->intr_vec != NULL) {
1385 		rte_free(intr_handle->intr_vec);
1386 		intr_handle->intr_vec = NULL;
1387 	}
1388 
1389 	bnxt_hwrm_port_clr_stats(bp);
1390 	bnxt_free_tx_mbufs(bp);
1391 	bnxt_free_rx_mbufs(bp);
1392 	/* Process any remaining notifications in default completion queue */
1393 	bnxt_int_handler(eth_dev);
1394 	bnxt_shutdown_nic(bp);
1395 	bnxt_hwrm_if_change(bp, false);
1396 
1397 	rte_free(bp->mark_table);
1398 	bp->mark_table = NULL;
1399 
1400 	bp->flags &= ~BNXT_FLAG_RX_VECTOR_PKT_MODE;
1401 	bp->rx_cosq_cnt = 0;
1402 	/* All filters are deleted on a port stop. */
1403 	if (BNXT_FLOW_XSTATS_EN(bp))
1404 		bp->flow_stat->flow_count = 0;
1405 }
1406 
1407 static int bnxt_dev_close_op(struct rte_eth_dev *eth_dev)
1408 {
1409 	struct bnxt *bp = eth_dev->data->dev_private;
1410 
1411 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1412 		return 0;
1413 
1414 	/* cancel the recovery handler before remove dev */
1415 	rte_eal_alarm_cancel(bnxt_dev_reset_and_resume, (void *)bp);
1416 	rte_eal_alarm_cancel(bnxt_dev_recover, (void *)bp);
1417 	bnxt_cancel_fc_thread(bp);
1418 
1419 	if (eth_dev->data->dev_started)
1420 		bnxt_dev_stop_op(eth_dev);
1421 
1422 	bnxt_free_switch_domain(bp);
1423 
1424 	bnxt_uninit_resources(bp, false);
1425 
1426 	bnxt_free_leds_info(bp);
1427 	bnxt_free_cos_queues(bp);
1428 	bnxt_free_link_info(bp);
1429 	bnxt_free_pf_info(bp);
1430 	bnxt_free_parent_info(bp);
1431 
1432 	eth_dev->dev_ops = NULL;
1433 	eth_dev->rx_pkt_burst = NULL;
1434 	eth_dev->tx_pkt_burst = NULL;
1435 
1436 	rte_memzone_free((const struct rte_memzone *)bp->tx_mem_zone);
1437 	bp->tx_mem_zone = NULL;
1438 	rte_memzone_free((const struct rte_memzone *)bp->rx_mem_zone);
1439 	bp->rx_mem_zone = NULL;
1440 
1441 	bnxt_hwrm_free_vf_info(bp);
1442 
1443 	rte_free(bp->grp_info);
1444 	bp->grp_info = NULL;
1445 
1446 	return 0;
1447 }
1448 
1449 static void bnxt_mac_addr_remove_op(struct rte_eth_dev *eth_dev,
1450 				    uint32_t index)
1451 {
1452 	struct bnxt *bp = eth_dev->data->dev_private;
1453 	uint64_t pool_mask = eth_dev->data->mac_pool_sel[index];
1454 	struct bnxt_vnic_info *vnic;
1455 	struct bnxt_filter_info *filter, *temp_filter;
1456 	uint32_t i;
1457 
1458 	if (is_bnxt_in_error(bp))
1459 		return;
1460 
1461 	/*
1462 	 * Loop through all VNICs from the specified filter flow pools to
1463 	 * remove the corresponding MAC addr filter
1464 	 */
1465 	for (i = 0; i < bp->nr_vnics; i++) {
1466 		if (!(pool_mask & (1ULL << i)))
1467 			continue;
1468 
1469 		vnic = &bp->vnic_info[i];
1470 		filter = STAILQ_FIRST(&vnic->filter);
1471 		while (filter) {
1472 			temp_filter = STAILQ_NEXT(filter, next);
1473 			if (filter->mac_index == index) {
1474 				STAILQ_REMOVE(&vnic->filter, filter,
1475 						bnxt_filter_info, next);
1476 				bnxt_hwrm_clear_l2_filter(bp, filter);
1477 				bnxt_free_filter(bp, filter);
1478 			}
1479 			filter = temp_filter;
1480 		}
1481 	}
1482 }
1483 
1484 static int bnxt_add_mac_filter(struct bnxt *bp, struct bnxt_vnic_info *vnic,
1485 			       struct rte_ether_addr *mac_addr, uint32_t index,
1486 			       uint32_t pool)
1487 {
1488 	struct bnxt_filter_info *filter;
1489 	int rc = 0;
1490 
1491 	/* Attach requested MAC address to the new l2_filter */
1492 	STAILQ_FOREACH(filter, &vnic->filter, next) {
1493 		if (filter->mac_index == index) {
1494 			PMD_DRV_LOG(DEBUG,
1495 				    "MAC addr already existed for pool %d\n",
1496 				    pool);
1497 			return 0;
1498 		}
1499 	}
1500 
1501 	filter = bnxt_alloc_filter(bp);
1502 	if (!filter) {
1503 		PMD_DRV_LOG(ERR, "L2 filter alloc failed\n");
1504 		return -ENODEV;
1505 	}
1506 
1507 	/* bnxt_alloc_filter copies default MAC to filter->l2_addr. So,
1508 	 * if the MAC that's been programmed now is a different one, then,
1509 	 * copy that addr to filter->l2_addr
1510 	 */
1511 	if (mac_addr)
1512 		memcpy(filter->l2_addr, mac_addr, RTE_ETHER_ADDR_LEN);
1513 	filter->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_OUTERMOST;
1514 
1515 	rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
1516 	if (!rc) {
1517 		filter->mac_index = index;
1518 		if (filter->mac_index == 0)
1519 			STAILQ_INSERT_HEAD(&vnic->filter, filter, next);
1520 		else
1521 			STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
1522 	} else {
1523 		bnxt_free_filter(bp, filter);
1524 	}
1525 
1526 	return rc;
1527 }
1528 
1529 static int bnxt_mac_addr_add_op(struct rte_eth_dev *eth_dev,
1530 				struct rte_ether_addr *mac_addr,
1531 				uint32_t index, uint32_t pool)
1532 {
1533 	struct bnxt *bp = eth_dev->data->dev_private;
1534 	struct bnxt_vnic_info *vnic = &bp->vnic_info[pool];
1535 	int rc = 0;
1536 
1537 	rc = is_bnxt_in_error(bp);
1538 	if (rc)
1539 		return rc;
1540 
1541 	if (BNXT_VF(bp) & !BNXT_VF_IS_TRUSTED(bp)) {
1542 		PMD_DRV_LOG(ERR, "Cannot add MAC address to a VF interface\n");
1543 		return -ENOTSUP;
1544 	}
1545 
1546 	if (!vnic) {
1547 		PMD_DRV_LOG(ERR, "VNIC not found for pool %d!\n", pool);
1548 		return -EINVAL;
1549 	}
1550 
1551 	/* Filter settings will get applied when port is started */
1552 	if (!eth_dev->data->dev_started)
1553 		return 0;
1554 
1555 	rc = bnxt_add_mac_filter(bp, vnic, mac_addr, index, pool);
1556 
1557 	return rc;
1558 }
1559 
1560 int bnxt_link_update(struct rte_eth_dev *eth_dev, int wait_to_complete,
1561 		     bool exp_link_status)
1562 {
1563 	int rc = 0;
1564 	struct bnxt *bp = eth_dev->data->dev_private;
1565 	struct rte_eth_link new;
1566 	int cnt = exp_link_status ? BNXT_LINK_UP_WAIT_CNT :
1567 		  BNXT_LINK_DOWN_WAIT_CNT;
1568 
1569 	rc = is_bnxt_in_error(bp);
1570 	if (rc)
1571 		return rc;
1572 
1573 	memset(&new, 0, sizeof(new));
1574 	do {
1575 		/* Retrieve link info from hardware */
1576 		rc = bnxt_get_hwrm_link_config(bp, &new);
1577 		if (rc) {
1578 			new.link_speed = ETH_LINK_SPEED_100M;
1579 			new.link_duplex = ETH_LINK_FULL_DUPLEX;
1580 			PMD_DRV_LOG(ERR,
1581 				"Failed to retrieve link rc = 0x%x!\n", rc);
1582 			goto out;
1583 		}
1584 
1585 		if (!wait_to_complete || new.link_status == exp_link_status)
1586 			break;
1587 
1588 		rte_delay_ms(BNXT_LINK_WAIT_INTERVAL);
1589 	} while (cnt--);
1590 
1591 out:
1592 	/* Timed out or success */
1593 	if (new.link_status != eth_dev->data->dev_link.link_status ||
1594 	new.link_speed != eth_dev->data->dev_link.link_speed) {
1595 		rte_eth_linkstatus_set(eth_dev, &new);
1596 
1597 		rte_eth_dev_callback_process(eth_dev,
1598 					     RTE_ETH_EVENT_INTR_LSC,
1599 					     NULL);
1600 
1601 		bnxt_print_link_info(eth_dev);
1602 	}
1603 
1604 	return rc;
1605 }
1606 
1607 int bnxt_link_update_op(struct rte_eth_dev *eth_dev,
1608 			int wait_to_complete)
1609 {
1610 	return bnxt_link_update(eth_dev, wait_to_complete, ETH_LINK_UP);
1611 }
1612 
1613 static int bnxt_promiscuous_enable_op(struct rte_eth_dev *eth_dev)
1614 {
1615 	struct bnxt *bp = eth_dev->data->dev_private;
1616 	struct bnxt_vnic_info *vnic;
1617 	uint32_t old_flags;
1618 	int rc;
1619 
1620 	rc = is_bnxt_in_error(bp);
1621 	if (rc)
1622 		return rc;
1623 
1624 	/* Filter settings will get applied when port is started */
1625 	if (!eth_dev->data->dev_started)
1626 		return 0;
1627 
1628 	if (bp->vnic_info == NULL)
1629 		return 0;
1630 
1631 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
1632 
1633 	old_flags = vnic->flags;
1634 	vnic->flags |= BNXT_VNIC_INFO_PROMISC;
1635 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1636 	if (rc != 0)
1637 		vnic->flags = old_flags;
1638 
1639 	return rc;
1640 }
1641 
1642 static int bnxt_promiscuous_disable_op(struct rte_eth_dev *eth_dev)
1643 {
1644 	struct bnxt *bp = eth_dev->data->dev_private;
1645 	struct bnxt_vnic_info *vnic;
1646 	uint32_t old_flags;
1647 	int rc;
1648 
1649 	rc = is_bnxt_in_error(bp);
1650 	if (rc)
1651 		return rc;
1652 
1653 	/* Filter settings will get applied when port is started */
1654 	if (!eth_dev->data->dev_started)
1655 		return 0;
1656 
1657 	if (bp->vnic_info == NULL)
1658 		return 0;
1659 
1660 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
1661 
1662 	old_flags = vnic->flags;
1663 	vnic->flags &= ~BNXT_VNIC_INFO_PROMISC;
1664 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1665 	if (rc != 0)
1666 		vnic->flags = old_flags;
1667 
1668 	return rc;
1669 }
1670 
1671 static int bnxt_allmulticast_enable_op(struct rte_eth_dev *eth_dev)
1672 {
1673 	struct bnxt *bp = eth_dev->data->dev_private;
1674 	struct bnxt_vnic_info *vnic;
1675 	uint32_t old_flags;
1676 	int rc;
1677 
1678 	rc = is_bnxt_in_error(bp);
1679 	if (rc)
1680 		return rc;
1681 
1682 	/* Filter settings will get applied when port is started */
1683 	if (!eth_dev->data->dev_started)
1684 		return 0;
1685 
1686 	if (bp->vnic_info == NULL)
1687 		return 0;
1688 
1689 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
1690 
1691 	old_flags = vnic->flags;
1692 	vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
1693 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1694 	if (rc != 0)
1695 		vnic->flags = old_flags;
1696 
1697 	return rc;
1698 }
1699 
1700 static int bnxt_allmulticast_disable_op(struct rte_eth_dev *eth_dev)
1701 {
1702 	struct bnxt *bp = eth_dev->data->dev_private;
1703 	struct bnxt_vnic_info *vnic;
1704 	uint32_t old_flags;
1705 	int rc;
1706 
1707 	rc = is_bnxt_in_error(bp);
1708 	if (rc)
1709 		return rc;
1710 
1711 	/* Filter settings will get applied when port is started */
1712 	if (!eth_dev->data->dev_started)
1713 		return 0;
1714 
1715 	if (bp->vnic_info == NULL)
1716 		return 0;
1717 
1718 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
1719 
1720 	old_flags = vnic->flags;
1721 	vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
1722 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1723 	if (rc != 0)
1724 		vnic->flags = old_flags;
1725 
1726 	return rc;
1727 }
1728 
1729 /* Return bnxt_rx_queue pointer corresponding to a given rxq. */
1730 static struct bnxt_rx_queue *bnxt_qid_to_rxq(struct bnxt *bp, uint16_t qid)
1731 {
1732 	if (qid >= bp->rx_nr_rings)
1733 		return NULL;
1734 
1735 	return bp->eth_dev->data->rx_queues[qid];
1736 }
1737 
1738 /* Return rxq corresponding to a given rss table ring/group ID. */
1739 static uint16_t bnxt_rss_to_qid(struct bnxt *bp, uint16_t fwr)
1740 {
1741 	struct bnxt_rx_queue *rxq;
1742 	unsigned int i;
1743 
1744 	if (!BNXT_HAS_RING_GRPS(bp)) {
1745 		for (i = 0; i < bp->rx_nr_rings; i++) {
1746 			rxq = bp->eth_dev->data->rx_queues[i];
1747 			if (rxq->rx_ring->rx_ring_struct->fw_ring_id == fwr)
1748 				return rxq->index;
1749 		}
1750 	} else {
1751 		for (i = 0; i < bp->rx_nr_rings; i++) {
1752 			if (bp->grp_info[i].fw_grp_id == fwr)
1753 				return i;
1754 		}
1755 	}
1756 
1757 	return INVALID_HW_RING_ID;
1758 }
1759 
1760 static int bnxt_reta_update_op(struct rte_eth_dev *eth_dev,
1761 			    struct rte_eth_rss_reta_entry64 *reta_conf,
1762 			    uint16_t reta_size)
1763 {
1764 	struct bnxt *bp = eth_dev->data->dev_private;
1765 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
1766 	struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp);
1767 	uint16_t tbl_size = bnxt_rss_hash_tbl_size(bp);
1768 	uint16_t idx, sft;
1769 	int i, rc;
1770 
1771 	rc = is_bnxt_in_error(bp);
1772 	if (rc)
1773 		return rc;
1774 
1775 	if (!vnic->rss_table)
1776 		return -EINVAL;
1777 
1778 	if (!(dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
1779 		return -EINVAL;
1780 
1781 	if (reta_size != tbl_size) {
1782 		PMD_DRV_LOG(ERR, "The configured hash table lookup size "
1783 			"(%d) must equal the size supported by the hardware "
1784 			"(%d)\n", reta_size, tbl_size);
1785 		return -EINVAL;
1786 	}
1787 
1788 	for (i = 0; i < reta_size; i++) {
1789 		struct bnxt_rx_queue *rxq;
1790 
1791 		idx = i / RTE_RETA_GROUP_SIZE;
1792 		sft = i % RTE_RETA_GROUP_SIZE;
1793 
1794 		if (!(reta_conf[idx].mask & (1ULL << sft)))
1795 			continue;
1796 
1797 		rxq = bnxt_qid_to_rxq(bp, reta_conf[idx].reta[sft]);
1798 		if (!rxq) {
1799 			PMD_DRV_LOG(ERR, "Invalid ring in reta_conf.\n");
1800 			return -EINVAL;
1801 		}
1802 
1803 		if (BNXT_CHIP_THOR(bp)) {
1804 			vnic->rss_table[i * 2] =
1805 				rxq->rx_ring->rx_ring_struct->fw_ring_id;
1806 			vnic->rss_table[i * 2 + 1] =
1807 				rxq->cp_ring->cp_ring_struct->fw_ring_id;
1808 		} else {
1809 			vnic->rss_table[i] =
1810 			    vnic->fw_grp_ids[reta_conf[idx].reta[sft]];
1811 		}
1812 	}
1813 
1814 	bnxt_hwrm_vnic_rss_cfg(bp, vnic);
1815 	return 0;
1816 }
1817 
1818 static int bnxt_reta_query_op(struct rte_eth_dev *eth_dev,
1819 			      struct rte_eth_rss_reta_entry64 *reta_conf,
1820 			      uint16_t reta_size)
1821 {
1822 	struct bnxt *bp = eth_dev->data->dev_private;
1823 	struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp);
1824 	uint16_t tbl_size = bnxt_rss_hash_tbl_size(bp);
1825 	uint16_t idx, sft, i;
1826 	int rc;
1827 
1828 	rc = is_bnxt_in_error(bp);
1829 	if (rc)
1830 		return rc;
1831 
1832 	/* Retrieve from the default VNIC */
1833 	if (!vnic)
1834 		return -EINVAL;
1835 	if (!vnic->rss_table)
1836 		return -EINVAL;
1837 
1838 	if (reta_size != tbl_size) {
1839 		PMD_DRV_LOG(ERR, "The configured hash table lookup size "
1840 			"(%d) must equal the size supported by the hardware "
1841 			"(%d)\n", reta_size, tbl_size);
1842 		return -EINVAL;
1843 	}
1844 
1845 	for (idx = 0, i = 0; i < reta_size; i++) {
1846 		idx = i / RTE_RETA_GROUP_SIZE;
1847 		sft = i % RTE_RETA_GROUP_SIZE;
1848 
1849 		if (reta_conf[idx].mask & (1ULL << sft)) {
1850 			uint16_t qid;
1851 
1852 			if (BNXT_CHIP_THOR(bp))
1853 				qid = bnxt_rss_to_qid(bp,
1854 						      vnic->rss_table[i * 2]);
1855 			else
1856 				qid = bnxt_rss_to_qid(bp, vnic->rss_table[i]);
1857 
1858 			if (qid == INVALID_HW_RING_ID) {
1859 				PMD_DRV_LOG(ERR, "Inv. entry in rss table.\n");
1860 				return -EINVAL;
1861 			}
1862 			reta_conf[idx].reta[sft] = qid;
1863 		}
1864 	}
1865 
1866 	return 0;
1867 }
1868 
1869 static int bnxt_rss_hash_update_op(struct rte_eth_dev *eth_dev,
1870 				   struct rte_eth_rss_conf *rss_conf)
1871 {
1872 	struct bnxt *bp = eth_dev->data->dev_private;
1873 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
1874 	struct bnxt_vnic_info *vnic;
1875 	int rc;
1876 
1877 	rc = is_bnxt_in_error(bp);
1878 	if (rc)
1879 		return rc;
1880 
1881 	/*
1882 	 * If RSS enablement were different than dev_configure,
1883 	 * then return -EINVAL
1884 	 */
1885 	if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) {
1886 		if (!rss_conf->rss_hf)
1887 			PMD_DRV_LOG(ERR, "Hash type NONE\n");
1888 	} else {
1889 		if (rss_conf->rss_hf & BNXT_ETH_RSS_SUPPORT)
1890 			return -EINVAL;
1891 	}
1892 
1893 	bp->flags |= BNXT_FLAG_UPDATE_HASH;
1894 	memcpy(&eth_dev->data->dev_conf.rx_adv_conf.rss_conf,
1895 	       rss_conf,
1896 	       sizeof(*rss_conf));
1897 
1898 	/* Update the default RSS VNIC(s) */
1899 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
1900 	vnic->hash_type = bnxt_rte_to_hwrm_hash_types(rss_conf->rss_hf);
1901 
1902 	/*
1903 	 * If hashkey is not specified, use the previously configured
1904 	 * hashkey
1905 	 */
1906 	if (!rss_conf->rss_key)
1907 		goto rss_config;
1908 
1909 	if (rss_conf->rss_key_len != HW_HASH_KEY_SIZE) {
1910 		PMD_DRV_LOG(ERR,
1911 			    "Invalid hashkey length, should be 16 bytes\n");
1912 		return -EINVAL;
1913 	}
1914 	memcpy(vnic->rss_hash_key, rss_conf->rss_key, rss_conf->rss_key_len);
1915 
1916 rss_config:
1917 	bnxt_hwrm_vnic_rss_cfg(bp, vnic);
1918 	return 0;
1919 }
1920 
1921 static int bnxt_rss_hash_conf_get_op(struct rte_eth_dev *eth_dev,
1922 				     struct rte_eth_rss_conf *rss_conf)
1923 {
1924 	struct bnxt *bp = eth_dev->data->dev_private;
1925 	struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp);
1926 	int len, rc;
1927 	uint32_t hash_types;
1928 
1929 	rc = is_bnxt_in_error(bp);
1930 	if (rc)
1931 		return rc;
1932 
1933 	/* RSS configuration is the same for all VNICs */
1934 	if (vnic && vnic->rss_hash_key) {
1935 		if (rss_conf->rss_key) {
1936 			len = rss_conf->rss_key_len <= HW_HASH_KEY_SIZE ?
1937 			      rss_conf->rss_key_len : HW_HASH_KEY_SIZE;
1938 			memcpy(rss_conf->rss_key, vnic->rss_hash_key, len);
1939 		}
1940 
1941 		hash_types = vnic->hash_type;
1942 		rss_conf->rss_hf = 0;
1943 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4) {
1944 			rss_conf->rss_hf |= ETH_RSS_IPV4;
1945 			hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
1946 		}
1947 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4) {
1948 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
1949 			hash_types &=
1950 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
1951 		}
1952 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4) {
1953 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
1954 			hash_types &=
1955 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
1956 		}
1957 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6) {
1958 			rss_conf->rss_hf |= ETH_RSS_IPV6;
1959 			hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
1960 		}
1961 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6) {
1962 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
1963 			hash_types &=
1964 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
1965 		}
1966 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6) {
1967 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
1968 			hash_types &=
1969 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
1970 		}
1971 		if (hash_types) {
1972 			PMD_DRV_LOG(ERR,
1973 				"Unknown RSS config from firmware (%08x), RSS disabled",
1974 				vnic->hash_type);
1975 			return -ENOTSUP;
1976 		}
1977 	} else {
1978 		rss_conf->rss_hf = 0;
1979 	}
1980 	return 0;
1981 }
1982 
1983 static int bnxt_flow_ctrl_get_op(struct rte_eth_dev *dev,
1984 			       struct rte_eth_fc_conf *fc_conf)
1985 {
1986 	struct bnxt *bp = dev->data->dev_private;
1987 	struct rte_eth_link link_info;
1988 	int rc;
1989 
1990 	rc = is_bnxt_in_error(bp);
1991 	if (rc)
1992 		return rc;
1993 
1994 	rc = bnxt_get_hwrm_link_config(bp, &link_info);
1995 	if (rc)
1996 		return rc;
1997 
1998 	memset(fc_conf, 0, sizeof(*fc_conf));
1999 	if (bp->link_info->auto_pause)
2000 		fc_conf->autoneg = 1;
2001 	switch (bp->link_info->pause) {
2002 	case 0:
2003 		fc_conf->mode = RTE_FC_NONE;
2004 		break;
2005 	case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX:
2006 		fc_conf->mode = RTE_FC_TX_PAUSE;
2007 		break;
2008 	case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX:
2009 		fc_conf->mode = RTE_FC_RX_PAUSE;
2010 		break;
2011 	case (HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX |
2012 			HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX):
2013 		fc_conf->mode = RTE_FC_FULL;
2014 		break;
2015 	}
2016 	return 0;
2017 }
2018 
2019 static int bnxt_flow_ctrl_set_op(struct rte_eth_dev *dev,
2020 			       struct rte_eth_fc_conf *fc_conf)
2021 {
2022 	struct bnxt *bp = dev->data->dev_private;
2023 	int rc;
2024 
2025 	rc = is_bnxt_in_error(bp);
2026 	if (rc)
2027 		return rc;
2028 
2029 	if (!BNXT_SINGLE_PF(bp) || BNXT_VF(bp)) {
2030 		PMD_DRV_LOG(ERR, "Flow Control Settings cannot be modified\n");
2031 		return -ENOTSUP;
2032 	}
2033 
2034 	switch (fc_conf->mode) {
2035 	case RTE_FC_NONE:
2036 		bp->link_info->auto_pause = 0;
2037 		bp->link_info->force_pause = 0;
2038 		break;
2039 	case RTE_FC_RX_PAUSE:
2040 		if (fc_conf->autoneg) {
2041 			bp->link_info->auto_pause =
2042 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
2043 			bp->link_info->force_pause = 0;
2044 		} else {
2045 			bp->link_info->auto_pause = 0;
2046 			bp->link_info->force_pause =
2047 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
2048 		}
2049 		break;
2050 	case RTE_FC_TX_PAUSE:
2051 		if (fc_conf->autoneg) {
2052 			bp->link_info->auto_pause =
2053 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX;
2054 			bp->link_info->force_pause = 0;
2055 		} else {
2056 			bp->link_info->auto_pause = 0;
2057 			bp->link_info->force_pause =
2058 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX;
2059 		}
2060 		break;
2061 	case RTE_FC_FULL:
2062 		if (fc_conf->autoneg) {
2063 			bp->link_info->auto_pause =
2064 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX |
2065 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
2066 			bp->link_info->force_pause = 0;
2067 		} else {
2068 			bp->link_info->auto_pause = 0;
2069 			bp->link_info->force_pause =
2070 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX |
2071 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
2072 		}
2073 		break;
2074 	}
2075 	return bnxt_set_hwrm_link_config(bp, true);
2076 }
2077 
2078 /* Add UDP tunneling port */
2079 static int
2080 bnxt_udp_tunnel_port_add_op(struct rte_eth_dev *eth_dev,
2081 			 struct rte_eth_udp_tunnel *udp_tunnel)
2082 {
2083 	struct bnxt *bp = eth_dev->data->dev_private;
2084 	uint16_t tunnel_type = 0;
2085 	int rc = 0;
2086 
2087 	rc = is_bnxt_in_error(bp);
2088 	if (rc)
2089 		return rc;
2090 
2091 	switch (udp_tunnel->prot_type) {
2092 	case RTE_TUNNEL_TYPE_VXLAN:
2093 		if (bp->vxlan_port_cnt) {
2094 			PMD_DRV_LOG(ERR, "Tunnel Port %d already programmed\n",
2095 				udp_tunnel->udp_port);
2096 			if (bp->vxlan_port != udp_tunnel->udp_port) {
2097 				PMD_DRV_LOG(ERR, "Only one port allowed\n");
2098 				return -ENOSPC;
2099 			}
2100 			bp->vxlan_port_cnt++;
2101 			return 0;
2102 		}
2103 		tunnel_type =
2104 			HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_VXLAN;
2105 		bp->vxlan_port_cnt++;
2106 		break;
2107 	case RTE_TUNNEL_TYPE_GENEVE:
2108 		if (bp->geneve_port_cnt) {
2109 			PMD_DRV_LOG(ERR, "Tunnel Port %d already programmed\n",
2110 				udp_tunnel->udp_port);
2111 			if (bp->geneve_port != udp_tunnel->udp_port) {
2112 				PMD_DRV_LOG(ERR, "Only one port allowed\n");
2113 				return -ENOSPC;
2114 			}
2115 			bp->geneve_port_cnt++;
2116 			return 0;
2117 		}
2118 		tunnel_type =
2119 			HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_GENEVE;
2120 		bp->geneve_port_cnt++;
2121 		break;
2122 	default:
2123 		PMD_DRV_LOG(ERR, "Tunnel type is not supported\n");
2124 		return -ENOTSUP;
2125 	}
2126 	rc = bnxt_hwrm_tunnel_dst_port_alloc(bp, udp_tunnel->udp_port,
2127 					     tunnel_type);
2128 	return rc;
2129 }
2130 
2131 static int
2132 bnxt_udp_tunnel_port_del_op(struct rte_eth_dev *eth_dev,
2133 			 struct rte_eth_udp_tunnel *udp_tunnel)
2134 {
2135 	struct bnxt *bp = eth_dev->data->dev_private;
2136 	uint16_t tunnel_type = 0;
2137 	uint16_t port = 0;
2138 	int rc = 0;
2139 
2140 	rc = is_bnxt_in_error(bp);
2141 	if (rc)
2142 		return rc;
2143 
2144 	switch (udp_tunnel->prot_type) {
2145 	case RTE_TUNNEL_TYPE_VXLAN:
2146 		if (!bp->vxlan_port_cnt) {
2147 			PMD_DRV_LOG(ERR, "No Tunnel port configured yet\n");
2148 			return -EINVAL;
2149 		}
2150 		if (bp->vxlan_port != udp_tunnel->udp_port) {
2151 			PMD_DRV_LOG(ERR, "Req Port: %d. Configured port: %d\n",
2152 				udp_tunnel->udp_port, bp->vxlan_port);
2153 			return -EINVAL;
2154 		}
2155 		if (--bp->vxlan_port_cnt)
2156 			return 0;
2157 
2158 		tunnel_type =
2159 			HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN;
2160 		port = bp->vxlan_fw_dst_port_id;
2161 		break;
2162 	case RTE_TUNNEL_TYPE_GENEVE:
2163 		if (!bp->geneve_port_cnt) {
2164 			PMD_DRV_LOG(ERR, "No Tunnel port configured yet\n");
2165 			return -EINVAL;
2166 		}
2167 		if (bp->geneve_port != udp_tunnel->udp_port) {
2168 			PMD_DRV_LOG(ERR, "Req Port: %d. Configured port: %d\n",
2169 				udp_tunnel->udp_port, bp->geneve_port);
2170 			return -EINVAL;
2171 		}
2172 		if (--bp->geneve_port_cnt)
2173 			return 0;
2174 
2175 		tunnel_type =
2176 			HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE;
2177 		port = bp->geneve_fw_dst_port_id;
2178 		break;
2179 	default:
2180 		PMD_DRV_LOG(ERR, "Tunnel type is not supported\n");
2181 		return -ENOTSUP;
2182 	}
2183 
2184 	rc = bnxt_hwrm_tunnel_dst_port_free(bp, port, tunnel_type);
2185 	if (!rc) {
2186 		if (tunnel_type ==
2187 		    HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN)
2188 			bp->vxlan_port = 0;
2189 		if (tunnel_type ==
2190 		    HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE)
2191 			bp->geneve_port = 0;
2192 	}
2193 	return rc;
2194 }
2195 
2196 static int bnxt_del_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
2197 {
2198 	struct bnxt_filter_info *filter;
2199 	struct bnxt_vnic_info *vnic;
2200 	int rc = 0;
2201 	uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN;
2202 
2203 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
2204 	filter = STAILQ_FIRST(&vnic->filter);
2205 	while (filter) {
2206 		/* Search for this matching MAC+VLAN filter */
2207 		if (bnxt_vlan_filter_exists(bp, filter, chk, vlan_id)) {
2208 			/* Delete the filter */
2209 			rc = bnxt_hwrm_clear_l2_filter(bp, filter);
2210 			if (rc)
2211 				return rc;
2212 			STAILQ_REMOVE(&vnic->filter, filter,
2213 				      bnxt_filter_info, next);
2214 			bnxt_free_filter(bp, filter);
2215 			PMD_DRV_LOG(INFO,
2216 				    "Deleted vlan filter for %d\n",
2217 				    vlan_id);
2218 			return 0;
2219 		}
2220 		filter = STAILQ_NEXT(filter, next);
2221 	}
2222 	return -ENOENT;
2223 }
2224 
2225 static int bnxt_add_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
2226 {
2227 	struct bnxt_filter_info *filter;
2228 	struct bnxt_vnic_info *vnic;
2229 	int rc = 0;
2230 	uint32_t en = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN |
2231 		HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN_MASK;
2232 	uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN;
2233 
2234 	/* Implementation notes on the use of VNIC in this command:
2235 	 *
2236 	 * By default, these filters belong to default vnic for the function.
2237 	 * Once these filters are set up, only destination VNIC can be modified.
2238 	 * If the destination VNIC is not specified in this command,
2239 	 * then the HWRM shall only create an l2 context id.
2240 	 */
2241 
2242 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
2243 	filter = STAILQ_FIRST(&vnic->filter);
2244 	/* Check if the VLAN has already been added */
2245 	while (filter) {
2246 		if (bnxt_vlan_filter_exists(bp, filter, chk, vlan_id))
2247 			return -EEXIST;
2248 
2249 		filter = STAILQ_NEXT(filter, next);
2250 	}
2251 
2252 	/* No match found. Alloc a fresh filter and issue the L2_FILTER_ALLOC
2253 	 * command to create MAC+VLAN filter with the right flags, enables set.
2254 	 */
2255 	filter = bnxt_alloc_filter(bp);
2256 	if (!filter) {
2257 		PMD_DRV_LOG(ERR,
2258 			    "MAC/VLAN filter alloc failed\n");
2259 		return -ENOMEM;
2260 	}
2261 	/* MAC + VLAN ID filter */
2262 	/* If l2_ivlan == 0 and l2_ivlan_mask != 0, only
2263 	 * untagged packets are received
2264 	 *
2265 	 * If l2_ivlan != 0 and l2_ivlan_mask != 0, untagged
2266 	 * packets and only the programmed vlan's packets are received
2267 	 */
2268 	filter->l2_ivlan = vlan_id;
2269 	filter->l2_ivlan_mask = 0x0FFF;
2270 	filter->enables |= en;
2271 	filter->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_OUTERMOST;
2272 
2273 	rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
2274 	if (rc) {
2275 		/* Free the newly allocated filter as we were
2276 		 * not able to create the filter in hardware.
2277 		 */
2278 		bnxt_free_filter(bp, filter);
2279 		return rc;
2280 	}
2281 
2282 	filter->mac_index = 0;
2283 	/* Add this new filter to the list */
2284 	if (vlan_id == 0)
2285 		STAILQ_INSERT_HEAD(&vnic->filter, filter, next);
2286 	else
2287 		STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
2288 
2289 	PMD_DRV_LOG(INFO,
2290 		    "Added Vlan filter for %d\n", vlan_id);
2291 	return rc;
2292 }
2293 
2294 static int bnxt_vlan_filter_set_op(struct rte_eth_dev *eth_dev,
2295 		uint16_t vlan_id, int on)
2296 {
2297 	struct bnxt *bp = eth_dev->data->dev_private;
2298 	int rc;
2299 
2300 	rc = is_bnxt_in_error(bp);
2301 	if (rc)
2302 		return rc;
2303 
2304 	if (!eth_dev->data->dev_started) {
2305 		PMD_DRV_LOG(ERR, "port must be started before setting vlan\n");
2306 		return -EINVAL;
2307 	}
2308 
2309 	/* These operations apply to ALL existing MAC/VLAN filters */
2310 	if (on)
2311 		return bnxt_add_vlan_filter(bp, vlan_id);
2312 	else
2313 		return bnxt_del_vlan_filter(bp, vlan_id);
2314 }
2315 
2316 static int bnxt_del_dflt_mac_filter(struct bnxt *bp,
2317 				    struct bnxt_vnic_info *vnic)
2318 {
2319 	struct bnxt_filter_info *filter;
2320 	int rc;
2321 
2322 	filter = STAILQ_FIRST(&vnic->filter);
2323 	while (filter) {
2324 		if (filter->mac_index == 0 &&
2325 		    !memcmp(filter->l2_addr, bp->mac_addr,
2326 			    RTE_ETHER_ADDR_LEN)) {
2327 			rc = bnxt_hwrm_clear_l2_filter(bp, filter);
2328 			if (!rc) {
2329 				STAILQ_REMOVE(&vnic->filter, filter,
2330 					      bnxt_filter_info, next);
2331 				bnxt_free_filter(bp, filter);
2332 			}
2333 			return rc;
2334 		}
2335 		filter = STAILQ_NEXT(filter, next);
2336 	}
2337 	return 0;
2338 }
2339 
2340 static int
2341 bnxt_config_vlan_hw_filter(struct bnxt *bp, uint64_t rx_offloads)
2342 {
2343 	struct bnxt_vnic_info *vnic;
2344 	unsigned int i;
2345 	int rc;
2346 
2347 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
2348 	if (!(rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER)) {
2349 		/* Remove any VLAN filters programmed */
2350 		for (i = 0; i < RTE_ETHER_MAX_VLAN_ID; i++)
2351 			bnxt_del_vlan_filter(bp, i);
2352 
2353 		rc = bnxt_add_mac_filter(bp, vnic, NULL, 0, 0);
2354 		if (rc)
2355 			return rc;
2356 	} else {
2357 		/* Default filter will allow packets that match the
2358 		 * dest mac. So, it has to be deleted, otherwise, we
2359 		 * will endup receiving vlan packets for which the
2360 		 * filter is not programmed, when hw-vlan-filter
2361 		 * configuration is ON
2362 		 */
2363 		bnxt_del_dflt_mac_filter(bp, vnic);
2364 		/* This filter will allow only untagged packets */
2365 		bnxt_add_vlan_filter(bp, 0);
2366 	}
2367 	PMD_DRV_LOG(DEBUG, "VLAN Filtering: %d\n",
2368 		    !!(rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER));
2369 
2370 	return 0;
2371 }
2372 
2373 static int bnxt_free_one_vnic(struct bnxt *bp, uint16_t vnic_id)
2374 {
2375 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2376 	unsigned int i;
2377 	int rc;
2378 
2379 	/* Destroy vnic filters and vnic */
2380 	if (bp->eth_dev->data->dev_conf.rxmode.offloads &
2381 	    DEV_RX_OFFLOAD_VLAN_FILTER) {
2382 		for (i = 0; i < RTE_ETHER_MAX_VLAN_ID; i++)
2383 			bnxt_del_vlan_filter(bp, i);
2384 	}
2385 	bnxt_del_dflt_mac_filter(bp, vnic);
2386 
2387 	rc = bnxt_hwrm_vnic_free(bp, vnic);
2388 	if (rc)
2389 		return rc;
2390 
2391 	rte_free(vnic->fw_grp_ids);
2392 	vnic->fw_grp_ids = NULL;
2393 
2394 	vnic->rx_queue_cnt = 0;
2395 
2396 	return 0;
2397 }
2398 
2399 static int
2400 bnxt_config_vlan_hw_stripping(struct bnxt *bp, uint64_t rx_offloads)
2401 {
2402 	struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp);
2403 	int rc;
2404 
2405 	/* Destroy, recreate and reconfigure the default vnic */
2406 	rc = bnxt_free_one_vnic(bp, 0);
2407 	if (rc)
2408 		return rc;
2409 
2410 	/* default vnic 0 */
2411 	rc = bnxt_setup_one_vnic(bp, 0);
2412 	if (rc)
2413 		return rc;
2414 
2415 	if (bp->eth_dev->data->dev_conf.rxmode.offloads &
2416 	    DEV_RX_OFFLOAD_VLAN_FILTER) {
2417 		rc = bnxt_add_vlan_filter(bp, 0);
2418 		if (rc)
2419 			return rc;
2420 		rc = bnxt_restore_vlan_filters(bp);
2421 		if (rc)
2422 			return rc;
2423 	} else {
2424 		rc = bnxt_add_mac_filter(bp, vnic, NULL, 0, 0);
2425 		if (rc)
2426 			return rc;
2427 	}
2428 
2429 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
2430 	if (rc)
2431 		return rc;
2432 
2433 	PMD_DRV_LOG(DEBUG, "VLAN Strip Offload: %d\n",
2434 		    !!(rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP));
2435 
2436 	return rc;
2437 }
2438 
2439 static int
2440 bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask)
2441 {
2442 	uint64_t rx_offloads = dev->data->dev_conf.rxmode.offloads;
2443 	struct bnxt *bp = dev->data->dev_private;
2444 	int rc;
2445 
2446 	rc = is_bnxt_in_error(bp);
2447 	if (rc)
2448 		return rc;
2449 
2450 	/* Filter settings will get applied when port is started */
2451 	if (!dev->data->dev_started)
2452 		return 0;
2453 
2454 	if (mask & ETH_VLAN_FILTER_MASK) {
2455 		/* Enable or disable VLAN filtering */
2456 		rc = bnxt_config_vlan_hw_filter(bp, rx_offloads);
2457 		if (rc)
2458 			return rc;
2459 	}
2460 
2461 	if (mask & ETH_VLAN_STRIP_MASK) {
2462 		/* Enable or disable VLAN stripping */
2463 		rc = bnxt_config_vlan_hw_stripping(bp, rx_offloads);
2464 		if (rc)
2465 			return rc;
2466 	}
2467 
2468 	if (mask & ETH_VLAN_EXTEND_MASK) {
2469 		if (rx_offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
2470 			PMD_DRV_LOG(DEBUG, "Extend VLAN supported\n");
2471 		else
2472 			PMD_DRV_LOG(INFO, "Extend VLAN unsupported\n");
2473 	}
2474 
2475 	return 0;
2476 }
2477 
2478 static int
2479 bnxt_vlan_tpid_set_op(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
2480 		      uint16_t tpid)
2481 {
2482 	struct bnxt *bp = dev->data->dev_private;
2483 	int qinq = dev->data->dev_conf.rxmode.offloads &
2484 		   DEV_RX_OFFLOAD_VLAN_EXTEND;
2485 
2486 	if (vlan_type != ETH_VLAN_TYPE_INNER &&
2487 	    vlan_type != ETH_VLAN_TYPE_OUTER) {
2488 		PMD_DRV_LOG(ERR,
2489 			    "Unsupported vlan type.");
2490 		return -EINVAL;
2491 	}
2492 	if (!qinq) {
2493 		PMD_DRV_LOG(ERR,
2494 			    "QinQ not enabled. Needs to be ON as we can "
2495 			    "accelerate only outer vlan\n");
2496 		return -EINVAL;
2497 	}
2498 
2499 	if (vlan_type == ETH_VLAN_TYPE_OUTER) {
2500 		switch (tpid) {
2501 		case RTE_ETHER_TYPE_QINQ:
2502 			bp->outer_tpid_bd =
2503 				TX_BD_LONG_CFA_META_VLAN_TPID_TPID88A8;
2504 				break;
2505 		case RTE_ETHER_TYPE_VLAN:
2506 			bp->outer_tpid_bd =
2507 				TX_BD_LONG_CFA_META_VLAN_TPID_TPID8100;
2508 				break;
2509 		case RTE_ETHER_TYPE_QINQ1:
2510 			bp->outer_tpid_bd =
2511 				TX_BD_LONG_CFA_META_VLAN_TPID_TPID9100;
2512 				break;
2513 		case RTE_ETHER_TYPE_QINQ2:
2514 			bp->outer_tpid_bd =
2515 				TX_BD_LONG_CFA_META_VLAN_TPID_TPID9200;
2516 				break;
2517 		case RTE_ETHER_TYPE_QINQ3:
2518 			bp->outer_tpid_bd =
2519 				 TX_BD_LONG_CFA_META_VLAN_TPID_TPID9300;
2520 				break;
2521 		default:
2522 			PMD_DRV_LOG(ERR, "Invalid TPID: %x\n", tpid);
2523 			return -EINVAL;
2524 		}
2525 		bp->outer_tpid_bd |= tpid;
2526 		PMD_DRV_LOG(INFO, "outer_tpid_bd = %x\n", bp->outer_tpid_bd);
2527 	} else if (vlan_type == ETH_VLAN_TYPE_INNER) {
2528 		PMD_DRV_LOG(ERR,
2529 			    "Can accelerate only outer vlan in QinQ\n");
2530 		return -EINVAL;
2531 	}
2532 
2533 	return 0;
2534 }
2535 
2536 static int
2537 bnxt_set_default_mac_addr_op(struct rte_eth_dev *dev,
2538 			     struct rte_ether_addr *addr)
2539 {
2540 	struct bnxt *bp = dev->data->dev_private;
2541 	/* Default Filter is tied to VNIC 0 */
2542 	struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp);
2543 	int rc;
2544 
2545 	rc = is_bnxt_in_error(bp);
2546 	if (rc)
2547 		return rc;
2548 
2549 	if (BNXT_VF(bp) && !BNXT_VF_IS_TRUSTED(bp))
2550 		return -EPERM;
2551 
2552 	if (rte_is_zero_ether_addr(addr))
2553 		return -EINVAL;
2554 
2555 	/* Filter settings will get applied when port is started */
2556 	if (!dev->data->dev_started)
2557 		return 0;
2558 
2559 	/* Check if the requested MAC is already added */
2560 	if (memcmp(addr, bp->mac_addr, RTE_ETHER_ADDR_LEN) == 0)
2561 		return 0;
2562 
2563 	/* Destroy filter and re-create it */
2564 	bnxt_del_dflt_mac_filter(bp, vnic);
2565 
2566 	memcpy(bp->mac_addr, addr, RTE_ETHER_ADDR_LEN);
2567 	if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
2568 		/* This filter will allow only untagged packets */
2569 		rc = bnxt_add_vlan_filter(bp, 0);
2570 	} else {
2571 		rc = bnxt_add_mac_filter(bp, vnic, addr, 0, 0);
2572 	}
2573 
2574 	PMD_DRV_LOG(DEBUG, "Set MAC addr\n");
2575 	return rc;
2576 }
2577 
2578 static int
2579 bnxt_dev_set_mc_addr_list_op(struct rte_eth_dev *eth_dev,
2580 			  struct rte_ether_addr *mc_addr_set,
2581 			  uint32_t nb_mc_addr)
2582 {
2583 	struct bnxt *bp = eth_dev->data->dev_private;
2584 	char *mc_addr_list = (char *)mc_addr_set;
2585 	struct bnxt_vnic_info *vnic;
2586 	uint32_t off = 0, i = 0;
2587 	int rc;
2588 
2589 	rc = is_bnxt_in_error(bp);
2590 	if (rc)
2591 		return rc;
2592 
2593 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
2594 
2595 	if (nb_mc_addr > BNXT_MAX_MC_ADDRS) {
2596 		vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
2597 		goto allmulti;
2598 	}
2599 
2600 	/* TODO Check for Duplicate mcast addresses */
2601 	vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
2602 	for (i = 0; i < nb_mc_addr; i++) {
2603 		memcpy(vnic->mc_list + off, &mc_addr_list[i],
2604 			RTE_ETHER_ADDR_LEN);
2605 		off += RTE_ETHER_ADDR_LEN;
2606 	}
2607 
2608 	vnic->mc_addr_cnt = i;
2609 	if (vnic->mc_addr_cnt)
2610 		vnic->flags |= BNXT_VNIC_INFO_MCAST;
2611 	else
2612 		vnic->flags &= ~BNXT_VNIC_INFO_MCAST;
2613 
2614 allmulti:
2615 	return bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
2616 }
2617 
2618 static int
2619 bnxt_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
2620 {
2621 	struct bnxt *bp = dev->data->dev_private;
2622 	uint8_t fw_major = (bp->fw_ver >> 24) & 0xff;
2623 	uint8_t fw_minor = (bp->fw_ver >> 16) & 0xff;
2624 	uint8_t fw_updt = (bp->fw_ver >> 8) & 0xff;
2625 	uint8_t fw_rsvd = bp->fw_ver & 0xff;
2626 	int ret;
2627 
2628 	ret = snprintf(fw_version, fw_size, "%d.%d.%d.%d",
2629 			fw_major, fw_minor, fw_updt, fw_rsvd);
2630 
2631 	ret += 1; /* add the size of '\0' */
2632 	if (fw_size < (uint32_t)ret)
2633 		return ret;
2634 	else
2635 		return 0;
2636 }
2637 
2638 static void
2639 bnxt_rxq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
2640 	struct rte_eth_rxq_info *qinfo)
2641 {
2642 	struct bnxt *bp = dev->data->dev_private;
2643 	struct bnxt_rx_queue *rxq;
2644 
2645 	if (is_bnxt_in_error(bp))
2646 		return;
2647 
2648 	rxq = dev->data->rx_queues[queue_id];
2649 
2650 	qinfo->mp = rxq->mb_pool;
2651 	qinfo->scattered_rx = dev->data->scattered_rx;
2652 	qinfo->nb_desc = rxq->nb_rx_desc;
2653 
2654 	qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2655 	qinfo->conf.rx_drop_en = rxq->drop_en;
2656 	qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
2657 	qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
2658 }
2659 
2660 static void
2661 bnxt_txq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
2662 	struct rte_eth_txq_info *qinfo)
2663 {
2664 	struct bnxt *bp = dev->data->dev_private;
2665 	struct bnxt_tx_queue *txq;
2666 
2667 	if (is_bnxt_in_error(bp))
2668 		return;
2669 
2670 	txq = dev->data->tx_queues[queue_id];
2671 
2672 	qinfo->nb_desc = txq->nb_tx_desc;
2673 
2674 	qinfo->conf.tx_thresh.pthresh = txq->pthresh;
2675 	qinfo->conf.tx_thresh.hthresh = txq->hthresh;
2676 	qinfo->conf.tx_thresh.wthresh = txq->wthresh;
2677 
2678 	qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
2679 	qinfo->conf.tx_rs_thresh = 0;
2680 	qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
2681 	qinfo->conf.offloads = dev->data->dev_conf.txmode.offloads;
2682 }
2683 
2684 static const struct {
2685 	eth_rx_burst_t pkt_burst;
2686 	const char *info;
2687 } bnxt_rx_burst_info[] = {
2688 	{bnxt_recv_pkts,	"Scalar"},
2689 #if defined(RTE_ARCH_X86)
2690 	{bnxt_recv_pkts_vec,	"Vector SSE"},
2691 #elif defined(RTE_ARCH_ARM64)
2692 	{bnxt_recv_pkts_vec,	"Vector Neon"},
2693 #endif
2694 };
2695 
2696 static int
2697 bnxt_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
2698 		       struct rte_eth_burst_mode *mode)
2699 {
2700 	eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
2701 	size_t i;
2702 
2703 	for (i = 0; i < RTE_DIM(bnxt_rx_burst_info); i++) {
2704 		if (pkt_burst == bnxt_rx_burst_info[i].pkt_burst) {
2705 			snprintf(mode->info, sizeof(mode->info), "%s",
2706 				 bnxt_rx_burst_info[i].info);
2707 			return 0;
2708 		}
2709 	}
2710 
2711 	return -EINVAL;
2712 }
2713 
2714 static const struct {
2715 	eth_tx_burst_t pkt_burst;
2716 	const char *info;
2717 } bnxt_tx_burst_info[] = {
2718 	{bnxt_xmit_pkts,	"Scalar"},
2719 #if defined(RTE_ARCH_X86)
2720 	{bnxt_xmit_pkts_vec,	"Vector SSE"},
2721 #elif defined(RTE_ARCH_ARM64)
2722 	{bnxt_xmit_pkts_vec,	"Vector Neon"},
2723 #endif
2724 };
2725 
2726 static int
2727 bnxt_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
2728 		       struct rte_eth_burst_mode *mode)
2729 {
2730 	eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
2731 	size_t i;
2732 
2733 	for (i = 0; i < RTE_DIM(bnxt_tx_burst_info); i++) {
2734 		if (pkt_burst == bnxt_tx_burst_info[i].pkt_burst) {
2735 			snprintf(mode->info, sizeof(mode->info), "%s",
2736 				 bnxt_tx_burst_info[i].info);
2737 			return 0;
2738 		}
2739 	}
2740 
2741 	return -EINVAL;
2742 }
2743 
2744 int bnxt_mtu_set_op(struct rte_eth_dev *eth_dev, uint16_t new_mtu)
2745 {
2746 	struct bnxt *bp = eth_dev->data->dev_private;
2747 	uint32_t new_pkt_size;
2748 	uint32_t rc = 0;
2749 	uint32_t i;
2750 
2751 	rc = is_bnxt_in_error(bp);
2752 	if (rc)
2753 		return rc;
2754 
2755 	/* Exit if receive queues are not configured yet */
2756 	if (!eth_dev->data->nb_rx_queues)
2757 		return rc;
2758 
2759 	new_pkt_size = new_mtu + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN +
2760 		       VLAN_TAG_SIZE * BNXT_NUM_VLANS;
2761 
2762 	/*
2763 	 * Disallow any MTU change that would require scattered receive support
2764 	 * if it is not already enabled.
2765 	 */
2766 	if (eth_dev->data->dev_started &&
2767 	    !eth_dev->data->scattered_rx &&
2768 	    (new_pkt_size >
2769 	     eth_dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)) {
2770 		PMD_DRV_LOG(ERR,
2771 			    "MTU change would require scattered rx support. ");
2772 		PMD_DRV_LOG(ERR, "Stop port before changing MTU.\n");
2773 		return -EINVAL;
2774 	}
2775 
2776 	if (new_mtu > RTE_ETHER_MTU) {
2777 		bp->flags |= BNXT_FLAG_JUMBO;
2778 		bp->eth_dev->data->dev_conf.rxmode.offloads |=
2779 			DEV_RX_OFFLOAD_JUMBO_FRAME;
2780 	} else {
2781 		bp->eth_dev->data->dev_conf.rxmode.offloads &=
2782 			~DEV_RX_OFFLOAD_JUMBO_FRAME;
2783 		bp->flags &= ~BNXT_FLAG_JUMBO;
2784 	}
2785 
2786 	/* Is there a change in mtu setting? */
2787 	if (eth_dev->data->dev_conf.rxmode.max_rx_pkt_len == new_pkt_size)
2788 		return rc;
2789 
2790 	for (i = 0; i < bp->nr_vnics; i++) {
2791 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2792 		uint16_t size = 0;
2793 
2794 		vnic->mru = BNXT_VNIC_MRU(new_mtu);
2795 		rc = bnxt_hwrm_vnic_cfg(bp, vnic);
2796 		if (rc)
2797 			break;
2798 
2799 		size = rte_pktmbuf_data_room_size(bp->rx_queues[0]->mb_pool);
2800 		size -= RTE_PKTMBUF_HEADROOM;
2801 
2802 		if (size < new_mtu) {
2803 			rc = bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
2804 			if (rc)
2805 				return rc;
2806 		}
2807 	}
2808 
2809 	if (!rc)
2810 		eth_dev->data->dev_conf.rxmode.max_rx_pkt_len = new_pkt_size;
2811 
2812 	PMD_DRV_LOG(INFO, "New MTU is %d\n", new_mtu);
2813 
2814 	return rc;
2815 }
2816 
2817 static int
2818 bnxt_vlan_pvid_set_op(struct rte_eth_dev *dev, uint16_t pvid, int on)
2819 {
2820 	struct bnxt *bp = dev->data->dev_private;
2821 	uint16_t vlan = bp->vlan;
2822 	int rc;
2823 
2824 	rc = is_bnxt_in_error(bp);
2825 	if (rc)
2826 		return rc;
2827 
2828 	if (!BNXT_SINGLE_PF(bp) || BNXT_VF(bp)) {
2829 		PMD_DRV_LOG(ERR,
2830 			"PVID cannot be modified for this function\n");
2831 		return -ENOTSUP;
2832 	}
2833 	bp->vlan = on ? pvid : 0;
2834 
2835 	rc = bnxt_hwrm_set_default_vlan(bp, 0, 0);
2836 	if (rc)
2837 		bp->vlan = vlan;
2838 	return rc;
2839 }
2840 
2841 static int
2842 bnxt_dev_led_on_op(struct rte_eth_dev *dev)
2843 {
2844 	struct bnxt *bp = dev->data->dev_private;
2845 	int rc;
2846 
2847 	rc = is_bnxt_in_error(bp);
2848 	if (rc)
2849 		return rc;
2850 
2851 	return bnxt_hwrm_port_led_cfg(bp, true);
2852 }
2853 
2854 static int
2855 bnxt_dev_led_off_op(struct rte_eth_dev *dev)
2856 {
2857 	struct bnxt *bp = dev->data->dev_private;
2858 	int rc;
2859 
2860 	rc = is_bnxt_in_error(bp);
2861 	if (rc)
2862 		return rc;
2863 
2864 	return bnxt_hwrm_port_led_cfg(bp, false);
2865 }
2866 
2867 static uint32_t
2868 bnxt_rx_queue_count_op(struct rte_eth_dev *dev, uint16_t rx_queue_id)
2869 {
2870 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2871 	uint32_t desc = 0, raw_cons = 0, cons;
2872 	struct bnxt_cp_ring_info *cpr;
2873 	struct bnxt_rx_queue *rxq;
2874 	struct rx_pkt_cmpl *rxcmp;
2875 	int rc;
2876 
2877 	rc = is_bnxt_in_error(bp);
2878 	if (rc)
2879 		return rc;
2880 
2881 	rxq = dev->data->rx_queues[rx_queue_id];
2882 	cpr = rxq->cp_ring;
2883 	raw_cons = cpr->cp_raw_cons;
2884 
2885 	while (1) {
2886 		cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
2887 		rte_prefetch0(&cpr->cp_desc_ring[cons]);
2888 		rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
2889 
2890 		if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct)) {
2891 			break;
2892 		} else {
2893 			raw_cons++;
2894 			desc++;
2895 		}
2896 	}
2897 
2898 	return desc;
2899 }
2900 
2901 static int
2902 bnxt_rx_descriptor_status_op(void *rx_queue, uint16_t offset)
2903 {
2904 	struct bnxt_rx_queue *rxq = (struct bnxt_rx_queue *)rx_queue;
2905 	struct bnxt_rx_ring_info *rxr;
2906 	struct bnxt_cp_ring_info *cpr;
2907 	struct rte_mbuf *rx_buf;
2908 	struct rx_pkt_cmpl *rxcmp;
2909 	uint32_t cons, cp_cons;
2910 	int rc;
2911 
2912 	if (!rxq)
2913 		return -EINVAL;
2914 
2915 	rc = is_bnxt_in_error(rxq->bp);
2916 	if (rc)
2917 		return rc;
2918 
2919 	cpr = rxq->cp_ring;
2920 	rxr = rxq->rx_ring;
2921 
2922 	if (offset >= rxq->nb_rx_desc)
2923 		return -EINVAL;
2924 
2925 	cons = RING_CMP(cpr->cp_ring_struct, offset);
2926 	cp_cons = cpr->cp_raw_cons;
2927 	rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
2928 
2929 	if (cons > cp_cons) {
2930 		if (CMPL_VALID(rxcmp, cpr->valid))
2931 			return RTE_ETH_RX_DESC_DONE;
2932 	} else {
2933 		if (CMPL_VALID(rxcmp, !cpr->valid))
2934 			return RTE_ETH_RX_DESC_DONE;
2935 	}
2936 	rx_buf = rxr->rx_buf_ring[cons];
2937 	if (rx_buf == NULL || rx_buf == &rxq->fake_mbuf)
2938 		return RTE_ETH_RX_DESC_UNAVAIL;
2939 
2940 
2941 	return RTE_ETH_RX_DESC_AVAIL;
2942 }
2943 
2944 static int
2945 bnxt_tx_descriptor_status_op(void *tx_queue, uint16_t offset)
2946 {
2947 	struct bnxt_tx_queue *txq = (struct bnxt_tx_queue *)tx_queue;
2948 	struct bnxt_tx_ring_info *txr;
2949 	struct bnxt_cp_ring_info *cpr;
2950 	struct bnxt_sw_tx_bd *tx_buf;
2951 	struct tx_pkt_cmpl *txcmp;
2952 	uint32_t cons, cp_cons;
2953 	int rc;
2954 
2955 	if (!txq)
2956 		return -EINVAL;
2957 
2958 	rc = is_bnxt_in_error(txq->bp);
2959 	if (rc)
2960 		return rc;
2961 
2962 	cpr = txq->cp_ring;
2963 	txr = txq->tx_ring;
2964 
2965 	if (offset >= txq->nb_tx_desc)
2966 		return -EINVAL;
2967 
2968 	cons = RING_CMP(cpr->cp_ring_struct, offset);
2969 	txcmp = (struct tx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
2970 	cp_cons = cpr->cp_raw_cons;
2971 
2972 	if (cons > cp_cons) {
2973 		if (CMPL_VALID(txcmp, cpr->valid))
2974 			return RTE_ETH_TX_DESC_UNAVAIL;
2975 	} else {
2976 		if (CMPL_VALID(txcmp, !cpr->valid))
2977 			return RTE_ETH_TX_DESC_UNAVAIL;
2978 	}
2979 	tx_buf = &txr->tx_buf_ring[cons];
2980 	if (tx_buf->mbuf == NULL)
2981 		return RTE_ETH_TX_DESC_DONE;
2982 
2983 	return RTE_ETH_TX_DESC_FULL;
2984 }
2985 
2986 static struct bnxt_filter_info *
2987 bnxt_match_and_validate_ether_filter(struct bnxt *bp,
2988 				struct rte_eth_ethertype_filter *efilter,
2989 				struct bnxt_vnic_info *vnic0,
2990 				struct bnxt_vnic_info *vnic,
2991 				int *ret)
2992 {
2993 	struct bnxt_filter_info *mfilter = NULL;
2994 	int match = 0;
2995 	*ret = 0;
2996 
2997 	if (efilter->ether_type == RTE_ETHER_TYPE_IPV4 ||
2998 		efilter->ether_type == RTE_ETHER_TYPE_IPV6) {
2999 		PMD_DRV_LOG(ERR, "invalid ether_type(0x%04x) in"
3000 			" ethertype filter.", efilter->ether_type);
3001 		*ret = -EINVAL;
3002 		goto exit;
3003 	}
3004 	if (efilter->queue >= bp->rx_nr_rings) {
3005 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", efilter->queue);
3006 		*ret = -EINVAL;
3007 		goto exit;
3008 	}
3009 
3010 	vnic0 = BNXT_GET_DEFAULT_VNIC(bp);
3011 	vnic = &bp->vnic_info[efilter->queue];
3012 	if (vnic == NULL) {
3013 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", efilter->queue);
3014 		*ret = -EINVAL;
3015 		goto exit;
3016 	}
3017 
3018 	if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
3019 		STAILQ_FOREACH(mfilter, &vnic0->filter, next) {
3020 			if ((!memcmp(efilter->mac_addr.addr_bytes,
3021 				     mfilter->l2_addr, RTE_ETHER_ADDR_LEN) &&
3022 			     mfilter->flags ==
3023 			     HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP &&
3024 			     mfilter->ethertype == efilter->ether_type)) {
3025 				match = 1;
3026 				break;
3027 			}
3028 		}
3029 	} else {
3030 		STAILQ_FOREACH(mfilter, &vnic->filter, next)
3031 			if ((!memcmp(efilter->mac_addr.addr_bytes,
3032 				     mfilter->l2_addr, RTE_ETHER_ADDR_LEN) &&
3033 			     mfilter->ethertype == efilter->ether_type &&
3034 			     mfilter->flags ==
3035 			     HWRM_CFA_L2_FILTER_CFG_INPUT_FLAGS_PATH_RX)) {
3036 				match = 1;
3037 				break;
3038 			}
3039 	}
3040 
3041 	if (match)
3042 		*ret = -EEXIST;
3043 
3044 exit:
3045 	return mfilter;
3046 }
3047 
3048 static int
3049 bnxt_ethertype_filter(struct rte_eth_dev *dev,
3050 			enum rte_filter_op filter_op,
3051 			void *arg)
3052 {
3053 	struct bnxt *bp = dev->data->dev_private;
3054 	struct rte_eth_ethertype_filter *efilter =
3055 			(struct rte_eth_ethertype_filter *)arg;
3056 	struct bnxt_filter_info *bfilter, *filter1;
3057 	struct bnxt_vnic_info *vnic, *vnic0;
3058 	int ret;
3059 
3060 	if (filter_op == RTE_ETH_FILTER_NOP)
3061 		return 0;
3062 
3063 	if (arg == NULL) {
3064 		PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
3065 			    filter_op);
3066 		return -EINVAL;
3067 	}
3068 
3069 	vnic0 = BNXT_GET_DEFAULT_VNIC(bp);
3070 	vnic = &bp->vnic_info[efilter->queue];
3071 
3072 	switch (filter_op) {
3073 	case RTE_ETH_FILTER_ADD:
3074 		bnxt_match_and_validate_ether_filter(bp, efilter,
3075 							vnic0, vnic, &ret);
3076 		if (ret < 0)
3077 			return ret;
3078 
3079 		bfilter = bnxt_get_unused_filter(bp);
3080 		if (bfilter == NULL) {
3081 			PMD_DRV_LOG(ERR,
3082 				"Not enough resources for a new filter.\n");
3083 			return -ENOMEM;
3084 		}
3085 		bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
3086 		memcpy(bfilter->l2_addr, efilter->mac_addr.addr_bytes,
3087 		       RTE_ETHER_ADDR_LEN);
3088 		memcpy(bfilter->dst_macaddr, efilter->mac_addr.addr_bytes,
3089 		       RTE_ETHER_ADDR_LEN);
3090 		bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
3091 		bfilter->ethertype = efilter->ether_type;
3092 		bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
3093 
3094 		filter1 = bnxt_get_l2_filter(bp, bfilter, vnic0);
3095 		if (filter1 == NULL) {
3096 			ret = -EINVAL;
3097 			goto cleanup;
3098 		}
3099 		bfilter->enables |=
3100 			HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
3101 		bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
3102 
3103 		bfilter->dst_id = vnic->fw_vnic_id;
3104 
3105 		if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
3106 			bfilter->flags =
3107 				HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
3108 		}
3109 
3110 		ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
3111 		if (ret)
3112 			goto cleanup;
3113 		STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
3114 		break;
3115 	case RTE_ETH_FILTER_DELETE:
3116 		filter1 = bnxt_match_and_validate_ether_filter(bp, efilter,
3117 							vnic0, vnic, &ret);
3118 		if (ret == -EEXIST) {
3119 			ret = bnxt_hwrm_clear_ntuple_filter(bp, filter1);
3120 
3121 			STAILQ_REMOVE(&vnic->filter, filter1, bnxt_filter_info,
3122 				      next);
3123 			bnxt_free_filter(bp, filter1);
3124 		} else if (ret == 0) {
3125 			PMD_DRV_LOG(ERR, "No matching filter found\n");
3126 		}
3127 		break;
3128 	default:
3129 		PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
3130 		ret = -EINVAL;
3131 		goto error;
3132 	}
3133 	return ret;
3134 cleanup:
3135 	bnxt_free_filter(bp, bfilter);
3136 error:
3137 	return ret;
3138 }
3139 
3140 static inline int
3141 parse_ntuple_filter(struct bnxt *bp,
3142 		    struct rte_eth_ntuple_filter *nfilter,
3143 		    struct bnxt_filter_info *bfilter)
3144 {
3145 	uint32_t en = 0;
3146 
3147 	if (nfilter->queue >= bp->rx_nr_rings) {
3148 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", nfilter->queue);
3149 		return -EINVAL;
3150 	}
3151 
3152 	switch (nfilter->dst_port_mask) {
3153 	case UINT16_MAX:
3154 		bfilter->dst_port_mask = -1;
3155 		bfilter->dst_port = nfilter->dst_port;
3156 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT |
3157 			NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
3158 		break;
3159 	default:
3160 		PMD_DRV_LOG(ERR, "invalid dst_port mask.");
3161 		return -EINVAL;
3162 	}
3163 
3164 	bfilter->ip_addr_type = NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
3165 	en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
3166 
3167 	switch (nfilter->proto_mask) {
3168 	case UINT8_MAX:
3169 		if (nfilter->proto == 17) /* IPPROTO_UDP */
3170 			bfilter->ip_protocol = 17;
3171 		else if (nfilter->proto == 6) /* IPPROTO_TCP */
3172 			bfilter->ip_protocol = 6;
3173 		else
3174 			return -EINVAL;
3175 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
3176 		break;
3177 	default:
3178 		PMD_DRV_LOG(ERR, "invalid protocol mask.");
3179 		return -EINVAL;
3180 	}
3181 
3182 	switch (nfilter->dst_ip_mask) {
3183 	case UINT32_MAX:
3184 		bfilter->dst_ipaddr_mask[0] = -1;
3185 		bfilter->dst_ipaddr[0] = nfilter->dst_ip;
3186 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR |
3187 			NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
3188 		break;
3189 	default:
3190 		PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
3191 		return -EINVAL;
3192 	}
3193 
3194 	switch (nfilter->src_ip_mask) {
3195 	case UINT32_MAX:
3196 		bfilter->src_ipaddr_mask[0] = -1;
3197 		bfilter->src_ipaddr[0] = nfilter->src_ip;
3198 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR |
3199 			NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
3200 		break;
3201 	default:
3202 		PMD_DRV_LOG(ERR, "invalid src_ip mask.");
3203 		return -EINVAL;
3204 	}
3205 
3206 	switch (nfilter->src_port_mask) {
3207 	case UINT16_MAX:
3208 		bfilter->src_port_mask = -1;
3209 		bfilter->src_port = nfilter->src_port;
3210 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT |
3211 			NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
3212 		break;
3213 	default:
3214 		PMD_DRV_LOG(ERR, "invalid src_port mask.");
3215 		return -EINVAL;
3216 	}
3217 
3218 	bfilter->enables = en;
3219 	return 0;
3220 }
3221 
3222 static struct bnxt_filter_info*
3223 bnxt_match_ntuple_filter(struct bnxt *bp,
3224 			 struct bnxt_filter_info *bfilter,
3225 			 struct bnxt_vnic_info **mvnic)
3226 {
3227 	struct bnxt_filter_info *mfilter = NULL;
3228 	int i;
3229 
3230 	for (i = bp->nr_vnics - 1; i >= 0; i--) {
3231 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3232 		STAILQ_FOREACH(mfilter, &vnic->filter, next) {
3233 			if (bfilter->src_ipaddr[0] == mfilter->src_ipaddr[0] &&
3234 			    bfilter->src_ipaddr_mask[0] ==
3235 			    mfilter->src_ipaddr_mask[0] &&
3236 			    bfilter->src_port == mfilter->src_port &&
3237 			    bfilter->src_port_mask == mfilter->src_port_mask &&
3238 			    bfilter->dst_ipaddr[0] == mfilter->dst_ipaddr[0] &&
3239 			    bfilter->dst_ipaddr_mask[0] ==
3240 			    mfilter->dst_ipaddr_mask[0] &&
3241 			    bfilter->dst_port == mfilter->dst_port &&
3242 			    bfilter->dst_port_mask == mfilter->dst_port_mask &&
3243 			    bfilter->flags == mfilter->flags &&
3244 			    bfilter->enables == mfilter->enables) {
3245 				if (mvnic)
3246 					*mvnic = vnic;
3247 				return mfilter;
3248 			}
3249 		}
3250 	}
3251 	return NULL;
3252 }
3253 
3254 static int
3255 bnxt_cfg_ntuple_filter(struct bnxt *bp,
3256 		       struct rte_eth_ntuple_filter *nfilter,
3257 		       enum rte_filter_op filter_op)
3258 {
3259 	struct bnxt_filter_info *bfilter, *mfilter, *filter1;
3260 	struct bnxt_vnic_info *vnic, *vnic0, *mvnic;
3261 	int ret;
3262 
3263 	if (nfilter->flags != RTE_5TUPLE_FLAGS) {
3264 		PMD_DRV_LOG(ERR, "only 5tuple is supported.");
3265 		return -EINVAL;
3266 	}
3267 
3268 	if (nfilter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG) {
3269 		PMD_DRV_LOG(ERR, "Ntuple filter: TCP flags not supported\n");
3270 		return -EINVAL;
3271 	}
3272 
3273 	bfilter = bnxt_get_unused_filter(bp);
3274 	if (bfilter == NULL) {
3275 		PMD_DRV_LOG(ERR,
3276 			"Not enough resources for a new filter.\n");
3277 		return -ENOMEM;
3278 	}
3279 	ret = parse_ntuple_filter(bp, nfilter, bfilter);
3280 	if (ret < 0)
3281 		goto free_filter;
3282 
3283 	vnic = &bp->vnic_info[nfilter->queue];
3284 	vnic0 = BNXT_GET_DEFAULT_VNIC(bp);
3285 	filter1 = STAILQ_FIRST(&vnic0->filter);
3286 	if (filter1 == NULL) {
3287 		ret = -EINVAL;
3288 		goto free_filter;
3289 	}
3290 
3291 	bfilter->dst_id = vnic->fw_vnic_id;
3292 	bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
3293 	bfilter->enables |=
3294 		HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
3295 	bfilter->ethertype = 0x800;
3296 	bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
3297 
3298 	mfilter = bnxt_match_ntuple_filter(bp, bfilter, &mvnic);
3299 
3300 	if (mfilter != NULL && filter_op == RTE_ETH_FILTER_ADD &&
3301 	    bfilter->dst_id == mfilter->dst_id) {
3302 		PMD_DRV_LOG(ERR, "filter exists.\n");
3303 		ret = -EEXIST;
3304 		goto free_filter;
3305 	} else if (mfilter != NULL && filter_op == RTE_ETH_FILTER_ADD &&
3306 		   bfilter->dst_id != mfilter->dst_id) {
3307 		mfilter->dst_id = vnic->fw_vnic_id;
3308 		ret = bnxt_hwrm_set_ntuple_filter(bp, mfilter->dst_id, mfilter);
3309 		STAILQ_REMOVE(&mvnic->filter, mfilter, bnxt_filter_info, next);
3310 		STAILQ_INSERT_TAIL(&vnic->filter, mfilter, next);
3311 		PMD_DRV_LOG(ERR, "filter with matching pattern exists.\n");
3312 		PMD_DRV_LOG(ERR, " Updated it to the new destination queue\n");
3313 		goto free_filter;
3314 	}
3315 	if (mfilter == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
3316 		PMD_DRV_LOG(ERR, "filter doesn't exist.");
3317 		ret = -ENOENT;
3318 		goto free_filter;
3319 	}
3320 
3321 	if (filter_op == RTE_ETH_FILTER_ADD) {
3322 		bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
3323 		ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
3324 		if (ret)
3325 			goto free_filter;
3326 		STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
3327 	} else {
3328 		if (mfilter == NULL) {
3329 			/* This should not happen. But for Coverity! */
3330 			ret = -ENOENT;
3331 			goto free_filter;
3332 		}
3333 		ret = bnxt_hwrm_clear_ntuple_filter(bp, mfilter);
3334 
3335 		STAILQ_REMOVE(&vnic->filter, mfilter, bnxt_filter_info, next);
3336 		bnxt_free_filter(bp, mfilter);
3337 		bnxt_free_filter(bp, bfilter);
3338 	}
3339 
3340 	return 0;
3341 free_filter:
3342 	bnxt_free_filter(bp, bfilter);
3343 	return ret;
3344 }
3345 
3346 static int
3347 bnxt_ntuple_filter(struct rte_eth_dev *dev,
3348 			enum rte_filter_op filter_op,
3349 			void *arg)
3350 {
3351 	struct bnxt *bp = dev->data->dev_private;
3352 	int ret;
3353 
3354 	if (filter_op == RTE_ETH_FILTER_NOP)
3355 		return 0;
3356 
3357 	if (arg == NULL) {
3358 		PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
3359 			    filter_op);
3360 		return -EINVAL;
3361 	}
3362 
3363 	switch (filter_op) {
3364 	case RTE_ETH_FILTER_ADD:
3365 		ret = bnxt_cfg_ntuple_filter(bp,
3366 			(struct rte_eth_ntuple_filter *)arg,
3367 			filter_op);
3368 		break;
3369 	case RTE_ETH_FILTER_DELETE:
3370 		ret = bnxt_cfg_ntuple_filter(bp,
3371 			(struct rte_eth_ntuple_filter *)arg,
3372 			filter_op);
3373 		break;
3374 	default:
3375 		PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
3376 		ret = -EINVAL;
3377 		break;
3378 	}
3379 	return ret;
3380 }
3381 
3382 static int
3383 bnxt_parse_fdir_filter(struct bnxt *bp,
3384 		       struct rte_eth_fdir_filter *fdir,
3385 		       struct bnxt_filter_info *filter)
3386 {
3387 	enum rte_fdir_mode fdir_mode =
3388 		bp->eth_dev->data->dev_conf.fdir_conf.mode;
3389 	struct bnxt_vnic_info *vnic0, *vnic;
3390 	struct bnxt_filter_info *filter1;
3391 	uint32_t en = 0;
3392 	int i;
3393 
3394 	if (fdir_mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
3395 		return -EINVAL;
3396 
3397 	filter->l2_ovlan = fdir->input.flow_ext.vlan_tci;
3398 	en |= EM_FLOW_ALLOC_INPUT_EN_OVLAN_VID;
3399 
3400 	switch (fdir->input.flow_type) {
3401 	case RTE_ETH_FLOW_IPV4:
3402 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
3403 		/* FALLTHROUGH */
3404 		filter->src_ipaddr[0] = fdir->input.flow.ip4_flow.src_ip;
3405 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
3406 		filter->dst_ipaddr[0] = fdir->input.flow.ip4_flow.dst_ip;
3407 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
3408 		filter->ip_protocol = fdir->input.flow.ip4_flow.proto;
3409 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
3410 		filter->ip_addr_type =
3411 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
3412 		filter->src_ipaddr_mask[0] = 0xffffffff;
3413 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
3414 		filter->dst_ipaddr_mask[0] = 0xffffffff;
3415 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
3416 		filter->ethertype = 0x800;
3417 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
3418 		break;
3419 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
3420 		filter->src_port = fdir->input.flow.tcp4_flow.src_port;
3421 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
3422 		filter->dst_port = fdir->input.flow.tcp4_flow.dst_port;
3423 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
3424 		filter->dst_port_mask = 0xffff;
3425 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
3426 		filter->src_port_mask = 0xffff;
3427 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
3428 		filter->src_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.src_ip;
3429 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
3430 		filter->dst_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.dst_ip;
3431 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
3432 		filter->ip_protocol = 6;
3433 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
3434 		filter->ip_addr_type =
3435 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
3436 		filter->src_ipaddr_mask[0] = 0xffffffff;
3437 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
3438 		filter->dst_ipaddr_mask[0] = 0xffffffff;
3439 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
3440 		filter->ethertype = 0x800;
3441 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
3442 		break;
3443 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
3444 		filter->src_port = fdir->input.flow.udp4_flow.src_port;
3445 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
3446 		filter->dst_port = fdir->input.flow.udp4_flow.dst_port;
3447 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
3448 		filter->dst_port_mask = 0xffff;
3449 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
3450 		filter->src_port_mask = 0xffff;
3451 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
3452 		filter->src_ipaddr[0] = fdir->input.flow.udp4_flow.ip.src_ip;
3453 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
3454 		filter->dst_ipaddr[0] = fdir->input.flow.udp4_flow.ip.dst_ip;
3455 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
3456 		filter->ip_protocol = 17;
3457 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
3458 		filter->ip_addr_type =
3459 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
3460 		filter->src_ipaddr_mask[0] = 0xffffffff;
3461 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
3462 		filter->dst_ipaddr_mask[0] = 0xffffffff;
3463 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
3464 		filter->ethertype = 0x800;
3465 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
3466 		break;
3467 	case RTE_ETH_FLOW_IPV6:
3468 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
3469 		/* FALLTHROUGH */
3470 		filter->ip_addr_type =
3471 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
3472 		filter->ip_protocol = fdir->input.flow.ipv6_flow.proto;
3473 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
3474 		rte_memcpy(filter->src_ipaddr,
3475 			   fdir->input.flow.ipv6_flow.src_ip, 16);
3476 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
3477 		rte_memcpy(filter->dst_ipaddr,
3478 			   fdir->input.flow.ipv6_flow.dst_ip, 16);
3479 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
3480 		memset(filter->dst_ipaddr_mask, 0xff, 16);
3481 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
3482 		memset(filter->src_ipaddr_mask, 0xff, 16);
3483 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
3484 		filter->ethertype = 0x86dd;
3485 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
3486 		break;
3487 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
3488 		filter->src_port = fdir->input.flow.tcp6_flow.src_port;
3489 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
3490 		filter->dst_port = fdir->input.flow.tcp6_flow.dst_port;
3491 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
3492 		filter->dst_port_mask = 0xffff;
3493 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
3494 		filter->src_port_mask = 0xffff;
3495 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
3496 		filter->ip_addr_type =
3497 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
3498 		filter->ip_protocol = fdir->input.flow.tcp6_flow.ip.proto;
3499 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
3500 		rte_memcpy(filter->src_ipaddr,
3501 			   fdir->input.flow.tcp6_flow.ip.src_ip, 16);
3502 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
3503 		rte_memcpy(filter->dst_ipaddr,
3504 			   fdir->input.flow.tcp6_flow.ip.dst_ip, 16);
3505 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
3506 		memset(filter->dst_ipaddr_mask, 0xff, 16);
3507 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
3508 		memset(filter->src_ipaddr_mask, 0xff, 16);
3509 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
3510 		filter->ethertype = 0x86dd;
3511 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
3512 		break;
3513 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
3514 		filter->src_port = fdir->input.flow.udp6_flow.src_port;
3515 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
3516 		filter->dst_port = fdir->input.flow.udp6_flow.dst_port;
3517 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
3518 		filter->dst_port_mask = 0xffff;
3519 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
3520 		filter->src_port_mask = 0xffff;
3521 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
3522 		filter->ip_addr_type =
3523 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
3524 		filter->ip_protocol = fdir->input.flow.udp6_flow.ip.proto;
3525 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
3526 		rte_memcpy(filter->src_ipaddr,
3527 			   fdir->input.flow.udp6_flow.ip.src_ip, 16);
3528 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
3529 		rte_memcpy(filter->dst_ipaddr,
3530 			   fdir->input.flow.udp6_flow.ip.dst_ip, 16);
3531 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
3532 		memset(filter->dst_ipaddr_mask, 0xff, 16);
3533 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
3534 		memset(filter->src_ipaddr_mask, 0xff, 16);
3535 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
3536 		filter->ethertype = 0x86dd;
3537 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
3538 		break;
3539 	case RTE_ETH_FLOW_L2_PAYLOAD:
3540 		filter->ethertype = fdir->input.flow.l2_flow.ether_type;
3541 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
3542 		break;
3543 	case RTE_ETH_FLOW_VXLAN:
3544 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
3545 			return -EINVAL;
3546 		filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
3547 		filter->tunnel_type =
3548 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
3549 		en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
3550 		break;
3551 	case RTE_ETH_FLOW_NVGRE:
3552 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
3553 			return -EINVAL;
3554 		filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
3555 		filter->tunnel_type =
3556 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_NVGRE;
3557 		en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
3558 		break;
3559 	case RTE_ETH_FLOW_UNKNOWN:
3560 	case RTE_ETH_FLOW_RAW:
3561 	case RTE_ETH_FLOW_FRAG_IPV4:
3562 	case RTE_ETH_FLOW_NONFRAG_IPV4_SCTP:
3563 	case RTE_ETH_FLOW_FRAG_IPV6:
3564 	case RTE_ETH_FLOW_NONFRAG_IPV6_SCTP:
3565 	case RTE_ETH_FLOW_IPV6_EX:
3566 	case RTE_ETH_FLOW_IPV6_TCP_EX:
3567 	case RTE_ETH_FLOW_IPV6_UDP_EX:
3568 	case RTE_ETH_FLOW_GENEVE:
3569 		/* FALLTHROUGH */
3570 	default:
3571 		return -EINVAL;
3572 	}
3573 
3574 	vnic0 = BNXT_GET_DEFAULT_VNIC(bp);
3575 	vnic = &bp->vnic_info[fdir->action.rx_queue];
3576 	if (vnic == NULL) {
3577 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", fdir->action.rx_queue);
3578 		return -EINVAL;
3579 	}
3580 
3581 	if (fdir_mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
3582 		rte_memcpy(filter->dst_macaddr,
3583 			fdir->input.flow.mac_vlan_flow.mac_addr.addr_bytes, 6);
3584 			en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
3585 	}
3586 
3587 	if (fdir->action.behavior == RTE_ETH_FDIR_REJECT) {
3588 		filter->flags = HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
3589 		filter1 = STAILQ_FIRST(&vnic0->filter);
3590 		//filter1 = bnxt_get_l2_filter(bp, filter, vnic0);
3591 	} else {
3592 		filter->dst_id = vnic->fw_vnic_id;
3593 		for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
3594 			if (filter->dst_macaddr[i] == 0x00)
3595 				filter1 = STAILQ_FIRST(&vnic0->filter);
3596 			else
3597 				filter1 = bnxt_get_l2_filter(bp, filter, vnic);
3598 	}
3599 
3600 	if (filter1 == NULL)
3601 		return -EINVAL;
3602 
3603 	en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
3604 	filter->fw_l2_filter_id = filter1->fw_l2_filter_id;
3605 
3606 	filter->enables = en;
3607 
3608 	return 0;
3609 }
3610 
3611 static struct bnxt_filter_info *
3612 bnxt_match_fdir(struct bnxt *bp, struct bnxt_filter_info *nf,
3613 		struct bnxt_vnic_info **mvnic)
3614 {
3615 	struct bnxt_filter_info *mf = NULL;
3616 	int i;
3617 
3618 	for (i = bp->nr_vnics - 1; i >= 0; i--) {
3619 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3620 
3621 		STAILQ_FOREACH(mf, &vnic->filter, next) {
3622 			if (mf->filter_type == nf->filter_type &&
3623 			    mf->flags == nf->flags &&
3624 			    mf->src_port == nf->src_port &&
3625 			    mf->src_port_mask == nf->src_port_mask &&
3626 			    mf->dst_port == nf->dst_port &&
3627 			    mf->dst_port_mask == nf->dst_port_mask &&
3628 			    mf->ip_protocol == nf->ip_protocol &&
3629 			    mf->ip_addr_type == nf->ip_addr_type &&
3630 			    mf->ethertype == nf->ethertype &&
3631 			    mf->vni == nf->vni &&
3632 			    mf->tunnel_type == nf->tunnel_type &&
3633 			    mf->l2_ovlan == nf->l2_ovlan &&
3634 			    mf->l2_ovlan_mask == nf->l2_ovlan_mask &&
3635 			    mf->l2_ivlan == nf->l2_ivlan &&
3636 			    mf->l2_ivlan_mask == nf->l2_ivlan_mask &&
3637 			    !memcmp(mf->l2_addr, nf->l2_addr,
3638 				    RTE_ETHER_ADDR_LEN) &&
3639 			    !memcmp(mf->l2_addr_mask, nf->l2_addr_mask,
3640 				    RTE_ETHER_ADDR_LEN) &&
3641 			    !memcmp(mf->src_macaddr, nf->src_macaddr,
3642 				    RTE_ETHER_ADDR_LEN) &&
3643 			    !memcmp(mf->dst_macaddr, nf->dst_macaddr,
3644 				    RTE_ETHER_ADDR_LEN) &&
3645 			    !memcmp(mf->src_ipaddr, nf->src_ipaddr,
3646 				    sizeof(nf->src_ipaddr)) &&
3647 			    !memcmp(mf->src_ipaddr_mask, nf->src_ipaddr_mask,
3648 				    sizeof(nf->src_ipaddr_mask)) &&
3649 			    !memcmp(mf->dst_ipaddr, nf->dst_ipaddr,
3650 				    sizeof(nf->dst_ipaddr)) &&
3651 			    !memcmp(mf->dst_ipaddr_mask, nf->dst_ipaddr_mask,
3652 				    sizeof(nf->dst_ipaddr_mask))) {
3653 				if (mvnic)
3654 					*mvnic = vnic;
3655 				return mf;
3656 			}
3657 		}
3658 	}
3659 	return NULL;
3660 }
3661 
3662 static int
3663 bnxt_fdir_filter(struct rte_eth_dev *dev,
3664 		 enum rte_filter_op filter_op,
3665 		 void *arg)
3666 {
3667 	struct bnxt *bp = dev->data->dev_private;
3668 	struct rte_eth_fdir_filter *fdir  = (struct rte_eth_fdir_filter *)arg;
3669 	struct bnxt_filter_info *filter, *match;
3670 	struct bnxt_vnic_info *vnic, *mvnic;
3671 	int ret = 0, i;
3672 
3673 	if (filter_op == RTE_ETH_FILTER_NOP)
3674 		return 0;
3675 
3676 	if (arg == NULL && filter_op != RTE_ETH_FILTER_FLUSH)
3677 		return -EINVAL;
3678 
3679 	switch (filter_op) {
3680 	case RTE_ETH_FILTER_ADD:
3681 	case RTE_ETH_FILTER_DELETE:
3682 		/* FALLTHROUGH */
3683 		filter = bnxt_get_unused_filter(bp);
3684 		if (filter == NULL) {
3685 			PMD_DRV_LOG(ERR,
3686 				"Not enough resources for a new flow.\n");
3687 			return -ENOMEM;
3688 		}
3689 
3690 		ret = bnxt_parse_fdir_filter(bp, fdir, filter);
3691 		if (ret != 0)
3692 			goto free_filter;
3693 		filter->filter_type = HWRM_CFA_NTUPLE_FILTER;
3694 
3695 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
3696 			vnic = &bp->vnic_info[0];
3697 		else
3698 			vnic = &bp->vnic_info[fdir->action.rx_queue];
3699 
3700 		match = bnxt_match_fdir(bp, filter, &mvnic);
3701 		if (match != NULL && filter_op == RTE_ETH_FILTER_ADD) {
3702 			if (match->dst_id == vnic->fw_vnic_id) {
3703 				PMD_DRV_LOG(ERR, "Flow already exists.\n");
3704 				ret = -EEXIST;
3705 				goto free_filter;
3706 			} else {
3707 				match->dst_id = vnic->fw_vnic_id;
3708 				ret = bnxt_hwrm_set_ntuple_filter(bp,
3709 								  match->dst_id,
3710 								  match);
3711 				STAILQ_REMOVE(&mvnic->filter, match,
3712 					      bnxt_filter_info, next);
3713 				STAILQ_INSERT_TAIL(&vnic->filter, match, next);
3714 				PMD_DRV_LOG(ERR,
3715 					"Filter with matching pattern exist\n");
3716 				PMD_DRV_LOG(ERR,
3717 					"Updated it to new destination q\n");
3718 				goto free_filter;
3719 			}
3720 		}
3721 		if (match == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
3722 			PMD_DRV_LOG(ERR, "Flow does not exist.\n");
3723 			ret = -ENOENT;
3724 			goto free_filter;
3725 		}
3726 
3727 		if (filter_op == RTE_ETH_FILTER_ADD) {
3728 			ret = bnxt_hwrm_set_ntuple_filter(bp,
3729 							  filter->dst_id,
3730 							  filter);
3731 			if (ret)
3732 				goto free_filter;
3733 			STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
3734 		} else {
3735 			ret = bnxt_hwrm_clear_ntuple_filter(bp, match);
3736 			STAILQ_REMOVE(&vnic->filter, match,
3737 				      bnxt_filter_info, next);
3738 			bnxt_free_filter(bp, match);
3739 			bnxt_free_filter(bp, filter);
3740 		}
3741 		break;
3742 	case RTE_ETH_FILTER_FLUSH:
3743 		for (i = bp->nr_vnics - 1; i >= 0; i--) {
3744 			struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3745 
3746 			STAILQ_FOREACH(filter, &vnic->filter, next) {
3747 				if (filter->filter_type ==
3748 				    HWRM_CFA_NTUPLE_FILTER) {
3749 					ret =
3750 					bnxt_hwrm_clear_ntuple_filter(bp,
3751 								      filter);
3752 					STAILQ_REMOVE(&vnic->filter, filter,
3753 						      bnxt_filter_info, next);
3754 				}
3755 			}
3756 		}
3757 		return ret;
3758 	case RTE_ETH_FILTER_UPDATE:
3759 	case RTE_ETH_FILTER_STATS:
3760 	case RTE_ETH_FILTER_INFO:
3761 		PMD_DRV_LOG(ERR, "operation %u not implemented", filter_op);
3762 		break;
3763 	default:
3764 		PMD_DRV_LOG(ERR, "unknown operation %u", filter_op);
3765 		ret = -EINVAL;
3766 		break;
3767 	}
3768 	return ret;
3769 
3770 free_filter:
3771 	bnxt_free_filter(bp, filter);
3772 	return ret;
3773 }
3774 
3775 int
3776 bnxt_filter_ctrl_op(struct rte_eth_dev *dev,
3777 		    enum rte_filter_type filter_type,
3778 		    enum rte_filter_op filter_op, void *arg)
3779 {
3780 	struct bnxt *bp = dev->data->dev_private;
3781 	int ret = 0;
3782 
3783 	if (!bp)
3784 		return -EIO;
3785 
3786 	if (BNXT_ETH_DEV_IS_REPRESENTOR(dev)) {
3787 		struct bnxt_representor *vfr = dev->data->dev_private;
3788 		bp = vfr->parent_dev->data->dev_private;
3789 		/* parent is deleted while children are still valid */
3790 		if (!bp) {
3791 			PMD_DRV_LOG(DEBUG, "BNXT Port:%d VFR Error %d:%d\n",
3792 				    dev->data->port_id,
3793 				    filter_type,
3794 				    filter_op);
3795 			return -EIO;
3796 		}
3797 	}
3798 
3799 	ret = is_bnxt_in_error(bp);
3800 	if (ret)
3801 		return ret;
3802 
3803 	switch (filter_type) {
3804 	case RTE_ETH_FILTER_TUNNEL:
3805 		PMD_DRV_LOG(ERR,
3806 			"filter type: %d: To be implemented\n", filter_type);
3807 		break;
3808 	case RTE_ETH_FILTER_FDIR:
3809 		ret = bnxt_fdir_filter(dev, filter_op, arg);
3810 		break;
3811 	case RTE_ETH_FILTER_NTUPLE:
3812 		ret = bnxt_ntuple_filter(dev, filter_op, arg);
3813 		break;
3814 	case RTE_ETH_FILTER_ETHERTYPE:
3815 		ret = bnxt_ethertype_filter(dev, filter_op, arg);
3816 		break;
3817 	case RTE_ETH_FILTER_GENERIC:
3818 		if (filter_op != RTE_ETH_FILTER_GET)
3819 			return -EINVAL;
3820 		if (BNXT_TRUFLOW_EN(bp))
3821 			*(const void **)arg = &bnxt_ulp_rte_flow_ops;
3822 		else
3823 			*(const void **)arg = &bnxt_flow_ops;
3824 		break;
3825 	default:
3826 		PMD_DRV_LOG(ERR,
3827 			"Filter type (%d) not supported", filter_type);
3828 		ret = -EINVAL;
3829 		break;
3830 	}
3831 	return ret;
3832 }
3833 
3834 static const uint32_t *
3835 bnxt_dev_supported_ptypes_get_op(struct rte_eth_dev *dev)
3836 {
3837 	static const uint32_t ptypes[] = {
3838 		RTE_PTYPE_L2_ETHER_VLAN,
3839 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
3840 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
3841 		RTE_PTYPE_L4_ICMP,
3842 		RTE_PTYPE_L4_TCP,
3843 		RTE_PTYPE_L4_UDP,
3844 		RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
3845 		RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
3846 		RTE_PTYPE_INNER_L4_ICMP,
3847 		RTE_PTYPE_INNER_L4_TCP,
3848 		RTE_PTYPE_INNER_L4_UDP,
3849 		RTE_PTYPE_UNKNOWN
3850 	};
3851 
3852 	if (!dev->rx_pkt_burst)
3853 		return NULL;
3854 
3855 	return ptypes;
3856 }
3857 
3858 static int bnxt_map_regs(struct bnxt *bp, uint32_t *reg_arr, int count,
3859 			 int reg_win)
3860 {
3861 	uint32_t reg_base = *reg_arr & 0xfffff000;
3862 	uint32_t win_off;
3863 	int i;
3864 
3865 	for (i = 0; i < count; i++) {
3866 		if ((reg_arr[i] & 0xfffff000) != reg_base)
3867 			return -ERANGE;
3868 	}
3869 	win_off = BNXT_GRCPF_REG_WINDOW_BASE_OUT + (reg_win - 1) * 4;
3870 	rte_write32(reg_base, (uint8_t *)bp->bar0 + win_off);
3871 	return 0;
3872 }
3873 
3874 static int bnxt_map_ptp_regs(struct bnxt *bp)
3875 {
3876 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3877 	uint32_t *reg_arr;
3878 	int rc, i;
3879 
3880 	reg_arr = ptp->rx_regs;
3881 	rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_RX_REGS, 5);
3882 	if (rc)
3883 		return rc;
3884 
3885 	reg_arr = ptp->tx_regs;
3886 	rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_TX_REGS, 6);
3887 	if (rc)
3888 		return rc;
3889 
3890 	for (i = 0; i < BNXT_PTP_RX_REGS; i++)
3891 		ptp->rx_mapped_regs[i] = 0x5000 + (ptp->rx_regs[i] & 0xfff);
3892 
3893 	for (i = 0; i < BNXT_PTP_TX_REGS; i++)
3894 		ptp->tx_mapped_regs[i] = 0x6000 + (ptp->tx_regs[i] & 0xfff);
3895 
3896 	return 0;
3897 }
3898 
3899 static void bnxt_unmap_ptp_regs(struct bnxt *bp)
3900 {
3901 	rte_write32(0, (uint8_t *)bp->bar0 +
3902 			 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 16);
3903 	rte_write32(0, (uint8_t *)bp->bar0 +
3904 			 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 20);
3905 }
3906 
3907 static uint64_t bnxt_cc_read(struct bnxt *bp)
3908 {
3909 	uint64_t ns;
3910 
3911 	ns = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3912 			      BNXT_GRCPF_REG_SYNC_TIME));
3913 	ns |= (uint64_t)(rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3914 					  BNXT_GRCPF_REG_SYNC_TIME + 4))) << 32;
3915 	return ns;
3916 }
3917 
3918 static int bnxt_get_tx_ts(struct bnxt *bp, uint64_t *ts)
3919 {
3920 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3921 	uint32_t fifo;
3922 
3923 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3924 				ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
3925 	if (fifo & BNXT_PTP_TX_FIFO_EMPTY)
3926 		return -EAGAIN;
3927 
3928 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3929 				ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
3930 	*ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3931 				ptp->tx_mapped_regs[BNXT_PTP_TX_TS_L]));
3932 	*ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3933 				ptp->tx_mapped_regs[BNXT_PTP_TX_TS_H])) << 32;
3934 
3935 	return 0;
3936 }
3937 
3938 static int bnxt_get_rx_ts(struct bnxt *bp, uint64_t *ts)
3939 {
3940 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3941 	struct bnxt_pf_info *pf = bp->pf;
3942 	uint16_t port_id;
3943 	uint32_t fifo;
3944 
3945 	if (!ptp)
3946 		return -ENODEV;
3947 
3948 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3949 				ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
3950 	if (!(fifo & BNXT_PTP_RX_FIFO_PENDING))
3951 		return -EAGAIN;
3952 
3953 	port_id = pf->port_id;
3954 	rte_write32(1 << port_id, (uint8_t *)bp->bar0 +
3955 	       ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO_ADV]);
3956 
3957 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3958 				   ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
3959 	if (fifo & BNXT_PTP_RX_FIFO_PENDING) {
3960 /*		bnxt_clr_rx_ts(bp);	  TBD  */
3961 		return -EBUSY;
3962 	}
3963 
3964 	*ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3965 				ptp->rx_mapped_regs[BNXT_PTP_RX_TS_L]));
3966 	*ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3967 				ptp->rx_mapped_regs[BNXT_PTP_RX_TS_H])) << 32;
3968 
3969 	return 0;
3970 }
3971 
3972 static int
3973 bnxt_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
3974 {
3975 	uint64_t ns;
3976 	struct bnxt *bp = dev->data->dev_private;
3977 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3978 
3979 	if (!ptp)
3980 		return 0;
3981 
3982 	ns = rte_timespec_to_ns(ts);
3983 	/* Set the timecounters to a new value. */
3984 	ptp->tc.nsec = ns;
3985 
3986 	return 0;
3987 }
3988 
3989 static int
3990 bnxt_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
3991 {
3992 	struct bnxt *bp = dev->data->dev_private;
3993 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3994 	uint64_t ns, systime_cycles = 0;
3995 	int rc = 0;
3996 
3997 	if (!ptp)
3998 		return 0;
3999 
4000 	if (BNXT_CHIP_THOR(bp))
4001 		rc = bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME,
4002 					     &systime_cycles);
4003 	else
4004 		systime_cycles = bnxt_cc_read(bp);
4005 
4006 	ns = rte_timecounter_update(&ptp->tc, systime_cycles);
4007 	*ts = rte_ns_to_timespec(ns);
4008 
4009 	return rc;
4010 }
4011 static int
4012 bnxt_timesync_enable(struct rte_eth_dev *dev)
4013 {
4014 	struct bnxt *bp = dev->data->dev_private;
4015 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
4016 	uint32_t shift = 0;
4017 	int rc;
4018 
4019 	if (!ptp)
4020 		return 0;
4021 
4022 	ptp->rx_filter = 1;
4023 	ptp->tx_tstamp_en = 1;
4024 	ptp->rxctl = BNXT_PTP_MSG_EVENTS;
4025 
4026 	rc = bnxt_hwrm_ptp_cfg(bp);
4027 	if (rc)
4028 		return rc;
4029 
4030 	memset(&ptp->tc, 0, sizeof(struct rte_timecounter));
4031 	memset(&ptp->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
4032 	memset(&ptp->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
4033 
4034 	ptp->tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
4035 	ptp->tc.cc_shift = shift;
4036 	ptp->tc.nsec_mask = (1ULL << shift) - 1;
4037 
4038 	ptp->rx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
4039 	ptp->rx_tstamp_tc.cc_shift = shift;
4040 	ptp->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
4041 
4042 	ptp->tx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
4043 	ptp->tx_tstamp_tc.cc_shift = shift;
4044 	ptp->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
4045 
4046 	if (!BNXT_CHIP_THOR(bp))
4047 		bnxt_map_ptp_regs(bp);
4048 
4049 	return 0;
4050 }
4051 
4052 static int
4053 bnxt_timesync_disable(struct rte_eth_dev *dev)
4054 {
4055 	struct bnxt *bp = dev->data->dev_private;
4056 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
4057 
4058 	if (!ptp)
4059 		return 0;
4060 
4061 	ptp->rx_filter = 0;
4062 	ptp->tx_tstamp_en = 0;
4063 	ptp->rxctl = 0;
4064 
4065 	bnxt_hwrm_ptp_cfg(bp);
4066 
4067 	if (!BNXT_CHIP_THOR(bp))
4068 		bnxt_unmap_ptp_regs(bp);
4069 
4070 	return 0;
4071 }
4072 
4073 static int
4074 bnxt_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
4075 				 struct timespec *timestamp,
4076 				 uint32_t flags __rte_unused)
4077 {
4078 	struct bnxt *bp = dev->data->dev_private;
4079 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
4080 	uint64_t rx_tstamp_cycles = 0;
4081 	uint64_t ns;
4082 
4083 	if (!ptp)
4084 		return 0;
4085 
4086 	if (BNXT_CHIP_THOR(bp))
4087 		rx_tstamp_cycles = ptp->rx_timestamp;
4088 	else
4089 		bnxt_get_rx_ts(bp, &rx_tstamp_cycles);
4090 
4091 	ns = rte_timecounter_update(&ptp->rx_tstamp_tc, rx_tstamp_cycles);
4092 	*timestamp = rte_ns_to_timespec(ns);
4093 	return  0;
4094 }
4095 
4096 static int
4097 bnxt_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
4098 				 struct timespec *timestamp)
4099 {
4100 	struct bnxt *bp = dev->data->dev_private;
4101 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
4102 	uint64_t tx_tstamp_cycles = 0;
4103 	uint64_t ns;
4104 	int rc = 0;
4105 
4106 	if (!ptp)
4107 		return 0;
4108 
4109 	if (BNXT_CHIP_THOR(bp))
4110 		rc = bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_PATH_TX,
4111 					     &tx_tstamp_cycles);
4112 	else
4113 		rc = bnxt_get_tx_ts(bp, &tx_tstamp_cycles);
4114 
4115 	ns = rte_timecounter_update(&ptp->tx_tstamp_tc, tx_tstamp_cycles);
4116 	*timestamp = rte_ns_to_timespec(ns);
4117 
4118 	return rc;
4119 }
4120 
4121 static int
4122 bnxt_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
4123 {
4124 	struct bnxt *bp = dev->data->dev_private;
4125 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
4126 
4127 	if (!ptp)
4128 		return 0;
4129 
4130 	ptp->tc.nsec += delta;
4131 
4132 	return 0;
4133 }
4134 
4135 static int
4136 bnxt_get_eeprom_length_op(struct rte_eth_dev *dev)
4137 {
4138 	struct bnxt *bp = dev->data->dev_private;
4139 	int rc;
4140 	uint32_t dir_entries;
4141 	uint32_t entry_length;
4142 
4143 	rc = is_bnxt_in_error(bp);
4144 	if (rc)
4145 		return rc;
4146 
4147 	PMD_DRV_LOG(INFO, PCI_PRI_FMT "\n",
4148 		    bp->pdev->addr.domain, bp->pdev->addr.bus,
4149 		    bp->pdev->addr.devid, bp->pdev->addr.function);
4150 
4151 	rc = bnxt_hwrm_nvm_get_dir_info(bp, &dir_entries, &entry_length);
4152 	if (rc != 0)
4153 		return rc;
4154 
4155 	return dir_entries * entry_length;
4156 }
4157 
4158 static int
4159 bnxt_get_eeprom_op(struct rte_eth_dev *dev,
4160 		struct rte_dev_eeprom_info *in_eeprom)
4161 {
4162 	struct bnxt *bp = dev->data->dev_private;
4163 	uint32_t index;
4164 	uint32_t offset;
4165 	int rc;
4166 
4167 	rc = is_bnxt_in_error(bp);
4168 	if (rc)
4169 		return rc;
4170 
4171 	PMD_DRV_LOG(INFO, PCI_PRI_FMT " in_eeprom->offset = %d len = %d\n",
4172 		    bp->pdev->addr.domain, bp->pdev->addr.bus,
4173 		    bp->pdev->addr.devid, bp->pdev->addr.function,
4174 		    in_eeprom->offset, in_eeprom->length);
4175 
4176 	if (in_eeprom->offset == 0) /* special offset value to get directory */
4177 		return bnxt_get_nvram_directory(bp, in_eeprom->length,
4178 						in_eeprom->data);
4179 
4180 	index = in_eeprom->offset >> 24;
4181 	offset = in_eeprom->offset & 0xffffff;
4182 
4183 	if (index != 0)
4184 		return bnxt_hwrm_get_nvram_item(bp, index - 1, offset,
4185 					   in_eeprom->length, in_eeprom->data);
4186 
4187 	return 0;
4188 }
4189 
4190 static bool bnxt_dir_type_is_ape_bin_format(uint16_t dir_type)
4191 {
4192 	switch (dir_type) {
4193 	case BNX_DIR_TYPE_CHIMP_PATCH:
4194 	case BNX_DIR_TYPE_BOOTCODE:
4195 	case BNX_DIR_TYPE_BOOTCODE_2:
4196 	case BNX_DIR_TYPE_APE_FW:
4197 	case BNX_DIR_TYPE_APE_PATCH:
4198 	case BNX_DIR_TYPE_KONG_FW:
4199 	case BNX_DIR_TYPE_KONG_PATCH:
4200 	case BNX_DIR_TYPE_BONO_FW:
4201 	case BNX_DIR_TYPE_BONO_PATCH:
4202 		/* FALLTHROUGH */
4203 		return true;
4204 	}
4205 
4206 	return false;
4207 }
4208 
4209 static bool bnxt_dir_type_is_other_exec_format(uint16_t dir_type)
4210 {
4211 	switch (dir_type) {
4212 	case BNX_DIR_TYPE_AVS:
4213 	case BNX_DIR_TYPE_EXP_ROM_MBA:
4214 	case BNX_DIR_TYPE_PCIE:
4215 	case BNX_DIR_TYPE_TSCF_UCODE:
4216 	case BNX_DIR_TYPE_EXT_PHY:
4217 	case BNX_DIR_TYPE_CCM:
4218 	case BNX_DIR_TYPE_ISCSI_BOOT:
4219 	case BNX_DIR_TYPE_ISCSI_BOOT_IPV6:
4220 	case BNX_DIR_TYPE_ISCSI_BOOT_IPV4N6:
4221 		/* FALLTHROUGH */
4222 		return true;
4223 	}
4224 
4225 	return false;
4226 }
4227 
4228 static bool bnxt_dir_type_is_executable(uint16_t dir_type)
4229 {
4230 	return bnxt_dir_type_is_ape_bin_format(dir_type) ||
4231 		bnxt_dir_type_is_other_exec_format(dir_type);
4232 }
4233 
4234 static int
4235 bnxt_set_eeprom_op(struct rte_eth_dev *dev,
4236 		struct rte_dev_eeprom_info *in_eeprom)
4237 {
4238 	struct bnxt *bp = dev->data->dev_private;
4239 	uint8_t index, dir_op;
4240 	uint16_t type, ext, ordinal, attr;
4241 	int rc;
4242 
4243 	rc = is_bnxt_in_error(bp);
4244 	if (rc)
4245 		return rc;
4246 
4247 	PMD_DRV_LOG(INFO, PCI_PRI_FMT " in_eeprom->offset = %d len = %d\n",
4248 		    bp->pdev->addr.domain, bp->pdev->addr.bus,
4249 		    bp->pdev->addr.devid, bp->pdev->addr.function,
4250 		    in_eeprom->offset, in_eeprom->length);
4251 
4252 	if (!BNXT_PF(bp)) {
4253 		PMD_DRV_LOG(ERR, "NVM write not supported from a VF\n");
4254 		return -EINVAL;
4255 	}
4256 
4257 	type = in_eeprom->magic >> 16;
4258 
4259 	if (type == 0xffff) { /* special value for directory operations */
4260 		index = in_eeprom->magic & 0xff;
4261 		dir_op = in_eeprom->magic >> 8;
4262 		if (index == 0)
4263 			return -EINVAL;
4264 		switch (dir_op) {
4265 		case 0x0e: /* erase */
4266 			if (in_eeprom->offset != ~in_eeprom->magic)
4267 				return -EINVAL;
4268 			return bnxt_hwrm_erase_nvram_directory(bp, index - 1);
4269 		default:
4270 			return -EINVAL;
4271 		}
4272 	}
4273 
4274 	/* Create or re-write an NVM item: */
4275 	if (bnxt_dir_type_is_executable(type) == true)
4276 		return -EOPNOTSUPP;
4277 	ext = in_eeprom->magic & 0xffff;
4278 	ordinal = in_eeprom->offset >> 16;
4279 	attr = in_eeprom->offset & 0xffff;
4280 
4281 	return bnxt_hwrm_flash_nvram(bp, type, ordinal, ext, attr,
4282 				     in_eeprom->data, in_eeprom->length);
4283 }
4284 
4285 /*
4286  * Initialization
4287  */
4288 
4289 static const struct eth_dev_ops bnxt_dev_ops = {
4290 	.dev_infos_get = bnxt_dev_info_get_op,
4291 	.dev_close = bnxt_dev_close_op,
4292 	.dev_configure = bnxt_dev_configure_op,
4293 	.dev_start = bnxt_dev_start_op,
4294 	.dev_stop = bnxt_dev_stop_op,
4295 	.dev_set_link_up = bnxt_dev_set_link_up_op,
4296 	.dev_set_link_down = bnxt_dev_set_link_down_op,
4297 	.stats_get = bnxt_stats_get_op,
4298 	.stats_reset = bnxt_stats_reset_op,
4299 	.rx_queue_setup = bnxt_rx_queue_setup_op,
4300 	.rx_queue_release = bnxt_rx_queue_release_op,
4301 	.tx_queue_setup = bnxt_tx_queue_setup_op,
4302 	.tx_queue_release = bnxt_tx_queue_release_op,
4303 	.rx_queue_intr_enable = bnxt_rx_queue_intr_enable_op,
4304 	.rx_queue_intr_disable = bnxt_rx_queue_intr_disable_op,
4305 	.reta_update = bnxt_reta_update_op,
4306 	.reta_query = bnxt_reta_query_op,
4307 	.rss_hash_update = bnxt_rss_hash_update_op,
4308 	.rss_hash_conf_get = bnxt_rss_hash_conf_get_op,
4309 	.link_update = bnxt_link_update_op,
4310 	.promiscuous_enable = bnxt_promiscuous_enable_op,
4311 	.promiscuous_disable = bnxt_promiscuous_disable_op,
4312 	.allmulticast_enable = bnxt_allmulticast_enable_op,
4313 	.allmulticast_disable = bnxt_allmulticast_disable_op,
4314 	.mac_addr_add = bnxt_mac_addr_add_op,
4315 	.mac_addr_remove = bnxt_mac_addr_remove_op,
4316 	.flow_ctrl_get = bnxt_flow_ctrl_get_op,
4317 	.flow_ctrl_set = bnxt_flow_ctrl_set_op,
4318 	.udp_tunnel_port_add  = bnxt_udp_tunnel_port_add_op,
4319 	.udp_tunnel_port_del  = bnxt_udp_tunnel_port_del_op,
4320 	.vlan_filter_set = bnxt_vlan_filter_set_op,
4321 	.vlan_offload_set = bnxt_vlan_offload_set_op,
4322 	.vlan_tpid_set = bnxt_vlan_tpid_set_op,
4323 	.vlan_pvid_set = bnxt_vlan_pvid_set_op,
4324 	.mtu_set = bnxt_mtu_set_op,
4325 	.mac_addr_set = bnxt_set_default_mac_addr_op,
4326 	.xstats_get = bnxt_dev_xstats_get_op,
4327 	.xstats_get_names = bnxt_dev_xstats_get_names_op,
4328 	.xstats_reset = bnxt_dev_xstats_reset_op,
4329 	.fw_version_get = bnxt_fw_version_get,
4330 	.set_mc_addr_list = bnxt_dev_set_mc_addr_list_op,
4331 	.rxq_info_get = bnxt_rxq_info_get_op,
4332 	.txq_info_get = bnxt_txq_info_get_op,
4333 	.rx_burst_mode_get = bnxt_rx_burst_mode_get,
4334 	.tx_burst_mode_get = bnxt_tx_burst_mode_get,
4335 	.dev_led_on = bnxt_dev_led_on_op,
4336 	.dev_led_off = bnxt_dev_led_off_op,
4337 	.xstats_get_by_id = bnxt_dev_xstats_get_by_id_op,
4338 	.xstats_get_names_by_id = bnxt_dev_xstats_get_names_by_id_op,
4339 	.rx_queue_start = bnxt_rx_queue_start,
4340 	.rx_queue_stop = bnxt_rx_queue_stop,
4341 	.tx_queue_start = bnxt_tx_queue_start,
4342 	.tx_queue_stop = bnxt_tx_queue_stop,
4343 	.filter_ctrl = bnxt_filter_ctrl_op,
4344 	.dev_supported_ptypes_get = bnxt_dev_supported_ptypes_get_op,
4345 	.get_eeprom_length    = bnxt_get_eeprom_length_op,
4346 	.get_eeprom           = bnxt_get_eeprom_op,
4347 	.set_eeprom           = bnxt_set_eeprom_op,
4348 	.timesync_enable      = bnxt_timesync_enable,
4349 	.timesync_disable     = bnxt_timesync_disable,
4350 	.timesync_read_time   = bnxt_timesync_read_time,
4351 	.timesync_write_time   = bnxt_timesync_write_time,
4352 	.timesync_adjust_time = bnxt_timesync_adjust_time,
4353 	.timesync_read_rx_timestamp = bnxt_timesync_read_rx_timestamp,
4354 	.timesync_read_tx_timestamp = bnxt_timesync_read_tx_timestamp,
4355 };
4356 
4357 static uint32_t bnxt_map_reset_regs(struct bnxt *bp, uint32_t reg)
4358 {
4359 	uint32_t offset;
4360 
4361 	/* Only pre-map the reset GRC registers using window 3 */
4362 	rte_write32(reg & 0xfffff000, (uint8_t *)bp->bar0 +
4363 		    BNXT_GRCPF_REG_WINDOW_BASE_OUT + 8);
4364 
4365 	offset = BNXT_GRCP_WINDOW_3_BASE + (reg & 0xffc);
4366 
4367 	return offset;
4368 }
4369 
4370 int bnxt_map_fw_health_status_regs(struct bnxt *bp)
4371 {
4372 	struct bnxt_error_recovery_info *info = bp->recovery_info;
4373 	uint32_t reg_base = 0xffffffff;
4374 	int i;
4375 
4376 	/* Only pre-map the monitoring GRC registers using window 2 */
4377 	for (i = 0; i < BNXT_FW_STATUS_REG_CNT; i++) {
4378 		uint32_t reg = info->status_regs[i];
4379 
4380 		if (BNXT_FW_STATUS_REG_TYPE(reg) != BNXT_FW_STATUS_REG_TYPE_GRC)
4381 			continue;
4382 
4383 		if (reg_base == 0xffffffff)
4384 			reg_base = reg & 0xfffff000;
4385 		if ((reg & 0xfffff000) != reg_base)
4386 			return -ERANGE;
4387 
4388 		/* Use mask 0xffc as the Lower 2 bits indicates
4389 		 * address space location
4390 		 */
4391 		info->mapped_status_regs[i] = BNXT_GRCP_WINDOW_2_BASE +
4392 						(reg & 0xffc);
4393 	}
4394 
4395 	if (reg_base == 0xffffffff)
4396 		return 0;
4397 
4398 	rte_write32(reg_base, (uint8_t *)bp->bar0 +
4399 		    BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
4400 
4401 	return 0;
4402 }
4403 
4404 static void bnxt_write_fw_reset_reg(struct bnxt *bp, uint32_t index)
4405 {
4406 	struct bnxt_error_recovery_info *info = bp->recovery_info;
4407 	uint32_t delay = info->delay_after_reset[index];
4408 	uint32_t val = info->reset_reg_val[index];
4409 	uint32_t reg = info->reset_reg[index];
4410 	uint32_t type, offset;
4411 
4412 	type = BNXT_FW_STATUS_REG_TYPE(reg);
4413 	offset = BNXT_FW_STATUS_REG_OFF(reg);
4414 
4415 	switch (type) {
4416 	case BNXT_FW_STATUS_REG_TYPE_CFG:
4417 		rte_pci_write_config(bp->pdev, &val, sizeof(val), offset);
4418 		break;
4419 	case BNXT_FW_STATUS_REG_TYPE_GRC:
4420 		offset = bnxt_map_reset_regs(bp, offset);
4421 		rte_write32(val, (uint8_t *)bp->bar0 + offset);
4422 		break;
4423 	case BNXT_FW_STATUS_REG_TYPE_BAR0:
4424 		rte_write32(val, (uint8_t *)bp->bar0 + offset);
4425 		break;
4426 	}
4427 	/* wait on a specific interval of time until core reset is complete */
4428 	if (delay)
4429 		rte_delay_ms(delay);
4430 }
4431 
4432 static void bnxt_dev_cleanup(struct bnxt *bp)
4433 {
4434 	bp->eth_dev->data->dev_link.link_status = 0;
4435 	bp->link_info->link_up = 0;
4436 	if (bp->eth_dev->data->dev_started)
4437 		bnxt_dev_stop_op(bp->eth_dev);
4438 
4439 	bnxt_uninit_resources(bp, true);
4440 }
4441 
4442 static int bnxt_restore_vlan_filters(struct bnxt *bp)
4443 {
4444 	struct rte_eth_dev *dev = bp->eth_dev;
4445 	struct rte_vlan_filter_conf *vfc;
4446 	int vidx, vbit, rc;
4447 	uint16_t vlan_id;
4448 
4449 	for (vlan_id = 1; vlan_id <= RTE_ETHER_MAX_VLAN_ID; vlan_id++) {
4450 		vfc = &dev->data->vlan_filter_conf;
4451 		vidx = vlan_id / 64;
4452 		vbit = vlan_id % 64;
4453 
4454 		/* Each bit corresponds to a VLAN id */
4455 		if (vfc->ids[vidx] & (UINT64_C(1) << vbit)) {
4456 			rc = bnxt_add_vlan_filter(bp, vlan_id);
4457 			if (rc)
4458 				return rc;
4459 		}
4460 	}
4461 
4462 	return 0;
4463 }
4464 
4465 static int bnxt_restore_mac_filters(struct bnxt *bp)
4466 {
4467 	struct rte_eth_dev *dev = bp->eth_dev;
4468 	struct rte_eth_dev_info dev_info;
4469 	struct rte_ether_addr *addr;
4470 	uint64_t pool_mask;
4471 	uint32_t pool = 0;
4472 	uint16_t i;
4473 	int rc;
4474 
4475 	if (BNXT_VF(bp) && !BNXT_VF_IS_TRUSTED(bp))
4476 		return 0;
4477 
4478 	rc = bnxt_dev_info_get_op(dev, &dev_info);
4479 	if (rc)
4480 		return rc;
4481 
4482 	/* replay MAC address configuration */
4483 	for (i = 1; i < dev_info.max_mac_addrs; i++) {
4484 		addr = &dev->data->mac_addrs[i];
4485 
4486 		/* skip zero address */
4487 		if (rte_is_zero_ether_addr(addr))
4488 			continue;
4489 
4490 		pool = 0;
4491 		pool_mask = dev->data->mac_pool_sel[i];
4492 
4493 		do {
4494 			if (pool_mask & 1ULL) {
4495 				rc = bnxt_mac_addr_add_op(dev, addr, i, pool);
4496 				if (rc)
4497 					return rc;
4498 			}
4499 			pool_mask >>= 1;
4500 			pool++;
4501 		} while (pool_mask);
4502 	}
4503 
4504 	return 0;
4505 }
4506 
4507 static int bnxt_restore_filters(struct bnxt *bp)
4508 {
4509 	struct rte_eth_dev *dev = bp->eth_dev;
4510 	int ret = 0;
4511 
4512 	if (dev->data->all_multicast) {
4513 		ret = bnxt_allmulticast_enable_op(dev);
4514 		if (ret)
4515 			return ret;
4516 	}
4517 	if (dev->data->promiscuous) {
4518 		ret = bnxt_promiscuous_enable_op(dev);
4519 		if (ret)
4520 			return ret;
4521 	}
4522 
4523 	ret = bnxt_restore_mac_filters(bp);
4524 	if (ret)
4525 		return ret;
4526 
4527 	ret = bnxt_restore_vlan_filters(bp);
4528 	/* TODO restore other filters as well */
4529 	return ret;
4530 }
4531 
4532 static void bnxt_dev_recover(void *arg)
4533 {
4534 	struct bnxt *bp = arg;
4535 	int timeout = bp->fw_reset_max_msecs;
4536 	int rc = 0;
4537 
4538 	/* Clear Error flag so that device re-init should happen */
4539 	bp->flags &= ~BNXT_FLAG_FATAL_ERROR;
4540 
4541 	do {
4542 		rc = bnxt_hwrm_ver_get(bp, SHORT_HWRM_CMD_TIMEOUT);
4543 		if (rc == 0)
4544 			break;
4545 		rte_delay_ms(BNXT_FW_READY_WAIT_INTERVAL);
4546 		timeout -= BNXT_FW_READY_WAIT_INTERVAL;
4547 	} while (rc && timeout);
4548 
4549 	if (rc) {
4550 		PMD_DRV_LOG(ERR, "FW is not Ready after reset\n");
4551 		goto err;
4552 	}
4553 
4554 	rc = bnxt_init_resources(bp, true);
4555 	if (rc) {
4556 		PMD_DRV_LOG(ERR,
4557 			    "Failed to initialize resources after reset\n");
4558 		goto err;
4559 	}
4560 	/* clear reset flag as the device is initialized now */
4561 	bp->flags &= ~BNXT_FLAG_FW_RESET;
4562 
4563 	rc = bnxt_dev_start_op(bp->eth_dev);
4564 	if (rc) {
4565 		PMD_DRV_LOG(ERR, "Failed to start port after reset\n");
4566 		goto err_start;
4567 	}
4568 
4569 	rc = bnxt_restore_filters(bp);
4570 	if (rc)
4571 		goto err_start;
4572 
4573 	PMD_DRV_LOG(INFO, "Recovered from FW reset\n");
4574 	return;
4575 err_start:
4576 	bnxt_dev_stop_op(bp->eth_dev);
4577 err:
4578 	bp->flags |= BNXT_FLAG_FATAL_ERROR;
4579 	bnxt_uninit_resources(bp, false);
4580 	PMD_DRV_LOG(ERR, "Failed to recover from FW reset\n");
4581 }
4582 
4583 void bnxt_dev_reset_and_resume(void *arg)
4584 {
4585 	struct bnxt *bp = arg;
4586 	int rc;
4587 
4588 	bnxt_dev_cleanup(bp);
4589 
4590 	bnxt_wait_for_device_shutdown(bp);
4591 
4592 	rc = rte_eal_alarm_set(US_PER_MS * bp->fw_reset_min_msecs,
4593 			       bnxt_dev_recover, (void *)bp);
4594 	if (rc)
4595 		PMD_DRV_LOG(ERR, "Error setting recovery alarm");
4596 }
4597 
4598 uint32_t bnxt_read_fw_status_reg(struct bnxt *bp, uint32_t index)
4599 {
4600 	struct bnxt_error_recovery_info *info = bp->recovery_info;
4601 	uint32_t reg = info->status_regs[index];
4602 	uint32_t type, offset, val = 0;
4603 
4604 	type = BNXT_FW_STATUS_REG_TYPE(reg);
4605 	offset = BNXT_FW_STATUS_REG_OFF(reg);
4606 
4607 	switch (type) {
4608 	case BNXT_FW_STATUS_REG_TYPE_CFG:
4609 		rte_pci_read_config(bp->pdev, &val, sizeof(val), offset);
4610 		break;
4611 	case BNXT_FW_STATUS_REG_TYPE_GRC:
4612 		offset = info->mapped_status_regs[index];
4613 		/* FALLTHROUGH */
4614 	case BNXT_FW_STATUS_REG_TYPE_BAR0:
4615 		val = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
4616 				       offset));
4617 		break;
4618 	}
4619 
4620 	return val;
4621 }
4622 
4623 static int bnxt_fw_reset_all(struct bnxt *bp)
4624 {
4625 	struct bnxt_error_recovery_info *info = bp->recovery_info;
4626 	uint32_t i;
4627 	int rc = 0;
4628 
4629 	if (info->flags & BNXT_FLAG_ERROR_RECOVERY_HOST) {
4630 		/* Reset through master function driver */
4631 		for (i = 0; i < info->reg_array_cnt; i++)
4632 			bnxt_write_fw_reset_reg(bp, i);
4633 		/* Wait for time specified by FW after triggering reset */
4634 		rte_delay_ms(info->master_func_wait_period_after_reset);
4635 	} else if (info->flags & BNXT_FLAG_ERROR_RECOVERY_CO_CPU) {
4636 		/* Reset with the help of Kong processor */
4637 		rc = bnxt_hwrm_fw_reset(bp);
4638 		if (rc)
4639 			PMD_DRV_LOG(ERR, "Failed to reset FW\n");
4640 	}
4641 
4642 	return rc;
4643 }
4644 
4645 static void bnxt_fw_reset_cb(void *arg)
4646 {
4647 	struct bnxt *bp = arg;
4648 	struct bnxt_error_recovery_info *info = bp->recovery_info;
4649 	int rc = 0;
4650 
4651 	/* Only Master function can do FW reset */
4652 	if (bnxt_is_master_func(bp) &&
4653 	    bnxt_is_recovery_enabled(bp)) {
4654 		rc = bnxt_fw_reset_all(bp);
4655 		if (rc) {
4656 			PMD_DRV_LOG(ERR, "Adapter recovery failed\n");
4657 			return;
4658 		}
4659 	}
4660 
4661 	/* if recovery method is ERROR_RECOVERY_CO_CPU, KONG will send
4662 	 * EXCEPTION_FATAL_ASYNC event to all the functions
4663 	 * (including MASTER FUNC). After receiving this Async, all the active
4664 	 * drivers should treat this case as FW initiated recovery
4665 	 */
4666 	if (info->flags & BNXT_FLAG_ERROR_RECOVERY_HOST) {
4667 		bp->fw_reset_min_msecs = BNXT_MIN_FW_READY_TIMEOUT;
4668 		bp->fw_reset_max_msecs = BNXT_MAX_FW_RESET_TIMEOUT;
4669 
4670 		/* To recover from error */
4671 		rte_eal_alarm_set(US_PER_MS, bnxt_dev_reset_and_resume,
4672 				  (void *)bp);
4673 	}
4674 }
4675 
4676 /* Driver should poll FW heartbeat, reset_counter with the frequency
4677  * advertised by FW in HWRM_ERROR_RECOVERY_QCFG.
4678  * When the driver detects heartbeat stop or change in reset_counter,
4679  * it has to trigger a reset to recover from the error condition.
4680  * A “master PF” is the function who will have the privilege to
4681  * initiate the chimp reset. The master PF will be elected by the
4682  * firmware and will be notified through async message.
4683  */
4684 static void bnxt_check_fw_health(void *arg)
4685 {
4686 	struct bnxt *bp = arg;
4687 	struct bnxt_error_recovery_info *info = bp->recovery_info;
4688 	uint32_t val = 0, wait_msec;
4689 
4690 	if (!info || !bnxt_is_recovery_enabled(bp) ||
4691 	    is_bnxt_in_error(bp))
4692 		return;
4693 
4694 	val = bnxt_read_fw_status_reg(bp, BNXT_FW_HEARTBEAT_CNT_REG);
4695 	if (val == info->last_heart_beat)
4696 		goto reset;
4697 
4698 	info->last_heart_beat = val;
4699 
4700 	val = bnxt_read_fw_status_reg(bp, BNXT_FW_RECOVERY_CNT_REG);
4701 	if (val != info->last_reset_counter)
4702 		goto reset;
4703 
4704 	info->last_reset_counter = val;
4705 
4706 	rte_eal_alarm_set(US_PER_MS * info->driver_polling_freq,
4707 			  bnxt_check_fw_health, (void *)bp);
4708 
4709 	return;
4710 reset:
4711 	/* Stop DMA to/from device */
4712 	bp->flags |= BNXT_FLAG_FATAL_ERROR;
4713 	bp->flags |= BNXT_FLAG_FW_RESET;
4714 
4715 	PMD_DRV_LOG(ERR, "Detected FW dead condition\n");
4716 
4717 	if (bnxt_is_master_func(bp))
4718 		wait_msec = info->master_func_wait_period;
4719 	else
4720 		wait_msec = info->normal_func_wait_period;
4721 
4722 	rte_eal_alarm_set(US_PER_MS * wait_msec,
4723 			  bnxt_fw_reset_cb, (void *)bp);
4724 }
4725 
4726 void bnxt_schedule_fw_health_check(struct bnxt *bp)
4727 {
4728 	uint32_t polling_freq;
4729 
4730 	pthread_mutex_lock(&bp->health_check_lock);
4731 
4732 	if (!bnxt_is_recovery_enabled(bp))
4733 		goto done;
4734 
4735 	if (bp->flags & BNXT_FLAG_FW_HEALTH_CHECK_SCHEDULED)
4736 		goto done;
4737 
4738 	polling_freq = bp->recovery_info->driver_polling_freq;
4739 
4740 	rte_eal_alarm_set(US_PER_MS * polling_freq,
4741 			  bnxt_check_fw_health, (void *)bp);
4742 	bp->flags |= BNXT_FLAG_FW_HEALTH_CHECK_SCHEDULED;
4743 
4744 done:
4745 	pthread_mutex_unlock(&bp->health_check_lock);
4746 }
4747 
4748 static void bnxt_cancel_fw_health_check(struct bnxt *bp)
4749 {
4750 	if (!bnxt_is_recovery_enabled(bp))
4751 		return;
4752 
4753 	rte_eal_alarm_cancel(bnxt_check_fw_health, (void *)bp);
4754 	bp->flags &= ~BNXT_FLAG_FW_HEALTH_CHECK_SCHEDULED;
4755 }
4756 
4757 static bool bnxt_vf_pciid(uint16_t device_id)
4758 {
4759 	switch (device_id) {
4760 	case BROADCOM_DEV_ID_57304_VF:
4761 	case BROADCOM_DEV_ID_57406_VF:
4762 	case BROADCOM_DEV_ID_5731X_VF:
4763 	case BROADCOM_DEV_ID_5741X_VF:
4764 	case BROADCOM_DEV_ID_57414_VF:
4765 	case BROADCOM_DEV_ID_STRATUS_NIC_VF1:
4766 	case BROADCOM_DEV_ID_STRATUS_NIC_VF2:
4767 	case BROADCOM_DEV_ID_58802_VF:
4768 	case BROADCOM_DEV_ID_57500_VF1:
4769 	case BROADCOM_DEV_ID_57500_VF2:
4770 		/* FALLTHROUGH */
4771 		return true;
4772 	default:
4773 		return false;
4774 	}
4775 }
4776 
4777 static bool bnxt_thor_device(uint16_t device_id)
4778 {
4779 	switch (device_id) {
4780 	case BROADCOM_DEV_ID_57508:
4781 	case BROADCOM_DEV_ID_57504:
4782 	case BROADCOM_DEV_ID_57502:
4783 	case BROADCOM_DEV_ID_57508_MF1:
4784 	case BROADCOM_DEV_ID_57504_MF1:
4785 	case BROADCOM_DEV_ID_57502_MF1:
4786 	case BROADCOM_DEV_ID_57508_MF2:
4787 	case BROADCOM_DEV_ID_57504_MF2:
4788 	case BROADCOM_DEV_ID_57502_MF2:
4789 	case BROADCOM_DEV_ID_57500_VF1:
4790 	case BROADCOM_DEV_ID_57500_VF2:
4791 		/* FALLTHROUGH */
4792 		return true;
4793 	default:
4794 		return false;
4795 	}
4796 }
4797 
4798 bool bnxt_stratus_device(struct bnxt *bp)
4799 {
4800 	uint16_t device_id = bp->pdev->id.device_id;
4801 
4802 	switch (device_id) {
4803 	case BROADCOM_DEV_ID_STRATUS_NIC:
4804 	case BROADCOM_DEV_ID_STRATUS_NIC_VF1:
4805 	case BROADCOM_DEV_ID_STRATUS_NIC_VF2:
4806 		/* FALLTHROUGH */
4807 		return true;
4808 	default:
4809 		return false;
4810 	}
4811 }
4812 
4813 static int bnxt_init_board(struct rte_eth_dev *eth_dev)
4814 {
4815 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
4816 	struct bnxt *bp = eth_dev->data->dev_private;
4817 
4818 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
4819 	bp->bar0 = (void *)pci_dev->mem_resource[0].addr;
4820 	bp->doorbell_base = (void *)pci_dev->mem_resource[2].addr;
4821 	if (!bp->bar0 || !bp->doorbell_base) {
4822 		PMD_DRV_LOG(ERR, "Unable to access Hardware\n");
4823 		return -ENODEV;
4824 	}
4825 
4826 	bp->eth_dev = eth_dev;
4827 	bp->pdev = pci_dev;
4828 
4829 	return 0;
4830 }
4831 
4832 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
4833 				  struct bnxt_ctx_pg_info *ctx_pg,
4834 				  uint32_t mem_size,
4835 				  const char *suffix,
4836 				  uint16_t idx)
4837 {
4838 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
4839 	const struct rte_memzone *mz = NULL;
4840 	char mz_name[RTE_MEMZONE_NAMESIZE];
4841 	rte_iova_t mz_phys_addr;
4842 	uint64_t valid_bits = 0;
4843 	uint32_t sz;
4844 	int i;
4845 
4846 	if (!mem_size)
4847 		return 0;
4848 
4849 	rmem->nr_pages = RTE_ALIGN_MUL_CEIL(mem_size, BNXT_PAGE_SIZE) /
4850 			 BNXT_PAGE_SIZE;
4851 	rmem->page_size = BNXT_PAGE_SIZE;
4852 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
4853 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
4854 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
4855 
4856 	valid_bits = PTU_PTE_VALID;
4857 
4858 	if (rmem->nr_pages > 1) {
4859 		snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
4860 			 "bnxt_ctx_pg_tbl%s_%x_%d",
4861 			 suffix, idx, bp->eth_dev->data->port_id);
4862 		mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
4863 		mz = rte_memzone_lookup(mz_name);
4864 		if (!mz) {
4865 			mz = rte_memzone_reserve_aligned(mz_name,
4866 						rmem->nr_pages * 8,
4867 						SOCKET_ID_ANY,
4868 						RTE_MEMZONE_2MB |
4869 						RTE_MEMZONE_SIZE_HINT_ONLY |
4870 						RTE_MEMZONE_IOVA_CONTIG,
4871 						BNXT_PAGE_SIZE);
4872 			if (mz == NULL)
4873 				return -ENOMEM;
4874 		}
4875 
4876 		memset(mz->addr, 0, mz->len);
4877 		mz_phys_addr = mz->iova;
4878 
4879 		rmem->pg_tbl = mz->addr;
4880 		rmem->pg_tbl_map = mz_phys_addr;
4881 		rmem->pg_tbl_mz = mz;
4882 	}
4883 
4884 	snprintf(mz_name, RTE_MEMZONE_NAMESIZE, "bnxt_ctx_%s_%x_%d",
4885 		 suffix, idx, bp->eth_dev->data->port_id);
4886 	mz = rte_memzone_lookup(mz_name);
4887 	if (!mz) {
4888 		mz = rte_memzone_reserve_aligned(mz_name,
4889 						 mem_size,
4890 						 SOCKET_ID_ANY,
4891 						 RTE_MEMZONE_1GB |
4892 						 RTE_MEMZONE_SIZE_HINT_ONLY |
4893 						 RTE_MEMZONE_IOVA_CONTIG,
4894 						 BNXT_PAGE_SIZE);
4895 		if (mz == NULL)
4896 			return -ENOMEM;
4897 	}
4898 
4899 	memset(mz->addr, 0, mz->len);
4900 	mz_phys_addr = mz->iova;
4901 
4902 	for (sz = 0, i = 0; sz < mem_size; sz += BNXT_PAGE_SIZE, i++) {
4903 		rmem->pg_arr[i] = ((char *)mz->addr) + sz;
4904 		rmem->dma_arr[i] = mz_phys_addr + sz;
4905 
4906 		if (rmem->nr_pages > 1) {
4907 			if (i == rmem->nr_pages - 2 &&
4908 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
4909 				valid_bits |= PTU_PTE_NEXT_TO_LAST;
4910 			else if (i == rmem->nr_pages - 1 &&
4911 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
4912 				valid_bits |= PTU_PTE_LAST;
4913 
4914 			rmem->pg_tbl[i] = rte_cpu_to_le_64(rmem->dma_arr[i] |
4915 							   valid_bits);
4916 		}
4917 	}
4918 
4919 	rmem->mz = mz;
4920 	if (rmem->vmem_size)
4921 		rmem->vmem = (void **)mz->addr;
4922 	rmem->dma_arr[0] = mz_phys_addr;
4923 	return 0;
4924 }
4925 
4926 static void bnxt_free_ctx_mem(struct bnxt *bp)
4927 {
4928 	int i;
4929 
4930 	if (!bp->ctx || !(bp->ctx->flags & BNXT_CTX_FLAG_INITED))
4931 		return;
4932 
4933 	bp->ctx->flags &= ~BNXT_CTX_FLAG_INITED;
4934 	rte_memzone_free(bp->ctx->qp_mem.ring_mem.mz);
4935 	rte_memzone_free(bp->ctx->srq_mem.ring_mem.mz);
4936 	rte_memzone_free(bp->ctx->cq_mem.ring_mem.mz);
4937 	rte_memzone_free(bp->ctx->vnic_mem.ring_mem.mz);
4938 	rte_memzone_free(bp->ctx->stat_mem.ring_mem.mz);
4939 	rte_memzone_free(bp->ctx->qp_mem.ring_mem.pg_tbl_mz);
4940 	rte_memzone_free(bp->ctx->srq_mem.ring_mem.pg_tbl_mz);
4941 	rte_memzone_free(bp->ctx->cq_mem.ring_mem.pg_tbl_mz);
4942 	rte_memzone_free(bp->ctx->vnic_mem.ring_mem.pg_tbl_mz);
4943 	rte_memzone_free(bp->ctx->stat_mem.ring_mem.pg_tbl_mz);
4944 
4945 	for (i = 0; i < bp->ctx->tqm_fp_rings_count + 1; i++) {
4946 		if (bp->ctx->tqm_mem[i])
4947 			rte_memzone_free(bp->ctx->tqm_mem[i]->ring_mem.mz);
4948 	}
4949 
4950 	rte_free(bp->ctx);
4951 	bp->ctx = NULL;
4952 }
4953 
4954 #define bnxt_roundup(x, y)   ((((x) + ((y) - 1)) / (y)) * (y))
4955 
4956 #define min_t(type, x, y) ({                    \
4957 	type __min1 = (x);                      \
4958 	type __min2 = (y);                      \
4959 	__min1 < __min2 ? __min1 : __min2; })
4960 
4961 #define max_t(type, x, y) ({                    \
4962 	type __max1 = (x);                      \
4963 	type __max2 = (y);                      \
4964 	__max1 > __max2 ? __max1 : __max2; })
4965 
4966 #define clamp_t(type, _x, min, max)     min_t(type, max_t(type, _x, min), max)
4967 
4968 int bnxt_alloc_ctx_mem(struct bnxt *bp)
4969 {
4970 	struct bnxt_ctx_pg_info *ctx_pg;
4971 	struct bnxt_ctx_mem_info *ctx;
4972 	uint32_t mem_size, ena, entries;
4973 	uint32_t entries_sp, min;
4974 	int i, rc;
4975 
4976 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
4977 	if (rc) {
4978 		PMD_DRV_LOG(ERR, "Query context mem capability failed\n");
4979 		return rc;
4980 	}
4981 	ctx = bp->ctx;
4982 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
4983 		return 0;
4984 
4985 	ctx_pg = &ctx->qp_mem;
4986 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries;
4987 	mem_size = ctx->qp_entry_size * ctx_pg->entries;
4988 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "qp_mem", 0);
4989 	if (rc)
4990 		return rc;
4991 
4992 	ctx_pg = &ctx->srq_mem;
4993 	ctx_pg->entries = ctx->srq_max_l2_entries;
4994 	mem_size = ctx->srq_entry_size * ctx_pg->entries;
4995 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "srq_mem", 0);
4996 	if (rc)
4997 		return rc;
4998 
4999 	ctx_pg = &ctx->cq_mem;
5000 	ctx_pg->entries = ctx->cq_max_l2_entries;
5001 	mem_size = ctx->cq_entry_size * ctx_pg->entries;
5002 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "cq_mem", 0);
5003 	if (rc)
5004 		return rc;
5005 
5006 	ctx_pg = &ctx->vnic_mem;
5007 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
5008 		ctx->vnic_max_ring_table_entries;
5009 	mem_size = ctx->vnic_entry_size * ctx_pg->entries;
5010 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "vnic_mem", 0);
5011 	if (rc)
5012 		return rc;
5013 
5014 	ctx_pg = &ctx->stat_mem;
5015 	ctx_pg->entries = ctx->stat_max_entries;
5016 	mem_size = ctx->stat_entry_size * ctx_pg->entries;
5017 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "stat_mem", 0);
5018 	if (rc)
5019 		return rc;
5020 
5021 	min = ctx->tqm_min_entries_per_ring;
5022 
5023 	entries_sp = ctx->qp_max_l2_entries +
5024 		     ctx->vnic_max_vnic_entries +
5025 		     2 * ctx->qp_min_qp1_entries + min;
5026 	entries_sp = bnxt_roundup(entries_sp, ctx->tqm_entries_multiple);
5027 
5028 	entries = ctx->qp_max_l2_entries + ctx->qp_min_qp1_entries;
5029 	entries = bnxt_roundup(entries, ctx->tqm_entries_multiple);
5030 	entries = clamp_t(uint32_t, entries, min,
5031 			  ctx->tqm_max_entries_per_ring);
5032 	for (i = 0, ena = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
5033 		ctx_pg = ctx->tqm_mem[i];
5034 		ctx_pg->entries = i ? entries : entries_sp;
5035 		mem_size = ctx->tqm_entry_size * ctx_pg->entries;
5036 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "tqm_mem", i);
5037 		if (rc)
5038 			return rc;
5039 		ena |= HWRM_FUNC_BACKING_STORE_CFG_INPUT_ENABLES_TQM_SP << i;
5040 	}
5041 
5042 	ena |= FUNC_BACKING_STORE_CFG_INPUT_DFLT_ENABLES;
5043 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
5044 	if (rc)
5045 		PMD_DRV_LOG(ERR,
5046 			    "Failed to configure context mem: rc = %d\n", rc);
5047 	else
5048 		ctx->flags |= BNXT_CTX_FLAG_INITED;
5049 
5050 	return rc;
5051 }
5052 
5053 static int bnxt_alloc_stats_mem(struct bnxt *bp)
5054 {
5055 	struct rte_pci_device *pci_dev = bp->pdev;
5056 	char mz_name[RTE_MEMZONE_NAMESIZE];
5057 	const struct rte_memzone *mz = NULL;
5058 	uint32_t total_alloc_len;
5059 	rte_iova_t mz_phys_addr;
5060 
5061 	if (pci_dev->id.device_id == BROADCOM_DEV_ID_NS2)
5062 		return 0;
5063 
5064 	snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
5065 		 "bnxt_" PCI_PRI_FMT "-%s", pci_dev->addr.domain,
5066 		 pci_dev->addr.bus, pci_dev->addr.devid,
5067 		 pci_dev->addr.function, "rx_port_stats");
5068 	mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
5069 	mz = rte_memzone_lookup(mz_name);
5070 	total_alloc_len =
5071 		RTE_CACHE_LINE_ROUNDUP(sizeof(struct rx_port_stats) +
5072 				       sizeof(struct rx_port_stats_ext) + 512);
5073 	if (!mz) {
5074 		mz = rte_memzone_reserve(mz_name, total_alloc_len,
5075 					 SOCKET_ID_ANY,
5076 					 RTE_MEMZONE_2MB |
5077 					 RTE_MEMZONE_SIZE_HINT_ONLY |
5078 					 RTE_MEMZONE_IOVA_CONTIG);
5079 		if (mz == NULL)
5080 			return -ENOMEM;
5081 	}
5082 	memset(mz->addr, 0, mz->len);
5083 	mz_phys_addr = mz->iova;
5084 
5085 	bp->rx_mem_zone = (const void *)mz;
5086 	bp->hw_rx_port_stats = mz->addr;
5087 	bp->hw_rx_port_stats_map = mz_phys_addr;
5088 
5089 	snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
5090 		 "bnxt_" PCI_PRI_FMT "-%s", pci_dev->addr.domain,
5091 		 pci_dev->addr.bus, pci_dev->addr.devid,
5092 		 pci_dev->addr.function, "tx_port_stats");
5093 	mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
5094 	mz = rte_memzone_lookup(mz_name);
5095 	total_alloc_len =
5096 		RTE_CACHE_LINE_ROUNDUP(sizeof(struct tx_port_stats) +
5097 				       sizeof(struct tx_port_stats_ext) + 512);
5098 	if (!mz) {
5099 		mz = rte_memzone_reserve(mz_name,
5100 					 total_alloc_len,
5101 					 SOCKET_ID_ANY,
5102 					 RTE_MEMZONE_2MB |
5103 					 RTE_MEMZONE_SIZE_HINT_ONLY |
5104 					 RTE_MEMZONE_IOVA_CONTIG);
5105 		if (mz == NULL)
5106 			return -ENOMEM;
5107 	}
5108 	memset(mz->addr, 0, mz->len);
5109 	mz_phys_addr = mz->iova;
5110 
5111 	bp->tx_mem_zone = (const void *)mz;
5112 	bp->hw_tx_port_stats = mz->addr;
5113 	bp->hw_tx_port_stats_map = mz_phys_addr;
5114 	bp->flags |= BNXT_FLAG_PORT_STATS;
5115 
5116 	/* Display extended statistics if FW supports it */
5117 	if (bp->hwrm_spec_code < HWRM_SPEC_CODE_1_8_4 ||
5118 	    bp->hwrm_spec_code == HWRM_SPEC_CODE_1_9_0 ||
5119 	    !(bp->flags & BNXT_FLAG_EXT_STATS_SUPPORTED))
5120 		return 0;
5121 
5122 	bp->hw_rx_port_stats_ext = (void *)
5123 		((uint8_t *)bp->hw_rx_port_stats +
5124 		 sizeof(struct rx_port_stats));
5125 	bp->hw_rx_port_stats_ext_map = bp->hw_rx_port_stats_map +
5126 		sizeof(struct rx_port_stats);
5127 	bp->flags |= BNXT_FLAG_EXT_RX_PORT_STATS;
5128 
5129 	if (bp->hwrm_spec_code < HWRM_SPEC_CODE_1_9_2 ||
5130 	    bp->flags & BNXT_FLAG_EXT_STATS_SUPPORTED) {
5131 		bp->hw_tx_port_stats_ext = (void *)
5132 			((uint8_t *)bp->hw_tx_port_stats +
5133 			 sizeof(struct tx_port_stats));
5134 		bp->hw_tx_port_stats_ext_map =
5135 			bp->hw_tx_port_stats_map +
5136 			sizeof(struct tx_port_stats);
5137 		bp->flags |= BNXT_FLAG_EXT_TX_PORT_STATS;
5138 	}
5139 
5140 	return 0;
5141 }
5142 
5143 static int bnxt_setup_mac_addr(struct rte_eth_dev *eth_dev)
5144 {
5145 	struct bnxt *bp = eth_dev->data->dev_private;
5146 	int rc = 0;
5147 
5148 	eth_dev->data->mac_addrs = rte_zmalloc("bnxt_mac_addr_tbl",
5149 					       RTE_ETHER_ADDR_LEN *
5150 					       bp->max_l2_ctx,
5151 					       0);
5152 	if (eth_dev->data->mac_addrs == NULL) {
5153 		PMD_DRV_LOG(ERR, "Failed to alloc MAC addr tbl\n");
5154 		return -ENOMEM;
5155 	}
5156 
5157 	if (!BNXT_HAS_DFLT_MAC_SET(bp)) {
5158 		if (BNXT_PF(bp))
5159 			return -EINVAL;
5160 
5161 		/* Generate a random MAC address, if none was assigned by PF */
5162 		PMD_DRV_LOG(INFO, "VF MAC address not assigned by Host PF\n");
5163 		bnxt_eth_hw_addr_random(bp->mac_addr);
5164 		PMD_DRV_LOG(INFO,
5165 			    "Assign random MAC:%02X:%02X:%02X:%02X:%02X:%02X\n",
5166 			    bp->mac_addr[0], bp->mac_addr[1], bp->mac_addr[2],
5167 			    bp->mac_addr[3], bp->mac_addr[4], bp->mac_addr[5]);
5168 
5169 		rc = bnxt_hwrm_set_mac(bp);
5170 		if (rc)
5171 			return rc;
5172 	}
5173 
5174 	/* Copy the permanent MAC from the FUNC_QCAPS response */
5175 	memcpy(&eth_dev->data->mac_addrs[0], bp->mac_addr, RTE_ETHER_ADDR_LEN);
5176 
5177 	return rc;
5178 }
5179 
5180 static int bnxt_restore_dflt_mac(struct bnxt *bp)
5181 {
5182 	int rc = 0;
5183 
5184 	/* MAC is already configured in FW */
5185 	if (BNXT_HAS_DFLT_MAC_SET(bp))
5186 		return 0;
5187 
5188 	/* Restore the old MAC configured */
5189 	rc = bnxt_hwrm_set_mac(bp);
5190 	if (rc)
5191 		PMD_DRV_LOG(ERR, "Failed to restore MAC address\n");
5192 
5193 	return rc;
5194 }
5195 
5196 static void bnxt_config_vf_req_fwd(struct bnxt *bp)
5197 {
5198 	if (!BNXT_PF(bp))
5199 		return;
5200 
5201 #define ALLOW_FUNC(x)	\
5202 	{ \
5203 		uint32_t arg = (x); \
5204 		bp->pf->vf_req_fwd[((arg) >> 5)] &= \
5205 		~rte_cpu_to_le_32(1 << ((arg) & 0x1f)); \
5206 	}
5207 
5208 	/* Forward all requests if firmware is new enough */
5209 	if (((bp->fw_ver >= ((20 << 24) | (6 << 16) | (100 << 8))) &&
5210 	     (bp->fw_ver < ((20 << 24) | (7 << 16)))) ||
5211 	    ((bp->fw_ver >= ((20 << 24) | (8 << 16))))) {
5212 		memset(bp->pf->vf_req_fwd, 0xff, sizeof(bp->pf->vf_req_fwd));
5213 	} else {
5214 		PMD_DRV_LOG(WARNING,
5215 			    "Firmware too old for VF mailbox functionality\n");
5216 		memset(bp->pf->vf_req_fwd, 0, sizeof(bp->pf->vf_req_fwd));
5217 	}
5218 
5219 	/*
5220 	 * The following are used for driver cleanup. If we disallow these,
5221 	 * VF drivers can't clean up cleanly.
5222 	 */
5223 	ALLOW_FUNC(HWRM_FUNC_DRV_UNRGTR);
5224 	ALLOW_FUNC(HWRM_VNIC_FREE);
5225 	ALLOW_FUNC(HWRM_RING_FREE);
5226 	ALLOW_FUNC(HWRM_RING_GRP_FREE);
5227 	ALLOW_FUNC(HWRM_VNIC_RSS_COS_LB_CTX_FREE);
5228 	ALLOW_FUNC(HWRM_CFA_L2_FILTER_FREE);
5229 	ALLOW_FUNC(HWRM_STAT_CTX_FREE);
5230 	ALLOW_FUNC(HWRM_PORT_PHY_QCFG);
5231 	ALLOW_FUNC(HWRM_VNIC_TPA_CFG);
5232 }
5233 
5234 uint16_t
5235 bnxt_get_svif(uint16_t port_id, bool func_svif,
5236 	      enum bnxt_ulp_intf_type type)
5237 {
5238 	struct rte_eth_dev *eth_dev;
5239 	struct bnxt *bp;
5240 
5241 	eth_dev = &rte_eth_devices[port_id];
5242 	if (BNXT_ETH_DEV_IS_REPRESENTOR(eth_dev)) {
5243 		struct bnxt_representor *vfr = eth_dev->data->dev_private;
5244 		if (!vfr)
5245 			return 0;
5246 
5247 		if (type == BNXT_ULP_INTF_TYPE_VF_REP)
5248 			return vfr->svif;
5249 
5250 		eth_dev = vfr->parent_dev;
5251 	}
5252 
5253 	bp = eth_dev->data->dev_private;
5254 
5255 	return func_svif ? bp->func_svif : bp->port_svif;
5256 }
5257 
5258 uint16_t
5259 bnxt_get_vnic_id(uint16_t port, enum bnxt_ulp_intf_type type)
5260 {
5261 	struct rte_eth_dev *eth_dev;
5262 	struct bnxt_vnic_info *vnic;
5263 	struct bnxt *bp;
5264 
5265 	eth_dev = &rte_eth_devices[port];
5266 	if (BNXT_ETH_DEV_IS_REPRESENTOR(eth_dev)) {
5267 		struct bnxt_representor *vfr = eth_dev->data->dev_private;
5268 		if (!vfr)
5269 			return 0;
5270 
5271 		if (type == BNXT_ULP_INTF_TYPE_VF_REP)
5272 			return vfr->dflt_vnic_id;
5273 
5274 		eth_dev = vfr->parent_dev;
5275 	}
5276 
5277 	bp = eth_dev->data->dev_private;
5278 
5279 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
5280 
5281 	return vnic->fw_vnic_id;
5282 }
5283 
5284 uint16_t
5285 bnxt_get_fw_func_id(uint16_t port, enum bnxt_ulp_intf_type type)
5286 {
5287 	struct rte_eth_dev *eth_dev;
5288 	struct bnxt *bp;
5289 
5290 	eth_dev = &rte_eth_devices[port];
5291 	if (BNXT_ETH_DEV_IS_REPRESENTOR(eth_dev)) {
5292 		struct bnxt_representor *vfr = eth_dev->data->dev_private;
5293 		if (!vfr)
5294 			return 0;
5295 
5296 		if (type == BNXT_ULP_INTF_TYPE_VF_REP)
5297 			return vfr->fw_fid;
5298 
5299 		eth_dev = vfr->parent_dev;
5300 	}
5301 
5302 	bp = eth_dev->data->dev_private;
5303 
5304 	return bp->fw_fid;
5305 }
5306 
5307 enum bnxt_ulp_intf_type
5308 bnxt_get_interface_type(uint16_t port)
5309 {
5310 	struct rte_eth_dev *eth_dev;
5311 	struct bnxt *bp;
5312 
5313 	eth_dev = &rte_eth_devices[port];
5314 	if (BNXT_ETH_DEV_IS_REPRESENTOR(eth_dev))
5315 		return BNXT_ULP_INTF_TYPE_VF_REP;
5316 
5317 	bp = eth_dev->data->dev_private;
5318 	if (BNXT_PF(bp))
5319 		return BNXT_ULP_INTF_TYPE_PF;
5320 	else if (BNXT_VF_IS_TRUSTED(bp))
5321 		return BNXT_ULP_INTF_TYPE_TRUSTED_VF;
5322 	else if (BNXT_VF(bp))
5323 		return BNXT_ULP_INTF_TYPE_VF;
5324 
5325 	return BNXT_ULP_INTF_TYPE_INVALID;
5326 }
5327 
5328 uint16_t
5329 bnxt_get_phy_port_id(uint16_t port_id)
5330 {
5331 	struct bnxt_representor *vfr;
5332 	struct rte_eth_dev *eth_dev;
5333 	struct bnxt *bp;
5334 
5335 	eth_dev = &rte_eth_devices[port_id];
5336 	if (BNXT_ETH_DEV_IS_REPRESENTOR(eth_dev)) {
5337 		vfr = eth_dev->data->dev_private;
5338 		if (!vfr)
5339 			return 0;
5340 
5341 		eth_dev = vfr->parent_dev;
5342 	}
5343 
5344 	bp = eth_dev->data->dev_private;
5345 
5346 	return BNXT_PF(bp) ? bp->pf->port_id : bp->parent->port_id;
5347 }
5348 
5349 uint16_t
5350 bnxt_get_parif(uint16_t port_id, enum bnxt_ulp_intf_type type)
5351 {
5352 	struct rte_eth_dev *eth_dev;
5353 	struct bnxt *bp;
5354 
5355 	eth_dev = &rte_eth_devices[port_id];
5356 	if (BNXT_ETH_DEV_IS_REPRESENTOR(eth_dev)) {
5357 		struct bnxt_representor *vfr = eth_dev->data->dev_private;
5358 		if (!vfr)
5359 			return 0;
5360 
5361 		if (type == BNXT_ULP_INTF_TYPE_VF_REP)
5362 			return vfr->fw_fid - 1;
5363 
5364 		eth_dev = vfr->parent_dev;
5365 	}
5366 
5367 	bp = eth_dev->data->dev_private;
5368 
5369 	return BNXT_PF(bp) ? bp->fw_fid - 1 : bp->parent->fid - 1;
5370 }
5371 
5372 uint16_t
5373 bnxt_get_vport(uint16_t port_id)
5374 {
5375 	return (1 << bnxt_get_phy_port_id(port_id));
5376 }
5377 
5378 static void bnxt_alloc_error_recovery_info(struct bnxt *bp)
5379 {
5380 	struct bnxt_error_recovery_info *info = bp->recovery_info;
5381 
5382 	if (info) {
5383 		if (!(bp->fw_cap & BNXT_FW_CAP_HCOMM_FW_STATUS))
5384 			memset(info, 0, sizeof(*info));
5385 		return;
5386 	}
5387 
5388 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
5389 		return;
5390 
5391 	info = rte_zmalloc("bnxt_hwrm_error_recovery_qcfg",
5392 			   sizeof(*info), 0);
5393 	if (!info)
5394 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
5395 
5396 	bp->recovery_info = info;
5397 }
5398 
5399 static void bnxt_check_fw_status(struct bnxt *bp)
5400 {
5401 	uint32_t fw_status;
5402 
5403 	if (!(bp->recovery_info &&
5404 	      (bp->fw_cap & BNXT_FW_CAP_HCOMM_FW_STATUS)))
5405 		return;
5406 
5407 	fw_status = bnxt_read_fw_status_reg(bp, BNXT_FW_STATUS_REG);
5408 	if (fw_status != BNXT_FW_STATUS_HEALTHY)
5409 		PMD_DRV_LOG(ERR, "Firmware not responding, status: %#x\n",
5410 			    fw_status);
5411 }
5412 
5413 static int bnxt_map_hcomm_fw_status_reg(struct bnxt *bp)
5414 {
5415 	struct bnxt_error_recovery_info *info = bp->recovery_info;
5416 	uint32_t status_loc;
5417 	uint32_t sig_ver;
5418 
5419 	rte_write32(HCOMM_STATUS_STRUCT_LOC, (uint8_t *)bp->bar0 +
5420 		    BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
5421 	sig_ver = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
5422 				   BNXT_GRCP_WINDOW_2_BASE +
5423 				   offsetof(struct hcomm_status,
5424 					    sig_ver)));
5425 	/* If the signature is absent, then FW does not support this feature */
5426 	if ((sig_ver & HCOMM_STATUS_SIGNATURE_MASK) !=
5427 	    HCOMM_STATUS_SIGNATURE_VAL)
5428 		return 0;
5429 
5430 	if (!info) {
5431 		info = rte_zmalloc("bnxt_hwrm_error_recovery_qcfg",
5432 				   sizeof(*info), 0);
5433 		if (!info)
5434 			return -ENOMEM;
5435 		bp->recovery_info = info;
5436 	} else {
5437 		memset(info, 0, sizeof(*info));
5438 	}
5439 
5440 	status_loc = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
5441 				      BNXT_GRCP_WINDOW_2_BASE +
5442 				      offsetof(struct hcomm_status,
5443 					       fw_status_loc)));
5444 
5445 	/* Only pre-map the FW health status GRC register */
5446 	if (BNXT_FW_STATUS_REG_TYPE(status_loc) != BNXT_FW_STATUS_REG_TYPE_GRC)
5447 		return 0;
5448 
5449 	info->status_regs[BNXT_FW_STATUS_REG] = status_loc;
5450 	info->mapped_status_regs[BNXT_FW_STATUS_REG] =
5451 		BNXT_GRCP_WINDOW_2_BASE + (status_loc & BNXT_GRCP_OFFSET_MASK);
5452 
5453 	rte_write32((status_loc & BNXT_GRCP_BASE_MASK), (uint8_t *)bp->bar0 +
5454 		    BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
5455 
5456 	bp->fw_cap |= BNXT_FW_CAP_HCOMM_FW_STATUS;
5457 
5458 	return 0;
5459 }
5460 
5461 static int bnxt_init_fw(struct bnxt *bp)
5462 {
5463 	uint16_t mtu;
5464 	int rc = 0;
5465 
5466 	bp->fw_cap = 0;
5467 
5468 	rc = bnxt_map_hcomm_fw_status_reg(bp);
5469 	if (rc)
5470 		return rc;
5471 
5472 	rc = bnxt_hwrm_ver_get(bp, DFLT_HWRM_CMD_TIMEOUT);
5473 	if (rc) {
5474 		bnxt_check_fw_status(bp);
5475 		return rc;
5476 	}
5477 
5478 	rc = bnxt_hwrm_func_reset(bp);
5479 	if (rc)
5480 		return -EIO;
5481 
5482 	rc = bnxt_hwrm_vnic_qcaps(bp);
5483 	if (rc)
5484 		return rc;
5485 
5486 	rc = bnxt_hwrm_queue_qportcfg(bp);
5487 	if (rc)
5488 		return rc;
5489 
5490 	/* Get the MAX capabilities for this function.
5491 	 * This function also allocates context memory for TQM rings and
5492 	 * informs the firmware about this allocated backing store memory.
5493 	 */
5494 	rc = bnxt_hwrm_func_qcaps(bp);
5495 	if (rc)
5496 		return rc;
5497 
5498 	rc = bnxt_hwrm_func_qcfg(bp, &mtu);
5499 	if (rc)
5500 		return rc;
5501 
5502 	bnxt_hwrm_port_mac_qcfg(bp);
5503 
5504 	bnxt_hwrm_parent_pf_qcfg(bp);
5505 
5506 	bnxt_hwrm_port_phy_qcaps(bp);
5507 
5508 	bnxt_alloc_error_recovery_info(bp);
5509 	/* Get the adapter error recovery support info */
5510 	rc = bnxt_hwrm_error_recovery_qcfg(bp);
5511 	if (rc)
5512 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
5513 
5514 	bnxt_hwrm_port_led_qcaps(bp);
5515 
5516 	return 0;
5517 }
5518 
5519 static int
5520 bnxt_init_locks(struct bnxt *bp)
5521 {
5522 	int err;
5523 
5524 	err = pthread_mutex_init(&bp->flow_lock, NULL);
5525 	if (err) {
5526 		PMD_DRV_LOG(ERR, "Unable to initialize flow_lock\n");
5527 		return err;
5528 	}
5529 
5530 	err = pthread_mutex_init(&bp->def_cp_lock, NULL);
5531 	if (err)
5532 		PMD_DRV_LOG(ERR, "Unable to initialize def_cp_lock\n");
5533 
5534 	err = pthread_mutex_init(&bp->health_check_lock, NULL);
5535 	if (err)
5536 		PMD_DRV_LOG(ERR, "Unable to initialize health_check_lock\n");
5537 	return err;
5538 }
5539 
5540 static int bnxt_init_resources(struct bnxt *bp, bool reconfig_dev)
5541 {
5542 	int rc = 0;
5543 
5544 	rc = bnxt_init_fw(bp);
5545 	if (rc)
5546 		return rc;
5547 
5548 	if (!reconfig_dev) {
5549 		rc = bnxt_setup_mac_addr(bp->eth_dev);
5550 		if (rc)
5551 			return rc;
5552 	} else {
5553 		rc = bnxt_restore_dflt_mac(bp);
5554 		if (rc)
5555 			return rc;
5556 	}
5557 
5558 	bnxt_config_vf_req_fwd(bp);
5559 
5560 	rc = bnxt_hwrm_func_driver_register(bp);
5561 	if (rc) {
5562 		PMD_DRV_LOG(ERR, "Failed to register driver");
5563 		return -EBUSY;
5564 	}
5565 
5566 	if (BNXT_PF(bp)) {
5567 		if (bp->pdev->max_vfs) {
5568 			rc = bnxt_hwrm_allocate_vfs(bp, bp->pdev->max_vfs);
5569 			if (rc) {
5570 				PMD_DRV_LOG(ERR, "Failed to allocate VFs\n");
5571 				return rc;
5572 			}
5573 		} else {
5574 			rc = bnxt_hwrm_allocate_pf_only(bp);
5575 			if (rc) {
5576 				PMD_DRV_LOG(ERR,
5577 					    "Failed to allocate PF resources");
5578 				return rc;
5579 			}
5580 		}
5581 	}
5582 
5583 	rc = bnxt_alloc_mem(bp, reconfig_dev);
5584 	if (rc)
5585 		return rc;
5586 
5587 	rc = bnxt_setup_int(bp);
5588 	if (rc)
5589 		return rc;
5590 
5591 	rc = bnxt_request_int(bp);
5592 	if (rc)
5593 		return rc;
5594 
5595 	rc = bnxt_init_ctx_mem(bp);
5596 	if (rc) {
5597 		PMD_DRV_LOG(ERR, "Failed to init adv_flow_counters\n");
5598 		return rc;
5599 	}
5600 
5601 	rc = bnxt_init_locks(bp);
5602 	if (rc)
5603 		return rc;
5604 
5605 	return 0;
5606 }
5607 
5608 static int
5609 bnxt_parse_devarg_truflow(__rte_unused const char *key,
5610 			  const char *value, void *opaque_arg)
5611 {
5612 	struct bnxt *bp = opaque_arg;
5613 	unsigned long truflow;
5614 	char *end = NULL;
5615 
5616 	if (!value || !opaque_arg) {
5617 		PMD_DRV_LOG(ERR,
5618 			    "Invalid parameter passed to truflow devargs.\n");
5619 		return -EINVAL;
5620 	}
5621 
5622 	truflow = strtoul(value, &end, 10);
5623 	if (end == NULL || *end != '\0' ||
5624 	    (truflow == ULONG_MAX && errno == ERANGE)) {
5625 		PMD_DRV_LOG(ERR,
5626 			    "Invalid parameter passed to truflow devargs.\n");
5627 		return -EINVAL;
5628 	}
5629 
5630 	if (BNXT_DEVARG_TRUFLOW_INVALID(truflow)) {
5631 		PMD_DRV_LOG(ERR,
5632 			    "Invalid value passed to truflow devargs.\n");
5633 		return -EINVAL;
5634 	}
5635 
5636 	if (truflow) {
5637 		bp->flags |= BNXT_FLAG_TRUFLOW_EN;
5638 		PMD_DRV_LOG(INFO, "Host-based truflow feature enabled.\n");
5639 	} else {
5640 		bp->flags &= ~BNXT_FLAG_TRUFLOW_EN;
5641 		PMD_DRV_LOG(INFO, "Host-based truflow feature disabled.\n");
5642 	}
5643 
5644 	return 0;
5645 }
5646 
5647 static int
5648 bnxt_parse_devarg_flow_xstat(__rte_unused const char *key,
5649 			     const char *value, void *opaque_arg)
5650 {
5651 	struct bnxt *bp = opaque_arg;
5652 	unsigned long flow_xstat;
5653 	char *end = NULL;
5654 
5655 	if (!value || !opaque_arg) {
5656 		PMD_DRV_LOG(ERR,
5657 			    "Invalid parameter passed to flow_xstat devarg.\n");
5658 		return -EINVAL;
5659 	}
5660 
5661 	flow_xstat = strtoul(value, &end, 10);
5662 	if (end == NULL || *end != '\0' ||
5663 	    (flow_xstat == ULONG_MAX && errno == ERANGE)) {
5664 		PMD_DRV_LOG(ERR,
5665 			    "Invalid parameter passed to flow_xstat devarg.\n");
5666 		return -EINVAL;
5667 	}
5668 
5669 	if (BNXT_DEVARG_FLOW_XSTAT_INVALID(flow_xstat)) {
5670 		PMD_DRV_LOG(ERR,
5671 			    "Invalid value passed to flow_xstat devarg.\n");
5672 		return -EINVAL;
5673 	}
5674 
5675 	bp->flags |= BNXT_FLAG_FLOW_XSTATS_EN;
5676 	if (BNXT_FLOW_XSTATS_EN(bp))
5677 		PMD_DRV_LOG(INFO, "flow_xstat feature enabled.\n");
5678 
5679 	return 0;
5680 }
5681 
5682 static int
5683 bnxt_parse_devarg_max_num_kflows(__rte_unused const char *key,
5684 					const char *value, void *opaque_arg)
5685 {
5686 	struct bnxt *bp = opaque_arg;
5687 	unsigned long max_num_kflows;
5688 	char *end = NULL;
5689 
5690 	if (!value || !opaque_arg) {
5691 		PMD_DRV_LOG(ERR,
5692 			"Invalid parameter passed to max_num_kflows devarg.\n");
5693 		return -EINVAL;
5694 	}
5695 
5696 	max_num_kflows = strtoul(value, &end, 10);
5697 	if (end == NULL || *end != '\0' ||
5698 		(max_num_kflows == ULONG_MAX && errno == ERANGE)) {
5699 		PMD_DRV_LOG(ERR,
5700 			"Invalid parameter passed to max_num_kflows devarg.\n");
5701 		return -EINVAL;
5702 	}
5703 
5704 	if (bnxt_devarg_max_num_kflow_invalid(max_num_kflows)) {
5705 		PMD_DRV_LOG(ERR,
5706 			"Invalid value passed to max_num_kflows devarg.\n");
5707 		return -EINVAL;
5708 	}
5709 
5710 	bp->max_num_kflows = max_num_kflows;
5711 	if (bp->max_num_kflows)
5712 		PMD_DRV_LOG(INFO, "max_num_kflows set as %ldK.\n",
5713 				max_num_kflows);
5714 
5715 	return 0;
5716 }
5717 
5718 static int
5719 bnxt_parse_devarg_rep_is_pf(__rte_unused const char *key,
5720 			    const char *value, void *opaque_arg)
5721 {
5722 	struct bnxt_representor *vfr_bp = opaque_arg;
5723 	unsigned long rep_is_pf;
5724 	char *end = NULL;
5725 
5726 	if (!value || !opaque_arg) {
5727 		PMD_DRV_LOG(ERR,
5728 			    "Invalid parameter passed to rep_is_pf devargs.\n");
5729 		return -EINVAL;
5730 	}
5731 
5732 	rep_is_pf = strtoul(value, &end, 10);
5733 	if (end == NULL || *end != '\0' ||
5734 	    (rep_is_pf == ULONG_MAX && errno == ERANGE)) {
5735 		PMD_DRV_LOG(ERR,
5736 			    "Invalid parameter passed to rep_is_pf devargs.\n");
5737 		return -EINVAL;
5738 	}
5739 
5740 	if (BNXT_DEVARG_REP_IS_PF_INVALID(rep_is_pf)) {
5741 		PMD_DRV_LOG(ERR,
5742 			    "Invalid value passed to rep_is_pf devargs.\n");
5743 		return -EINVAL;
5744 	}
5745 
5746 	vfr_bp->flags |= rep_is_pf;
5747 	if (BNXT_REP_PF(vfr_bp))
5748 		PMD_DRV_LOG(INFO, "PF representor\n");
5749 	else
5750 		PMD_DRV_LOG(INFO, "VF representor\n");
5751 
5752 	return 0;
5753 }
5754 
5755 static int
5756 bnxt_parse_devarg_rep_based_pf(__rte_unused const char *key,
5757 			       const char *value, void *opaque_arg)
5758 {
5759 	struct bnxt_representor *vfr_bp = opaque_arg;
5760 	unsigned long rep_based_pf;
5761 	char *end = NULL;
5762 
5763 	if (!value || !opaque_arg) {
5764 		PMD_DRV_LOG(ERR,
5765 			    "Invalid parameter passed to rep_based_pf "
5766 			    "devargs.\n");
5767 		return -EINVAL;
5768 	}
5769 
5770 	rep_based_pf = strtoul(value, &end, 10);
5771 	if (end == NULL || *end != '\0' ||
5772 	    (rep_based_pf == ULONG_MAX && errno == ERANGE)) {
5773 		PMD_DRV_LOG(ERR,
5774 			    "Invalid parameter passed to rep_based_pf "
5775 			    "devargs.\n");
5776 		return -EINVAL;
5777 	}
5778 
5779 	if (BNXT_DEVARG_REP_BASED_PF_INVALID(rep_based_pf)) {
5780 		PMD_DRV_LOG(ERR,
5781 			    "Invalid value passed to rep_based_pf devargs.\n");
5782 		return -EINVAL;
5783 	}
5784 
5785 	vfr_bp->rep_based_pf = rep_based_pf;
5786 	PMD_DRV_LOG(INFO, "rep-based-pf = %d\n", vfr_bp->rep_based_pf);
5787 
5788 	return 0;
5789 }
5790 
5791 static int
5792 bnxt_parse_devarg_rep_q_r2f(__rte_unused const char *key,
5793 			    const char *value, void *opaque_arg)
5794 {
5795 	struct bnxt_representor *vfr_bp = opaque_arg;
5796 	unsigned long rep_q_r2f;
5797 	char *end = NULL;
5798 
5799 	if (!value || !opaque_arg) {
5800 		PMD_DRV_LOG(ERR,
5801 			    "Invalid parameter passed to rep_q_r2f "
5802 			    "devargs.\n");
5803 		return -EINVAL;
5804 	}
5805 
5806 	rep_q_r2f = strtoul(value, &end, 10);
5807 	if (end == NULL || *end != '\0' ||
5808 	    (rep_q_r2f == ULONG_MAX && errno == ERANGE)) {
5809 		PMD_DRV_LOG(ERR,
5810 			    "Invalid parameter passed to rep_q_r2f "
5811 			    "devargs.\n");
5812 		return -EINVAL;
5813 	}
5814 
5815 	if (BNXT_DEVARG_REP_Q_R2F_INVALID(rep_q_r2f)) {
5816 		PMD_DRV_LOG(ERR,
5817 			    "Invalid value passed to rep_q_r2f devargs.\n");
5818 		return -EINVAL;
5819 	}
5820 
5821 	vfr_bp->rep_q_r2f = rep_q_r2f;
5822 	vfr_bp->flags |= BNXT_REP_Q_R2F_VALID;
5823 	PMD_DRV_LOG(INFO, "rep-q-r2f = %d\n", vfr_bp->rep_q_r2f);
5824 
5825 	return 0;
5826 }
5827 
5828 static int
5829 bnxt_parse_devarg_rep_q_f2r(__rte_unused const char *key,
5830 			    const char *value, void *opaque_arg)
5831 {
5832 	struct bnxt_representor *vfr_bp = opaque_arg;
5833 	unsigned long rep_q_f2r;
5834 	char *end = NULL;
5835 
5836 	if (!value || !opaque_arg) {
5837 		PMD_DRV_LOG(ERR,
5838 			    "Invalid parameter passed to rep_q_f2r "
5839 			    "devargs.\n");
5840 		return -EINVAL;
5841 	}
5842 
5843 	rep_q_f2r = strtoul(value, &end, 10);
5844 	if (end == NULL || *end != '\0' ||
5845 	    (rep_q_f2r == ULONG_MAX && errno == ERANGE)) {
5846 		PMD_DRV_LOG(ERR,
5847 			    "Invalid parameter passed to rep_q_f2r "
5848 			    "devargs.\n");
5849 		return -EINVAL;
5850 	}
5851 
5852 	if (BNXT_DEVARG_REP_Q_F2R_INVALID(rep_q_f2r)) {
5853 		PMD_DRV_LOG(ERR,
5854 			    "Invalid value passed to rep_q_f2r devargs.\n");
5855 		return -EINVAL;
5856 	}
5857 
5858 	vfr_bp->rep_q_f2r = rep_q_f2r;
5859 	vfr_bp->flags |= BNXT_REP_Q_F2R_VALID;
5860 	PMD_DRV_LOG(INFO, "rep-q-f2r = %d\n", vfr_bp->rep_q_f2r);
5861 
5862 	return 0;
5863 }
5864 
5865 static int
5866 bnxt_parse_devarg_rep_fc_r2f(__rte_unused const char *key,
5867 			     const char *value, void *opaque_arg)
5868 {
5869 	struct bnxt_representor *vfr_bp = opaque_arg;
5870 	unsigned long rep_fc_r2f;
5871 	char *end = NULL;
5872 
5873 	if (!value || !opaque_arg) {
5874 		PMD_DRV_LOG(ERR,
5875 			    "Invalid parameter passed to rep_fc_r2f "
5876 			    "devargs.\n");
5877 		return -EINVAL;
5878 	}
5879 
5880 	rep_fc_r2f = strtoul(value, &end, 10);
5881 	if (end == NULL || *end != '\0' ||
5882 	    (rep_fc_r2f == ULONG_MAX && errno == ERANGE)) {
5883 		PMD_DRV_LOG(ERR,
5884 			    "Invalid parameter passed to rep_fc_r2f "
5885 			    "devargs.\n");
5886 		return -EINVAL;
5887 	}
5888 
5889 	if (BNXT_DEVARG_REP_FC_R2F_INVALID(rep_fc_r2f)) {
5890 		PMD_DRV_LOG(ERR,
5891 			    "Invalid value passed to rep_fc_r2f devargs.\n");
5892 		return -EINVAL;
5893 	}
5894 
5895 	vfr_bp->flags |= BNXT_REP_FC_R2F_VALID;
5896 	vfr_bp->rep_fc_r2f = rep_fc_r2f;
5897 	PMD_DRV_LOG(INFO, "rep-fc-r2f = %lu\n", rep_fc_r2f);
5898 
5899 	return 0;
5900 }
5901 
5902 static int
5903 bnxt_parse_devarg_rep_fc_f2r(__rte_unused const char *key,
5904 			     const char *value, void *opaque_arg)
5905 {
5906 	struct bnxt_representor *vfr_bp = opaque_arg;
5907 	unsigned long rep_fc_f2r;
5908 	char *end = NULL;
5909 
5910 	if (!value || !opaque_arg) {
5911 		PMD_DRV_LOG(ERR,
5912 			    "Invalid parameter passed to rep_fc_f2r "
5913 			    "devargs.\n");
5914 		return -EINVAL;
5915 	}
5916 
5917 	rep_fc_f2r = strtoul(value, &end, 10);
5918 	if (end == NULL || *end != '\0' ||
5919 	    (rep_fc_f2r == ULONG_MAX && errno == ERANGE)) {
5920 		PMD_DRV_LOG(ERR,
5921 			    "Invalid parameter passed to rep_fc_f2r "
5922 			    "devargs.\n");
5923 		return -EINVAL;
5924 	}
5925 
5926 	if (BNXT_DEVARG_REP_FC_F2R_INVALID(rep_fc_f2r)) {
5927 		PMD_DRV_LOG(ERR,
5928 			    "Invalid value passed to rep_fc_f2r devargs.\n");
5929 		return -EINVAL;
5930 	}
5931 
5932 	vfr_bp->flags |= BNXT_REP_FC_F2R_VALID;
5933 	vfr_bp->rep_fc_f2r = rep_fc_f2r;
5934 	PMD_DRV_LOG(INFO, "rep-fc-f2r = %lu\n", rep_fc_f2r);
5935 
5936 	return 0;
5937 }
5938 
5939 static void
5940 bnxt_parse_dev_args(struct bnxt *bp, struct rte_devargs *devargs)
5941 {
5942 	struct rte_kvargs *kvlist;
5943 
5944 	if (devargs == NULL)
5945 		return;
5946 
5947 	kvlist = rte_kvargs_parse(devargs->args, bnxt_dev_args);
5948 	if (kvlist == NULL)
5949 		return;
5950 
5951 	/*
5952 	 * Handler for "truflow" devarg.
5953 	 * Invoked as for ex: "-w 0000:00:0d.0,host-based-truflow=1"
5954 	 */
5955 	rte_kvargs_process(kvlist, BNXT_DEVARG_TRUFLOW,
5956 			   bnxt_parse_devarg_truflow, bp);
5957 
5958 	/*
5959 	 * Handler for "flow_xstat" devarg.
5960 	 * Invoked as for ex: "-w 0000:00:0d.0,flow_xstat=1"
5961 	 */
5962 	rte_kvargs_process(kvlist, BNXT_DEVARG_FLOW_XSTAT,
5963 			   bnxt_parse_devarg_flow_xstat, bp);
5964 
5965 	/*
5966 	 * Handler for "max_num_kflows" devarg.
5967 	 * Invoked as for ex: "-w 000:00:0d.0,max_num_kflows=32"
5968 	 */
5969 	rte_kvargs_process(kvlist, BNXT_DEVARG_MAX_NUM_KFLOWS,
5970 			   bnxt_parse_devarg_max_num_kflows, bp);
5971 
5972 	rte_kvargs_free(kvlist);
5973 }
5974 
5975 static int bnxt_alloc_switch_domain(struct bnxt *bp)
5976 {
5977 	int rc = 0;
5978 
5979 	if (BNXT_PF(bp) || BNXT_VF_IS_TRUSTED(bp)) {
5980 		rc = rte_eth_switch_domain_alloc(&bp->switch_domain_id);
5981 		if (rc)
5982 			PMD_DRV_LOG(ERR,
5983 				    "Failed to alloc switch domain: %d\n", rc);
5984 		else
5985 			PMD_DRV_LOG(INFO,
5986 				    "Switch domain allocated %d\n",
5987 				    bp->switch_domain_id);
5988 	}
5989 
5990 	return rc;
5991 }
5992 
5993 static int
5994 bnxt_dev_init(struct rte_eth_dev *eth_dev, void *params __rte_unused)
5995 {
5996 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
5997 	static int version_printed;
5998 	struct bnxt *bp;
5999 	int rc;
6000 
6001 	if (version_printed++ == 0)
6002 		PMD_DRV_LOG(INFO, "%s\n", bnxt_version);
6003 
6004 	eth_dev->dev_ops = &bnxt_dev_ops;
6005 	eth_dev->rx_queue_count = bnxt_rx_queue_count_op;
6006 	eth_dev->rx_descriptor_status = bnxt_rx_descriptor_status_op;
6007 	eth_dev->tx_descriptor_status = bnxt_tx_descriptor_status_op;
6008 	eth_dev->rx_pkt_burst = &bnxt_recv_pkts;
6009 	eth_dev->tx_pkt_burst = &bnxt_xmit_pkts;
6010 
6011 	/*
6012 	 * For secondary processes, we don't initialise any further
6013 	 * as primary has already done this work.
6014 	 */
6015 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
6016 		return 0;
6017 
6018 	rte_eth_copy_pci_info(eth_dev, pci_dev);
6019 
6020 	bp = eth_dev->data->dev_private;
6021 
6022 	/* Parse dev arguments passed on when starting the DPDK application. */
6023 	bnxt_parse_dev_args(bp, pci_dev->device.devargs);
6024 
6025 	bp->flags &= ~BNXT_FLAG_RX_VECTOR_PKT_MODE;
6026 
6027 	if (bnxt_vf_pciid(pci_dev->id.device_id))
6028 		bp->flags |= BNXT_FLAG_VF;
6029 
6030 	if (bnxt_thor_device(pci_dev->id.device_id))
6031 		bp->flags |= BNXT_FLAG_THOR_CHIP;
6032 
6033 	if (pci_dev->id.device_id == BROADCOM_DEV_ID_58802 ||
6034 	    pci_dev->id.device_id == BROADCOM_DEV_ID_58804 ||
6035 	    pci_dev->id.device_id == BROADCOM_DEV_ID_58808 ||
6036 	    pci_dev->id.device_id == BROADCOM_DEV_ID_58802_VF)
6037 		bp->flags |= BNXT_FLAG_STINGRAY;
6038 
6039 	rc = bnxt_init_board(eth_dev);
6040 	if (rc) {
6041 		PMD_DRV_LOG(ERR,
6042 			    "Failed to initialize board rc: %x\n", rc);
6043 		return rc;
6044 	}
6045 
6046 	rc = bnxt_alloc_pf_info(bp);
6047 	if (rc)
6048 		goto error_free;
6049 
6050 	rc = bnxt_alloc_link_info(bp);
6051 	if (rc)
6052 		goto error_free;
6053 
6054 	rc = bnxt_alloc_parent_info(bp);
6055 	if (rc)
6056 		goto error_free;
6057 
6058 	rc = bnxt_alloc_hwrm_resources(bp);
6059 	if (rc) {
6060 		PMD_DRV_LOG(ERR,
6061 			    "Failed to allocate hwrm resource rc: %x\n", rc);
6062 		goto error_free;
6063 	}
6064 	rc = bnxt_alloc_leds_info(bp);
6065 	if (rc)
6066 		goto error_free;
6067 
6068 	rc = bnxt_alloc_cos_queues(bp);
6069 	if (rc)
6070 		goto error_free;
6071 
6072 	rc = bnxt_init_resources(bp, false);
6073 	if (rc)
6074 		goto error_free;
6075 
6076 	rc = bnxt_alloc_stats_mem(bp);
6077 	if (rc)
6078 		goto error_free;
6079 
6080 	bnxt_alloc_switch_domain(bp);
6081 
6082 	PMD_DRV_LOG(INFO,
6083 		    DRV_MODULE_NAME "found at mem %" PRIX64 ", node addr %pM\n",
6084 		    pci_dev->mem_resource[0].phys_addr,
6085 		    pci_dev->mem_resource[0].addr);
6086 
6087 	return 0;
6088 
6089 error_free:
6090 	bnxt_dev_uninit(eth_dev);
6091 	return rc;
6092 }
6093 
6094 
6095 static void bnxt_free_ctx_mem_buf(struct bnxt_ctx_mem_buf_info *ctx)
6096 {
6097 	if (!ctx)
6098 		return;
6099 
6100 	if (ctx->va)
6101 		rte_free(ctx->va);
6102 
6103 	ctx->va = NULL;
6104 	ctx->dma = RTE_BAD_IOVA;
6105 	ctx->ctx_id = BNXT_CTX_VAL_INVAL;
6106 }
6107 
6108 static void bnxt_unregister_fc_ctx_mem(struct bnxt *bp)
6109 {
6110 	bnxt_hwrm_cfa_counter_cfg(bp, BNXT_DIR_RX,
6111 				  CFA_COUNTER_CFG_IN_COUNTER_TYPE_FC,
6112 				  bp->flow_stat->rx_fc_out_tbl.ctx_id,
6113 				  bp->flow_stat->max_fc,
6114 				  false);
6115 
6116 	bnxt_hwrm_cfa_counter_cfg(bp, BNXT_DIR_TX,
6117 				  CFA_COUNTER_CFG_IN_COUNTER_TYPE_FC,
6118 				  bp->flow_stat->tx_fc_out_tbl.ctx_id,
6119 				  bp->flow_stat->max_fc,
6120 				  false);
6121 
6122 	if (bp->flow_stat->rx_fc_in_tbl.ctx_id != BNXT_CTX_VAL_INVAL)
6123 		bnxt_hwrm_ctx_unrgtr(bp, bp->flow_stat->rx_fc_in_tbl.ctx_id);
6124 	bp->flow_stat->rx_fc_in_tbl.ctx_id = BNXT_CTX_VAL_INVAL;
6125 
6126 	if (bp->flow_stat->rx_fc_out_tbl.ctx_id != BNXT_CTX_VAL_INVAL)
6127 		bnxt_hwrm_ctx_unrgtr(bp, bp->flow_stat->rx_fc_out_tbl.ctx_id);
6128 	bp->flow_stat->rx_fc_out_tbl.ctx_id = BNXT_CTX_VAL_INVAL;
6129 
6130 	if (bp->flow_stat->tx_fc_in_tbl.ctx_id != BNXT_CTX_VAL_INVAL)
6131 		bnxt_hwrm_ctx_unrgtr(bp, bp->flow_stat->tx_fc_in_tbl.ctx_id);
6132 	bp->flow_stat->tx_fc_in_tbl.ctx_id = BNXT_CTX_VAL_INVAL;
6133 
6134 	if (bp->flow_stat->tx_fc_out_tbl.ctx_id != BNXT_CTX_VAL_INVAL)
6135 		bnxt_hwrm_ctx_unrgtr(bp, bp->flow_stat->tx_fc_out_tbl.ctx_id);
6136 	bp->flow_stat->tx_fc_out_tbl.ctx_id = BNXT_CTX_VAL_INVAL;
6137 }
6138 
6139 static void bnxt_uninit_fc_ctx_mem(struct bnxt *bp)
6140 {
6141 	bnxt_unregister_fc_ctx_mem(bp);
6142 
6143 	bnxt_free_ctx_mem_buf(&bp->flow_stat->rx_fc_in_tbl);
6144 	bnxt_free_ctx_mem_buf(&bp->flow_stat->rx_fc_out_tbl);
6145 	bnxt_free_ctx_mem_buf(&bp->flow_stat->tx_fc_in_tbl);
6146 	bnxt_free_ctx_mem_buf(&bp->flow_stat->tx_fc_out_tbl);
6147 }
6148 
6149 static void bnxt_uninit_ctx_mem(struct bnxt *bp)
6150 {
6151 	if (BNXT_FLOW_XSTATS_EN(bp))
6152 		bnxt_uninit_fc_ctx_mem(bp);
6153 }
6154 
6155 static void
6156 bnxt_free_error_recovery_info(struct bnxt *bp)
6157 {
6158 	rte_free(bp->recovery_info);
6159 	bp->recovery_info = NULL;
6160 	bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
6161 }
6162 
6163 static void
6164 bnxt_uninit_locks(struct bnxt *bp)
6165 {
6166 	pthread_mutex_destroy(&bp->flow_lock);
6167 	pthread_mutex_destroy(&bp->def_cp_lock);
6168 	pthread_mutex_destroy(&bp->health_check_lock);
6169 	if (bp->rep_info) {
6170 		pthread_mutex_destroy(&bp->rep_info->vfr_lock);
6171 		pthread_mutex_destroy(&bp->rep_info->vfr_start_lock);
6172 	}
6173 }
6174 
6175 static int
6176 bnxt_uninit_resources(struct bnxt *bp, bool reconfig_dev)
6177 {
6178 	int rc;
6179 
6180 	bnxt_free_int(bp);
6181 	bnxt_free_mem(bp, reconfig_dev);
6182 	bnxt_hwrm_func_buf_unrgtr(bp);
6183 	rc = bnxt_hwrm_func_driver_unregister(bp, 0);
6184 	bp->flags &= ~BNXT_FLAG_REGISTERED;
6185 	bnxt_free_ctx_mem(bp);
6186 	if (!reconfig_dev) {
6187 		bnxt_free_hwrm_resources(bp);
6188 		bnxt_free_error_recovery_info(bp);
6189 	}
6190 
6191 	bnxt_uninit_ctx_mem(bp);
6192 
6193 	bnxt_uninit_locks(bp);
6194 	bnxt_free_flow_stats_info(bp);
6195 	bnxt_free_rep_info(bp);
6196 	rte_free(bp->ptp_cfg);
6197 	bp->ptp_cfg = NULL;
6198 	return rc;
6199 }
6200 
6201 static int
6202 bnxt_dev_uninit(struct rte_eth_dev *eth_dev)
6203 {
6204 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
6205 		return -EPERM;
6206 
6207 	PMD_DRV_LOG(DEBUG, "Calling Device uninit\n");
6208 
6209 	if (eth_dev->state != RTE_ETH_DEV_UNUSED)
6210 		bnxt_dev_close_op(eth_dev);
6211 
6212 	return 0;
6213 }
6214 
6215 static int bnxt_pci_remove_dev_with_reps(struct rte_eth_dev *eth_dev)
6216 {
6217 	struct bnxt *bp = eth_dev->data->dev_private;
6218 	struct rte_eth_dev *vf_rep_eth_dev;
6219 	int ret = 0, i;
6220 
6221 	if (!bp)
6222 		return -EINVAL;
6223 
6224 	for (i = 0; i < bp->num_reps; i++) {
6225 		vf_rep_eth_dev = bp->rep_info[i].vfr_eth_dev;
6226 		if (!vf_rep_eth_dev)
6227 			continue;
6228 		PMD_DRV_LOG(DEBUG, "BNXT Port:%d VFR pci remove\n",
6229 			    vf_rep_eth_dev->data->port_id);
6230 		rte_eth_dev_destroy(vf_rep_eth_dev, bnxt_representor_uninit);
6231 	}
6232 	PMD_DRV_LOG(DEBUG, "BNXT Port:%d pci remove\n",
6233 		    eth_dev->data->port_id);
6234 	ret = rte_eth_dev_destroy(eth_dev, bnxt_dev_uninit);
6235 
6236 	return ret;
6237 }
6238 
6239 static void bnxt_free_rep_info(struct bnxt *bp)
6240 {
6241 	rte_free(bp->rep_info);
6242 	bp->rep_info = NULL;
6243 	rte_free(bp->cfa_code_map);
6244 	bp->cfa_code_map = NULL;
6245 }
6246 
6247 static int bnxt_init_rep_info(struct bnxt *bp)
6248 {
6249 	int i = 0, rc;
6250 
6251 	if (bp->rep_info)
6252 		return 0;
6253 
6254 	bp->rep_info = rte_zmalloc("bnxt_rep_info",
6255 				   sizeof(bp->rep_info[0]) * BNXT_MAX_VF_REPS,
6256 				   0);
6257 	if (!bp->rep_info) {
6258 		PMD_DRV_LOG(ERR, "Failed to alloc memory for rep info\n");
6259 		return -ENOMEM;
6260 	}
6261 	bp->cfa_code_map = rte_zmalloc("bnxt_cfa_code_map",
6262 				       sizeof(*bp->cfa_code_map) *
6263 				       BNXT_MAX_CFA_CODE, 0);
6264 	if (!bp->cfa_code_map) {
6265 		PMD_DRV_LOG(ERR, "Failed to alloc memory for cfa_code_map\n");
6266 		bnxt_free_rep_info(bp);
6267 		return -ENOMEM;
6268 	}
6269 
6270 	for (i = 0; i < BNXT_MAX_CFA_CODE; i++)
6271 		bp->cfa_code_map[i] = BNXT_VF_IDX_INVALID;
6272 
6273 	rc = pthread_mutex_init(&bp->rep_info->vfr_lock, NULL);
6274 	if (rc) {
6275 		PMD_DRV_LOG(ERR, "Unable to initialize vfr_lock\n");
6276 		bnxt_free_rep_info(bp);
6277 		return rc;
6278 	}
6279 
6280 	rc = pthread_mutex_init(&bp->rep_info->vfr_start_lock, NULL);
6281 	if (rc) {
6282 		PMD_DRV_LOG(ERR, "Unable to initialize vfr_start_lock\n");
6283 		bnxt_free_rep_info(bp);
6284 		return rc;
6285 	}
6286 
6287 	return rc;
6288 }
6289 
6290 static int bnxt_rep_port_probe(struct rte_pci_device *pci_dev,
6291 			       struct rte_eth_devargs eth_da,
6292 			       struct rte_eth_dev *backing_eth_dev,
6293 			       const char *dev_args)
6294 {
6295 	struct rte_eth_dev *vf_rep_eth_dev;
6296 	char name[RTE_ETH_NAME_MAX_LEN];
6297 	struct bnxt *backing_bp;
6298 	uint16_t num_rep;
6299 	int i, ret = 0;
6300 	struct rte_kvargs *kvlist;
6301 
6302 	num_rep = eth_da.nb_representor_ports;
6303 	if (num_rep > BNXT_MAX_VF_REPS) {
6304 		PMD_DRV_LOG(ERR, "nb_representor_ports = %d > %d MAX VF REPS\n",
6305 			    num_rep, BNXT_MAX_VF_REPS);
6306 		return -EINVAL;
6307 	}
6308 
6309 	if (num_rep >= RTE_MAX_ETHPORTS) {
6310 		PMD_DRV_LOG(ERR,
6311 			    "nb_representor_ports = %d > %d MAX ETHPORTS\n",
6312 			    num_rep, RTE_MAX_ETHPORTS);
6313 		return -EINVAL;
6314 	}
6315 
6316 	backing_bp = backing_eth_dev->data->dev_private;
6317 
6318 	if (!(BNXT_PF(backing_bp) || BNXT_VF_IS_TRUSTED(backing_bp))) {
6319 		PMD_DRV_LOG(ERR,
6320 			    "Not a PF or trusted VF. No Representor support\n");
6321 		/* Returning an error is not an option.
6322 		 * Applications are not handling this correctly
6323 		 */
6324 		return 0;
6325 	}
6326 
6327 	if (bnxt_init_rep_info(backing_bp))
6328 		return 0;
6329 
6330 	for (i = 0; i < num_rep; i++) {
6331 		struct bnxt_representor representor = {
6332 			.vf_id = eth_da.representor_ports[i],
6333 			.switch_domain_id = backing_bp->switch_domain_id,
6334 			.parent_dev = backing_eth_dev
6335 		};
6336 
6337 		if (representor.vf_id >= BNXT_MAX_VF_REPS) {
6338 			PMD_DRV_LOG(ERR, "VF-Rep id %d >= %d MAX VF ID\n",
6339 				    representor.vf_id, BNXT_MAX_VF_REPS);
6340 			continue;
6341 		}
6342 
6343 		/* representor port net_bdf_port */
6344 		snprintf(name, sizeof(name), "net_%s_representor_%d",
6345 			 pci_dev->device.name, eth_da.representor_ports[i]);
6346 
6347 		kvlist = rte_kvargs_parse(dev_args, bnxt_dev_args);
6348 		if (kvlist) {
6349 			/*
6350 			 * Handler for "rep_is_pf" devarg.
6351 			 * Invoked as for ex: "-w 000:00:0d.0,
6352 			 * rep-based-pf=<pf index> rep-is-pf=<VF=0 or PF=1>"
6353 			 */
6354 			rte_kvargs_process(kvlist, BNXT_DEVARG_REP_IS_PF,
6355 					   bnxt_parse_devarg_rep_is_pf,
6356 					   (void *)&representor);
6357 			/*
6358 			 * Handler for "rep_based_pf" devarg.
6359 			 * Invoked as for ex: "-w 000:00:0d.0,
6360 			 * rep-based-pf=<pf index> rep-is-pf=<VF=0 or PF=1>"
6361 			 */
6362 			rte_kvargs_process(kvlist, BNXT_DEVARG_REP_BASED_PF,
6363 					   bnxt_parse_devarg_rep_based_pf,
6364 					   (void *)&representor);
6365 			/*
6366 			 * Handler for "rep_based_pf" devarg.
6367 			 * Invoked as for ex: "-w 000:00:0d.0,
6368 			 * rep-based-pf=<pf index> rep-is-pf=<VF=0 or PF=1>"
6369 			 */
6370 			rte_kvargs_process(kvlist, BNXT_DEVARG_REP_Q_R2F,
6371 					   bnxt_parse_devarg_rep_q_r2f,
6372 					   (void *)&representor);
6373 			/*
6374 			 * Handler for "rep_based_pf" devarg.
6375 			 * Invoked as for ex: "-w 000:00:0d.0,
6376 			 * rep-based-pf=<pf index> rep-is-pf=<VF=0 or PF=1>"
6377 			 */
6378 			rte_kvargs_process(kvlist, BNXT_DEVARG_REP_Q_F2R,
6379 					   bnxt_parse_devarg_rep_q_f2r,
6380 					   (void *)&representor);
6381 			/*
6382 			 * Handler for "rep_based_pf" devarg.
6383 			 * Invoked as for ex: "-w 000:00:0d.0,
6384 			 * rep-based-pf=<pf index> rep-is-pf=<VF=0 or PF=1>"
6385 			 */
6386 			rte_kvargs_process(kvlist, BNXT_DEVARG_REP_FC_R2F,
6387 					   bnxt_parse_devarg_rep_fc_r2f,
6388 					   (void *)&representor);
6389 			/*
6390 			 * Handler for "rep_based_pf" devarg.
6391 			 * Invoked as for ex: "-w 000:00:0d.0,
6392 			 * rep-based-pf=<pf index> rep-is-pf=<VF=0 or PF=1>"
6393 			 */
6394 			rte_kvargs_process(kvlist, BNXT_DEVARG_REP_FC_F2R,
6395 					   bnxt_parse_devarg_rep_fc_f2r,
6396 					   (void *)&representor);
6397 		}
6398 
6399 		ret = rte_eth_dev_create(&pci_dev->device, name,
6400 					 sizeof(struct bnxt_representor),
6401 					 NULL, NULL,
6402 					 bnxt_representor_init,
6403 					 &representor);
6404 		if (ret) {
6405 			PMD_DRV_LOG(ERR, "failed to create bnxt vf "
6406 				    "representor %s.", name);
6407 			goto err;
6408 		}
6409 
6410 		vf_rep_eth_dev = rte_eth_dev_allocated(name);
6411 		if (!vf_rep_eth_dev) {
6412 			PMD_DRV_LOG(ERR, "Failed to find the eth_dev"
6413 				    " for VF-Rep: %s.", name);
6414 			ret = -ENODEV;
6415 			goto err;
6416 		}
6417 
6418 		PMD_DRV_LOG(DEBUG, "BNXT Port:%d VFR pci probe\n",
6419 			    backing_eth_dev->data->port_id);
6420 		backing_bp->rep_info[representor.vf_id].vfr_eth_dev =
6421 							 vf_rep_eth_dev;
6422 		backing_bp->num_reps++;
6423 
6424 	}
6425 
6426 	return 0;
6427 
6428 err:
6429 	/* If num_rep > 1, then rollback already created
6430 	 * ports, since we'll be failing the probe anyway
6431 	 */
6432 	if (num_rep > 1)
6433 		bnxt_pci_remove_dev_with_reps(backing_eth_dev);
6434 
6435 	return ret;
6436 }
6437 
6438 static int bnxt_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
6439 			  struct rte_pci_device *pci_dev)
6440 {
6441 	struct rte_eth_devargs eth_da = { .nb_representor_ports = 0 };
6442 	struct rte_eth_dev *backing_eth_dev;
6443 	uint16_t num_rep;
6444 	int ret = 0;
6445 
6446 	if (pci_dev->device.devargs) {
6447 		ret = rte_eth_devargs_parse(pci_dev->device.devargs->args,
6448 					    &eth_da);
6449 		if (ret)
6450 			return ret;
6451 	}
6452 
6453 	num_rep = eth_da.nb_representor_ports;
6454 	PMD_DRV_LOG(DEBUG, "nb_representor_ports = %d\n",
6455 		    num_rep);
6456 
6457 	/* We could come here after first level of probe is already invoked
6458 	 * as part of an application bringup(OVS-DPDK vswitchd), so first check
6459 	 * for already allocated eth_dev for the backing device (PF/Trusted VF)
6460 	 */
6461 	backing_eth_dev = rte_eth_dev_allocated(pci_dev->device.name);
6462 	if (backing_eth_dev == NULL) {
6463 		ret = rte_eth_dev_create(&pci_dev->device, pci_dev->device.name,
6464 					 sizeof(struct bnxt),
6465 					 eth_dev_pci_specific_init, pci_dev,
6466 					 bnxt_dev_init, NULL);
6467 
6468 		if (ret || !num_rep)
6469 			return ret;
6470 
6471 		backing_eth_dev = rte_eth_dev_allocated(pci_dev->device.name);
6472 	}
6473 	PMD_DRV_LOG(DEBUG, "BNXT Port:%d pci probe\n",
6474 		    backing_eth_dev->data->port_id);
6475 
6476 	if (!num_rep)
6477 		return ret;
6478 
6479 	/* probe representor ports now */
6480 	ret = bnxt_rep_port_probe(pci_dev, eth_da, backing_eth_dev,
6481 				  pci_dev->device.devargs->args);
6482 
6483 	return ret;
6484 }
6485 
6486 static int bnxt_pci_remove(struct rte_pci_device *pci_dev)
6487 {
6488 	struct rte_eth_dev *eth_dev;
6489 
6490 	eth_dev = rte_eth_dev_allocated(pci_dev->device.name);
6491 	if (!eth_dev)
6492 		return 0; /* Invoked typically only by OVS-DPDK, by the
6493 			   * time it comes here the eth_dev is already
6494 			   * deleted by rte_eth_dev_close(), so returning
6495 			   * +ve value will at least help in proper cleanup
6496 			   */
6497 
6498 	PMD_DRV_LOG(DEBUG, "BNXT Port:%d pci remove\n", eth_dev->data->port_id);
6499 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
6500 		if (eth_dev->data->dev_flags & RTE_ETH_DEV_REPRESENTOR)
6501 			return rte_eth_dev_destroy(eth_dev,
6502 						   bnxt_representor_uninit);
6503 		else
6504 			return rte_eth_dev_destroy(eth_dev,
6505 						   bnxt_dev_uninit);
6506 	} else {
6507 		return rte_eth_dev_pci_generic_remove(pci_dev, NULL);
6508 	}
6509 }
6510 
6511 static struct rte_pci_driver bnxt_rte_pmd = {
6512 	.id_table = bnxt_pci_id_map,
6513 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
6514 			RTE_PCI_DRV_PROBE_AGAIN, /* Needed in case of VF-REPs
6515 						  * and OVS-DPDK
6516 						  */
6517 	.probe = bnxt_pci_probe,
6518 	.remove = bnxt_pci_remove,
6519 };
6520 
6521 static bool
6522 is_device_supported(struct rte_eth_dev *dev, struct rte_pci_driver *drv)
6523 {
6524 	if (strcmp(dev->device->driver->name, drv->driver.name))
6525 		return false;
6526 
6527 	return true;
6528 }
6529 
6530 bool is_bnxt_supported(struct rte_eth_dev *dev)
6531 {
6532 	return is_device_supported(dev, &bnxt_rte_pmd);
6533 }
6534 
6535 RTE_LOG_REGISTER(bnxt_logtype_driver, pmd.net.bnxt.driver, NOTICE);
6536 RTE_PMD_REGISTER_PCI(net_bnxt, bnxt_rte_pmd);
6537 RTE_PMD_REGISTER_PCI_TABLE(net_bnxt, bnxt_pci_id_map);
6538 RTE_PMD_REGISTER_KMOD_DEP(net_bnxt, "* igb_uio | uio_pci_generic | vfio-pci");
6539