xref: /dpdk/drivers/net/bnxt/bnxt_ethdev.c (revision cb440babbd45a80c059f8bc80e87c48d09086fd7)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Broadcom
3  * All rights reserved.
4  */
5 
6 #include <inttypes.h>
7 #include <stdbool.h>
8 
9 #include <rte_dev.h>
10 #include <rte_ethdev_driver.h>
11 #include <rte_ethdev_pci.h>
12 #include <rte_malloc.h>
13 #include <rte_cycles.h>
14 #include <rte_alarm.h>
15 #include <rte_kvargs.h>
16 
17 #include "bnxt.h"
18 #include "bnxt_filter.h"
19 #include "bnxt_hwrm.h"
20 #include "bnxt_irq.h"
21 #include "bnxt_reps.h"
22 #include "bnxt_ring.h"
23 #include "bnxt_rxq.h"
24 #include "bnxt_rxr.h"
25 #include "bnxt_stats.h"
26 #include "bnxt_txq.h"
27 #include "bnxt_txr.h"
28 #include "bnxt_vnic.h"
29 #include "hsi_struct_def_dpdk.h"
30 #include "bnxt_nvm_defs.h"
31 #include "bnxt_tf_common.h"
32 #include "ulp_flow_db.h"
33 
34 #define DRV_MODULE_NAME		"bnxt"
35 static const char bnxt_version[] =
36 	"Broadcom NetXtreme driver " DRV_MODULE_NAME;
37 
38 /*
39  * The set of PCI devices this driver supports
40  */
41 static const struct rte_pci_id bnxt_pci_id_map[] = {
42 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
43 			 BROADCOM_DEV_ID_STRATUS_NIC_VF1) },
44 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
45 			 BROADCOM_DEV_ID_STRATUS_NIC_VF2) },
46 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_STRATUS_NIC) },
47 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_VF) },
48 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57301) },
49 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57302) },
50 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_PF) },
51 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_VF) },
52 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_NS2) },
53 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402) },
54 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404) },
55 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_PF) },
56 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_VF) },
57 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402_MF) },
58 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_RJ45) },
59 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404_MF) },
60 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_MF) },
61 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_SFP) },
62 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_MF) },
63 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5741X_VF) },
64 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5731X_VF) },
65 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57314) },
66 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_MF) },
67 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57311) },
68 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57312) },
69 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412) },
70 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414) },
71 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_RJ45) },
72 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_RJ45) },
73 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412_MF) },
74 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_RJ45) },
75 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_SFP) },
76 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_SFP) },
77 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_SFP) },
78 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_MF) },
79 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_MF) },
80 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58802) },
81 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58804) },
82 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58808) },
83 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58802_VF) },
84 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57508) },
85 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57504) },
86 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57502) },
87 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57500_VF1) },
88 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57500_VF2) },
89 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57508_MF1) },
90 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57504_MF1) },
91 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57502_MF1) },
92 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57508_MF2) },
93 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57504_MF2) },
94 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57502_MF2) },
95 	{ .vendor_id = 0, /* sentinel */ },
96 };
97 
98 #define BNXT_DEVARG_TRUFLOW	"host-based-truflow"
99 #define BNXT_DEVARG_FLOW_XSTAT	"flow-xstat"
100 #define BNXT_DEVARG_MAX_NUM_KFLOWS  "max-num-kflows"
101 #define BNXT_DEVARG_REPRESENTOR	"representor"
102 
103 static const char *const bnxt_dev_args[] = {
104 	BNXT_DEVARG_REPRESENTOR,
105 	BNXT_DEVARG_TRUFLOW,
106 	BNXT_DEVARG_FLOW_XSTAT,
107 	BNXT_DEVARG_MAX_NUM_KFLOWS,
108 	NULL
109 };
110 
111 /*
112  * truflow == false to disable the feature
113  * truflow == true to enable the feature
114  */
115 #define	BNXT_DEVARG_TRUFLOW_INVALID(truflow)	((truflow) > 1)
116 
117 /*
118  * flow_xstat == false to disable the feature
119  * flow_xstat == true to enable the feature
120  */
121 #define	BNXT_DEVARG_FLOW_XSTAT_INVALID(flow_xstat)	((flow_xstat) > 1)
122 
123 /*
124  * max_num_kflows must be >= 32
125  * and must be a power-of-2 supported value
126  * return: 1 -> invalid
127  *         0 -> valid
128  */
129 static int bnxt_devarg_max_num_kflow_invalid(uint16_t max_num_kflows)
130 {
131 	if (max_num_kflows < 32 || !rte_is_power_of_2(max_num_kflows))
132 		return 1;
133 	return 0;
134 }
135 
136 static int bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask);
137 static int bnxt_dev_uninit(struct rte_eth_dev *eth_dev);
138 static int bnxt_init_resources(struct bnxt *bp, bool reconfig_dev);
139 static int bnxt_uninit_resources(struct bnxt *bp, bool reconfig_dev);
140 static void bnxt_cancel_fw_health_check(struct bnxt *bp);
141 static int bnxt_restore_vlan_filters(struct bnxt *bp);
142 static void bnxt_dev_recover(void *arg);
143 static void bnxt_free_error_recovery_info(struct bnxt *bp);
144 static void bnxt_free_rep_info(struct bnxt *bp);
145 
146 int is_bnxt_in_error(struct bnxt *bp)
147 {
148 	if (bp->flags & BNXT_FLAG_FATAL_ERROR)
149 		return -EIO;
150 	if (bp->flags & BNXT_FLAG_FW_RESET)
151 		return -EBUSY;
152 
153 	return 0;
154 }
155 
156 /***********************/
157 
158 /*
159  * High level utility functions
160  */
161 
162 static uint16_t bnxt_rss_ctxts(const struct bnxt *bp)
163 {
164 	if (!BNXT_CHIP_THOR(bp))
165 		return 1;
166 
167 	return RTE_ALIGN_MUL_CEIL(bp->rx_nr_rings,
168 				  BNXT_RSS_ENTRIES_PER_CTX_THOR) /
169 				    BNXT_RSS_ENTRIES_PER_CTX_THOR;
170 }
171 
172 uint16_t bnxt_rss_hash_tbl_size(const struct bnxt *bp)
173 {
174 	if (!BNXT_CHIP_THOR(bp))
175 		return HW_HASH_INDEX_SIZE;
176 
177 	return bnxt_rss_ctxts(bp) * BNXT_RSS_ENTRIES_PER_CTX_THOR;
178 }
179 
180 static void bnxt_free_parent_info(struct bnxt *bp)
181 {
182 	rte_free(bp->parent);
183 }
184 
185 static void bnxt_free_pf_info(struct bnxt *bp)
186 {
187 	rte_free(bp->pf);
188 }
189 
190 static void bnxt_free_link_info(struct bnxt *bp)
191 {
192 	rte_free(bp->link_info);
193 }
194 
195 static void bnxt_free_leds_info(struct bnxt *bp)
196 {
197 	if (BNXT_VF(bp))
198 		return;
199 
200 	rte_free(bp->leds);
201 	bp->leds = NULL;
202 }
203 
204 static void bnxt_free_flow_stats_info(struct bnxt *bp)
205 {
206 	rte_free(bp->flow_stat);
207 	bp->flow_stat = NULL;
208 }
209 
210 static void bnxt_free_cos_queues(struct bnxt *bp)
211 {
212 	rte_free(bp->rx_cos_queue);
213 	rte_free(bp->tx_cos_queue);
214 }
215 
216 static void bnxt_free_mem(struct bnxt *bp, bool reconfig)
217 {
218 	bnxt_free_filter_mem(bp);
219 	bnxt_free_vnic_attributes(bp);
220 	bnxt_free_vnic_mem(bp);
221 
222 	/* tx/rx rings are configured as part of *_queue_setup callbacks.
223 	 * If the number of rings change across fw update,
224 	 * we don't have much choice except to warn the user.
225 	 */
226 	if (!reconfig) {
227 		bnxt_free_stats(bp);
228 		bnxt_free_tx_rings(bp);
229 		bnxt_free_rx_rings(bp);
230 	}
231 	bnxt_free_async_cp_ring(bp);
232 	bnxt_free_rxtx_nq_ring(bp);
233 
234 	rte_free(bp->grp_info);
235 	bp->grp_info = NULL;
236 }
237 
238 static int bnxt_alloc_parent_info(struct bnxt *bp)
239 {
240 	bp->parent = rte_zmalloc("bnxt_parent_info",
241 				 sizeof(struct bnxt_parent_info), 0);
242 	if (bp->parent == NULL)
243 		return -ENOMEM;
244 
245 	return 0;
246 }
247 
248 static int bnxt_alloc_pf_info(struct bnxt *bp)
249 {
250 	bp->pf = rte_zmalloc("bnxt_pf_info", sizeof(struct bnxt_pf_info), 0);
251 	if (bp->pf == NULL)
252 		return -ENOMEM;
253 
254 	return 0;
255 }
256 
257 static int bnxt_alloc_link_info(struct bnxt *bp)
258 {
259 	bp->link_info =
260 		rte_zmalloc("bnxt_link_info", sizeof(struct bnxt_link_info), 0);
261 	if (bp->link_info == NULL)
262 		return -ENOMEM;
263 
264 	return 0;
265 }
266 
267 static int bnxt_alloc_leds_info(struct bnxt *bp)
268 {
269 	if (BNXT_VF(bp))
270 		return 0;
271 
272 	bp->leds = rte_zmalloc("bnxt_leds",
273 			       BNXT_MAX_LED * sizeof(struct bnxt_led_info),
274 			       0);
275 	if (bp->leds == NULL)
276 		return -ENOMEM;
277 
278 	return 0;
279 }
280 
281 static int bnxt_alloc_cos_queues(struct bnxt *bp)
282 {
283 	bp->rx_cos_queue =
284 		rte_zmalloc("bnxt_rx_cosq",
285 			    BNXT_COS_QUEUE_COUNT *
286 			    sizeof(struct bnxt_cos_queue_info),
287 			    0);
288 	if (bp->rx_cos_queue == NULL)
289 		return -ENOMEM;
290 
291 	bp->tx_cos_queue =
292 		rte_zmalloc("bnxt_tx_cosq",
293 			    BNXT_COS_QUEUE_COUNT *
294 			    sizeof(struct bnxt_cos_queue_info),
295 			    0);
296 	if (bp->tx_cos_queue == NULL)
297 		return -ENOMEM;
298 
299 	return 0;
300 }
301 
302 static int bnxt_alloc_flow_stats_info(struct bnxt *bp)
303 {
304 	bp->flow_stat = rte_zmalloc("bnxt_flow_xstat",
305 				    sizeof(struct bnxt_flow_stat_info), 0);
306 	if (bp->flow_stat == NULL)
307 		return -ENOMEM;
308 
309 	return 0;
310 }
311 
312 static int bnxt_alloc_mem(struct bnxt *bp, bool reconfig)
313 {
314 	int rc;
315 
316 	rc = bnxt_alloc_ring_grps(bp);
317 	if (rc)
318 		goto alloc_mem_err;
319 
320 	rc = bnxt_alloc_async_ring_struct(bp);
321 	if (rc)
322 		goto alloc_mem_err;
323 
324 	rc = bnxt_alloc_vnic_mem(bp);
325 	if (rc)
326 		goto alloc_mem_err;
327 
328 	rc = bnxt_alloc_vnic_attributes(bp);
329 	if (rc)
330 		goto alloc_mem_err;
331 
332 	rc = bnxt_alloc_filter_mem(bp);
333 	if (rc)
334 		goto alloc_mem_err;
335 
336 	rc = bnxt_alloc_async_cp_ring(bp);
337 	if (rc)
338 		goto alloc_mem_err;
339 
340 	rc = bnxt_alloc_rxtx_nq_ring(bp);
341 	if (rc)
342 		goto alloc_mem_err;
343 
344 	if (BNXT_FLOW_XSTATS_EN(bp)) {
345 		rc = bnxt_alloc_flow_stats_info(bp);
346 		if (rc)
347 			goto alloc_mem_err;
348 	}
349 
350 	return 0;
351 
352 alloc_mem_err:
353 	bnxt_free_mem(bp, reconfig);
354 	return rc;
355 }
356 
357 static int bnxt_setup_one_vnic(struct bnxt *bp, uint16_t vnic_id)
358 {
359 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
360 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
361 	uint64_t rx_offloads = dev_conf->rxmode.offloads;
362 	struct bnxt_rx_queue *rxq;
363 	unsigned int j;
364 	int rc;
365 
366 	rc = bnxt_vnic_grp_alloc(bp, vnic);
367 	if (rc)
368 		goto err_out;
369 
370 	PMD_DRV_LOG(DEBUG, "vnic[%d] = %p vnic->fw_grp_ids = %p\n",
371 		    vnic_id, vnic, vnic->fw_grp_ids);
372 
373 	rc = bnxt_hwrm_vnic_alloc(bp, vnic);
374 	if (rc)
375 		goto err_out;
376 
377 	/* Alloc RSS context only if RSS mode is enabled */
378 	if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS) {
379 		int j, nr_ctxs = bnxt_rss_ctxts(bp);
380 
381 		rc = 0;
382 		for (j = 0; j < nr_ctxs; j++) {
383 			rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, j);
384 			if (rc)
385 				break;
386 		}
387 		if (rc) {
388 			PMD_DRV_LOG(ERR,
389 				    "HWRM vnic %d ctx %d alloc failure rc: %x\n",
390 				    vnic_id, j, rc);
391 			goto err_out;
392 		}
393 		vnic->num_lb_ctxts = nr_ctxs;
394 	}
395 
396 	/*
397 	 * Firmware sets pf pair in default vnic cfg. If the VLAN strip
398 	 * setting is not available at this time, it will not be
399 	 * configured correctly in the CFA.
400 	 */
401 	if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
402 		vnic->vlan_strip = true;
403 	else
404 		vnic->vlan_strip = false;
405 
406 	rc = bnxt_hwrm_vnic_cfg(bp, vnic);
407 	if (rc)
408 		goto err_out;
409 
410 	rc = bnxt_set_hwrm_vnic_filters(bp, vnic);
411 	if (rc)
412 		goto err_out;
413 
414 	for (j = 0; j < bp->rx_num_qs_per_vnic; j++) {
415 		rxq = bp->eth_dev->data->rx_queues[j];
416 
417 		PMD_DRV_LOG(DEBUG,
418 			    "rxq[%d]->vnic=%p vnic->fw_grp_ids=%p\n",
419 			    j, rxq->vnic, rxq->vnic->fw_grp_ids);
420 
421 		if (BNXT_HAS_RING_GRPS(bp) && rxq->rx_deferred_start)
422 			rxq->vnic->fw_grp_ids[j] = INVALID_HW_RING_ID;
423 		else
424 			vnic->rx_queue_cnt++;
425 	}
426 
427 	PMD_DRV_LOG(DEBUG, "vnic->rx_queue_cnt = %d\n", vnic->rx_queue_cnt);
428 
429 	rc = bnxt_vnic_rss_configure(bp, vnic);
430 	if (rc)
431 		goto err_out;
432 
433 	bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
434 
435 	if (rx_offloads & DEV_RX_OFFLOAD_TCP_LRO)
436 		bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 1);
437 	else
438 		bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 0);
439 
440 	return 0;
441 err_out:
442 	PMD_DRV_LOG(ERR, "HWRM vnic %d cfg failure rc: %x\n",
443 		    vnic_id, rc);
444 	return rc;
445 }
446 
447 static int bnxt_register_fc_ctx_mem(struct bnxt *bp)
448 {
449 	int rc = 0;
450 
451 	rc = bnxt_hwrm_ctx_rgtr(bp, bp->flow_stat->rx_fc_in_tbl.dma,
452 				&bp->flow_stat->rx_fc_in_tbl.ctx_id);
453 	if (rc)
454 		return rc;
455 
456 	PMD_DRV_LOG(DEBUG,
457 		    "rx_fc_in_tbl.va = %p rx_fc_in_tbl.dma = %p"
458 		    " rx_fc_in_tbl.ctx_id = %d\n",
459 		    bp->flow_stat->rx_fc_in_tbl.va,
460 		    (void *)((uintptr_t)bp->flow_stat->rx_fc_in_tbl.dma),
461 		    bp->flow_stat->rx_fc_in_tbl.ctx_id);
462 
463 	rc = bnxt_hwrm_ctx_rgtr(bp, bp->flow_stat->rx_fc_out_tbl.dma,
464 				&bp->flow_stat->rx_fc_out_tbl.ctx_id);
465 	if (rc)
466 		return rc;
467 
468 	PMD_DRV_LOG(DEBUG,
469 		    "rx_fc_out_tbl.va = %p rx_fc_out_tbl.dma = %p"
470 		    " rx_fc_out_tbl.ctx_id = %d\n",
471 		    bp->flow_stat->rx_fc_out_tbl.va,
472 		    (void *)((uintptr_t)bp->flow_stat->rx_fc_out_tbl.dma),
473 		    bp->flow_stat->rx_fc_out_tbl.ctx_id);
474 
475 	rc = bnxt_hwrm_ctx_rgtr(bp, bp->flow_stat->tx_fc_in_tbl.dma,
476 				&bp->flow_stat->tx_fc_in_tbl.ctx_id);
477 	if (rc)
478 		return rc;
479 
480 	PMD_DRV_LOG(DEBUG,
481 		    "tx_fc_in_tbl.va = %p tx_fc_in_tbl.dma = %p"
482 		    " tx_fc_in_tbl.ctx_id = %d\n",
483 		    bp->flow_stat->tx_fc_in_tbl.va,
484 		    (void *)((uintptr_t)bp->flow_stat->tx_fc_in_tbl.dma),
485 		    bp->flow_stat->tx_fc_in_tbl.ctx_id);
486 
487 	rc = bnxt_hwrm_ctx_rgtr(bp, bp->flow_stat->tx_fc_out_tbl.dma,
488 				&bp->flow_stat->tx_fc_out_tbl.ctx_id);
489 	if (rc)
490 		return rc;
491 
492 	PMD_DRV_LOG(DEBUG,
493 		    "tx_fc_out_tbl.va = %p tx_fc_out_tbl.dma = %p"
494 		    " tx_fc_out_tbl.ctx_id = %d\n",
495 		    bp->flow_stat->tx_fc_out_tbl.va,
496 		    (void *)((uintptr_t)bp->flow_stat->tx_fc_out_tbl.dma),
497 		    bp->flow_stat->tx_fc_out_tbl.ctx_id);
498 
499 	memset(bp->flow_stat->rx_fc_out_tbl.va,
500 	       0,
501 	       bp->flow_stat->rx_fc_out_tbl.size);
502 	rc = bnxt_hwrm_cfa_counter_cfg(bp, BNXT_DIR_RX,
503 				       CFA_COUNTER_CFG_IN_COUNTER_TYPE_FC,
504 				       bp->flow_stat->rx_fc_out_tbl.ctx_id,
505 				       bp->flow_stat->max_fc,
506 				       true);
507 	if (rc)
508 		return rc;
509 
510 	memset(bp->flow_stat->tx_fc_out_tbl.va,
511 	       0,
512 	       bp->flow_stat->tx_fc_out_tbl.size);
513 	rc = bnxt_hwrm_cfa_counter_cfg(bp, BNXT_DIR_TX,
514 				       CFA_COUNTER_CFG_IN_COUNTER_TYPE_FC,
515 				       bp->flow_stat->tx_fc_out_tbl.ctx_id,
516 				       bp->flow_stat->max_fc,
517 				       true);
518 
519 	return rc;
520 }
521 
522 static int bnxt_alloc_ctx_mem_buf(char *type, size_t size,
523 				  struct bnxt_ctx_mem_buf_info *ctx)
524 {
525 	if (!ctx)
526 		return -EINVAL;
527 
528 	ctx->va = rte_zmalloc(type, size, 0);
529 	if (ctx->va == NULL)
530 		return -ENOMEM;
531 	rte_mem_lock_page(ctx->va);
532 	ctx->size = size;
533 	ctx->dma = rte_mem_virt2iova(ctx->va);
534 	if (ctx->dma == RTE_BAD_IOVA)
535 		return -ENOMEM;
536 
537 	return 0;
538 }
539 
540 static int bnxt_init_fc_ctx_mem(struct bnxt *bp)
541 {
542 	struct rte_pci_device *pdev = bp->pdev;
543 	char type[RTE_MEMZONE_NAMESIZE];
544 	uint16_t max_fc;
545 	int rc = 0;
546 
547 	max_fc = bp->flow_stat->max_fc;
548 
549 	sprintf(type, "bnxt_rx_fc_in_" PCI_PRI_FMT, pdev->addr.domain,
550 		pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
551 	/* 4 bytes for each counter-id */
552 	rc = bnxt_alloc_ctx_mem_buf(type,
553 				    max_fc * 4,
554 				    &bp->flow_stat->rx_fc_in_tbl);
555 	if (rc)
556 		return rc;
557 
558 	sprintf(type, "bnxt_rx_fc_out_" PCI_PRI_FMT, pdev->addr.domain,
559 		pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
560 	/* 16 bytes for each counter - 8 bytes pkt_count, 8 bytes byte_count */
561 	rc = bnxt_alloc_ctx_mem_buf(type,
562 				    max_fc * 16,
563 				    &bp->flow_stat->rx_fc_out_tbl);
564 	if (rc)
565 		return rc;
566 
567 	sprintf(type, "bnxt_tx_fc_in_" PCI_PRI_FMT, pdev->addr.domain,
568 		pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
569 	/* 4 bytes for each counter-id */
570 	rc = bnxt_alloc_ctx_mem_buf(type,
571 				    max_fc * 4,
572 				    &bp->flow_stat->tx_fc_in_tbl);
573 	if (rc)
574 		return rc;
575 
576 	sprintf(type, "bnxt_tx_fc_out_" PCI_PRI_FMT, pdev->addr.domain,
577 		pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
578 	/* 16 bytes for each counter - 8 bytes pkt_count, 8 bytes byte_count */
579 	rc = bnxt_alloc_ctx_mem_buf(type,
580 				    max_fc * 16,
581 				    &bp->flow_stat->tx_fc_out_tbl);
582 	if (rc)
583 		return rc;
584 
585 	rc = bnxt_register_fc_ctx_mem(bp);
586 
587 	return rc;
588 }
589 
590 static int bnxt_init_ctx_mem(struct bnxt *bp)
591 {
592 	int rc = 0;
593 
594 	if (!(bp->fw_cap & BNXT_FW_CAP_ADV_FLOW_COUNTERS) ||
595 	    !(BNXT_PF(bp) || BNXT_VF_IS_TRUSTED(bp)) ||
596 	    !BNXT_FLOW_XSTATS_EN(bp))
597 		return 0;
598 
599 	rc = bnxt_hwrm_cfa_counter_qcaps(bp, &bp->flow_stat->max_fc);
600 	if (rc)
601 		return rc;
602 
603 	rc = bnxt_init_fc_ctx_mem(bp);
604 
605 	return rc;
606 }
607 
608 static int bnxt_init_chip(struct bnxt *bp)
609 {
610 	struct rte_eth_link new;
611 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(bp->eth_dev);
612 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
613 	uint32_t intr_vector = 0;
614 	uint32_t queue_id, base = BNXT_MISC_VEC_ID;
615 	uint32_t vec = BNXT_MISC_VEC_ID;
616 	unsigned int i, j;
617 	int rc;
618 
619 	if (bp->eth_dev->data->mtu > RTE_ETHER_MTU) {
620 		bp->eth_dev->data->dev_conf.rxmode.offloads |=
621 			DEV_RX_OFFLOAD_JUMBO_FRAME;
622 		bp->flags |= BNXT_FLAG_JUMBO;
623 	} else {
624 		bp->eth_dev->data->dev_conf.rxmode.offloads &=
625 			~DEV_RX_OFFLOAD_JUMBO_FRAME;
626 		bp->flags &= ~BNXT_FLAG_JUMBO;
627 	}
628 
629 	/* THOR does not support ring groups.
630 	 * But we will use the array to save RSS context IDs.
631 	 */
632 	if (BNXT_CHIP_THOR(bp))
633 		bp->max_ring_grps = BNXT_MAX_RSS_CTXTS_THOR;
634 
635 	rc = bnxt_alloc_all_hwrm_stat_ctxs(bp);
636 	if (rc) {
637 		PMD_DRV_LOG(ERR, "HWRM stat ctx alloc failure rc: %x\n", rc);
638 		goto err_out;
639 	}
640 
641 	rc = bnxt_alloc_hwrm_rings(bp);
642 	if (rc) {
643 		PMD_DRV_LOG(ERR, "HWRM ring alloc failure rc: %x\n", rc);
644 		goto err_out;
645 	}
646 
647 	rc = bnxt_alloc_all_hwrm_ring_grps(bp);
648 	if (rc) {
649 		PMD_DRV_LOG(ERR, "HWRM ring grp alloc failure: %x\n", rc);
650 		goto err_out;
651 	}
652 
653 	if (!(bp->vnic_cap_flags & BNXT_VNIC_CAP_COS_CLASSIFY))
654 		goto skip_cosq_cfg;
655 
656 	for (j = 0, i = 0; i < BNXT_COS_QUEUE_COUNT; i++) {
657 		if (bp->rx_cos_queue[i].id != 0xff) {
658 			struct bnxt_vnic_info *vnic = &bp->vnic_info[j++];
659 
660 			if (!vnic) {
661 				PMD_DRV_LOG(ERR,
662 					    "Num pools more than FW profile\n");
663 				rc = -EINVAL;
664 				goto err_out;
665 			}
666 			vnic->cos_queue_id = bp->rx_cos_queue[i].id;
667 			bp->rx_cosq_cnt++;
668 		}
669 	}
670 
671 skip_cosq_cfg:
672 	rc = bnxt_mq_rx_configure(bp);
673 	if (rc) {
674 		PMD_DRV_LOG(ERR, "MQ mode configure failure rc: %x\n", rc);
675 		goto err_out;
676 	}
677 
678 	/* VNIC configuration */
679 	for (i = 0; i < bp->nr_vnics; i++) {
680 		rc = bnxt_setup_one_vnic(bp, i);
681 		if (rc)
682 			goto err_out;
683 	}
684 
685 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, &bp->vnic_info[0], 0, NULL);
686 	if (rc) {
687 		PMD_DRV_LOG(ERR,
688 			"HWRM cfa l2 rx mask failure rc: %x\n", rc);
689 		goto err_out;
690 	}
691 
692 	/* check and configure queue intr-vector mapping */
693 	if ((rte_intr_cap_multiple(intr_handle) ||
694 	     !RTE_ETH_DEV_SRIOV(bp->eth_dev).active) &&
695 	    bp->eth_dev->data->dev_conf.intr_conf.rxq != 0) {
696 		intr_vector = bp->eth_dev->data->nb_rx_queues;
697 		PMD_DRV_LOG(DEBUG, "intr_vector = %d\n", intr_vector);
698 		if (intr_vector > bp->rx_cp_nr_rings) {
699 			PMD_DRV_LOG(ERR, "At most %d intr queues supported",
700 					bp->rx_cp_nr_rings);
701 			return -ENOTSUP;
702 		}
703 		rc = rte_intr_efd_enable(intr_handle, intr_vector);
704 		if (rc)
705 			return rc;
706 	}
707 
708 	if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
709 		intr_handle->intr_vec =
710 			rte_zmalloc("intr_vec",
711 				    bp->eth_dev->data->nb_rx_queues *
712 				    sizeof(int), 0);
713 		if (intr_handle->intr_vec == NULL) {
714 			PMD_DRV_LOG(ERR, "Failed to allocate %d rx_queues"
715 				" intr_vec", bp->eth_dev->data->nb_rx_queues);
716 			rc = -ENOMEM;
717 			goto err_disable;
718 		}
719 		PMD_DRV_LOG(DEBUG, "intr_handle->intr_vec = %p "
720 			"intr_handle->nb_efd = %d intr_handle->max_intr = %d\n",
721 			 intr_handle->intr_vec, intr_handle->nb_efd,
722 			intr_handle->max_intr);
723 		for (queue_id = 0; queue_id < bp->eth_dev->data->nb_rx_queues;
724 		     queue_id++) {
725 			intr_handle->intr_vec[queue_id] =
726 							vec + BNXT_RX_VEC_START;
727 			if (vec < base + intr_handle->nb_efd - 1)
728 				vec++;
729 		}
730 	}
731 
732 	/* enable uio/vfio intr/eventfd mapping */
733 	rc = rte_intr_enable(intr_handle);
734 #ifndef RTE_EXEC_ENV_FREEBSD
735 	/* In FreeBSD OS, nic_uio driver does not support interrupts */
736 	if (rc)
737 		goto err_free;
738 #endif
739 
740 	rc = bnxt_get_hwrm_link_config(bp, &new);
741 	if (rc) {
742 		PMD_DRV_LOG(ERR, "HWRM Get link config failure rc: %x\n", rc);
743 		goto err_free;
744 	}
745 
746 	if (!bp->link_info->link_up) {
747 		rc = bnxt_set_hwrm_link_config(bp, true);
748 		if (rc) {
749 			PMD_DRV_LOG(ERR,
750 				"HWRM link config failure rc: %x\n", rc);
751 			goto err_free;
752 		}
753 	}
754 	bnxt_print_link_info(bp->eth_dev);
755 
756 	bp->mark_table = rte_zmalloc("bnxt_mark_table", BNXT_MARK_TABLE_SZ, 0);
757 	if (!bp->mark_table)
758 		PMD_DRV_LOG(ERR, "Allocation of mark table failed\n");
759 
760 	return 0;
761 
762 err_free:
763 	rte_free(intr_handle->intr_vec);
764 err_disable:
765 	rte_intr_efd_disable(intr_handle);
766 err_out:
767 	/* Some of the error status returned by FW may not be from errno.h */
768 	if (rc > 0)
769 		rc = -EIO;
770 
771 	return rc;
772 }
773 
774 static int bnxt_shutdown_nic(struct bnxt *bp)
775 {
776 	bnxt_free_all_hwrm_resources(bp);
777 	bnxt_free_all_filters(bp);
778 	bnxt_free_all_vnics(bp);
779 	return 0;
780 }
781 
782 /*
783  * Device configuration and status function
784  */
785 
786 uint32_t bnxt_get_speed_capabilities(struct bnxt *bp)
787 {
788 	uint32_t link_speed = bp->link_info->support_speeds;
789 	uint32_t speed_capa = 0;
790 
791 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_100MB)
792 		speed_capa |= ETH_LINK_SPEED_100M;
793 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_100MBHD)
794 		speed_capa |= ETH_LINK_SPEED_100M_HD;
795 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_1GB)
796 		speed_capa |= ETH_LINK_SPEED_1G;
797 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_2_5GB)
798 		speed_capa |= ETH_LINK_SPEED_2_5G;
799 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_10GB)
800 		speed_capa |= ETH_LINK_SPEED_10G;
801 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_20GB)
802 		speed_capa |= ETH_LINK_SPEED_20G;
803 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_25GB)
804 		speed_capa |= ETH_LINK_SPEED_25G;
805 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_40GB)
806 		speed_capa |= ETH_LINK_SPEED_40G;
807 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_50GB)
808 		speed_capa |= ETH_LINK_SPEED_50G;
809 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_100GB)
810 		speed_capa |= ETH_LINK_SPEED_100G;
811 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_200GB)
812 		speed_capa |= ETH_LINK_SPEED_200G;
813 
814 	if (bp->link_info->auto_mode ==
815 	    HWRM_PORT_PHY_QCFG_OUTPUT_AUTO_MODE_NONE)
816 		speed_capa |= ETH_LINK_SPEED_FIXED;
817 	else
818 		speed_capa |= ETH_LINK_SPEED_AUTONEG;
819 
820 	return speed_capa;
821 }
822 
823 static int bnxt_dev_info_get_op(struct rte_eth_dev *eth_dev,
824 				struct rte_eth_dev_info *dev_info)
825 {
826 	struct rte_pci_device *pdev = RTE_DEV_TO_PCI(eth_dev->device);
827 	struct bnxt *bp = eth_dev->data->dev_private;
828 	uint16_t max_vnics, i, j, vpool, vrxq;
829 	unsigned int max_rx_rings;
830 	int rc;
831 
832 	rc = is_bnxt_in_error(bp);
833 	if (rc)
834 		return rc;
835 
836 	/* MAC Specifics */
837 	dev_info->max_mac_addrs = bp->max_l2_ctx;
838 	dev_info->max_hash_mac_addrs = 0;
839 
840 	/* PF/VF specifics */
841 	if (BNXT_PF(bp))
842 		dev_info->max_vfs = pdev->max_vfs;
843 
844 	max_rx_rings = BNXT_MAX_RINGS(bp);
845 	/* For the sake of symmetry, max_rx_queues = max_tx_queues */
846 	dev_info->max_rx_queues = max_rx_rings;
847 	dev_info->max_tx_queues = max_rx_rings;
848 	dev_info->reta_size = bnxt_rss_hash_tbl_size(bp);
849 	dev_info->hash_key_size = 40;
850 	max_vnics = bp->max_vnics;
851 
852 	/* MTU specifics */
853 	dev_info->min_mtu = RTE_ETHER_MIN_MTU;
854 	dev_info->max_mtu = BNXT_MAX_MTU;
855 
856 	/* Fast path specifics */
857 	dev_info->min_rx_bufsize = 1;
858 	dev_info->max_rx_pktlen = BNXT_MAX_PKT_LEN;
859 
860 	dev_info->rx_offload_capa = BNXT_DEV_RX_OFFLOAD_SUPPORT;
861 	if (bp->flags & BNXT_FLAG_PTP_SUPPORTED)
862 		dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_TIMESTAMP;
863 	dev_info->tx_offload_capa = BNXT_DEV_TX_OFFLOAD_SUPPORT;
864 	dev_info->flow_type_rss_offloads = BNXT_ETH_RSS_SUPPORT;
865 
866 	dev_info->speed_capa = bnxt_get_speed_capabilities(bp);
867 
868 	/* *INDENT-OFF* */
869 	dev_info->default_rxconf = (struct rte_eth_rxconf) {
870 		.rx_thresh = {
871 			.pthresh = 8,
872 			.hthresh = 8,
873 			.wthresh = 0,
874 		},
875 		.rx_free_thresh = 32,
876 		/* If no descriptors available, pkts are dropped by default */
877 		.rx_drop_en = 1,
878 	};
879 
880 	dev_info->default_txconf = (struct rte_eth_txconf) {
881 		.tx_thresh = {
882 			.pthresh = 32,
883 			.hthresh = 0,
884 			.wthresh = 0,
885 		},
886 		.tx_free_thresh = 32,
887 		.tx_rs_thresh = 32,
888 	};
889 	eth_dev->data->dev_conf.intr_conf.lsc = 1;
890 
891 	eth_dev->data->dev_conf.intr_conf.rxq = 1;
892 	dev_info->rx_desc_lim.nb_min = BNXT_MIN_RING_DESC;
893 	dev_info->rx_desc_lim.nb_max = BNXT_MAX_RX_RING_DESC;
894 	dev_info->tx_desc_lim.nb_min = BNXT_MIN_RING_DESC;
895 	dev_info->tx_desc_lim.nb_max = BNXT_MAX_TX_RING_DESC;
896 
897 	/* *INDENT-ON* */
898 
899 	/*
900 	 * TODO: default_rxconf, default_txconf, rx_desc_lim, and tx_desc_lim
901 	 *       need further investigation.
902 	 */
903 
904 	/* VMDq resources */
905 	vpool = 64; /* ETH_64_POOLS */
906 	vrxq = 128; /* ETH_VMDQ_DCB_NUM_QUEUES */
907 	for (i = 0; i < 4; vpool >>= 1, i++) {
908 		if (max_vnics > vpool) {
909 			for (j = 0; j < 5; vrxq >>= 1, j++) {
910 				if (dev_info->max_rx_queues > vrxq) {
911 					if (vpool > vrxq)
912 						vpool = vrxq;
913 					goto found;
914 				}
915 			}
916 			/* Not enough resources to support VMDq */
917 			break;
918 		}
919 	}
920 	/* Not enough resources to support VMDq */
921 	vpool = 0;
922 	vrxq = 0;
923 found:
924 	dev_info->max_vmdq_pools = vpool;
925 	dev_info->vmdq_queue_num = vrxq;
926 
927 	dev_info->vmdq_pool_base = 0;
928 	dev_info->vmdq_queue_base = 0;
929 
930 	return 0;
931 }
932 
933 /* Configure the device based on the configuration provided */
934 static int bnxt_dev_configure_op(struct rte_eth_dev *eth_dev)
935 {
936 	struct bnxt *bp = eth_dev->data->dev_private;
937 	uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads;
938 	int rc;
939 
940 	bp->rx_queues = (void *)eth_dev->data->rx_queues;
941 	bp->tx_queues = (void *)eth_dev->data->tx_queues;
942 	bp->tx_nr_rings = eth_dev->data->nb_tx_queues;
943 	bp->rx_nr_rings = eth_dev->data->nb_rx_queues;
944 
945 	rc = is_bnxt_in_error(bp);
946 	if (rc)
947 		return rc;
948 
949 	if (BNXT_VF(bp) && (bp->flags & BNXT_FLAG_NEW_RM)) {
950 		rc = bnxt_hwrm_check_vf_rings(bp);
951 		if (rc) {
952 			PMD_DRV_LOG(ERR, "HWRM insufficient resources\n");
953 			return -ENOSPC;
954 		}
955 
956 		/* If a resource has already been allocated - in this case
957 		 * it is the async completion ring, free it. Reallocate it after
958 		 * resource reservation. This will ensure the resource counts
959 		 * are calculated correctly.
960 		 */
961 
962 		pthread_mutex_lock(&bp->def_cp_lock);
963 
964 		if (!BNXT_HAS_NQ(bp) && bp->async_cp_ring) {
965 			bnxt_disable_int(bp);
966 			bnxt_free_cp_ring(bp, bp->async_cp_ring);
967 		}
968 
969 		rc = bnxt_hwrm_func_reserve_vf_resc(bp, false);
970 		if (rc) {
971 			PMD_DRV_LOG(ERR, "HWRM resource alloc fail:%x\n", rc);
972 			pthread_mutex_unlock(&bp->def_cp_lock);
973 			return -ENOSPC;
974 		}
975 
976 		if (!BNXT_HAS_NQ(bp) && bp->async_cp_ring) {
977 			rc = bnxt_alloc_async_cp_ring(bp);
978 			if (rc) {
979 				pthread_mutex_unlock(&bp->def_cp_lock);
980 				return rc;
981 			}
982 			bnxt_enable_int(bp);
983 		}
984 
985 		pthread_mutex_unlock(&bp->def_cp_lock);
986 	} else {
987 		/* legacy driver needs to get updated values */
988 		rc = bnxt_hwrm_func_qcaps(bp);
989 		if (rc) {
990 			PMD_DRV_LOG(ERR, "hwrm func qcaps fail:%d\n", rc);
991 			return rc;
992 		}
993 	}
994 
995 	/* Inherit new configurations */
996 	if (eth_dev->data->nb_rx_queues > bp->max_rx_rings ||
997 	    eth_dev->data->nb_tx_queues > bp->max_tx_rings ||
998 	    eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues
999 		+ BNXT_NUM_ASYNC_CPR(bp) > bp->max_cp_rings ||
1000 	    eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues >
1001 	    bp->max_stat_ctx)
1002 		goto resource_error;
1003 
1004 	if (BNXT_HAS_RING_GRPS(bp) &&
1005 	    (uint32_t)(eth_dev->data->nb_rx_queues) > bp->max_ring_grps)
1006 		goto resource_error;
1007 
1008 	if (!(eth_dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS) &&
1009 	    bp->max_vnics < eth_dev->data->nb_rx_queues)
1010 		goto resource_error;
1011 
1012 	bp->rx_cp_nr_rings = bp->rx_nr_rings;
1013 	bp->tx_cp_nr_rings = bp->tx_nr_rings;
1014 
1015 	if (eth_dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
1016 		rx_offloads |= DEV_RX_OFFLOAD_RSS_HASH;
1017 	eth_dev->data->dev_conf.rxmode.offloads = rx_offloads;
1018 
1019 	if (rx_offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
1020 		eth_dev->data->mtu =
1021 			eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
1022 			RTE_ETHER_HDR_LEN - RTE_ETHER_CRC_LEN - VLAN_TAG_SIZE *
1023 			BNXT_NUM_VLANS;
1024 		bnxt_mtu_set_op(eth_dev, eth_dev->data->mtu);
1025 	}
1026 	return 0;
1027 
1028 resource_error:
1029 	PMD_DRV_LOG(ERR,
1030 		    "Insufficient resources to support requested config\n");
1031 	PMD_DRV_LOG(ERR,
1032 		    "Num Queues Requested: Tx %d, Rx %d\n",
1033 		    eth_dev->data->nb_tx_queues,
1034 		    eth_dev->data->nb_rx_queues);
1035 	PMD_DRV_LOG(ERR,
1036 		    "MAX: TxQ %d, RxQ %d, CQ %d Stat %d, Grp %d, Vnic %d\n",
1037 		    bp->max_tx_rings, bp->max_rx_rings, bp->max_cp_rings,
1038 		    bp->max_stat_ctx, bp->max_ring_grps, bp->max_vnics);
1039 	return -ENOSPC;
1040 }
1041 
1042 void bnxt_print_link_info(struct rte_eth_dev *eth_dev)
1043 {
1044 	struct rte_eth_link *link = &eth_dev->data->dev_link;
1045 
1046 	if (link->link_status)
1047 		PMD_DRV_LOG(INFO, "Port %d Link Up - speed %u Mbps - %s\n",
1048 			eth_dev->data->port_id,
1049 			(uint32_t)link->link_speed,
1050 			(link->link_duplex == ETH_LINK_FULL_DUPLEX) ?
1051 			("full-duplex") : ("half-duplex\n"));
1052 	else
1053 		PMD_DRV_LOG(INFO, "Port %d Link Down\n",
1054 			eth_dev->data->port_id);
1055 }
1056 
1057 /*
1058  * Determine whether the current configuration requires support for scattered
1059  * receive; return 1 if scattered receive is required and 0 if not.
1060  */
1061 static int bnxt_scattered_rx(struct rte_eth_dev *eth_dev)
1062 {
1063 	uint16_t buf_size;
1064 	int i;
1065 
1066 	if (eth_dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER)
1067 		return 1;
1068 
1069 	for (i = 0; i < eth_dev->data->nb_rx_queues; i++) {
1070 		struct bnxt_rx_queue *rxq = eth_dev->data->rx_queues[i];
1071 
1072 		buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
1073 				      RTE_PKTMBUF_HEADROOM);
1074 		if (eth_dev->data->dev_conf.rxmode.max_rx_pkt_len > buf_size)
1075 			return 1;
1076 	}
1077 	return 0;
1078 }
1079 
1080 static eth_rx_burst_t
1081 bnxt_receive_function(struct rte_eth_dev *eth_dev)
1082 {
1083 	struct bnxt *bp = eth_dev->data->dev_private;
1084 
1085 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
1086 #ifndef RTE_LIBRTE_IEEE1588
1087 	/*
1088 	 * Vector mode receive can be enabled only if scatter rx is not
1089 	 * in use and rx offloads are limited to VLAN stripping and
1090 	 * CRC stripping.
1091 	 */
1092 	if (!eth_dev->data->scattered_rx &&
1093 	    !(eth_dev->data->dev_conf.rxmode.offloads &
1094 	      ~(DEV_RX_OFFLOAD_VLAN_STRIP |
1095 		DEV_RX_OFFLOAD_KEEP_CRC |
1096 		DEV_RX_OFFLOAD_JUMBO_FRAME |
1097 		DEV_RX_OFFLOAD_IPV4_CKSUM |
1098 		DEV_RX_OFFLOAD_UDP_CKSUM |
1099 		DEV_RX_OFFLOAD_TCP_CKSUM |
1100 		DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
1101 		DEV_RX_OFFLOAD_RSS_HASH |
1102 		DEV_RX_OFFLOAD_VLAN_FILTER)) &&
1103 	    !BNXT_TRUFLOW_EN(bp)) {
1104 		PMD_DRV_LOG(INFO, "Using vector mode receive for port %d\n",
1105 			    eth_dev->data->port_id);
1106 		bp->flags |= BNXT_FLAG_RX_VECTOR_PKT_MODE;
1107 		return bnxt_recv_pkts_vec;
1108 	}
1109 	PMD_DRV_LOG(INFO, "Vector mode receive disabled for port %d\n",
1110 		    eth_dev->data->port_id);
1111 	PMD_DRV_LOG(INFO,
1112 		    "Port %d scatter: %d rx offload: %" PRIX64 "\n",
1113 		    eth_dev->data->port_id,
1114 		    eth_dev->data->scattered_rx,
1115 		    eth_dev->data->dev_conf.rxmode.offloads);
1116 #endif
1117 #endif
1118 	bp->flags &= ~BNXT_FLAG_RX_VECTOR_PKT_MODE;
1119 	return bnxt_recv_pkts;
1120 }
1121 
1122 static eth_tx_burst_t
1123 bnxt_transmit_function(__rte_unused struct rte_eth_dev *eth_dev)
1124 {
1125 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
1126 #ifndef RTE_LIBRTE_IEEE1588
1127 	struct bnxt *bp = eth_dev->data->dev_private;
1128 
1129 	/*
1130 	 * Vector mode transmit can be enabled only if not using scatter rx
1131 	 * or tx offloads.
1132 	 */
1133 	if (!eth_dev->data->scattered_rx &&
1134 	    !eth_dev->data->dev_conf.txmode.offloads &&
1135 	    !BNXT_TRUFLOW_EN(bp)) {
1136 		PMD_DRV_LOG(INFO, "Using vector mode transmit for port %d\n",
1137 			    eth_dev->data->port_id);
1138 		return bnxt_xmit_pkts_vec;
1139 	}
1140 	PMD_DRV_LOG(INFO, "Vector mode transmit disabled for port %d\n",
1141 		    eth_dev->data->port_id);
1142 	PMD_DRV_LOG(INFO,
1143 		    "Port %d scatter: %d tx offload: %" PRIX64 "\n",
1144 		    eth_dev->data->port_id,
1145 		    eth_dev->data->scattered_rx,
1146 		    eth_dev->data->dev_conf.txmode.offloads);
1147 #endif
1148 #endif
1149 	return bnxt_xmit_pkts;
1150 }
1151 
1152 static int bnxt_handle_if_change_status(struct bnxt *bp)
1153 {
1154 	int rc;
1155 
1156 	/* Since fw has undergone a reset and lost all contexts,
1157 	 * set fatal flag to not issue hwrm during cleanup
1158 	 */
1159 	bp->flags |= BNXT_FLAG_FATAL_ERROR;
1160 	bnxt_uninit_resources(bp, true);
1161 
1162 	/* clear fatal flag so that re-init happens */
1163 	bp->flags &= ~BNXT_FLAG_FATAL_ERROR;
1164 	rc = bnxt_init_resources(bp, true);
1165 
1166 	bp->flags &= ~BNXT_FLAG_IF_CHANGE_HOT_FW_RESET_DONE;
1167 
1168 	return rc;
1169 }
1170 
1171 static int32_t
1172 bnxt_create_port_app_df_rule(struct bnxt *bp, uint8_t flow_type,
1173 			     uint32_t *flow_id)
1174 {
1175 	uint16_t port_id = bp->eth_dev->data->port_id;
1176 	struct ulp_tlv_param param_list[] = {
1177 		{
1178 			.type = BNXT_ULP_DF_PARAM_TYPE_DEV_PORT_ID,
1179 			.length = 2,
1180 			.value = {(port_id >> 8) & 0xff, port_id & 0xff}
1181 		},
1182 		{
1183 			.type = BNXT_ULP_DF_PARAM_TYPE_LAST,
1184 			.length = 0,
1185 			.value = {0}
1186 		}
1187 	};
1188 
1189 	return ulp_default_flow_create(bp->eth_dev, param_list, flow_type,
1190 				       flow_id);
1191 }
1192 
1193 static int32_t
1194 bnxt_create_df_rules(struct bnxt *bp)
1195 {
1196 	struct bnxt_ulp_data *cfg_data;
1197 	int rc;
1198 
1199 	cfg_data = bp->ulp_ctx->cfg_data;
1200 	rc = bnxt_create_port_app_df_rule(bp, BNXT_ULP_DF_TPL_PORT_TO_VS,
1201 					  &cfg_data->port_to_app_flow_id);
1202 	if (rc) {
1203 		PMD_DRV_LOG(ERR,
1204 			    "Failed to create port to app default rule\n");
1205 		return rc;
1206 	}
1207 
1208 	BNXT_TF_DBG(DEBUG, "***** created port to app default rule ******\n");
1209 	rc = bnxt_create_port_app_df_rule(bp, BNXT_ULP_DF_TPL_VS_TO_PORT,
1210 					  &cfg_data->app_to_port_flow_id);
1211 	if (!rc) {
1212 		rc = ulp_default_flow_db_cfa_action_get(bp->ulp_ctx,
1213 							cfg_data->app_to_port_flow_id,
1214 							&cfg_data->tx_cfa_action);
1215 		if (rc)
1216 			goto err;
1217 
1218 		BNXT_TF_DBG(DEBUG,
1219 			    "***** created app to port default rule *****\n");
1220 		return 0;
1221 	}
1222 
1223 err:
1224 	BNXT_TF_DBG(DEBUG, "Failed to create app to port default rule\n");
1225 	return rc;
1226 }
1227 
1228 static void
1229 bnxt_destroy_df_rules(struct bnxt *bp)
1230 {
1231 	struct bnxt_ulp_data *cfg_data;
1232 
1233 	cfg_data = bp->ulp_ctx->cfg_data;
1234 	ulp_default_flow_destroy(bp->eth_dev, cfg_data->port_to_app_flow_id);
1235 	ulp_default_flow_destroy(bp->eth_dev, cfg_data->app_to_port_flow_id);
1236 }
1237 
1238 static int bnxt_dev_start_op(struct rte_eth_dev *eth_dev)
1239 {
1240 	struct bnxt *bp = eth_dev->data->dev_private;
1241 	uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads;
1242 	int vlan_mask = 0;
1243 	int rc, retry_cnt = BNXT_IF_CHANGE_RETRY_COUNT;
1244 
1245 	if (!eth_dev->data->nb_tx_queues || !eth_dev->data->nb_rx_queues) {
1246 		PMD_DRV_LOG(ERR, "Queues are not configured yet!\n");
1247 		return -EINVAL;
1248 	}
1249 
1250 	if (bp->rx_cp_nr_rings > RTE_ETHDEV_QUEUE_STAT_CNTRS) {
1251 		PMD_DRV_LOG(ERR,
1252 			"RxQ cnt %d > CONFIG_RTE_ETHDEV_QUEUE_STAT_CNTRS %d\n",
1253 			bp->rx_cp_nr_rings, RTE_ETHDEV_QUEUE_STAT_CNTRS);
1254 	}
1255 
1256 	do {
1257 		rc = bnxt_hwrm_if_change(bp, true);
1258 		if (rc == 0 || rc != -EAGAIN)
1259 			break;
1260 
1261 		rte_delay_ms(BNXT_IF_CHANGE_RETRY_INTERVAL);
1262 	} while (retry_cnt--);
1263 
1264 	if (rc)
1265 		return rc;
1266 
1267 	if (bp->flags & BNXT_FLAG_IF_CHANGE_HOT_FW_RESET_DONE) {
1268 		rc = bnxt_handle_if_change_status(bp);
1269 		if (rc)
1270 			return rc;
1271 	}
1272 
1273 	bnxt_enable_int(bp);
1274 
1275 	rc = bnxt_init_chip(bp);
1276 	if (rc)
1277 		goto error;
1278 
1279 	eth_dev->data->scattered_rx = bnxt_scattered_rx(eth_dev);
1280 	eth_dev->data->dev_started = 1;
1281 
1282 	bnxt_link_update(eth_dev, 1, ETH_LINK_UP);
1283 
1284 	if (rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
1285 		vlan_mask |= ETH_VLAN_FILTER_MASK;
1286 	if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1287 		vlan_mask |= ETH_VLAN_STRIP_MASK;
1288 	rc = bnxt_vlan_offload_set_op(eth_dev, vlan_mask);
1289 	if (rc)
1290 		goto error;
1291 
1292 	eth_dev->rx_pkt_burst = bnxt_receive_function(eth_dev);
1293 	eth_dev->tx_pkt_burst = bnxt_transmit_function(eth_dev);
1294 
1295 	pthread_mutex_lock(&bp->def_cp_lock);
1296 	bnxt_schedule_fw_health_check(bp);
1297 	pthread_mutex_unlock(&bp->def_cp_lock);
1298 
1299 	if (BNXT_TRUFLOW_EN(bp))
1300 		bnxt_ulp_init(bp);
1301 
1302 	return 0;
1303 
1304 error:
1305 	bnxt_shutdown_nic(bp);
1306 	bnxt_free_tx_mbufs(bp);
1307 	bnxt_free_rx_mbufs(bp);
1308 	bnxt_hwrm_if_change(bp, false);
1309 	eth_dev->data->dev_started = 0;
1310 	return rc;
1311 }
1312 
1313 static int bnxt_dev_set_link_up_op(struct rte_eth_dev *eth_dev)
1314 {
1315 	struct bnxt *bp = eth_dev->data->dev_private;
1316 	int rc = 0;
1317 
1318 	if (!bp->link_info->link_up)
1319 		rc = bnxt_set_hwrm_link_config(bp, true);
1320 	if (!rc)
1321 		eth_dev->data->dev_link.link_status = 1;
1322 
1323 	bnxt_print_link_info(eth_dev);
1324 	return rc;
1325 }
1326 
1327 static int bnxt_dev_set_link_down_op(struct rte_eth_dev *eth_dev)
1328 {
1329 	struct bnxt *bp = eth_dev->data->dev_private;
1330 
1331 	eth_dev->data->dev_link.link_status = 0;
1332 	bnxt_set_hwrm_link_config(bp, false);
1333 	bp->link_info->link_up = 0;
1334 
1335 	return 0;
1336 }
1337 
1338 static void bnxt_free_switch_domain(struct bnxt *bp)
1339 {
1340 	if (bp->switch_domain_id)
1341 		rte_eth_switch_domain_free(bp->switch_domain_id);
1342 }
1343 
1344 /* Unload the driver, release resources */
1345 static void bnxt_dev_stop_op(struct rte_eth_dev *eth_dev)
1346 {
1347 	struct bnxt *bp = eth_dev->data->dev_private;
1348 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1349 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1350 
1351 	eth_dev->data->dev_started = 0;
1352 	/* Prevent crashes when queues are still in use */
1353 	eth_dev->rx_pkt_burst = &bnxt_dummy_recv_pkts;
1354 	eth_dev->tx_pkt_burst = &bnxt_dummy_xmit_pkts;
1355 
1356 	bnxt_disable_int(bp);
1357 
1358 	/* disable uio/vfio intr/eventfd mapping */
1359 	rte_intr_disable(intr_handle);
1360 
1361 	bnxt_cancel_fw_health_check(bp);
1362 
1363 	bnxt_dev_set_link_down_op(eth_dev);
1364 
1365 	/* Wait for link to be reset and the async notification to process.
1366 	 * During reset recovery, there is no need to wait and
1367 	 * VF/NPAR functions do not have privilege to change PHY config.
1368 	 */
1369 	if (!is_bnxt_in_error(bp) && BNXT_SINGLE_PF(bp))
1370 		bnxt_link_update(eth_dev, 1, ETH_LINK_DOWN);
1371 
1372 	/* Clean queue intr-vector mapping */
1373 	rte_intr_efd_disable(intr_handle);
1374 	if (intr_handle->intr_vec != NULL) {
1375 		rte_free(intr_handle->intr_vec);
1376 		intr_handle->intr_vec = NULL;
1377 	}
1378 
1379 	bnxt_hwrm_port_clr_stats(bp);
1380 	bnxt_free_tx_mbufs(bp);
1381 	bnxt_free_rx_mbufs(bp);
1382 	/* Process any remaining notifications in default completion queue */
1383 	bnxt_int_handler(eth_dev);
1384 	bnxt_shutdown_nic(bp);
1385 	bnxt_hwrm_if_change(bp, false);
1386 
1387 	rte_free(bp->mark_table);
1388 	bp->mark_table = NULL;
1389 
1390 	bp->flags &= ~BNXT_FLAG_RX_VECTOR_PKT_MODE;
1391 	bp->rx_cosq_cnt = 0;
1392 	/* All filters are deleted on a port stop. */
1393 	if (BNXT_FLOW_XSTATS_EN(bp))
1394 		bp->flow_stat->flow_count = 0;
1395 }
1396 
1397 static void bnxt_dev_close_op(struct rte_eth_dev *eth_dev)
1398 {
1399 	struct bnxt *bp = eth_dev->data->dev_private;
1400 
1401 	/* cancel the recovery handler before remove dev */
1402 	rte_eal_alarm_cancel(bnxt_dev_reset_and_resume, (void *)bp);
1403 	rte_eal_alarm_cancel(bnxt_dev_recover, (void *)bp);
1404 	bnxt_cancel_fc_thread(bp);
1405 
1406 	if (BNXT_TRUFLOW_EN(bp)) {
1407 		if (bp->rep_info != NULL)
1408 			bnxt_destroy_df_rules(bp);
1409 		bnxt_ulp_deinit(bp);
1410 	}
1411 
1412 	if (eth_dev->data->dev_started)
1413 		bnxt_dev_stop_op(eth_dev);
1414 
1415 	bnxt_free_switch_domain(bp);
1416 
1417 	bnxt_uninit_resources(bp, false);
1418 
1419 	bnxt_free_leds_info(bp);
1420 	bnxt_free_cos_queues(bp);
1421 	bnxt_free_link_info(bp);
1422 	bnxt_free_pf_info(bp);
1423 	bnxt_free_parent_info(bp);
1424 
1425 	eth_dev->dev_ops = NULL;
1426 	eth_dev->rx_pkt_burst = NULL;
1427 	eth_dev->tx_pkt_burst = NULL;
1428 
1429 	rte_memzone_free((const struct rte_memzone *)bp->tx_mem_zone);
1430 	bp->tx_mem_zone = NULL;
1431 	rte_memzone_free((const struct rte_memzone *)bp->rx_mem_zone);
1432 	bp->rx_mem_zone = NULL;
1433 
1434 	rte_free(bp->pf->vf_info);
1435 	bp->pf->vf_info = NULL;
1436 
1437 	rte_free(bp->grp_info);
1438 	bp->grp_info = NULL;
1439 }
1440 
1441 static void bnxt_mac_addr_remove_op(struct rte_eth_dev *eth_dev,
1442 				    uint32_t index)
1443 {
1444 	struct bnxt *bp = eth_dev->data->dev_private;
1445 	uint64_t pool_mask = eth_dev->data->mac_pool_sel[index];
1446 	struct bnxt_vnic_info *vnic;
1447 	struct bnxt_filter_info *filter, *temp_filter;
1448 	uint32_t i;
1449 
1450 	if (is_bnxt_in_error(bp))
1451 		return;
1452 
1453 	/*
1454 	 * Loop through all VNICs from the specified filter flow pools to
1455 	 * remove the corresponding MAC addr filter
1456 	 */
1457 	for (i = 0; i < bp->nr_vnics; i++) {
1458 		if (!(pool_mask & (1ULL << i)))
1459 			continue;
1460 
1461 		vnic = &bp->vnic_info[i];
1462 		filter = STAILQ_FIRST(&vnic->filter);
1463 		while (filter) {
1464 			temp_filter = STAILQ_NEXT(filter, next);
1465 			if (filter->mac_index == index) {
1466 				STAILQ_REMOVE(&vnic->filter, filter,
1467 						bnxt_filter_info, next);
1468 				bnxt_hwrm_clear_l2_filter(bp, filter);
1469 				bnxt_free_filter(bp, filter);
1470 			}
1471 			filter = temp_filter;
1472 		}
1473 	}
1474 }
1475 
1476 static int bnxt_add_mac_filter(struct bnxt *bp, struct bnxt_vnic_info *vnic,
1477 			       struct rte_ether_addr *mac_addr, uint32_t index,
1478 			       uint32_t pool)
1479 {
1480 	struct bnxt_filter_info *filter;
1481 	int rc = 0;
1482 
1483 	/* Attach requested MAC address to the new l2_filter */
1484 	STAILQ_FOREACH(filter, &vnic->filter, next) {
1485 		if (filter->mac_index == index) {
1486 			PMD_DRV_LOG(DEBUG,
1487 				    "MAC addr already existed for pool %d\n",
1488 				    pool);
1489 			return 0;
1490 		}
1491 	}
1492 
1493 	filter = bnxt_alloc_filter(bp);
1494 	if (!filter) {
1495 		PMD_DRV_LOG(ERR, "L2 filter alloc failed\n");
1496 		return -ENODEV;
1497 	}
1498 
1499 	/* bnxt_alloc_filter copies default MAC to filter->l2_addr. So,
1500 	 * if the MAC that's been programmed now is a different one, then,
1501 	 * copy that addr to filter->l2_addr
1502 	 */
1503 	if (mac_addr)
1504 		memcpy(filter->l2_addr, mac_addr, RTE_ETHER_ADDR_LEN);
1505 	filter->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_OUTERMOST;
1506 
1507 	rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
1508 	if (!rc) {
1509 		filter->mac_index = index;
1510 		if (filter->mac_index == 0)
1511 			STAILQ_INSERT_HEAD(&vnic->filter, filter, next);
1512 		else
1513 			STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
1514 	} else {
1515 		bnxt_free_filter(bp, filter);
1516 	}
1517 
1518 	return rc;
1519 }
1520 
1521 static int bnxt_mac_addr_add_op(struct rte_eth_dev *eth_dev,
1522 				struct rte_ether_addr *mac_addr,
1523 				uint32_t index, uint32_t pool)
1524 {
1525 	struct bnxt *bp = eth_dev->data->dev_private;
1526 	struct bnxt_vnic_info *vnic = &bp->vnic_info[pool];
1527 	int rc = 0;
1528 
1529 	rc = is_bnxt_in_error(bp);
1530 	if (rc)
1531 		return rc;
1532 
1533 	if (BNXT_VF(bp) & !BNXT_VF_IS_TRUSTED(bp)) {
1534 		PMD_DRV_LOG(ERR, "Cannot add MAC address to a VF interface\n");
1535 		return -ENOTSUP;
1536 	}
1537 
1538 	if (!vnic) {
1539 		PMD_DRV_LOG(ERR, "VNIC not found for pool %d!\n", pool);
1540 		return -EINVAL;
1541 	}
1542 
1543 	/* Filter settings will get applied when port is started */
1544 	if (!eth_dev->data->dev_started)
1545 		return 0;
1546 
1547 	rc = bnxt_add_mac_filter(bp, vnic, mac_addr, index, pool);
1548 
1549 	return rc;
1550 }
1551 
1552 int bnxt_link_update(struct rte_eth_dev *eth_dev, int wait_to_complete,
1553 		     bool exp_link_status)
1554 {
1555 	int rc = 0;
1556 	struct bnxt *bp = eth_dev->data->dev_private;
1557 	struct rte_eth_link new;
1558 	int cnt = exp_link_status ? BNXT_LINK_UP_WAIT_CNT :
1559 		  BNXT_LINK_DOWN_WAIT_CNT;
1560 
1561 	rc = is_bnxt_in_error(bp);
1562 	if (rc)
1563 		return rc;
1564 
1565 	memset(&new, 0, sizeof(new));
1566 	do {
1567 		/* Retrieve link info from hardware */
1568 		rc = bnxt_get_hwrm_link_config(bp, &new);
1569 		if (rc) {
1570 			new.link_speed = ETH_LINK_SPEED_100M;
1571 			new.link_duplex = ETH_LINK_FULL_DUPLEX;
1572 			PMD_DRV_LOG(ERR,
1573 				"Failed to retrieve link rc = 0x%x!\n", rc);
1574 			goto out;
1575 		}
1576 
1577 		if (!wait_to_complete || new.link_status == exp_link_status)
1578 			break;
1579 
1580 		rte_delay_ms(BNXT_LINK_WAIT_INTERVAL);
1581 	} while (cnt--);
1582 
1583 out:
1584 	/* Timed out or success */
1585 	if (new.link_status != eth_dev->data->dev_link.link_status ||
1586 	new.link_speed != eth_dev->data->dev_link.link_speed) {
1587 		rte_eth_linkstatus_set(eth_dev, &new);
1588 
1589 		_rte_eth_dev_callback_process(eth_dev,
1590 					      RTE_ETH_EVENT_INTR_LSC,
1591 					      NULL);
1592 
1593 		bnxt_print_link_info(eth_dev);
1594 	}
1595 
1596 	return rc;
1597 }
1598 
1599 int bnxt_link_update_op(struct rte_eth_dev *eth_dev,
1600 			int wait_to_complete)
1601 {
1602 	return bnxt_link_update(eth_dev, wait_to_complete, ETH_LINK_UP);
1603 }
1604 
1605 static int bnxt_promiscuous_enable_op(struct rte_eth_dev *eth_dev)
1606 {
1607 	struct bnxt *bp = eth_dev->data->dev_private;
1608 	struct bnxt_vnic_info *vnic;
1609 	uint32_t old_flags;
1610 	int rc;
1611 
1612 	rc = is_bnxt_in_error(bp);
1613 	if (rc)
1614 		return rc;
1615 
1616 	/* Filter settings will get applied when port is started */
1617 	if (!eth_dev->data->dev_started)
1618 		return 0;
1619 
1620 	if (bp->vnic_info == NULL)
1621 		return 0;
1622 
1623 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
1624 
1625 	old_flags = vnic->flags;
1626 	vnic->flags |= BNXT_VNIC_INFO_PROMISC;
1627 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1628 	if (rc != 0)
1629 		vnic->flags = old_flags;
1630 
1631 	return rc;
1632 }
1633 
1634 static int bnxt_promiscuous_disable_op(struct rte_eth_dev *eth_dev)
1635 {
1636 	struct bnxt *bp = eth_dev->data->dev_private;
1637 	struct bnxt_vnic_info *vnic;
1638 	uint32_t old_flags;
1639 	int rc;
1640 
1641 	rc = is_bnxt_in_error(bp);
1642 	if (rc)
1643 		return rc;
1644 
1645 	/* Filter settings will get applied when port is started */
1646 	if (!eth_dev->data->dev_started)
1647 		return 0;
1648 
1649 	if (bp->vnic_info == NULL)
1650 		return 0;
1651 
1652 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
1653 
1654 	old_flags = vnic->flags;
1655 	vnic->flags &= ~BNXT_VNIC_INFO_PROMISC;
1656 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1657 	if (rc != 0)
1658 		vnic->flags = old_flags;
1659 
1660 	if (BNXT_TRUFLOW_EN(bp) && bp->rep_info != NULL)
1661 		bnxt_create_df_rules(bp);
1662 
1663 	return rc;
1664 }
1665 
1666 static int bnxt_allmulticast_enable_op(struct rte_eth_dev *eth_dev)
1667 {
1668 	struct bnxt *bp = eth_dev->data->dev_private;
1669 	struct bnxt_vnic_info *vnic;
1670 	uint32_t old_flags;
1671 	int rc;
1672 
1673 	rc = is_bnxt_in_error(bp);
1674 	if (rc)
1675 		return rc;
1676 
1677 	/* Filter settings will get applied when port is started */
1678 	if (!eth_dev->data->dev_started)
1679 		return 0;
1680 
1681 	if (bp->vnic_info == NULL)
1682 		return 0;
1683 
1684 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
1685 
1686 	old_flags = vnic->flags;
1687 	vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
1688 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1689 	if (rc != 0)
1690 		vnic->flags = old_flags;
1691 
1692 	return rc;
1693 }
1694 
1695 static int bnxt_allmulticast_disable_op(struct rte_eth_dev *eth_dev)
1696 {
1697 	struct bnxt *bp = eth_dev->data->dev_private;
1698 	struct bnxt_vnic_info *vnic;
1699 	uint32_t old_flags;
1700 	int rc;
1701 
1702 	rc = is_bnxt_in_error(bp);
1703 	if (rc)
1704 		return rc;
1705 
1706 	/* Filter settings will get applied when port is started */
1707 	if (!eth_dev->data->dev_started)
1708 		return 0;
1709 
1710 	if (bp->vnic_info == NULL)
1711 		return 0;
1712 
1713 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
1714 
1715 	old_flags = vnic->flags;
1716 	vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
1717 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1718 	if (rc != 0)
1719 		vnic->flags = old_flags;
1720 
1721 	return rc;
1722 }
1723 
1724 /* Return bnxt_rx_queue pointer corresponding to a given rxq. */
1725 static struct bnxt_rx_queue *bnxt_qid_to_rxq(struct bnxt *bp, uint16_t qid)
1726 {
1727 	if (qid >= bp->rx_nr_rings)
1728 		return NULL;
1729 
1730 	return bp->eth_dev->data->rx_queues[qid];
1731 }
1732 
1733 /* Return rxq corresponding to a given rss table ring/group ID. */
1734 static uint16_t bnxt_rss_to_qid(struct bnxt *bp, uint16_t fwr)
1735 {
1736 	struct bnxt_rx_queue *rxq;
1737 	unsigned int i;
1738 
1739 	if (!BNXT_HAS_RING_GRPS(bp)) {
1740 		for (i = 0; i < bp->rx_nr_rings; i++) {
1741 			rxq = bp->eth_dev->data->rx_queues[i];
1742 			if (rxq->rx_ring->rx_ring_struct->fw_ring_id == fwr)
1743 				return rxq->index;
1744 		}
1745 	} else {
1746 		for (i = 0; i < bp->rx_nr_rings; i++) {
1747 			if (bp->grp_info[i].fw_grp_id == fwr)
1748 				return i;
1749 		}
1750 	}
1751 
1752 	return INVALID_HW_RING_ID;
1753 }
1754 
1755 static int bnxt_reta_update_op(struct rte_eth_dev *eth_dev,
1756 			    struct rte_eth_rss_reta_entry64 *reta_conf,
1757 			    uint16_t reta_size)
1758 {
1759 	struct bnxt *bp = eth_dev->data->dev_private;
1760 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
1761 	struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp);
1762 	uint16_t tbl_size = bnxt_rss_hash_tbl_size(bp);
1763 	uint16_t idx, sft;
1764 	int i, rc;
1765 
1766 	rc = is_bnxt_in_error(bp);
1767 	if (rc)
1768 		return rc;
1769 
1770 	if (!vnic->rss_table)
1771 		return -EINVAL;
1772 
1773 	if (!(dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
1774 		return -EINVAL;
1775 
1776 	if (reta_size != tbl_size) {
1777 		PMD_DRV_LOG(ERR, "The configured hash table lookup size "
1778 			"(%d) must equal the size supported by the hardware "
1779 			"(%d)\n", reta_size, tbl_size);
1780 		return -EINVAL;
1781 	}
1782 
1783 	for (i = 0; i < reta_size; i++) {
1784 		struct bnxt_rx_queue *rxq;
1785 
1786 		idx = i / RTE_RETA_GROUP_SIZE;
1787 		sft = i % RTE_RETA_GROUP_SIZE;
1788 
1789 		if (!(reta_conf[idx].mask & (1ULL << sft)))
1790 			continue;
1791 
1792 		rxq = bnxt_qid_to_rxq(bp, reta_conf[idx].reta[sft]);
1793 		if (!rxq) {
1794 			PMD_DRV_LOG(ERR, "Invalid ring in reta_conf.\n");
1795 			return -EINVAL;
1796 		}
1797 
1798 		if (BNXT_CHIP_THOR(bp)) {
1799 			vnic->rss_table[i * 2] =
1800 				rxq->rx_ring->rx_ring_struct->fw_ring_id;
1801 			vnic->rss_table[i * 2 + 1] =
1802 				rxq->cp_ring->cp_ring_struct->fw_ring_id;
1803 		} else {
1804 			vnic->rss_table[i] =
1805 			    vnic->fw_grp_ids[reta_conf[idx].reta[sft]];
1806 		}
1807 	}
1808 
1809 	bnxt_hwrm_vnic_rss_cfg(bp, vnic);
1810 	return 0;
1811 }
1812 
1813 static int bnxt_reta_query_op(struct rte_eth_dev *eth_dev,
1814 			      struct rte_eth_rss_reta_entry64 *reta_conf,
1815 			      uint16_t reta_size)
1816 {
1817 	struct bnxt *bp = eth_dev->data->dev_private;
1818 	struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp);
1819 	uint16_t tbl_size = bnxt_rss_hash_tbl_size(bp);
1820 	uint16_t idx, sft, i;
1821 	int rc;
1822 
1823 	rc = is_bnxt_in_error(bp);
1824 	if (rc)
1825 		return rc;
1826 
1827 	/* Retrieve from the default VNIC */
1828 	if (!vnic)
1829 		return -EINVAL;
1830 	if (!vnic->rss_table)
1831 		return -EINVAL;
1832 
1833 	if (reta_size != tbl_size) {
1834 		PMD_DRV_LOG(ERR, "The configured hash table lookup size "
1835 			"(%d) must equal the size supported by the hardware "
1836 			"(%d)\n", reta_size, tbl_size);
1837 		return -EINVAL;
1838 	}
1839 
1840 	for (idx = 0, i = 0; i < reta_size; i++) {
1841 		idx = i / RTE_RETA_GROUP_SIZE;
1842 		sft = i % RTE_RETA_GROUP_SIZE;
1843 
1844 		if (reta_conf[idx].mask & (1ULL << sft)) {
1845 			uint16_t qid;
1846 
1847 			if (BNXT_CHIP_THOR(bp))
1848 				qid = bnxt_rss_to_qid(bp,
1849 						      vnic->rss_table[i * 2]);
1850 			else
1851 				qid = bnxt_rss_to_qid(bp, vnic->rss_table[i]);
1852 
1853 			if (qid == INVALID_HW_RING_ID) {
1854 				PMD_DRV_LOG(ERR, "Inv. entry in rss table.\n");
1855 				return -EINVAL;
1856 			}
1857 			reta_conf[idx].reta[sft] = qid;
1858 		}
1859 	}
1860 
1861 	return 0;
1862 }
1863 
1864 static int bnxt_rss_hash_update_op(struct rte_eth_dev *eth_dev,
1865 				   struct rte_eth_rss_conf *rss_conf)
1866 {
1867 	struct bnxt *bp = eth_dev->data->dev_private;
1868 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
1869 	struct bnxt_vnic_info *vnic;
1870 	int rc;
1871 
1872 	rc = is_bnxt_in_error(bp);
1873 	if (rc)
1874 		return rc;
1875 
1876 	/*
1877 	 * If RSS enablement were different than dev_configure,
1878 	 * then return -EINVAL
1879 	 */
1880 	if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) {
1881 		if (!rss_conf->rss_hf)
1882 			PMD_DRV_LOG(ERR, "Hash type NONE\n");
1883 	} else {
1884 		if (rss_conf->rss_hf & BNXT_ETH_RSS_SUPPORT)
1885 			return -EINVAL;
1886 	}
1887 
1888 	bp->flags |= BNXT_FLAG_UPDATE_HASH;
1889 	memcpy(&eth_dev->data->dev_conf.rx_adv_conf.rss_conf,
1890 	       rss_conf,
1891 	       sizeof(*rss_conf));
1892 
1893 	/* Update the default RSS VNIC(s) */
1894 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
1895 	vnic->hash_type = bnxt_rte_to_hwrm_hash_types(rss_conf->rss_hf);
1896 
1897 	/*
1898 	 * If hashkey is not specified, use the previously configured
1899 	 * hashkey
1900 	 */
1901 	if (!rss_conf->rss_key)
1902 		goto rss_config;
1903 
1904 	if (rss_conf->rss_key_len != HW_HASH_KEY_SIZE) {
1905 		PMD_DRV_LOG(ERR,
1906 			    "Invalid hashkey length, should be 16 bytes\n");
1907 		return -EINVAL;
1908 	}
1909 	memcpy(vnic->rss_hash_key, rss_conf->rss_key, rss_conf->rss_key_len);
1910 
1911 rss_config:
1912 	bnxt_hwrm_vnic_rss_cfg(bp, vnic);
1913 	return 0;
1914 }
1915 
1916 static int bnxt_rss_hash_conf_get_op(struct rte_eth_dev *eth_dev,
1917 				     struct rte_eth_rss_conf *rss_conf)
1918 {
1919 	struct bnxt *bp = eth_dev->data->dev_private;
1920 	struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp);
1921 	int len, rc;
1922 	uint32_t hash_types;
1923 
1924 	rc = is_bnxt_in_error(bp);
1925 	if (rc)
1926 		return rc;
1927 
1928 	/* RSS configuration is the same for all VNICs */
1929 	if (vnic && vnic->rss_hash_key) {
1930 		if (rss_conf->rss_key) {
1931 			len = rss_conf->rss_key_len <= HW_HASH_KEY_SIZE ?
1932 			      rss_conf->rss_key_len : HW_HASH_KEY_SIZE;
1933 			memcpy(rss_conf->rss_key, vnic->rss_hash_key, len);
1934 		}
1935 
1936 		hash_types = vnic->hash_type;
1937 		rss_conf->rss_hf = 0;
1938 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4) {
1939 			rss_conf->rss_hf |= ETH_RSS_IPV4;
1940 			hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
1941 		}
1942 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4) {
1943 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
1944 			hash_types &=
1945 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
1946 		}
1947 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4) {
1948 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
1949 			hash_types &=
1950 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
1951 		}
1952 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6) {
1953 			rss_conf->rss_hf |= ETH_RSS_IPV6;
1954 			hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
1955 		}
1956 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6) {
1957 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
1958 			hash_types &=
1959 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
1960 		}
1961 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6) {
1962 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
1963 			hash_types &=
1964 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
1965 		}
1966 		if (hash_types) {
1967 			PMD_DRV_LOG(ERR,
1968 				"Unknown RSS config from firmware (%08x), RSS disabled",
1969 				vnic->hash_type);
1970 			return -ENOTSUP;
1971 		}
1972 	} else {
1973 		rss_conf->rss_hf = 0;
1974 	}
1975 	return 0;
1976 }
1977 
1978 static int bnxt_flow_ctrl_get_op(struct rte_eth_dev *dev,
1979 			       struct rte_eth_fc_conf *fc_conf)
1980 {
1981 	struct bnxt *bp = dev->data->dev_private;
1982 	struct rte_eth_link link_info;
1983 	int rc;
1984 
1985 	rc = is_bnxt_in_error(bp);
1986 	if (rc)
1987 		return rc;
1988 
1989 	rc = bnxt_get_hwrm_link_config(bp, &link_info);
1990 	if (rc)
1991 		return rc;
1992 
1993 	memset(fc_conf, 0, sizeof(*fc_conf));
1994 	if (bp->link_info->auto_pause)
1995 		fc_conf->autoneg = 1;
1996 	switch (bp->link_info->pause) {
1997 	case 0:
1998 		fc_conf->mode = RTE_FC_NONE;
1999 		break;
2000 	case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX:
2001 		fc_conf->mode = RTE_FC_TX_PAUSE;
2002 		break;
2003 	case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX:
2004 		fc_conf->mode = RTE_FC_RX_PAUSE;
2005 		break;
2006 	case (HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX |
2007 			HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX):
2008 		fc_conf->mode = RTE_FC_FULL;
2009 		break;
2010 	}
2011 	return 0;
2012 }
2013 
2014 static int bnxt_flow_ctrl_set_op(struct rte_eth_dev *dev,
2015 			       struct rte_eth_fc_conf *fc_conf)
2016 {
2017 	struct bnxt *bp = dev->data->dev_private;
2018 	int rc;
2019 
2020 	rc = is_bnxt_in_error(bp);
2021 	if (rc)
2022 		return rc;
2023 
2024 	if (!BNXT_SINGLE_PF(bp) || BNXT_VF(bp)) {
2025 		PMD_DRV_LOG(ERR, "Flow Control Settings cannot be modified\n");
2026 		return -ENOTSUP;
2027 	}
2028 
2029 	switch (fc_conf->mode) {
2030 	case RTE_FC_NONE:
2031 		bp->link_info->auto_pause = 0;
2032 		bp->link_info->force_pause = 0;
2033 		break;
2034 	case RTE_FC_RX_PAUSE:
2035 		if (fc_conf->autoneg) {
2036 			bp->link_info->auto_pause =
2037 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
2038 			bp->link_info->force_pause = 0;
2039 		} else {
2040 			bp->link_info->auto_pause = 0;
2041 			bp->link_info->force_pause =
2042 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
2043 		}
2044 		break;
2045 	case RTE_FC_TX_PAUSE:
2046 		if (fc_conf->autoneg) {
2047 			bp->link_info->auto_pause =
2048 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX;
2049 			bp->link_info->force_pause = 0;
2050 		} else {
2051 			bp->link_info->auto_pause = 0;
2052 			bp->link_info->force_pause =
2053 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX;
2054 		}
2055 		break;
2056 	case RTE_FC_FULL:
2057 		if (fc_conf->autoneg) {
2058 			bp->link_info->auto_pause =
2059 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX |
2060 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
2061 			bp->link_info->force_pause = 0;
2062 		} else {
2063 			bp->link_info->auto_pause = 0;
2064 			bp->link_info->force_pause =
2065 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX |
2066 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
2067 		}
2068 		break;
2069 	}
2070 	return bnxt_set_hwrm_link_config(bp, true);
2071 }
2072 
2073 /* Add UDP tunneling port */
2074 static int
2075 bnxt_udp_tunnel_port_add_op(struct rte_eth_dev *eth_dev,
2076 			 struct rte_eth_udp_tunnel *udp_tunnel)
2077 {
2078 	struct bnxt *bp = eth_dev->data->dev_private;
2079 	uint16_t tunnel_type = 0;
2080 	int rc = 0;
2081 
2082 	rc = is_bnxt_in_error(bp);
2083 	if (rc)
2084 		return rc;
2085 
2086 	switch (udp_tunnel->prot_type) {
2087 	case RTE_TUNNEL_TYPE_VXLAN:
2088 		if (bp->vxlan_port_cnt) {
2089 			PMD_DRV_LOG(ERR, "Tunnel Port %d already programmed\n",
2090 				udp_tunnel->udp_port);
2091 			if (bp->vxlan_port != udp_tunnel->udp_port) {
2092 				PMD_DRV_LOG(ERR, "Only one port allowed\n");
2093 				return -ENOSPC;
2094 			}
2095 			bp->vxlan_port_cnt++;
2096 			return 0;
2097 		}
2098 		tunnel_type =
2099 			HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_VXLAN;
2100 		bp->vxlan_port_cnt++;
2101 		break;
2102 	case RTE_TUNNEL_TYPE_GENEVE:
2103 		if (bp->geneve_port_cnt) {
2104 			PMD_DRV_LOG(ERR, "Tunnel Port %d already programmed\n",
2105 				udp_tunnel->udp_port);
2106 			if (bp->geneve_port != udp_tunnel->udp_port) {
2107 				PMD_DRV_LOG(ERR, "Only one port allowed\n");
2108 				return -ENOSPC;
2109 			}
2110 			bp->geneve_port_cnt++;
2111 			return 0;
2112 		}
2113 		tunnel_type =
2114 			HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_GENEVE;
2115 		bp->geneve_port_cnt++;
2116 		break;
2117 	default:
2118 		PMD_DRV_LOG(ERR, "Tunnel type is not supported\n");
2119 		return -ENOTSUP;
2120 	}
2121 	rc = bnxt_hwrm_tunnel_dst_port_alloc(bp, udp_tunnel->udp_port,
2122 					     tunnel_type);
2123 	return rc;
2124 }
2125 
2126 static int
2127 bnxt_udp_tunnel_port_del_op(struct rte_eth_dev *eth_dev,
2128 			 struct rte_eth_udp_tunnel *udp_tunnel)
2129 {
2130 	struct bnxt *bp = eth_dev->data->dev_private;
2131 	uint16_t tunnel_type = 0;
2132 	uint16_t port = 0;
2133 	int rc = 0;
2134 
2135 	rc = is_bnxt_in_error(bp);
2136 	if (rc)
2137 		return rc;
2138 
2139 	switch (udp_tunnel->prot_type) {
2140 	case RTE_TUNNEL_TYPE_VXLAN:
2141 		if (!bp->vxlan_port_cnt) {
2142 			PMD_DRV_LOG(ERR, "No Tunnel port configured yet\n");
2143 			return -EINVAL;
2144 		}
2145 		if (bp->vxlan_port != udp_tunnel->udp_port) {
2146 			PMD_DRV_LOG(ERR, "Req Port: %d. Configured port: %d\n",
2147 				udp_tunnel->udp_port, bp->vxlan_port);
2148 			return -EINVAL;
2149 		}
2150 		if (--bp->vxlan_port_cnt)
2151 			return 0;
2152 
2153 		tunnel_type =
2154 			HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN;
2155 		port = bp->vxlan_fw_dst_port_id;
2156 		break;
2157 	case RTE_TUNNEL_TYPE_GENEVE:
2158 		if (!bp->geneve_port_cnt) {
2159 			PMD_DRV_LOG(ERR, "No Tunnel port configured yet\n");
2160 			return -EINVAL;
2161 		}
2162 		if (bp->geneve_port != udp_tunnel->udp_port) {
2163 			PMD_DRV_LOG(ERR, "Req Port: %d. Configured port: %d\n",
2164 				udp_tunnel->udp_port, bp->geneve_port);
2165 			return -EINVAL;
2166 		}
2167 		if (--bp->geneve_port_cnt)
2168 			return 0;
2169 
2170 		tunnel_type =
2171 			HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE;
2172 		port = bp->geneve_fw_dst_port_id;
2173 		break;
2174 	default:
2175 		PMD_DRV_LOG(ERR, "Tunnel type is not supported\n");
2176 		return -ENOTSUP;
2177 	}
2178 
2179 	rc = bnxt_hwrm_tunnel_dst_port_free(bp, port, tunnel_type);
2180 	if (!rc) {
2181 		if (tunnel_type ==
2182 		    HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN)
2183 			bp->vxlan_port = 0;
2184 		if (tunnel_type ==
2185 		    HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE)
2186 			bp->geneve_port = 0;
2187 	}
2188 	return rc;
2189 }
2190 
2191 static int bnxt_del_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
2192 {
2193 	struct bnxt_filter_info *filter;
2194 	struct bnxt_vnic_info *vnic;
2195 	int rc = 0;
2196 	uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN;
2197 
2198 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
2199 	filter = STAILQ_FIRST(&vnic->filter);
2200 	while (filter) {
2201 		/* Search for this matching MAC+VLAN filter */
2202 		if (bnxt_vlan_filter_exists(bp, filter, chk, vlan_id)) {
2203 			/* Delete the filter */
2204 			rc = bnxt_hwrm_clear_l2_filter(bp, filter);
2205 			if (rc)
2206 				return rc;
2207 			STAILQ_REMOVE(&vnic->filter, filter,
2208 				      bnxt_filter_info, next);
2209 			bnxt_free_filter(bp, filter);
2210 			PMD_DRV_LOG(INFO,
2211 				    "Deleted vlan filter for %d\n",
2212 				    vlan_id);
2213 			return 0;
2214 		}
2215 		filter = STAILQ_NEXT(filter, next);
2216 	}
2217 	return -ENOENT;
2218 }
2219 
2220 static int bnxt_add_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
2221 {
2222 	struct bnxt_filter_info *filter;
2223 	struct bnxt_vnic_info *vnic;
2224 	int rc = 0;
2225 	uint32_t en = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN |
2226 		HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN_MASK;
2227 	uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN;
2228 
2229 	/* Implementation notes on the use of VNIC in this command:
2230 	 *
2231 	 * By default, these filters belong to default vnic for the function.
2232 	 * Once these filters are set up, only destination VNIC can be modified.
2233 	 * If the destination VNIC is not specified in this command,
2234 	 * then the HWRM shall only create an l2 context id.
2235 	 */
2236 
2237 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
2238 	filter = STAILQ_FIRST(&vnic->filter);
2239 	/* Check if the VLAN has already been added */
2240 	while (filter) {
2241 		if (bnxt_vlan_filter_exists(bp, filter, chk, vlan_id))
2242 			return -EEXIST;
2243 
2244 		filter = STAILQ_NEXT(filter, next);
2245 	}
2246 
2247 	/* No match found. Alloc a fresh filter and issue the L2_FILTER_ALLOC
2248 	 * command to create MAC+VLAN filter with the right flags, enables set.
2249 	 */
2250 	filter = bnxt_alloc_filter(bp);
2251 	if (!filter) {
2252 		PMD_DRV_LOG(ERR,
2253 			    "MAC/VLAN filter alloc failed\n");
2254 		return -ENOMEM;
2255 	}
2256 	/* MAC + VLAN ID filter */
2257 	/* If l2_ivlan == 0 and l2_ivlan_mask != 0, only
2258 	 * untagged packets are received
2259 	 *
2260 	 * If l2_ivlan != 0 and l2_ivlan_mask != 0, untagged
2261 	 * packets and only the programmed vlan's packets are received
2262 	 */
2263 	filter->l2_ivlan = vlan_id;
2264 	filter->l2_ivlan_mask = 0x0FFF;
2265 	filter->enables |= en;
2266 	filter->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_OUTERMOST;
2267 
2268 	rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
2269 	if (rc) {
2270 		/* Free the newly allocated filter as we were
2271 		 * not able to create the filter in hardware.
2272 		 */
2273 		bnxt_free_filter(bp, filter);
2274 		return rc;
2275 	}
2276 
2277 	filter->mac_index = 0;
2278 	/* Add this new filter to the list */
2279 	if (vlan_id == 0)
2280 		STAILQ_INSERT_HEAD(&vnic->filter, filter, next);
2281 	else
2282 		STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
2283 
2284 	PMD_DRV_LOG(INFO,
2285 		    "Added Vlan filter for %d\n", vlan_id);
2286 	return rc;
2287 }
2288 
2289 static int bnxt_vlan_filter_set_op(struct rte_eth_dev *eth_dev,
2290 		uint16_t vlan_id, int on)
2291 {
2292 	struct bnxt *bp = eth_dev->data->dev_private;
2293 	int rc;
2294 
2295 	rc = is_bnxt_in_error(bp);
2296 	if (rc)
2297 		return rc;
2298 
2299 	if (!eth_dev->data->dev_started) {
2300 		PMD_DRV_LOG(ERR, "port must be started before setting vlan\n");
2301 		return -EINVAL;
2302 	}
2303 
2304 	/* These operations apply to ALL existing MAC/VLAN filters */
2305 	if (on)
2306 		return bnxt_add_vlan_filter(bp, vlan_id);
2307 	else
2308 		return bnxt_del_vlan_filter(bp, vlan_id);
2309 }
2310 
2311 static int bnxt_del_dflt_mac_filter(struct bnxt *bp,
2312 				    struct bnxt_vnic_info *vnic)
2313 {
2314 	struct bnxt_filter_info *filter;
2315 	int rc;
2316 
2317 	filter = STAILQ_FIRST(&vnic->filter);
2318 	while (filter) {
2319 		if (filter->mac_index == 0 &&
2320 		    !memcmp(filter->l2_addr, bp->mac_addr,
2321 			    RTE_ETHER_ADDR_LEN)) {
2322 			rc = bnxt_hwrm_clear_l2_filter(bp, filter);
2323 			if (!rc) {
2324 				STAILQ_REMOVE(&vnic->filter, filter,
2325 					      bnxt_filter_info, next);
2326 				bnxt_free_filter(bp, filter);
2327 			}
2328 			return rc;
2329 		}
2330 		filter = STAILQ_NEXT(filter, next);
2331 	}
2332 	return 0;
2333 }
2334 
2335 static int
2336 bnxt_config_vlan_hw_filter(struct bnxt *bp, uint64_t rx_offloads)
2337 {
2338 	struct bnxt_vnic_info *vnic;
2339 	unsigned int i;
2340 	int rc;
2341 
2342 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
2343 	if (!(rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER)) {
2344 		/* Remove any VLAN filters programmed */
2345 		for (i = 0; i < RTE_ETHER_MAX_VLAN_ID; i++)
2346 			bnxt_del_vlan_filter(bp, i);
2347 
2348 		rc = bnxt_add_mac_filter(bp, vnic, NULL, 0, 0);
2349 		if (rc)
2350 			return rc;
2351 	} else {
2352 		/* Default filter will allow packets that match the
2353 		 * dest mac. So, it has to be deleted, otherwise, we
2354 		 * will endup receiving vlan packets for which the
2355 		 * filter is not programmed, when hw-vlan-filter
2356 		 * configuration is ON
2357 		 */
2358 		bnxt_del_dflt_mac_filter(bp, vnic);
2359 		/* This filter will allow only untagged packets */
2360 		bnxt_add_vlan_filter(bp, 0);
2361 	}
2362 	PMD_DRV_LOG(DEBUG, "VLAN Filtering: %d\n",
2363 		    !!(rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER));
2364 
2365 	return 0;
2366 }
2367 
2368 static int bnxt_free_one_vnic(struct bnxt *bp, uint16_t vnic_id)
2369 {
2370 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2371 	unsigned int i;
2372 	int rc;
2373 
2374 	/* Destroy vnic filters and vnic */
2375 	if (bp->eth_dev->data->dev_conf.rxmode.offloads &
2376 	    DEV_RX_OFFLOAD_VLAN_FILTER) {
2377 		for (i = 0; i < RTE_ETHER_MAX_VLAN_ID; i++)
2378 			bnxt_del_vlan_filter(bp, i);
2379 	}
2380 	bnxt_del_dflt_mac_filter(bp, vnic);
2381 
2382 	rc = bnxt_hwrm_vnic_free(bp, vnic);
2383 	if (rc)
2384 		return rc;
2385 
2386 	rte_free(vnic->fw_grp_ids);
2387 	vnic->fw_grp_ids = NULL;
2388 
2389 	vnic->rx_queue_cnt = 0;
2390 
2391 	return 0;
2392 }
2393 
2394 static int
2395 bnxt_config_vlan_hw_stripping(struct bnxt *bp, uint64_t rx_offloads)
2396 {
2397 	struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp);
2398 	int rc;
2399 
2400 	/* Destroy, recreate and reconfigure the default vnic */
2401 	rc = bnxt_free_one_vnic(bp, 0);
2402 	if (rc)
2403 		return rc;
2404 
2405 	/* default vnic 0 */
2406 	rc = bnxt_setup_one_vnic(bp, 0);
2407 	if (rc)
2408 		return rc;
2409 
2410 	if (bp->eth_dev->data->dev_conf.rxmode.offloads &
2411 	    DEV_RX_OFFLOAD_VLAN_FILTER) {
2412 		rc = bnxt_add_vlan_filter(bp, 0);
2413 		if (rc)
2414 			return rc;
2415 		rc = bnxt_restore_vlan_filters(bp);
2416 		if (rc)
2417 			return rc;
2418 	} else {
2419 		rc = bnxt_add_mac_filter(bp, vnic, NULL, 0, 0);
2420 		if (rc)
2421 			return rc;
2422 	}
2423 
2424 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
2425 	if (rc)
2426 		return rc;
2427 
2428 	PMD_DRV_LOG(DEBUG, "VLAN Strip Offload: %d\n",
2429 		    !!(rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP));
2430 
2431 	return rc;
2432 }
2433 
2434 static int
2435 bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask)
2436 {
2437 	uint64_t rx_offloads = dev->data->dev_conf.rxmode.offloads;
2438 	struct bnxt *bp = dev->data->dev_private;
2439 	int rc;
2440 
2441 	rc = is_bnxt_in_error(bp);
2442 	if (rc)
2443 		return rc;
2444 
2445 	/* Filter settings will get applied when port is started */
2446 	if (!dev->data->dev_started)
2447 		return 0;
2448 
2449 	if (mask & ETH_VLAN_FILTER_MASK) {
2450 		/* Enable or disable VLAN filtering */
2451 		rc = bnxt_config_vlan_hw_filter(bp, rx_offloads);
2452 		if (rc)
2453 			return rc;
2454 	}
2455 
2456 	if (mask & ETH_VLAN_STRIP_MASK) {
2457 		/* Enable or disable VLAN stripping */
2458 		rc = bnxt_config_vlan_hw_stripping(bp, rx_offloads);
2459 		if (rc)
2460 			return rc;
2461 	}
2462 
2463 	if (mask & ETH_VLAN_EXTEND_MASK) {
2464 		if (rx_offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
2465 			PMD_DRV_LOG(DEBUG, "Extend VLAN supported\n");
2466 		else
2467 			PMD_DRV_LOG(INFO, "Extend VLAN unsupported\n");
2468 	}
2469 
2470 	return 0;
2471 }
2472 
2473 static int
2474 bnxt_vlan_tpid_set_op(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
2475 		      uint16_t tpid)
2476 {
2477 	struct bnxt *bp = dev->data->dev_private;
2478 	int qinq = dev->data->dev_conf.rxmode.offloads &
2479 		   DEV_RX_OFFLOAD_VLAN_EXTEND;
2480 
2481 	if (vlan_type != ETH_VLAN_TYPE_INNER &&
2482 	    vlan_type != ETH_VLAN_TYPE_OUTER) {
2483 		PMD_DRV_LOG(ERR,
2484 			    "Unsupported vlan type.");
2485 		return -EINVAL;
2486 	}
2487 	if (!qinq) {
2488 		PMD_DRV_LOG(ERR,
2489 			    "QinQ not enabled. Needs to be ON as we can "
2490 			    "accelerate only outer vlan\n");
2491 		return -EINVAL;
2492 	}
2493 
2494 	if (vlan_type == ETH_VLAN_TYPE_OUTER) {
2495 		switch (tpid) {
2496 		case RTE_ETHER_TYPE_QINQ:
2497 			bp->outer_tpid_bd =
2498 				TX_BD_LONG_CFA_META_VLAN_TPID_TPID88A8;
2499 				break;
2500 		case RTE_ETHER_TYPE_VLAN:
2501 			bp->outer_tpid_bd =
2502 				TX_BD_LONG_CFA_META_VLAN_TPID_TPID8100;
2503 				break;
2504 		case RTE_ETHER_TYPE_QINQ1:
2505 			bp->outer_tpid_bd =
2506 				TX_BD_LONG_CFA_META_VLAN_TPID_TPID9100;
2507 				break;
2508 		case RTE_ETHER_TYPE_QINQ2:
2509 			bp->outer_tpid_bd =
2510 				TX_BD_LONG_CFA_META_VLAN_TPID_TPID9200;
2511 				break;
2512 		case RTE_ETHER_TYPE_QINQ3:
2513 			bp->outer_tpid_bd =
2514 				 TX_BD_LONG_CFA_META_VLAN_TPID_TPID9300;
2515 				break;
2516 		default:
2517 			PMD_DRV_LOG(ERR, "Invalid TPID: %x\n", tpid);
2518 			return -EINVAL;
2519 		}
2520 		bp->outer_tpid_bd |= tpid;
2521 		PMD_DRV_LOG(INFO, "outer_tpid_bd = %x\n", bp->outer_tpid_bd);
2522 	} else if (vlan_type == ETH_VLAN_TYPE_INNER) {
2523 		PMD_DRV_LOG(ERR,
2524 			    "Can accelerate only outer vlan in QinQ\n");
2525 		return -EINVAL;
2526 	}
2527 
2528 	return 0;
2529 }
2530 
2531 static int
2532 bnxt_set_default_mac_addr_op(struct rte_eth_dev *dev,
2533 			     struct rte_ether_addr *addr)
2534 {
2535 	struct bnxt *bp = dev->data->dev_private;
2536 	/* Default Filter is tied to VNIC 0 */
2537 	struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp);
2538 	int rc;
2539 
2540 	rc = is_bnxt_in_error(bp);
2541 	if (rc)
2542 		return rc;
2543 
2544 	if (BNXT_VF(bp) && !BNXT_VF_IS_TRUSTED(bp))
2545 		return -EPERM;
2546 
2547 	if (rte_is_zero_ether_addr(addr))
2548 		return -EINVAL;
2549 
2550 	/* Filter settings will get applied when port is started */
2551 	if (!dev->data->dev_started)
2552 		return 0;
2553 
2554 	/* Check if the requested MAC is already added */
2555 	if (memcmp(addr, bp->mac_addr, RTE_ETHER_ADDR_LEN) == 0)
2556 		return 0;
2557 
2558 	/* Destroy filter and re-create it */
2559 	bnxt_del_dflt_mac_filter(bp, vnic);
2560 
2561 	memcpy(bp->mac_addr, addr, RTE_ETHER_ADDR_LEN);
2562 	if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
2563 		/* This filter will allow only untagged packets */
2564 		rc = bnxt_add_vlan_filter(bp, 0);
2565 	} else {
2566 		rc = bnxt_add_mac_filter(bp, vnic, addr, 0, 0);
2567 	}
2568 
2569 	PMD_DRV_LOG(DEBUG, "Set MAC addr\n");
2570 	return rc;
2571 }
2572 
2573 static int
2574 bnxt_dev_set_mc_addr_list_op(struct rte_eth_dev *eth_dev,
2575 			  struct rte_ether_addr *mc_addr_set,
2576 			  uint32_t nb_mc_addr)
2577 {
2578 	struct bnxt *bp = eth_dev->data->dev_private;
2579 	char *mc_addr_list = (char *)mc_addr_set;
2580 	struct bnxt_vnic_info *vnic;
2581 	uint32_t off = 0, i = 0;
2582 	int rc;
2583 
2584 	rc = is_bnxt_in_error(bp);
2585 	if (rc)
2586 		return rc;
2587 
2588 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
2589 
2590 	if (nb_mc_addr > BNXT_MAX_MC_ADDRS) {
2591 		vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
2592 		goto allmulti;
2593 	}
2594 
2595 	/* TODO Check for Duplicate mcast addresses */
2596 	vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
2597 	for (i = 0; i < nb_mc_addr; i++) {
2598 		memcpy(vnic->mc_list + off, &mc_addr_list[i],
2599 			RTE_ETHER_ADDR_LEN);
2600 		off += RTE_ETHER_ADDR_LEN;
2601 	}
2602 
2603 	vnic->mc_addr_cnt = i;
2604 	if (vnic->mc_addr_cnt)
2605 		vnic->flags |= BNXT_VNIC_INFO_MCAST;
2606 	else
2607 		vnic->flags &= ~BNXT_VNIC_INFO_MCAST;
2608 
2609 allmulti:
2610 	return bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
2611 }
2612 
2613 static int
2614 bnxt_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
2615 {
2616 	struct bnxt *bp = dev->data->dev_private;
2617 	uint8_t fw_major = (bp->fw_ver >> 24) & 0xff;
2618 	uint8_t fw_minor = (bp->fw_ver >> 16) & 0xff;
2619 	uint8_t fw_updt = (bp->fw_ver >> 8) & 0xff;
2620 	uint8_t fw_rsvd = bp->fw_ver & 0xff;
2621 	int ret;
2622 
2623 	ret = snprintf(fw_version, fw_size, "%d.%d.%d.%d",
2624 			fw_major, fw_minor, fw_updt, fw_rsvd);
2625 
2626 	ret += 1; /* add the size of '\0' */
2627 	if (fw_size < (uint32_t)ret)
2628 		return ret;
2629 	else
2630 		return 0;
2631 }
2632 
2633 static void
2634 bnxt_rxq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
2635 	struct rte_eth_rxq_info *qinfo)
2636 {
2637 	struct bnxt *bp = dev->data->dev_private;
2638 	struct bnxt_rx_queue *rxq;
2639 
2640 	if (is_bnxt_in_error(bp))
2641 		return;
2642 
2643 	rxq = dev->data->rx_queues[queue_id];
2644 
2645 	qinfo->mp = rxq->mb_pool;
2646 	qinfo->scattered_rx = dev->data->scattered_rx;
2647 	qinfo->nb_desc = rxq->nb_rx_desc;
2648 
2649 	qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2650 	qinfo->conf.rx_drop_en = 0;
2651 	qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
2652 }
2653 
2654 static void
2655 bnxt_txq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
2656 	struct rte_eth_txq_info *qinfo)
2657 {
2658 	struct bnxt *bp = dev->data->dev_private;
2659 	struct bnxt_tx_queue *txq;
2660 
2661 	if (is_bnxt_in_error(bp))
2662 		return;
2663 
2664 	txq = dev->data->tx_queues[queue_id];
2665 
2666 	qinfo->nb_desc = txq->nb_tx_desc;
2667 
2668 	qinfo->conf.tx_thresh.pthresh = txq->pthresh;
2669 	qinfo->conf.tx_thresh.hthresh = txq->hthresh;
2670 	qinfo->conf.tx_thresh.wthresh = txq->wthresh;
2671 
2672 	qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
2673 	qinfo->conf.tx_rs_thresh = 0;
2674 	qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
2675 }
2676 
2677 static int
2678 bnxt_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
2679 		       struct rte_eth_burst_mode *mode)
2680 {
2681 	eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
2682 
2683 	if (pkt_burst == bnxt_recv_pkts) {
2684 		snprintf(mode->info, sizeof(mode->info), "%s",
2685 			 "Scalar");
2686 		return 0;
2687 	}
2688 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
2689 	if (pkt_burst == bnxt_recv_pkts_vec) {
2690 		snprintf(mode->info, sizeof(mode->info), "%s",
2691 			 "Vector SSE");
2692 		return 0;
2693 	}
2694 #endif
2695 
2696 	return -EINVAL;
2697 }
2698 
2699 static int
2700 bnxt_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
2701 		       struct rte_eth_burst_mode *mode)
2702 {
2703 	eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
2704 
2705 	if (pkt_burst == bnxt_xmit_pkts) {
2706 		snprintf(mode->info, sizeof(mode->info), "%s",
2707 			 "Scalar");
2708 		return 0;
2709 	}
2710 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
2711 	if (pkt_burst == bnxt_xmit_pkts_vec) {
2712 		snprintf(mode->info, sizeof(mode->info), "%s",
2713 			 "Vector SSE");
2714 		return 0;
2715 	}
2716 #endif
2717 
2718 	return -EINVAL;
2719 }
2720 
2721 int bnxt_mtu_set_op(struct rte_eth_dev *eth_dev, uint16_t new_mtu)
2722 {
2723 	struct bnxt *bp = eth_dev->data->dev_private;
2724 	uint32_t new_pkt_size;
2725 	uint32_t rc = 0;
2726 	uint32_t i;
2727 
2728 	rc = is_bnxt_in_error(bp);
2729 	if (rc)
2730 		return rc;
2731 
2732 	/* Exit if receive queues are not configured yet */
2733 	if (!eth_dev->data->nb_rx_queues)
2734 		return rc;
2735 
2736 	new_pkt_size = new_mtu + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN +
2737 		       VLAN_TAG_SIZE * BNXT_NUM_VLANS;
2738 
2739 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
2740 	/*
2741 	 * If vector-mode tx/rx is active, disallow any MTU change that would
2742 	 * require scattered receive support.
2743 	 */
2744 	if (eth_dev->data->dev_started &&
2745 	    (eth_dev->rx_pkt_burst == bnxt_recv_pkts_vec ||
2746 	     eth_dev->tx_pkt_burst == bnxt_xmit_pkts_vec) &&
2747 	    (new_pkt_size >
2748 	     eth_dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)) {
2749 		PMD_DRV_LOG(ERR,
2750 			    "MTU change would require scattered rx support. ");
2751 		PMD_DRV_LOG(ERR, "Stop port before changing MTU.\n");
2752 		return -EINVAL;
2753 	}
2754 #endif
2755 
2756 	if (new_mtu > RTE_ETHER_MTU) {
2757 		bp->flags |= BNXT_FLAG_JUMBO;
2758 		bp->eth_dev->data->dev_conf.rxmode.offloads |=
2759 			DEV_RX_OFFLOAD_JUMBO_FRAME;
2760 	} else {
2761 		bp->eth_dev->data->dev_conf.rxmode.offloads &=
2762 			~DEV_RX_OFFLOAD_JUMBO_FRAME;
2763 		bp->flags &= ~BNXT_FLAG_JUMBO;
2764 	}
2765 
2766 	/* Is there a change in mtu setting? */
2767 	if (eth_dev->data->dev_conf.rxmode.max_rx_pkt_len == new_pkt_size)
2768 		return rc;
2769 
2770 	for (i = 0; i < bp->nr_vnics; i++) {
2771 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2772 		uint16_t size = 0;
2773 
2774 		vnic->mru = BNXT_VNIC_MRU(new_mtu);
2775 		rc = bnxt_hwrm_vnic_cfg(bp, vnic);
2776 		if (rc)
2777 			break;
2778 
2779 		size = rte_pktmbuf_data_room_size(bp->rx_queues[0]->mb_pool);
2780 		size -= RTE_PKTMBUF_HEADROOM;
2781 
2782 		if (size < new_mtu) {
2783 			rc = bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
2784 			if (rc)
2785 				return rc;
2786 		}
2787 	}
2788 
2789 	if (!rc)
2790 		eth_dev->data->dev_conf.rxmode.max_rx_pkt_len = new_pkt_size;
2791 
2792 	PMD_DRV_LOG(INFO, "New MTU is %d\n", new_mtu);
2793 
2794 	return rc;
2795 }
2796 
2797 static int
2798 bnxt_vlan_pvid_set_op(struct rte_eth_dev *dev, uint16_t pvid, int on)
2799 {
2800 	struct bnxt *bp = dev->data->dev_private;
2801 	uint16_t vlan = bp->vlan;
2802 	int rc;
2803 
2804 	rc = is_bnxt_in_error(bp);
2805 	if (rc)
2806 		return rc;
2807 
2808 	if (!BNXT_SINGLE_PF(bp) || BNXT_VF(bp)) {
2809 		PMD_DRV_LOG(ERR,
2810 			"PVID cannot be modified for this function\n");
2811 		return -ENOTSUP;
2812 	}
2813 	bp->vlan = on ? pvid : 0;
2814 
2815 	rc = bnxt_hwrm_set_default_vlan(bp, 0, 0);
2816 	if (rc)
2817 		bp->vlan = vlan;
2818 	return rc;
2819 }
2820 
2821 static int
2822 bnxt_dev_led_on_op(struct rte_eth_dev *dev)
2823 {
2824 	struct bnxt *bp = dev->data->dev_private;
2825 	int rc;
2826 
2827 	rc = is_bnxt_in_error(bp);
2828 	if (rc)
2829 		return rc;
2830 
2831 	return bnxt_hwrm_port_led_cfg(bp, true);
2832 }
2833 
2834 static int
2835 bnxt_dev_led_off_op(struct rte_eth_dev *dev)
2836 {
2837 	struct bnxt *bp = dev->data->dev_private;
2838 	int rc;
2839 
2840 	rc = is_bnxt_in_error(bp);
2841 	if (rc)
2842 		return rc;
2843 
2844 	return bnxt_hwrm_port_led_cfg(bp, false);
2845 }
2846 
2847 static uint32_t
2848 bnxt_rx_queue_count_op(struct rte_eth_dev *dev, uint16_t rx_queue_id)
2849 {
2850 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2851 	uint32_t desc = 0, raw_cons = 0, cons;
2852 	struct bnxt_cp_ring_info *cpr;
2853 	struct bnxt_rx_queue *rxq;
2854 	struct rx_pkt_cmpl *rxcmp;
2855 	int rc;
2856 
2857 	rc = is_bnxt_in_error(bp);
2858 	if (rc)
2859 		return rc;
2860 
2861 	rxq = dev->data->rx_queues[rx_queue_id];
2862 	cpr = rxq->cp_ring;
2863 	raw_cons = cpr->cp_raw_cons;
2864 
2865 	while (1) {
2866 		cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
2867 		rte_prefetch0(&cpr->cp_desc_ring[cons]);
2868 		rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
2869 
2870 		if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct)) {
2871 			break;
2872 		} else {
2873 			raw_cons++;
2874 			desc++;
2875 		}
2876 	}
2877 
2878 	return desc;
2879 }
2880 
2881 static int
2882 bnxt_rx_descriptor_status_op(void *rx_queue, uint16_t offset)
2883 {
2884 	struct bnxt_rx_queue *rxq = (struct bnxt_rx_queue *)rx_queue;
2885 	struct bnxt_rx_ring_info *rxr;
2886 	struct bnxt_cp_ring_info *cpr;
2887 	struct bnxt_sw_rx_bd *rx_buf;
2888 	struct rx_pkt_cmpl *rxcmp;
2889 	uint32_t cons, cp_cons;
2890 	int rc;
2891 
2892 	if (!rxq)
2893 		return -EINVAL;
2894 
2895 	rc = is_bnxt_in_error(rxq->bp);
2896 	if (rc)
2897 		return rc;
2898 
2899 	cpr = rxq->cp_ring;
2900 	rxr = rxq->rx_ring;
2901 
2902 	if (offset >= rxq->nb_rx_desc)
2903 		return -EINVAL;
2904 
2905 	cons = RING_CMP(cpr->cp_ring_struct, offset);
2906 	cp_cons = cpr->cp_raw_cons;
2907 	rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
2908 
2909 	if (cons > cp_cons) {
2910 		if (CMPL_VALID(rxcmp, cpr->valid))
2911 			return RTE_ETH_RX_DESC_DONE;
2912 	} else {
2913 		if (CMPL_VALID(rxcmp, !cpr->valid))
2914 			return RTE_ETH_RX_DESC_DONE;
2915 	}
2916 	rx_buf = &rxr->rx_buf_ring[cons];
2917 	if (rx_buf->mbuf == NULL)
2918 		return RTE_ETH_RX_DESC_UNAVAIL;
2919 
2920 
2921 	return RTE_ETH_RX_DESC_AVAIL;
2922 }
2923 
2924 static int
2925 bnxt_tx_descriptor_status_op(void *tx_queue, uint16_t offset)
2926 {
2927 	struct bnxt_tx_queue *txq = (struct bnxt_tx_queue *)tx_queue;
2928 	struct bnxt_tx_ring_info *txr;
2929 	struct bnxt_cp_ring_info *cpr;
2930 	struct bnxt_sw_tx_bd *tx_buf;
2931 	struct tx_pkt_cmpl *txcmp;
2932 	uint32_t cons, cp_cons;
2933 	int rc;
2934 
2935 	if (!txq)
2936 		return -EINVAL;
2937 
2938 	rc = is_bnxt_in_error(txq->bp);
2939 	if (rc)
2940 		return rc;
2941 
2942 	cpr = txq->cp_ring;
2943 	txr = txq->tx_ring;
2944 
2945 	if (offset >= txq->nb_tx_desc)
2946 		return -EINVAL;
2947 
2948 	cons = RING_CMP(cpr->cp_ring_struct, offset);
2949 	txcmp = (struct tx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
2950 	cp_cons = cpr->cp_raw_cons;
2951 
2952 	if (cons > cp_cons) {
2953 		if (CMPL_VALID(txcmp, cpr->valid))
2954 			return RTE_ETH_TX_DESC_UNAVAIL;
2955 	} else {
2956 		if (CMPL_VALID(txcmp, !cpr->valid))
2957 			return RTE_ETH_TX_DESC_UNAVAIL;
2958 	}
2959 	tx_buf = &txr->tx_buf_ring[cons];
2960 	if (tx_buf->mbuf == NULL)
2961 		return RTE_ETH_TX_DESC_DONE;
2962 
2963 	return RTE_ETH_TX_DESC_FULL;
2964 }
2965 
2966 static struct bnxt_filter_info *
2967 bnxt_match_and_validate_ether_filter(struct bnxt *bp,
2968 				struct rte_eth_ethertype_filter *efilter,
2969 				struct bnxt_vnic_info *vnic0,
2970 				struct bnxt_vnic_info *vnic,
2971 				int *ret)
2972 {
2973 	struct bnxt_filter_info *mfilter = NULL;
2974 	int match = 0;
2975 	*ret = 0;
2976 
2977 	if (efilter->ether_type == RTE_ETHER_TYPE_IPV4 ||
2978 		efilter->ether_type == RTE_ETHER_TYPE_IPV6) {
2979 		PMD_DRV_LOG(ERR, "invalid ether_type(0x%04x) in"
2980 			" ethertype filter.", efilter->ether_type);
2981 		*ret = -EINVAL;
2982 		goto exit;
2983 	}
2984 	if (efilter->queue >= bp->rx_nr_rings) {
2985 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", efilter->queue);
2986 		*ret = -EINVAL;
2987 		goto exit;
2988 	}
2989 
2990 	vnic0 = BNXT_GET_DEFAULT_VNIC(bp);
2991 	vnic = &bp->vnic_info[efilter->queue];
2992 	if (vnic == NULL) {
2993 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", efilter->queue);
2994 		*ret = -EINVAL;
2995 		goto exit;
2996 	}
2997 
2998 	if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
2999 		STAILQ_FOREACH(mfilter, &vnic0->filter, next) {
3000 			if ((!memcmp(efilter->mac_addr.addr_bytes,
3001 				     mfilter->l2_addr, RTE_ETHER_ADDR_LEN) &&
3002 			     mfilter->flags ==
3003 			     HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP &&
3004 			     mfilter->ethertype == efilter->ether_type)) {
3005 				match = 1;
3006 				break;
3007 			}
3008 		}
3009 	} else {
3010 		STAILQ_FOREACH(mfilter, &vnic->filter, next)
3011 			if ((!memcmp(efilter->mac_addr.addr_bytes,
3012 				     mfilter->l2_addr, RTE_ETHER_ADDR_LEN) &&
3013 			     mfilter->ethertype == efilter->ether_type &&
3014 			     mfilter->flags ==
3015 			     HWRM_CFA_L2_FILTER_CFG_INPUT_FLAGS_PATH_RX)) {
3016 				match = 1;
3017 				break;
3018 			}
3019 	}
3020 
3021 	if (match)
3022 		*ret = -EEXIST;
3023 
3024 exit:
3025 	return mfilter;
3026 }
3027 
3028 static int
3029 bnxt_ethertype_filter(struct rte_eth_dev *dev,
3030 			enum rte_filter_op filter_op,
3031 			void *arg)
3032 {
3033 	struct bnxt *bp = dev->data->dev_private;
3034 	struct rte_eth_ethertype_filter *efilter =
3035 			(struct rte_eth_ethertype_filter *)arg;
3036 	struct bnxt_filter_info *bfilter, *filter1;
3037 	struct bnxt_vnic_info *vnic, *vnic0;
3038 	int ret;
3039 
3040 	if (filter_op == RTE_ETH_FILTER_NOP)
3041 		return 0;
3042 
3043 	if (arg == NULL) {
3044 		PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
3045 			    filter_op);
3046 		return -EINVAL;
3047 	}
3048 
3049 	vnic0 = BNXT_GET_DEFAULT_VNIC(bp);
3050 	vnic = &bp->vnic_info[efilter->queue];
3051 
3052 	switch (filter_op) {
3053 	case RTE_ETH_FILTER_ADD:
3054 		bnxt_match_and_validate_ether_filter(bp, efilter,
3055 							vnic0, vnic, &ret);
3056 		if (ret < 0)
3057 			return ret;
3058 
3059 		bfilter = bnxt_get_unused_filter(bp);
3060 		if (bfilter == NULL) {
3061 			PMD_DRV_LOG(ERR,
3062 				"Not enough resources for a new filter.\n");
3063 			return -ENOMEM;
3064 		}
3065 		bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
3066 		memcpy(bfilter->l2_addr, efilter->mac_addr.addr_bytes,
3067 		       RTE_ETHER_ADDR_LEN);
3068 		memcpy(bfilter->dst_macaddr, efilter->mac_addr.addr_bytes,
3069 		       RTE_ETHER_ADDR_LEN);
3070 		bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
3071 		bfilter->ethertype = efilter->ether_type;
3072 		bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
3073 
3074 		filter1 = bnxt_get_l2_filter(bp, bfilter, vnic0);
3075 		if (filter1 == NULL) {
3076 			ret = -EINVAL;
3077 			goto cleanup;
3078 		}
3079 		bfilter->enables |=
3080 			HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
3081 		bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
3082 
3083 		bfilter->dst_id = vnic->fw_vnic_id;
3084 
3085 		if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
3086 			bfilter->flags =
3087 				HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
3088 		}
3089 
3090 		ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
3091 		if (ret)
3092 			goto cleanup;
3093 		STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
3094 		break;
3095 	case RTE_ETH_FILTER_DELETE:
3096 		filter1 = bnxt_match_and_validate_ether_filter(bp, efilter,
3097 							vnic0, vnic, &ret);
3098 		if (ret == -EEXIST) {
3099 			ret = bnxt_hwrm_clear_ntuple_filter(bp, filter1);
3100 
3101 			STAILQ_REMOVE(&vnic->filter, filter1, bnxt_filter_info,
3102 				      next);
3103 			bnxt_free_filter(bp, filter1);
3104 		} else if (ret == 0) {
3105 			PMD_DRV_LOG(ERR, "No matching filter found\n");
3106 		}
3107 		break;
3108 	default:
3109 		PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
3110 		ret = -EINVAL;
3111 		goto error;
3112 	}
3113 	return ret;
3114 cleanup:
3115 	bnxt_free_filter(bp, bfilter);
3116 error:
3117 	return ret;
3118 }
3119 
3120 static inline int
3121 parse_ntuple_filter(struct bnxt *bp,
3122 		    struct rte_eth_ntuple_filter *nfilter,
3123 		    struct bnxt_filter_info *bfilter)
3124 {
3125 	uint32_t en = 0;
3126 
3127 	if (nfilter->queue >= bp->rx_nr_rings) {
3128 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", nfilter->queue);
3129 		return -EINVAL;
3130 	}
3131 
3132 	switch (nfilter->dst_port_mask) {
3133 	case UINT16_MAX:
3134 		bfilter->dst_port_mask = -1;
3135 		bfilter->dst_port = nfilter->dst_port;
3136 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT |
3137 			NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
3138 		break;
3139 	default:
3140 		PMD_DRV_LOG(ERR, "invalid dst_port mask.");
3141 		return -EINVAL;
3142 	}
3143 
3144 	bfilter->ip_addr_type = NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
3145 	en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
3146 
3147 	switch (nfilter->proto_mask) {
3148 	case UINT8_MAX:
3149 		if (nfilter->proto == 17) /* IPPROTO_UDP */
3150 			bfilter->ip_protocol = 17;
3151 		else if (nfilter->proto == 6) /* IPPROTO_TCP */
3152 			bfilter->ip_protocol = 6;
3153 		else
3154 			return -EINVAL;
3155 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
3156 		break;
3157 	default:
3158 		PMD_DRV_LOG(ERR, "invalid protocol mask.");
3159 		return -EINVAL;
3160 	}
3161 
3162 	switch (nfilter->dst_ip_mask) {
3163 	case UINT32_MAX:
3164 		bfilter->dst_ipaddr_mask[0] = -1;
3165 		bfilter->dst_ipaddr[0] = nfilter->dst_ip;
3166 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR |
3167 			NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
3168 		break;
3169 	default:
3170 		PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
3171 		return -EINVAL;
3172 	}
3173 
3174 	switch (nfilter->src_ip_mask) {
3175 	case UINT32_MAX:
3176 		bfilter->src_ipaddr_mask[0] = -1;
3177 		bfilter->src_ipaddr[0] = nfilter->src_ip;
3178 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR |
3179 			NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
3180 		break;
3181 	default:
3182 		PMD_DRV_LOG(ERR, "invalid src_ip mask.");
3183 		return -EINVAL;
3184 	}
3185 
3186 	switch (nfilter->src_port_mask) {
3187 	case UINT16_MAX:
3188 		bfilter->src_port_mask = -1;
3189 		bfilter->src_port = nfilter->src_port;
3190 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT |
3191 			NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
3192 		break;
3193 	default:
3194 		PMD_DRV_LOG(ERR, "invalid src_port mask.");
3195 		return -EINVAL;
3196 	}
3197 
3198 	bfilter->enables = en;
3199 	return 0;
3200 }
3201 
3202 static struct bnxt_filter_info*
3203 bnxt_match_ntuple_filter(struct bnxt *bp,
3204 			 struct bnxt_filter_info *bfilter,
3205 			 struct bnxt_vnic_info **mvnic)
3206 {
3207 	struct bnxt_filter_info *mfilter = NULL;
3208 	int i;
3209 
3210 	for (i = bp->nr_vnics - 1; i >= 0; i--) {
3211 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3212 		STAILQ_FOREACH(mfilter, &vnic->filter, next) {
3213 			if (bfilter->src_ipaddr[0] == mfilter->src_ipaddr[0] &&
3214 			    bfilter->src_ipaddr_mask[0] ==
3215 			    mfilter->src_ipaddr_mask[0] &&
3216 			    bfilter->src_port == mfilter->src_port &&
3217 			    bfilter->src_port_mask == mfilter->src_port_mask &&
3218 			    bfilter->dst_ipaddr[0] == mfilter->dst_ipaddr[0] &&
3219 			    bfilter->dst_ipaddr_mask[0] ==
3220 			    mfilter->dst_ipaddr_mask[0] &&
3221 			    bfilter->dst_port == mfilter->dst_port &&
3222 			    bfilter->dst_port_mask == mfilter->dst_port_mask &&
3223 			    bfilter->flags == mfilter->flags &&
3224 			    bfilter->enables == mfilter->enables) {
3225 				if (mvnic)
3226 					*mvnic = vnic;
3227 				return mfilter;
3228 			}
3229 		}
3230 	}
3231 	return NULL;
3232 }
3233 
3234 static int
3235 bnxt_cfg_ntuple_filter(struct bnxt *bp,
3236 		       struct rte_eth_ntuple_filter *nfilter,
3237 		       enum rte_filter_op filter_op)
3238 {
3239 	struct bnxt_filter_info *bfilter, *mfilter, *filter1;
3240 	struct bnxt_vnic_info *vnic, *vnic0, *mvnic;
3241 	int ret;
3242 
3243 	if (nfilter->flags != RTE_5TUPLE_FLAGS) {
3244 		PMD_DRV_LOG(ERR, "only 5tuple is supported.");
3245 		return -EINVAL;
3246 	}
3247 
3248 	if (nfilter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG) {
3249 		PMD_DRV_LOG(ERR, "Ntuple filter: TCP flags not supported\n");
3250 		return -EINVAL;
3251 	}
3252 
3253 	bfilter = bnxt_get_unused_filter(bp);
3254 	if (bfilter == NULL) {
3255 		PMD_DRV_LOG(ERR,
3256 			"Not enough resources for a new filter.\n");
3257 		return -ENOMEM;
3258 	}
3259 	ret = parse_ntuple_filter(bp, nfilter, bfilter);
3260 	if (ret < 0)
3261 		goto free_filter;
3262 
3263 	vnic = &bp->vnic_info[nfilter->queue];
3264 	vnic0 = BNXT_GET_DEFAULT_VNIC(bp);
3265 	filter1 = STAILQ_FIRST(&vnic0->filter);
3266 	if (filter1 == NULL) {
3267 		ret = -EINVAL;
3268 		goto free_filter;
3269 	}
3270 
3271 	bfilter->dst_id = vnic->fw_vnic_id;
3272 	bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
3273 	bfilter->enables |=
3274 		HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
3275 	bfilter->ethertype = 0x800;
3276 	bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
3277 
3278 	mfilter = bnxt_match_ntuple_filter(bp, bfilter, &mvnic);
3279 
3280 	if (mfilter != NULL && filter_op == RTE_ETH_FILTER_ADD &&
3281 	    bfilter->dst_id == mfilter->dst_id) {
3282 		PMD_DRV_LOG(ERR, "filter exists.\n");
3283 		ret = -EEXIST;
3284 		goto free_filter;
3285 	} else if (mfilter != NULL && filter_op == RTE_ETH_FILTER_ADD &&
3286 		   bfilter->dst_id != mfilter->dst_id) {
3287 		mfilter->dst_id = vnic->fw_vnic_id;
3288 		ret = bnxt_hwrm_set_ntuple_filter(bp, mfilter->dst_id, mfilter);
3289 		STAILQ_REMOVE(&mvnic->filter, mfilter, bnxt_filter_info, next);
3290 		STAILQ_INSERT_TAIL(&vnic->filter, mfilter, next);
3291 		PMD_DRV_LOG(ERR, "filter with matching pattern exists.\n");
3292 		PMD_DRV_LOG(ERR, " Updated it to the new destination queue\n");
3293 		goto free_filter;
3294 	}
3295 	if (mfilter == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
3296 		PMD_DRV_LOG(ERR, "filter doesn't exist.");
3297 		ret = -ENOENT;
3298 		goto free_filter;
3299 	}
3300 
3301 	if (filter_op == RTE_ETH_FILTER_ADD) {
3302 		bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
3303 		ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
3304 		if (ret)
3305 			goto free_filter;
3306 		STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
3307 	} else {
3308 		if (mfilter == NULL) {
3309 			/* This should not happen. But for Coverity! */
3310 			ret = -ENOENT;
3311 			goto free_filter;
3312 		}
3313 		ret = bnxt_hwrm_clear_ntuple_filter(bp, mfilter);
3314 
3315 		STAILQ_REMOVE(&vnic->filter, mfilter, bnxt_filter_info, next);
3316 		bnxt_free_filter(bp, mfilter);
3317 		bnxt_free_filter(bp, bfilter);
3318 	}
3319 
3320 	return 0;
3321 free_filter:
3322 	bnxt_free_filter(bp, bfilter);
3323 	return ret;
3324 }
3325 
3326 static int
3327 bnxt_ntuple_filter(struct rte_eth_dev *dev,
3328 			enum rte_filter_op filter_op,
3329 			void *arg)
3330 {
3331 	struct bnxt *bp = dev->data->dev_private;
3332 	int ret;
3333 
3334 	if (filter_op == RTE_ETH_FILTER_NOP)
3335 		return 0;
3336 
3337 	if (arg == NULL) {
3338 		PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
3339 			    filter_op);
3340 		return -EINVAL;
3341 	}
3342 
3343 	switch (filter_op) {
3344 	case RTE_ETH_FILTER_ADD:
3345 		ret = bnxt_cfg_ntuple_filter(bp,
3346 			(struct rte_eth_ntuple_filter *)arg,
3347 			filter_op);
3348 		break;
3349 	case RTE_ETH_FILTER_DELETE:
3350 		ret = bnxt_cfg_ntuple_filter(bp,
3351 			(struct rte_eth_ntuple_filter *)arg,
3352 			filter_op);
3353 		break;
3354 	default:
3355 		PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
3356 		ret = -EINVAL;
3357 		break;
3358 	}
3359 	return ret;
3360 }
3361 
3362 static int
3363 bnxt_parse_fdir_filter(struct bnxt *bp,
3364 		       struct rte_eth_fdir_filter *fdir,
3365 		       struct bnxt_filter_info *filter)
3366 {
3367 	enum rte_fdir_mode fdir_mode =
3368 		bp->eth_dev->data->dev_conf.fdir_conf.mode;
3369 	struct bnxt_vnic_info *vnic0, *vnic;
3370 	struct bnxt_filter_info *filter1;
3371 	uint32_t en = 0;
3372 	int i;
3373 
3374 	if (fdir_mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
3375 		return -EINVAL;
3376 
3377 	filter->l2_ovlan = fdir->input.flow_ext.vlan_tci;
3378 	en |= EM_FLOW_ALLOC_INPUT_EN_OVLAN_VID;
3379 
3380 	switch (fdir->input.flow_type) {
3381 	case RTE_ETH_FLOW_IPV4:
3382 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
3383 		/* FALLTHROUGH */
3384 		filter->src_ipaddr[0] = fdir->input.flow.ip4_flow.src_ip;
3385 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
3386 		filter->dst_ipaddr[0] = fdir->input.flow.ip4_flow.dst_ip;
3387 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
3388 		filter->ip_protocol = fdir->input.flow.ip4_flow.proto;
3389 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
3390 		filter->ip_addr_type =
3391 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
3392 		filter->src_ipaddr_mask[0] = 0xffffffff;
3393 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
3394 		filter->dst_ipaddr_mask[0] = 0xffffffff;
3395 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
3396 		filter->ethertype = 0x800;
3397 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
3398 		break;
3399 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
3400 		filter->src_port = fdir->input.flow.tcp4_flow.src_port;
3401 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
3402 		filter->dst_port = fdir->input.flow.tcp4_flow.dst_port;
3403 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
3404 		filter->dst_port_mask = 0xffff;
3405 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
3406 		filter->src_port_mask = 0xffff;
3407 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
3408 		filter->src_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.src_ip;
3409 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
3410 		filter->dst_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.dst_ip;
3411 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
3412 		filter->ip_protocol = 6;
3413 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
3414 		filter->ip_addr_type =
3415 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
3416 		filter->src_ipaddr_mask[0] = 0xffffffff;
3417 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
3418 		filter->dst_ipaddr_mask[0] = 0xffffffff;
3419 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
3420 		filter->ethertype = 0x800;
3421 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
3422 		break;
3423 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
3424 		filter->src_port = fdir->input.flow.udp4_flow.src_port;
3425 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
3426 		filter->dst_port = fdir->input.flow.udp4_flow.dst_port;
3427 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
3428 		filter->dst_port_mask = 0xffff;
3429 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
3430 		filter->src_port_mask = 0xffff;
3431 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
3432 		filter->src_ipaddr[0] = fdir->input.flow.udp4_flow.ip.src_ip;
3433 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
3434 		filter->dst_ipaddr[0] = fdir->input.flow.udp4_flow.ip.dst_ip;
3435 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
3436 		filter->ip_protocol = 17;
3437 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
3438 		filter->ip_addr_type =
3439 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
3440 		filter->src_ipaddr_mask[0] = 0xffffffff;
3441 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
3442 		filter->dst_ipaddr_mask[0] = 0xffffffff;
3443 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
3444 		filter->ethertype = 0x800;
3445 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
3446 		break;
3447 	case RTE_ETH_FLOW_IPV6:
3448 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
3449 		/* FALLTHROUGH */
3450 		filter->ip_addr_type =
3451 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
3452 		filter->ip_protocol = fdir->input.flow.ipv6_flow.proto;
3453 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
3454 		rte_memcpy(filter->src_ipaddr,
3455 			   fdir->input.flow.ipv6_flow.src_ip, 16);
3456 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
3457 		rte_memcpy(filter->dst_ipaddr,
3458 			   fdir->input.flow.ipv6_flow.dst_ip, 16);
3459 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
3460 		memset(filter->dst_ipaddr_mask, 0xff, 16);
3461 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
3462 		memset(filter->src_ipaddr_mask, 0xff, 16);
3463 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
3464 		filter->ethertype = 0x86dd;
3465 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
3466 		break;
3467 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
3468 		filter->src_port = fdir->input.flow.tcp6_flow.src_port;
3469 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
3470 		filter->dst_port = fdir->input.flow.tcp6_flow.dst_port;
3471 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
3472 		filter->dst_port_mask = 0xffff;
3473 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
3474 		filter->src_port_mask = 0xffff;
3475 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
3476 		filter->ip_addr_type =
3477 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
3478 		filter->ip_protocol = fdir->input.flow.tcp6_flow.ip.proto;
3479 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
3480 		rte_memcpy(filter->src_ipaddr,
3481 			   fdir->input.flow.tcp6_flow.ip.src_ip, 16);
3482 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
3483 		rte_memcpy(filter->dst_ipaddr,
3484 			   fdir->input.flow.tcp6_flow.ip.dst_ip, 16);
3485 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
3486 		memset(filter->dst_ipaddr_mask, 0xff, 16);
3487 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
3488 		memset(filter->src_ipaddr_mask, 0xff, 16);
3489 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
3490 		filter->ethertype = 0x86dd;
3491 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
3492 		break;
3493 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
3494 		filter->src_port = fdir->input.flow.udp6_flow.src_port;
3495 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
3496 		filter->dst_port = fdir->input.flow.udp6_flow.dst_port;
3497 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
3498 		filter->dst_port_mask = 0xffff;
3499 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
3500 		filter->src_port_mask = 0xffff;
3501 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
3502 		filter->ip_addr_type =
3503 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
3504 		filter->ip_protocol = fdir->input.flow.udp6_flow.ip.proto;
3505 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
3506 		rte_memcpy(filter->src_ipaddr,
3507 			   fdir->input.flow.udp6_flow.ip.src_ip, 16);
3508 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
3509 		rte_memcpy(filter->dst_ipaddr,
3510 			   fdir->input.flow.udp6_flow.ip.dst_ip, 16);
3511 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
3512 		memset(filter->dst_ipaddr_mask, 0xff, 16);
3513 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
3514 		memset(filter->src_ipaddr_mask, 0xff, 16);
3515 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
3516 		filter->ethertype = 0x86dd;
3517 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
3518 		break;
3519 	case RTE_ETH_FLOW_L2_PAYLOAD:
3520 		filter->ethertype = fdir->input.flow.l2_flow.ether_type;
3521 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
3522 		break;
3523 	case RTE_ETH_FLOW_VXLAN:
3524 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
3525 			return -EINVAL;
3526 		filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
3527 		filter->tunnel_type =
3528 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
3529 		en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
3530 		break;
3531 	case RTE_ETH_FLOW_NVGRE:
3532 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
3533 			return -EINVAL;
3534 		filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
3535 		filter->tunnel_type =
3536 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_NVGRE;
3537 		en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
3538 		break;
3539 	case RTE_ETH_FLOW_UNKNOWN:
3540 	case RTE_ETH_FLOW_RAW:
3541 	case RTE_ETH_FLOW_FRAG_IPV4:
3542 	case RTE_ETH_FLOW_NONFRAG_IPV4_SCTP:
3543 	case RTE_ETH_FLOW_FRAG_IPV6:
3544 	case RTE_ETH_FLOW_NONFRAG_IPV6_SCTP:
3545 	case RTE_ETH_FLOW_IPV6_EX:
3546 	case RTE_ETH_FLOW_IPV6_TCP_EX:
3547 	case RTE_ETH_FLOW_IPV6_UDP_EX:
3548 	case RTE_ETH_FLOW_GENEVE:
3549 		/* FALLTHROUGH */
3550 	default:
3551 		return -EINVAL;
3552 	}
3553 
3554 	vnic0 = BNXT_GET_DEFAULT_VNIC(bp);
3555 	vnic = &bp->vnic_info[fdir->action.rx_queue];
3556 	if (vnic == NULL) {
3557 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", fdir->action.rx_queue);
3558 		return -EINVAL;
3559 	}
3560 
3561 	if (fdir_mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
3562 		rte_memcpy(filter->dst_macaddr,
3563 			fdir->input.flow.mac_vlan_flow.mac_addr.addr_bytes, 6);
3564 			en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
3565 	}
3566 
3567 	if (fdir->action.behavior == RTE_ETH_FDIR_REJECT) {
3568 		filter->flags = HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
3569 		filter1 = STAILQ_FIRST(&vnic0->filter);
3570 		//filter1 = bnxt_get_l2_filter(bp, filter, vnic0);
3571 	} else {
3572 		filter->dst_id = vnic->fw_vnic_id;
3573 		for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
3574 			if (filter->dst_macaddr[i] == 0x00)
3575 				filter1 = STAILQ_FIRST(&vnic0->filter);
3576 			else
3577 				filter1 = bnxt_get_l2_filter(bp, filter, vnic);
3578 	}
3579 
3580 	if (filter1 == NULL)
3581 		return -EINVAL;
3582 
3583 	en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
3584 	filter->fw_l2_filter_id = filter1->fw_l2_filter_id;
3585 
3586 	filter->enables = en;
3587 
3588 	return 0;
3589 }
3590 
3591 static struct bnxt_filter_info *
3592 bnxt_match_fdir(struct bnxt *bp, struct bnxt_filter_info *nf,
3593 		struct bnxt_vnic_info **mvnic)
3594 {
3595 	struct bnxt_filter_info *mf = NULL;
3596 	int i;
3597 
3598 	for (i = bp->nr_vnics - 1; i >= 0; i--) {
3599 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3600 
3601 		STAILQ_FOREACH(mf, &vnic->filter, next) {
3602 			if (mf->filter_type == nf->filter_type &&
3603 			    mf->flags == nf->flags &&
3604 			    mf->src_port == nf->src_port &&
3605 			    mf->src_port_mask == nf->src_port_mask &&
3606 			    mf->dst_port == nf->dst_port &&
3607 			    mf->dst_port_mask == nf->dst_port_mask &&
3608 			    mf->ip_protocol == nf->ip_protocol &&
3609 			    mf->ip_addr_type == nf->ip_addr_type &&
3610 			    mf->ethertype == nf->ethertype &&
3611 			    mf->vni == nf->vni &&
3612 			    mf->tunnel_type == nf->tunnel_type &&
3613 			    mf->l2_ovlan == nf->l2_ovlan &&
3614 			    mf->l2_ovlan_mask == nf->l2_ovlan_mask &&
3615 			    mf->l2_ivlan == nf->l2_ivlan &&
3616 			    mf->l2_ivlan_mask == nf->l2_ivlan_mask &&
3617 			    !memcmp(mf->l2_addr, nf->l2_addr,
3618 				    RTE_ETHER_ADDR_LEN) &&
3619 			    !memcmp(mf->l2_addr_mask, nf->l2_addr_mask,
3620 				    RTE_ETHER_ADDR_LEN) &&
3621 			    !memcmp(mf->src_macaddr, nf->src_macaddr,
3622 				    RTE_ETHER_ADDR_LEN) &&
3623 			    !memcmp(mf->dst_macaddr, nf->dst_macaddr,
3624 				    RTE_ETHER_ADDR_LEN) &&
3625 			    !memcmp(mf->src_ipaddr, nf->src_ipaddr,
3626 				    sizeof(nf->src_ipaddr)) &&
3627 			    !memcmp(mf->src_ipaddr_mask, nf->src_ipaddr_mask,
3628 				    sizeof(nf->src_ipaddr_mask)) &&
3629 			    !memcmp(mf->dst_ipaddr, nf->dst_ipaddr,
3630 				    sizeof(nf->dst_ipaddr)) &&
3631 			    !memcmp(mf->dst_ipaddr_mask, nf->dst_ipaddr_mask,
3632 				    sizeof(nf->dst_ipaddr_mask))) {
3633 				if (mvnic)
3634 					*mvnic = vnic;
3635 				return mf;
3636 			}
3637 		}
3638 	}
3639 	return NULL;
3640 }
3641 
3642 static int
3643 bnxt_fdir_filter(struct rte_eth_dev *dev,
3644 		 enum rte_filter_op filter_op,
3645 		 void *arg)
3646 {
3647 	struct bnxt *bp = dev->data->dev_private;
3648 	struct rte_eth_fdir_filter *fdir  = (struct rte_eth_fdir_filter *)arg;
3649 	struct bnxt_filter_info *filter, *match;
3650 	struct bnxt_vnic_info *vnic, *mvnic;
3651 	int ret = 0, i;
3652 
3653 	if (filter_op == RTE_ETH_FILTER_NOP)
3654 		return 0;
3655 
3656 	if (arg == NULL && filter_op != RTE_ETH_FILTER_FLUSH)
3657 		return -EINVAL;
3658 
3659 	switch (filter_op) {
3660 	case RTE_ETH_FILTER_ADD:
3661 	case RTE_ETH_FILTER_DELETE:
3662 		/* FALLTHROUGH */
3663 		filter = bnxt_get_unused_filter(bp);
3664 		if (filter == NULL) {
3665 			PMD_DRV_LOG(ERR,
3666 				"Not enough resources for a new flow.\n");
3667 			return -ENOMEM;
3668 		}
3669 
3670 		ret = bnxt_parse_fdir_filter(bp, fdir, filter);
3671 		if (ret != 0)
3672 			goto free_filter;
3673 		filter->filter_type = HWRM_CFA_NTUPLE_FILTER;
3674 
3675 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
3676 			vnic = &bp->vnic_info[0];
3677 		else
3678 			vnic = &bp->vnic_info[fdir->action.rx_queue];
3679 
3680 		match = bnxt_match_fdir(bp, filter, &mvnic);
3681 		if (match != NULL && filter_op == RTE_ETH_FILTER_ADD) {
3682 			if (match->dst_id == vnic->fw_vnic_id) {
3683 				PMD_DRV_LOG(ERR, "Flow already exists.\n");
3684 				ret = -EEXIST;
3685 				goto free_filter;
3686 			} else {
3687 				match->dst_id = vnic->fw_vnic_id;
3688 				ret = bnxt_hwrm_set_ntuple_filter(bp,
3689 								  match->dst_id,
3690 								  match);
3691 				STAILQ_REMOVE(&mvnic->filter, match,
3692 					      bnxt_filter_info, next);
3693 				STAILQ_INSERT_TAIL(&vnic->filter, match, next);
3694 				PMD_DRV_LOG(ERR,
3695 					"Filter with matching pattern exist\n");
3696 				PMD_DRV_LOG(ERR,
3697 					"Updated it to new destination q\n");
3698 				goto free_filter;
3699 			}
3700 		}
3701 		if (match == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
3702 			PMD_DRV_LOG(ERR, "Flow does not exist.\n");
3703 			ret = -ENOENT;
3704 			goto free_filter;
3705 		}
3706 
3707 		if (filter_op == RTE_ETH_FILTER_ADD) {
3708 			ret = bnxt_hwrm_set_ntuple_filter(bp,
3709 							  filter->dst_id,
3710 							  filter);
3711 			if (ret)
3712 				goto free_filter;
3713 			STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
3714 		} else {
3715 			ret = bnxt_hwrm_clear_ntuple_filter(bp, match);
3716 			STAILQ_REMOVE(&vnic->filter, match,
3717 				      bnxt_filter_info, next);
3718 			bnxt_free_filter(bp, match);
3719 			bnxt_free_filter(bp, filter);
3720 		}
3721 		break;
3722 	case RTE_ETH_FILTER_FLUSH:
3723 		for (i = bp->nr_vnics - 1; i >= 0; i--) {
3724 			struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3725 
3726 			STAILQ_FOREACH(filter, &vnic->filter, next) {
3727 				if (filter->filter_type ==
3728 				    HWRM_CFA_NTUPLE_FILTER) {
3729 					ret =
3730 					bnxt_hwrm_clear_ntuple_filter(bp,
3731 								      filter);
3732 					STAILQ_REMOVE(&vnic->filter, filter,
3733 						      bnxt_filter_info, next);
3734 				}
3735 			}
3736 		}
3737 		return ret;
3738 	case RTE_ETH_FILTER_UPDATE:
3739 	case RTE_ETH_FILTER_STATS:
3740 	case RTE_ETH_FILTER_INFO:
3741 		PMD_DRV_LOG(ERR, "operation %u not implemented", filter_op);
3742 		break;
3743 	default:
3744 		PMD_DRV_LOG(ERR, "unknown operation %u", filter_op);
3745 		ret = -EINVAL;
3746 		break;
3747 	}
3748 	return ret;
3749 
3750 free_filter:
3751 	bnxt_free_filter(bp, filter);
3752 	return ret;
3753 }
3754 
3755 int
3756 bnxt_filter_ctrl_op(struct rte_eth_dev *dev,
3757 		    enum rte_filter_type filter_type,
3758 		    enum rte_filter_op filter_op, void *arg)
3759 {
3760 	struct bnxt *bp = dev->data->dev_private;
3761 	int ret = 0;
3762 
3763 	if (BNXT_ETH_DEV_IS_REPRESENTOR(dev)) {
3764 		struct bnxt_vf_representor *vfr = dev->data->dev_private;
3765 		bp = vfr->parent_dev->data->dev_private;
3766 	}
3767 
3768 	ret = is_bnxt_in_error(bp);
3769 	if (ret)
3770 		return ret;
3771 
3772 	switch (filter_type) {
3773 	case RTE_ETH_FILTER_TUNNEL:
3774 		PMD_DRV_LOG(ERR,
3775 			"filter type: %d: To be implemented\n", filter_type);
3776 		break;
3777 	case RTE_ETH_FILTER_FDIR:
3778 		ret = bnxt_fdir_filter(dev, filter_op, arg);
3779 		break;
3780 	case RTE_ETH_FILTER_NTUPLE:
3781 		ret = bnxt_ntuple_filter(dev, filter_op, arg);
3782 		break;
3783 	case RTE_ETH_FILTER_ETHERTYPE:
3784 		ret = bnxt_ethertype_filter(dev, filter_op, arg);
3785 		break;
3786 	case RTE_ETH_FILTER_GENERIC:
3787 		if (filter_op != RTE_ETH_FILTER_GET)
3788 			return -EINVAL;
3789 		if (BNXT_TRUFLOW_EN(bp))
3790 			*(const void **)arg = &bnxt_ulp_rte_flow_ops;
3791 		else
3792 			*(const void **)arg = &bnxt_flow_ops;
3793 		break;
3794 	default:
3795 		PMD_DRV_LOG(ERR,
3796 			"Filter type (%d) not supported", filter_type);
3797 		ret = -EINVAL;
3798 		break;
3799 	}
3800 	return ret;
3801 }
3802 
3803 static const uint32_t *
3804 bnxt_dev_supported_ptypes_get_op(struct rte_eth_dev *dev)
3805 {
3806 	static const uint32_t ptypes[] = {
3807 		RTE_PTYPE_L2_ETHER_VLAN,
3808 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
3809 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
3810 		RTE_PTYPE_L4_ICMP,
3811 		RTE_PTYPE_L4_TCP,
3812 		RTE_PTYPE_L4_UDP,
3813 		RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
3814 		RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
3815 		RTE_PTYPE_INNER_L4_ICMP,
3816 		RTE_PTYPE_INNER_L4_TCP,
3817 		RTE_PTYPE_INNER_L4_UDP,
3818 		RTE_PTYPE_UNKNOWN
3819 	};
3820 
3821 	if (!dev->rx_pkt_burst)
3822 		return NULL;
3823 
3824 	return ptypes;
3825 }
3826 
3827 static int bnxt_map_regs(struct bnxt *bp, uint32_t *reg_arr, int count,
3828 			 int reg_win)
3829 {
3830 	uint32_t reg_base = *reg_arr & 0xfffff000;
3831 	uint32_t win_off;
3832 	int i;
3833 
3834 	for (i = 0; i < count; i++) {
3835 		if ((reg_arr[i] & 0xfffff000) != reg_base)
3836 			return -ERANGE;
3837 	}
3838 	win_off = BNXT_GRCPF_REG_WINDOW_BASE_OUT + (reg_win - 1) * 4;
3839 	rte_write32(reg_base, (uint8_t *)bp->bar0 + win_off);
3840 	return 0;
3841 }
3842 
3843 static int bnxt_map_ptp_regs(struct bnxt *bp)
3844 {
3845 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3846 	uint32_t *reg_arr;
3847 	int rc, i;
3848 
3849 	reg_arr = ptp->rx_regs;
3850 	rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_RX_REGS, 5);
3851 	if (rc)
3852 		return rc;
3853 
3854 	reg_arr = ptp->tx_regs;
3855 	rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_TX_REGS, 6);
3856 	if (rc)
3857 		return rc;
3858 
3859 	for (i = 0; i < BNXT_PTP_RX_REGS; i++)
3860 		ptp->rx_mapped_regs[i] = 0x5000 + (ptp->rx_regs[i] & 0xfff);
3861 
3862 	for (i = 0; i < BNXT_PTP_TX_REGS; i++)
3863 		ptp->tx_mapped_regs[i] = 0x6000 + (ptp->tx_regs[i] & 0xfff);
3864 
3865 	return 0;
3866 }
3867 
3868 static void bnxt_unmap_ptp_regs(struct bnxt *bp)
3869 {
3870 	rte_write32(0, (uint8_t *)bp->bar0 +
3871 			 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 16);
3872 	rte_write32(0, (uint8_t *)bp->bar0 +
3873 			 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 20);
3874 }
3875 
3876 static uint64_t bnxt_cc_read(struct bnxt *bp)
3877 {
3878 	uint64_t ns;
3879 
3880 	ns = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3881 			      BNXT_GRCPF_REG_SYNC_TIME));
3882 	ns |= (uint64_t)(rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3883 					  BNXT_GRCPF_REG_SYNC_TIME + 4))) << 32;
3884 	return ns;
3885 }
3886 
3887 static int bnxt_get_tx_ts(struct bnxt *bp, uint64_t *ts)
3888 {
3889 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3890 	uint32_t fifo;
3891 
3892 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3893 				ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
3894 	if (fifo & BNXT_PTP_TX_FIFO_EMPTY)
3895 		return -EAGAIN;
3896 
3897 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3898 				ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
3899 	*ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3900 				ptp->tx_mapped_regs[BNXT_PTP_TX_TS_L]));
3901 	*ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3902 				ptp->tx_mapped_regs[BNXT_PTP_TX_TS_H])) << 32;
3903 
3904 	return 0;
3905 }
3906 
3907 static int bnxt_get_rx_ts(struct bnxt *bp, uint64_t *ts)
3908 {
3909 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3910 	struct bnxt_pf_info *pf = bp->pf;
3911 	uint16_t port_id;
3912 	uint32_t fifo;
3913 
3914 	if (!ptp)
3915 		return -ENODEV;
3916 
3917 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3918 				ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
3919 	if (!(fifo & BNXT_PTP_RX_FIFO_PENDING))
3920 		return -EAGAIN;
3921 
3922 	port_id = pf->port_id;
3923 	rte_write32(1 << port_id, (uint8_t *)bp->bar0 +
3924 	       ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO_ADV]);
3925 
3926 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3927 				   ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
3928 	if (fifo & BNXT_PTP_RX_FIFO_PENDING) {
3929 /*		bnxt_clr_rx_ts(bp);	  TBD  */
3930 		return -EBUSY;
3931 	}
3932 
3933 	*ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3934 				ptp->rx_mapped_regs[BNXT_PTP_RX_TS_L]));
3935 	*ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3936 				ptp->rx_mapped_regs[BNXT_PTP_RX_TS_H])) << 32;
3937 
3938 	return 0;
3939 }
3940 
3941 static int
3942 bnxt_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
3943 {
3944 	uint64_t ns;
3945 	struct bnxt *bp = dev->data->dev_private;
3946 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3947 
3948 	if (!ptp)
3949 		return 0;
3950 
3951 	ns = rte_timespec_to_ns(ts);
3952 	/* Set the timecounters to a new value. */
3953 	ptp->tc.nsec = ns;
3954 
3955 	return 0;
3956 }
3957 
3958 static int
3959 bnxt_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
3960 {
3961 	struct bnxt *bp = dev->data->dev_private;
3962 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3963 	uint64_t ns, systime_cycles = 0;
3964 	int rc = 0;
3965 
3966 	if (!ptp)
3967 		return 0;
3968 
3969 	if (BNXT_CHIP_THOR(bp))
3970 		rc = bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME,
3971 					     &systime_cycles);
3972 	else
3973 		systime_cycles = bnxt_cc_read(bp);
3974 
3975 	ns = rte_timecounter_update(&ptp->tc, systime_cycles);
3976 	*ts = rte_ns_to_timespec(ns);
3977 
3978 	return rc;
3979 }
3980 static int
3981 bnxt_timesync_enable(struct rte_eth_dev *dev)
3982 {
3983 	struct bnxt *bp = dev->data->dev_private;
3984 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3985 	uint32_t shift = 0;
3986 	int rc;
3987 
3988 	if (!ptp)
3989 		return 0;
3990 
3991 	ptp->rx_filter = 1;
3992 	ptp->tx_tstamp_en = 1;
3993 	ptp->rxctl = BNXT_PTP_MSG_EVENTS;
3994 
3995 	rc = bnxt_hwrm_ptp_cfg(bp);
3996 	if (rc)
3997 		return rc;
3998 
3999 	memset(&ptp->tc, 0, sizeof(struct rte_timecounter));
4000 	memset(&ptp->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
4001 	memset(&ptp->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
4002 
4003 	ptp->tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
4004 	ptp->tc.cc_shift = shift;
4005 	ptp->tc.nsec_mask = (1ULL << shift) - 1;
4006 
4007 	ptp->rx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
4008 	ptp->rx_tstamp_tc.cc_shift = shift;
4009 	ptp->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
4010 
4011 	ptp->tx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
4012 	ptp->tx_tstamp_tc.cc_shift = shift;
4013 	ptp->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
4014 
4015 	if (!BNXT_CHIP_THOR(bp))
4016 		bnxt_map_ptp_regs(bp);
4017 
4018 	return 0;
4019 }
4020 
4021 static int
4022 bnxt_timesync_disable(struct rte_eth_dev *dev)
4023 {
4024 	struct bnxt *bp = dev->data->dev_private;
4025 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
4026 
4027 	if (!ptp)
4028 		return 0;
4029 
4030 	ptp->rx_filter = 0;
4031 	ptp->tx_tstamp_en = 0;
4032 	ptp->rxctl = 0;
4033 
4034 	bnxt_hwrm_ptp_cfg(bp);
4035 
4036 	if (!BNXT_CHIP_THOR(bp))
4037 		bnxt_unmap_ptp_regs(bp);
4038 
4039 	return 0;
4040 }
4041 
4042 static int
4043 bnxt_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
4044 				 struct timespec *timestamp,
4045 				 uint32_t flags __rte_unused)
4046 {
4047 	struct bnxt *bp = dev->data->dev_private;
4048 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
4049 	uint64_t rx_tstamp_cycles = 0;
4050 	uint64_t ns;
4051 
4052 	if (!ptp)
4053 		return 0;
4054 
4055 	if (BNXT_CHIP_THOR(bp))
4056 		rx_tstamp_cycles = ptp->rx_timestamp;
4057 	else
4058 		bnxt_get_rx_ts(bp, &rx_tstamp_cycles);
4059 
4060 	ns = rte_timecounter_update(&ptp->rx_tstamp_tc, rx_tstamp_cycles);
4061 	*timestamp = rte_ns_to_timespec(ns);
4062 	return  0;
4063 }
4064 
4065 static int
4066 bnxt_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
4067 				 struct timespec *timestamp)
4068 {
4069 	struct bnxt *bp = dev->data->dev_private;
4070 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
4071 	uint64_t tx_tstamp_cycles = 0;
4072 	uint64_t ns;
4073 	int rc = 0;
4074 
4075 	if (!ptp)
4076 		return 0;
4077 
4078 	if (BNXT_CHIP_THOR(bp))
4079 		rc = bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_PATH_TX,
4080 					     &tx_tstamp_cycles);
4081 	else
4082 		rc = bnxt_get_tx_ts(bp, &tx_tstamp_cycles);
4083 
4084 	ns = rte_timecounter_update(&ptp->tx_tstamp_tc, tx_tstamp_cycles);
4085 	*timestamp = rte_ns_to_timespec(ns);
4086 
4087 	return rc;
4088 }
4089 
4090 static int
4091 bnxt_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
4092 {
4093 	struct bnxt *bp = dev->data->dev_private;
4094 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
4095 
4096 	if (!ptp)
4097 		return 0;
4098 
4099 	ptp->tc.nsec += delta;
4100 
4101 	return 0;
4102 }
4103 
4104 static int
4105 bnxt_get_eeprom_length_op(struct rte_eth_dev *dev)
4106 {
4107 	struct bnxt *bp = dev->data->dev_private;
4108 	int rc;
4109 	uint32_t dir_entries;
4110 	uint32_t entry_length;
4111 
4112 	rc = is_bnxt_in_error(bp);
4113 	if (rc)
4114 		return rc;
4115 
4116 	PMD_DRV_LOG(INFO, PCI_PRI_FMT "\n",
4117 		    bp->pdev->addr.domain, bp->pdev->addr.bus,
4118 		    bp->pdev->addr.devid, bp->pdev->addr.function);
4119 
4120 	rc = bnxt_hwrm_nvm_get_dir_info(bp, &dir_entries, &entry_length);
4121 	if (rc != 0)
4122 		return rc;
4123 
4124 	return dir_entries * entry_length;
4125 }
4126 
4127 static int
4128 bnxt_get_eeprom_op(struct rte_eth_dev *dev,
4129 		struct rte_dev_eeprom_info *in_eeprom)
4130 {
4131 	struct bnxt *bp = dev->data->dev_private;
4132 	uint32_t index;
4133 	uint32_t offset;
4134 	int rc;
4135 
4136 	rc = is_bnxt_in_error(bp);
4137 	if (rc)
4138 		return rc;
4139 
4140 	PMD_DRV_LOG(INFO, PCI_PRI_FMT " in_eeprom->offset = %d len = %d\n",
4141 		    bp->pdev->addr.domain, bp->pdev->addr.bus,
4142 		    bp->pdev->addr.devid, bp->pdev->addr.function,
4143 		    in_eeprom->offset, in_eeprom->length);
4144 
4145 	if (in_eeprom->offset == 0) /* special offset value to get directory */
4146 		return bnxt_get_nvram_directory(bp, in_eeprom->length,
4147 						in_eeprom->data);
4148 
4149 	index = in_eeprom->offset >> 24;
4150 	offset = in_eeprom->offset & 0xffffff;
4151 
4152 	if (index != 0)
4153 		return bnxt_hwrm_get_nvram_item(bp, index - 1, offset,
4154 					   in_eeprom->length, in_eeprom->data);
4155 
4156 	return 0;
4157 }
4158 
4159 static bool bnxt_dir_type_is_ape_bin_format(uint16_t dir_type)
4160 {
4161 	switch (dir_type) {
4162 	case BNX_DIR_TYPE_CHIMP_PATCH:
4163 	case BNX_DIR_TYPE_BOOTCODE:
4164 	case BNX_DIR_TYPE_BOOTCODE_2:
4165 	case BNX_DIR_TYPE_APE_FW:
4166 	case BNX_DIR_TYPE_APE_PATCH:
4167 	case BNX_DIR_TYPE_KONG_FW:
4168 	case BNX_DIR_TYPE_KONG_PATCH:
4169 	case BNX_DIR_TYPE_BONO_FW:
4170 	case BNX_DIR_TYPE_BONO_PATCH:
4171 		/* FALLTHROUGH */
4172 		return true;
4173 	}
4174 
4175 	return false;
4176 }
4177 
4178 static bool bnxt_dir_type_is_other_exec_format(uint16_t dir_type)
4179 {
4180 	switch (dir_type) {
4181 	case BNX_DIR_TYPE_AVS:
4182 	case BNX_DIR_TYPE_EXP_ROM_MBA:
4183 	case BNX_DIR_TYPE_PCIE:
4184 	case BNX_DIR_TYPE_TSCF_UCODE:
4185 	case BNX_DIR_TYPE_EXT_PHY:
4186 	case BNX_DIR_TYPE_CCM:
4187 	case BNX_DIR_TYPE_ISCSI_BOOT:
4188 	case BNX_DIR_TYPE_ISCSI_BOOT_IPV6:
4189 	case BNX_DIR_TYPE_ISCSI_BOOT_IPV4N6:
4190 		/* FALLTHROUGH */
4191 		return true;
4192 	}
4193 
4194 	return false;
4195 }
4196 
4197 static bool bnxt_dir_type_is_executable(uint16_t dir_type)
4198 {
4199 	return bnxt_dir_type_is_ape_bin_format(dir_type) ||
4200 		bnxt_dir_type_is_other_exec_format(dir_type);
4201 }
4202 
4203 static int
4204 bnxt_set_eeprom_op(struct rte_eth_dev *dev,
4205 		struct rte_dev_eeprom_info *in_eeprom)
4206 {
4207 	struct bnxt *bp = dev->data->dev_private;
4208 	uint8_t index, dir_op;
4209 	uint16_t type, ext, ordinal, attr;
4210 	int rc;
4211 
4212 	rc = is_bnxt_in_error(bp);
4213 	if (rc)
4214 		return rc;
4215 
4216 	PMD_DRV_LOG(INFO, PCI_PRI_FMT " in_eeprom->offset = %d len = %d\n",
4217 		    bp->pdev->addr.domain, bp->pdev->addr.bus,
4218 		    bp->pdev->addr.devid, bp->pdev->addr.function,
4219 		    in_eeprom->offset, in_eeprom->length);
4220 
4221 	if (!BNXT_PF(bp)) {
4222 		PMD_DRV_LOG(ERR, "NVM write not supported from a VF\n");
4223 		return -EINVAL;
4224 	}
4225 
4226 	type = in_eeprom->magic >> 16;
4227 
4228 	if (type == 0xffff) { /* special value for directory operations */
4229 		index = in_eeprom->magic & 0xff;
4230 		dir_op = in_eeprom->magic >> 8;
4231 		if (index == 0)
4232 			return -EINVAL;
4233 		switch (dir_op) {
4234 		case 0x0e: /* erase */
4235 			if (in_eeprom->offset != ~in_eeprom->magic)
4236 				return -EINVAL;
4237 			return bnxt_hwrm_erase_nvram_directory(bp, index - 1);
4238 		default:
4239 			return -EINVAL;
4240 		}
4241 	}
4242 
4243 	/* Create or re-write an NVM item: */
4244 	if (bnxt_dir_type_is_executable(type) == true)
4245 		return -EOPNOTSUPP;
4246 	ext = in_eeprom->magic & 0xffff;
4247 	ordinal = in_eeprom->offset >> 16;
4248 	attr = in_eeprom->offset & 0xffff;
4249 
4250 	return bnxt_hwrm_flash_nvram(bp, type, ordinal, ext, attr,
4251 				     in_eeprom->data, in_eeprom->length);
4252 }
4253 
4254 /*
4255  * Initialization
4256  */
4257 
4258 static const struct eth_dev_ops bnxt_dev_ops = {
4259 	.dev_infos_get = bnxt_dev_info_get_op,
4260 	.dev_close = bnxt_dev_close_op,
4261 	.dev_configure = bnxt_dev_configure_op,
4262 	.dev_start = bnxt_dev_start_op,
4263 	.dev_stop = bnxt_dev_stop_op,
4264 	.dev_set_link_up = bnxt_dev_set_link_up_op,
4265 	.dev_set_link_down = bnxt_dev_set_link_down_op,
4266 	.stats_get = bnxt_stats_get_op,
4267 	.stats_reset = bnxt_stats_reset_op,
4268 	.rx_queue_setup = bnxt_rx_queue_setup_op,
4269 	.rx_queue_release = bnxt_rx_queue_release_op,
4270 	.tx_queue_setup = bnxt_tx_queue_setup_op,
4271 	.tx_queue_release = bnxt_tx_queue_release_op,
4272 	.rx_queue_intr_enable = bnxt_rx_queue_intr_enable_op,
4273 	.rx_queue_intr_disable = bnxt_rx_queue_intr_disable_op,
4274 	.reta_update = bnxt_reta_update_op,
4275 	.reta_query = bnxt_reta_query_op,
4276 	.rss_hash_update = bnxt_rss_hash_update_op,
4277 	.rss_hash_conf_get = bnxt_rss_hash_conf_get_op,
4278 	.link_update = bnxt_link_update_op,
4279 	.promiscuous_enable = bnxt_promiscuous_enable_op,
4280 	.promiscuous_disable = bnxt_promiscuous_disable_op,
4281 	.allmulticast_enable = bnxt_allmulticast_enable_op,
4282 	.allmulticast_disable = bnxt_allmulticast_disable_op,
4283 	.mac_addr_add = bnxt_mac_addr_add_op,
4284 	.mac_addr_remove = bnxt_mac_addr_remove_op,
4285 	.flow_ctrl_get = bnxt_flow_ctrl_get_op,
4286 	.flow_ctrl_set = bnxt_flow_ctrl_set_op,
4287 	.udp_tunnel_port_add  = bnxt_udp_tunnel_port_add_op,
4288 	.udp_tunnel_port_del  = bnxt_udp_tunnel_port_del_op,
4289 	.vlan_filter_set = bnxt_vlan_filter_set_op,
4290 	.vlan_offload_set = bnxt_vlan_offload_set_op,
4291 	.vlan_tpid_set = bnxt_vlan_tpid_set_op,
4292 	.vlan_pvid_set = bnxt_vlan_pvid_set_op,
4293 	.mtu_set = bnxt_mtu_set_op,
4294 	.mac_addr_set = bnxt_set_default_mac_addr_op,
4295 	.xstats_get = bnxt_dev_xstats_get_op,
4296 	.xstats_get_names = bnxt_dev_xstats_get_names_op,
4297 	.xstats_reset = bnxt_dev_xstats_reset_op,
4298 	.fw_version_get = bnxt_fw_version_get,
4299 	.set_mc_addr_list = bnxt_dev_set_mc_addr_list_op,
4300 	.rxq_info_get = bnxt_rxq_info_get_op,
4301 	.txq_info_get = bnxt_txq_info_get_op,
4302 	.rx_burst_mode_get = bnxt_rx_burst_mode_get,
4303 	.tx_burst_mode_get = bnxt_tx_burst_mode_get,
4304 	.dev_led_on = bnxt_dev_led_on_op,
4305 	.dev_led_off = bnxt_dev_led_off_op,
4306 	.xstats_get_by_id = bnxt_dev_xstats_get_by_id_op,
4307 	.xstats_get_names_by_id = bnxt_dev_xstats_get_names_by_id_op,
4308 	.rx_queue_count = bnxt_rx_queue_count_op,
4309 	.rx_descriptor_status = bnxt_rx_descriptor_status_op,
4310 	.tx_descriptor_status = bnxt_tx_descriptor_status_op,
4311 	.rx_queue_start = bnxt_rx_queue_start,
4312 	.rx_queue_stop = bnxt_rx_queue_stop,
4313 	.tx_queue_start = bnxt_tx_queue_start,
4314 	.tx_queue_stop = bnxt_tx_queue_stop,
4315 	.filter_ctrl = bnxt_filter_ctrl_op,
4316 	.dev_supported_ptypes_get = bnxt_dev_supported_ptypes_get_op,
4317 	.get_eeprom_length    = bnxt_get_eeprom_length_op,
4318 	.get_eeprom           = bnxt_get_eeprom_op,
4319 	.set_eeprom           = bnxt_set_eeprom_op,
4320 	.timesync_enable      = bnxt_timesync_enable,
4321 	.timesync_disable     = bnxt_timesync_disable,
4322 	.timesync_read_time   = bnxt_timesync_read_time,
4323 	.timesync_write_time   = bnxt_timesync_write_time,
4324 	.timesync_adjust_time = bnxt_timesync_adjust_time,
4325 	.timesync_read_rx_timestamp = bnxt_timesync_read_rx_timestamp,
4326 	.timesync_read_tx_timestamp = bnxt_timesync_read_tx_timestamp,
4327 };
4328 
4329 static uint32_t bnxt_map_reset_regs(struct bnxt *bp, uint32_t reg)
4330 {
4331 	uint32_t offset;
4332 
4333 	/* Only pre-map the reset GRC registers using window 3 */
4334 	rte_write32(reg & 0xfffff000, (uint8_t *)bp->bar0 +
4335 		    BNXT_GRCPF_REG_WINDOW_BASE_OUT + 8);
4336 
4337 	offset = BNXT_GRCP_WINDOW_3_BASE + (reg & 0xffc);
4338 
4339 	return offset;
4340 }
4341 
4342 int bnxt_map_fw_health_status_regs(struct bnxt *bp)
4343 {
4344 	struct bnxt_error_recovery_info *info = bp->recovery_info;
4345 	uint32_t reg_base = 0xffffffff;
4346 	int i;
4347 
4348 	/* Only pre-map the monitoring GRC registers using window 2 */
4349 	for (i = 0; i < BNXT_FW_STATUS_REG_CNT; i++) {
4350 		uint32_t reg = info->status_regs[i];
4351 
4352 		if (BNXT_FW_STATUS_REG_TYPE(reg) != BNXT_FW_STATUS_REG_TYPE_GRC)
4353 			continue;
4354 
4355 		if (reg_base == 0xffffffff)
4356 			reg_base = reg & 0xfffff000;
4357 		if ((reg & 0xfffff000) != reg_base)
4358 			return -ERANGE;
4359 
4360 		/* Use mask 0xffc as the Lower 2 bits indicates
4361 		 * address space location
4362 		 */
4363 		info->mapped_status_regs[i] = BNXT_GRCP_WINDOW_2_BASE +
4364 						(reg & 0xffc);
4365 	}
4366 
4367 	if (reg_base == 0xffffffff)
4368 		return 0;
4369 
4370 	rte_write32(reg_base, (uint8_t *)bp->bar0 +
4371 		    BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
4372 
4373 	return 0;
4374 }
4375 
4376 static void bnxt_write_fw_reset_reg(struct bnxt *bp, uint32_t index)
4377 {
4378 	struct bnxt_error_recovery_info *info = bp->recovery_info;
4379 	uint32_t delay = info->delay_after_reset[index];
4380 	uint32_t val = info->reset_reg_val[index];
4381 	uint32_t reg = info->reset_reg[index];
4382 	uint32_t type, offset;
4383 
4384 	type = BNXT_FW_STATUS_REG_TYPE(reg);
4385 	offset = BNXT_FW_STATUS_REG_OFF(reg);
4386 
4387 	switch (type) {
4388 	case BNXT_FW_STATUS_REG_TYPE_CFG:
4389 		rte_pci_write_config(bp->pdev, &val, sizeof(val), offset);
4390 		break;
4391 	case BNXT_FW_STATUS_REG_TYPE_GRC:
4392 		offset = bnxt_map_reset_regs(bp, offset);
4393 		rte_write32(val, (uint8_t *)bp->bar0 + offset);
4394 		break;
4395 	case BNXT_FW_STATUS_REG_TYPE_BAR0:
4396 		rte_write32(val, (uint8_t *)bp->bar0 + offset);
4397 		break;
4398 	}
4399 	/* wait on a specific interval of time until core reset is complete */
4400 	if (delay)
4401 		rte_delay_ms(delay);
4402 }
4403 
4404 static void bnxt_dev_cleanup(struct bnxt *bp)
4405 {
4406 	bnxt_set_hwrm_link_config(bp, false);
4407 	bp->link_info->link_up = 0;
4408 	if (bp->eth_dev->data->dev_started)
4409 		bnxt_dev_stop_op(bp->eth_dev);
4410 
4411 	bnxt_uninit_resources(bp, true);
4412 }
4413 
4414 static int bnxt_restore_vlan_filters(struct bnxt *bp)
4415 {
4416 	struct rte_eth_dev *dev = bp->eth_dev;
4417 	struct rte_vlan_filter_conf *vfc;
4418 	int vidx, vbit, rc;
4419 	uint16_t vlan_id;
4420 
4421 	for (vlan_id = 1; vlan_id <= RTE_ETHER_MAX_VLAN_ID; vlan_id++) {
4422 		vfc = &dev->data->vlan_filter_conf;
4423 		vidx = vlan_id / 64;
4424 		vbit = vlan_id % 64;
4425 
4426 		/* Each bit corresponds to a VLAN id */
4427 		if (vfc->ids[vidx] & (UINT64_C(1) << vbit)) {
4428 			rc = bnxt_add_vlan_filter(bp, vlan_id);
4429 			if (rc)
4430 				return rc;
4431 		}
4432 	}
4433 
4434 	return 0;
4435 }
4436 
4437 static int bnxt_restore_mac_filters(struct bnxt *bp)
4438 {
4439 	struct rte_eth_dev *dev = bp->eth_dev;
4440 	struct rte_eth_dev_info dev_info;
4441 	struct rte_ether_addr *addr;
4442 	uint64_t pool_mask;
4443 	uint32_t pool = 0;
4444 	uint16_t i;
4445 	int rc;
4446 
4447 	if (BNXT_VF(bp) & !BNXT_VF_IS_TRUSTED(bp))
4448 		return 0;
4449 
4450 	rc = bnxt_dev_info_get_op(dev, &dev_info);
4451 	if (rc)
4452 		return rc;
4453 
4454 	/* replay MAC address configuration */
4455 	for (i = 1; i < dev_info.max_mac_addrs; i++) {
4456 		addr = &dev->data->mac_addrs[i];
4457 
4458 		/* skip zero address */
4459 		if (rte_is_zero_ether_addr(addr))
4460 			continue;
4461 
4462 		pool = 0;
4463 		pool_mask = dev->data->mac_pool_sel[i];
4464 
4465 		do {
4466 			if (pool_mask & 1ULL) {
4467 				rc = bnxt_mac_addr_add_op(dev, addr, i, pool);
4468 				if (rc)
4469 					return rc;
4470 			}
4471 			pool_mask >>= 1;
4472 			pool++;
4473 		} while (pool_mask);
4474 	}
4475 
4476 	return 0;
4477 }
4478 
4479 static int bnxt_restore_filters(struct bnxt *bp)
4480 {
4481 	struct rte_eth_dev *dev = bp->eth_dev;
4482 	int ret = 0;
4483 
4484 	if (dev->data->all_multicast) {
4485 		ret = bnxt_allmulticast_enable_op(dev);
4486 		if (ret)
4487 			return ret;
4488 	}
4489 	if (dev->data->promiscuous) {
4490 		ret = bnxt_promiscuous_enable_op(dev);
4491 		if (ret)
4492 			return ret;
4493 	}
4494 
4495 	ret = bnxt_restore_mac_filters(bp);
4496 	if (ret)
4497 		return ret;
4498 
4499 	ret = bnxt_restore_vlan_filters(bp);
4500 	/* TODO restore other filters as well */
4501 	return ret;
4502 }
4503 
4504 static void bnxt_dev_recover(void *arg)
4505 {
4506 	struct bnxt *bp = arg;
4507 	int timeout = bp->fw_reset_max_msecs;
4508 	int rc = 0;
4509 
4510 	/* Clear Error flag so that device re-init should happen */
4511 	bp->flags &= ~BNXT_FLAG_FATAL_ERROR;
4512 
4513 	do {
4514 		rc = bnxt_hwrm_ver_get(bp, SHORT_HWRM_CMD_TIMEOUT);
4515 		if (rc == 0)
4516 			break;
4517 		rte_delay_ms(BNXT_FW_READY_WAIT_INTERVAL);
4518 		timeout -= BNXT_FW_READY_WAIT_INTERVAL;
4519 	} while (rc && timeout);
4520 
4521 	if (rc) {
4522 		PMD_DRV_LOG(ERR, "FW is not Ready after reset\n");
4523 		goto err;
4524 	}
4525 
4526 	rc = bnxt_init_resources(bp, true);
4527 	if (rc) {
4528 		PMD_DRV_LOG(ERR,
4529 			    "Failed to initialize resources after reset\n");
4530 		goto err;
4531 	}
4532 	/* clear reset flag as the device is initialized now */
4533 	bp->flags &= ~BNXT_FLAG_FW_RESET;
4534 
4535 	rc = bnxt_dev_start_op(bp->eth_dev);
4536 	if (rc) {
4537 		PMD_DRV_LOG(ERR, "Failed to start port after reset\n");
4538 		goto err_start;
4539 	}
4540 
4541 	rc = bnxt_restore_filters(bp);
4542 	if (rc)
4543 		goto err_start;
4544 
4545 	PMD_DRV_LOG(INFO, "Recovered from FW reset\n");
4546 	return;
4547 err_start:
4548 	bnxt_dev_stop_op(bp->eth_dev);
4549 err:
4550 	bp->flags |= BNXT_FLAG_FATAL_ERROR;
4551 	bnxt_uninit_resources(bp, false);
4552 	PMD_DRV_LOG(ERR, "Failed to recover from FW reset\n");
4553 }
4554 
4555 void bnxt_dev_reset_and_resume(void *arg)
4556 {
4557 	struct bnxt *bp = arg;
4558 	int rc;
4559 
4560 	bnxt_dev_cleanup(bp);
4561 
4562 	bnxt_wait_for_device_shutdown(bp);
4563 
4564 	rc = rte_eal_alarm_set(US_PER_MS * bp->fw_reset_min_msecs,
4565 			       bnxt_dev_recover, (void *)bp);
4566 	if (rc)
4567 		PMD_DRV_LOG(ERR, "Error setting recovery alarm");
4568 }
4569 
4570 uint32_t bnxt_read_fw_status_reg(struct bnxt *bp, uint32_t index)
4571 {
4572 	struct bnxt_error_recovery_info *info = bp->recovery_info;
4573 	uint32_t reg = info->status_regs[index];
4574 	uint32_t type, offset, val = 0;
4575 
4576 	type = BNXT_FW_STATUS_REG_TYPE(reg);
4577 	offset = BNXT_FW_STATUS_REG_OFF(reg);
4578 
4579 	switch (type) {
4580 	case BNXT_FW_STATUS_REG_TYPE_CFG:
4581 		rte_pci_read_config(bp->pdev, &val, sizeof(val), offset);
4582 		break;
4583 	case BNXT_FW_STATUS_REG_TYPE_GRC:
4584 		offset = info->mapped_status_regs[index];
4585 		/* FALLTHROUGH */
4586 	case BNXT_FW_STATUS_REG_TYPE_BAR0:
4587 		val = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
4588 				       offset));
4589 		break;
4590 	}
4591 
4592 	return val;
4593 }
4594 
4595 static int bnxt_fw_reset_all(struct bnxt *bp)
4596 {
4597 	struct bnxt_error_recovery_info *info = bp->recovery_info;
4598 	uint32_t i;
4599 	int rc = 0;
4600 
4601 	if (info->flags & BNXT_FLAG_ERROR_RECOVERY_HOST) {
4602 		/* Reset through master function driver */
4603 		for (i = 0; i < info->reg_array_cnt; i++)
4604 			bnxt_write_fw_reset_reg(bp, i);
4605 		/* Wait for time specified by FW after triggering reset */
4606 		rte_delay_ms(info->master_func_wait_period_after_reset);
4607 	} else if (info->flags & BNXT_FLAG_ERROR_RECOVERY_CO_CPU) {
4608 		/* Reset with the help of Kong processor */
4609 		rc = bnxt_hwrm_fw_reset(bp);
4610 		if (rc)
4611 			PMD_DRV_LOG(ERR, "Failed to reset FW\n");
4612 	}
4613 
4614 	return rc;
4615 }
4616 
4617 static void bnxt_fw_reset_cb(void *arg)
4618 {
4619 	struct bnxt *bp = arg;
4620 	struct bnxt_error_recovery_info *info = bp->recovery_info;
4621 	int rc = 0;
4622 
4623 	/* Only Master function can do FW reset */
4624 	if (bnxt_is_master_func(bp) &&
4625 	    bnxt_is_recovery_enabled(bp)) {
4626 		rc = bnxt_fw_reset_all(bp);
4627 		if (rc) {
4628 			PMD_DRV_LOG(ERR, "Adapter recovery failed\n");
4629 			return;
4630 		}
4631 	}
4632 
4633 	/* if recovery method is ERROR_RECOVERY_CO_CPU, KONG will send
4634 	 * EXCEPTION_FATAL_ASYNC event to all the functions
4635 	 * (including MASTER FUNC). After receiving this Async, all the active
4636 	 * drivers should treat this case as FW initiated recovery
4637 	 */
4638 	if (info->flags & BNXT_FLAG_ERROR_RECOVERY_HOST) {
4639 		bp->fw_reset_min_msecs = BNXT_MIN_FW_READY_TIMEOUT;
4640 		bp->fw_reset_max_msecs = BNXT_MAX_FW_RESET_TIMEOUT;
4641 
4642 		/* To recover from error */
4643 		rte_eal_alarm_set(US_PER_MS, bnxt_dev_reset_and_resume,
4644 				  (void *)bp);
4645 	}
4646 }
4647 
4648 /* Driver should poll FW heartbeat, reset_counter with the frequency
4649  * advertised by FW in HWRM_ERROR_RECOVERY_QCFG.
4650  * When the driver detects heartbeat stop or change in reset_counter,
4651  * it has to trigger a reset to recover from the error condition.
4652  * A “master PF” is the function who will have the privilege to
4653  * initiate the chimp reset. The master PF will be elected by the
4654  * firmware and will be notified through async message.
4655  */
4656 static void bnxt_check_fw_health(void *arg)
4657 {
4658 	struct bnxt *bp = arg;
4659 	struct bnxt_error_recovery_info *info = bp->recovery_info;
4660 	uint32_t val = 0, wait_msec;
4661 
4662 	if (!info || !bnxt_is_recovery_enabled(bp) ||
4663 	    is_bnxt_in_error(bp))
4664 		return;
4665 
4666 	val = bnxt_read_fw_status_reg(bp, BNXT_FW_HEARTBEAT_CNT_REG);
4667 	if (val == info->last_heart_beat)
4668 		goto reset;
4669 
4670 	info->last_heart_beat = val;
4671 
4672 	val = bnxt_read_fw_status_reg(bp, BNXT_FW_RECOVERY_CNT_REG);
4673 	if (val != info->last_reset_counter)
4674 		goto reset;
4675 
4676 	info->last_reset_counter = val;
4677 
4678 	rte_eal_alarm_set(US_PER_MS * info->driver_polling_freq,
4679 			  bnxt_check_fw_health, (void *)bp);
4680 
4681 	return;
4682 reset:
4683 	/* Stop DMA to/from device */
4684 	bp->flags |= BNXT_FLAG_FATAL_ERROR;
4685 	bp->flags |= BNXT_FLAG_FW_RESET;
4686 
4687 	PMD_DRV_LOG(ERR, "Detected FW dead condition\n");
4688 
4689 	if (bnxt_is_master_func(bp))
4690 		wait_msec = info->master_func_wait_period;
4691 	else
4692 		wait_msec = info->normal_func_wait_period;
4693 
4694 	rte_eal_alarm_set(US_PER_MS * wait_msec,
4695 			  bnxt_fw_reset_cb, (void *)bp);
4696 }
4697 
4698 void bnxt_schedule_fw_health_check(struct bnxt *bp)
4699 {
4700 	uint32_t polling_freq;
4701 
4702 	if (!bnxt_is_recovery_enabled(bp))
4703 		return;
4704 
4705 	if (bp->flags & BNXT_FLAG_FW_HEALTH_CHECK_SCHEDULED)
4706 		return;
4707 
4708 	polling_freq = bp->recovery_info->driver_polling_freq;
4709 
4710 	rte_eal_alarm_set(US_PER_MS * polling_freq,
4711 			  bnxt_check_fw_health, (void *)bp);
4712 	bp->flags |= BNXT_FLAG_FW_HEALTH_CHECK_SCHEDULED;
4713 }
4714 
4715 static void bnxt_cancel_fw_health_check(struct bnxt *bp)
4716 {
4717 	if (!bnxt_is_recovery_enabled(bp))
4718 		return;
4719 
4720 	rte_eal_alarm_cancel(bnxt_check_fw_health, (void *)bp);
4721 	bp->flags &= ~BNXT_FLAG_FW_HEALTH_CHECK_SCHEDULED;
4722 }
4723 
4724 static bool bnxt_vf_pciid(uint16_t device_id)
4725 {
4726 	switch (device_id) {
4727 	case BROADCOM_DEV_ID_57304_VF:
4728 	case BROADCOM_DEV_ID_57406_VF:
4729 	case BROADCOM_DEV_ID_5731X_VF:
4730 	case BROADCOM_DEV_ID_5741X_VF:
4731 	case BROADCOM_DEV_ID_57414_VF:
4732 	case BROADCOM_DEV_ID_STRATUS_NIC_VF1:
4733 	case BROADCOM_DEV_ID_STRATUS_NIC_VF2:
4734 	case BROADCOM_DEV_ID_58802_VF:
4735 	case BROADCOM_DEV_ID_57500_VF1:
4736 	case BROADCOM_DEV_ID_57500_VF2:
4737 		/* FALLTHROUGH */
4738 		return true;
4739 	default:
4740 		return false;
4741 	}
4742 }
4743 
4744 static bool bnxt_thor_device(uint16_t device_id)
4745 {
4746 	switch (device_id) {
4747 	case BROADCOM_DEV_ID_57508:
4748 	case BROADCOM_DEV_ID_57504:
4749 	case BROADCOM_DEV_ID_57502:
4750 	case BROADCOM_DEV_ID_57508_MF1:
4751 	case BROADCOM_DEV_ID_57504_MF1:
4752 	case BROADCOM_DEV_ID_57502_MF1:
4753 	case BROADCOM_DEV_ID_57508_MF2:
4754 	case BROADCOM_DEV_ID_57504_MF2:
4755 	case BROADCOM_DEV_ID_57502_MF2:
4756 	case BROADCOM_DEV_ID_57500_VF1:
4757 	case BROADCOM_DEV_ID_57500_VF2:
4758 		/* FALLTHROUGH */
4759 		return true;
4760 	default:
4761 		return false;
4762 	}
4763 }
4764 
4765 bool bnxt_stratus_device(struct bnxt *bp)
4766 {
4767 	uint16_t device_id = bp->pdev->id.device_id;
4768 
4769 	switch (device_id) {
4770 	case BROADCOM_DEV_ID_STRATUS_NIC:
4771 	case BROADCOM_DEV_ID_STRATUS_NIC_VF1:
4772 	case BROADCOM_DEV_ID_STRATUS_NIC_VF2:
4773 		/* FALLTHROUGH */
4774 		return true;
4775 	default:
4776 		return false;
4777 	}
4778 }
4779 
4780 static int bnxt_init_board(struct rte_eth_dev *eth_dev)
4781 {
4782 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
4783 	struct bnxt *bp = eth_dev->data->dev_private;
4784 
4785 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
4786 	bp->bar0 = (void *)pci_dev->mem_resource[0].addr;
4787 	bp->doorbell_base = (void *)pci_dev->mem_resource[2].addr;
4788 	if (!bp->bar0 || !bp->doorbell_base) {
4789 		PMD_DRV_LOG(ERR, "Unable to access Hardware\n");
4790 		return -ENODEV;
4791 	}
4792 
4793 	bp->eth_dev = eth_dev;
4794 	bp->pdev = pci_dev;
4795 
4796 	return 0;
4797 }
4798 
4799 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
4800 				  struct bnxt_ctx_pg_info *ctx_pg,
4801 				  uint32_t mem_size,
4802 				  const char *suffix,
4803 				  uint16_t idx)
4804 {
4805 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
4806 	const struct rte_memzone *mz = NULL;
4807 	char mz_name[RTE_MEMZONE_NAMESIZE];
4808 	rte_iova_t mz_phys_addr;
4809 	uint64_t valid_bits = 0;
4810 	uint32_t sz;
4811 	int i;
4812 
4813 	if (!mem_size)
4814 		return 0;
4815 
4816 	rmem->nr_pages = RTE_ALIGN_MUL_CEIL(mem_size, BNXT_PAGE_SIZE) /
4817 			 BNXT_PAGE_SIZE;
4818 	rmem->page_size = BNXT_PAGE_SIZE;
4819 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
4820 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
4821 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
4822 
4823 	valid_bits = PTU_PTE_VALID;
4824 
4825 	if (rmem->nr_pages > 1) {
4826 		snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
4827 			 "bnxt_ctx_pg_tbl%s_%x_%d",
4828 			 suffix, idx, bp->eth_dev->data->port_id);
4829 		mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
4830 		mz = rte_memzone_lookup(mz_name);
4831 		if (!mz) {
4832 			mz = rte_memzone_reserve_aligned(mz_name,
4833 						rmem->nr_pages * 8,
4834 						SOCKET_ID_ANY,
4835 						RTE_MEMZONE_2MB |
4836 						RTE_MEMZONE_SIZE_HINT_ONLY |
4837 						RTE_MEMZONE_IOVA_CONTIG,
4838 						BNXT_PAGE_SIZE);
4839 			if (mz == NULL)
4840 				return -ENOMEM;
4841 		}
4842 
4843 		memset(mz->addr, 0, mz->len);
4844 		mz_phys_addr = mz->iova;
4845 
4846 		rmem->pg_tbl = mz->addr;
4847 		rmem->pg_tbl_map = mz_phys_addr;
4848 		rmem->pg_tbl_mz = mz;
4849 	}
4850 
4851 	snprintf(mz_name, RTE_MEMZONE_NAMESIZE, "bnxt_ctx_%s_%x_%d",
4852 		 suffix, idx, bp->eth_dev->data->port_id);
4853 	mz = rte_memzone_lookup(mz_name);
4854 	if (!mz) {
4855 		mz = rte_memzone_reserve_aligned(mz_name,
4856 						 mem_size,
4857 						 SOCKET_ID_ANY,
4858 						 RTE_MEMZONE_1GB |
4859 						 RTE_MEMZONE_SIZE_HINT_ONLY |
4860 						 RTE_MEMZONE_IOVA_CONTIG,
4861 						 BNXT_PAGE_SIZE);
4862 		if (mz == NULL)
4863 			return -ENOMEM;
4864 	}
4865 
4866 	memset(mz->addr, 0, mz->len);
4867 	mz_phys_addr = mz->iova;
4868 
4869 	for (sz = 0, i = 0; sz < mem_size; sz += BNXT_PAGE_SIZE, i++) {
4870 		rmem->pg_arr[i] = ((char *)mz->addr) + sz;
4871 		rmem->dma_arr[i] = mz_phys_addr + sz;
4872 
4873 		if (rmem->nr_pages > 1) {
4874 			if (i == rmem->nr_pages - 2 &&
4875 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
4876 				valid_bits |= PTU_PTE_NEXT_TO_LAST;
4877 			else if (i == rmem->nr_pages - 1 &&
4878 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
4879 				valid_bits |= PTU_PTE_LAST;
4880 
4881 			rmem->pg_tbl[i] = rte_cpu_to_le_64(rmem->dma_arr[i] |
4882 							   valid_bits);
4883 		}
4884 	}
4885 
4886 	rmem->mz = mz;
4887 	if (rmem->vmem_size)
4888 		rmem->vmem = (void **)mz->addr;
4889 	rmem->dma_arr[0] = mz_phys_addr;
4890 	return 0;
4891 }
4892 
4893 static void bnxt_free_ctx_mem(struct bnxt *bp)
4894 {
4895 	int i;
4896 
4897 	if (!bp->ctx || !(bp->ctx->flags & BNXT_CTX_FLAG_INITED))
4898 		return;
4899 
4900 	bp->ctx->flags &= ~BNXT_CTX_FLAG_INITED;
4901 	rte_memzone_free(bp->ctx->qp_mem.ring_mem.mz);
4902 	rte_memzone_free(bp->ctx->srq_mem.ring_mem.mz);
4903 	rte_memzone_free(bp->ctx->cq_mem.ring_mem.mz);
4904 	rte_memzone_free(bp->ctx->vnic_mem.ring_mem.mz);
4905 	rte_memzone_free(bp->ctx->stat_mem.ring_mem.mz);
4906 	rte_memzone_free(bp->ctx->qp_mem.ring_mem.pg_tbl_mz);
4907 	rte_memzone_free(bp->ctx->srq_mem.ring_mem.pg_tbl_mz);
4908 	rte_memzone_free(bp->ctx->cq_mem.ring_mem.pg_tbl_mz);
4909 	rte_memzone_free(bp->ctx->vnic_mem.ring_mem.pg_tbl_mz);
4910 	rte_memzone_free(bp->ctx->stat_mem.ring_mem.pg_tbl_mz);
4911 
4912 	for (i = 0; i < bp->ctx->tqm_fp_rings_count + 1; i++) {
4913 		if (bp->ctx->tqm_mem[i])
4914 			rte_memzone_free(bp->ctx->tqm_mem[i]->ring_mem.mz);
4915 	}
4916 
4917 	rte_free(bp->ctx);
4918 	bp->ctx = NULL;
4919 }
4920 
4921 #define bnxt_roundup(x, y)   ((((x) + ((y) - 1)) / (y)) * (y))
4922 
4923 #define min_t(type, x, y) ({                    \
4924 	type __min1 = (x);                      \
4925 	type __min2 = (y);                      \
4926 	__min1 < __min2 ? __min1 : __min2; })
4927 
4928 #define max_t(type, x, y) ({                    \
4929 	type __max1 = (x);                      \
4930 	type __max2 = (y);                      \
4931 	__max1 > __max2 ? __max1 : __max2; })
4932 
4933 #define clamp_t(type, _x, min, max)     min_t(type, max_t(type, _x, min), max)
4934 
4935 int bnxt_alloc_ctx_mem(struct bnxt *bp)
4936 {
4937 	struct bnxt_ctx_pg_info *ctx_pg;
4938 	struct bnxt_ctx_mem_info *ctx;
4939 	uint32_t mem_size, ena, entries;
4940 	uint32_t entries_sp, min;
4941 	int i, rc;
4942 
4943 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
4944 	if (rc) {
4945 		PMD_DRV_LOG(ERR, "Query context mem capability failed\n");
4946 		return rc;
4947 	}
4948 	ctx = bp->ctx;
4949 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
4950 		return 0;
4951 
4952 	ctx_pg = &ctx->qp_mem;
4953 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries;
4954 	mem_size = ctx->qp_entry_size * ctx_pg->entries;
4955 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "qp_mem", 0);
4956 	if (rc)
4957 		return rc;
4958 
4959 	ctx_pg = &ctx->srq_mem;
4960 	ctx_pg->entries = ctx->srq_max_l2_entries;
4961 	mem_size = ctx->srq_entry_size * ctx_pg->entries;
4962 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "srq_mem", 0);
4963 	if (rc)
4964 		return rc;
4965 
4966 	ctx_pg = &ctx->cq_mem;
4967 	ctx_pg->entries = ctx->cq_max_l2_entries;
4968 	mem_size = ctx->cq_entry_size * ctx_pg->entries;
4969 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "cq_mem", 0);
4970 	if (rc)
4971 		return rc;
4972 
4973 	ctx_pg = &ctx->vnic_mem;
4974 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
4975 		ctx->vnic_max_ring_table_entries;
4976 	mem_size = ctx->vnic_entry_size * ctx_pg->entries;
4977 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "vnic_mem", 0);
4978 	if (rc)
4979 		return rc;
4980 
4981 	ctx_pg = &ctx->stat_mem;
4982 	ctx_pg->entries = ctx->stat_max_entries;
4983 	mem_size = ctx->stat_entry_size * ctx_pg->entries;
4984 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "stat_mem", 0);
4985 	if (rc)
4986 		return rc;
4987 
4988 	min = ctx->tqm_min_entries_per_ring;
4989 
4990 	entries_sp = ctx->qp_max_l2_entries +
4991 		     ctx->vnic_max_vnic_entries +
4992 		     2 * ctx->qp_min_qp1_entries + min;
4993 	entries_sp = bnxt_roundup(entries_sp, ctx->tqm_entries_multiple);
4994 
4995 	entries = ctx->qp_max_l2_entries + ctx->qp_min_qp1_entries;
4996 	entries = bnxt_roundup(entries, ctx->tqm_entries_multiple);
4997 	entries = clamp_t(uint32_t, entries, min,
4998 			  ctx->tqm_max_entries_per_ring);
4999 	for (i = 0, ena = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
5000 		ctx_pg = ctx->tqm_mem[i];
5001 		ctx_pg->entries = i ? entries : entries_sp;
5002 		mem_size = ctx->tqm_entry_size * ctx_pg->entries;
5003 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "tqm_mem", i);
5004 		if (rc)
5005 			return rc;
5006 		ena |= HWRM_FUNC_BACKING_STORE_CFG_INPUT_ENABLES_TQM_SP << i;
5007 	}
5008 
5009 	ena |= FUNC_BACKING_STORE_CFG_INPUT_DFLT_ENABLES;
5010 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
5011 	if (rc)
5012 		PMD_DRV_LOG(ERR,
5013 			    "Failed to configure context mem: rc = %d\n", rc);
5014 	else
5015 		ctx->flags |= BNXT_CTX_FLAG_INITED;
5016 
5017 	return rc;
5018 }
5019 
5020 static int bnxt_alloc_stats_mem(struct bnxt *bp)
5021 {
5022 	struct rte_pci_device *pci_dev = bp->pdev;
5023 	char mz_name[RTE_MEMZONE_NAMESIZE];
5024 	const struct rte_memzone *mz = NULL;
5025 	uint32_t total_alloc_len;
5026 	rte_iova_t mz_phys_addr;
5027 
5028 	if (pci_dev->id.device_id == BROADCOM_DEV_ID_NS2)
5029 		return 0;
5030 
5031 	snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
5032 		 "bnxt_" PCI_PRI_FMT "-%s", pci_dev->addr.domain,
5033 		 pci_dev->addr.bus, pci_dev->addr.devid,
5034 		 pci_dev->addr.function, "rx_port_stats");
5035 	mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
5036 	mz = rte_memzone_lookup(mz_name);
5037 	total_alloc_len =
5038 		RTE_CACHE_LINE_ROUNDUP(sizeof(struct rx_port_stats) +
5039 				       sizeof(struct rx_port_stats_ext) + 512);
5040 	if (!mz) {
5041 		mz = rte_memzone_reserve(mz_name, total_alloc_len,
5042 					 SOCKET_ID_ANY,
5043 					 RTE_MEMZONE_2MB |
5044 					 RTE_MEMZONE_SIZE_HINT_ONLY |
5045 					 RTE_MEMZONE_IOVA_CONTIG);
5046 		if (mz == NULL)
5047 			return -ENOMEM;
5048 	}
5049 	memset(mz->addr, 0, mz->len);
5050 	mz_phys_addr = mz->iova;
5051 
5052 	bp->rx_mem_zone = (const void *)mz;
5053 	bp->hw_rx_port_stats = mz->addr;
5054 	bp->hw_rx_port_stats_map = mz_phys_addr;
5055 
5056 	snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
5057 		 "bnxt_" PCI_PRI_FMT "-%s", pci_dev->addr.domain,
5058 		 pci_dev->addr.bus, pci_dev->addr.devid,
5059 		 pci_dev->addr.function, "tx_port_stats");
5060 	mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
5061 	mz = rte_memzone_lookup(mz_name);
5062 	total_alloc_len =
5063 		RTE_CACHE_LINE_ROUNDUP(sizeof(struct tx_port_stats) +
5064 				       sizeof(struct tx_port_stats_ext) + 512);
5065 	if (!mz) {
5066 		mz = rte_memzone_reserve(mz_name,
5067 					 total_alloc_len,
5068 					 SOCKET_ID_ANY,
5069 					 RTE_MEMZONE_2MB |
5070 					 RTE_MEMZONE_SIZE_HINT_ONLY |
5071 					 RTE_MEMZONE_IOVA_CONTIG);
5072 		if (mz == NULL)
5073 			return -ENOMEM;
5074 	}
5075 	memset(mz->addr, 0, mz->len);
5076 	mz_phys_addr = mz->iova;
5077 
5078 	bp->tx_mem_zone = (const void *)mz;
5079 	bp->hw_tx_port_stats = mz->addr;
5080 	bp->hw_tx_port_stats_map = mz_phys_addr;
5081 	bp->flags |= BNXT_FLAG_PORT_STATS;
5082 
5083 	/* Display extended statistics if FW supports it */
5084 	if (bp->hwrm_spec_code < HWRM_SPEC_CODE_1_8_4 ||
5085 	    bp->hwrm_spec_code == HWRM_SPEC_CODE_1_9_0 ||
5086 	    !(bp->flags & BNXT_FLAG_EXT_STATS_SUPPORTED))
5087 		return 0;
5088 
5089 	bp->hw_rx_port_stats_ext = (void *)
5090 		((uint8_t *)bp->hw_rx_port_stats +
5091 		 sizeof(struct rx_port_stats));
5092 	bp->hw_rx_port_stats_ext_map = bp->hw_rx_port_stats_map +
5093 		sizeof(struct rx_port_stats);
5094 	bp->flags |= BNXT_FLAG_EXT_RX_PORT_STATS;
5095 
5096 	if (bp->hwrm_spec_code < HWRM_SPEC_CODE_1_9_2 ||
5097 	    bp->flags & BNXT_FLAG_EXT_STATS_SUPPORTED) {
5098 		bp->hw_tx_port_stats_ext = (void *)
5099 			((uint8_t *)bp->hw_tx_port_stats +
5100 			 sizeof(struct tx_port_stats));
5101 		bp->hw_tx_port_stats_ext_map =
5102 			bp->hw_tx_port_stats_map +
5103 			sizeof(struct tx_port_stats);
5104 		bp->flags |= BNXT_FLAG_EXT_TX_PORT_STATS;
5105 	}
5106 
5107 	return 0;
5108 }
5109 
5110 static int bnxt_setup_mac_addr(struct rte_eth_dev *eth_dev)
5111 {
5112 	struct bnxt *bp = eth_dev->data->dev_private;
5113 	int rc = 0;
5114 
5115 	eth_dev->data->mac_addrs = rte_zmalloc("bnxt_mac_addr_tbl",
5116 					       RTE_ETHER_ADDR_LEN *
5117 					       bp->max_l2_ctx,
5118 					       0);
5119 	if (eth_dev->data->mac_addrs == NULL) {
5120 		PMD_DRV_LOG(ERR, "Failed to alloc MAC addr tbl\n");
5121 		return -ENOMEM;
5122 	}
5123 
5124 	if (!BNXT_HAS_DFLT_MAC_SET(bp)) {
5125 		if (BNXT_PF(bp))
5126 			return -EINVAL;
5127 
5128 		/* Generate a random MAC address, if none was assigned by PF */
5129 		PMD_DRV_LOG(INFO, "VF MAC address not assigned by Host PF\n");
5130 		bnxt_eth_hw_addr_random(bp->mac_addr);
5131 		PMD_DRV_LOG(INFO,
5132 			    "Assign random MAC:%02X:%02X:%02X:%02X:%02X:%02X\n",
5133 			    bp->mac_addr[0], bp->mac_addr[1], bp->mac_addr[2],
5134 			    bp->mac_addr[3], bp->mac_addr[4], bp->mac_addr[5]);
5135 
5136 		rc = bnxt_hwrm_set_mac(bp);
5137 		if (rc)
5138 			return rc;
5139 	}
5140 
5141 	/* Copy the permanent MAC from the FUNC_QCAPS response */
5142 	memcpy(&eth_dev->data->mac_addrs[0], bp->mac_addr, RTE_ETHER_ADDR_LEN);
5143 
5144 	return rc;
5145 }
5146 
5147 static int bnxt_restore_dflt_mac(struct bnxt *bp)
5148 {
5149 	int rc = 0;
5150 
5151 	/* MAC is already configured in FW */
5152 	if (BNXT_HAS_DFLT_MAC_SET(bp))
5153 		return 0;
5154 
5155 	/* Restore the old MAC configured */
5156 	rc = bnxt_hwrm_set_mac(bp);
5157 	if (rc)
5158 		PMD_DRV_LOG(ERR, "Failed to restore MAC address\n");
5159 
5160 	return rc;
5161 }
5162 
5163 static void bnxt_config_vf_req_fwd(struct bnxt *bp)
5164 {
5165 	if (!BNXT_PF(bp))
5166 		return;
5167 
5168 #define ALLOW_FUNC(x)	\
5169 	{ \
5170 		uint32_t arg = (x); \
5171 		bp->pf->vf_req_fwd[((arg) >> 5)] &= \
5172 		~rte_cpu_to_le_32(1 << ((arg) & 0x1f)); \
5173 	}
5174 
5175 	/* Forward all requests if firmware is new enough */
5176 	if (((bp->fw_ver >= ((20 << 24) | (6 << 16) | (100 << 8))) &&
5177 	     (bp->fw_ver < ((20 << 24) | (7 << 16)))) ||
5178 	    ((bp->fw_ver >= ((20 << 24) | (8 << 16))))) {
5179 		memset(bp->pf->vf_req_fwd, 0xff, sizeof(bp->pf->vf_req_fwd));
5180 	} else {
5181 		PMD_DRV_LOG(WARNING,
5182 			    "Firmware too old for VF mailbox functionality\n");
5183 		memset(bp->pf->vf_req_fwd, 0, sizeof(bp->pf->vf_req_fwd));
5184 	}
5185 
5186 	/*
5187 	 * The following are used for driver cleanup. If we disallow these,
5188 	 * VF drivers can't clean up cleanly.
5189 	 */
5190 	ALLOW_FUNC(HWRM_FUNC_DRV_UNRGTR);
5191 	ALLOW_FUNC(HWRM_VNIC_FREE);
5192 	ALLOW_FUNC(HWRM_RING_FREE);
5193 	ALLOW_FUNC(HWRM_RING_GRP_FREE);
5194 	ALLOW_FUNC(HWRM_VNIC_RSS_COS_LB_CTX_FREE);
5195 	ALLOW_FUNC(HWRM_CFA_L2_FILTER_FREE);
5196 	ALLOW_FUNC(HWRM_STAT_CTX_FREE);
5197 	ALLOW_FUNC(HWRM_PORT_PHY_QCFG);
5198 	ALLOW_FUNC(HWRM_VNIC_TPA_CFG);
5199 }
5200 
5201 uint16_t
5202 bnxt_get_svif(uint16_t port_id, bool func_svif,
5203 	      enum bnxt_ulp_intf_type type)
5204 {
5205 	struct rte_eth_dev *eth_dev;
5206 	struct bnxt *bp;
5207 
5208 	eth_dev = &rte_eth_devices[port_id];
5209 	if (BNXT_ETH_DEV_IS_REPRESENTOR(eth_dev)) {
5210 		struct bnxt_vf_representor *vfr = eth_dev->data->dev_private;
5211 		if (!vfr)
5212 			return 0;
5213 
5214 		if (type == BNXT_ULP_INTF_TYPE_VF_REP)
5215 			return vfr->svif;
5216 
5217 		eth_dev = vfr->parent_dev;
5218 	}
5219 
5220 	bp = eth_dev->data->dev_private;
5221 
5222 	return func_svif ? bp->func_svif : bp->port_svif;
5223 }
5224 
5225 uint16_t
5226 bnxt_get_vnic_id(uint16_t port, enum bnxt_ulp_intf_type type)
5227 {
5228 	struct rte_eth_dev *eth_dev;
5229 	struct bnxt_vnic_info *vnic;
5230 	struct bnxt *bp;
5231 
5232 	eth_dev = &rte_eth_devices[port];
5233 	if (BNXT_ETH_DEV_IS_REPRESENTOR(eth_dev)) {
5234 		struct bnxt_vf_representor *vfr = eth_dev->data->dev_private;
5235 		if (!vfr)
5236 			return 0;
5237 
5238 		if (type == BNXT_ULP_INTF_TYPE_VF_REP)
5239 			return vfr->dflt_vnic_id;
5240 
5241 		eth_dev = vfr->parent_dev;
5242 	}
5243 
5244 	bp = eth_dev->data->dev_private;
5245 
5246 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
5247 
5248 	return vnic->fw_vnic_id;
5249 }
5250 
5251 uint16_t
5252 bnxt_get_fw_func_id(uint16_t port, enum bnxt_ulp_intf_type type)
5253 {
5254 	struct rte_eth_dev *eth_dev;
5255 	struct bnxt *bp;
5256 
5257 	eth_dev = &rte_eth_devices[port];
5258 	if (BNXT_ETH_DEV_IS_REPRESENTOR(eth_dev)) {
5259 		struct bnxt_vf_representor *vfr = eth_dev->data->dev_private;
5260 		if (!vfr)
5261 			return 0;
5262 
5263 		if (type == BNXT_ULP_INTF_TYPE_VF_REP)
5264 			return vfr->fw_fid;
5265 
5266 		eth_dev = vfr->parent_dev;
5267 	}
5268 
5269 	bp = eth_dev->data->dev_private;
5270 
5271 	return bp->fw_fid;
5272 }
5273 
5274 enum bnxt_ulp_intf_type
5275 bnxt_get_interface_type(uint16_t port)
5276 {
5277 	struct rte_eth_dev *eth_dev;
5278 	struct bnxt *bp;
5279 
5280 	eth_dev = &rte_eth_devices[port];
5281 	if (BNXT_ETH_DEV_IS_REPRESENTOR(eth_dev))
5282 		return BNXT_ULP_INTF_TYPE_VF_REP;
5283 
5284 	bp = eth_dev->data->dev_private;
5285 	if (BNXT_PF(bp))
5286 		return BNXT_ULP_INTF_TYPE_PF;
5287 	else if (BNXT_VF_IS_TRUSTED(bp))
5288 		return BNXT_ULP_INTF_TYPE_TRUSTED_VF;
5289 	else if (BNXT_VF(bp))
5290 		return BNXT_ULP_INTF_TYPE_VF;
5291 
5292 	return BNXT_ULP_INTF_TYPE_INVALID;
5293 }
5294 
5295 uint16_t
5296 bnxt_get_phy_port_id(uint16_t port_id)
5297 {
5298 	struct bnxt_vf_representor *vfr;
5299 	struct rte_eth_dev *eth_dev;
5300 	struct bnxt *bp;
5301 
5302 	eth_dev = &rte_eth_devices[port_id];
5303 	if (BNXT_ETH_DEV_IS_REPRESENTOR(eth_dev)) {
5304 		vfr = eth_dev->data->dev_private;
5305 		if (!vfr)
5306 			return 0;
5307 
5308 		eth_dev = vfr->parent_dev;
5309 	}
5310 
5311 	bp = eth_dev->data->dev_private;
5312 
5313 	return BNXT_PF(bp) ? bp->pf->port_id : bp->parent->port_id;
5314 }
5315 
5316 uint16_t
5317 bnxt_get_parif(uint16_t port_id, enum bnxt_ulp_intf_type type)
5318 {
5319 	struct rte_eth_dev *eth_dev;
5320 	struct bnxt *bp;
5321 
5322 	eth_dev = &rte_eth_devices[port_id];
5323 	if (BNXT_ETH_DEV_IS_REPRESENTOR(eth_dev)) {
5324 		struct bnxt_vf_representor *vfr = eth_dev->data->dev_private;
5325 		if (!vfr)
5326 			return 0;
5327 
5328 		if (type == BNXT_ULP_INTF_TYPE_VF_REP)
5329 			return vfr->fw_fid - 1;
5330 
5331 		eth_dev = vfr->parent_dev;
5332 	}
5333 
5334 	bp = eth_dev->data->dev_private;
5335 
5336 	return BNXT_PF(bp) ? bp->fw_fid - 1 : bp->parent->fid - 1;
5337 }
5338 
5339 uint16_t
5340 bnxt_get_vport(uint16_t port_id)
5341 {
5342 	return (1 << bnxt_get_phy_port_id(port_id));
5343 }
5344 
5345 static void bnxt_alloc_error_recovery_info(struct bnxt *bp)
5346 {
5347 	struct bnxt_error_recovery_info *info = bp->recovery_info;
5348 
5349 	if (info) {
5350 		if (!(bp->fw_cap & BNXT_FW_CAP_HCOMM_FW_STATUS))
5351 			memset(info, 0, sizeof(*info));
5352 		return;
5353 	}
5354 
5355 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
5356 		return;
5357 
5358 	info = rte_zmalloc("bnxt_hwrm_error_recovery_qcfg",
5359 			   sizeof(*info), 0);
5360 	if (!info)
5361 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
5362 
5363 	bp->recovery_info = info;
5364 }
5365 
5366 static void bnxt_check_fw_status(struct bnxt *bp)
5367 {
5368 	uint32_t fw_status;
5369 
5370 	if (!(bp->recovery_info &&
5371 	      (bp->fw_cap & BNXT_FW_CAP_HCOMM_FW_STATUS)))
5372 		return;
5373 
5374 	fw_status = bnxt_read_fw_status_reg(bp, BNXT_FW_STATUS_REG);
5375 	if (fw_status != BNXT_FW_STATUS_HEALTHY)
5376 		PMD_DRV_LOG(ERR, "Firmware not responding, status: %#x\n",
5377 			    fw_status);
5378 }
5379 
5380 static int bnxt_map_hcomm_fw_status_reg(struct bnxt *bp)
5381 {
5382 	struct bnxt_error_recovery_info *info = bp->recovery_info;
5383 	uint32_t status_loc;
5384 	uint32_t sig_ver;
5385 
5386 	rte_write32(HCOMM_STATUS_STRUCT_LOC, (uint8_t *)bp->bar0 +
5387 		    BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
5388 	sig_ver = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
5389 				   BNXT_GRCP_WINDOW_2_BASE +
5390 				   offsetof(struct hcomm_status,
5391 					    sig_ver)));
5392 	/* If the signature is absent, then FW does not support this feature */
5393 	if ((sig_ver & HCOMM_STATUS_SIGNATURE_MASK) !=
5394 	    HCOMM_STATUS_SIGNATURE_VAL)
5395 		return 0;
5396 
5397 	if (!info) {
5398 		info = rte_zmalloc("bnxt_hwrm_error_recovery_qcfg",
5399 				   sizeof(*info), 0);
5400 		if (!info)
5401 			return -ENOMEM;
5402 		bp->recovery_info = info;
5403 	} else {
5404 		memset(info, 0, sizeof(*info));
5405 	}
5406 
5407 	status_loc = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
5408 				      BNXT_GRCP_WINDOW_2_BASE +
5409 				      offsetof(struct hcomm_status,
5410 					       fw_status_loc)));
5411 
5412 	/* Only pre-map the FW health status GRC register */
5413 	if (BNXT_FW_STATUS_REG_TYPE(status_loc) != BNXT_FW_STATUS_REG_TYPE_GRC)
5414 		return 0;
5415 
5416 	info->status_regs[BNXT_FW_STATUS_REG] = status_loc;
5417 	info->mapped_status_regs[BNXT_FW_STATUS_REG] =
5418 		BNXT_GRCP_WINDOW_2_BASE + (status_loc & BNXT_GRCP_OFFSET_MASK);
5419 
5420 	rte_write32((status_loc & BNXT_GRCP_BASE_MASK), (uint8_t *)bp->bar0 +
5421 		    BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
5422 
5423 	bp->fw_cap |= BNXT_FW_CAP_HCOMM_FW_STATUS;
5424 
5425 	return 0;
5426 }
5427 
5428 static int bnxt_init_fw(struct bnxt *bp)
5429 {
5430 	uint16_t mtu;
5431 	int rc = 0;
5432 
5433 	bp->fw_cap = 0;
5434 
5435 	rc = bnxt_map_hcomm_fw_status_reg(bp);
5436 	if (rc)
5437 		return rc;
5438 
5439 	rc = bnxt_hwrm_ver_get(bp, DFLT_HWRM_CMD_TIMEOUT);
5440 	if (rc) {
5441 		bnxt_check_fw_status(bp);
5442 		return rc;
5443 	}
5444 
5445 	rc = bnxt_hwrm_func_reset(bp);
5446 	if (rc)
5447 		return -EIO;
5448 
5449 	rc = bnxt_hwrm_vnic_qcaps(bp);
5450 	if (rc)
5451 		return rc;
5452 
5453 	rc = bnxt_hwrm_queue_qportcfg(bp);
5454 	if (rc)
5455 		return rc;
5456 
5457 	/* Get the MAX capabilities for this function.
5458 	 * This function also allocates context memory for TQM rings and
5459 	 * informs the firmware about this allocated backing store memory.
5460 	 */
5461 	rc = bnxt_hwrm_func_qcaps(bp);
5462 	if (rc)
5463 		return rc;
5464 
5465 	rc = bnxt_hwrm_func_qcfg(bp, &mtu);
5466 	if (rc)
5467 		return rc;
5468 
5469 	bnxt_hwrm_port_mac_qcfg(bp);
5470 
5471 	bnxt_hwrm_parent_pf_qcfg(bp);
5472 
5473 	bnxt_hwrm_port_phy_qcaps(bp);
5474 
5475 	bnxt_alloc_error_recovery_info(bp);
5476 	/* Get the adapter error recovery support info */
5477 	rc = bnxt_hwrm_error_recovery_qcfg(bp);
5478 	if (rc)
5479 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
5480 
5481 	bnxt_hwrm_port_led_qcaps(bp);
5482 
5483 	return 0;
5484 }
5485 
5486 static int
5487 bnxt_init_locks(struct bnxt *bp)
5488 {
5489 	int err;
5490 
5491 	err = pthread_mutex_init(&bp->flow_lock, NULL);
5492 	if (err) {
5493 		PMD_DRV_LOG(ERR, "Unable to initialize flow_lock\n");
5494 		return err;
5495 	}
5496 
5497 	err = pthread_mutex_init(&bp->def_cp_lock, NULL);
5498 	if (err)
5499 		PMD_DRV_LOG(ERR, "Unable to initialize def_cp_lock\n");
5500 	return err;
5501 }
5502 
5503 static int bnxt_init_resources(struct bnxt *bp, bool reconfig_dev)
5504 {
5505 	int rc = 0;
5506 
5507 	rc = bnxt_init_fw(bp);
5508 	if (rc)
5509 		return rc;
5510 
5511 	if (!reconfig_dev) {
5512 		rc = bnxt_setup_mac_addr(bp->eth_dev);
5513 		if (rc)
5514 			return rc;
5515 	} else {
5516 		rc = bnxt_restore_dflt_mac(bp);
5517 		if (rc)
5518 			return rc;
5519 	}
5520 
5521 	bnxt_config_vf_req_fwd(bp);
5522 
5523 	rc = bnxt_hwrm_func_driver_register(bp);
5524 	if (rc) {
5525 		PMD_DRV_LOG(ERR, "Failed to register driver");
5526 		return -EBUSY;
5527 	}
5528 
5529 	if (BNXT_PF(bp)) {
5530 		if (bp->pdev->max_vfs) {
5531 			rc = bnxt_hwrm_allocate_vfs(bp, bp->pdev->max_vfs);
5532 			if (rc) {
5533 				PMD_DRV_LOG(ERR, "Failed to allocate VFs\n");
5534 				return rc;
5535 			}
5536 		} else {
5537 			rc = bnxt_hwrm_allocate_pf_only(bp);
5538 			if (rc) {
5539 				PMD_DRV_LOG(ERR,
5540 					    "Failed to allocate PF resources");
5541 				return rc;
5542 			}
5543 		}
5544 	}
5545 
5546 	rc = bnxt_alloc_mem(bp, reconfig_dev);
5547 	if (rc)
5548 		return rc;
5549 
5550 	rc = bnxt_setup_int(bp);
5551 	if (rc)
5552 		return rc;
5553 
5554 	rc = bnxt_request_int(bp);
5555 	if (rc)
5556 		return rc;
5557 
5558 	rc = bnxt_init_ctx_mem(bp);
5559 	if (rc) {
5560 		PMD_DRV_LOG(ERR, "Failed to init adv_flow_counters\n");
5561 		return rc;
5562 	}
5563 
5564 	rc = bnxt_init_locks(bp);
5565 	if (rc)
5566 		return rc;
5567 
5568 	return 0;
5569 }
5570 
5571 static int
5572 bnxt_parse_devarg_truflow(__rte_unused const char *key,
5573 			  const char *value, void *opaque_arg)
5574 {
5575 	struct bnxt *bp = opaque_arg;
5576 	unsigned long truflow;
5577 	char *end = NULL;
5578 
5579 	if (!value || !opaque_arg) {
5580 		PMD_DRV_LOG(ERR,
5581 			    "Invalid parameter passed to truflow devargs.\n");
5582 		return -EINVAL;
5583 	}
5584 
5585 	truflow = strtoul(value, &end, 10);
5586 	if (end == NULL || *end != '\0' ||
5587 	    (truflow == ULONG_MAX && errno == ERANGE)) {
5588 		PMD_DRV_LOG(ERR,
5589 			    "Invalid parameter passed to truflow devargs.\n");
5590 		return -EINVAL;
5591 	}
5592 
5593 	if (BNXT_DEVARG_TRUFLOW_INVALID(truflow)) {
5594 		PMD_DRV_LOG(ERR,
5595 			    "Invalid value passed to truflow devargs.\n");
5596 		return -EINVAL;
5597 	}
5598 
5599 	bp->flags |= BNXT_FLAG_TRUFLOW_EN;
5600 	if (BNXT_TRUFLOW_EN(bp))
5601 		PMD_DRV_LOG(INFO, "Host-based truflow feature enabled.\n");
5602 
5603 	return 0;
5604 }
5605 
5606 static int
5607 bnxt_parse_devarg_flow_xstat(__rte_unused const char *key,
5608 			     const char *value, void *opaque_arg)
5609 {
5610 	struct bnxt *bp = opaque_arg;
5611 	unsigned long flow_xstat;
5612 	char *end = NULL;
5613 
5614 	if (!value || !opaque_arg) {
5615 		PMD_DRV_LOG(ERR,
5616 			    "Invalid parameter passed to flow_xstat devarg.\n");
5617 		return -EINVAL;
5618 	}
5619 
5620 	flow_xstat = strtoul(value, &end, 10);
5621 	if (end == NULL || *end != '\0' ||
5622 	    (flow_xstat == ULONG_MAX && errno == ERANGE)) {
5623 		PMD_DRV_LOG(ERR,
5624 			    "Invalid parameter passed to flow_xstat devarg.\n");
5625 		return -EINVAL;
5626 	}
5627 
5628 	if (BNXT_DEVARG_FLOW_XSTAT_INVALID(flow_xstat)) {
5629 		PMD_DRV_LOG(ERR,
5630 			    "Invalid value passed to flow_xstat devarg.\n");
5631 		return -EINVAL;
5632 	}
5633 
5634 	bp->flags |= BNXT_FLAG_FLOW_XSTATS_EN;
5635 	if (BNXT_FLOW_XSTATS_EN(bp))
5636 		PMD_DRV_LOG(INFO, "flow_xstat feature enabled.\n");
5637 
5638 	return 0;
5639 }
5640 
5641 static int
5642 bnxt_parse_devarg_max_num_kflows(__rte_unused const char *key,
5643 					const char *value, void *opaque_arg)
5644 {
5645 	struct bnxt *bp = opaque_arg;
5646 	unsigned long max_num_kflows;
5647 	char *end = NULL;
5648 
5649 	if (!value || !opaque_arg) {
5650 		PMD_DRV_LOG(ERR,
5651 			"Invalid parameter passed to max_num_kflows devarg.\n");
5652 		return -EINVAL;
5653 	}
5654 
5655 	max_num_kflows = strtoul(value, &end, 10);
5656 	if (end == NULL || *end != '\0' ||
5657 		(max_num_kflows == ULONG_MAX && errno == ERANGE)) {
5658 		PMD_DRV_LOG(ERR,
5659 			"Invalid parameter passed to max_num_kflows devarg.\n");
5660 		return -EINVAL;
5661 	}
5662 
5663 	if (bnxt_devarg_max_num_kflow_invalid(max_num_kflows)) {
5664 		PMD_DRV_LOG(ERR,
5665 			"Invalid value passed to max_num_kflows devarg.\n");
5666 		return -EINVAL;
5667 	}
5668 
5669 	bp->max_num_kflows = max_num_kflows;
5670 	if (bp->max_num_kflows)
5671 		PMD_DRV_LOG(INFO, "max_num_kflows set as %ldK.\n",
5672 				max_num_kflows);
5673 
5674 	return 0;
5675 }
5676 
5677 static void
5678 bnxt_parse_dev_args(struct bnxt *bp, struct rte_devargs *devargs)
5679 {
5680 	struct rte_kvargs *kvlist;
5681 
5682 	if (devargs == NULL)
5683 		return;
5684 
5685 	kvlist = rte_kvargs_parse(devargs->args, bnxt_dev_args);
5686 	if (kvlist == NULL)
5687 		return;
5688 
5689 	/*
5690 	 * Handler for "truflow" devarg.
5691 	 * Invoked as for ex: "-w 0000:00:0d.0,host-based-truflow=1"
5692 	 */
5693 	rte_kvargs_process(kvlist, BNXT_DEVARG_TRUFLOW,
5694 			   bnxt_parse_devarg_truflow, bp);
5695 
5696 	/*
5697 	 * Handler for "flow_xstat" devarg.
5698 	 * Invoked as for ex: "-w 0000:00:0d.0,flow_xstat=1"
5699 	 */
5700 	rte_kvargs_process(kvlist, BNXT_DEVARG_FLOW_XSTAT,
5701 			   bnxt_parse_devarg_flow_xstat, bp);
5702 
5703 	/*
5704 	 * Handler for "max_num_kflows" devarg.
5705 	 * Invoked as for ex: "-w 000:00:0d.0,max_num_kflows=32"
5706 	 */
5707 	rte_kvargs_process(kvlist, BNXT_DEVARG_MAX_NUM_KFLOWS,
5708 			   bnxt_parse_devarg_max_num_kflows, bp);
5709 
5710 	rte_kvargs_free(kvlist);
5711 }
5712 
5713 static int bnxt_alloc_switch_domain(struct bnxt *bp)
5714 {
5715 	int rc = 0;
5716 
5717 	if (BNXT_PF(bp) || BNXT_VF_IS_TRUSTED(bp)) {
5718 		rc = rte_eth_switch_domain_alloc(&bp->switch_domain_id);
5719 		if (rc)
5720 			PMD_DRV_LOG(ERR,
5721 				    "Failed to alloc switch domain: %d\n", rc);
5722 		else
5723 			PMD_DRV_LOG(INFO,
5724 				    "Switch domain allocated %d\n",
5725 				    bp->switch_domain_id);
5726 	}
5727 
5728 	return rc;
5729 }
5730 
5731 static int
5732 bnxt_dev_init(struct rte_eth_dev *eth_dev, void *params __rte_unused)
5733 {
5734 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
5735 	static int version_printed;
5736 	struct bnxt *bp;
5737 	int rc;
5738 
5739 	if (version_printed++ == 0)
5740 		PMD_DRV_LOG(INFO, "%s\n", bnxt_version);
5741 
5742 	eth_dev->dev_ops = &bnxt_dev_ops;
5743 	eth_dev->rx_pkt_burst = &bnxt_recv_pkts;
5744 	eth_dev->tx_pkt_burst = &bnxt_xmit_pkts;
5745 
5746 	/*
5747 	 * For secondary processes, we don't initialise any further
5748 	 * as primary has already done this work.
5749 	 */
5750 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
5751 		return 0;
5752 
5753 	rte_eth_copy_pci_info(eth_dev, pci_dev);
5754 
5755 	bp = eth_dev->data->dev_private;
5756 
5757 	/* Parse dev arguments passed on when starting the DPDK application. */
5758 	bnxt_parse_dev_args(bp, pci_dev->device.devargs);
5759 
5760 	bp->flags &= ~BNXT_FLAG_RX_VECTOR_PKT_MODE;
5761 
5762 	if (bnxt_vf_pciid(pci_dev->id.device_id))
5763 		bp->flags |= BNXT_FLAG_VF;
5764 
5765 	if (bnxt_thor_device(pci_dev->id.device_id))
5766 		bp->flags |= BNXT_FLAG_THOR_CHIP;
5767 
5768 	if (pci_dev->id.device_id == BROADCOM_DEV_ID_58802 ||
5769 	    pci_dev->id.device_id == BROADCOM_DEV_ID_58804 ||
5770 	    pci_dev->id.device_id == BROADCOM_DEV_ID_58808 ||
5771 	    pci_dev->id.device_id == BROADCOM_DEV_ID_58802_VF)
5772 		bp->flags |= BNXT_FLAG_STINGRAY;
5773 
5774 	rc = bnxt_init_board(eth_dev);
5775 	if (rc) {
5776 		PMD_DRV_LOG(ERR,
5777 			    "Failed to initialize board rc: %x\n", rc);
5778 		return rc;
5779 	}
5780 
5781 	rc = bnxt_alloc_pf_info(bp);
5782 	if (rc)
5783 		goto error_free;
5784 
5785 	rc = bnxt_alloc_link_info(bp);
5786 	if (rc)
5787 		goto error_free;
5788 
5789 	rc = bnxt_alloc_parent_info(bp);
5790 	if (rc)
5791 		goto error_free;
5792 
5793 	rc = bnxt_alloc_hwrm_resources(bp);
5794 	if (rc) {
5795 		PMD_DRV_LOG(ERR,
5796 			    "Failed to allocate hwrm resource rc: %x\n", rc);
5797 		goto error_free;
5798 	}
5799 	rc = bnxt_alloc_leds_info(bp);
5800 	if (rc)
5801 		goto error_free;
5802 
5803 	rc = bnxt_alloc_cos_queues(bp);
5804 	if (rc)
5805 		goto error_free;
5806 
5807 	rc = bnxt_init_resources(bp, false);
5808 	if (rc)
5809 		goto error_free;
5810 
5811 	rc = bnxt_alloc_stats_mem(bp);
5812 	if (rc)
5813 		goto error_free;
5814 
5815 	bnxt_alloc_switch_domain(bp);
5816 
5817 	/* Pass the information to the rte_eth_dev_close() that it should also
5818 	 * release the private port resources.
5819 	 */
5820 	eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
5821 
5822 	PMD_DRV_LOG(INFO,
5823 		    DRV_MODULE_NAME "found at mem %" PRIX64 ", node addr %pM\n",
5824 		    pci_dev->mem_resource[0].phys_addr,
5825 		    pci_dev->mem_resource[0].addr);
5826 
5827 	return 0;
5828 
5829 error_free:
5830 	bnxt_dev_uninit(eth_dev);
5831 	return rc;
5832 }
5833 
5834 
5835 static void bnxt_free_ctx_mem_buf(struct bnxt_ctx_mem_buf_info *ctx)
5836 {
5837 	if (!ctx)
5838 		return;
5839 
5840 	if (ctx->va)
5841 		rte_free(ctx->va);
5842 
5843 	ctx->va = NULL;
5844 	ctx->dma = RTE_BAD_IOVA;
5845 	ctx->ctx_id = BNXT_CTX_VAL_INVAL;
5846 }
5847 
5848 static void bnxt_unregister_fc_ctx_mem(struct bnxt *bp)
5849 {
5850 	bnxt_hwrm_cfa_counter_cfg(bp, BNXT_DIR_RX,
5851 				  CFA_COUNTER_CFG_IN_COUNTER_TYPE_FC,
5852 				  bp->flow_stat->rx_fc_out_tbl.ctx_id,
5853 				  bp->flow_stat->max_fc,
5854 				  false);
5855 
5856 	bnxt_hwrm_cfa_counter_cfg(bp, BNXT_DIR_TX,
5857 				  CFA_COUNTER_CFG_IN_COUNTER_TYPE_FC,
5858 				  bp->flow_stat->tx_fc_out_tbl.ctx_id,
5859 				  bp->flow_stat->max_fc,
5860 				  false);
5861 
5862 	if (bp->flow_stat->rx_fc_in_tbl.ctx_id != BNXT_CTX_VAL_INVAL)
5863 		bnxt_hwrm_ctx_unrgtr(bp, bp->flow_stat->rx_fc_in_tbl.ctx_id);
5864 	bp->flow_stat->rx_fc_in_tbl.ctx_id = BNXT_CTX_VAL_INVAL;
5865 
5866 	if (bp->flow_stat->rx_fc_out_tbl.ctx_id != BNXT_CTX_VAL_INVAL)
5867 		bnxt_hwrm_ctx_unrgtr(bp, bp->flow_stat->rx_fc_out_tbl.ctx_id);
5868 	bp->flow_stat->rx_fc_out_tbl.ctx_id = BNXT_CTX_VAL_INVAL;
5869 
5870 	if (bp->flow_stat->tx_fc_in_tbl.ctx_id != BNXT_CTX_VAL_INVAL)
5871 		bnxt_hwrm_ctx_unrgtr(bp, bp->flow_stat->tx_fc_in_tbl.ctx_id);
5872 	bp->flow_stat->tx_fc_in_tbl.ctx_id = BNXT_CTX_VAL_INVAL;
5873 
5874 	if (bp->flow_stat->tx_fc_out_tbl.ctx_id != BNXT_CTX_VAL_INVAL)
5875 		bnxt_hwrm_ctx_unrgtr(bp, bp->flow_stat->tx_fc_out_tbl.ctx_id);
5876 	bp->flow_stat->tx_fc_out_tbl.ctx_id = BNXT_CTX_VAL_INVAL;
5877 }
5878 
5879 static void bnxt_uninit_fc_ctx_mem(struct bnxt *bp)
5880 {
5881 	bnxt_unregister_fc_ctx_mem(bp);
5882 
5883 	bnxt_free_ctx_mem_buf(&bp->flow_stat->rx_fc_in_tbl);
5884 	bnxt_free_ctx_mem_buf(&bp->flow_stat->rx_fc_out_tbl);
5885 	bnxt_free_ctx_mem_buf(&bp->flow_stat->tx_fc_in_tbl);
5886 	bnxt_free_ctx_mem_buf(&bp->flow_stat->tx_fc_out_tbl);
5887 }
5888 
5889 static void bnxt_uninit_ctx_mem(struct bnxt *bp)
5890 {
5891 	if (BNXT_FLOW_XSTATS_EN(bp))
5892 		bnxt_uninit_fc_ctx_mem(bp);
5893 }
5894 
5895 static void
5896 bnxt_free_error_recovery_info(struct bnxt *bp)
5897 {
5898 	rte_free(bp->recovery_info);
5899 	bp->recovery_info = NULL;
5900 	bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
5901 }
5902 
5903 static void
5904 bnxt_uninit_locks(struct bnxt *bp)
5905 {
5906 	pthread_mutex_destroy(&bp->flow_lock);
5907 	pthread_mutex_destroy(&bp->def_cp_lock);
5908 	if (bp->rep_info)
5909 		pthread_mutex_destroy(&bp->rep_info->vfr_lock);
5910 }
5911 
5912 static int
5913 bnxt_uninit_resources(struct bnxt *bp, bool reconfig_dev)
5914 {
5915 	int rc;
5916 
5917 	bnxt_free_int(bp);
5918 	bnxt_free_mem(bp, reconfig_dev);
5919 	bnxt_hwrm_func_buf_unrgtr(bp);
5920 	rc = bnxt_hwrm_func_driver_unregister(bp, 0);
5921 	bp->flags &= ~BNXT_FLAG_REGISTERED;
5922 	bnxt_free_ctx_mem(bp);
5923 	if (!reconfig_dev) {
5924 		bnxt_free_hwrm_resources(bp);
5925 		bnxt_free_error_recovery_info(bp);
5926 	}
5927 
5928 	bnxt_uninit_ctx_mem(bp);
5929 
5930 	bnxt_uninit_locks(bp);
5931 	bnxt_free_flow_stats_info(bp);
5932 	bnxt_free_rep_info(bp);
5933 	rte_free(bp->ptp_cfg);
5934 	bp->ptp_cfg = NULL;
5935 	return rc;
5936 }
5937 
5938 static int
5939 bnxt_dev_uninit(struct rte_eth_dev *eth_dev)
5940 {
5941 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
5942 		return -EPERM;
5943 
5944 	PMD_DRV_LOG(DEBUG, "Calling Device uninit\n");
5945 
5946 	if (eth_dev->state != RTE_ETH_DEV_UNUSED)
5947 		bnxt_dev_close_op(eth_dev);
5948 
5949 	return 0;
5950 }
5951 
5952 static int bnxt_pci_remove_dev_with_reps(struct rte_eth_dev *eth_dev)
5953 {
5954 	struct bnxt *bp = eth_dev->data->dev_private;
5955 	struct rte_eth_dev *vf_rep_eth_dev;
5956 	int ret = 0, i;
5957 
5958 	if (!bp)
5959 		return -EINVAL;
5960 
5961 	for (i = 0; i < bp->num_reps; i++) {
5962 		vf_rep_eth_dev = bp->rep_info[i].vfr_eth_dev;
5963 		if (!vf_rep_eth_dev)
5964 			continue;
5965 		rte_eth_dev_destroy(vf_rep_eth_dev, bnxt_vf_representor_uninit);
5966 	}
5967 	ret = rte_eth_dev_destroy(eth_dev, bnxt_dev_uninit);
5968 
5969 	return ret;
5970 }
5971 
5972 static void bnxt_free_rep_info(struct bnxt *bp)
5973 {
5974 	rte_free(bp->rep_info);
5975 	bp->rep_info = NULL;
5976 	rte_free(bp->cfa_code_map);
5977 	bp->cfa_code_map = NULL;
5978 }
5979 
5980 static int bnxt_init_rep_info(struct bnxt *bp)
5981 {
5982 	int i = 0, rc;
5983 
5984 	if (bp->rep_info)
5985 		return 0;
5986 
5987 	bp->rep_info = rte_zmalloc("bnxt_rep_info",
5988 				   sizeof(bp->rep_info[0]) * BNXT_MAX_VF_REPS,
5989 				   0);
5990 	if (!bp->rep_info) {
5991 		PMD_DRV_LOG(ERR, "Failed to alloc memory for rep info\n");
5992 		return -ENOMEM;
5993 	}
5994 	bp->cfa_code_map = rte_zmalloc("bnxt_cfa_code_map",
5995 				       sizeof(*bp->cfa_code_map) *
5996 				       BNXT_MAX_CFA_CODE, 0);
5997 	if (!bp->cfa_code_map) {
5998 		PMD_DRV_LOG(ERR, "Failed to alloc memory for cfa_code_map\n");
5999 		bnxt_free_rep_info(bp);
6000 		return -ENOMEM;
6001 	}
6002 
6003 	for (i = 0; i < BNXT_MAX_CFA_CODE; i++)
6004 		bp->cfa_code_map[i] = BNXT_VF_IDX_INVALID;
6005 
6006 	rc = pthread_mutex_init(&bp->rep_info->vfr_lock, NULL);
6007 	if (rc) {
6008 		PMD_DRV_LOG(ERR, "Unable to initialize vfr_lock\n");
6009 		bnxt_free_rep_info(bp);
6010 		return rc;
6011 	}
6012 	return rc;
6013 }
6014 
6015 static int bnxt_rep_port_probe(struct rte_pci_device *pci_dev,
6016 			       struct rte_eth_devargs eth_da,
6017 			       struct rte_eth_dev *backing_eth_dev)
6018 {
6019 	struct rte_eth_dev *vf_rep_eth_dev;
6020 	char name[RTE_ETH_NAME_MAX_LEN];
6021 	struct bnxt *backing_bp;
6022 	uint16_t num_rep;
6023 	int i, ret = 0;
6024 
6025 	num_rep = eth_da.nb_representor_ports;
6026 	if (num_rep > BNXT_MAX_VF_REPS) {
6027 		PMD_DRV_LOG(ERR, "nb_representor_ports = %d > %d MAX VF REPS\n",
6028 			    num_rep, BNXT_MAX_VF_REPS);
6029 		return -EINVAL;
6030 	}
6031 
6032 	if (num_rep > RTE_MAX_ETHPORTS) {
6033 		PMD_DRV_LOG(ERR,
6034 			    "nb_representor_ports = %d > %d MAX ETHPORTS\n",
6035 			    num_rep, RTE_MAX_ETHPORTS);
6036 		return -EINVAL;
6037 	}
6038 
6039 	backing_bp = backing_eth_dev->data->dev_private;
6040 
6041 	if (!(BNXT_PF(backing_bp) || BNXT_VF_IS_TRUSTED(backing_bp))) {
6042 		PMD_DRV_LOG(ERR,
6043 			    "Not a PF or trusted VF. No Representor support\n");
6044 		/* Returning an error is not an option.
6045 		 * Applications are not handling this correctly
6046 		 */
6047 		return 0;
6048 	}
6049 
6050 	if (bnxt_init_rep_info(backing_bp))
6051 		return 0;
6052 
6053 	for (i = 0; i < num_rep; i++) {
6054 		struct bnxt_vf_representor representor = {
6055 			.vf_id = eth_da.representor_ports[i],
6056 			.switch_domain_id = backing_bp->switch_domain_id,
6057 			.parent_dev = backing_eth_dev
6058 		};
6059 
6060 		if (representor.vf_id >= BNXT_MAX_VF_REPS) {
6061 			PMD_DRV_LOG(ERR, "VF-Rep id %d >= %d MAX VF ID\n",
6062 				    representor.vf_id, BNXT_MAX_VF_REPS);
6063 			continue;
6064 		}
6065 
6066 		/* representor port net_bdf_port */
6067 		snprintf(name, sizeof(name), "net_%s_representor_%d",
6068 			 pci_dev->device.name, eth_da.representor_ports[i]);
6069 
6070 		ret = rte_eth_dev_create(&pci_dev->device, name,
6071 					 sizeof(struct bnxt_vf_representor),
6072 					 NULL, NULL,
6073 					 bnxt_vf_representor_init,
6074 					 &representor);
6075 
6076 		if (!ret) {
6077 			vf_rep_eth_dev = rte_eth_dev_allocated(name);
6078 			if (!vf_rep_eth_dev) {
6079 				PMD_DRV_LOG(ERR, "Failed to find the eth_dev"
6080 					    " for VF-Rep: %s.", name);
6081 				bnxt_pci_remove_dev_with_reps(backing_eth_dev);
6082 				ret = -ENODEV;
6083 				return ret;
6084 			}
6085 			backing_bp->rep_info[representor.vf_id].vfr_eth_dev =
6086 				vf_rep_eth_dev;
6087 			backing_bp->num_reps++;
6088 		} else {
6089 			PMD_DRV_LOG(ERR, "failed to create bnxt vf "
6090 				    "representor %s.", name);
6091 			bnxt_pci_remove_dev_with_reps(backing_eth_dev);
6092 		}
6093 	}
6094 
6095 	return ret;
6096 }
6097 
6098 static int bnxt_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
6099 			  struct rte_pci_device *pci_dev)
6100 {
6101 	struct rte_eth_devargs eth_da = { .nb_representor_ports = 0 };
6102 	struct rte_eth_dev *backing_eth_dev;
6103 	uint16_t num_rep;
6104 	int ret = 0;
6105 
6106 	if (pci_dev->device.devargs) {
6107 		ret = rte_eth_devargs_parse(pci_dev->device.devargs->args,
6108 					    &eth_da);
6109 		if (ret)
6110 			return ret;
6111 	}
6112 
6113 	num_rep = eth_da.nb_representor_ports;
6114 	PMD_DRV_LOG(DEBUG, "nb_representor_ports = %d\n",
6115 		    num_rep);
6116 
6117 	/* We could come here after first level of probe is already invoked
6118 	 * as part of an application bringup(OVS-DPDK vswitchd), so first check
6119 	 * for already allocated eth_dev for the backing device (PF/Trusted VF)
6120 	 */
6121 	backing_eth_dev = rte_eth_dev_allocated(pci_dev->device.name);
6122 	if (backing_eth_dev == NULL) {
6123 		ret = rte_eth_dev_create(&pci_dev->device, pci_dev->device.name,
6124 					 sizeof(struct bnxt),
6125 					 eth_dev_pci_specific_init, pci_dev,
6126 					 bnxt_dev_init, NULL);
6127 
6128 		if (ret || !num_rep)
6129 			return ret;
6130 
6131 		backing_eth_dev = rte_eth_dev_allocated(pci_dev->device.name);
6132 	}
6133 
6134 	/* probe representor ports now */
6135 	ret = bnxt_rep_port_probe(pci_dev, eth_da, backing_eth_dev);
6136 
6137 	return ret;
6138 }
6139 
6140 static int bnxt_pci_remove(struct rte_pci_device *pci_dev)
6141 {
6142 	struct rte_eth_dev *eth_dev;
6143 
6144 	eth_dev = rte_eth_dev_allocated(pci_dev->device.name);
6145 	if (!eth_dev)
6146 		return 0; /* Invoked typically only by OVS-DPDK, by the
6147 			   * time it comes here the eth_dev is already
6148 			   * deleted by rte_eth_dev_close(), so returning
6149 			   * +ve value will at least help in proper cleanup
6150 			   */
6151 
6152 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
6153 		if (eth_dev->data->dev_flags & RTE_ETH_DEV_REPRESENTOR)
6154 			return rte_eth_dev_destroy(eth_dev,
6155 						   bnxt_vf_representor_uninit);
6156 		else
6157 			return rte_eth_dev_destroy(eth_dev,
6158 						   bnxt_dev_uninit);
6159 	} else {
6160 		return rte_eth_dev_pci_generic_remove(pci_dev, NULL);
6161 	}
6162 }
6163 
6164 static struct rte_pci_driver bnxt_rte_pmd = {
6165 	.id_table = bnxt_pci_id_map,
6166 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
6167 			RTE_PCI_DRV_PROBE_AGAIN, /* Needed in case of VF-REPs
6168 						  * and OVS-DPDK
6169 						  */
6170 	.probe = bnxt_pci_probe,
6171 	.remove = bnxt_pci_remove,
6172 };
6173 
6174 static bool
6175 is_device_supported(struct rte_eth_dev *dev, struct rte_pci_driver *drv)
6176 {
6177 	if (strcmp(dev->device->driver->name, drv->driver.name))
6178 		return false;
6179 
6180 	return true;
6181 }
6182 
6183 bool is_bnxt_supported(struct rte_eth_dev *dev)
6184 {
6185 	return is_device_supported(dev, &bnxt_rte_pmd);
6186 }
6187 
6188 RTE_LOG_REGISTER(bnxt_logtype_driver, pmd.net.bnxt.driver, NOTICE);
6189 RTE_PMD_REGISTER_PCI(net_bnxt, bnxt_rte_pmd);
6190 RTE_PMD_REGISTER_PCI_TABLE(net_bnxt, bnxt_pci_id_map);
6191 RTE_PMD_REGISTER_KMOD_DEP(net_bnxt, "* igb_uio | uio_pci_generic | vfio-pci");
6192