xref: /dpdk/drivers/net/bnxt/bnxt_ethdev.c (revision d261c9ef56f4c6af645b71a9a9c841bbbe24e3a9)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Broadcom
3  * All rights reserved.
4  */
5 
6 #include <inttypes.h>
7 #include <stdbool.h>
8 
9 #include <rte_dev.h>
10 #include <rte_ethdev_driver.h>
11 #include <rte_ethdev_pci.h>
12 #include <rte_malloc.h>
13 #include <rte_cycles.h>
14 
15 #include "bnxt.h"
16 #include "bnxt_cpr.h"
17 #include "bnxt_filter.h"
18 #include "bnxt_hwrm.h"
19 #include "bnxt_irq.h"
20 #include "bnxt_ring.h"
21 #include "bnxt_rxq.h"
22 #include "bnxt_rxr.h"
23 #include "bnxt_stats.h"
24 #include "bnxt_txq.h"
25 #include "bnxt_txr.h"
26 #include "bnxt_vnic.h"
27 #include "hsi_struct_def_dpdk.h"
28 #include "bnxt_nvm_defs.h"
29 #include "bnxt_util.h"
30 
31 #define DRV_MODULE_NAME		"bnxt"
32 static const char bnxt_version[] =
33 	"Broadcom NetXtreme driver " DRV_MODULE_NAME;
34 int bnxt_logtype_driver;
35 
36 #define PCI_VENDOR_ID_BROADCOM 0x14E4
37 
38 #define BROADCOM_DEV_ID_STRATUS_NIC_VF1 0x1606
39 #define BROADCOM_DEV_ID_STRATUS_NIC_VF2 0x1609
40 #define BROADCOM_DEV_ID_STRATUS_NIC 0x1614
41 #define BROADCOM_DEV_ID_57414_VF 0x16c1
42 #define BROADCOM_DEV_ID_57301 0x16c8
43 #define BROADCOM_DEV_ID_57302 0x16c9
44 #define BROADCOM_DEV_ID_57304_PF 0x16ca
45 #define BROADCOM_DEV_ID_57304_VF 0x16cb
46 #define BROADCOM_DEV_ID_57417_MF 0x16cc
47 #define BROADCOM_DEV_ID_NS2 0x16cd
48 #define BROADCOM_DEV_ID_57311 0x16ce
49 #define BROADCOM_DEV_ID_57312 0x16cf
50 #define BROADCOM_DEV_ID_57402 0x16d0
51 #define BROADCOM_DEV_ID_57404 0x16d1
52 #define BROADCOM_DEV_ID_57406_PF 0x16d2
53 #define BROADCOM_DEV_ID_57406_VF 0x16d3
54 #define BROADCOM_DEV_ID_57402_MF 0x16d4
55 #define BROADCOM_DEV_ID_57407_RJ45 0x16d5
56 #define BROADCOM_DEV_ID_57412 0x16d6
57 #define BROADCOM_DEV_ID_57414 0x16d7
58 #define BROADCOM_DEV_ID_57416_RJ45 0x16d8
59 #define BROADCOM_DEV_ID_57417_RJ45 0x16d9
60 #define BROADCOM_DEV_ID_5741X_VF 0x16dc
61 #define BROADCOM_DEV_ID_57412_MF 0x16de
62 #define BROADCOM_DEV_ID_57314 0x16df
63 #define BROADCOM_DEV_ID_57317_RJ45 0x16e0
64 #define BROADCOM_DEV_ID_5731X_VF 0x16e1
65 #define BROADCOM_DEV_ID_57417_SFP 0x16e2
66 #define BROADCOM_DEV_ID_57416_SFP 0x16e3
67 #define BROADCOM_DEV_ID_57317_SFP 0x16e4
68 #define BROADCOM_DEV_ID_57404_MF 0x16e7
69 #define BROADCOM_DEV_ID_57406_MF 0x16e8
70 #define BROADCOM_DEV_ID_57407_SFP 0x16e9
71 #define BROADCOM_DEV_ID_57407_MF 0x16ea
72 #define BROADCOM_DEV_ID_57414_MF 0x16ec
73 #define BROADCOM_DEV_ID_57416_MF 0x16ee
74 #define BROADCOM_DEV_ID_57508 0x1750
75 #define BROADCOM_DEV_ID_57504 0x1751
76 #define BROADCOM_DEV_ID_57502 0x1752
77 #define BROADCOM_DEV_ID_57500_VF1 0x1806
78 #define BROADCOM_DEV_ID_57500_VF2 0x1807
79 #define BROADCOM_DEV_ID_58802 0xd802
80 #define BROADCOM_DEV_ID_58804 0xd804
81 #define BROADCOM_DEV_ID_58808 0x16f0
82 #define BROADCOM_DEV_ID_58802_VF 0xd800
83 
84 static const struct rte_pci_id bnxt_pci_id_map[] = {
85 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
86 			 BROADCOM_DEV_ID_STRATUS_NIC_VF1) },
87 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
88 			 BROADCOM_DEV_ID_STRATUS_NIC_VF2) },
89 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_STRATUS_NIC) },
90 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_VF) },
91 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57301) },
92 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57302) },
93 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_PF) },
94 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_VF) },
95 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_NS2) },
96 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402) },
97 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404) },
98 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_PF) },
99 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_VF) },
100 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402_MF) },
101 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_RJ45) },
102 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404_MF) },
103 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_MF) },
104 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_SFP) },
105 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_MF) },
106 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5741X_VF) },
107 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5731X_VF) },
108 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57314) },
109 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_MF) },
110 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57311) },
111 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57312) },
112 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412) },
113 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414) },
114 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_RJ45) },
115 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_RJ45) },
116 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412_MF) },
117 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_RJ45) },
118 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_SFP) },
119 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_SFP) },
120 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_SFP) },
121 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_MF) },
122 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_MF) },
123 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58802) },
124 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58804) },
125 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58808) },
126 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58802_VF) },
127 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57508) },
128 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57504) },
129 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57502) },
130 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57500_VF1) },
131 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57500_VF2) },
132 	{ .vendor_id = 0, /* sentinel */ },
133 };
134 
135 #define BNXT_ETH_RSS_SUPPORT (	\
136 	ETH_RSS_IPV4 |		\
137 	ETH_RSS_NONFRAG_IPV4_TCP |	\
138 	ETH_RSS_NONFRAG_IPV4_UDP |	\
139 	ETH_RSS_IPV6 |		\
140 	ETH_RSS_NONFRAG_IPV6_TCP |	\
141 	ETH_RSS_NONFRAG_IPV6_UDP)
142 
143 #define BNXT_DEV_TX_OFFLOAD_SUPPORT (DEV_TX_OFFLOAD_VLAN_INSERT | \
144 				     DEV_TX_OFFLOAD_IPV4_CKSUM | \
145 				     DEV_TX_OFFLOAD_TCP_CKSUM | \
146 				     DEV_TX_OFFLOAD_UDP_CKSUM | \
147 				     DEV_TX_OFFLOAD_TCP_TSO | \
148 				     DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM | \
149 				     DEV_TX_OFFLOAD_VXLAN_TNL_TSO | \
150 				     DEV_TX_OFFLOAD_GRE_TNL_TSO | \
151 				     DEV_TX_OFFLOAD_IPIP_TNL_TSO | \
152 				     DEV_TX_OFFLOAD_GENEVE_TNL_TSO | \
153 				     DEV_TX_OFFLOAD_MULTI_SEGS)
154 
155 #define BNXT_DEV_RX_OFFLOAD_SUPPORT (DEV_RX_OFFLOAD_VLAN_FILTER | \
156 				     DEV_RX_OFFLOAD_VLAN_STRIP | \
157 				     DEV_RX_OFFLOAD_IPV4_CKSUM | \
158 				     DEV_RX_OFFLOAD_UDP_CKSUM | \
159 				     DEV_RX_OFFLOAD_TCP_CKSUM | \
160 				     DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM | \
161 				     DEV_RX_OFFLOAD_JUMBO_FRAME | \
162 				     DEV_RX_OFFLOAD_KEEP_CRC | \
163 				     DEV_RX_OFFLOAD_TCP_LRO)
164 
165 static int bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask);
166 static void bnxt_print_link_info(struct rte_eth_dev *eth_dev);
167 static int bnxt_mtu_set_op(struct rte_eth_dev *eth_dev, uint16_t new_mtu);
168 static int bnxt_dev_uninit(struct rte_eth_dev *eth_dev);
169 
170 /***********************/
171 
172 /*
173  * High level utility functions
174  */
175 
176 static uint16_t bnxt_rss_ctxts(const struct bnxt *bp)
177 {
178 	if (!BNXT_CHIP_THOR(bp))
179 		return 1;
180 
181 	return RTE_ALIGN_MUL_CEIL(bp->rx_nr_rings,
182 				  BNXT_RSS_ENTRIES_PER_CTX_THOR) /
183 				    BNXT_RSS_ENTRIES_PER_CTX_THOR;
184 }
185 
186 static uint16_t  bnxt_rss_hash_tbl_size(const struct bnxt *bp)
187 {
188 	if (!BNXT_CHIP_THOR(bp))
189 		return HW_HASH_INDEX_SIZE;
190 
191 	return bnxt_rss_ctxts(bp) * BNXT_RSS_ENTRIES_PER_CTX_THOR;
192 }
193 
194 static void bnxt_free_mem(struct bnxt *bp)
195 {
196 	bnxt_free_filter_mem(bp);
197 	bnxt_free_vnic_attributes(bp);
198 	bnxt_free_vnic_mem(bp);
199 
200 	bnxt_free_stats(bp);
201 	bnxt_free_tx_rings(bp);
202 	bnxt_free_rx_rings(bp);
203 }
204 
205 static int bnxt_alloc_mem(struct bnxt *bp)
206 {
207 	int rc;
208 
209 	rc = bnxt_alloc_vnic_mem(bp);
210 	if (rc)
211 		goto alloc_mem_err;
212 
213 	rc = bnxt_alloc_vnic_attributes(bp);
214 	if (rc)
215 		goto alloc_mem_err;
216 
217 	rc = bnxt_alloc_filter_mem(bp);
218 	if (rc)
219 		goto alloc_mem_err;
220 
221 	return 0;
222 
223 alloc_mem_err:
224 	bnxt_free_mem(bp);
225 	return rc;
226 }
227 
228 static int bnxt_init_chip(struct bnxt *bp)
229 {
230 	struct bnxt_rx_queue *rxq;
231 	struct rte_eth_link new;
232 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(bp->eth_dev);
233 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
234 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
235 	uint64_t rx_offloads = dev_conf->rxmode.offloads;
236 	uint32_t intr_vector = 0;
237 	uint32_t queue_id, base = BNXT_MISC_VEC_ID;
238 	uint32_t vec = BNXT_MISC_VEC_ID;
239 	unsigned int i, j;
240 	int rc;
241 
242 	/* disable uio/vfio intr/eventfd mapping */
243 	rte_intr_disable(intr_handle);
244 
245 	if (bp->eth_dev->data->mtu > RTE_ETHER_MTU) {
246 		bp->eth_dev->data->dev_conf.rxmode.offloads |=
247 			DEV_RX_OFFLOAD_JUMBO_FRAME;
248 		bp->flags |= BNXT_FLAG_JUMBO;
249 	} else {
250 		bp->eth_dev->data->dev_conf.rxmode.offloads &=
251 			~DEV_RX_OFFLOAD_JUMBO_FRAME;
252 		bp->flags &= ~BNXT_FLAG_JUMBO;
253 	}
254 
255 	/* THOR does not support ring groups.
256 	 * But we will use the array to save RSS context IDs.
257 	 */
258 	if (BNXT_CHIP_THOR(bp))
259 		bp->max_ring_grps = BNXT_MAX_RSS_CTXTS_THOR;
260 
261 	rc = bnxt_alloc_all_hwrm_stat_ctxs(bp);
262 	if (rc) {
263 		PMD_DRV_LOG(ERR, "HWRM stat ctx alloc failure rc: %x\n", rc);
264 		goto err_out;
265 	}
266 
267 	rc = bnxt_alloc_hwrm_rings(bp);
268 	if (rc) {
269 		PMD_DRV_LOG(ERR, "HWRM ring alloc failure rc: %x\n", rc);
270 		goto err_out;
271 	}
272 
273 	rc = bnxt_alloc_all_hwrm_ring_grps(bp);
274 	if (rc) {
275 		PMD_DRV_LOG(ERR, "HWRM ring grp alloc failure: %x\n", rc);
276 		goto err_out;
277 	}
278 
279 	rc = bnxt_mq_rx_configure(bp);
280 	if (rc) {
281 		PMD_DRV_LOG(ERR, "MQ mode configure failure rc: %x\n", rc);
282 		goto err_out;
283 	}
284 
285 	/* VNIC configuration */
286 	for (i = 0; i < bp->nr_vnics; i++) {
287 		struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
288 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
289 		uint32_t size = sizeof(*vnic->fw_grp_ids) * bp->max_ring_grps;
290 
291 		vnic->fw_grp_ids = rte_zmalloc("vnic_fw_grp_ids", size, 0);
292 		if (!vnic->fw_grp_ids) {
293 			PMD_DRV_LOG(ERR,
294 				    "Failed to alloc %d bytes for group ids\n",
295 				    size);
296 			rc = -ENOMEM;
297 			goto err_out;
298 		}
299 		memset(vnic->fw_grp_ids, -1, size);
300 
301 		PMD_DRV_LOG(DEBUG, "vnic[%d] = %p vnic->fw_grp_ids = %p\n",
302 			    i, vnic, vnic->fw_grp_ids);
303 
304 		rc = bnxt_hwrm_vnic_alloc(bp, vnic);
305 		if (rc) {
306 			PMD_DRV_LOG(ERR, "HWRM vnic %d alloc failure rc: %x\n",
307 				i, rc);
308 			goto err_out;
309 		}
310 
311 		/* Alloc RSS context only if RSS mode is enabled */
312 		if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS) {
313 			int j, nr_ctxs = bnxt_rss_ctxts(bp);
314 
315 			rc = 0;
316 			for (j = 0; j < nr_ctxs; j++) {
317 				rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, j);
318 				if (rc)
319 					break;
320 			}
321 			if (rc) {
322 				PMD_DRV_LOG(ERR,
323 				  "HWRM vnic %d ctx %d alloc failure rc: %x\n",
324 				  i, j, rc);
325 				goto err_out;
326 			}
327 			vnic->num_lb_ctxts = nr_ctxs;
328 		}
329 
330 		/*
331 		 * Firmware sets pf pair in default vnic cfg. If the VLAN strip
332 		 * setting is not available at this time, it will not be
333 		 * configured correctly in the CFA.
334 		 */
335 		if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
336 			vnic->vlan_strip = true;
337 		else
338 			vnic->vlan_strip = false;
339 
340 		rc = bnxt_hwrm_vnic_cfg(bp, vnic);
341 		if (rc) {
342 			PMD_DRV_LOG(ERR, "HWRM vnic %d cfg failure rc: %x\n",
343 				i, rc);
344 			goto err_out;
345 		}
346 
347 		rc = bnxt_set_hwrm_vnic_filters(bp, vnic);
348 		if (rc) {
349 			PMD_DRV_LOG(ERR,
350 				"HWRM vnic %d filter failure rc: %x\n",
351 				i, rc);
352 			goto err_out;
353 		}
354 
355 		for (j = 0; j < bp->rx_nr_rings; j++) {
356 			rxq = bp->eth_dev->data->rx_queues[j];
357 
358 			PMD_DRV_LOG(DEBUG,
359 				    "rxq[%d]->vnic=%p vnic->fw_grp_ids=%p\n",
360 				    j, rxq->vnic, rxq->vnic->fw_grp_ids);
361 
362 			if (BNXT_HAS_RING_GRPS(bp) && rxq->rx_deferred_start)
363 				rxq->vnic->fw_grp_ids[j] = INVALID_HW_RING_ID;
364 		}
365 
366 		rc = bnxt_vnic_rss_configure(bp, vnic);
367 		if (rc) {
368 			PMD_DRV_LOG(ERR,
369 				    "HWRM vnic set RSS failure rc: %x\n", rc);
370 			goto err_out;
371 		}
372 
373 		bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
374 
375 		if (bp->eth_dev->data->dev_conf.rxmode.offloads &
376 		    DEV_RX_OFFLOAD_TCP_LRO)
377 			bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 1);
378 		else
379 			bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 0);
380 	}
381 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, &bp->vnic_info[0], 0, NULL);
382 	if (rc) {
383 		PMD_DRV_LOG(ERR,
384 			"HWRM cfa l2 rx mask failure rc: %x\n", rc);
385 		goto err_out;
386 	}
387 
388 	/* check and configure queue intr-vector mapping */
389 	if ((rte_intr_cap_multiple(intr_handle) ||
390 	     !RTE_ETH_DEV_SRIOV(bp->eth_dev).active) &&
391 	    bp->eth_dev->data->dev_conf.intr_conf.rxq != 0) {
392 		intr_vector = bp->eth_dev->data->nb_rx_queues;
393 		PMD_DRV_LOG(DEBUG, "intr_vector = %d\n", intr_vector);
394 		if (intr_vector > bp->rx_cp_nr_rings) {
395 			PMD_DRV_LOG(ERR, "At most %d intr queues supported",
396 					bp->rx_cp_nr_rings);
397 			return -ENOTSUP;
398 		}
399 		rc = rte_intr_efd_enable(intr_handle, intr_vector);
400 		if (rc)
401 			return rc;
402 	}
403 
404 	if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
405 		intr_handle->intr_vec =
406 			rte_zmalloc("intr_vec",
407 				    bp->eth_dev->data->nb_rx_queues *
408 				    sizeof(int), 0);
409 		if (intr_handle->intr_vec == NULL) {
410 			PMD_DRV_LOG(ERR, "Failed to allocate %d rx_queues"
411 				" intr_vec", bp->eth_dev->data->nb_rx_queues);
412 			rc = -ENOMEM;
413 			goto err_disable;
414 		}
415 		PMD_DRV_LOG(DEBUG, "intr_handle->intr_vec = %p "
416 			"intr_handle->nb_efd = %d intr_handle->max_intr = %d\n",
417 			 intr_handle->intr_vec, intr_handle->nb_efd,
418 			intr_handle->max_intr);
419 		for (queue_id = 0; queue_id < bp->eth_dev->data->nb_rx_queues;
420 		     queue_id++) {
421 			intr_handle->intr_vec[queue_id] =
422 							vec + BNXT_RX_VEC_START;
423 			if (vec < base + intr_handle->nb_efd - 1)
424 				vec++;
425 		}
426 	}
427 
428 	/* enable uio/vfio intr/eventfd mapping */
429 	rc = rte_intr_enable(intr_handle);
430 	if (rc)
431 		goto err_free;
432 
433 	rc = bnxt_get_hwrm_link_config(bp, &new);
434 	if (rc) {
435 		PMD_DRV_LOG(ERR, "HWRM Get link config failure rc: %x\n", rc);
436 		goto err_free;
437 	}
438 
439 	if (!bp->link_info.link_up) {
440 		rc = bnxt_set_hwrm_link_config(bp, true);
441 		if (rc) {
442 			PMD_DRV_LOG(ERR,
443 				"HWRM link config failure rc: %x\n", rc);
444 			goto err_free;
445 		}
446 	}
447 	bnxt_print_link_info(bp->eth_dev);
448 
449 	return 0;
450 
451 err_free:
452 	rte_free(intr_handle->intr_vec);
453 err_disable:
454 	rte_intr_efd_disable(intr_handle);
455 err_out:
456 	/* Some of the error status returned by FW may not be from errno.h */
457 	if (rc > 0)
458 		rc = -EIO;
459 
460 	return rc;
461 }
462 
463 static int bnxt_shutdown_nic(struct bnxt *bp)
464 {
465 	bnxt_free_all_hwrm_resources(bp);
466 	bnxt_free_all_filters(bp);
467 	bnxt_free_all_vnics(bp);
468 	return 0;
469 }
470 
471 static int bnxt_init_nic(struct bnxt *bp)
472 {
473 	int rc;
474 
475 	if (BNXT_HAS_RING_GRPS(bp)) {
476 		rc = bnxt_init_ring_grps(bp);
477 		if (rc)
478 			return rc;
479 	}
480 
481 	bnxt_init_vnics(bp);
482 	bnxt_init_filters(bp);
483 
484 	return 0;
485 }
486 
487 /*
488  * Device configuration and status function
489  */
490 
491 static void bnxt_dev_info_get_op(struct rte_eth_dev *eth_dev,
492 				  struct rte_eth_dev_info *dev_info)
493 {
494 	struct bnxt *bp = eth_dev->data->dev_private;
495 	uint16_t max_vnics, i, j, vpool, vrxq;
496 	unsigned int max_rx_rings;
497 
498 	/* MAC Specifics */
499 	dev_info->max_mac_addrs = bp->max_l2_ctx;
500 	dev_info->max_hash_mac_addrs = 0;
501 
502 	/* PF/VF specifics */
503 	if (BNXT_PF(bp))
504 		dev_info->max_vfs = bp->pdev->max_vfs;
505 	max_rx_rings = RTE_MIN(bp->max_rx_rings, bp->max_stat_ctx);
506 	/* For the sake of symmetry, max_rx_queues = max_tx_queues */
507 	dev_info->max_rx_queues = max_rx_rings;
508 	dev_info->max_tx_queues = max_rx_rings;
509 	dev_info->reta_size = bnxt_rss_hash_tbl_size(bp);
510 	dev_info->hash_key_size = 40;
511 	max_vnics = bp->max_vnics;
512 
513 	/* Fast path specifics */
514 	dev_info->min_rx_bufsize = 1;
515 	dev_info->max_rx_pktlen = BNXT_MAX_MTU + RTE_ETHER_HDR_LEN +
516 		RTE_ETHER_CRC_LEN + VLAN_TAG_SIZE * 2;
517 
518 	dev_info->rx_offload_capa = BNXT_DEV_RX_OFFLOAD_SUPPORT;
519 	if (bp->flags & BNXT_FLAG_PTP_SUPPORTED)
520 		dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_TIMESTAMP;
521 	dev_info->tx_offload_capa = BNXT_DEV_TX_OFFLOAD_SUPPORT;
522 	dev_info->flow_type_rss_offloads = BNXT_ETH_RSS_SUPPORT;
523 
524 	/* *INDENT-OFF* */
525 	dev_info->default_rxconf = (struct rte_eth_rxconf) {
526 		.rx_thresh = {
527 			.pthresh = 8,
528 			.hthresh = 8,
529 			.wthresh = 0,
530 		},
531 		.rx_free_thresh = 32,
532 		/* If no descriptors available, pkts are dropped by default */
533 		.rx_drop_en = 1,
534 	};
535 
536 	dev_info->default_txconf = (struct rte_eth_txconf) {
537 		.tx_thresh = {
538 			.pthresh = 32,
539 			.hthresh = 0,
540 			.wthresh = 0,
541 		},
542 		.tx_free_thresh = 32,
543 		.tx_rs_thresh = 32,
544 	};
545 	eth_dev->data->dev_conf.intr_conf.lsc = 1;
546 
547 	eth_dev->data->dev_conf.intr_conf.rxq = 1;
548 	dev_info->rx_desc_lim.nb_min = BNXT_MIN_RING_DESC;
549 	dev_info->rx_desc_lim.nb_max = BNXT_MAX_RX_RING_DESC;
550 	dev_info->tx_desc_lim.nb_min = BNXT_MIN_RING_DESC;
551 	dev_info->tx_desc_lim.nb_max = BNXT_MAX_TX_RING_DESC;
552 
553 	/* *INDENT-ON* */
554 
555 	/*
556 	 * TODO: default_rxconf, default_txconf, rx_desc_lim, and tx_desc_lim
557 	 *       need further investigation.
558 	 */
559 
560 	/* VMDq resources */
561 	vpool = 64; /* ETH_64_POOLS */
562 	vrxq = 128; /* ETH_VMDQ_DCB_NUM_QUEUES */
563 	for (i = 0; i < 4; vpool >>= 1, i++) {
564 		if (max_vnics > vpool) {
565 			for (j = 0; j < 5; vrxq >>= 1, j++) {
566 				if (dev_info->max_rx_queues > vrxq) {
567 					if (vpool > vrxq)
568 						vpool = vrxq;
569 					goto found;
570 				}
571 			}
572 			/* Not enough resources to support VMDq */
573 			break;
574 		}
575 	}
576 	/* Not enough resources to support VMDq */
577 	vpool = 0;
578 	vrxq = 0;
579 found:
580 	dev_info->max_vmdq_pools = vpool;
581 	dev_info->vmdq_queue_num = vrxq;
582 
583 	dev_info->vmdq_pool_base = 0;
584 	dev_info->vmdq_queue_base = 0;
585 }
586 
587 /* Configure the device based on the configuration provided */
588 static int bnxt_dev_configure_op(struct rte_eth_dev *eth_dev)
589 {
590 	struct bnxt *bp = eth_dev->data->dev_private;
591 	uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads;
592 	int rc;
593 
594 	bp->rx_queues = (void *)eth_dev->data->rx_queues;
595 	bp->tx_queues = (void *)eth_dev->data->tx_queues;
596 	bp->tx_nr_rings = eth_dev->data->nb_tx_queues;
597 	bp->rx_nr_rings = eth_dev->data->nb_rx_queues;
598 
599 	if (BNXT_VF(bp) && (bp->flags & BNXT_FLAG_NEW_RM)) {
600 		rc = bnxt_hwrm_check_vf_rings(bp);
601 		if (rc) {
602 			PMD_DRV_LOG(ERR, "HWRM insufficient resources\n");
603 			return -ENOSPC;
604 		}
605 
606 		rc = bnxt_hwrm_func_reserve_vf_resc(bp, false);
607 		if (rc) {
608 			PMD_DRV_LOG(ERR, "HWRM resource alloc fail:%x\n", rc);
609 			return -ENOSPC;
610 		}
611 	} else {
612 		/* legacy driver needs to get updated values */
613 		rc = bnxt_hwrm_func_qcaps(bp);
614 		if (rc) {
615 			PMD_DRV_LOG(ERR, "hwrm func qcaps fail:%d\n", rc);
616 			return rc;
617 		}
618 	}
619 
620 	/* Inherit new configurations */
621 	if (eth_dev->data->nb_rx_queues > bp->max_rx_rings ||
622 	    eth_dev->data->nb_tx_queues > bp->max_tx_rings ||
623 	    eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues >
624 	    bp->max_cp_rings ||
625 	    eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues >
626 	    bp->max_stat_ctx)
627 		goto resource_error;
628 
629 	if (BNXT_HAS_RING_GRPS(bp) &&
630 	    (uint32_t)(eth_dev->data->nb_rx_queues) > bp->max_ring_grps)
631 		goto resource_error;
632 
633 	if (!(eth_dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS) &&
634 	    bp->max_vnics < eth_dev->data->nb_rx_queues)
635 		goto resource_error;
636 
637 	bp->rx_cp_nr_rings = bp->rx_nr_rings;
638 	bp->tx_cp_nr_rings = bp->tx_nr_rings;
639 
640 	if (rx_offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
641 		eth_dev->data->mtu =
642 			eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
643 			RTE_ETHER_HDR_LEN - RTE_ETHER_CRC_LEN - VLAN_TAG_SIZE *
644 			BNXT_NUM_VLANS;
645 		bnxt_mtu_set_op(eth_dev, eth_dev->data->mtu);
646 	}
647 	return 0;
648 
649 resource_error:
650 	PMD_DRV_LOG(ERR,
651 		    "Insufficient resources to support requested config\n");
652 	PMD_DRV_LOG(ERR,
653 		    "Num Queues Requested: Tx %d, Rx %d\n",
654 		    eth_dev->data->nb_tx_queues,
655 		    eth_dev->data->nb_rx_queues);
656 	PMD_DRV_LOG(ERR,
657 		    "MAX: TxQ %d, RxQ %d, CQ %d Stat %d, Grp %d, Vnic %d\n",
658 		    bp->max_tx_rings, bp->max_rx_rings, bp->max_cp_rings,
659 		    bp->max_stat_ctx, bp->max_ring_grps, bp->max_vnics);
660 	return -ENOSPC;
661 }
662 
663 static void bnxt_print_link_info(struct rte_eth_dev *eth_dev)
664 {
665 	struct rte_eth_link *link = &eth_dev->data->dev_link;
666 
667 	if (link->link_status)
668 		PMD_DRV_LOG(INFO, "Port %d Link Up - speed %u Mbps - %s\n",
669 			eth_dev->data->port_id,
670 			(uint32_t)link->link_speed,
671 			(link->link_duplex == ETH_LINK_FULL_DUPLEX) ?
672 			("full-duplex") : ("half-duplex\n"));
673 	else
674 		PMD_DRV_LOG(INFO, "Port %d Link Down\n",
675 			eth_dev->data->port_id);
676 }
677 
678 /*
679  * Determine whether the current configuration requires support for scattered
680  * receive; return 1 if scattered receive is required and 0 if not.
681  */
682 static int bnxt_scattered_rx(struct rte_eth_dev *eth_dev)
683 {
684 	uint16_t buf_size;
685 	int i;
686 
687 	for (i = 0; i < eth_dev->data->nb_rx_queues; i++) {
688 		struct bnxt_rx_queue *rxq = eth_dev->data->rx_queues[i];
689 
690 		buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
691 				      RTE_PKTMBUF_HEADROOM);
692 		if (eth_dev->data->dev_conf.rxmode.max_rx_pkt_len > buf_size)
693 			return 1;
694 	}
695 	return 0;
696 }
697 
698 static eth_rx_burst_t
699 bnxt_receive_function(__rte_unused struct rte_eth_dev *eth_dev)
700 {
701 #ifdef RTE_ARCH_X86
702 	/*
703 	 * Vector mode receive can be enabled only if scatter rx is not
704 	 * in use and rx offloads are limited to VLAN stripping and
705 	 * CRC stripping.
706 	 */
707 	if (!eth_dev->data->scattered_rx &&
708 	    !(eth_dev->data->dev_conf.rxmode.offloads &
709 	      ~(DEV_RX_OFFLOAD_VLAN_STRIP |
710 		DEV_RX_OFFLOAD_KEEP_CRC |
711 		DEV_RX_OFFLOAD_JUMBO_FRAME |
712 		DEV_RX_OFFLOAD_IPV4_CKSUM |
713 		DEV_RX_OFFLOAD_UDP_CKSUM |
714 		DEV_RX_OFFLOAD_TCP_CKSUM |
715 		DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
716 		DEV_RX_OFFLOAD_VLAN_FILTER))) {
717 		PMD_DRV_LOG(INFO, "Using vector mode receive for port %d\n",
718 			    eth_dev->data->port_id);
719 		return bnxt_recv_pkts_vec;
720 	}
721 	PMD_DRV_LOG(INFO, "Vector mode receive disabled for port %d\n",
722 		    eth_dev->data->port_id);
723 	PMD_DRV_LOG(INFO,
724 		    "Port %d scatter: %d rx offload: %" PRIX64 "\n",
725 		    eth_dev->data->port_id,
726 		    eth_dev->data->scattered_rx,
727 		    eth_dev->data->dev_conf.rxmode.offloads);
728 #endif
729 	return bnxt_recv_pkts;
730 }
731 
732 static eth_tx_burst_t
733 bnxt_transmit_function(__rte_unused struct rte_eth_dev *eth_dev)
734 {
735 #ifdef RTE_ARCH_X86
736 	/*
737 	 * Vector mode receive can be enabled only if scatter tx is not
738 	 * in use and tx offloads other than VLAN insertion are not
739 	 * in use.
740 	 */
741 	if (!eth_dev->data->scattered_rx &&
742 	    !(eth_dev->data->dev_conf.txmode.offloads &
743 	      ~DEV_TX_OFFLOAD_VLAN_INSERT)) {
744 		PMD_DRV_LOG(INFO, "Using vector mode transmit for port %d\n",
745 			    eth_dev->data->port_id);
746 		return bnxt_xmit_pkts_vec;
747 	}
748 	PMD_DRV_LOG(INFO, "Vector mode transmit disabled for port %d\n",
749 		    eth_dev->data->port_id);
750 	PMD_DRV_LOG(INFO,
751 		    "Port %d scatter: %d tx offload: %" PRIX64 "\n",
752 		    eth_dev->data->port_id,
753 		    eth_dev->data->scattered_rx,
754 		    eth_dev->data->dev_conf.txmode.offloads);
755 #endif
756 	return bnxt_xmit_pkts;
757 }
758 
759 static int bnxt_dev_start_op(struct rte_eth_dev *eth_dev)
760 {
761 	struct bnxt *bp = eth_dev->data->dev_private;
762 	uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads;
763 	int vlan_mask = 0;
764 	int rc;
765 
766 	if (bp->rx_cp_nr_rings > RTE_ETHDEV_QUEUE_STAT_CNTRS) {
767 		PMD_DRV_LOG(ERR,
768 			"RxQ cnt %d > CONFIG_RTE_ETHDEV_QUEUE_STAT_CNTRS %d\n",
769 			bp->rx_cp_nr_rings, RTE_ETHDEV_QUEUE_STAT_CNTRS);
770 	}
771 
772 	rc = bnxt_init_chip(bp);
773 	if (rc)
774 		goto error;
775 
776 	eth_dev->data->scattered_rx = bnxt_scattered_rx(eth_dev);
777 
778 	bnxt_link_update_op(eth_dev, 1);
779 
780 	if (rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
781 		vlan_mask |= ETH_VLAN_FILTER_MASK;
782 	if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
783 		vlan_mask |= ETH_VLAN_STRIP_MASK;
784 	rc = bnxt_vlan_offload_set_op(eth_dev, vlan_mask);
785 	if (rc)
786 		goto error;
787 
788 	eth_dev->rx_pkt_burst = bnxt_receive_function(eth_dev);
789 	eth_dev->tx_pkt_burst = bnxt_transmit_function(eth_dev);
790 	bnxt_enable_int(bp);
791 	bp->flags |= BNXT_FLAG_INIT_DONE;
792 	bp->dev_stopped = 0;
793 	return 0;
794 
795 error:
796 	bnxt_shutdown_nic(bp);
797 	bnxt_free_tx_mbufs(bp);
798 	bnxt_free_rx_mbufs(bp);
799 	return rc;
800 }
801 
802 static int bnxt_dev_set_link_up_op(struct rte_eth_dev *eth_dev)
803 {
804 	struct bnxt *bp = eth_dev->data->dev_private;
805 	int rc = 0;
806 
807 	if (!bp->link_info.link_up)
808 		rc = bnxt_set_hwrm_link_config(bp, true);
809 	if (!rc)
810 		eth_dev->data->dev_link.link_status = 1;
811 
812 	bnxt_print_link_info(eth_dev);
813 	return 0;
814 }
815 
816 static int bnxt_dev_set_link_down_op(struct rte_eth_dev *eth_dev)
817 {
818 	struct bnxt *bp = eth_dev->data->dev_private;
819 
820 	eth_dev->data->dev_link.link_status = 0;
821 	bnxt_set_hwrm_link_config(bp, false);
822 	bp->link_info.link_up = 0;
823 
824 	return 0;
825 }
826 
827 /* Unload the driver, release resources */
828 static void bnxt_dev_stop_op(struct rte_eth_dev *eth_dev)
829 {
830 	struct bnxt *bp = eth_dev->data->dev_private;
831 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
832 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
833 
834 	bnxt_disable_int(bp);
835 
836 	/* disable uio/vfio intr/eventfd mapping */
837 	rte_intr_disable(intr_handle);
838 
839 	bp->flags &= ~BNXT_FLAG_INIT_DONE;
840 	if (bp->eth_dev->data->dev_started) {
841 		/* TBD: STOP HW queues DMA */
842 		eth_dev->data->dev_link.link_status = 0;
843 	}
844 	bnxt_set_hwrm_link_config(bp, false);
845 
846 	/* Clean queue intr-vector mapping */
847 	rte_intr_efd_disable(intr_handle);
848 	if (intr_handle->intr_vec != NULL) {
849 		rte_free(intr_handle->intr_vec);
850 		intr_handle->intr_vec = NULL;
851 	}
852 
853 	bnxt_hwrm_port_clr_stats(bp);
854 	bnxt_free_tx_mbufs(bp);
855 	bnxt_free_rx_mbufs(bp);
856 	bnxt_shutdown_nic(bp);
857 	bp->dev_stopped = 1;
858 }
859 
860 static void bnxt_dev_close_op(struct rte_eth_dev *eth_dev)
861 {
862 	struct bnxt *bp = eth_dev->data->dev_private;
863 
864 	if (bp->dev_stopped == 0)
865 		bnxt_dev_stop_op(eth_dev);
866 
867 	if (eth_dev->data->mac_addrs != NULL) {
868 		rte_free(eth_dev->data->mac_addrs);
869 		eth_dev->data->mac_addrs = NULL;
870 	}
871 	if (bp->grp_info != NULL) {
872 		rte_free(bp->grp_info);
873 		bp->grp_info = NULL;
874 	}
875 
876 	bnxt_dev_uninit(eth_dev);
877 }
878 
879 static void bnxt_mac_addr_remove_op(struct rte_eth_dev *eth_dev,
880 				    uint32_t index)
881 {
882 	struct bnxt *bp = eth_dev->data->dev_private;
883 	uint64_t pool_mask = eth_dev->data->mac_pool_sel[index];
884 	struct bnxt_vnic_info *vnic;
885 	struct bnxt_filter_info *filter, *temp_filter;
886 	uint32_t i;
887 
888 	/*
889 	 * Loop through all VNICs from the specified filter flow pools to
890 	 * remove the corresponding MAC addr filter
891 	 */
892 	for (i = 0; i < bp->nr_vnics; i++) {
893 		if (!(pool_mask & (1ULL << i)))
894 			continue;
895 
896 		vnic = &bp->vnic_info[i];
897 		filter = STAILQ_FIRST(&vnic->filter);
898 		while (filter) {
899 			temp_filter = STAILQ_NEXT(filter, next);
900 			if (filter->mac_index == index) {
901 				STAILQ_REMOVE(&vnic->filter, filter,
902 						bnxt_filter_info, next);
903 				bnxt_hwrm_clear_l2_filter(bp, filter);
904 				filter->mac_index = INVALID_MAC_INDEX;
905 				memset(&filter->l2_addr, 0, RTE_ETHER_ADDR_LEN);
906 				STAILQ_INSERT_TAIL(&bp->free_filter_list,
907 						   filter, next);
908 			}
909 			filter = temp_filter;
910 		}
911 	}
912 }
913 
914 static int bnxt_mac_addr_add_op(struct rte_eth_dev *eth_dev,
915 				struct rte_ether_addr *mac_addr,
916 				uint32_t index, uint32_t pool)
917 {
918 	struct bnxt *bp = eth_dev->data->dev_private;
919 	struct bnxt_vnic_info *vnic = &bp->vnic_info[pool];
920 	struct bnxt_filter_info *filter;
921 	int rc = 0;
922 
923 	if (BNXT_VF(bp) & !BNXT_VF_IS_TRUSTED(bp)) {
924 		PMD_DRV_LOG(ERR, "Cannot add MAC address to a VF interface\n");
925 		return -ENOTSUP;
926 	}
927 
928 	if (!vnic) {
929 		PMD_DRV_LOG(ERR, "VNIC not found for pool %d!\n", pool);
930 		return -EINVAL;
931 	}
932 	/* Attach requested MAC address to the new l2_filter */
933 	STAILQ_FOREACH(filter, &vnic->filter, next) {
934 		if (filter->mac_index == index) {
935 			PMD_DRV_LOG(ERR,
936 				"MAC addr already existed for pool %d\n", pool);
937 			return 0;
938 		}
939 	}
940 	filter = bnxt_alloc_filter(bp);
941 	if (!filter) {
942 		PMD_DRV_LOG(ERR, "L2 filter alloc failed\n");
943 		return -ENODEV;
944 	}
945 
946 	filter->mac_index = index;
947 	memcpy(filter->l2_addr, mac_addr, RTE_ETHER_ADDR_LEN);
948 
949 	rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
950 	if (!rc) {
951 		STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
952 	} else {
953 		filter->mac_index = INVALID_MAC_INDEX;
954 		memset(&filter->l2_addr, 0, RTE_ETHER_ADDR_LEN);
955 		bnxt_free_filter(bp, filter);
956 	}
957 
958 	return rc;
959 }
960 
961 int bnxt_link_update_op(struct rte_eth_dev *eth_dev, int wait_to_complete)
962 {
963 	int rc = 0;
964 	struct bnxt *bp = eth_dev->data->dev_private;
965 	struct rte_eth_link new;
966 	unsigned int cnt = BNXT_LINK_WAIT_CNT;
967 
968 	memset(&new, 0, sizeof(new));
969 	do {
970 		/* Retrieve link info from hardware */
971 		rc = bnxt_get_hwrm_link_config(bp, &new);
972 		if (rc) {
973 			new.link_speed = ETH_LINK_SPEED_100M;
974 			new.link_duplex = ETH_LINK_FULL_DUPLEX;
975 			PMD_DRV_LOG(ERR,
976 				"Failed to retrieve link rc = 0x%x!\n", rc);
977 			goto out;
978 		}
979 
980 		if (!wait_to_complete || new.link_status)
981 			break;
982 
983 		rte_delay_ms(BNXT_LINK_WAIT_INTERVAL);
984 	} while (cnt--);
985 
986 out:
987 	/* Timed out or success */
988 	if (new.link_status != eth_dev->data->dev_link.link_status ||
989 	new.link_speed != eth_dev->data->dev_link.link_speed) {
990 		memcpy(&eth_dev->data->dev_link, &new,
991 			sizeof(struct rte_eth_link));
992 
993 		_rte_eth_dev_callback_process(eth_dev,
994 					      RTE_ETH_EVENT_INTR_LSC,
995 					      NULL);
996 
997 		bnxt_print_link_info(eth_dev);
998 	}
999 
1000 	return rc;
1001 }
1002 
1003 static void bnxt_promiscuous_enable_op(struct rte_eth_dev *eth_dev)
1004 {
1005 	struct bnxt *bp = eth_dev->data->dev_private;
1006 	struct bnxt_vnic_info *vnic;
1007 
1008 	if (bp->vnic_info == NULL)
1009 		return;
1010 
1011 	vnic = &bp->vnic_info[0];
1012 
1013 	vnic->flags |= BNXT_VNIC_INFO_PROMISC;
1014 	bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1015 }
1016 
1017 static void bnxt_promiscuous_disable_op(struct rte_eth_dev *eth_dev)
1018 {
1019 	struct bnxt *bp = eth_dev->data->dev_private;
1020 	struct bnxt_vnic_info *vnic;
1021 
1022 	if (bp->vnic_info == NULL)
1023 		return;
1024 
1025 	vnic = &bp->vnic_info[0];
1026 
1027 	vnic->flags &= ~BNXT_VNIC_INFO_PROMISC;
1028 	bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1029 }
1030 
1031 static void bnxt_allmulticast_enable_op(struct rte_eth_dev *eth_dev)
1032 {
1033 	struct bnxt *bp = eth_dev->data->dev_private;
1034 	struct bnxt_vnic_info *vnic;
1035 
1036 	if (bp->vnic_info == NULL)
1037 		return;
1038 
1039 	vnic = &bp->vnic_info[0];
1040 
1041 	vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
1042 	bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1043 }
1044 
1045 static void bnxt_allmulticast_disable_op(struct rte_eth_dev *eth_dev)
1046 {
1047 	struct bnxt *bp = eth_dev->data->dev_private;
1048 	struct bnxt_vnic_info *vnic;
1049 
1050 	if (bp->vnic_info == NULL)
1051 		return;
1052 
1053 	vnic = &bp->vnic_info[0];
1054 
1055 	vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
1056 	bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1057 }
1058 
1059 /* Return bnxt_rx_queue pointer corresponding to a given rxq. */
1060 static struct bnxt_rx_queue *bnxt_qid_to_rxq(struct bnxt *bp, uint16_t qid)
1061 {
1062 	if (qid >= bp->rx_nr_rings)
1063 		return NULL;
1064 
1065 	return bp->eth_dev->data->rx_queues[qid];
1066 }
1067 
1068 /* Return rxq corresponding to a given rss table ring/group ID. */
1069 static uint16_t bnxt_rss_to_qid(struct bnxt *bp, uint16_t fwr)
1070 {
1071 	struct bnxt_rx_queue *rxq;
1072 	unsigned int i;
1073 
1074 	if (!BNXT_HAS_RING_GRPS(bp)) {
1075 		for (i = 0; i < bp->rx_nr_rings; i++) {
1076 			rxq = bp->eth_dev->data->rx_queues[i];
1077 			if (rxq->rx_ring->rx_ring_struct->fw_ring_id == fwr)
1078 				return rxq->index;
1079 		}
1080 	} else {
1081 		for (i = 0; i < bp->rx_nr_rings; i++) {
1082 			if (bp->grp_info[i].fw_grp_id == fwr)
1083 				return i;
1084 		}
1085 	}
1086 
1087 	return INVALID_HW_RING_ID;
1088 }
1089 
1090 static int bnxt_reta_update_op(struct rte_eth_dev *eth_dev,
1091 			    struct rte_eth_rss_reta_entry64 *reta_conf,
1092 			    uint16_t reta_size)
1093 {
1094 	struct bnxt *bp = eth_dev->data->dev_private;
1095 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
1096 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
1097 	uint16_t tbl_size = bnxt_rss_hash_tbl_size(bp);
1098 	uint16_t idx, sft;
1099 	int i;
1100 
1101 	if (!vnic->rss_table)
1102 		return -EINVAL;
1103 
1104 	if (!(dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
1105 		return -EINVAL;
1106 
1107 	if (reta_size != tbl_size) {
1108 		PMD_DRV_LOG(ERR, "The configured hash table lookup size "
1109 			"(%d) must equal the size supported by the hardware "
1110 			"(%d)\n", reta_size, tbl_size);
1111 		return -EINVAL;
1112 	}
1113 
1114 	for (i = 0; i < reta_size; i++) {
1115 		struct bnxt_rx_queue *rxq;
1116 
1117 		idx = i / RTE_RETA_GROUP_SIZE;
1118 		sft = i % RTE_RETA_GROUP_SIZE;
1119 
1120 		if (!(reta_conf[idx].mask & (1ULL << sft)))
1121 			continue;
1122 
1123 		rxq = bnxt_qid_to_rxq(bp, reta_conf[idx].reta[sft]);
1124 		if (!rxq) {
1125 			PMD_DRV_LOG(ERR, "Invalid ring in reta_conf.\n");
1126 			return -EINVAL;
1127 		}
1128 
1129 		if (BNXT_CHIP_THOR(bp)) {
1130 			vnic->rss_table[i * 2] =
1131 				rxq->rx_ring->rx_ring_struct->fw_ring_id;
1132 			vnic->rss_table[i * 2 + 1] =
1133 				rxq->cp_ring->cp_ring_struct->fw_ring_id;
1134 		} else {
1135 			vnic->rss_table[i] =
1136 			    vnic->fw_grp_ids[reta_conf[idx].reta[sft]];
1137 		}
1138 
1139 		vnic->rss_table[i] =
1140 		    vnic->fw_grp_ids[reta_conf[idx].reta[sft]];
1141 	}
1142 
1143 	bnxt_hwrm_vnic_rss_cfg(bp, vnic);
1144 	return 0;
1145 }
1146 
1147 static int bnxt_reta_query_op(struct rte_eth_dev *eth_dev,
1148 			      struct rte_eth_rss_reta_entry64 *reta_conf,
1149 			      uint16_t reta_size)
1150 {
1151 	struct bnxt *bp = eth_dev->data->dev_private;
1152 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
1153 	uint16_t tbl_size = bnxt_rss_hash_tbl_size(bp);
1154 	uint16_t idx, sft, i;
1155 
1156 	/* Retrieve from the default VNIC */
1157 	if (!vnic)
1158 		return -EINVAL;
1159 	if (!vnic->rss_table)
1160 		return -EINVAL;
1161 
1162 	if (reta_size != tbl_size) {
1163 		PMD_DRV_LOG(ERR, "The configured hash table lookup size "
1164 			"(%d) must equal the size supported by the hardware "
1165 			"(%d)\n", reta_size, tbl_size);
1166 		return -EINVAL;
1167 	}
1168 
1169 	for (idx = 0, i = 0; i < reta_size; i++) {
1170 		idx = i / RTE_RETA_GROUP_SIZE;
1171 		sft = i % RTE_RETA_GROUP_SIZE;
1172 
1173 		if (reta_conf[idx].mask & (1ULL << sft)) {
1174 			uint16_t qid;
1175 
1176 			if (BNXT_CHIP_THOR(bp))
1177 				qid = bnxt_rss_to_qid(bp,
1178 						      vnic->rss_table[i * 2]);
1179 			else
1180 				qid = bnxt_rss_to_qid(bp, vnic->rss_table[i]);
1181 
1182 			if (qid == INVALID_HW_RING_ID) {
1183 				PMD_DRV_LOG(ERR, "Inv. entry in rss table.\n");
1184 				return -EINVAL;
1185 			}
1186 			reta_conf[idx].reta[sft] = qid;
1187 		}
1188 	}
1189 
1190 	return 0;
1191 }
1192 
1193 static int bnxt_rss_hash_update_op(struct rte_eth_dev *eth_dev,
1194 				   struct rte_eth_rss_conf *rss_conf)
1195 {
1196 	struct bnxt *bp = eth_dev->data->dev_private;
1197 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
1198 	struct bnxt_vnic_info *vnic;
1199 	uint16_t hash_type = 0;
1200 	unsigned int i;
1201 
1202 	/*
1203 	 * If RSS enablement were different than dev_configure,
1204 	 * then return -EINVAL
1205 	 */
1206 	if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) {
1207 		if (!rss_conf->rss_hf)
1208 			PMD_DRV_LOG(ERR, "Hash type NONE\n");
1209 	} else {
1210 		if (rss_conf->rss_hf & BNXT_ETH_RSS_SUPPORT)
1211 			return -EINVAL;
1212 	}
1213 
1214 	bp->flags |= BNXT_FLAG_UPDATE_HASH;
1215 	memcpy(&bp->rss_conf, rss_conf, sizeof(*rss_conf));
1216 
1217 	if (rss_conf->rss_hf & ETH_RSS_IPV4)
1218 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
1219 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
1220 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
1221 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
1222 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
1223 	if (rss_conf->rss_hf & ETH_RSS_IPV6)
1224 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
1225 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
1226 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
1227 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
1228 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
1229 
1230 	/* Update the RSS VNIC(s) */
1231 	for (i = 0; i < bp->nr_vnics; i++) {
1232 		vnic = &bp->vnic_info[i];
1233 		vnic->hash_type = hash_type;
1234 
1235 		/*
1236 		 * Use the supplied key if the key length is
1237 		 * acceptable and the rss_key is not NULL
1238 		 */
1239 		if (rss_conf->rss_key &&
1240 		    rss_conf->rss_key_len <= HW_HASH_KEY_SIZE)
1241 			memcpy(vnic->rss_hash_key, rss_conf->rss_key,
1242 			       rss_conf->rss_key_len);
1243 
1244 		bnxt_hwrm_vnic_rss_cfg(bp, vnic);
1245 	}
1246 	return 0;
1247 }
1248 
1249 static int bnxt_rss_hash_conf_get_op(struct rte_eth_dev *eth_dev,
1250 				     struct rte_eth_rss_conf *rss_conf)
1251 {
1252 	struct bnxt *bp = eth_dev->data->dev_private;
1253 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
1254 	int len;
1255 	uint32_t hash_types;
1256 
1257 	/* RSS configuration is the same for all VNICs */
1258 	if (vnic && vnic->rss_hash_key) {
1259 		if (rss_conf->rss_key) {
1260 			len = rss_conf->rss_key_len <= HW_HASH_KEY_SIZE ?
1261 			      rss_conf->rss_key_len : HW_HASH_KEY_SIZE;
1262 			memcpy(rss_conf->rss_key, vnic->rss_hash_key, len);
1263 		}
1264 
1265 		hash_types = vnic->hash_type;
1266 		rss_conf->rss_hf = 0;
1267 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4) {
1268 			rss_conf->rss_hf |= ETH_RSS_IPV4;
1269 			hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
1270 		}
1271 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4) {
1272 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
1273 			hash_types &=
1274 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
1275 		}
1276 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4) {
1277 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
1278 			hash_types &=
1279 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
1280 		}
1281 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6) {
1282 			rss_conf->rss_hf |= ETH_RSS_IPV6;
1283 			hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
1284 		}
1285 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6) {
1286 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
1287 			hash_types &=
1288 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
1289 		}
1290 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6) {
1291 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
1292 			hash_types &=
1293 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
1294 		}
1295 		if (hash_types) {
1296 			PMD_DRV_LOG(ERR,
1297 				"Unknwon RSS config from firmware (%08x), RSS disabled",
1298 				vnic->hash_type);
1299 			return -ENOTSUP;
1300 		}
1301 	} else {
1302 		rss_conf->rss_hf = 0;
1303 	}
1304 	return 0;
1305 }
1306 
1307 static int bnxt_flow_ctrl_get_op(struct rte_eth_dev *dev,
1308 			       struct rte_eth_fc_conf *fc_conf)
1309 {
1310 	struct bnxt *bp = dev->data->dev_private;
1311 	struct rte_eth_link link_info;
1312 	int rc;
1313 
1314 	rc = bnxt_get_hwrm_link_config(bp, &link_info);
1315 	if (rc)
1316 		return rc;
1317 
1318 	memset(fc_conf, 0, sizeof(*fc_conf));
1319 	if (bp->link_info.auto_pause)
1320 		fc_conf->autoneg = 1;
1321 	switch (bp->link_info.pause) {
1322 	case 0:
1323 		fc_conf->mode = RTE_FC_NONE;
1324 		break;
1325 	case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX:
1326 		fc_conf->mode = RTE_FC_TX_PAUSE;
1327 		break;
1328 	case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX:
1329 		fc_conf->mode = RTE_FC_RX_PAUSE;
1330 		break;
1331 	case (HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX |
1332 			HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX):
1333 		fc_conf->mode = RTE_FC_FULL;
1334 		break;
1335 	}
1336 	return 0;
1337 }
1338 
1339 static int bnxt_flow_ctrl_set_op(struct rte_eth_dev *dev,
1340 			       struct rte_eth_fc_conf *fc_conf)
1341 {
1342 	struct bnxt *bp = dev->data->dev_private;
1343 
1344 	if (!BNXT_SINGLE_PF(bp) || BNXT_VF(bp)) {
1345 		PMD_DRV_LOG(ERR, "Flow Control Settings cannot be modified\n");
1346 		return -ENOTSUP;
1347 	}
1348 
1349 	switch (fc_conf->mode) {
1350 	case RTE_FC_NONE:
1351 		bp->link_info.auto_pause = 0;
1352 		bp->link_info.force_pause = 0;
1353 		break;
1354 	case RTE_FC_RX_PAUSE:
1355 		if (fc_conf->autoneg) {
1356 			bp->link_info.auto_pause =
1357 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
1358 			bp->link_info.force_pause = 0;
1359 		} else {
1360 			bp->link_info.auto_pause = 0;
1361 			bp->link_info.force_pause =
1362 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
1363 		}
1364 		break;
1365 	case RTE_FC_TX_PAUSE:
1366 		if (fc_conf->autoneg) {
1367 			bp->link_info.auto_pause =
1368 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX;
1369 			bp->link_info.force_pause = 0;
1370 		} else {
1371 			bp->link_info.auto_pause = 0;
1372 			bp->link_info.force_pause =
1373 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX;
1374 		}
1375 		break;
1376 	case RTE_FC_FULL:
1377 		if (fc_conf->autoneg) {
1378 			bp->link_info.auto_pause =
1379 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX |
1380 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
1381 			bp->link_info.force_pause = 0;
1382 		} else {
1383 			bp->link_info.auto_pause = 0;
1384 			bp->link_info.force_pause =
1385 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX |
1386 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
1387 		}
1388 		break;
1389 	}
1390 	return bnxt_set_hwrm_link_config(bp, true);
1391 }
1392 
1393 /* Add UDP tunneling port */
1394 static int
1395 bnxt_udp_tunnel_port_add_op(struct rte_eth_dev *eth_dev,
1396 			 struct rte_eth_udp_tunnel *udp_tunnel)
1397 {
1398 	struct bnxt *bp = eth_dev->data->dev_private;
1399 	uint16_t tunnel_type = 0;
1400 	int rc = 0;
1401 
1402 	switch (udp_tunnel->prot_type) {
1403 	case RTE_TUNNEL_TYPE_VXLAN:
1404 		if (bp->vxlan_port_cnt) {
1405 			PMD_DRV_LOG(ERR, "Tunnel Port %d already programmed\n",
1406 				udp_tunnel->udp_port);
1407 			if (bp->vxlan_port != udp_tunnel->udp_port) {
1408 				PMD_DRV_LOG(ERR, "Only one port allowed\n");
1409 				return -ENOSPC;
1410 			}
1411 			bp->vxlan_port_cnt++;
1412 			return 0;
1413 		}
1414 		tunnel_type =
1415 			HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_VXLAN;
1416 		bp->vxlan_port_cnt++;
1417 		break;
1418 	case RTE_TUNNEL_TYPE_GENEVE:
1419 		if (bp->geneve_port_cnt) {
1420 			PMD_DRV_LOG(ERR, "Tunnel Port %d already programmed\n",
1421 				udp_tunnel->udp_port);
1422 			if (bp->geneve_port != udp_tunnel->udp_port) {
1423 				PMD_DRV_LOG(ERR, "Only one port allowed\n");
1424 				return -ENOSPC;
1425 			}
1426 			bp->geneve_port_cnt++;
1427 			return 0;
1428 		}
1429 		tunnel_type =
1430 			HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_GENEVE;
1431 		bp->geneve_port_cnt++;
1432 		break;
1433 	default:
1434 		PMD_DRV_LOG(ERR, "Tunnel type is not supported\n");
1435 		return -ENOTSUP;
1436 	}
1437 	rc = bnxt_hwrm_tunnel_dst_port_alloc(bp, udp_tunnel->udp_port,
1438 					     tunnel_type);
1439 	return rc;
1440 }
1441 
1442 static int
1443 bnxt_udp_tunnel_port_del_op(struct rte_eth_dev *eth_dev,
1444 			 struct rte_eth_udp_tunnel *udp_tunnel)
1445 {
1446 	struct bnxt *bp = eth_dev->data->dev_private;
1447 	uint16_t tunnel_type = 0;
1448 	uint16_t port = 0;
1449 	int rc = 0;
1450 
1451 	switch (udp_tunnel->prot_type) {
1452 	case RTE_TUNNEL_TYPE_VXLAN:
1453 		if (!bp->vxlan_port_cnt) {
1454 			PMD_DRV_LOG(ERR, "No Tunnel port configured yet\n");
1455 			return -EINVAL;
1456 		}
1457 		if (bp->vxlan_port != udp_tunnel->udp_port) {
1458 			PMD_DRV_LOG(ERR, "Req Port: %d. Configured port: %d\n",
1459 				udp_tunnel->udp_port, bp->vxlan_port);
1460 			return -EINVAL;
1461 		}
1462 		if (--bp->vxlan_port_cnt)
1463 			return 0;
1464 
1465 		tunnel_type =
1466 			HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN;
1467 		port = bp->vxlan_fw_dst_port_id;
1468 		break;
1469 	case RTE_TUNNEL_TYPE_GENEVE:
1470 		if (!bp->geneve_port_cnt) {
1471 			PMD_DRV_LOG(ERR, "No Tunnel port configured yet\n");
1472 			return -EINVAL;
1473 		}
1474 		if (bp->geneve_port != udp_tunnel->udp_port) {
1475 			PMD_DRV_LOG(ERR, "Req Port: %d. Configured port: %d\n",
1476 				udp_tunnel->udp_port, bp->geneve_port);
1477 			return -EINVAL;
1478 		}
1479 		if (--bp->geneve_port_cnt)
1480 			return 0;
1481 
1482 		tunnel_type =
1483 			HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE;
1484 		port = bp->geneve_fw_dst_port_id;
1485 		break;
1486 	default:
1487 		PMD_DRV_LOG(ERR, "Tunnel type is not supported\n");
1488 		return -ENOTSUP;
1489 	}
1490 
1491 	rc = bnxt_hwrm_tunnel_dst_port_free(bp, port, tunnel_type);
1492 	if (!rc) {
1493 		if (tunnel_type ==
1494 		    HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN)
1495 			bp->vxlan_port = 0;
1496 		if (tunnel_type ==
1497 		    HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE)
1498 			bp->geneve_port = 0;
1499 	}
1500 	return rc;
1501 }
1502 
1503 static int bnxt_del_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
1504 {
1505 	struct bnxt_filter_info *filter;
1506 	struct bnxt_vnic_info *vnic;
1507 	int rc = 0;
1508 	uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN;
1509 
1510 	/* if VLAN exists && VLAN matches vlan_id
1511 	 *      remove the MAC+VLAN filter
1512 	 *      add a new MAC only filter
1513 	 * else
1514 	 *      VLAN filter doesn't exist, just skip and continue
1515 	 */
1516 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
1517 	filter = STAILQ_FIRST(&vnic->filter);
1518 	while (filter) {
1519 		/* Search for this matching MAC+VLAN filter */
1520 		if (filter->enables & chk && filter->l2_ivlan == vlan_id &&
1521 		    !memcmp(filter->l2_addr,
1522 			    bp->mac_addr,
1523 			    RTE_ETHER_ADDR_LEN)) {
1524 			/* Delete the filter */
1525 			rc = bnxt_hwrm_clear_l2_filter(bp, filter);
1526 			if (rc)
1527 				return rc;
1528 			STAILQ_REMOVE(&vnic->filter, filter,
1529 				      bnxt_filter_info, next);
1530 			STAILQ_INSERT_TAIL(&bp->free_filter_list, filter, next);
1531 
1532 			PMD_DRV_LOG(INFO,
1533 				    "Del Vlan filter for %d\n",
1534 				    vlan_id);
1535 			return rc;
1536 		}
1537 		filter = STAILQ_NEXT(filter, next);
1538 	}
1539 	return -ENOENT;
1540 }
1541 
1542 static int bnxt_add_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
1543 {
1544 	struct bnxt_filter_info *filter;
1545 	struct bnxt_vnic_info *vnic;
1546 	int rc = 0;
1547 	uint32_t en = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN |
1548 		HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN_MASK;
1549 	uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN;
1550 
1551 	/* Implementation notes on the use of VNIC in this command:
1552 	 *
1553 	 * By default, these filters belong to default vnic for the function.
1554 	 * Once these filters are set up, only destination VNIC can be modified.
1555 	 * If the destination VNIC is not specified in this command,
1556 	 * then the HWRM shall only create an l2 context id.
1557 	 */
1558 
1559 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
1560 	filter = STAILQ_FIRST(&vnic->filter);
1561 	/* Check if the VLAN has already been added */
1562 	while (filter) {
1563 		if (filter->enables & chk && filter->l2_ivlan == vlan_id &&
1564 		    !memcmp(filter->l2_addr, bp->mac_addr, RTE_ETHER_ADDR_LEN))
1565 			return -EEXIST;
1566 
1567 		filter = STAILQ_NEXT(filter, next);
1568 	}
1569 
1570 	/* No match found. Alloc a fresh filter and issue the L2_FILTER_ALLOC
1571 	 * command to create MAC+VLAN filter with the right flags, enables set.
1572 	 */
1573 	filter = bnxt_alloc_filter(bp);
1574 	if (!filter) {
1575 		PMD_DRV_LOG(ERR,
1576 			    "MAC/VLAN filter alloc failed\n");
1577 		return -ENOMEM;
1578 	}
1579 	/* MAC + VLAN ID filter */
1580 	filter->l2_ivlan = vlan_id;
1581 	filter->l2_ivlan_mask = 0x0FFF;
1582 	filter->enables |= en;
1583 	rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
1584 	if (rc) {
1585 		/* Free the newly allocated filter as we were
1586 		 * not able to create the filter in hardware.
1587 		 */
1588 		filter->fw_l2_filter_id = UINT64_MAX;
1589 		STAILQ_INSERT_TAIL(&bp->free_filter_list, filter, next);
1590 		return rc;
1591 	}
1592 
1593 	/* Add this new filter to the list */
1594 	STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
1595 	PMD_DRV_LOG(INFO,
1596 		    "Added Vlan filter for %d\n", vlan_id);
1597 	return rc;
1598 }
1599 
1600 static int bnxt_vlan_filter_set_op(struct rte_eth_dev *eth_dev,
1601 		uint16_t vlan_id, int on)
1602 {
1603 	struct bnxt *bp = eth_dev->data->dev_private;
1604 
1605 	/* These operations apply to ALL existing MAC/VLAN filters */
1606 	if (on)
1607 		return bnxt_add_vlan_filter(bp, vlan_id);
1608 	else
1609 		return bnxt_del_vlan_filter(bp, vlan_id);
1610 }
1611 
1612 static int
1613 bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask)
1614 {
1615 	struct bnxt *bp = dev->data->dev_private;
1616 	uint64_t rx_offloads = dev->data->dev_conf.rxmode.offloads;
1617 	unsigned int i;
1618 
1619 	if (mask & ETH_VLAN_FILTER_MASK) {
1620 		if (!(rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER)) {
1621 			/* Remove any VLAN filters programmed */
1622 			for (i = 0; i < 4095; i++)
1623 				bnxt_del_vlan_filter(bp, i);
1624 		}
1625 		PMD_DRV_LOG(DEBUG, "VLAN Filtering: %d\n",
1626 			!!(rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER));
1627 	}
1628 
1629 	if (mask & ETH_VLAN_STRIP_MASK) {
1630 		/* Enable or disable VLAN stripping */
1631 		for (i = 0; i < bp->nr_vnics; i++) {
1632 			struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
1633 			if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1634 				vnic->vlan_strip = true;
1635 			else
1636 				vnic->vlan_strip = false;
1637 			bnxt_hwrm_vnic_cfg(bp, vnic);
1638 		}
1639 		PMD_DRV_LOG(DEBUG, "VLAN Strip Offload: %d\n",
1640 			!!(rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP));
1641 	}
1642 
1643 	if (mask & ETH_VLAN_EXTEND_MASK)
1644 		PMD_DRV_LOG(ERR, "Extend VLAN Not supported\n");
1645 
1646 	return 0;
1647 }
1648 
1649 static int
1650 bnxt_set_default_mac_addr_op(struct rte_eth_dev *dev,
1651 			struct rte_ether_addr *addr)
1652 {
1653 	struct bnxt *bp = dev->data->dev_private;
1654 	/* Default Filter is tied to VNIC 0 */
1655 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
1656 	struct bnxt_filter_info *filter;
1657 	int rc;
1658 
1659 	if (BNXT_VF(bp) && !BNXT_VF_IS_TRUSTED(bp))
1660 		return -EPERM;
1661 
1662 	if (rte_is_zero_ether_addr(addr))
1663 		return -EINVAL;
1664 
1665 	STAILQ_FOREACH(filter, &vnic->filter, next) {
1666 		/* Default Filter is at Index 0 */
1667 		if (filter->mac_index != 0)
1668 			continue;
1669 
1670 		memcpy(filter->l2_addr, bp->mac_addr, RTE_ETHER_ADDR_LEN);
1671 		memset(filter->l2_addr_mask, 0xff, RTE_ETHER_ADDR_LEN);
1672 		filter->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_PATH_RX;
1673 		filter->enables |=
1674 			HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR |
1675 			HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR_MASK;
1676 
1677 		rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
1678 		if (rc)
1679 			return rc;
1680 
1681 		memcpy(bp->mac_addr, addr, RTE_ETHER_ADDR_LEN);
1682 		PMD_DRV_LOG(DEBUG, "Set MAC addr\n");
1683 		return 0;
1684 	}
1685 
1686 	return 0;
1687 }
1688 
1689 static int
1690 bnxt_dev_set_mc_addr_list_op(struct rte_eth_dev *eth_dev,
1691 			  struct rte_ether_addr *mc_addr_set,
1692 			  uint32_t nb_mc_addr)
1693 {
1694 	struct bnxt *bp = eth_dev->data->dev_private;
1695 	char *mc_addr_list = (char *)mc_addr_set;
1696 	struct bnxt_vnic_info *vnic;
1697 	uint32_t off = 0, i = 0;
1698 
1699 	vnic = &bp->vnic_info[0];
1700 
1701 	if (nb_mc_addr > BNXT_MAX_MC_ADDRS) {
1702 		vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
1703 		goto allmulti;
1704 	}
1705 
1706 	/* TODO Check for Duplicate mcast addresses */
1707 	vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
1708 	for (i = 0; i < nb_mc_addr; i++) {
1709 		memcpy(vnic->mc_list + off, &mc_addr_list[i],
1710 			RTE_ETHER_ADDR_LEN);
1711 		off += RTE_ETHER_ADDR_LEN;
1712 	}
1713 
1714 	vnic->mc_addr_cnt = i;
1715 
1716 allmulti:
1717 	return bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1718 }
1719 
1720 static int
1721 bnxt_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
1722 {
1723 	struct bnxt *bp = dev->data->dev_private;
1724 	uint8_t fw_major = (bp->fw_ver >> 24) & 0xff;
1725 	uint8_t fw_minor = (bp->fw_ver >> 16) & 0xff;
1726 	uint8_t fw_updt = (bp->fw_ver >> 8) & 0xff;
1727 	int ret;
1728 
1729 	ret = snprintf(fw_version, fw_size, "%d.%d.%d",
1730 			fw_major, fw_minor, fw_updt);
1731 
1732 	ret += 1; /* add the size of '\0' */
1733 	if (fw_size < (uint32_t)ret)
1734 		return ret;
1735 	else
1736 		return 0;
1737 }
1738 
1739 static void
1740 bnxt_rxq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
1741 	struct rte_eth_rxq_info *qinfo)
1742 {
1743 	struct bnxt_rx_queue *rxq;
1744 
1745 	rxq = dev->data->rx_queues[queue_id];
1746 
1747 	qinfo->mp = rxq->mb_pool;
1748 	qinfo->scattered_rx = dev->data->scattered_rx;
1749 	qinfo->nb_desc = rxq->nb_rx_desc;
1750 
1751 	qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
1752 	qinfo->conf.rx_drop_en = 0;
1753 	qinfo->conf.rx_deferred_start = 0;
1754 }
1755 
1756 static void
1757 bnxt_txq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
1758 	struct rte_eth_txq_info *qinfo)
1759 {
1760 	struct bnxt_tx_queue *txq;
1761 
1762 	txq = dev->data->tx_queues[queue_id];
1763 
1764 	qinfo->nb_desc = txq->nb_tx_desc;
1765 
1766 	qinfo->conf.tx_thresh.pthresh = txq->pthresh;
1767 	qinfo->conf.tx_thresh.hthresh = txq->hthresh;
1768 	qinfo->conf.tx_thresh.wthresh = txq->wthresh;
1769 
1770 	qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
1771 	qinfo->conf.tx_rs_thresh = 0;
1772 	qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
1773 }
1774 
1775 static int bnxt_mtu_set_op(struct rte_eth_dev *eth_dev, uint16_t new_mtu)
1776 {
1777 	struct bnxt *bp = eth_dev->data->dev_private;
1778 	struct rte_eth_dev_info dev_info;
1779 	uint32_t new_pkt_size;
1780 	uint32_t rc = 0;
1781 	uint32_t i;
1782 
1783 	new_pkt_size = new_mtu + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN +
1784 		       VLAN_TAG_SIZE * BNXT_NUM_VLANS;
1785 
1786 	bnxt_dev_info_get_op(eth_dev, &dev_info);
1787 
1788 	if (new_mtu < RTE_ETHER_MIN_MTU || new_mtu > BNXT_MAX_MTU) {
1789 		PMD_DRV_LOG(ERR, "MTU requested must be within (%d, %d)\n",
1790 			RTE_ETHER_MIN_MTU, BNXT_MAX_MTU);
1791 		return -EINVAL;
1792 	}
1793 
1794 #ifdef RTE_ARCH_X86
1795 	/*
1796 	 * If vector-mode tx/rx is active, disallow any MTU change that would
1797 	 * require scattered receive support.
1798 	 */
1799 	if (eth_dev->data->dev_started &&
1800 	    (eth_dev->rx_pkt_burst == bnxt_recv_pkts_vec ||
1801 	     eth_dev->tx_pkt_burst == bnxt_xmit_pkts_vec) &&
1802 	    (new_pkt_size >
1803 	     eth_dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)) {
1804 		PMD_DRV_LOG(ERR,
1805 			    "MTU change would require scattered rx support. ");
1806 		PMD_DRV_LOG(ERR, "Stop port before changing MTU.\n");
1807 		return -EINVAL;
1808 	}
1809 #endif
1810 
1811 	if (new_mtu > RTE_ETHER_MTU) {
1812 		bp->flags |= BNXT_FLAG_JUMBO;
1813 		bp->eth_dev->data->dev_conf.rxmode.offloads |=
1814 			DEV_RX_OFFLOAD_JUMBO_FRAME;
1815 	} else {
1816 		bp->eth_dev->data->dev_conf.rxmode.offloads &=
1817 			~DEV_RX_OFFLOAD_JUMBO_FRAME;
1818 		bp->flags &= ~BNXT_FLAG_JUMBO;
1819 	}
1820 
1821 	eth_dev->data->dev_conf.rxmode.max_rx_pkt_len = new_pkt_size;
1822 
1823 	eth_dev->data->mtu = new_mtu;
1824 	PMD_DRV_LOG(INFO, "New MTU is %d\n", eth_dev->data->mtu);
1825 
1826 	for (i = 0; i < bp->nr_vnics; i++) {
1827 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
1828 		uint16_t size = 0;
1829 
1830 		vnic->mru = bp->eth_dev->data->mtu + RTE_ETHER_HDR_LEN +
1831 					RTE_ETHER_CRC_LEN + VLAN_TAG_SIZE * 2;
1832 		rc = bnxt_hwrm_vnic_cfg(bp, vnic);
1833 		if (rc)
1834 			break;
1835 
1836 		size = rte_pktmbuf_data_room_size(bp->rx_queues[0]->mb_pool);
1837 		size -= RTE_PKTMBUF_HEADROOM;
1838 
1839 		if (size < new_mtu) {
1840 			rc = bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
1841 			if (rc)
1842 				return rc;
1843 		}
1844 	}
1845 
1846 	return rc;
1847 }
1848 
1849 static int
1850 bnxt_vlan_pvid_set_op(struct rte_eth_dev *dev, uint16_t pvid, int on)
1851 {
1852 	struct bnxt *bp = dev->data->dev_private;
1853 	uint16_t vlan = bp->vlan;
1854 	int rc;
1855 
1856 	if (!BNXT_SINGLE_PF(bp) || BNXT_VF(bp)) {
1857 		PMD_DRV_LOG(ERR,
1858 			"PVID cannot be modified for this function\n");
1859 		return -ENOTSUP;
1860 	}
1861 	bp->vlan = on ? pvid : 0;
1862 
1863 	rc = bnxt_hwrm_set_default_vlan(bp, 0, 0);
1864 	if (rc)
1865 		bp->vlan = vlan;
1866 	return rc;
1867 }
1868 
1869 static int
1870 bnxt_dev_led_on_op(struct rte_eth_dev *dev)
1871 {
1872 	struct bnxt *bp = dev->data->dev_private;
1873 
1874 	return bnxt_hwrm_port_led_cfg(bp, true);
1875 }
1876 
1877 static int
1878 bnxt_dev_led_off_op(struct rte_eth_dev *dev)
1879 {
1880 	struct bnxt *bp = dev->data->dev_private;
1881 
1882 	return bnxt_hwrm_port_led_cfg(bp, false);
1883 }
1884 
1885 static uint32_t
1886 bnxt_rx_queue_count_op(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1887 {
1888 	uint32_t desc = 0, raw_cons = 0, cons;
1889 	struct bnxt_cp_ring_info *cpr;
1890 	struct bnxt_rx_queue *rxq;
1891 	struct rx_pkt_cmpl *rxcmp;
1892 	uint16_t cmp_type;
1893 	uint8_t cmp = 1;
1894 	bool valid;
1895 
1896 	rxq = dev->data->rx_queues[rx_queue_id];
1897 	cpr = rxq->cp_ring;
1898 	valid = cpr->valid;
1899 
1900 	while (raw_cons < rxq->nb_rx_desc) {
1901 		cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
1902 		rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1903 
1904 		if (!CMPL_VALID(rxcmp, valid))
1905 			goto nothing_to_do;
1906 		valid = FLIP_VALID(cons, cpr->cp_ring_struct->ring_mask, valid);
1907 		cmp_type = CMP_TYPE(rxcmp);
1908 		if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
1909 			cmp = (rte_le_to_cpu_32(
1910 					((struct rx_tpa_end_cmpl *)
1911 					 (rxcmp))->agg_bufs_v1) &
1912 			       RX_TPA_END_CMPL_AGG_BUFS_MASK) >>
1913 				RX_TPA_END_CMPL_AGG_BUFS_SFT;
1914 			desc++;
1915 		} else if (cmp_type == 0x11) {
1916 			desc++;
1917 			cmp = (rxcmp->agg_bufs_v1 &
1918 				   RX_PKT_CMPL_AGG_BUFS_MASK) >>
1919 				RX_PKT_CMPL_AGG_BUFS_SFT;
1920 		} else {
1921 			cmp = 1;
1922 		}
1923 nothing_to_do:
1924 		raw_cons += cmp ? cmp : 2;
1925 	}
1926 
1927 	return desc;
1928 }
1929 
1930 static int
1931 bnxt_rx_descriptor_status_op(void *rx_queue, uint16_t offset)
1932 {
1933 	struct bnxt_rx_queue *rxq = (struct bnxt_rx_queue *)rx_queue;
1934 	struct bnxt_rx_ring_info *rxr;
1935 	struct bnxt_cp_ring_info *cpr;
1936 	struct bnxt_sw_rx_bd *rx_buf;
1937 	struct rx_pkt_cmpl *rxcmp;
1938 	uint32_t cons, cp_cons;
1939 
1940 	if (!rxq)
1941 		return -EINVAL;
1942 
1943 	cpr = rxq->cp_ring;
1944 	rxr = rxq->rx_ring;
1945 
1946 	if (offset >= rxq->nb_rx_desc)
1947 		return -EINVAL;
1948 
1949 	cons = RING_CMP(cpr->cp_ring_struct, offset);
1950 	cp_cons = cpr->cp_raw_cons;
1951 	rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1952 
1953 	if (cons > cp_cons) {
1954 		if (CMPL_VALID(rxcmp, cpr->valid))
1955 			return RTE_ETH_RX_DESC_DONE;
1956 	} else {
1957 		if (CMPL_VALID(rxcmp, !cpr->valid))
1958 			return RTE_ETH_RX_DESC_DONE;
1959 	}
1960 	rx_buf = &rxr->rx_buf_ring[cons];
1961 	if (rx_buf->mbuf == NULL)
1962 		return RTE_ETH_RX_DESC_UNAVAIL;
1963 
1964 
1965 	return RTE_ETH_RX_DESC_AVAIL;
1966 }
1967 
1968 static int
1969 bnxt_tx_descriptor_status_op(void *tx_queue, uint16_t offset)
1970 {
1971 	struct bnxt_tx_queue *txq = (struct bnxt_tx_queue *)tx_queue;
1972 	struct bnxt_tx_ring_info *txr;
1973 	struct bnxt_cp_ring_info *cpr;
1974 	struct bnxt_sw_tx_bd *tx_buf;
1975 	struct tx_pkt_cmpl *txcmp;
1976 	uint32_t cons, cp_cons;
1977 
1978 	if (!txq)
1979 		return -EINVAL;
1980 
1981 	cpr = txq->cp_ring;
1982 	txr = txq->tx_ring;
1983 
1984 	if (offset >= txq->nb_tx_desc)
1985 		return -EINVAL;
1986 
1987 	cons = RING_CMP(cpr->cp_ring_struct, offset);
1988 	txcmp = (struct tx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1989 	cp_cons = cpr->cp_raw_cons;
1990 
1991 	if (cons > cp_cons) {
1992 		if (CMPL_VALID(txcmp, cpr->valid))
1993 			return RTE_ETH_TX_DESC_UNAVAIL;
1994 	} else {
1995 		if (CMPL_VALID(txcmp, !cpr->valid))
1996 			return RTE_ETH_TX_DESC_UNAVAIL;
1997 	}
1998 	tx_buf = &txr->tx_buf_ring[cons];
1999 	if (tx_buf->mbuf == NULL)
2000 		return RTE_ETH_TX_DESC_DONE;
2001 
2002 	return RTE_ETH_TX_DESC_FULL;
2003 }
2004 
2005 static struct bnxt_filter_info *
2006 bnxt_match_and_validate_ether_filter(struct bnxt *bp,
2007 				struct rte_eth_ethertype_filter *efilter,
2008 				struct bnxt_vnic_info *vnic0,
2009 				struct bnxt_vnic_info *vnic,
2010 				int *ret)
2011 {
2012 	struct bnxt_filter_info *mfilter = NULL;
2013 	int match = 0;
2014 	*ret = 0;
2015 
2016 	if (efilter->ether_type == RTE_ETHER_TYPE_IPV4 ||
2017 		efilter->ether_type == RTE_ETHER_TYPE_IPV6) {
2018 		PMD_DRV_LOG(ERR, "invalid ether_type(0x%04x) in"
2019 			" ethertype filter.", efilter->ether_type);
2020 		*ret = -EINVAL;
2021 		goto exit;
2022 	}
2023 	if (efilter->queue >= bp->rx_nr_rings) {
2024 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", efilter->queue);
2025 		*ret = -EINVAL;
2026 		goto exit;
2027 	}
2028 
2029 	vnic0 = &bp->vnic_info[0];
2030 	vnic = &bp->vnic_info[efilter->queue];
2031 	if (vnic == NULL) {
2032 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", efilter->queue);
2033 		*ret = -EINVAL;
2034 		goto exit;
2035 	}
2036 
2037 	if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
2038 		STAILQ_FOREACH(mfilter, &vnic0->filter, next) {
2039 			if ((!memcmp(efilter->mac_addr.addr_bytes,
2040 				     mfilter->l2_addr, RTE_ETHER_ADDR_LEN) &&
2041 			     mfilter->flags ==
2042 			     HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP &&
2043 			     mfilter->ethertype == efilter->ether_type)) {
2044 				match = 1;
2045 				break;
2046 			}
2047 		}
2048 	} else {
2049 		STAILQ_FOREACH(mfilter, &vnic->filter, next)
2050 			if ((!memcmp(efilter->mac_addr.addr_bytes,
2051 				     mfilter->l2_addr, RTE_ETHER_ADDR_LEN) &&
2052 			     mfilter->ethertype == efilter->ether_type &&
2053 			     mfilter->flags ==
2054 			     HWRM_CFA_L2_FILTER_CFG_INPUT_FLAGS_PATH_RX)) {
2055 				match = 1;
2056 				break;
2057 			}
2058 	}
2059 
2060 	if (match)
2061 		*ret = -EEXIST;
2062 
2063 exit:
2064 	return mfilter;
2065 }
2066 
2067 static int
2068 bnxt_ethertype_filter(struct rte_eth_dev *dev,
2069 			enum rte_filter_op filter_op,
2070 			void *arg)
2071 {
2072 	struct bnxt *bp = dev->data->dev_private;
2073 	struct rte_eth_ethertype_filter *efilter =
2074 			(struct rte_eth_ethertype_filter *)arg;
2075 	struct bnxt_filter_info *bfilter, *filter1;
2076 	struct bnxt_vnic_info *vnic, *vnic0;
2077 	int ret;
2078 
2079 	if (filter_op == RTE_ETH_FILTER_NOP)
2080 		return 0;
2081 
2082 	if (arg == NULL) {
2083 		PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
2084 			    filter_op);
2085 		return -EINVAL;
2086 	}
2087 
2088 	vnic0 = &bp->vnic_info[0];
2089 	vnic = &bp->vnic_info[efilter->queue];
2090 
2091 	switch (filter_op) {
2092 	case RTE_ETH_FILTER_ADD:
2093 		bnxt_match_and_validate_ether_filter(bp, efilter,
2094 							vnic0, vnic, &ret);
2095 		if (ret < 0)
2096 			return ret;
2097 
2098 		bfilter = bnxt_get_unused_filter(bp);
2099 		if (bfilter == NULL) {
2100 			PMD_DRV_LOG(ERR,
2101 				"Not enough resources for a new filter.\n");
2102 			return -ENOMEM;
2103 		}
2104 		bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
2105 		memcpy(bfilter->l2_addr, efilter->mac_addr.addr_bytes,
2106 		       RTE_ETHER_ADDR_LEN);
2107 		memcpy(bfilter->dst_macaddr, efilter->mac_addr.addr_bytes,
2108 		       RTE_ETHER_ADDR_LEN);
2109 		bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
2110 		bfilter->ethertype = efilter->ether_type;
2111 		bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2112 
2113 		filter1 = bnxt_get_l2_filter(bp, bfilter, vnic0);
2114 		if (filter1 == NULL) {
2115 			ret = -EINVAL;
2116 			goto cleanup;
2117 		}
2118 		bfilter->enables |=
2119 			HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
2120 		bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
2121 
2122 		bfilter->dst_id = vnic->fw_vnic_id;
2123 
2124 		if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
2125 			bfilter->flags =
2126 				HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
2127 		}
2128 
2129 		ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
2130 		if (ret)
2131 			goto cleanup;
2132 		STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
2133 		break;
2134 	case RTE_ETH_FILTER_DELETE:
2135 		filter1 = bnxt_match_and_validate_ether_filter(bp, efilter,
2136 							vnic0, vnic, &ret);
2137 		if (ret == -EEXIST) {
2138 			ret = bnxt_hwrm_clear_ntuple_filter(bp, filter1);
2139 
2140 			STAILQ_REMOVE(&vnic->filter, filter1, bnxt_filter_info,
2141 				      next);
2142 			bnxt_free_filter(bp, filter1);
2143 		} else if (ret == 0) {
2144 			PMD_DRV_LOG(ERR, "No matching filter found\n");
2145 		}
2146 		break;
2147 	default:
2148 		PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
2149 		ret = -EINVAL;
2150 		goto error;
2151 	}
2152 	return ret;
2153 cleanup:
2154 	bnxt_free_filter(bp, bfilter);
2155 error:
2156 	return ret;
2157 }
2158 
2159 static inline int
2160 parse_ntuple_filter(struct bnxt *bp,
2161 		    struct rte_eth_ntuple_filter *nfilter,
2162 		    struct bnxt_filter_info *bfilter)
2163 {
2164 	uint32_t en = 0;
2165 
2166 	if (nfilter->queue >= bp->rx_nr_rings) {
2167 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", nfilter->queue);
2168 		return -EINVAL;
2169 	}
2170 
2171 	switch (nfilter->dst_port_mask) {
2172 	case UINT16_MAX:
2173 		bfilter->dst_port_mask = -1;
2174 		bfilter->dst_port = nfilter->dst_port;
2175 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT |
2176 			NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2177 		break;
2178 	default:
2179 		PMD_DRV_LOG(ERR, "invalid dst_port mask.");
2180 		return -EINVAL;
2181 	}
2182 
2183 	bfilter->ip_addr_type = NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2184 	en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2185 
2186 	switch (nfilter->proto_mask) {
2187 	case UINT8_MAX:
2188 		if (nfilter->proto == 17) /* IPPROTO_UDP */
2189 			bfilter->ip_protocol = 17;
2190 		else if (nfilter->proto == 6) /* IPPROTO_TCP */
2191 			bfilter->ip_protocol = 6;
2192 		else
2193 			return -EINVAL;
2194 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2195 		break;
2196 	default:
2197 		PMD_DRV_LOG(ERR, "invalid protocol mask.");
2198 		return -EINVAL;
2199 	}
2200 
2201 	switch (nfilter->dst_ip_mask) {
2202 	case UINT32_MAX:
2203 		bfilter->dst_ipaddr_mask[0] = -1;
2204 		bfilter->dst_ipaddr[0] = nfilter->dst_ip;
2205 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR |
2206 			NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2207 		break;
2208 	default:
2209 		PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
2210 		return -EINVAL;
2211 	}
2212 
2213 	switch (nfilter->src_ip_mask) {
2214 	case UINT32_MAX:
2215 		bfilter->src_ipaddr_mask[0] = -1;
2216 		bfilter->src_ipaddr[0] = nfilter->src_ip;
2217 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR |
2218 			NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2219 		break;
2220 	default:
2221 		PMD_DRV_LOG(ERR, "invalid src_ip mask.");
2222 		return -EINVAL;
2223 	}
2224 
2225 	switch (nfilter->src_port_mask) {
2226 	case UINT16_MAX:
2227 		bfilter->src_port_mask = -1;
2228 		bfilter->src_port = nfilter->src_port;
2229 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT |
2230 			NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2231 		break;
2232 	default:
2233 		PMD_DRV_LOG(ERR, "invalid src_port mask.");
2234 		return -EINVAL;
2235 	}
2236 
2237 	//TODO Priority
2238 	//nfilter->priority = (uint8_t)filter->priority;
2239 
2240 	bfilter->enables = en;
2241 	return 0;
2242 }
2243 
2244 static struct bnxt_filter_info*
2245 bnxt_match_ntuple_filter(struct bnxt *bp,
2246 			 struct bnxt_filter_info *bfilter,
2247 			 struct bnxt_vnic_info **mvnic)
2248 {
2249 	struct bnxt_filter_info *mfilter = NULL;
2250 	int i;
2251 
2252 	for (i = bp->nr_vnics - 1; i >= 0; i--) {
2253 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2254 		STAILQ_FOREACH(mfilter, &vnic->filter, next) {
2255 			if (bfilter->src_ipaddr[0] == mfilter->src_ipaddr[0] &&
2256 			    bfilter->src_ipaddr_mask[0] ==
2257 			    mfilter->src_ipaddr_mask[0] &&
2258 			    bfilter->src_port == mfilter->src_port &&
2259 			    bfilter->src_port_mask == mfilter->src_port_mask &&
2260 			    bfilter->dst_ipaddr[0] == mfilter->dst_ipaddr[0] &&
2261 			    bfilter->dst_ipaddr_mask[0] ==
2262 			    mfilter->dst_ipaddr_mask[0] &&
2263 			    bfilter->dst_port == mfilter->dst_port &&
2264 			    bfilter->dst_port_mask == mfilter->dst_port_mask &&
2265 			    bfilter->flags == mfilter->flags &&
2266 			    bfilter->enables == mfilter->enables) {
2267 				if (mvnic)
2268 					*mvnic = vnic;
2269 				return mfilter;
2270 			}
2271 		}
2272 	}
2273 	return NULL;
2274 }
2275 
2276 static int
2277 bnxt_cfg_ntuple_filter(struct bnxt *bp,
2278 		       struct rte_eth_ntuple_filter *nfilter,
2279 		       enum rte_filter_op filter_op)
2280 {
2281 	struct bnxt_filter_info *bfilter, *mfilter, *filter1;
2282 	struct bnxt_vnic_info *vnic, *vnic0, *mvnic;
2283 	int ret;
2284 
2285 	if (nfilter->flags != RTE_5TUPLE_FLAGS) {
2286 		PMD_DRV_LOG(ERR, "only 5tuple is supported.");
2287 		return -EINVAL;
2288 	}
2289 
2290 	if (nfilter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG) {
2291 		PMD_DRV_LOG(ERR, "Ntuple filter: TCP flags not supported\n");
2292 		return -EINVAL;
2293 	}
2294 
2295 	bfilter = bnxt_get_unused_filter(bp);
2296 	if (bfilter == NULL) {
2297 		PMD_DRV_LOG(ERR,
2298 			"Not enough resources for a new filter.\n");
2299 		return -ENOMEM;
2300 	}
2301 	ret = parse_ntuple_filter(bp, nfilter, bfilter);
2302 	if (ret < 0)
2303 		goto free_filter;
2304 
2305 	vnic = &bp->vnic_info[nfilter->queue];
2306 	vnic0 = &bp->vnic_info[0];
2307 	filter1 = STAILQ_FIRST(&vnic0->filter);
2308 	if (filter1 == NULL) {
2309 		ret = -EINVAL;
2310 		goto free_filter;
2311 	}
2312 
2313 	bfilter->dst_id = vnic->fw_vnic_id;
2314 	bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
2315 	bfilter->enables |=
2316 		HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
2317 	bfilter->ethertype = 0x800;
2318 	bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2319 
2320 	mfilter = bnxt_match_ntuple_filter(bp, bfilter, &mvnic);
2321 
2322 	if (mfilter != NULL && filter_op == RTE_ETH_FILTER_ADD &&
2323 	    bfilter->dst_id == mfilter->dst_id) {
2324 		PMD_DRV_LOG(ERR, "filter exists.\n");
2325 		ret = -EEXIST;
2326 		goto free_filter;
2327 	} else if (mfilter != NULL && filter_op == RTE_ETH_FILTER_ADD &&
2328 		   bfilter->dst_id != mfilter->dst_id) {
2329 		mfilter->dst_id = vnic->fw_vnic_id;
2330 		ret = bnxt_hwrm_set_ntuple_filter(bp, mfilter->dst_id, mfilter);
2331 		STAILQ_REMOVE(&mvnic->filter, mfilter, bnxt_filter_info, next);
2332 		STAILQ_INSERT_TAIL(&vnic->filter, mfilter, next);
2333 		PMD_DRV_LOG(ERR, "filter with matching pattern exists.\n");
2334 		PMD_DRV_LOG(ERR, " Updated it to the new destination queue\n");
2335 		goto free_filter;
2336 	}
2337 	if (mfilter == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
2338 		PMD_DRV_LOG(ERR, "filter doesn't exist.");
2339 		ret = -ENOENT;
2340 		goto free_filter;
2341 	}
2342 
2343 	if (filter_op == RTE_ETH_FILTER_ADD) {
2344 		bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
2345 		ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
2346 		if (ret)
2347 			goto free_filter;
2348 		STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
2349 	} else {
2350 		if (mfilter == NULL) {
2351 			/* This should not happen. But for Coverity! */
2352 			ret = -ENOENT;
2353 			goto free_filter;
2354 		}
2355 		ret = bnxt_hwrm_clear_ntuple_filter(bp, mfilter);
2356 
2357 		STAILQ_REMOVE(&vnic->filter, mfilter, bnxt_filter_info, next);
2358 		bnxt_free_filter(bp, mfilter);
2359 		mfilter->fw_l2_filter_id = -1;
2360 		bnxt_free_filter(bp, bfilter);
2361 		bfilter->fw_l2_filter_id = -1;
2362 	}
2363 
2364 	return 0;
2365 free_filter:
2366 	bfilter->fw_l2_filter_id = -1;
2367 	bnxt_free_filter(bp, bfilter);
2368 	return ret;
2369 }
2370 
2371 static int
2372 bnxt_ntuple_filter(struct rte_eth_dev *dev,
2373 			enum rte_filter_op filter_op,
2374 			void *arg)
2375 {
2376 	struct bnxt *bp = dev->data->dev_private;
2377 	int ret;
2378 
2379 	if (filter_op == RTE_ETH_FILTER_NOP)
2380 		return 0;
2381 
2382 	if (arg == NULL) {
2383 		PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
2384 			    filter_op);
2385 		return -EINVAL;
2386 	}
2387 
2388 	switch (filter_op) {
2389 	case RTE_ETH_FILTER_ADD:
2390 		ret = bnxt_cfg_ntuple_filter(bp,
2391 			(struct rte_eth_ntuple_filter *)arg,
2392 			filter_op);
2393 		break;
2394 	case RTE_ETH_FILTER_DELETE:
2395 		ret = bnxt_cfg_ntuple_filter(bp,
2396 			(struct rte_eth_ntuple_filter *)arg,
2397 			filter_op);
2398 		break;
2399 	default:
2400 		PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
2401 		ret = -EINVAL;
2402 		break;
2403 	}
2404 	return ret;
2405 }
2406 
2407 static int
2408 bnxt_parse_fdir_filter(struct bnxt *bp,
2409 		       struct rte_eth_fdir_filter *fdir,
2410 		       struct bnxt_filter_info *filter)
2411 {
2412 	enum rte_fdir_mode fdir_mode =
2413 		bp->eth_dev->data->dev_conf.fdir_conf.mode;
2414 	struct bnxt_vnic_info *vnic0, *vnic;
2415 	struct bnxt_filter_info *filter1;
2416 	uint32_t en = 0;
2417 	int i;
2418 
2419 	if (fdir_mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2420 		return -EINVAL;
2421 
2422 	filter->l2_ovlan = fdir->input.flow_ext.vlan_tci;
2423 	en |= EM_FLOW_ALLOC_INPUT_EN_OVLAN_VID;
2424 
2425 	switch (fdir->input.flow_type) {
2426 	case RTE_ETH_FLOW_IPV4:
2427 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2428 		/* FALLTHROUGH */
2429 		filter->src_ipaddr[0] = fdir->input.flow.ip4_flow.src_ip;
2430 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2431 		filter->dst_ipaddr[0] = fdir->input.flow.ip4_flow.dst_ip;
2432 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2433 		filter->ip_protocol = fdir->input.flow.ip4_flow.proto;
2434 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2435 		filter->ip_addr_type =
2436 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2437 		filter->src_ipaddr_mask[0] = 0xffffffff;
2438 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2439 		filter->dst_ipaddr_mask[0] = 0xffffffff;
2440 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2441 		filter->ethertype = 0x800;
2442 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2443 		break;
2444 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2445 		filter->src_port = fdir->input.flow.tcp4_flow.src_port;
2446 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2447 		filter->dst_port = fdir->input.flow.tcp4_flow.dst_port;
2448 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2449 		filter->dst_port_mask = 0xffff;
2450 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2451 		filter->src_port_mask = 0xffff;
2452 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2453 		filter->src_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.src_ip;
2454 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2455 		filter->dst_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.dst_ip;
2456 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2457 		filter->ip_protocol = 6;
2458 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2459 		filter->ip_addr_type =
2460 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2461 		filter->src_ipaddr_mask[0] = 0xffffffff;
2462 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2463 		filter->dst_ipaddr_mask[0] = 0xffffffff;
2464 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2465 		filter->ethertype = 0x800;
2466 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2467 		break;
2468 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2469 		filter->src_port = fdir->input.flow.udp4_flow.src_port;
2470 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2471 		filter->dst_port = fdir->input.flow.udp4_flow.dst_port;
2472 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2473 		filter->dst_port_mask = 0xffff;
2474 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2475 		filter->src_port_mask = 0xffff;
2476 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2477 		filter->src_ipaddr[0] = fdir->input.flow.udp4_flow.ip.src_ip;
2478 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2479 		filter->dst_ipaddr[0] = fdir->input.flow.udp4_flow.ip.dst_ip;
2480 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2481 		filter->ip_protocol = 17;
2482 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2483 		filter->ip_addr_type =
2484 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2485 		filter->src_ipaddr_mask[0] = 0xffffffff;
2486 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2487 		filter->dst_ipaddr_mask[0] = 0xffffffff;
2488 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2489 		filter->ethertype = 0x800;
2490 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2491 		break;
2492 	case RTE_ETH_FLOW_IPV6:
2493 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2494 		/* FALLTHROUGH */
2495 		filter->ip_addr_type =
2496 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2497 		filter->ip_protocol = fdir->input.flow.ipv6_flow.proto;
2498 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2499 		rte_memcpy(filter->src_ipaddr,
2500 			   fdir->input.flow.ipv6_flow.src_ip, 16);
2501 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2502 		rte_memcpy(filter->dst_ipaddr,
2503 			   fdir->input.flow.ipv6_flow.dst_ip, 16);
2504 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2505 		memset(filter->dst_ipaddr_mask, 0xff, 16);
2506 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2507 		memset(filter->src_ipaddr_mask, 0xff, 16);
2508 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2509 		filter->ethertype = 0x86dd;
2510 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2511 		break;
2512 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2513 		filter->src_port = fdir->input.flow.tcp6_flow.src_port;
2514 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2515 		filter->dst_port = fdir->input.flow.tcp6_flow.dst_port;
2516 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2517 		filter->dst_port_mask = 0xffff;
2518 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2519 		filter->src_port_mask = 0xffff;
2520 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2521 		filter->ip_addr_type =
2522 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2523 		filter->ip_protocol = fdir->input.flow.tcp6_flow.ip.proto;
2524 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2525 		rte_memcpy(filter->src_ipaddr,
2526 			   fdir->input.flow.tcp6_flow.ip.src_ip, 16);
2527 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2528 		rte_memcpy(filter->dst_ipaddr,
2529 			   fdir->input.flow.tcp6_flow.ip.dst_ip, 16);
2530 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2531 		memset(filter->dst_ipaddr_mask, 0xff, 16);
2532 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2533 		memset(filter->src_ipaddr_mask, 0xff, 16);
2534 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2535 		filter->ethertype = 0x86dd;
2536 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2537 		break;
2538 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2539 		filter->src_port = fdir->input.flow.udp6_flow.src_port;
2540 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2541 		filter->dst_port = fdir->input.flow.udp6_flow.dst_port;
2542 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2543 		filter->dst_port_mask = 0xffff;
2544 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2545 		filter->src_port_mask = 0xffff;
2546 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2547 		filter->ip_addr_type =
2548 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2549 		filter->ip_protocol = fdir->input.flow.udp6_flow.ip.proto;
2550 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2551 		rte_memcpy(filter->src_ipaddr,
2552 			   fdir->input.flow.udp6_flow.ip.src_ip, 16);
2553 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2554 		rte_memcpy(filter->dst_ipaddr,
2555 			   fdir->input.flow.udp6_flow.ip.dst_ip, 16);
2556 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2557 		memset(filter->dst_ipaddr_mask, 0xff, 16);
2558 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2559 		memset(filter->src_ipaddr_mask, 0xff, 16);
2560 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2561 		filter->ethertype = 0x86dd;
2562 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2563 		break;
2564 	case RTE_ETH_FLOW_L2_PAYLOAD:
2565 		filter->ethertype = fdir->input.flow.l2_flow.ether_type;
2566 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2567 		break;
2568 	case RTE_ETH_FLOW_VXLAN:
2569 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2570 			return -EINVAL;
2571 		filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
2572 		filter->tunnel_type =
2573 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
2574 		en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
2575 		break;
2576 	case RTE_ETH_FLOW_NVGRE:
2577 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2578 			return -EINVAL;
2579 		filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
2580 		filter->tunnel_type =
2581 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_NVGRE;
2582 		en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
2583 		break;
2584 	case RTE_ETH_FLOW_UNKNOWN:
2585 	case RTE_ETH_FLOW_RAW:
2586 	case RTE_ETH_FLOW_FRAG_IPV4:
2587 	case RTE_ETH_FLOW_NONFRAG_IPV4_SCTP:
2588 	case RTE_ETH_FLOW_FRAG_IPV6:
2589 	case RTE_ETH_FLOW_NONFRAG_IPV6_SCTP:
2590 	case RTE_ETH_FLOW_IPV6_EX:
2591 	case RTE_ETH_FLOW_IPV6_TCP_EX:
2592 	case RTE_ETH_FLOW_IPV6_UDP_EX:
2593 	case RTE_ETH_FLOW_GENEVE:
2594 		/* FALLTHROUGH */
2595 	default:
2596 		return -EINVAL;
2597 	}
2598 
2599 	vnic0 = &bp->vnic_info[0];
2600 	vnic = &bp->vnic_info[fdir->action.rx_queue];
2601 	if (vnic == NULL) {
2602 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", fdir->action.rx_queue);
2603 		return -EINVAL;
2604 	}
2605 
2606 
2607 	if (fdir_mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2608 		rte_memcpy(filter->dst_macaddr,
2609 			fdir->input.flow.mac_vlan_flow.mac_addr.addr_bytes, 6);
2610 			en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
2611 	}
2612 
2613 	if (fdir->action.behavior == RTE_ETH_FDIR_REJECT) {
2614 		filter->flags = HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
2615 		filter1 = STAILQ_FIRST(&vnic0->filter);
2616 		//filter1 = bnxt_get_l2_filter(bp, filter, vnic0);
2617 	} else {
2618 		filter->dst_id = vnic->fw_vnic_id;
2619 		for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
2620 			if (filter->dst_macaddr[i] == 0x00)
2621 				filter1 = STAILQ_FIRST(&vnic0->filter);
2622 			else
2623 				filter1 = bnxt_get_l2_filter(bp, filter, vnic);
2624 	}
2625 
2626 	if (filter1 == NULL)
2627 		return -EINVAL;
2628 
2629 	en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
2630 	filter->fw_l2_filter_id = filter1->fw_l2_filter_id;
2631 
2632 	filter->enables = en;
2633 
2634 	return 0;
2635 }
2636 
2637 static struct bnxt_filter_info *
2638 bnxt_match_fdir(struct bnxt *bp, struct bnxt_filter_info *nf,
2639 		struct bnxt_vnic_info **mvnic)
2640 {
2641 	struct bnxt_filter_info *mf = NULL;
2642 	int i;
2643 
2644 	for (i = bp->nr_vnics - 1; i >= 0; i--) {
2645 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2646 
2647 		STAILQ_FOREACH(mf, &vnic->filter, next) {
2648 			if (mf->filter_type == nf->filter_type &&
2649 			    mf->flags == nf->flags &&
2650 			    mf->src_port == nf->src_port &&
2651 			    mf->src_port_mask == nf->src_port_mask &&
2652 			    mf->dst_port == nf->dst_port &&
2653 			    mf->dst_port_mask == nf->dst_port_mask &&
2654 			    mf->ip_protocol == nf->ip_protocol &&
2655 			    mf->ip_addr_type == nf->ip_addr_type &&
2656 			    mf->ethertype == nf->ethertype &&
2657 			    mf->vni == nf->vni &&
2658 			    mf->tunnel_type == nf->tunnel_type &&
2659 			    mf->l2_ovlan == nf->l2_ovlan &&
2660 			    mf->l2_ovlan_mask == nf->l2_ovlan_mask &&
2661 			    mf->l2_ivlan == nf->l2_ivlan &&
2662 			    mf->l2_ivlan_mask == nf->l2_ivlan_mask &&
2663 			    !memcmp(mf->l2_addr, nf->l2_addr,
2664 				    RTE_ETHER_ADDR_LEN) &&
2665 			    !memcmp(mf->l2_addr_mask, nf->l2_addr_mask,
2666 				    RTE_ETHER_ADDR_LEN) &&
2667 			    !memcmp(mf->src_macaddr, nf->src_macaddr,
2668 				    RTE_ETHER_ADDR_LEN) &&
2669 			    !memcmp(mf->dst_macaddr, nf->dst_macaddr,
2670 				    RTE_ETHER_ADDR_LEN) &&
2671 			    !memcmp(mf->src_ipaddr, nf->src_ipaddr,
2672 				    sizeof(nf->src_ipaddr)) &&
2673 			    !memcmp(mf->src_ipaddr_mask, nf->src_ipaddr_mask,
2674 				    sizeof(nf->src_ipaddr_mask)) &&
2675 			    !memcmp(mf->dst_ipaddr, nf->dst_ipaddr,
2676 				    sizeof(nf->dst_ipaddr)) &&
2677 			    !memcmp(mf->dst_ipaddr_mask, nf->dst_ipaddr_mask,
2678 				    sizeof(nf->dst_ipaddr_mask))) {
2679 				if (mvnic)
2680 					*mvnic = vnic;
2681 				return mf;
2682 			}
2683 		}
2684 	}
2685 	return NULL;
2686 }
2687 
2688 static int
2689 bnxt_fdir_filter(struct rte_eth_dev *dev,
2690 		 enum rte_filter_op filter_op,
2691 		 void *arg)
2692 {
2693 	struct bnxt *bp = dev->data->dev_private;
2694 	struct rte_eth_fdir_filter *fdir  = (struct rte_eth_fdir_filter *)arg;
2695 	struct bnxt_filter_info *filter, *match;
2696 	struct bnxt_vnic_info *vnic, *mvnic;
2697 	int ret = 0, i;
2698 
2699 	if (filter_op == RTE_ETH_FILTER_NOP)
2700 		return 0;
2701 
2702 	if (arg == NULL && filter_op != RTE_ETH_FILTER_FLUSH)
2703 		return -EINVAL;
2704 
2705 	switch (filter_op) {
2706 	case RTE_ETH_FILTER_ADD:
2707 	case RTE_ETH_FILTER_DELETE:
2708 		/* FALLTHROUGH */
2709 		filter = bnxt_get_unused_filter(bp);
2710 		if (filter == NULL) {
2711 			PMD_DRV_LOG(ERR,
2712 				"Not enough resources for a new flow.\n");
2713 			return -ENOMEM;
2714 		}
2715 
2716 		ret = bnxt_parse_fdir_filter(bp, fdir, filter);
2717 		if (ret != 0)
2718 			goto free_filter;
2719 		filter->filter_type = HWRM_CFA_NTUPLE_FILTER;
2720 
2721 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2722 			vnic = &bp->vnic_info[0];
2723 		else
2724 			vnic = &bp->vnic_info[fdir->action.rx_queue];
2725 
2726 		match = bnxt_match_fdir(bp, filter, &mvnic);
2727 		if (match != NULL && filter_op == RTE_ETH_FILTER_ADD) {
2728 			if (match->dst_id == vnic->fw_vnic_id) {
2729 				PMD_DRV_LOG(ERR, "Flow already exists.\n");
2730 				ret = -EEXIST;
2731 				goto free_filter;
2732 			} else {
2733 				match->dst_id = vnic->fw_vnic_id;
2734 				ret = bnxt_hwrm_set_ntuple_filter(bp,
2735 								  match->dst_id,
2736 								  match);
2737 				STAILQ_REMOVE(&mvnic->filter, match,
2738 					      bnxt_filter_info, next);
2739 				STAILQ_INSERT_TAIL(&vnic->filter, match, next);
2740 				PMD_DRV_LOG(ERR,
2741 					"Filter with matching pattern exist\n");
2742 				PMD_DRV_LOG(ERR,
2743 					"Updated it to new destination q\n");
2744 				goto free_filter;
2745 			}
2746 		}
2747 		if (match == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
2748 			PMD_DRV_LOG(ERR, "Flow does not exist.\n");
2749 			ret = -ENOENT;
2750 			goto free_filter;
2751 		}
2752 
2753 		if (filter_op == RTE_ETH_FILTER_ADD) {
2754 			ret = bnxt_hwrm_set_ntuple_filter(bp,
2755 							  filter->dst_id,
2756 							  filter);
2757 			if (ret)
2758 				goto free_filter;
2759 			STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
2760 		} else {
2761 			ret = bnxt_hwrm_clear_ntuple_filter(bp, match);
2762 			STAILQ_REMOVE(&vnic->filter, match,
2763 				      bnxt_filter_info, next);
2764 			bnxt_free_filter(bp, match);
2765 			filter->fw_l2_filter_id = -1;
2766 			bnxt_free_filter(bp, filter);
2767 		}
2768 		break;
2769 	case RTE_ETH_FILTER_FLUSH:
2770 		for (i = bp->nr_vnics - 1; i >= 0; i--) {
2771 			struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2772 
2773 			STAILQ_FOREACH(filter, &vnic->filter, next) {
2774 				if (filter->filter_type ==
2775 				    HWRM_CFA_NTUPLE_FILTER) {
2776 					ret =
2777 					bnxt_hwrm_clear_ntuple_filter(bp,
2778 								      filter);
2779 					STAILQ_REMOVE(&vnic->filter, filter,
2780 						      bnxt_filter_info, next);
2781 				}
2782 			}
2783 		}
2784 		return ret;
2785 	case RTE_ETH_FILTER_UPDATE:
2786 	case RTE_ETH_FILTER_STATS:
2787 	case RTE_ETH_FILTER_INFO:
2788 		PMD_DRV_LOG(ERR, "operation %u not implemented", filter_op);
2789 		break;
2790 	default:
2791 		PMD_DRV_LOG(ERR, "unknown operation %u", filter_op);
2792 		ret = -EINVAL;
2793 		break;
2794 	}
2795 	return ret;
2796 
2797 free_filter:
2798 	filter->fw_l2_filter_id = -1;
2799 	bnxt_free_filter(bp, filter);
2800 	return ret;
2801 }
2802 
2803 static int
2804 bnxt_filter_ctrl_op(struct rte_eth_dev *dev __rte_unused,
2805 		    enum rte_filter_type filter_type,
2806 		    enum rte_filter_op filter_op, void *arg)
2807 {
2808 	int ret = 0;
2809 
2810 	switch (filter_type) {
2811 	case RTE_ETH_FILTER_TUNNEL:
2812 		PMD_DRV_LOG(ERR,
2813 			"filter type: %d: To be implemented\n", filter_type);
2814 		break;
2815 	case RTE_ETH_FILTER_FDIR:
2816 		ret = bnxt_fdir_filter(dev, filter_op, arg);
2817 		break;
2818 	case RTE_ETH_FILTER_NTUPLE:
2819 		ret = bnxt_ntuple_filter(dev, filter_op, arg);
2820 		break;
2821 	case RTE_ETH_FILTER_ETHERTYPE:
2822 		ret = bnxt_ethertype_filter(dev, filter_op, arg);
2823 		break;
2824 	case RTE_ETH_FILTER_GENERIC:
2825 		if (filter_op != RTE_ETH_FILTER_GET)
2826 			return -EINVAL;
2827 		*(const void **)arg = &bnxt_flow_ops;
2828 		break;
2829 	default:
2830 		PMD_DRV_LOG(ERR,
2831 			"Filter type (%d) not supported", filter_type);
2832 		ret = -EINVAL;
2833 		break;
2834 	}
2835 	return ret;
2836 }
2837 
2838 static const uint32_t *
2839 bnxt_dev_supported_ptypes_get_op(struct rte_eth_dev *dev)
2840 {
2841 	static const uint32_t ptypes[] = {
2842 		RTE_PTYPE_L2_ETHER_VLAN,
2843 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
2844 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
2845 		RTE_PTYPE_L4_ICMP,
2846 		RTE_PTYPE_L4_TCP,
2847 		RTE_PTYPE_L4_UDP,
2848 		RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
2849 		RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
2850 		RTE_PTYPE_INNER_L4_ICMP,
2851 		RTE_PTYPE_INNER_L4_TCP,
2852 		RTE_PTYPE_INNER_L4_UDP,
2853 		RTE_PTYPE_UNKNOWN
2854 	};
2855 
2856 	if (!dev->rx_pkt_burst)
2857 		return NULL;
2858 
2859 	return ptypes;
2860 }
2861 
2862 static int bnxt_map_regs(struct bnxt *bp, uint32_t *reg_arr, int count,
2863 			 int reg_win)
2864 {
2865 	uint32_t reg_base = *reg_arr & 0xfffff000;
2866 	uint32_t win_off;
2867 	int i;
2868 
2869 	for (i = 0; i < count; i++) {
2870 		if ((reg_arr[i] & 0xfffff000) != reg_base)
2871 			return -ERANGE;
2872 	}
2873 	win_off = BNXT_GRCPF_REG_WINDOW_BASE_OUT + (reg_win - 1) * 4;
2874 	rte_write32(reg_base, (uint8_t *)bp->bar0 + win_off);
2875 	return 0;
2876 }
2877 
2878 static int bnxt_map_ptp_regs(struct bnxt *bp)
2879 {
2880 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2881 	uint32_t *reg_arr;
2882 	int rc, i;
2883 
2884 	reg_arr = ptp->rx_regs;
2885 	rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_RX_REGS, 5);
2886 	if (rc)
2887 		return rc;
2888 
2889 	reg_arr = ptp->tx_regs;
2890 	rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_TX_REGS, 6);
2891 	if (rc)
2892 		return rc;
2893 
2894 	for (i = 0; i < BNXT_PTP_RX_REGS; i++)
2895 		ptp->rx_mapped_regs[i] = 0x5000 + (ptp->rx_regs[i] & 0xfff);
2896 
2897 	for (i = 0; i < BNXT_PTP_TX_REGS; i++)
2898 		ptp->tx_mapped_regs[i] = 0x6000 + (ptp->tx_regs[i] & 0xfff);
2899 
2900 	return 0;
2901 }
2902 
2903 static void bnxt_unmap_ptp_regs(struct bnxt *bp)
2904 {
2905 	rte_write32(0, (uint8_t *)bp->bar0 +
2906 			 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 16);
2907 	rte_write32(0, (uint8_t *)bp->bar0 +
2908 			 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 20);
2909 }
2910 
2911 static uint64_t bnxt_cc_read(struct bnxt *bp)
2912 {
2913 	uint64_t ns;
2914 
2915 	ns = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2916 			      BNXT_GRCPF_REG_SYNC_TIME));
2917 	ns |= (uint64_t)(rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2918 					  BNXT_GRCPF_REG_SYNC_TIME + 4))) << 32;
2919 	return ns;
2920 }
2921 
2922 static int bnxt_get_tx_ts(struct bnxt *bp, uint64_t *ts)
2923 {
2924 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2925 	uint32_t fifo;
2926 
2927 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2928 				ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
2929 	if (fifo & BNXT_PTP_TX_FIFO_EMPTY)
2930 		return -EAGAIN;
2931 
2932 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2933 				ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
2934 	*ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2935 				ptp->tx_mapped_regs[BNXT_PTP_TX_TS_L]));
2936 	*ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2937 				ptp->tx_mapped_regs[BNXT_PTP_TX_TS_H])) << 32;
2938 
2939 	return 0;
2940 }
2941 
2942 static int bnxt_get_rx_ts(struct bnxt *bp, uint64_t *ts)
2943 {
2944 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2945 	struct bnxt_pf_info *pf = &bp->pf;
2946 	uint16_t port_id;
2947 	uint32_t fifo;
2948 
2949 	if (!ptp)
2950 		return -ENODEV;
2951 
2952 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2953 				ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
2954 	if (!(fifo & BNXT_PTP_RX_FIFO_PENDING))
2955 		return -EAGAIN;
2956 
2957 	port_id = pf->port_id;
2958 	rte_write32(1 << port_id, (uint8_t *)bp->bar0 +
2959 	       ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO_ADV]);
2960 
2961 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2962 				   ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
2963 	if (fifo & BNXT_PTP_RX_FIFO_PENDING) {
2964 /*		bnxt_clr_rx_ts(bp);	  TBD  */
2965 		return -EBUSY;
2966 	}
2967 
2968 	*ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2969 				ptp->rx_mapped_regs[BNXT_PTP_RX_TS_L]));
2970 	*ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2971 				ptp->rx_mapped_regs[BNXT_PTP_RX_TS_H])) << 32;
2972 
2973 	return 0;
2974 }
2975 
2976 static int
2977 bnxt_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
2978 {
2979 	uint64_t ns;
2980 	struct bnxt *bp = dev->data->dev_private;
2981 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2982 
2983 	if (!ptp)
2984 		return 0;
2985 
2986 	ns = rte_timespec_to_ns(ts);
2987 	/* Set the timecounters to a new value. */
2988 	ptp->tc.nsec = ns;
2989 
2990 	return 0;
2991 }
2992 
2993 static int
2994 bnxt_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
2995 {
2996 	uint64_t ns, systime_cycles;
2997 	struct bnxt *bp = dev->data->dev_private;
2998 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2999 
3000 	if (!ptp)
3001 		return 0;
3002 
3003 	systime_cycles = bnxt_cc_read(bp);
3004 	ns = rte_timecounter_update(&ptp->tc, systime_cycles);
3005 	*ts = rte_ns_to_timespec(ns);
3006 
3007 	return 0;
3008 }
3009 static int
3010 bnxt_timesync_enable(struct rte_eth_dev *dev)
3011 {
3012 	struct bnxt *bp = dev->data->dev_private;
3013 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3014 	uint32_t shift = 0;
3015 
3016 	if (!ptp)
3017 		return 0;
3018 
3019 	ptp->rx_filter = 1;
3020 	ptp->tx_tstamp_en = 1;
3021 	ptp->rxctl = BNXT_PTP_MSG_EVENTS;
3022 
3023 	if (!bnxt_hwrm_ptp_cfg(bp))
3024 		bnxt_map_ptp_regs(bp);
3025 
3026 	memset(&ptp->tc, 0, sizeof(struct rte_timecounter));
3027 	memset(&ptp->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
3028 	memset(&ptp->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
3029 
3030 	ptp->tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
3031 	ptp->tc.cc_shift = shift;
3032 	ptp->tc.nsec_mask = (1ULL << shift) - 1;
3033 
3034 	ptp->rx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
3035 	ptp->rx_tstamp_tc.cc_shift = shift;
3036 	ptp->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
3037 
3038 	ptp->tx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
3039 	ptp->tx_tstamp_tc.cc_shift = shift;
3040 	ptp->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
3041 
3042 	return 0;
3043 }
3044 
3045 static int
3046 bnxt_timesync_disable(struct rte_eth_dev *dev)
3047 {
3048 	struct bnxt *bp = dev->data->dev_private;
3049 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3050 
3051 	if (!ptp)
3052 		return 0;
3053 
3054 	ptp->rx_filter = 0;
3055 	ptp->tx_tstamp_en = 0;
3056 	ptp->rxctl = 0;
3057 
3058 	bnxt_hwrm_ptp_cfg(bp);
3059 
3060 	bnxt_unmap_ptp_regs(bp);
3061 
3062 	return 0;
3063 }
3064 
3065 static int
3066 bnxt_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
3067 				 struct timespec *timestamp,
3068 				 uint32_t flags __rte_unused)
3069 {
3070 	struct bnxt *bp = dev->data->dev_private;
3071 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3072 	uint64_t rx_tstamp_cycles = 0;
3073 	uint64_t ns;
3074 
3075 	if (!ptp)
3076 		return 0;
3077 
3078 	bnxt_get_rx_ts(bp, &rx_tstamp_cycles);
3079 	ns = rte_timecounter_update(&ptp->rx_tstamp_tc, rx_tstamp_cycles);
3080 	*timestamp = rte_ns_to_timespec(ns);
3081 	return  0;
3082 }
3083 
3084 static int
3085 bnxt_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
3086 				 struct timespec *timestamp)
3087 {
3088 	struct bnxt *bp = dev->data->dev_private;
3089 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3090 	uint64_t tx_tstamp_cycles = 0;
3091 	uint64_t ns;
3092 
3093 	if (!ptp)
3094 		return 0;
3095 
3096 	bnxt_get_tx_ts(bp, &tx_tstamp_cycles);
3097 	ns = rte_timecounter_update(&ptp->tx_tstamp_tc, tx_tstamp_cycles);
3098 	*timestamp = rte_ns_to_timespec(ns);
3099 
3100 	return 0;
3101 }
3102 
3103 static int
3104 bnxt_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
3105 {
3106 	struct bnxt *bp = dev->data->dev_private;
3107 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3108 
3109 	if (!ptp)
3110 		return 0;
3111 
3112 	ptp->tc.nsec += delta;
3113 
3114 	return 0;
3115 }
3116 
3117 static int
3118 bnxt_get_eeprom_length_op(struct rte_eth_dev *dev)
3119 {
3120 	struct bnxt *bp = dev->data->dev_private;
3121 	int rc;
3122 	uint32_t dir_entries;
3123 	uint32_t entry_length;
3124 
3125 	PMD_DRV_LOG(INFO, "%04x:%02x:%02x:%02x\n",
3126 		bp->pdev->addr.domain, bp->pdev->addr.bus,
3127 		bp->pdev->addr.devid, bp->pdev->addr.function);
3128 
3129 	rc = bnxt_hwrm_nvm_get_dir_info(bp, &dir_entries, &entry_length);
3130 	if (rc != 0)
3131 		return rc;
3132 
3133 	return dir_entries * entry_length;
3134 }
3135 
3136 static int
3137 bnxt_get_eeprom_op(struct rte_eth_dev *dev,
3138 		struct rte_dev_eeprom_info *in_eeprom)
3139 {
3140 	struct bnxt *bp = dev->data->dev_private;
3141 	uint32_t index;
3142 	uint32_t offset;
3143 
3144 	PMD_DRV_LOG(INFO, "%04x:%02x:%02x:%02x in_eeprom->offset = %d "
3145 		"len = %d\n", bp->pdev->addr.domain,
3146 		bp->pdev->addr.bus, bp->pdev->addr.devid,
3147 		bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length);
3148 
3149 	if (in_eeprom->offset == 0) /* special offset value to get directory */
3150 		return bnxt_get_nvram_directory(bp, in_eeprom->length,
3151 						in_eeprom->data);
3152 
3153 	index = in_eeprom->offset >> 24;
3154 	offset = in_eeprom->offset & 0xffffff;
3155 
3156 	if (index != 0)
3157 		return bnxt_hwrm_get_nvram_item(bp, index - 1, offset,
3158 					   in_eeprom->length, in_eeprom->data);
3159 
3160 	return 0;
3161 }
3162 
3163 static bool bnxt_dir_type_is_ape_bin_format(uint16_t dir_type)
3164 {
3165 	switch (dir_type) {
3166 	case BNX_DIR_TYPE_CHIMP_PATCH:
3167 	case BNX_DIR_TYPE_BOOTCODE:
3168 	case BNX_DIR_TYPE_BOOTCODE_2:
3169 	case BNX_DIR_TYPE_APE_FW:
3170 	case BNX_DIR_TYPE_APE_PATCH:
3171 	case BNX_DIR_TYPE_KONG_FW:
3172 	case BNX_DIR_TYPE_KONG_PATCH:
3173 	case BNX_DIR_TYPE_BONO_FW:
3174 	case BNX_DIR_TYPE_BONO_PATCH:
3175 		/* FALLTHROUGH */
3176 		return true;
3177 	}
3178 
3179 	return false;
3180 }
3181 
3182 static bool bnxt_dir_type_is_other_exec_format(uint16_t dir_type)
3183 {
3184 	switch (dir_type) {
3185 	case BNX_DIR_TYPE_AVS:
3186 	case BNX_DIR_TYPE_EXP_ROM_MBA:
3187 	case BNX_DIR_TYPE_PCIE:
3188 	case BNX_DIR_TYPE_TSCF_UCODE:
3189 	case BNX_DIR_TYPE_EXT_PHY:
3190 	case BNX_DIR_TYPE_CCM:
3191 	case BNX_DIR_TYPE_ISCSI_BOOT:
3192 	case BNX_DIR_TYPE_ISCSI_BOOT_IPV6:
3193 	case BNX_DIR_TYPE_ISCSI_BOOT_IPV4N6:
3194 		/* FALLTHROUGH */
3195 		return true;
3196 	}
3197 
3198 	return false;
3199 }
3200 
3201 static bool bnxt_dir_type_is_executable(uint16_t dir_type)
3202 {
3203 	return bnxt_dir_type_is_ape_bin_format(dir_type) ||
3204 		bnxt_dir_type_is_other_exec_format(dir_type);
3205 }
3206 
3207 static int
3208 bnxt_set_eeprom_op(struct rte_eth_dev *dev,
3209 		struct rte_dev_eeprom_info *in_eeprom)
3210 {
3211 	struct bnxt *bp = dev->data->dev_private;
3212 	uint8_t index, dir_op;
3213 	uint16_t type, ext, ordinal, attr;
3214 
3215 	PMD_DRV_LOG(INFO, "%04x:%02x:%02x:%02x in_eeprom->offset = %d "
3216 		"len = %d\n", bp->pdev->addr.domain,
3217 		bp->pdev->addr.bus, bp->pdev->addr.devid,
3218 		bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length);
3219 
3220 	if (!BNXT_PF(bp)) {
3221 		PMD_DRV_LOG(ERR, "NVM write not supported from a VF\n");
3222 		return -EINVAL;
3223 	}
3224 
3225 	type = in_eeprom->magic >> 16;
3226 
3227 	if (type == 0xffff) { /* special value for directory operations */
3228 		index = in_eeprom->magic & 0xff;
3229 		dir_op = in_eeprom->magic >> 8;
3230 		if (index == 0)
3231 			return -EINVAL;
3232 		switch (dir_op) {
3233 		case 0x0e: /* erase */
3234 			if (in_eeprom->offset != ~in_eeprom->magic)
3235 				return -EINVAL;
3236 			return bnxt_hwrm_erase_nvram_directory(bp, index - 1);
3237 		default:
3238 			return -EINVAL;
3239 		}
3240 	}
3241 
3242 	/* Create or re-write an NVM item: */
3243 	if (bnxt_dir_type_is_executable(type) == true)
3244 		return -EOPNOTSUPP;
3245 	ext = in_eeprom->magic & 0xffff;
3246 	ordinal = in_eeprom->offset >> 16;
3247 	attr = in_eeprom->offset & 0xffff;
3248 
3249 	return bnxt_hwrm_flash_nvram(bp, type, ordinal, ext, attr,
3250 				     in_eeprom->data, in_eeprom->length);
3251 }
3252 
3253 /*
3254  * Initialization
3255  */
3256 
3257 static const struct eth_dev_ops bnxt_dev_ops = {
3258 	.dev_infos_get = bnxt_dev_info_get_op,
3259 	.dev_close = bnxt_dev_close_op,
3260 	.dev_configure = bnxt_dev_configure_op,
3261 	.dev_start = bnxt_dev_start_op,
3262 	.dev_stop = bnxt_dev_stop_op,
3263 	.dev_set_link_up = bnxt_dev_set_link_up_op,
3264 	.dev_set_link_down = bnxt_dev_set_link_down_op,
3265 	.stats_get = bnxt_stats_get_op,
3266 	.stats_reset = bnxt_stats_reset_op,
3267 	.rx_queue_setup = bnxt_rx_queue_setup_op,
3268 	.rx_queue_release = bnxt_rx_queue_release_op,
3269 	.tx_queue_setup = bnxt_tx_queue_setup_op,
3270 	.tx_queue_release = bnxt_tx_queue_release_op,
3271 	.rx_queue_intr_enable = bnxt_rx_queue_intr_enable_op,
3272 	.rx_queue_intr_disable = bnxt_rx_queue_intr_disable_op,
3273 	.reta_update = bnxt_reta_update_op,
3274 	.reta_query = bnxt_reta_query_op,
3275 	.rss_hash_update = bnxt_rss_hash_update_op,
3276 	.rss_hash_conf_get = bnxt_rss_hash_conf_get_op,
3277 	.link_update = bnxt_link_update_op,
3278 	.promiscuous_enable = bnxt_promiscuous_enable_op,
3279 	.promiscuous_disable = bnxt_promiscuous_disable_op,
3280 	.allmulticast_enable = bnxt_allmulticast_enable_op,
3281 	.allmulticast_disable = bnxt_allmulticast_disable_op,
3282 	.mac_addr_add = bnxt_mac_addr_add_op,
3283 	.mac_addr_remove = bnxt_mac_addr_remove_op,
3284 	.flow_ctrl_get = bnxt_flow_ctrl_get_op,
3285 	.flow_ctrl_set = bnxt_flow_ctrl_set_op,
3286 	.udp_tunnel_port_add  = bnxt_udp_tunnel_port_add_op,
3287 	.udp_tunnel_port_del  = bnxt_udp_tunnel_port_del_op,
3288 	.vlan_filter_set = bnxt_vlan_filter_set_op,
3289 	.vlan_offload_set = bnxt_vlan_offload_set_op,
3290 	.vlan_pvid_set = bnxt_vlan_pvid_set_op,
3291 	.mtu_set = bnxt_mtu_set_op,
3292 	.mac_addr_set = bnxt_set_default_mac_addr_op,
3293 	.xstats_get = bnxt_dev_xstats_get_op,
3294 	.xstats_get_names = bnxt_dev_xstats_get_names_op,
3295 	.xstats_reset = bnxt_dev_xstats_reset_op,
3296 	.fw_version_get = bnxt_fw_version_get,
3297 	.set_mc_addr_list = bnxt_dev_set_mc_addr_list_op,
3298 	.rxq_info_get = bnxt_rxq_info_get_op,
3299 	.txq_info_get = bnxt_txq_info_get_op,
3300 	.dev_led_on = bnxt_dev_led_on_op,
3301 	.dev_led_off = bnxt_dev_led_off_op,
3302 	.xstats_get_by_id = bnxt_dev_xstats_get_by_id_op,
3303 	.xstats_get_names_by_id = bnxt_dev_xstats_get_names_by_id_op,
3304 	.rx_queue_count = bnxt_rx_queue_count_op,
3305 	.rx_descriptor_status = bnxt_rx_descriptor_status_op,
3306 	.tx_descriptor_status = bnxt_tx_descriptor_status_op,
3307 	.rx_queue_start = bnxt_rx_queue_start,
3308 	.rx_queue_stop = bnxt_rx_queue_stop,
3309 	.tx_queue_start = bnxt_tx_queue_start,
3310 	.tx_queue_stop = bnxt_tx_queue_stop,
3311 	.filter_ctrl = bnxt_filter_ctrl_op,
3312 	.dev_supported_ptypes_get = bnxt_dev_supported_ptypes_get_op,
3313 	.get_eeprom_length    = bnxt_get_eeprom_length_op,
3314 	.get_eeprom           = bnxt_get_eeprom_op,
3315 	.set_eeprom           = bnxt_set_eeprom_op,
3316 	.timesync_enable      = bnxt_timesync_enable,
3317 	.timesync_disable     = bnxt_timesync_disable,
3318 	.timesync_read_time   = bnxt_timesync_read_time,
3319 	.timesync_write_time   = bnxt_timesync_write_time,
3320 	.timesync_adjust_time = bnxt_timesync_adjust_time,
3321 	.timesync_read_rx_timestamp = bnxt_timesync_read_rx_timestamp,
3322 	.timesync_read_tx_timestamp = bnxt_timesync_read_tx_timestamp,
3323 };
3324 
3325 static bool bnxt_vf_pciid(uint16_t id)
3326 {
3327 	if (id == BROADCOM_DEV_ID_57304_VF ||
3328 	    id == BROADCOM_DEV_ID_57406_VF ||
3329 	    id == BROADCOM_DEV_ID_5731X_VF ||
3330 	    id == BROADCOM_DEV_ID_5741X_VF ||
3331 	    id == BROADCOM_DEV_ID_57414_VF ||
3332 	    id == BROADCOM_DEV_ID_STRATUS_NIC_VF1 ||
3333 	    id == BROADCOM_DEV_ID_STRATUS_NIC_VF2 ||
3334 	    id == BROADCOM_DEV_ID_58802_VF ||
3335 	    id == BROADCOM_DEV_ID_57500_VF1 ||
3336 	    id == BROADCOM_DEV_ID_57500_VF2)
3337 		return true;
3338 	return false;
3339 }
3340 
3341 bool bnxt_stratus_device(struct bnxt *bp)
3342 {
3343 	uint16_t id = bp->pdev->id.device_id;
3344 
3345 	if (id == BROADCOM_DEV_ID_STRATUS_NIC ||
3346 	    id == BROADCOM_DEV_ID_STRATUS_NIC_VF1 ||
3347 	    id == BROADCOM_DEV_ID_STRATUS_NIC_VF2)
3348 		return true;
3349 	return false;
3350 }
3351 
3352 static int bnxt_init_board(struct rte_eth_dev *eth_dev)
3353 {
3354 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3355 	struct bnxt *bp = eth_dev->data->dev_private;
3356 
3357 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
3358 	bp->bar0 = (void *)pci_dev->mem_resource[0].addr;
3359 	bp->doorbell_base = (void *)pci_dev->mem_resource[2].addr;
3360 	if (!bp->bar0 || !bp->doorbell_base) {
3361 		PMD_DRV_LOG(ERR, "Unable to access Hardware\n");
3362 		return -ENODEV;
3363 	}
3364 
3365 	bp->eth_dev = eth_dev;
3366 	bp->pdev = pci_dev;
3367 
3368 	return 0;
3369 }
3370 
3371 static int bnxt_alloc_ctx_mem_blk(__rte_unused struct bnxt *bp,
3372 				  struct bnxt_ctx_pg_info *ctx_pg,
3373 				  uint32_t mem_size,
3374 				  const char *suffix,
3375 				  uint16_t idx)
3376 {
3377 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
3378 	const struct rte_memzone *mz = NULL;
3379 	char mz_name[RTE_MEMZONE_NAMESIZE];
3380 	rte_iova_t mz_phys_addr;
3381 	uint64_t valid_bits = 0;
3382 	uint32_t sz;
3383 	int i;
3384 
3385 	if (!mem_size)
3386 		return 0;
3387 
3388 	rmem->nr_pages = RTE_ALIGN_MUL_CEIL(mem_size, BNXT_PAGE_SIZE) /
3389 			 BNXT_PAGE_SIZE;
3390 	rmem->page_size = BNXT_PAGE_SIZE;
3391 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
3392 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
3393 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
3394 
3395 	valid_bits = PTU_PTE_VALID;
3396 
3397 	if (rmem->nr_pages > 1) {
3398 		snprintf(mz_name, RTE_MEMZONE_NAMESIZE, "bnxt_ctx_pg_tbl%s_%x",
3399 			 suffix, idx);
3400 		mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
3401 		mz = rte_memzone_lookup(mz_name);
3402 		if (!mz) {
3403 			mz = rte_memzone_reserve_aligned(mz_name,
3404 						rmem->nr_pages * 8,
3405 						SOCKET_ID_ANY,
3406 						RTE_MEMZONE_2MB |
3407 						RTE_MEMZONE_SIZE_HINT_ONLY |
3408 						RTE_MEMZONE_IOVA_CONTIG,
3409 						BNXT_PAGE_SIZE);
3410 			if (mz == NULL)
3411 				return -ENOMEM;
3412 		}
3413 
3414 		memset(mz->addr, 0, mz->len);
3415 		mz_phys_addr = mz->iova;
3416 		if ((unsigned long)mz->addr == mz_phys_addr) {
3417 			PMD_DRV_LOG(WARNING,
3418 				"Memzone physical address same as virtual.\n");
3419 			PMD_DRV_LOG(WARNING,
3420 				    "Using rte_mem_virt2iova()\n");
3421 			mz_phys_addr = rte_mem_virt2iova(mz->addr);
3422 			if (mz_phys_addr == RTE_BAD_IOVA) {
3423 				PMD_DRV_LOG(ERR,
3424 					"unable to map addr to phys memory\n");
3425 				return -ENOMEM;
3426 			}
3427 		}
3428 		rte_mem_lock_page(((char *)mz->addr));
3429 
3430 		rmem->pg_tbl = mz->addr;
3431 		rmem->pg_tbl_map = mz_phys_addr;
3432 		rmem->pg_tbl_mz = mz;
3433 	}
3434 
3435 	snprintf(mz_name, RTE_MEMZONE_NAMESIZE, "bnxt_ctx_%s_%x", suffix, idx);
3436 	mz = rte_memzone_lookup(mz_name);
3437 	if (!mz) {
3438 		mz = rte_memzone_reserve_aligned(mz_name,
3439 						 mem_size,
3440 						 SOCKET_ID_ANY,
3441 						 RTE_MEMZONE_1GB |
3442 						 RTE_MEMZONE_SIZE_HINT_ONLY |
3443 						 RTE_MEMZONE_IOVA_CONTIG,
3444 						 BNXT_PAGE_SIZE);
3445 		if (mz == NULL)
3446 			return -ENOMEM;
3447 	}
3448 
3449 	memset(mz->addr, 0, mz->len);
3450 	mz_phys_addr = mz->iova;
3451 	if ((unsigned long)mz->addr == mz_phys_addr) {
3452 		PMD_DRV_LOG(WARNING,
3453 			    "Memzone physical address same as virtual.\n");
3454 		PMD_DRV_LOG(WARNING,
3455 			    "Using rte_mem_virt2iova()\n");
3456 		for (sz = 0; sz < mem_size; sz += BNXT_PAGE_SIZE)
3457 			rte_mem_lock_page(((char *)mz->addr) + sz);
3458 		mz_phys_addr = rte_mem_virt2iova(mz->addr);
3459 		if (mz_phys_addr == RTE_BAD_IOVA) {
3460 			PMD_DRV_LOG(ERR,
3461 				    "unable to map addr to phys memory\n");
3462 			return -ENOMEM;
3463 		}
3464 	}
3465 
3466 	for (sz = 0, i = 0; sz < mem_size; sz += BNXT_PAGE_SIZE, i++) {
3467 		rte_mem_lock_page(((char *)mz->addr) + sz);
3468 		rmem->pg_arr[i] = ((char *)mz->addr) + sz;
3469 		rmem->dma_arr[i] = mz_phys_addr + sz;
3470 
3471 		if (rmem->nr_pages > 1) {
3472 			if (i == rmem->nr_pages - 2 &&
3473 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3474 				valid_bits |= PTU_PTE_NEXT_TO_LAST;
3475 			else if (i == rmem->nr_pages - 1 &&
3476 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3477 				valid_bits |= PTU_PTE_LAST;
3478 
3479 			rmem->pg_tbl[i] = rte_cpu_to_le_64(rmem->dma_arr[i] |
3480 							   valid_bits);
3481 		}
3482 	}
3483 
3484 	rmem->mz = mz;
3485 	if (rmem->vmem_size)
3486 		rmem->vmem = (void **)mz->addr;
3487 	rmem->dma_arr[0] = mz_phys_addr;
3488 	return 0;
3489 }
3490 
3491 static void bnxt_free_ctx_mem(struct bnxt *bp)
3492 {
3493 	int i;
3494 
3495 	if (!bp->ctx || !(bp->ctx->flags & BNXT_CTX_FLAG_INITED))
3496 		return;
3497 
3498 	bp->ctx->flags &= ~BNXT_CTX_FLAG_INITED;
3499 	rte_memzone_free(bp->ctx->qp_mem.ring_mem.mz);
3500 	rte_memzone_free(bp->ctx->srq_mem.ring_mem.mz);
3501 	rte_memzone_free(bp->ctx->cq_mem.ring_mem.mz);
3502 	rte_memzone_free(bp->ctx->vnic_mem.ring_mem.mz);
3503 	rte_memzone_free(bp->ctx->stat_mem.ring_mem.mz);
3504 	rte_memzone_free(bp->ctx->qp_mem.ring_mem.pg_tbl_mz);
3505 	rte_memzone_free(bp->ctx->srq_mem.ring_mem.pg_tbl_mz);
3506 	rte_memzone_free(bp->ctx->cq_mem.ring_mem.pg_tbl_mz);
3507 	rte_memzone_free(bp->ctx->vnic_mem.ring_mem.pg_tbl_mz);
3508 	rte_memzone_free(bp->ctx->stat_mem.ring_mem.pg_tbl_mz);
3509 
3510 	for (i = 0; i < BNXT_MAX_Q; i++) {
3511 		if (bp->ctx->tqm_mem[i])
3512 			rte_memzone_free(bp->ctx->tqm_mem[i]->ring_mem.mz);
3513 	}
3514 
3515 	rte_free(bp->ctx);
3516 	bp->ctx = NULL;
3517 }
3518 
3519 #define bnxt_roundup(x, y)   ((((x) + ((y) - 1)) / (y)) * (y))
3520 
3521 #define min_t(type, x, y) ({                    \
3522 	type __min1 = (x);                      \
3523 	type __min2 = (y);                      \
3524 	__min1 < __min2 ? __min1 : __min2; })
3525 
3526 #define max_t(type, x, y) ({                    \
3527 	type __max1 = (x);                      \
3528 	type __max2 = (y);                      \
3529 	__max1 > __max2 ? __max1 : __max2; })
3530 
3531 #define clamp_t(type, _x, min, max)     min_t(type, max_t(type, _x, min), max)
3532 
3533 int bnxt_alloc_ctx_mem(struct bnxt *bp)
3534 {
3535 	struct bnxt_ctx_pg_info *ctx_pg;
3536 	struct bnxt_ctx_mem_info *ctx;
3537 	uint32_t mem_size, ena, entries;
3538 	int i, rc;
3539 
3540 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
3541 	if (rc) {
3542 		PMD_DRV_LOG(ERR, "Query context mem capability failed\n");
3543 		return rc;
3544 	}
3545 	ctx = bp->ctx;
3546 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
3547 		return 0;
3548 
3549 	ctx_pg = &ctx->qp_mem;
3550 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries;
3551 	mem_size = ctx->qp_entry_size * ctx_pg->entries;
3552 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "qp_mem", 0);
3553 	if (rc)
3554 		return rc;
3555 
3556 	ctx_pg = &ctx->srq_mem;
3557 	ctx_pg->entries = ctx->srq_max_l2_entries;
3558 	mem_size = ctx->srq_entry_size * ctx_pg->entries;
3559 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "srq_mem", 0);
3560 	if (rc)
3561 		return rc;
3562 
3563 	ctx_pg = &ctx->cq_mem;
3564 	ctx_pg->entries = ctx->cq_max_l2_entries;
3565 	mem_size = ctx->cq_entry_size * ctx_pg->entries;
3566 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "cq_mem", 0);
3567 	if (rc)
3568 		return rc;
3569 
3570 	ctx_pg = &ctx->vnic_mem;
3571 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
3572 		ctx->vnic_max_ring_table_entries;
3573 	mem_size = ctx->vnic_entry_size * ctx_pg->entries;
3574 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "vnic_mem", 0);
3575 	if (rc)
3576 		return rc;
3577 
3578 	ctx_pg = &ctx->stat_mem;
3579 	ctx_pg->entries = ctx->stat_max_entries;
3580 	mem_size = ctx->stat_entry_size * ctx_pg->entries;
3581 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "stat_mem", 0);
3582 	if (rc)
3583 		return rc;
3584 
3585 	entries = ctx->qp_max_l2_entries;
3586 	entries = bnxt_roundup(entries, ctx->tqm_entries_multiple);
3587 	entries = clamp_t(uint32_t, entries, ctx->tqm_min_entries_per_ring,
3588 			  ctx->tqm_max_entries_per_ring);
3589 	for (i = 0, ena = 0; i < BNXT_MAX_Q; i++) {
3590 		ctx_pg = ctx->tqm_mem[i];
3591 		/* use min tqm entries for now. */
3592 		ctx_pg->entries = entries;
3593 		mem_size = ctx->tqm_entry_size * ctx_pg->entries;
3594 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "tqm_mem", i);
3595 		if (rc)
3596 			return rc;
3597 		ena |= HWRM_FUNC_BACKING_STORE_CFG_INPUT_ENABLES_TQM_SP << i;
3598 	}
3599 
3600 	ena |= FUNC_BACKING_STORE_CFG_INPUT_DFLT_ENABLES;
3601 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
3602 	if (rc)
3603 		PMD_DRV_LOG(ERR,
3604 			    "Failed to configure context mem: rc = %d\n", rc);
3605 	else
3606 		ctx->flags |= BNXT_CTX_FLAG_INITED;
3607 
3608 	return rc;
3609 }
3610 
3611 static int bnxt_alloc_stats_mem(struct bnxt *bp)
3612 {
3613 	struct rte_pci_device *pci_dev = bp->pdev;
3614 	char mz_name[RTE_MEMZONE_NAMESIZE];
3615 	const struct rte_memzone *mz = NULL;
3616 	uint32_t total_alloc_len;
3617 	rte_iova_t mz_phys_addr;
3618 
3619 	if (pci_dev->id.device_id == BROADCOM_DEV_ID_NS2)
3620 		return 0;
3621 
3622 	snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
3623 		 "bnxt_" PCI_PRI_FMT "-%s", pci_dev->addr.domain,
3624 		 pci_dev->addr.bus, pci_dev->addr.devid,
3625 		 pci_dev->addr.function, "rx_port_stats");
3626 	mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
3627 	mz = rte_memzone_lookup(mz_name);
3628 	total_alloc_len =
3629 		RTE_CACHE_LINE_ROUNDUP(sizeof(struct rx_port_stats) +
3630 				       sizeof(struct rx_port_stats_ext) + 512);
3631 	if (!mz) {
3632 		mz = rte_memzone_reserve(mz_name, total_alloc_len,
3633 					 SOCKET_ID_ANY,
3634 					 RTE_MEMZONE_2MB |
3635 					 RTE_MEMZONE_SIZE_HINT_ONLY |
3636 					 RTE_MEMZONE_IOVA_CONTIG);
3637 		if (mz == NULL)
3638 			return -ENOMEM;
3639 	}
3640 	memset(mz->addr, 0, mz->len);
3641 	mz_phys_addr = mz->iova;
3642 	if ((unsigned long)mz->addr == mz_phys_addr) {
3643 		PMD_DRV_LOG(WARNING,
3644 			    "Memzone physical address same as virtual.\n");
3645 		PMD_DRV_LOG(WARNING,
3646 			    "Using rte_mem_virt2iova()\n");
3647 		mz_phys_addr = rte_mem_virt2iova(mz->addr);
3648 		if (mz_phys_addr == RTE_BAD_IOVA) {
3649 			PMD_DRV_LOG(ERR,
3650 				    "Can't map address to physical memory\n");
3651 			return -ENOMEM;
3652 		}
3653 	}
3654 
3655 	bp->rx_mem_zone = (const void *)mz;
3656 	bp->hw_rx_port_stats = mz->addr;
3657 	bp->hw_rx_port_stats_map = mz_phys_addr;
3658 
3659 	snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
3660 		 "bnxt_" PCI_PRI_FMT "-%s", pci_dev->addr.domain,
3661 		 pci_dev->addr.bus, pci_dev->addr.devid,
3662 		 pci_dev->addr.function, "tx_port_stats");
3663 	mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
3664 	mz = rte_memzone_lookup(mz_name);
3665 	total_alloc_len =
3666 		RTE_CACHE_LINE_ROUNDUP(sizeof(struct tx_port_stats) +
3667 				       sizeof(struct tx_port_stats_ext) + 512);
3668 	if (!mz) {
3669 		mz = rte_memzone_reserve(mz_name,
3670 					 total_alloc_len,
3671 					 SOCKET_ID_ANY,
3672 					 RTE_MEMZONE_2MB |
3673 					 RTE_MEMZONE_SIZE_HINT_ONLY |
3674 					 RTE_MEMZONE_IOVA_CONTIG);
3675 		if (mz == NULL)
3676 			return -ENOMEM;
3677 	}
3678 	memset(mz->addr, 0, mz->len);
3679 	mz_phys_addr = mz->iova;
3680 	if ((unsigned long)mz->addr == mz_phys_addr) {
3681 		PMD_DRV_LOG(WARNING,
3682 			    "Memzone physical address same as virtual\n");
3683 		PMD_DRV_LOG(WARNING,
3684 			    "Using rte_mem_virt2iova()\n");
3685 		mz_phys_addr = rte_mem_virt2iova(mz->addr);
3686 		if (mz_phys_addr == RTE_BAD_IOVA) {
3687 			PMD_DRV_LOG(ERR,
3688 				    "Can't map address to physical memory\n");
3689 			return -ENOMEM;
3690 		}
3691 	}
3692 
3693 	bp->tx_mem_zone = (const void *)mz;
3694 	bp->hw_tx_port_stats = mz->addr;
3695 	bp->hw_tx_port_stats_map = mz_phys_addr;
3696 	bp->flags |= BNXT_FLAG_PORT_STATS;
3697 
3698 	/* Display extended statistics if FW supports it */
3699 	if (bp->hwrm_spec_code < HWRM_SPEC_CODE_1_8_4 ||
3700 	    bp->hwrm_spec_code == HWRM_SPEC_CODE_1_9_0 ||
3701 	    !(bp->flags & BNXT_FLAG_EXT_STATS_SUPPORTED))
3702 		return 0;
3703 
3704 	bp->hw_rx_port_stats_ext = (void *)
3705 		((uint8_t *)bp->hw_rx_port_stats +
3706 		 sizeof(struct rx_port_stats));
3707 	bp->hw_rx_port_stats_ext_map = bp->hw_rx_port_stats_map +
3708 		sizeof(struct rx_port_stats);
3709 	bp->flags |= BNXT_FLAG_EXT_RX_PORT_STATS;
3710 
3711 	if (bp->hwrm_spec_code < HWRM_SPEC_CODE_1_9_2 ||
3712 	    bp->flags & BNXT_FLAG_EXT_STATS_SUPPORTED) {
3713 		bp->hw_tx_port_stats_ext = (void *)
3714 			((uint8_t *)bp->hw_tx_port_stats +
3715 			 sizeof(struct tx_port_stats));
3716 		bp->hw_tx_port_stats_ext_map =
3717 			bp->hw_tx_port_stats_map +
3718 			sizeof(struct tx_port_stats);
3719 		bp->flags |= BNXT_FLAG_EXT_TX_PORT_STATS;
3720 	}
3721 
3722 	return 0;
3723 }
3724 
3725 static int bnxt_setup_mac_addr(struct rte_eth_dev *eth_dev)
3726 {
3727 	struct bnxt *bp = eth_dev->data->dev_private;
3728 	int rc = 0;
3729 
3730 	eth_dev->data->mac_addrs = rte_zmalloc("bnxt_mac_addr_tbl",
3731 					       RTE_ETHER_ADDR_LEN *
3732 					       bp->max_l2_ctx,
3733 					       0);
3734 	if (eth_dev->data->mac_addrs == NULL) {
3735 		PMD_DRV_LOG(ERR, "Failed to alloc MAC addr tbl\n");
3736 		return -ENOMEM;
3737 	}
3738 
3739 	if (bnxt_check_zero_bytes(bp->dflt_mac_addr, RTE_ETHER_ADDR_LEN)) {
3740 		if (BNXT_PF(bp))
3741 			return -EINVAL;
3742 
3743 		/* Generate a random MAC address, if none was assigned by PF */
3744 		PMD_DRV_LOG(INFO, "VF MAC address not assigned by Host PF\n");
3745 		bnxt_eth_hw_addr_random(bp->mac_addr);
3746 		PMD_DRV_LOG(INFO,
3747 			    "Assign random MAC:%02X:%02X:%02X:%02X:%02X:%02X\n",
3748 			    bp->mac_addr[0], bp->mac_addr[1], bp->mac_addr[2],
3749 			    bp->mac_addr[3], bp->mac_addr[4], bp->mac_addr[5]);
3750 
3751 		rc = bnxt_hwrm_set_mac(bp);
3752 		if (!rc)
3753 			memcpy(&bp->eth_dev->data->mac_addrs[0], bp->mac_addr,
3754 			       RTE_ETHER_ADDR_LEN);
3755 		return rc;
3756 	}
3757 
3758 	/* Copy the permanent MAC from the FUNC_QCAPS response */
3759 	memcpy(bp->mac_addr, bp->dflt_mac_addr, RTE_ETHER_ADDR_LEN);
3760 	memcpy(&eth_dev->data->mac_addrs[0], bp->mac_addr, RTE_ETHER_ADDR_LEN);
3761 
3762 	return rc;
3763 }
3764 
3765 #define ALLOW_FUNC(x)	\
3766 	{ \
3767 		uint32_t arg = (x); \
3768 		bp->pf.vf_req_fwd[((arg) >> 5)] &= \
3769 		~rte_cpu_to_le_32(1 << ((arg) & 0x1f)); \
3770 	}
3771 static int
3772 bnxt_dev_init(struct rte_eth_dev *eth_dev)
3773 {
3774 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3775 	static int version_printed;
3776 	struct bnxt *bp;
3777 	uint16_t mtu;
3778 	int rc;
3779 
3780 	if (version_printed++ == 0)
3781 		PMD_DRV_LOG(INFO, "%s\n", bnxt_version);
3782 
3783 	rte_eth_copy_pci_info(eth_dev, pci_dev);
3784 
3785 	bp = eth_dev->data->dev_private;
3786 
3787 	bp->dev_stopped = 1;
3788 
3789 	eth_dev->dev_ops = &bnxt_dev_ops;
3790 	eth_dev->rx_pkt_burst = &bnxt_recv_pkts;
3791 	eth_dev->tx_pkt_burst = &bnxt_xmit_pkts;
3792 
3793 	/*
3794 	 * For secondary processes, we don't initialise any further
3795 	 * as primary has already done this work.
3796 	 */
3797 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3798 		return 0;
3799 
3800 	if (bnxt_vf_pciid(pci_dev->id.device_id))
3801 		bp->flags |= BNXT_FLAG_VF;
3802 
3803 	if (pci_dev->id.device_id == BROADCOM_DEV_ID_57508 ||
3804 	    pci_dev->id.device_id == BROADCOM_DEV_ID_57504 ||
3805 	    pci_dev->id.device_id == BROADCOM_DEV_ID_57502 ||
3806 	    pci_dev->id.device_id == BROADCOM_DEV_ID_57500_VF1 ||
3807 	    pci_dev->id.device_id == BROADCOM_DEV_ID_57500_VF2)
3808 		bp->flags |= BNXT_FLAG_THOR_CHIP;
3809 
3810 	rc = bnxt_init_board(eth_dev);
3811 	if (rc) {
3812 		PMD_DRV_LOG(ERR,
3813 			"Board initialization failed rc: %x\n", rc);
3814 		goto error;
3815 	}
3816 
3817 	rc = bnxt_alloc_hwrm_resources(bp);
3818 	if (rc) {
3819 		PMD_DRV_LOG(ERR,
3820 			"hwrm resource allocation failure rc: %x\n", rc);
3821 		goto error_free;
3822 	}
3823 	rc = bnxt_hwrm_ver_get(bp);
3824 	if (rc)
3825 		goto error_free;
3826 
3827 	rc = bnxt_hwrm_func_reset(bp);
3828 	if (rc) {
3829 		PMD_DRV_LOG(ERR, "hwrm chip reset failure rc: %x\n", rc);
3830 		rc = -EIO;
3831 		goto error_free;
3832 	}
3833 
3834 	rc = bnxt_hwrm_queue_qportcfg(bp);
3835 	if (rc) {
3836 		PMD_DRV_LOG(ERR, "hwrm queue qportcfg failed\n");
3837 		goto error_free;
3838 	}
3839 	/* Get the MAX capabilities for this function */
3840 	rc = bnxt_hwrm_func_qcaps(bp);
3841 	if (rc) {
3842 		PMD_DRV_LOG(ERR, "hwrm query capability failure rc: %x\n", rc);
3843 		goto error_free;
3844 	}
3845 
3846 	rc = bnxt_alloc_stats_mem(bp);
3847 	if (rc)
3848 		goto error_free;
3849 
3850 	if (bp->max_tx_rings == 0) {
3851 		PMD_DRV_LOG(ERR, "No TX rings available!\n");
3852 		rc = -EBUSY;
3853 		goto error_free;
3854 	}
3855 
3856 	rc = bnxt_setup_mac_addr(eth_dev);
3857 	if (rc)
3858 		goto error_free;
3859 
3860 	/* THOR does not support ring groups.
3861 	 * But we will use the array to save RSS context IDs.
3862 	 */
3863 	if (BNXT_CHIP_THOR(bp)) {
3864 		bp->max_ring_grps = BNXT_MAX_RSS_CTXTS_THOR;
3865 	} else if (bp->max_ring_grps < bp->rx_cp_nr_rings) {
3866 		/* 1 ring is for default completion ring */
3867 		PMD_DRV_LOG(ERR, "Insufficient resource: Ring Group\n");
3868 		rc = -ENOSPC;
3869 		goto error_free;
3870 	}
3871 
3872 	if (BNXT_HAS_RING_GRPS(bp)) {
3873 		bp->grp_info = rte_zmalloc("bnxt_grp_info",
3874 					sizeof(*bp->grp_info) *
3875 						bp->max_ring_grps, 0);
3876 		if (!bp->grp_info) {
3877 			PMD_DRV_LOG(ERR,
3878 				"Failed to alloc %zu bytes for grp info tbl.\n",
3879 				sizeof(*bp->grp_info) * bp->max_ring_grps);
3880 			rc = -ENOMEM;
3881 			goto error_free;
3882 		}
3883 	}
3884 
3885 	/* Forward all requests if firmware is new enough */
3886 	if (((bp->fw_ver >= ((20 << 24) | (6 << 16) | (100 << 8))) &&
3887 	    (bp->fw_ver < ((20 << 24) | (7 << 16)))) ||
3888 	    ((bp->fw_ver >= ((20 << 24) | (8 << 16))))) {
3889 		memset(bp->pf.vf_req_fwd, 0xff, sizeof(bp->pf.vf_req_fwd));
3890 	} else {
3891 		PMD_DRV_LOG(WARNING,
3892 			"Firmware too old for VF mailbox functionality\n");
3893 		memset(bp->pf.vf_req_fwd, 0, sizeof(bp->pf.vf_req_fwd));
3894 	}
3895 
3896 	/*
3897 	 * The following are used for driver cleanup.  If we disallow these,
3898 	 * VF drivers can't clean up cleanly.
3899 	 */
3900 	ALLOW_FUNC(HWRM_FUNC_DRV_UNRGTR);
3901 	ALLOW_FUNC(HWRM_VNIC_FREE);
3902 	ALLOW_FUNC(HWRM_RING_FREE);
3903 	ALLOW_FUNC(HWRM_RING_GRP_FREE);
3904 	ALLOW_FUNC(HWRM_VNIC_RSS_COS_LB_CTX_FREE);
3905 	ALLOW_FUNC(HWRM_CFA_L2_FILTER_FREE);
3906 	ALLOW_FUNC(HWRM_STAT_CTX_FREE);
3907 	ALLOW_FUNC(HWRM_PORT_PHY_QCFG);
3908 	ALLOW_FUNC(HWRM_VNIC_TPA_CFG);
3909 	rc = bnxt_hwrm_func_driver_register(bp);
3910 	if (rc) {
3911 		PMD_DRV_LOG(ERR,
3912 			"Failed to register driver");
3913 		rc = -EBUSY;
3914 		goto error_free;
3915 	}
3916 
3917 	PMD_DRV_LOG(INFO,
3918 		DRV_MODULE_NAME " found at mem %" PRIx64 ", node addr %pM\n",
3919 		pci_dev->mem_resource[0].phys_addr,
3920 		pci_dev->mem_resource[0].addr);
3921 
3922 	rc = bnxt_hwrm_func_qcfg(bp, &mtu);
3923 	if (rc) {
3924 		PMD_DRV_LOG(ERR, "hwrm func qcfg failed\n");
3925 		goto error_free;
3926 	}
3927 
3928 	if (mtu >= RTE_ETHER_MIN_MTU && mtu <= BNXT_MAX_MTU &&
3929 	    mtu != eth_dev->data->mtu)
3930 		eth_dev->data->mtu = mtu;
3931 
3932 	if (BNXT_PF(bp)) {
3933 		//if (bp->pf.active_vfs) {
3934 			// TODO: Deallocate VF resources?
3935 		//}
3936 		if (bp->pdev->max_vfs) {
3937 			rc = bnxt_hwrm_allocate_vfs(bp, bp->pdev->max_vfs);
3938 			if (rc) {
3939 				PMD_DRV_LOG(ERR, "Failed to allocate VFs\n");
3940 				goto error_free;
3941 			}
3942 		} else {
3943 			rc = bnxt_hwrm_allocate_pf_only(bp);
3944 			if (rc) {
3945 				PMD_DRV_LOG(ERR,
3946 					"Failed to allocate PF resources\n");
3947 				goto error_free;
3948 			}
3949 		}
3950 	}
3951 
3952 	bnxt_hwrm_port_led_qcaps(bp);
3953 
3954 	rc = bnxt_setup_int(bp);
3955 	if (rc)
3956 		goto error_free;
3957 
3958 	rc = bnxt_alloc_mem(bp);
3959 	if (rc)
3960 		goto error_free;
3961 
3962 	bnxt_init_nic(bp);
3963 
3964 	rc = bnxt_request_int(bp);
3965 	if (rc)
3966 		goto error_free;
3967 
3968 	return 0;
3969 
3970 error_free:
3971 	bnxt_dev_uninit(eth_dev);
3972 error:
3973 	return rc;
3974 }
3975 
3976 static int
3977 bnxt_dev_uninit(struct rte_eth_dev *eth_dev)
3978 {
3979 	struct bnxt *bp = eth_dev->data->dev_private;
3980 	int rc;
3981 
3982 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3983 		return -EPERM;
3984 
3985 	PMD_DRV_LOG(DEBUG, "Calling Device uninit\n");
3986 	bnxt_disable_int(bp);
3987 	bnxt_free_int(bp);
3988 	bnxt_free_mem(bp);
3989 
3990 	bnxt_hwrm_func_buf_unrgtr(bp);
3991 
3992 	if (bp->grp_info != NULL) {
3993 		rte_free(bp->grp_info);
3994 		bp->grp_info = NULL;
3995 	}
3996 	rc = bnxt_hwrm_func_driver_unregister(bp, 0);
3997 	bnxt_free_hwrm_resources(bp);
3998 
3999 	if (bp->tx_mem_zone) {
4000 		rte_memzone_free((const struct rte_memzone *)bp->tx_mem_zone);
4001 		bp->tx_mem_zone = NULL;
4002 	}
4003 
4004 	if (bp->rx_mem_zone) {
4005 		rte_memzone_free((const struct rte_memzone *)bp->rx_mem_zone);
4006 		bp->rx_mem_zone = NULL;
4007 	}
4008 
4009 	if (bp->dev_stopped == 0)
4010 		bnxt_dev_close_op(eth_dev);
4011 	if (bp->pf.vf_info)
4012 		rte_free(bp->pf.vf_info);
4013 	bnxt_free_ctx_mem(bp);
4014 	eth_dev->dev_ops = NULL;
4015 	eth_dev->rx_pkt_burst = NULL;
4016 	eth_dev->tx_pkt_burst = NULL;
4017 
4018 	return rc;
4019 }
4020 
4021 static int bnxt_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
4022 	struct rte_pci_device *pci_dev)
4023 {
4024 	return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct bnxt),
4025 		bnxt_dev_init);
4026 }
4027 
4028 static int bnxt_pci_remove(struct rte_pci_device *pci_dev)
4029 {
4030 	if (rte_eal_process_type() == RTE_PROC_PRIMARY)
4031 		return rte_eth_dev_pci_generic_remove(pci_dev,
4032 				bnxt_dev_uninit);
4033 	else
4034 		return rte_eth_dev_pci_generic_remove(pci_dev, NULL);
4035 }
4036 
4037 static struct rte_pci_driver bnxt_rte_pmd = {
4038 	.id_table = bnxt_pci_id_map,
4039 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
4040 	.probe = bnxt_pci_probe,
4041 	.remove = bnxt_pci_remove,
4042 };
4043 
4044 static bool
4045 is_device_supported(struct rte_eth_dev *dev, struct rte_pci_driver *drv)
4046 {
4047 	if (strcmp(dev->device->driver->name, drv->driver.name))
4048 		return false;
4049 
4050 	return true;
4051 }
4052 
4053 bool is_bnxt_supported(struct rte_eth_dev *dev)
4054 {
4055 	return is_device_supported(dev, &bnxt_rte_pmd);
4056 }
4057 
4058 RTE_INIT(bnxt_init_log)
4059 {
4060 	bnxt_logtype_driver = rte_log_register("pmd.net.bnxt.driver");
4061 	if (bnxt_logtype_driver >= 0)
4062 		rte_log_set_level(bnxt_logtype_driver, RTE_LOG_NOTICE);
4063 }
4064 
4065 RTE_PMD_REGISTER_PCI(net_bnxt, bnxt_rte_pmd);
4066 RTE_PMD_REGISTER_PCI_TABLE(net_bnxt, bnxt_pci_id_map);
4067 RTE_PMD_REGISTER_KMOD_DEP(net_bnxt, "* igb_uio | uio_pci_generic | vfio-pci");
4068