xref: /dpdk/drivers/net/bnxt/bnxt_ethdev.c (revision b11cceb83a34ffc20f1d79791e0542ce5f9722aa)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) Broadcom Limited.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Broadcom Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <inttypes.h>
35 #include <stdbool.h>
36 
37 #include <rte_dev.h>
38 #include <rte_ethdev.h>
39 #include <rte_ethdev_pci.h>
40 #include <rte_malloc.h>
41 #include <rte_cycles.h>
42 
43 #include "bnxt.h"
44 #include "bnxt_cpr.h"
45 #include "bnxt_filter.h"
46 #include "bnxt_hwrm.h"
47 #include "bnxt_irq.h"
48 #include "bnxt_ring.h"
49 #include "bnxt_rxq.h"
50 #include "bnxt_rxr.h"
51 #include "bnxt_stats.h"
52 #include "bnxt_txq.h"
53 #include "bnxt_txr.h"
54 #include "bnxt_vnic.h"
55 #include "hsi_struct_def_dpdk.h"
56 #include "bnxt_nvm_defs.h"
57 
58 #define DRV_MODULE_NAME		"bnxt"
59 static const char bnxt_version[] =
60 	"Broadcom Cumulus driver " DRV_MODULE_NAME "\n";
61 
62 #define PCI_VENDOR_ID_BROADCOM 0x14E4
63 
64 #define BROADCOM_DEV_ID_STRATUS_NIC_VF 0x1609
65 #define BROADCOM_DEV_ID_STRATUS_NIC 0x1614
66 #define BROADCOM_DEV_ID_57414_VF 0x16c1
67 #define BROADCOM_DEV_ID_57301 0x16c8
68 #define BROADCOM_DEV_ID_57302 0x16c9
69 #define BROADCOM_DEV_ID_57304_PF 0x16ca
70 #define BROADCOM_DEV_ID_57304_VF 0x16cb
71 #define BROADCOM_DEV_ID_57417_MF 0x16cc
72 #define BROADCOM_DEV_ID_NS2 0x16cd
73 #define BROADCOM_DEV_ID_57311 0x16ce
74 #define BROADCOM_DEV_ID_57312 0x16cf
75 #define BROADCOM_DEV_ID_57402 0x16d0
76 #define BROADCOM_DEV_ID_57404 0x16d1
77 #define BROADCOM_DEV_ID_57406_PF 0x16d2
78 #define BROADCOM_DEV_ID_57406_VF 0x16d3
79 #define BROADCOM_DEV_ID_57402_MF 0x16d4
80 #define BROADCOM_DEV_ID_57407_RJ45 0x16d5
81 #define BROADCOM_DEV_ID_57412 0x16d6
82 #define BROADCOM_DEV_ID_57414 0x16d7
83 #define BROADCOM_DEV_ID_57416_RJ45 0x16d8
84 #define BROADCOM_DEV_ID_57417_RJ45 0x16d9
85 #define BROADCOM_DEV_ID_5741X_VF 0x16dc
86 #define BROADCOM_DEV_ID_57412_MF 0x16de
87 #define BROADCOM_DEV_ID_57314 0x16df
88 #define BROADCOM_DEV_ID_57317_RJ45 0x16e0
89 #define BROADCOM_DEV_ID_5731X_VF 0x16e1
90 #define BROADCOM_DEV_ID_57417_SFP 0x16e2
91 #define BROADCOM_DEV_ID_57416_SFP 0x16e3
92 #define BROADCOM_DEV_ID_57317_SFP 0x16e4
93 #define BROADCOM_DEV_ID_57404_MF 0x16e7
94 #define BROADCOM_DEV_ID_57406_MF 0x16e8
95 #define BROADCOM_DEV_ID_57407_SFP 0x16e9
96 #define BROADCOM_DEV_ID_57407_MF 0x16ea
97 #define BROADCOM_DEV_ID_57414_MF 0x16ec
98 #define BROADCOM_DEV_ID_57416_MF 0x16ee
99 
100 static const struct rte_pci_id bnxt_pci_id_map[] = {
101 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
102 			 BROADCOM_DEV_ID_STRATUS_NIC_VF) },
103 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_STRATUS_NIC) },
104 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_VF) },
105 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57301) },
106 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57302) },
107 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_PF) },
108 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_VF) },
109 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_NS2) },
110 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402) },
111 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404) },
112 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_PF) },
113 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_VF) },
114 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402_MF) },
115 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_RJ45) },
116 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404_MF) },
117 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_MF) },
118 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_SFP) },
119 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_MF) },
120 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5741X_VF) },
121 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5731X_VF) },
122 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57314) },
123 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_MF) },
124 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57311) },
125 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57312) },
126 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412) },
127 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414) },
128 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_RJ45) },
129 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_RJ45) },
130 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412_MF) },
131 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_RJ45) },
132 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_SFP) },
133 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_SFP) },
134 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_SFP) },
135 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_MF) },
136 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_MF) },
137 	{ .vendor_id = 0, /* sentinel */ },
138 };
139 
140 #define BNXT_ETH_RSS_SUPPORT (	\
141 	ETH_RSS_IPV4 |		\
142 	ETH_RSS_NONFRAG_IPV4_TCP |	\
143 	ETH_RSS_NONFRAG_IPV4_UDP |	\
144 	ETH_RSS_IPV6 |		\
145 	ETH_RSS_NONFRAG_IPV6_TCP |	\
146 	ETH_RSS_NONFRAG_IPV6_UDP)
147 
148 static int bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask);
149 static void bnxt_print_link_info(struct rte_eth_dev *eth_dev);
150 
151 /***********************/
152 
153 /*
154  * High level utility functions
155  */
156 
157 static void bnxt_free_mem(struct bnxt *bp)
158 {
159 	bnxt_free_filter_mem(bp);
160 	bnxt_free_vnic_attributes(bp);
161 	bnxt_free_vnic_mem(bp);
162 
163 	bnxt_free_stats(bp);
164 	bnxt_free_tx_rings(bp);
165 	bnxt_free_rx_rings(bp);
166 	bnxt_free_def_cp_ring(bp);
167 }
168 
169 static int bnxt_alloc_mem(struct bnxt *bp)
170 {
171 	int rc;
172 
173 	/* Default completion ring */
174 	rc = bnxt_init_def_ring_struct(bp, SOCKET_ID_ANY);
175 	if (rc)
176 		goto alloc_mem_err;
177 
178 	rc = bnxt_alloc_rings(bp, 0, NULL, NULL,
179 			      bp->def_cp_ring, "def_cp");
180 	if (rc)
181 		goto alloc_mem_err;
182 
183 	rc = bnxt_alloc_vnic_mem(bp);
184 	if (rc)
185 		goto alloc_mem_err;
186 
187 	rc = bnxt_alloc_vnic_attributes(bp);
188 	if (rc)
189 		goto alloc_mem_err;
190 
191 	rc = bnxt_alloc_filter_mem(bp);
192 	if (rc)
193 		goto alloc_mem_err;
194 
195 	return 0;
196 
197 alloc_mem_err:
198 	bnxt_free_mem(bp);
199 	return rc;
200 }
201 
202 static int bnxt_init_chip(struct bnxt *bp)
203 {
204 	unsigned int i, rss_idx, fw_idx;
205 	struct rte_eth_link new;
206 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(bp->eth_dev);
207 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
208 	uint32_t intr_vector = 0;
209 	uint32_t queue_id, base = BNXT_MISC_VEC_ID;
210 	uint32_t vec = BNXT_MISC_VEC_ID;
211 	int rc;
212 
213 	/* disable uio/vfio intr/eventfd mapping */
214 	rte_intr_disable(intr_handle);
215 
216 	if (bp->eth_dev->data->mtu > ETHER_MTU) {
217 		bp->eth_dev->data->dev_conf.rxmode.jumbo_frame = 1;
218 		bp->flags |= BNXT_FLAG_JUMBO;
219 	} else {
220 		bp->eth_dev->data->dev_conf.rxmode.jumbo_frame = 0;
221 		bp->flags &= ~BNXT_FLAG_JUMBO;
222 	}
223 
224 	rc = bnxt_alloc_all_hwrm_stat_ctxs(bp);
225 	if (rc) {
226 		RTE_LOG(ERR, PMD, "HWRM stat ctx alloc failure rc: %x\n", rc);
227 		goto err_out;
228 	}
229 
230 	rc = bnxt_alloc_hwrm_rings(bp);
231 	if (rc) {
232 		RTE_LOG(ERR, PMD, "HWRM ring alloc failure rc: %x\n", rc);
233 		goto err_out;
234 	}
235 
236 	rc = bnxt_alloc_all_hwrm_ring_grps(bp);
237 	if (rc) {
238 		RTE_LOG(ERR, PMD, "HWRM ring grp alloc failure: %x\n", rc);
239 		goto err_out;
240 	}
241 
242 	rc = bnxt_mq_rx_configure(bp);
243 	if (rc) {
244 		RTE_LOG(ERR, PMD, "MQ mode configure failure rc: %x\n", rc);
245 		goto err_out;
246 	}
247 
248 	/* VNIC configuration */
249 	for (i = 0; i < bp->nr_vnics; i++) {
250 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
251 
252 		rc = bnxt_hwrm_vnic_alloc(bp, vnic);
253 		if (rc) {
254 			RTE_LOG(ERR, PMD, "HWRM vnic %d alloc failure rc: %x\n",
255 				i, rc);
256 			goto err_out;
257 		}
258 
259 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic);
260 		if (rc) {
261 			RTE_LOG(ERR, PMD,
262 				"HWRM vnic %d ctx alloc failure rc: %x\n",
263 				i, rc);
264 			goto err_out;
265 		}
266 
267 		rc = bnxt_hwrm_vnic_cfg(bp, vnic);
268 		if (rc) {
269 			RTE_LOG(ERR, PMD, "HWRM vnic %d cfg failure rc: %x\n",
270 				i, rc);
271 			goto err_out;
272 		}
273 
274 		rc = bnxt_set_hwrm_vnic_filters(bp, vnic);
275 		if (rc) {
276 			RTE_LOG(ERR, PMD,
277 				"HWRM vnic %d filter failure rc: %x\n",
278 				i, rc);
279 			goto err_out;
280 		}
281 		if (vnic->rss_table && vnic->hash_type) {
282 			/*
283 			 * Fill the RSS hash & redirection table with
284 			 * ring group ids for all VNICs
285 			 */
286 			for (rss_idx = 0, fw_idx = 0;
287 			     rss_idx < HW_HASH_INDEX_SIZE;
288 			     rss_idx++, fw_idx++) {
289 				if (vnic->fw_grp_ids[fw_idx] ==
290 				    INVALID_HW_RING_ID)
291 					fw_idx = 0;
292 				vnic->rss_table[rss_idx] =
293 						vnic->fw_grp_ids[fw_idx];
294 			}
295 			rc = bnxt_hwrm_vnic_rss_cfg(bp, vnic);
296 			if (rc) {
297 				RTE_LOG(ERR, PMD,
298 					"HWRM vnic %d set RSS failure rc: %x\n",
299 					i, rc);
300 				goto err_out;
301 			}
302 		}
303 
304 		bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
305 
306 		if (bp->eth_dev->data->dev_conf.rxmode.enable_lro)
307 			bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 1);
308 		else
309 			bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 0);
310 	}
311 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, &bp->vnic_info[0], 0, NULL);
312 	if (rc) {
313 		RTE_LOG(ERR, PMD,
314 			"HWRM cfa l2 rx mask failure rc: %x\n", rc);
315 		goto err_out;
316 	}
317 
318 	/* check and configure queue intr-vector mapping */
319 	if ((rte_intr_cap_multiple(intr_handle) ||
320 	     !RTE_ETH_DEV_SRIOV(bp->eth_dev).active) &&
321 	    bp->eth_dev->data->dev_conf.intr_conf.rxq != 0) {
322 		intr_vector = bp->eth_dev->data->nb_rx_queues;
323 		RTE_LOG(INFO, PMD, "%s(): intr_vector = %d\n", __func__,
324 			intr_vector);
325 		if (intr_vector > bp->rx_cp_nr_rings) {
326 			RTE_LOG(ERR, PMD, "At most %d intr queues supported",
327 					bp->rx_cp_nr_rings);
328 			return -ENOTSUP;
329 		}
330 		if (rte_intr_efd_enable(intr_handle, intr_vector))
331 			return -1;
332 	}
333 
334 	if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
335 		intr_handle->intr_vec =
336 			rte_zmalloc("intr_vec",
337 				    bp->eth_dev->data->nb_rx_queues *
338 				    sizeof(int), 0);
339 		if (intr_handle->intr_vec == NULL) {
340 			RTE_LOG(ERR, PMD, "Failed to allocate %d rx_queues"
341 				" intr_vec", bp->eth_dev->data->nb_rx_queues);
342 			return -ENOMEM;
343 		}
344 		RTE_LOG(DEBUG, PMD, "%s(): intr_handle->intr_vec = %p "
345 			"intr_handle->nb_efd = %d intr_handle->max_intr = %d\n",
346 			 __func__, intr_handle->intr_vec, intr_handle->nb_efd,
347 			intr_handle->max_intr);
348 	}
349 
350 	for (queue_id = 0; queue_id < bp->eth_dev->data->nb_rx_queues;
351 	     queue_id++) {
352 		intr_handle->intr_vec[queue_id] = vec;
353 		if (vec < base + intr_handle->nb_efd - 1)
354 			vec++;
355 	}
356 
357 	/* enable uio/vfio intr/eventfd mapping */
358 	rte_intr_enable(intr_handle);
359 
360 	rc = bnxt_get_hwrm_link_config(bp, &new);
361 	if (rc) {
362 		RTE_LOG(ERR, PMD, "HWRM Get link config failure rc: %x\n", rc);
363 		goto err_out;
364 	}
365 
366 	if (!bp->link_info.link_up) {
367 		rc = bnxt_set_hwrm_link_config(bp, true);
368 		if (rc) {
369 			RTE_LOG(ERR, PMD,
370 				"HWRM link config failure rc: %x\n", rc);
371 			goto err_out;
372 		}
373 	}
374 	bnxt_print_link_info(bp->eth_dev);
375 
376 	return 0;
377 
378 err_out:
379 	bnxt_free_all_hwrm_resources(bp);
380 
381 	return rc;
382 }
383 
384 static int bnxt_shutdown_nic(struct bnxt *bp)
385 {
386 	bnxt_free_all_hwrm_resources(bp);
387 	bnxt_free_all_filters(bp);
388 	bnxt_free_all_vnics(bp);
389 	return 0;
390 }
391 
392 static int bnxt_init_nic(struct bnxt *bp)
393 {
394 	int rc;
395 
396 	bnxt_init_ring_grps(bp);
397 	bnxt_init_vnics(bp);
398 	bnxt_init_filters(bp);
399 
400 	rc = bnxt_init_chip(bp);
401 	if (rc)
402 		return rc;
403 
404 	return 0;
405 }
406 
407 /*
408  * Device configuration and status function
409  */
410 
411 static void bnxt_dev_info_get_op(struct rte_eth_dev *eth_dev,
412 				  struct rte_eth_dev_info *dev_info)
413 {
414 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
415 	uint16_t max_vnics, i, j, vpool, vrxq;
416 	unsigned int max_rx_rings;
417 
418 	dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
419 
420 	/* MAC Specifics */
421 	dev_info->max_mac_addrs = bp->max_l2_ctx;
422 	dev_info->max_hash_mac_addrs = 0;
423 
424 	/* PF/VF specifics */
425 	if (BNXT_PF(bp))
426 		dev_info->max_vfs = bp->pdev->max_vfs;
427 	max_rx_rings = RTE_MIN(bp->max_vnics, RTE_MIN(bp->max_l2_ctx,
428 						RTE_MIN(bp->max_rsscos_ctx,
429 						bp->max_stat_ctx)));
430 	/* For the sake of symmetry, max_rx_queues = max_tx_queues */
431 	dev_info->max_rx_queues = max_rx_rings;
432 	dev_info->max_tx_queues = max_rx_rings;
433 	dev_info->reta_size = bp->max_rsscos_ctx;
434 	dev_info->hash_key_size = 40;
435 	max_vnics = bp->max_vnics;
436 
437 	/* Fast path specifics */
438 	dev_info->min_rx_bufsize = 1;
439 	dev_info->max_rx_pktlen = BNXT_MAX_MTU + ETHER_HDR_LEN + ETHER_CRC_LEN
440 				  + VLAN_TAG_SIZE;
441 	dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP |
442 					DEV_RX_OFFLOAD_IPV4_CKSUM |
443 					DEV_RX_OFFLOAD_UDP_CKSUM |
444 					DEV_RX_OFFLOAD_TCP_CKSUM |
445 					DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
446 	dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
447 					DEV_TX_OFFLOAD_IPV4_CKSUM |
448 					DEV_TX_OFFLOAD_TCP_CKSUM |
449 					DEV_TX_OFFLOAD_UDP_CKSUM |
450 					DEV_TX_OFFLOAD_TCP_TSO |
451 					DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
452 					DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
453 					DEV_TX_OFFLOAD_GRE_TNL_TSO |
454 					DEV_TX_OFFLOAD_IPIP_TNL_TSO |
455 					DEV_TX_OFFLOAD_GENEVE_TNL_TSO;
456 
457 	/* *INDENT-OFF* */
458 	dev_info->default_rxconf = (struct rte_eth_rxconf) {
459 		.rx_thresh = {
460 			.pthresh = 8,
461 			.hthresh = 8,
462 			.wthresh = 0,
463 		},
464 		.rx_free_thresh = 32,
465 		.rx_drop_en = 0,
466 	};
467 
468 	dev_info->default_txconf = (struct rte_eth_txconf) {
469 		.tx_thresh = {
470 			.pthresh = 32,
471 			.hthresh = 0,
472 			.wthresh = 0,
473 		},
474 		.tx_free_thresh = 32,
475 		.tx_rs_thresh = 32,
476 		.txq_flags = ETH_TXQ_FLAGS_NOMULTSEGS |
477 			     ETH_TXQ_FLAGS_NOOFFLOADS,
478 	};
479 	eth_dev->data->dev_conf.intr_conf.lsc = 1;
480 
481 	eth_dev->data->dev_conf.intr_conf.rxq = 1;
482 
483 	/* *INDENT-ON* */
484 
485 	/*
486 	 * TODO: default_rxconf, default_txconf, rx_desc_lim, and tx_desc_lim
487 	 *       need further investigation.
488 	 */
489 
490 	/* VMDq resources */
491 	vpool = 64; /* ETH_64_POOLS */
492 	vrxq = 128; /* ETH_VMDQ_DCB_NUM_QUEUES */
493 	for (i = 0; i < 4; vpool >>= 1, i++) {
494 		if (max_vnics > vpool) {
495 			for (j = 0; j < 5; vrxq >>= 1, j++) {
496 				if (dev_info->max_rx_queues > vrxq) {
497 					if (vpool > vrxq)
498 						vpool = vrxq;
499 					goto found;
500 				}
501 			}
502 			/* Not enough resources to support VMDq */
503 			break;
504 		}
505 	}
506 	/* Not enough resources to support VMDq */
507 	vpool = 0;
508 	vrxq = 0;
509 found:
510 	dev_info->max_vmdq_pools = vpool;
511 	dev_info->vmdq_queue_num = vrxq;
512 
513 	dev_info->vmdq_pool_base = 0;
514 	dev_info->vmdq_queue_base = 0;
515 }
516 
517 /* Configure the device based on the configuration provided */
518 static int bnxt_dev_configure_op(struct rte_eth_dev *eth_dev)
519 {
520 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
521 
522 	bp->rx_queues = (void *)eth_dev->data->rx_queues;
523 	bp->tx_queues = (void *)eth_dev->data->tx_queues;
524 
525 	/* Inherit new configurations */
526 	bp->rx_nr_rings = eth_dev->data->nb_rx_queues;
527 	bp->tx_nr_rings = eth_dev->data->nb_tx_queues;
528 	bp->rx_cp_nr_rings = bp->rx_nr_rings;
529 	bp->tx_cp_nr_rings = bp->tx_nr_rings;
530 
531 	if (eth_dev->data->dev_conf.rxmode.jumbo_frame)
532 		eth_dev->data->mtu =
533 				eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
534 				ETHER_HDR_LEN - ETHER_CRC_LEN - VLAN_TAG_SIZE;
535 	return 0;
536 }
537 
538 static void bnxt_print_link_info(struct rte_eth_dev *eth_dev)
539 {
540 	struct rte_eth_link *link = &eth_dev->data->dev_link;
541 
542 	if (link->link_status)
543 		RTE_LOG(INFO, PMD, "Port %d Link Up - speed %u Mbps - %s\n",
544 			eth_dev->data->port_id,
545 			(uint32_t)link->link_speed,
546 			(link->link_duplex == ETH_LINK_FULL_DUPLEX) ?
547 			("full-duplex") : ("half-duplex\n"));
548 	else
549 		RTE_LOG(INFO, PMD, "Port %d Link Down\n",
550 			eth_dev->data->port_id);
551 }
552 
553 static int bnxt_dev_lsc_intr_setup(struct rte_eth_dev *eth_dev)
554 {
555 	bnxt_print_link_info(eth_dev);
556 	return 0;
557 }
558 
559 static int bnxt_dev_start_op(struct rte_eth_dev *eth_dev)
560 {
561 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
562 	int vlan_mask = 0;
563 	int rc;
564 
565 	if (bp->rx_cp_nr_rings > RTE_ETHDEV_QUEUE_STAT_CNTRS) {
566 		RTE_LOG(ERR, PMD,
567 			"RxQ cnt %d > CONFIG_RTE_ETHDEV_QUEUE_STAT_CNTRS %d\n",
568 			bp->rx_cp_nr_rings, RTE_ETHDEV_QUEUE_STAT_CNTRS);
569 	}
570 	bp->dev_stopped = 0;
571 
572 	rc = bnxt_init_nic(bp);
573 	if (rc)
574 		goto error;
575 
576 	bnxt_link_update_op(eth_dev, 1);
577 
578 	if (eth_dev->data->dev_conf.rxmode.hw_vlan_filter)
579 		vlan_mask |= ETH_VLAN_FILTER_MASK;
580 	if (eth_dev->data->dev_conf.rxmode.hw_vlan_strip)
581 		vlan_mask |= ETH_VLAN_STRIP_MASK;
582 	rc = bnxt_vlan_offload_set_op(eth_dev, vlan_mask);
583 	if (rc)
584 		goto error;
585 
586 	return 0;
587 
588 error:
589 	bnxt_shutdown_nic(bp);
590 	bnxt_free_tx_mbufs(bp);
591 	bnxt_free_rx_mbufs(bp);
592 	return rc;
593 }
594 
595 static int bnxt_dev_set_link_up_op(struct rte_eth_dev *eth_dev)
596 {
597 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
598 	int rc = 0;
599 
600 	if (!bp->link_info.link_up)
601 		rc = bnxt_set_hwrm_link_config(bp, true);
602 	if (!rc)
603 		eth_dev->data->dev_link.link_status = 1;
604 
605 	bnxt_print_link_info(eth_dev);
606 	return 0;
607 }
608 
609 static int bnxt_dev_set_link_down_op(struct rte_eth_dev *eth_dev)
610 {
611 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
612 
613 	eth_dev->data->dev_link.link_status = 0;
614 	bnxt_set_hwrm_link_config(bp, false);
615 	bp->link_info.link_up = 0;
616 
617 	return 0;
618 }
619 
620 /* Unload the driver, release resources */
621 static void bnxt_dev_stop_op(struct rte_eth_dev *eth_dev)
622 {
623 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
624 
625 	if (bp->eth_dev->data->dev_started) {
626 		/* TBD: STOP HW queues DMA */
627 		eth_dev->data->dev_link.link_status = 0;
628 	}
629 	bnxt_set_hwrm_link_config(bp, false);
630 	bnxt_hwrm_port_clr_stats(bp);
631 	bnxt_shutdown_nic(bp);
632 	bp->dev_stopped = 1;
633 }
634 
635 static void bnxt_dev_close_op(struct rte_eth_dev *eth_dev)
636 {
637 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
638 
639 	if (bp->dev_stopped == 0)
640 		bnxt_dev_stop_op(eth_dev);
641 
642 	bnxt_free_tx_mbufs(bp);
643 	bnxt_free_rx_mbufs(bp);
644 	bnxt_free_mem(bp);
645 	if (eth_dev->data->mac_addrs != NULL) {
646 		rte_free(eth_dev->data->mac_addrs);
647 		eth_dev->data->mac_addrs = NULL;
648 	}
649 	if (bp->grp_info != NULL) {
650 		rte_free(bp->grp_info);
651 		bp->grp_info = NULL;
652 	}
653 }
654 
655 static void bnxt_mac_addr_remove_op(struct rte_eth_dev *eth_dev,
656 				    uint32_t index)
657 {
658 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
659 	uint64_t pool_mask = eth_dev->data->mac_pool_sel[index];
660 	struct bnxt_vnic_info *vnic;
661 	struct bnxt_filter_info *filter, *temp_filter;
662 	uint32_t pool = RTE_MIN(MAX_FF_POOLS, ETH_64_POOLS);
663 	uint32_t i;
664 
665 	/*
666 	 * Loop through all VNICs from the specified filter flow pools to
667 	 * remove the corresponding MAC addr filter
668 	 */
669 	for (i = 0; i < pool; i++) {
670 		if (!(pool_mask & (1ULL << i)))
671 			continue;
672 
673 		STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
674 			filter = STAILQ_FIRST(&vnic->filter);
675 			while (filter) {
676 				temp_filter = STAILQ_NEXT(filter, next);
677 				if (filter->mac_index == index) {
678 					STAILQ_REMOVE(&vnic->filter, filter,
679 						      bnxt_filter_info, next);
680 					bnxt_hwrm_clear_l2_filter(bp, filter);
681 					filter->mac_index = INVALID_MAC_INDEX;
682 					memset(&filter->l2_addr, 0,
683 					       ETHER_ADDR_LEN);
684 					STAILQ_INSERT_TAIL(
685 							&bp->free_filter_list,
686 							filter, next);
687 				}
688 				filter = temp_filter;
689 			}
690 		}
691 	}
692 }
693 
694 static int bnxt_mac_addr_add_op(struct rte_eth_dev *eth_dev,
695 				struct ether_addr *mac_addr,
696 				uint32_t index, uint32_t pool)
697 {
698 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
699 	struct bnxt_vnic_info *vnic = STAILQ_FIRST(&bp->ff_pool[pool]);
700 	struct bnxt_filter_info *filter;
701 
702 	if (BNXT_VF(bp)) {
703 		RTE_LOG(ERR, PMD, "Cannot add MAC address to a VF interface\n");
704 		return -ENOTSUP;
705 	}
706 
707 	if (!vnic) {
708 		RTE_LOG(ERR, PMD, "VNIC not found for pool %d!\n", pool);
709 		return -EINVAL;
710 	}
711 	/* Attach requested MAC address to the new l2_filter */
712 	STAILQ_FOREACH(filter, &vnic->filter, next) {
713 		if (filter->mac_index == index) {
714 			RTE_LOG(ERR, PMD,
715 				"MAC addr already existed for pool %d\n", pool);
716 			return -EINVAL;
717 		}
718 	}
719 	filter = bnxt_alloc_filter(bp);
720 	if (!filter) {
721 		RTE_LOG(ERR, PMD, "L2 filter alloc failed\n");
722 		return -ENODEV;
723 	}
724 	STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
725 	filter->mac_index = index;
726 	memcpy(filter->l2_addr, mac_addr, ETHER_ADDR_LEN);
727 	return bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
728 }
729 
730 int bnxt_link_update_op(struct rte_eth_dev *eth_dev, int wait_to_complete)
731 {
732 	int rc = 0;
733 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
734 	struct rte_eth_link new;
735 	unsigned int cnt = BNXT_LINK_WAIT_CNT;
736 
737 	memset(&new, 0, sizeof(new));
738 	do {
739 		/* Retrieve link info from hardware */
740 		rc = bnxt_get_hwrm_link_config(bp, &new);
741 		if (rc) {
742 			new.link_speed = ETH_LINK_SPEED_100M;
743 			new.link_duplex = ETH_LINK_FULL_DUPLEX;
744 			RTE_LOG(ERR, PMD,
745 				"Failed to retrieve link rc = 0x%x!\n", rc);
746 			goto out;
747 		}
748 		rte_delay_ms(BNXT_LINK_WAIT_INTERVAL);
749 
750 		if (!wait_to_complete)
751 			break;
752 	} while (!new.link_status && cnt--);
753 
754 out:
755 	/* Timed out or success */
756 	if (new.link_status != eth_dev->data->dev_link.link_status ||
757 	new.link_speed != eth_dev->data->dev_link.link_speed) {
758 		memcpy(&eth_dev->data->dev_link, &new,
759 			sizeof(struct rte_eth_link));
760 		bnxt_print_link_info(eth_dev);
761 	}
762 
763 	return rc;
764 }
765 
766 static void bnxt_promiscuous_enable_op(struct rte_eth_dev *eth_dev)
767 {
768 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
769 	struct bnxt_vnic_info *vnic;
770 
771 	if (bp->vnic_info == NULL)
772 		return;
773 
774 	vnic = &bp->vnic_info[0];
775 
776 	vnic->flags |= BNXT_VNIC_INFO_PROMISC;
777 	bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
778 }
779 
780 static void bnxt_promiscuous_disable_op(struct rte_eth_dev *eth_dev)
781 {
782 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
783 	struct bnxt_vnic_info *vnic;
784 
785 	if (bp->vnic_info == NULL)
786 		return;
787 
788 	vnic = &bp->vnic_info[0];
789 
790 	vnic->flags &= ~BNXT_VNIC_INFO_PROMISC;
791 	bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
792 }
793 
794 static void bnxt_allmulticast_enable_op(struct rte_eth_dev *eth_dev)
795 {
796 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
797 	struct bnxt_vnic_info *vnic;
798 
799 	if (bp->vnic_info == NULL)
800 		return;
801 
802 	vnic = &bp->vnic_info[0];
803 
804 	vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
805 	bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
806 }
807 
808 static void bnxt_allmulticast_disable_op(struct rte_eth_dev *eth_dev)
809 {
810 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
811 	struct bnxt_vnic_info *vnic;
812 
813 	if (bp->vnic_info == NULL)
814 		return;
815 
816 	vnic = &bp->vnic_info[0];
817 
818 	vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
819 	bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
820 }
821 
822 static int bnxt_reta_update_op(struct rte_eth_dev *eth_dev,
823 			    struct rte_eth_rss_reta_entry64 *reta_conf,
824 			    uint16_t reta_size)
825 {
826 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
827 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
828 	struct bnxt_vnic_info *vnic;
829 	int i;
830 
831 	if (!(dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
832 		return -EINVAL;
833 
834 	if (reta_size != HW_HASH_INDEX_SIZE) {
835 		RTE_LOG(ERR, PMD, "The configured hash table lookup size "
836 			"(%d) must equal the size supported by the hardware "
837 			"(%d)\n", reta_size, HW_HASH_INDEX_SIZE);
838 		return -EINVAL;
839 	}
840 	/* Update the RSS VNIC(s) */
841 	for (i = 0; i < MAX_FF_POOLS; i++) {
842 		STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
843 			memcpy(vnic->rss_table, reta_conf, reta_size);
844 
845 			bnxt_hwrm_vnic_rss_cfg(bp, vnic);
846 		}
847 	}
848 	return 0;
849 }
850 
851 static int bnxt_reta_query_op(struct rte_eth_dev *eth_dev,
852 			      struct rte_eth_rss_reta_entry64 *reta_conf,
853 			      uint16_t reta_size)
854 {
855 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
856 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
857 	struct rte_intr_handle *intr_handle
858 		= &bp->pdev->intr_handle;
859 
860 	/* Retrieve from the default VNIC */
861 	if (!vnic)
862 		return -EINVAL;
863 	if (!vnic->rss_table)
864 		return -EINVAL;
865 
866 	if (reta_size != HW_HASH_INDEX_SIZE) {
867 		RTE_LOG(ERR, PMD, "The configured hash table lookup size "
868 			"(%d) must equal the size supported by the hardware "
869 			"(%d)\n", reta_size, HW_HASH_INDEX_SIZE);
870 		return -EINVAL;
871 	}
872 	/* EW - need to revisit here copying from uint64_t to uint16_t */
873 	memcpy(reta_conf, vnic->rss_table, reta_size);
874 
875 	if (rte_intr_allow_others(intr_handle)) {
876 		if (eth_dev->data->dev_conf.intr_conf.lsc != 0)
877 			bnxt_dev_lsc_intr_setup(eth_dev);
878 	}
879 
880 	return 0;
881 }
882 
883 static int bnxt_rss_hash_update_op(struct rte_eth_dev *eth_dev,
884 				   struct rte_eth_rss_conf *rss_conf)
885 {
886 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
887 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
888 	struct bnxt_vnic_info *vnic;
889 	uint16_t hash_type = 0;
890 	int i;
891 
892 	/*
893 	 * If RSS enablement were different than dev_configure,
894 	 * then return -EINVAL
895 	 */
896 	if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) {
897 		if (!rss_conf->rss_hf)
898 			RTE_LOG(ERR, PMD, "Hash type NONE\n");
899 	} else {
900 		if (rss_conf->rss_hf & BNXT_ETH_RSS_SUPPORT)
901 			return -EINVAL;
902 	}
903 
904 	bp->flags |= BNXT_FLAG_UPDATE_HASH;
905 	memcpy(&bp->rss_conf, rss_conf, sizeof(*rss_conf));
906 
907 	if (rss_conf->rss_hf & ETH_RSS_IPV4)
908 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
909 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
910 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
911 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
912 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
913 	if (rss_conf->rss_hf & ETH_RSS_IPV6)
914 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
915 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
916 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
917 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
918 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
919 
920 	/* Update the RSS VNIC(s) */
921 	for (i = 0; i < MAX_FF_POOLS; i++) {
922 		STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
923 			vnic->hash_type = hash_type;
924 
925 			/*
926 			 * Use the supplied key if the key length is
927 			 * acceptable and the rss_key is not NULL
928 			 */
929 			if (rss_conf->rss_key &&
930 			    rss_conf->rss_key_len <= HW_HASH_KEY_SIZE)
931 				memcpy(vnic->rss_hash_key, rss_conf->rss_key,
932 				       rss_conf->rss_key_len);
933 
934 			bnxt_hwrm_vnic_rss_cfg(bp, vnic);
935 		}
936 	}
937 	return 0;
938 }
939 
940 static int bnxt_rss_hash_conf_get_op(struct rte_eth_dev *eth_dev,
941 				     struct rte_eth_rss_conf *rss_conf)
942 {
943 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
944 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
945 	int len;
946 	uint32_t hash_types;
947 
948 	/* RSS configuration is the same for all VNICs */
949 	if (vnic && vnic->rss_hash_key) {
950 		if (rss_conf->rss_key) {
951 			len = rss_conf->rss_key_len <= HW_HASH_KEY_SIZE ?
952 			      rss_conf->rss_key_len : HW_HASH_KEY_SIZE;
953 			memcpy(rss_conf->rss_key, vnic->rss_hash_key, len);
954 		}
955 
956 		hash_types = vnic->hash_type;
957 		rss_conf->rss_hf = 0;
958 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4) {
959 			rss_conf->rss_hf |= ETH_RSS_IPV4;
960 			hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
961 		}
962 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4) {
963 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
964 			hash_types &=
965 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
966 		}
967 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4) {
968 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
969 			hash_types &=
970 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
971 		}
972 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6) {
973 			rss_conf->rss_hf |= ETH_RSS_IPV6;
974 			hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
975 		}
976 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6) {
977 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
978 			hash_types &=
979 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
980 		}
981 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6) {
982 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
983 			hash_types &=
984 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
985 		}
986 		if (hash_types) {
987 			RTE_LOG(ERR, PMD,
988 				"Unknwon RSS config from firmware (%08x), RSS disabled",
989 				vnic->hash_type);
990 			return -ENOTSUP;
991 		}
992 	} else {
993 		rss_conf->rss_hf = 0;
994 	}
995 	return 0;
996 }
997 
998 static int bnxt_flow_ctrl_get_op(struct rte_eth_dev *dev,
999 			       struct rte_eth_fc_conf *fc_conf)
1000 {
1001 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1002 	struct rte_eth_link link_info;
1003 	int rc;
1004 
1005 	rc = bnxt_get_hwrm_link_config(bp, &link_info);
1006 	if (rc)
1007 		return rc;
1008 
1009 	memset(fc_conf, 0, sizeof(*fc_conf));
1010 	if (bp->link_info.auto_pause)
1011 		fc_conf->autoneg = 1;
1012 	switch (bp->link_info.pause) {
1013 	case 0:
1014 		fc_conf->mode = RTE_FC_NONE;
1015 		break;
1016 	case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX:
1017 		fc_conf->mode = RTE_FC_TX_PAUSE;
1018 		break;
1019 	case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX:
1020 		fc_conf->mode = RTE_FC_RX_PAUSE;
1021 		break;
1022 	case (HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX |
1023 			HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX):
1024 		fc_conf->mode = RTE_FC_FULL;
1025 		break;
1026 	}
1027 	return 0;
1028 }
1029 
1030 static int bnxt_flow_ctrl_set_op(struct rte_eth_dev *dev,
1031 			       struct rte_eth_fc_conf *fc_conf)
1032 {
1033 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1034 
1035 	if (BNXT_NPAR_PF(bp) || BNXT_VF(bp)) {
1036 		RTE_LOG(ERR, PMD, "Flow Control Settings cannot be modified\n");
1037 		return -ENOTSUP;
1038 	}
1039 
1040 	switch (fc_conf->mode) {
1041 	case RTE_FC_NONE:
1042 		bp->link_info.auto_pause = 0;
1043 		bp->link_info.force_pause = 0;
1044 		break;
1045 	case RTE_FC_RX_PAUSE:
1046 		if (fc_conf->autoneg) {
1047 			bp->link_info.auto_pause =
1048 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
1049 			bp->link_info.force_pause = 0;
1050 		} else {
1051 			bp->link_info.auto_pause = 0;
1052 			bp->link_info.force_pause =
1053 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
1054 		}
1055 		break;
1056 	case RTE_FC_TX_PAUSE:
1057 		if (fc_conf->autoneg) {
1058 			bp->link_info.auto_pause =
1059 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX;
1060 			bp->link_info.force_pause = 0;
1061 		} else {
1062 			bp->link_info.auto_pause = 0;
1063 			bp->link_info.force_pause =
1064 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX;
1065 		}
1066 		break;
1067 	case RTE_FC_FULL:
1068 		if (fc_conf->autoneg) {
1069 			bp->link_info.auto_pause =
1070 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX |
1071 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
1072 			bp->link_info.force_pause = 0;
1073 		} else {
1074 			bp->link_info.auto_pause = 0;
1075 			bp->link_info.force_pause =
1076 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX |
1077 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
1078 		}
1079 		break;
1080 	}
1081 	return bnxt_set_hwrm_link_config(bp, true);
1082 }
1083 
1084 /* Add UDP tunneling port */
1085 static int
1086 bnxt_udp_tunnel_port_add_op(struct rte_eth_dev *eth_dev,
1087 			 struct rte_eth_udp_tunnel *udp_tunnel)
1088 {
1089 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1090 	uint16_t tunnel_type = 0;
1091 	int rc = 0;
1092 
1093 	switch (udp_tunnel->prot_type) {
1094 	case RTE_TUNNEL_TYPE_VXLAN:
1095 		if (bp->vxlan_port_cnt) {
1096 			RTE_LOG(ERR, PMD, "Tunnel Port %d already programmed\n",
1097 				udp_tunnel->udp_port);
1098 			if (bp->vxlan_port != udp_tunnel->udp_port) {
1099 				RTE_LOG(ERR, PMD, "Only one port allowed\n");
1100 				return -ENOSPC;
1101 			}
1102 			bp->vxlan_port_cnt++;
1103 			return 0;
1104 		}
1105 		tunnel_type =
1106 			HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_VXLAN;
1107 		bp->vxlan_port_cnt++;
1108 		break;
1109 	case RTE_TUNNEL_TYPE_GENEVE:
1110 		if (bp->geneve_port_cnt) {
1111 			RTE_LOG(ERR, PMD, "Tunnel Port %d already programmed\n",
1112 				udp_tunnel->udp_port);
1113 			if (bp->geneve_port != udp_tunnel->udp_port) {
1114 				RTE_LOG(ERR, PMD, "Only one port allowed\n");
1115 				return -ENOSPC;
1116 			}
1117 			bp->geneve_port_cnt++;
1118 			return 0;
1119 		}
1120 		tunnel_type =
1121 			HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_GENEVE;
1122 		bp->geneve_port_cnt++;
1123 		break;
1124 	default:
1125 		RTE_LOG(ERR, PMD, "Tunnel type is not supported\n");
1126 		return -ENOTSUP;
1127 	}
1128 	rc = bnxt_hwrm_tunnel_dst_port_alloc(bp, udp_tunnel->udp_port,
1129 					     tunnel_type);
1130 	return rc;
1131 }
1132 
1133 static int
1134 bnxt_udp_tunnel_port_del_op(struct rte_eth_dev *eth_dev,
1135 			 struct rte_eth_udp_tunnel *udp_tunnel)
1136 {
1137 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1138 	uint16_t tunnel_type = 0;
1139 	uint16_t port = 0;
1140 	int rc = 0;
1141 
1142 	switch (udp_tunnel->prot_type) {
1143 	case RTE_TUNNEL_TYPE_VXLAN:
1144 		if (!bp->vxlan_port_cnt) {
1145 			RTE_LOG(ERR, PMD, "No Tunnel port configured yet\n");
1146 			return -EINVAL;
1147 		}
1148 		if (bp->vxlan_port != udp_tunnel->udp_port) {
1149 			RTE_LOG(ERR, PMD, "Req Port: %d. Configured port: %d\n",
1150 				udp_tunnel->udp_port, bp->vxlan_port);
1151 			return -EINVAL;
1152 		}
1153 		if (--bp->vxlan_port_cnt)
1154 			return 0;
1155 
1156 		tunnel_type =
1157 			HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN;
1158 		port = bp->vxlan_fw_dst_port_id;
1159 		break;
1160 	case RTE_TUNNEL_TYPE_GENEVE:
1161 		if (!bp->geneve_port_cnt) {
1162 			RTE_LOG(ERR, PMD, "No Tunnel port configured yet\n");
1163 			return -EINVAL;
1164 		}
1165 		if (bp->geneve_port != udp_tunnel->udp_port) {
1166 			RTE_LOG(ERR, PMD, "Req Port: %d. Configured port: %d\n",
1167 				udp_tunnel->udp_port, bp->geneve_port);
1168 			return -EINVAL;
1169 		}
1170 		if (--bp->geneve_port_cnt)
1171 			return 0;
1172 
1173 		tunnel_type =
1174 			HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE;
1175 		port = bp->geneve_fw_dst_port_id;
1176 		break;
1177 	default:
1178 		RTE_LOG(ERR, PMD, "Tunnel type is not supported\n");
1179 		return -ENOTSUP;
1180 	}
1181 
1182 	rc = bnxt_hwrm_tunnel_dst_port_free(bp, port, tunnel_type);
1183 	if (!rc) {
1184 		if (tunnel_type ==
1185 		    HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN)
1186 			bp->vxlan_port = 0;
1187 		if (tunnel_type ==
1188 		    HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE)
1189 			bp->geneve_port = 0;
1190 	}
1191 	return rc;
1192 }
1193 
1194 static int bnxt_del_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
1195 {
1196 	struct bnxt_filter_info *filter, *temp_filter, *new_filter;
1197 	struct bnxt_vnic_info *vnic;
1198 	unsigned int i;
1199 	int rc = 0;
1200 	uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN;
1201 
1202 	/* Cycle through all VNICs */
1203 	for (i = 0; i < bp->nr_vnics; i++) {
1204 		/*
1205 		 * For each VNIC and each associated filter(s)
1206 		 * if VLAN exists && VLAN matches vlan_id
1207 		 *      remove the MAC+VLAN filter
1208 		 *      add a new MAC only filter
1209 		 * else
1210 		 *      VLAN filter doesn't exist, just skip and continue
1211 		 */
1212 		STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
1213 			filter = STAILQ_FIRST(&vnic->filter);
1214 			while (filter) {
1215 				temp_filter = STAILQ_NEXT(filter, next);
1216 
1217 				if (filter->enables & chk &&
1218 				    filter->l2_ovlan == vlan_id) {
1219 					/* Must delete the filter */
1220 					STAILQ_REMOVE(&vnic->filter, filter,
1221 						      bnxt_filter_info, next);
1222 					bnxt_hwrm_clear_l2_filter(bp, filter);
1223 					STAILQ_INSERT_TAIL(
1224 							&bp->free_filter_list,
1225 							filter, next);
1226 
1227 					/*
1228 					 * Need to examine to see if the MAC
1229 					 * filter already existed or not before
1230 					 * allocating a new one
1231 					 */
1232 
1233 					new_filter = bnxt_alloc_filter(bp);
1234 					if (!new_filter) {
1235 						RTE_LOG(ERR, PMD,
1236 							"MAC/VLAN filter alloc failed\n");
1237 						rc = -ENOMEM;
1238 						goto exit;
1239 					}
1240 					STAILQ_INSERT_TAIL(&vnic->filter,
1241 							   new_filter, next);
1242 					/* Inherit MAC from previous filter */
1243 					new_filter->mac_index =
1244 							filter->mac_index;
1245 					memcpy(new_filter->l2_addr,
1246 					       filter->l2_addr, ETHER_ADDR_LEN);
1247 					/* MAC only filter */
1248 					rc = bnxt_hwrm_set_l2_filter(bp,
1249 							vnic->fw_vnic_id,
1250 							new_filter);
1251 					if (rc)
1252 						goto exit;
1253 					RTE_LOG(INFO, PMD,
1254 						"Del Vlan filter for %d\n",
1255 						vlan_id);
1256 				}
1257 				filter = temp_filter;
1258 			}
1259 		}
1260 	}
1261 exit:
1262 	return rc;
1263 }
1264 
1265 static int bnxt_add_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
1266 {
1267 	struct bnxt_filter_info *filter, *temp_filter, *new_filter;
1268 	struct bnxt_vnic_info *vnic;
1269 	unsigned int i;
1270 	int rc = 0;
1271 	uint32_t en = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN |
1272 		HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN_MASK;
1273 	uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN;
1274 
1275 	/* Cycle through all VNICs */
1276 	for (i = 0; i < bp->nr_vnics; i++) {
1277 		/*
1278 		 * For each VNIC and each associated filter(s)
1279 		 * if VLAN exists:
1280 		 *   if VLAN matches vlan_id
1281 		 *      VLAN filter already exists, just skip and continue
1282 		 *   else
1283 		 *      add a new MAC+VLAN filter
1284 		 * else
1285 		 *   Remove the old MAC only filter
1286 		 *    Add a new MAC+VLAN filter
1287 		 */
1288 		STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
1289 			filter = STAILQ_FIRST(&vnic->filter);
1290 			while (filter) {
1291 				temp_filter = STAILQ_NEXT(filter, next);
1292 
1293 				if (filter->enables & chk) {
1294 					if (filter->l2_ovlan == vlan_id)
1295 						goto cont;
1296 				} else {
1297 					/* Must delete the MAC filter */
1298 					STAILQ_REMOVE(&vnic->filter, filter,
1299 						      bnxt_filter_info, next);
1300 					bnxt_hwrm_clear_l2_filter(bp, filter);
1301 					filter->l2_ovlan = 0;
1302 					STAILQ_INSERT_TAIL(
1303 							&bp->free_filter_list,
1304 							filter, next);
1305 				}
1306 				new_filter = bnxt_alloc_filter(bp);
1307 				if (!new_filter) {
1308 					RTE_LOG(ERR, PMD,
1309 						"MAC/VLAN filter alloc failed\n");
1310 					rc = -ENOMEM;
1311 					goto exit;
1312 				}
1313 				STAILQ_INSERT_TAIL(&vnic->filter, new_filter,
1314 						   next);
1315 				/* Inherit MAC from the previous filter */
1316 				new_filter->mac_index = filter->mac_index;
1317 				memcpy(new_filter->l2_addr, filter->l2_addr,
1318 				       ETHER_ADDR_LEN);
1319 				/* MAC + VLAN ID filter */
1320 				new_filter->l2_ovlan = vlan_id;
1321 				new_filter->l2_ovlan_mask = 0xF000;
1322 				new_filter->enables |= en;
1323 				rc = bnxt_hwrm_set_l2_filter(bp,
1324 							     vnic->fw_vnic_id,
1325 							     new_filter);
1326 				if (rc)
1327 					goto exit;
1328 				RTE_LOG(INFO, PMD,
1329 					"Added Vlan filter for %d\n", vlan_id);
1330 cont:
1331 				filter = temp_filter;
1332 			}
1333 		}
1334 	}
1335 exit:
1336 	return rc;
1337 }
1338 
1339 static int bnxt_vlan_filter_set_op(struct rte_eth_dev *eth_dev,
1340 				   uint16_t vlan_id, int on)
1341 {
1342 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1343 
1344 	/* These operations apply to ALL existing MAC/VLAN filters */
1345 	if (on)
1346 		return bnxt_add_vlan_filter(bp, vlan_id);
1347 	else
1348 		return bnxt_del_vlan_filter(bp, vlan_id);
1349 }
1350 
1351 static int
1352 bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask)
1353 {
1354 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1355 	unsigned int i;
1356 
1357 	if (mask & ETH_VLAN_FILTER_MASK) {
1358 		if (!dev->data->dev_conf.rxmode.hw_vlan_filter) {
1359 			/* Remove any VLAN filters programmed */
1360 			for (i = 0; i < 4095; i++)
1361 				bnxt_del_vlan_filter(bp, i);
1362 		}
1363 		RTE_LOG(INFO, PMD, "VLAN Filtering: %d\n",
1364 			dev->data->dev_conf.rxmode.hw_vlan_filter);
1365 	}
1366 
1367 	if (mask & ETH_VLAN_STRIP_MASK) {
1368 		/* Enable or disable VLAN stripping */
1369 		for (i = 0; i < bp->nr_vnics; i++) {
1370 			struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
1371 			if (dev->data->dev_conf.rxmode.hw_vlan_strip)
1372 				vnic->vlan_strip = true;
1373 			else
1374 				vnic->vlan_strip = false;
1375 			bnxt_hwrm_vnic_cfg(bp, vnic);
1376 		}
1377 		RTE_LOG(INFO, PMD, "VLAN Strip Offload: %d\n",
1378 			dev->data->dev_conf.rxmode.hw_vlan_strip);
1379 	}
1380 
1381 	if (mask & ETH_VLAN_EXTEND_MASK)
1382 		RTE_LOG(ERR, PMD, "Extend VLAN Not supported\n");
1383 
1384 	return 0;
1385 }
1386 
1387 static void
1388 bnxt_set_default_mac_addr_op(struct rte_eth_dev *dev, struct ether_addr *addr)
1389 {
1390 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1391 	/* Default Filter is tied to VNIC 0 */
1392 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
1393 	struct bnxt_filter_info *filter;
1394 	int rc;
1395 
1396 	if (BNXT_VF(bp))
1397 		return;
1398 
1399 	memcpy(bp->mac_addr, addr, sizeof(bp->mac_addr));
1400 	memcpy(&dev->data->mac_addrs[0], bp->mac_addr, ETHER_ADDR_LEN);
1401 
1402 	STAILQ_FOREACH(filter, &vnic->filter, next) {
1403 		/* Default Filter is at Index 0 */
1404 		if (filter->mac_index != 0)
1405 			continue;
1406 		rc = bnxt_hwrm_clear_l2_filter(bp, filter);
1407 		if (rc)
1408 			break;
1409 		memcpy(filter->l2_addr, bp->mac_addr, ETHER_ADDR_LEN);
1410 		memset(filter->l2_addr_mask, 0xff, ETHER_ADDR_LEN);
1411 		filter->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_PATH_RX;
1412 		filter->enables |=
1413 			HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR |
1414 			HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR_MASK;
1415 		rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
1416 		if (rc)
1417 			break;
1418 		filter->mac_index = 0;
1419 		RTE_LOG(DEBUG, PMD, "Set MAC addr\n");
1420 	}
1421 }
1422 
1423 static int
1424 bnxt_dev_set_mc_addr_list_op(struct rte_eth_dev *eth_dev,
1425 			  struct ether_addr *mc_addr_set,
1426 			  uint32_t nb_mc_addr)
1427 {
1428 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1429 	char *mc_addr_list = (char *)mc_addr_set;
1430 	struct bnxt_vnic_info *vnic;
1431 	uint32_t off = 0, i = 0;
1432 
1433 	vnic = &bp->vnic_info[0];
1434 
1435 	if (nb_mc_addr > BNXT_MAX_MC_ADDRS) {
1436 		vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
1437 		goto allmulti;
1438 	}
1439 
1440 	/* TODO Check for Duplicate mcast addresses */
1441 	vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
1442 	for (i = 0; i < nb_mc_addr; i++) {
1443 		memcpy(vnic->mc_list + off, &mc_addr_list[i], ETHER_ADDR_LEN);
1444 		off += ETHER_ADDR_LEN;
1445 	}
1446 
1447 	vnic->mc_addr_cnt = i;
1448 
1449 allmulti:
1450 	return bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1451 }
1452 
1453 static int
1454 bnxt_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
1455 {
1456 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1457 	uint8_t fw_major = (bp->fw_ver >> 24) & 0xff;
1458 	uint8_t fw_minor = (bp->fw_ver >> 16) & 0xff;
1459 	uint8_t fw_updt = (bp->fw_ver >> 8) & 0xff;
1460 	int ret;
1461 
1462 	ret = snprintf(fw_version, fw_size, "%d.%d.%d",
1463 			fw_major, fw_minor, fw_updt);
1464 
1465 	ret += 1; /* add the size of '\0' */
1466 	if (fw_size < (uint32_t)ret)
1467 		return ret;
1468 	else
1469 		return 0;
1470 }
1471 
1472 static void
1473 bnxt_rxq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
1474 	struct rte_eth_rxq_info *qinfo)
1475 {
1476 	struct bnxt_rx_queue *rxq;
1477 
1478 	rxq = dev->data->rx_queues[queue_id];
1479 
1480 	qinfo->mp = rxq->mb_pool;
1481 	qinfo->scattered_rx = dev->data->scattered_rx;
1482 	qinfo->nb_desc = rxq->nb_rx_desc;
1483 
1484 	qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
1485 	qinfo->conf.rx_drop_en = 0;
1486 	qinfo->conf.rx_deferred_start = 0;
1487 }
1488 
1489 static void
1490 bnxt_txq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
1491 	struct rte_eth_txq_info *qinfo)
1492 {
1493 	struct bnxt_tx_queue *txq;
1494 
1495 	txq = dev->data->tx_queues[queue_id];
1496 
1497 	qinfo->nb_desc = txq->nb_tx_desc;
1498 
1499 	qinfo->conf.tx_thresh.pthresh = txq->pthresh;
1500 	qinfo->conf.tx_thresh.hthresh = txq->hthresh;
1501 	qinfo->conf.tx_thresh.wthresh = txq->wthresh;
1502 
1503 	qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
1504 	qinfo->conf.tx_rs_thresh = 0;
1505 	qinfo->conf.txq_flags = txq->txq_flags;
1506 	qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
1507 }
1508 
1509 static int bnxt_mtu_set_op(struct rte_eth_dev *eth_dev, uint16_t new_mtu)
1510 {
1511 	struct bnxt *bp = eth_dev->data->dev_private;
1512 	struct rte_eth_dev_info dev_info;
1513 	uint32_t max_dev_mtu;
1514 	uint32_t rc = 0;
1515 	uint32_t i;
1516 
1517 	bnxt_dev_info_get_op(eth_dev, &dev_info);
1518 	max_dev_mtu = dev_info.max_rx_pktlen -
1519 		      ETHER_HDR_LEN - ETHER_CRC_LEN - VLAN_TAG_SIZE * 2;
1520 
1521 	if (new_mtu < ETHER_MIN_MTU || new_mtu > max_dev_mtu) {
1522 		RTE_LOG(ERR, PMD, "MTU requested must be within (%d, %d)\n",
1523 			ETHER_MIN_MTU, max_dev_mtu);
1524 		return -EINVAL;
1525 	}
1526 
1527 
1528 	if (new_mtu > ETHER_MTU) {
1529 		bp->flags |= BNXT_FLAG_JUMBO;
1530 		eth_dev->data->dev_conf.rxmode.jumbo_frame = 1;
1531 	} else {
1532 		eth_dev->data->dev_conf.rxmode.jumbo_frame = 0;
1533 		bp->flags &= ~BNXT_FLAG_JUMBO;
1534 	}
1535 
1536 	eth_dev->data->dev_conf.rxmode.max_rx_pkt_len =
1537 		new_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE * 2;
1538 
1539 	eth_dev->data->mtu = new_mtu;
1540 	RTE_LOG(INFO, PMD, "New MTU is %d\n", eth_dev->data->mtu);
1541 
1542 	for (i = 0; i < bp->nr_vnics; i++) {
1543 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
1544 
1545 		vnic->mru = bp->eth_dev->data->mtu + ETHER_HDR_LEN +
1546 					ETHER_CRC_LEN + VLAN_TAG_SIZE * 2;
1547 		rc = bnxt_hwrm_vnic_cfg(bp, vnic);
1548 		if (rc)
1549 			break;
1550 
1551 		rc = bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
1552 		if (rc)
1553 			return rc;
1554 	}
1555 
1556 	return rc;
1557 }
1558 
1559 static int
1560 bnxt_vlan_pvid_set_op(struct rte_eth_dev *dev, uint16_t pvid, int on)
1561 {
1562 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1563 	uint16_t vlan = bp->vlan;
1564 	int rc;
1565 
1566 	if (BNXT_NPAR_PF(bp) || BNXT_VF(bp)) {
1567 		RTE_LOG(ERR, PMD,
1568 			"PVID cannot be modified for this function\n");
1569 		return -ENOTSUP;
1570 	}
1571 	bp->vlan = on ? pvid : 0;
1572 
1573 	rc = bnxt_hwrm_set_default_vlan(bp, 0, 0);
1574 	if (rc)
1575 		bp->vlan = vlan;
1576 	return rc;
1577 }
1578 
1579 static int
1580 bnxt_dev_led_on_op(struct rte_eth_dev *dev)
1581 {
1582 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1583 
1584 	return bnxt_hwrm_port_led_cfg(bp, true);
1585 }
1586 
1587 static int
1588 bnxt_dev_led_off_op(struct rte_eth_dev *dev)
1589 {
1590 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1591 
1592 	return bnxt_hwrm_port_led_cfg(bp, false);
1593 }
1594 
1595 static uint32_t
1596 bnxt_rx_queue_count_op(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1597 {
1598 	uint32_t desc = 0, raw_cons = 0, cons;
1599 	struct bnxt_cp_ring_info *cpr;
1600 	struct bnxt_rx_queue *rxq;
1601 	struct rx_pkt_cmpl *rxcmp;
1602 	uint16_t cmp_type;
1603 	uint8_t cmp = 1;
1604 	bool valid;
1605 
1606 	rxq = dev->data->rx_queues[rx_queue_id];
1607 	cpr = rxq->cp_ring;
1608 	valid = cpr->valid;
1609 
1610 	while (raw_cons < rxq->nb_rx_desc) {
1611 		cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
1612 		rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1613 
1614 		if (!CMPL_VALID(rxcmp, valid))
1615 			goto nothing_to_do;
1616 		valid = FLIP_VALID(cons, cpr->cp_ring_struct->ring_mask, valid);
1617 		cmp_type = CMP_TYPE(rxcmp);
1618 		if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
1619 			cmp = (rte_le_to_cpu_32(
1620 					((struct rx_tpa_end_cmpl *)
1621 					 (rxcmp))->agg_bufs_v1) &
1622 			       RX_TPA_END_CMPL_AGG_BUFS_MASK) >>
1623 				RX_TPA_END_CMPL_AGG_BUFS_SFT;
1624 			desc++;
1625 		} else if (cmp_type == 0x11) {
1626 			desc++;
1627 			cmp = (rxcmp->agg_bufs_v1 &
1628 				   RX_PKT_CMPL_AGG_BUFS_MASK) >>
1629 				RX_PKT_CMPL_AGG_BUFS_SFT;
1630 		} else {
1631 			cmp = 1;
1632 		}
1633 nothing_to_do:
1634 		raw_cons += cmp ? cmp : 2;
1635 	}
1636 
1637 	return desc;
1638 }
1639 
1640 static int
1641 bnxt_rx_descriptor_status_op(void *rx_queue, uint16_t offset)
1642 {
1643 	struct bnxt_rx_queue *rxq = (struct bnxt_rx_queue *)rx_queue;
1644 	struct bnxt_rx_ring_info *rxr;
1645 	struct bnxt_cp_ring_info *cpr;
1646 	struct bnxt_sw_rx_bd *rx_buf;
1647 	struct rx_pkt_cmpl *rxcmp;
1648 	uint32_t cons, cp_cons;
1649 
1650 	if (!rxq)
1651 		return -EINVAL;
1652 
1653 	cpr = rxq->cp_ring;
1654 	rxr = rxq->rx_ring;
1655 
1656 	if (offset >= rxq->nb_rx_desc)
1657 		return -EINVAL;
1658 
1659 	cons = RING_CMP(cpr->cp_ring_struct, offset);
1660 	cp_cons = cpr->cp_raw_cons;
1661 	rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1662 
1663 	if (cons > cp_cons) {
1664 		if (CMPL_VALID(rxcmp, cpr->valid))
1665 			return RTE_ETH_RX_DESC_DONE;
1666 	} else {
1667 		if (CMPL_VALID(rxcmp, !cpr->valid))
1668 			return RTE_ETH_RX_DESC_DONE;
1669 	}
1670 	rx_buf = &rxr->rx_buf_ring[cons];
1671 	if (rx_buf->mbuf == NULL)
1672 		return RTE_ETH_RX_DESC_UNAVAIL;
1673 
1674 
1675 	return RTE_ETH_RX_DESC_AVAIL;
1676 }
1677 
1678 static int
1679 bnxt_tx_descriptor_status_op(void *tx_queue, uint16_t offset)
1680 {
1681 	struct bnxt_tx_queue *txq = (struct bnxt_tx_queue *)tx_queue;
1682 	struct bnxt_tx_ring_info *txr;
1683 	struct bnxt_cp_ring_info *cpr;
1684 	struct bnxt_sw_tx_bd *tx_buf;
1685 	struct tx_pkt_cmpl *txcmp;
1686 	uint32_t cons, cp_cons;
1687 
1688 	if (!txq)
1689 		return -EINVAL;
1690 
1691 	cpr = txq->cp_ring;
1692 	txr = txq->tx_ring;
1693 
1694 	if (offset >= txq->nb_tx_desc)
1695 		return -EINVAL;
1696 
1697 	cons = RING_CMP(cpr->cp_ring_struct, offset);
1698 	txcmp = (struct tx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1699 	cp_cons = cpr->cp_raw_cons;
1700 
1701 	if (cons > cp_cons) {
1702 		if (CMPL_VALID(txcmp, cpr->valid))
1703 			return RTE_ETH_TX_DESC_UNAVAIL;
1704 	} else {
1705 		if (CMPL_VALID(txcmp, !cpr->valid))
1706 			return RTE_ETH_TX_DESC_UNAVAIL;
1707 	}
1708 	tx_buf = &txr->tx_buf_ring[cons];
1709 	if (tx_buf->mbuf == NULL)
1710 		return RTE_ETH_TX_DESC_DONE;
1711 
1712 	return RTE_ETH_TX_DESC_FULL;
1713 }
1714 
1715 static struct bnxt_filter_info *
1716 bnxt_match_and_validate_ether_filter(struct bnxt *bp,
1717 				struct rte_eth_ethertype_filter *efilter,
1718 				struct bnxt_vnic_info *vnic0,
1719 				struct bnxt_vnic_info *vnic,
1720 				int *ret)
1721 {
1722 	struct bnxt_filter_info *mfilter = NULL;
1723 	int match = 0;
1724 	*ret = 0;
1725 
1726 	if (efilter->ether_type != ETHER_TYPE_IPv4 &&
1727 		efilter->ether_type != ETHER_TYPE_IPv6) {
1728 		RTE_LOG(ERR, PMD, "unsupported ether_type(0x%04x) in"
1729 			" ethertype filter.", efilter->ether_type);
1730 		*ret = -EINVAL;
1731 		goto exit;
1732 	}
1733 	if (efilter->queue >= bp->rx_nr_rings) {
1734 		RTE_LOG(ERR, PMD, "Invalid queue %d\n", efilter->queue);
1735 		*ret = -EINVAL;
1736 		goto exit;
1737 	}
1738 
1739 	vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
1740 	vnic = STAILQ_FIRST(&bp->ff_pool[efilter->queue]);
1741 	if (vnic == NULL) {
1742 		RTE_LOG(ERR, PMD, "Invalid queue %d\n", efilter->queue);
1743 		*ret = -EINVAL;
1744 		goto exit;
1745 	}
1746 
1747 	if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
1748 		STAILQ_FOREACH(mfilter, &vnic0->filter, next) {
1749 			if ((!memcmp(efilter->mac_addr.addr_bytes,
1750 				     mfilter->l2_addr, ETHER_ADDR_LEN) &&
1751 			     mfilter->flags ==
1752 			     HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP &&
1753 			     mfilter->ethertype == efilter->ether_type)) {
1754 				match = 1;
1755 				break;
1756 			}
1757 		}
1758 	} else {
1759 		STAILQ_FOREACH(mfilter, &vnic->filter, next)
1760 			if ((!memcmp(efilter->mac_addr.addr_bytes,
1761 				     mfilter->l2_addr, ETHER_ADDR_LEN) &&
1762 			     mfilter->ethertype == efilter->ether_type &&
1763 			     mfilter->flags ==
1764 			     HWRM_CFA_L2_FILTER_CFG_INPUT_FLAGS_PATH_RX)) {
1765 				match = 1;
1766 				break;
1767 			}
1768 	}
1769 
1770 	if (match)
1771 		*ret = -EEXIST;
1772 
1773 exit:
1774 	return mfilter;
1775 }
1776 
1777 static int
1778 bnxt_ethertype_filter(struct rte_eth_dev *dev,
1779 			enum rte_filter_op filter_op,
1780 			void *arg)
1781 {
1782 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1783 	struct rte_eth_ethertype_filter *efilter =
1784 			(struct rte_eth_ethertype_filter *)arg;
1785 	struct bnxt_filter_info *bfilter, *filter1;
1786 	struct bnxt_vnic_info *vnic, *vnic0;
1787 	int ret;
1788 
1789 	if (filter_op == RTE_ETH_FILTER_NOP)
1790 		return 0;
1791 
1792 	if (arg == NULL) {
1793 		RTE_LOG(ERR, PMD, "arg shouldn't be NULL for operation %u.",
1794 			    filter_op);
1795 		return -EINVAL;
1796 	}
1797 
1798 	vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
1799 	vnic = STAILQ_FIRST(&bp->ff_pool[efilter->queue]);
1800 
1801 	switch (filter_op) {
1802 	case RTE_ETH_FILTER_ADD:
1803 		bnxt_match_and_validate_ether_filter(bp, efilter,
1804 							vnic0, vnic, &ret);
1805 		if (ret < 0)
1806 			return ret;
1807 
1808 		bfilter = bnxt_get_unused_filter(bp);
1809 		if (bfilter == NULL) {
1810 			RTE_LOG(ERR, PMD,
1811 				"Not enough resources for a new filter.\n");
1812 			return -ENOMEM;
1813 		}
1814 		bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
1815 		memcpy(bfilter->l2_addr, efilter->mac_addr.addr_bytes,
1816 		       ETHER_ADDR_LEN);
1817 		memcpy(bfilter->dst_macaddr, efilter->mac_addr.addr_bytes,
1818 		       ETHER_ADDR_LEN);
1819 		bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
1820 		bfilter->ethertype = efilter->ether_type;
1821 		bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
1822 
1823 		filter1 = bnxt_get_l2_filter(bp, bfilter, vnic0);
1824 		if (filter1 == NULL) {
1825 			ret = -1;
1826 			goto cleanup;
1827 		}
1828 		bfilter->enables |=
1829 			HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
1830 		bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
1831 
1832 		bfilter->dst_id = vnic->fw_vnic_id;
1833 
1834 		if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
1835 			bfilter->flags =
1836 				HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
1837 		}
1838 
1839 		ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
1840 		if (ret)
1841 			goto cleanup;
1842 		STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
1843 		break;
1844 	case RTE_ETH_FILTER_DELETE:
1845 		filter1 = bnxt_match_and_validate_ether_filter(bp, efilter,
1846 							vnic0, vnic, &ret);
1847 		if (ret == -EEXIST) {
1848 			ret = bnxt_hwrm_clear_ntuple_filter(bp, filter1);
1849 
1850 			STAILQ_REMOVE(&vnic->filter, filter1, bnxt_filter_info,
1851 				      next);
1852 			bnxt_free_filter(bp, filter1);
1853 		} else if (ret == 0) {
1854 			RTE_LOG(ERR, PMD, "No matching filter found\n");
1855 		}
1856 		break;
1857 	default:
1858 		RTE_LOG(ERR, PMD, "unsupported operation %u.", filter_op);
1859 		ret = -EINVAL;
1860 		goto error;
1861 	}
1862 	return ret;
1863 cleanup:
1864 	bnxt_free_filter(bp, bfilter);
1865 error:
1866 	return ret;
1867 }
1868 
1869 static inline int
1870 parse_ntuple_filter(struct bnxt *bp,
1871 		    struct rte_eth_ntuple_filter *nfilter,
1872 		    struct bnxt_filter_info *bfilter)
1873 {
1874 	uint32_t en = 0;
1875 
1876 	if (nfilter->queue >= bp->rx_nr_rings) {
1877 		RTE_LOG(ERR, PMD, "Invalid queue %d\n", nfilter->queue);
1878 		return -EINVAL;
1879 	}
1880 
1881 	switch (nfilter->dst_port_mask) {
1882 	case UINT16_MAX:
1883 		bfilter->dst_port_mask = -1;
1884 		bfilter->dst_port = nfilter->dst_port;
1885 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT |
1886 			NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
1887 		break;
1888 	default:
1889 		RTE_LOG(ERR, PMD, "invalid dst_port mask.");
1890 		return -EINVAL;
1891 	}
1892 
1893 	bfilter->ip_addr_type = NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
1894 	en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
1895 
1896 	switch (nfilter->proto_mask) {
1897 	case UINT8_MAX:
1898 		if (nfilter->proto == 17) /* IPPROTO_UDP */
1899 			bfilter->ip_protocol = 17;
1900 		else if (nfilter->proto == 6) /* IPPROTO_TCP */
1901 			bfilter->ip_protocol = 6;
1902 		else
1903 			return -EINVAL;
1904 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
1905 		break;
1906 	default:
1907 		RTE_LOG(ERR, PMD, "invalid protocol mask.");
1908 		return -EINVAL;
1909 	}
1910 
1911 	switch (nfilter->dst_ip_mask) {
1912 	case UINT32_MAX:
1913 		bfilter->dst_ipaddr_mask[0] = -1;
1914 		bfilter->dst_ipaddr[0] = nfilter->dst_ip;
1915 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR |
1916 			NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
1917 		break;
1918 	default:
1919 		RTE_LOG(ERR, PMD, "invalid dst_ip mask.");
1920 		return -EINVAL;
1921 	}
1922 
1923 	switch (nfilter->src_ip_mask) {
1924 	case UINT32_MAX:
1925 		bfilter->src_ipaddr_mask[0] = -1;
1926 		bfilter->src_ipaddr[0] = nfilter->src_ip;
1927 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR |
1928 			NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
1929 		break;
1930 	default:
1931 		RTE_LOG(ERR, PMD, "invalid src_ip mask.");
1932 		return -EINVAL;
1933 	}
1934 
1935 	switch (nfilter->src_port_mask) {
1936 	case UINT16_MAX:
1937 		bfilter->src_port_mask = -1;
1938 		bfilter->src_port = nfilter->src_port;
1939 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT |
1940 			NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
1941 		break;
1942 	default:
1943 		RTE_LOG(ERR, PMD, "invalid src_port mask.");
1944 		return -EINVAL;
1945 	}
1946 
1947 	//TODO Priority
1948 	//nfilter->priority = (uint8_t)filter->priority;
1949 
1950 	bfilter->enables = en;
1951 	return 0;
1952 }
1953 
1954 static struct bnxt_filter_info*
1955 bnxt_match_ntuple_filter(struct bnxt *bp,
1956 			 struct bnxt_filter_info *bfilter)
1957 {
1958 	struct bnxt_filter_info *mfilter = NULL;
1959 	int i;
1960 
1961 	for (i = bp->nr_vnics - 1; i >= 0; i--) {
1962 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
1963 		STAILQ_FOREACH(mfilter, &vnic->filter, next) {
1964 			if (bfilter->src_ipaddr[0] == mfilter->src_ipaddr[0] &&
1965 			    bfilter->src_ipaddr_mask[0] ==
1966 			    mfilter->src_ipaddr_mask[0] &&
1967 			    bfilter->src_port == mfilter->src_port &&
1968 			    bfilter->src_port_mask == mfilter->src_port_mask &&
1969 			    bfilter->dst_ipaddr[0] == mfilter->dst_ipaddr[0] &&
1970 			    bfilter->dst_ipaddr_mask[0] ==
1971 			    mfilter->dst_ipaddr_mask[0] &&
1972 			    bfilter->dst_port == mfilter->dst_port &&
1973 			    bfilter->dst_port_mask == mfilter->dst_port_mask &&
1974 			    bfilter->flags == mfilter->flags &&
1975 			    bfilter->enables == mfilter->enables)
1976 				return mfilter;
1977 		}
1978 	}
1979 	return NULL;
1980 }
1981 
1982 static int
1983 bnxt_cfg_ntuple_filter(struct bnxt *bp,
1984 		       struct rte_eth_ntuple_filter *nfilter,
1985 		       enum rte_filter_op filter_op)
1986 {
1987 	struct bnxt_filter_info *bfilter, *mfilter, *filter1;
1988 	struct bnxt_vnic_info *vnic, *vnic0;
1989 	int ret;
1990 
1991 	if (nfilter->flags != RTE_5TUPLE_FLAGS) {
1992 		RTE_LOG(ERR, PMD, "only 5tuple is supported.");
1993 		return -EINVAL;
1994 	}
1995 
1996 	if (nfilter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG) {
1997 		RTE_LOG(ERR, PMD, "Ntuple filter: TCP flags not supported\n");
1998 		return -EINVAL;
1999 	}
2000 
2001 	bfilter = bnxt_get_unused_filter(bp);
2002 	if (bfilter == NULL) {
2003 		RTE_LOG(ERR, PMD,
2004 			"Not enough resources for a new filter.\n");
2005 		return -ENOMEM;
2006 	}
2007 	ret = parse_ntuple_filter(bp, nfilter, bfilter);
2008 	if (ret < 0)
2009 		goto free_filter;
2010 
2011 	vnic = STAILQ_FIRST(&bp->ff_pool[nfilter->queue]);
2012 	vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
2013 	filter1 = STAILQ_FIRST(&vnic0->filter);
2014 	if (filter1 == NULL) {
2015 		ret = -1;
2016 		goto free_filter;
2017 	}
2018 
2019 	bfilter->dst_id = vnic->fw_vnic_id;
2020 	bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
2021 	bfilter->enables |=
2022 		HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
2023 	bfilter->ethertype = 0x800;
2024 	bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2025 
2026 	mfilter = bnxt_match_ntuple_filter(bp, bfilter);
2027 
2028 	if (mfilter != NULL && filter_op == RTE_ETH_FILTER_ADD) {
2029 		RTE_LOG(ERR, PMD, "filter exists.");
2030 		ret = -EEXIST;
2031 		goto free_filter;
2032 	}
2033 	if (mfilter == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
2034 		RTE_LOG(ERR, PMD, "filter doesn't exist.");
2035 		ret = -ENOENT;
2036 		goto free_filter;
2037 	}
2038 
2039 	if (filter_op == RTE_ETH_FILTER_ADD) {
2040 		bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
2041 		ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
2042 		if (ret)
2043 			goto free_filter;
2044 		STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
2045 	} else {
2046 		if (mfilter == NULL) {
2047 			/* This should not happen. But for Coverity! */
2048 			ret = -ENOENT;
2049 			goto free_filter;
2050 		}
2051 		ret = bnxt_hwrm_clear_ntuple_filter(bp, mfilter);
2052 
2053 		STAILQ_REMOVE(&vnic->filter, mfilter, bnxt_filter_info,
2054 			      next);
2055 		bnxt_free_filter(bp, mfilter);
2056 		bfilter->fw_l2_filter_id = -1;
2057 		bnxt_free_filter(bp, bfilter);
2058 	}
2059 
2060 	return 0;
2061 free_filter:
2062 	bfilter->fw_l2_filter_id = -1;
2063 	bnxt_free_filter(bp, bfilter);
2064 	return ret;
2065 }
2066 
2067 static int
2068 bnxt_ntuple_filter(struct rte_eth_dev *dev,
2069 			enum rte_filter_op filter_op,
2070 			void *arg)
2071 {
2072 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2073 	int ret;
2074 
2075 	if (filter_op == RTE_ETH_FILTER_NOP)
2076 		return 0;
2077 
2078 	if (arg == NULL) {
2079 		RTE_LOG(ERR, PMD, "arg shouldn't be NULL for operation %u.",
2080 			    filter_op);
2081 		return -EINVAL;
2082 	}
2083 
2084 	switch (filter_op) {
2085 	case RTE_ETH_FILTER_ADD:
2086 		ret = bnxt_cfg_ntuple_filter(bp,
2087 			(struct rte_eth_ntuple_filter *)arg,
2088 			filter_op);
2089 		break;
2090 	case RTE_ETH_FILTER_DELETE:
2091 		ret = bnxt_cfg_ntuple_filter(bp,
2092 			(struct rte_eth_ntuple_filter *)arg,
2093 			filter_op);
2094 		break;
2095 	default:
2096 		RTE_LOG(ERR, PMD, "unsupported operation %u.", filter_op);
2097 		ret = -EINVAL;
2098 		break;
2099 	}
2100 	return ret;
2101 }
2102 
2103 static int
2104 bnxt_parse_fdir_filter(struct bnxt *bp,
2105 		       struct rte_eth_fdir_filter *fdir,
2106 		       struct bnxt_filter_info *filter)
2107 {
2108 	enum rte_fdir_mode fdir_mode =
2109 		bp->eth_dev->data->dev_conf.fdir_conf.mode;
2110 	struct bnxt_vnic_info *vnic0, *vnic;
2111 	struct bnxt_filter_info *filter1;
2112 	uint32_t en = 0;
2113 	int i;
2114 
2115 	if (fdir_mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2116 		return -EINVAL;
2117 
2118 	filter->l2_ovlan = fdir->input.flow_ext.vlan_tci;
2119 	en |= EM_FLOW_ALLOC_INPUT_EN_OVLAN_VID;
2120 
2121 	switch (fdir->input.flow_type) {
2122 	case RTE_ETH_FLOW_IPV4:
2123 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2124 		/* FALLTHROUGH */
2125 		filter->src_ipaddr[0] = fdir->input.flow.ip4_flow.src_ip;
2126 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2127 		filter->dst_ipaddr[0] = fdir->input.flow.ip4_flow.dst_ip;
2128 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2129 		filter->ip_protocol = fdir->input.flow.ip4_flow.proto;
2130 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2131 		filter->ip_addr_type =
2132 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2133 		filter->src_ipaddr_mask[0] = 0xffffffff;
2134 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2135 		filter->dst_ipaddr_mask[0] = 0xffffffff;
2136 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2137 		filter->ethertype = 0x800;
2138 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2139 		break;
2140 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2141 		filter->src_port = fdir->input.flow.tcp4_flow.src_port;
2142 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2143 		filter->dst_port = fdir->input.flow.tcp4_flow.dst_port;
2144 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2145 		filter->dst_port_mask = 0xffff;
2146 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2147 		filter->src_port_mask = 0xffff;
2148 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2149 		filter->src_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.src_ip;
2150 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2151 		filter->dst_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.dst_ip;
2152 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2153 		filter->ip_protocol = 6;
2154 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2155 		filter->ip_addr_type =
2156 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2157 		filter->src_ipaddr_mask[0] = 0xffffffff;
2158 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2159 		filter->dst_ipaddr_mask[0] = 0xffffffff;
2160 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2161 		filter->ethertype = 0x800;
2162 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2163 		break;
2164 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2165 		filter->src_port = fdir->input.flow.udp4_flow.src_port;
2166 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2167 		filter->dst_port = fdir->input.flow.udp4_flow.dst_port;
2168 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2169 		filter->dst_port_mask = 0xffff;
2170 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2171 		filter->src_port_mask = 0xffff;
2172 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2173 		filter->src_ipaddr[0] = fdir->input.flow.udp4_flow.ip.src_ip;
2174 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2175 		filter->dst_ipaddr[0] = fdir->input.flow.udp4_flow.ip.dst_ip;
2176 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2177 		filter->ip_protocol = 17;
2178 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2179 		filter->ip_addr_type =
2180 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2181 		filter->src_ipaddr_mask[0] = 0xffffffff;
2182 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2183 		filter->dst_ipaddr_mask[0] = 0xffffffff;
2184 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2185 		filter->ethertype = 0x800;
2186 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2187 		break;
2188 	case RTE_ETH_FLOW_IPV6:
2189 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2190 		/* FALLTHROUGH */
2191 		filter->ip_addr_type =
2192 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2193 		filter->ip_protocol = fdir->input.flow.ipv6_flow.proto;
2194 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2195 		rte_memcpy(filter->src_ipaddr,
2196 			   fdir->input.flow.ipv6_flow.src_ip, 16);
2197 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2198 		rte_memcpy(filter->dst_ipaddr,
2199 			   fdir->input.flow.ipv6_flow.dst_ip, 16);
2200 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2201 		memset(filter->dst_ipaddr_mask, 0xff, 16);
2202 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2203 		memset(filter->src_ipaddr_mask, 0xff, 16);
2204 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2205 		filter->ethertype = 0x86dd;
2206 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2207 		break;
2208 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2209 		filter->src_port = fdir->input.flow.tcp6_flow.src_port;
2210 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2211 		filter->dst_port = fdir->input.flow.tcp6_flow.dst_port;
2212 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2213 		filter->dst_port_mask = 0xffff;
2214 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2215 		filter->src_port_mask = 0xffff;
2216 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2217 		filter->ip_addr_type =
2218 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2219 		filter->ip_protocol = fdir->input.flow.tcp6_flow.ip.proto;
2220 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2221 		rte_memcpy(filter->src_ipaddr,
2222 			   fdir->input.flow.tcp6_flow.ip.src_ip, 16);
2223 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2224 		rte_memcpy(filter->dst_ipaddr,
2225 			   fdir->input.flow.tcp6_flow.ip.dst_ip, 16);
2226 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2227 		memset(filter->dst_ipaddr_mask, 0xff, 16);
2228 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2229 		memset(filter->src_ipaddr_mask, 0xff, 16);
2230 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2231 		filter->ethertype = 0x86dd;
2232 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2233 		break;
2234 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2235 		filter->src_port = fdir->input.flow.udp6_flow.src_port;
2236 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2237 		filter->dst_port = fdir->input.flow.udp6_flow.dst_port;
2238 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2239 		filter->dst_port_mask = 0xffff;
2240 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2241 		filter->src_port_mask = 0xffff;
2242 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2243 		filter->ip_addr_type =
2244 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2245 		filter->ip_protocol = fdir->input.flow.udp6_flow.ip.proto;
2246 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2247 		rte_memcpy(filter->src_ipaddr,
2248 			   fdir->input.flow.udp6_flow.ip.src_ip, 16);
2249 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2250 		rte_memcpy(filter->dst_ipaddr,
2251 			   fdir->input.flow.udp6_flow.ip.dst_ip, 16);
2252 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2253 		memset(filter->dst_ipaddr_mask, 0xff, 16);
2254 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2255 		memset(filter->src_ipaddr_mask, 0xff, 16);
2256 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2257 		filter->ethertype = 0x86dd;
2258 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2259 		break;
2260 	case RTE_ETH_FLOW_L2_PAYLOAD:
2261 		filter->ethertype = fdir->input.flow.l2_flow.ether_type;
2262 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2263 		break;
2264 	case RTE_ETH_FLOW_VXLAN:
2265 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2266 			return -EINVAL;
2267 		filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
2268 		filter->tunnel_type =
2269 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
2270 		en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
2271 		break;
2272 	case RTE_ETH_FLOW_NVGRE:
2273 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2274 			return -EINVAL;
2275 		filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
2276 		filter->tunnel_type =
2277 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_NVGRE;
2278 		en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
2279 		break;
2280 	case RTE_ETH_FLOW_UNKNOWN:
2281 	case RTE_ETH_FLOW_RAW:
2282 	case RTE_ETH_FLOW_FRAG_IPV4:
2283 	case RTE_ETH_FLOW_NONFRAG_IPV4_SCTP:
2284 	case RTE_ETH_FLOW_FRAG_IPV6:
2285 	case RTE_ETH_FLOW_NONFRAG_IPV6_SCTP:
2286 	case RTE_ETH_FLOW_IPV6_EX:
2287 	case RTE_ETH_FLOW_IPV6_TCP_EX:
2288 	case RTE_ETH_FLOW_IPV6_UDP_EX:
2289 	case RTE_ETH_FLOW_GENEVE:
2290 		/* FALLTHROUGH */
2291 	default:
2292 		return -EINVAL;
2293 	}
2294 
2295 	vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
2296 	vnic = STAILQ_FIRST(&bp->ff_pool[fdir->action.rx_queue]);
2297 	if (vnic == NULL) {
2298 		RTE_LOG(ERR, PMD, "Invalid queue %d\n", fdir->action.rx_queue);
2299 		return -EINVAL;
2300 	}
2301 
2302 
2303 	if (fdir_mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2304 		rte_memcpy(filter->dst_macaddr,
2305 			fdir->input.flow.mac_vlan_flow.mac_addr.addr_bytes, 6);
2306 			en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
2307 	}
2308 
2309 	if (fdir->action.behavior == RTE_ETH_FDIR_REJECT) {
2310 		filter->flags = HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
2311 		filter1 = STAILQ_FIRST(&vnic0->filter);
2312 		//filter1 = bnxt_get_l2_filter(bp, filter, vnic0);
2313 	} else {
2314 		filter->dst_id = vnic->fw_vnic_id;
2315 		for (i = 0; i < ETHER_ADDR_LEN; i++)
2316 			if (filter->dst_macaddr[i] == 0x00)
2317 				filter1 = STAILQ_FIRST(&vnic0->filter);
2318 			else
2319 				filter1 = bnxt_get_l2_filter(bp, filter, vnic);
2320 	}
2321 
2322 	if (filter1 == NULL)
2323 		return -EINVAL;
2324 
2325 	en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
2326 	filter->fw_l2_filter_id = filter1->fw_l2_filter_id;
2327 
2328 	filter->enables = en;
2329 
2330 	return 0;
2331 }
2332 
2333 static struct bnxt_filter_info *
2334 bnxt_match_fdir(struct bnxt *bp, struct bnxt_filter_info *nf)
2335 {
2336 	struct bnxt_filter_info *mf = NULL;
2337 	int i;
2338 
2339 	for (i = bp->nr_vnics - 1; i >= 0; i--) {
2340 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2341 
2342 		STAILQ_FOREACH(mf, &vnic->filter, next) {
2343 			if (mf->filter_type == nf->filter_type &&
2344 			    mf->flags == nf->flags &&
2345 			    mf->src_port == nf->src_port &&
2346 			    mf->src_port_mask == nf->src_port_mask &&
2347 			    mf->dst_port == nf->dst_port &&
2348 			    mf->dst_port_mask == nf->dst_port_mask &&
2349 			    mf->ip_protocol == nf->ip_protocol &&
2350 			    mf->ip_addr_type == nf->ip_addr_type &&
2351 			    mf->ethertype == nf->ethertype &&
2352 			    mf->vni == nf->vni &&
2353 			    mf->tunnel_type == nf->tunnel_type &&
2354 			    mf->l2_ovlan == nf->l2_ovlan &&
2355 			    mf->l2_ovlan_mask == nf->l2_ovlan_mask &&
2356 			    mf->l2_ivlan == nf->l2_ivlan &&
2357 			    mf->l2_ivlan_mask == nf->l2_ivlan_mask &&
2358 			    !memcmp(mf->l2_addr, nf->l2_addr, ETHER_ADDR_LEN) &&
2359 			    !memcmp(mf->l2_addr_mask, nf->l2_addr_mask,
2360 				    ETHER_ADDR_LEN) &&
2361 			    !memcmp(mf->src_macaddr, nf->src_macaddr,
2362 				    ETHER_ADDR_LEN) &&
2363 			    !memcmp(mf->dst_macaddr, nf->dst_macaddr,
2364 				    ETHER_ADDR_LEN) &&
2365 			    !memcmp(mf->src_ipaddr, nf->src_ipaddr,
2366 				    sizeof(nf->src_ipaddr)) &&
2367 			    !memcmp(mf->src_ipaddr_mask, nf->src_ipaddr_mask,
2368 				    sizeof(nf->src_ipaddr_mask)) &&
2369 			    !memcmp(mf->dst_ipaddr, nf->dst_ipaddr,
2370 				    sizeof(nf->dst_ipaddr)) &&
2371 			    !memcmp(mf->dst_ipaddr_mask, nf->dst_ipaddr_mask,
2372 				    sizeof(nf->dst_ipaddr_mask)))
2373 				return mf;
2374 		}
2375 	}
2376 	return NULL;
2377 }
2378 
2379 static int
2380 bnxt_fdir_filter(struct rte_eth_dev *dev,
2381 		 enum rte_filter_op filter_op,
2382 		 void *arg)
2383 {
2384 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2385 	struct rte_eth_fdir_filter *fdir  = (struct rte_eth_fdir_filter *)arg;
2386 	struct bnxt_filter_info *filter, *match;
2387 	struct bnxt_vnic_info *vnic;
2388 	int ret = 0, i;
2389 
2390 	if (filter_op == RTE_ETH_FILTER_NOP)
2391 		return 0;
2392 
2393 	if (arg == NULL && filter_op != RTE_ETH_FILTER_FLUSH)
2394 		return -EINVAL;
2395 
2396 	switch (filter_op) {
2397 	case RTE_ETH_FILTER_ADD:
2398 	case RTE_ETH_FILTER_DELETE:
2399 		/* FALLTHROUGH */
2400 		filter = bnxt_get_unused_filter(bp);
2401 		if (filter == NULL) {
2402 			RTE_LOG(ERR, PMD,
2403 				"Not enough resources for a new flow.\n");
2404 			return -ENOMEM;
2405 		}
2406 
2407 		ret = bnxt_parse_fdir_filter(bp, fdir, filter);
2408 		if (ret != 0)
2409 			goto free_filter;
2410 		filter->filter_type = HWRM_CFA_NTUPLE_FILTER;
2411 
2412 		match = bnxt_match_fdir(bp, filter);
2413 		if (match != NULL && filter_op == RTE_ETH_FILTER_ADD) {
2414 			RTE_LOG(ERR, PMD, "Flow already exists.\n");
2415 			ret = -EEXIST;
2416 			goto free_filter;
2417 		}
2418 		if (match == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
2419 			RTE_LOG(ERR, PMD, "Flow does not exist.\n");
2420 			ret = -ENOENT;
2421 			goto free_filter;
2422 		}
2423 
2424 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2425 			vnic = STAILQ_FIRST(&bp->ff_pool[0]);
2426 		else
2427 			vnic =
2428 			STAILQ_FIRST(&bp->ff_pool[fdir->action.rx_queue]);
2429 
2430 		if (filter_op == RTE_ETH_FILTER_ADD) {
2431 			ret = bnxt_hwrm_set_ntuple_filter(bp,
2432 							  filter->dst_id,
2433 							  filter);
2434 			if (ret)
2435 				goto free_filter;
2436 			STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
2437 		} else {
2438 			ret = bnxt_hwrm_clear_ntuple_filter(bp, match);
2439 			STAILQ_REMOVE(&vnic->filter, match,
2440 				      bnxt_filter_info, next);
2441 			bnxt_free_filter(bp, match);
2442 			filter->fw_l2_filter_id = -1;
2443 			bnxt_free_filter(bp, filter);
2444 		}
2445 		break;
2446 	case RTE_ETH_FILTER_FLUSH:
2447 		for (i = bp->nr_vnics - 1; i >= 0; i--) {
2448 			struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2449 
2450 			STAILQ_FOREACH(filter, &vnic->filter, next) {
2451 				if (filter->filter_type ==
2452 				    HWRM_CFA_NTUPLE_FILTER) {
2453 					ret =
2454 					bnxt_hwrm_clear_ntuple_filter(bp,
2455 								      filter);
2456 					STAILQ_REMOVE(&vnic->filter, filter,
2457 						      bnxt_filter_info, next);
2458 				}
2459 			}
2460 		}
2461 		return ret;
2462 	case RTE_ETH_FILTER_UPDATE:
2463 	case RTE_ETH_FILTER_STATS:
2464 	case RTE_ETH_FILTER_INFO:
2465 		/* FALLTHROUGH */
2466 		RTE_LOG(ERR, PMD, "operation %u not implemented", filter_op);
2467 		break;
2468 	default:
2469 		RTE_LOG(ERR, PMD, "unknown operation %u", filter_op);
2470 		ret = -EINVAL;
2471 		break;
2472 	}
2473 	return ret;
2474 
2475 free_filter:
2476 	filter->fw_l2_filter_id = -1;
2477 	bnxt_free_filter(bp, filter);
2478 	return ret;
2479 }
2480 
2481 static int
2482 bnxt_filter_ctrl_op(struct rte_eth_dev *dev __rte_unused,
2483 		    enum rte_filter_type filter_type,
2484 		    enum rte_filter_op filter_op, void *arg)
2485 {
2486 	int ret = 0;
2487 
2488 	switch (filter_type) {
2489 	case RTE_ETH_FILTER_TUNNEL:
2490 		RTE_LOG(ERR, PMD,
2491 			"filter type: %d: To be implemented\n", filter_type);
2492 		break;
2493 	case RTE_ETH_FILTER_FDIR:
2494 		ret = bnxt_fdir_filter(dev, filter_op, arg);
2495 		break;
2496 	case RTE_ETH_FILTER_NTUPLE:
2497 		ret = bnxt_ntuple_filter(dev, filter_op, arg);
2498 		break;
2499 	case RTE_ETH_FILTER_ETHERTYPE:
2500 		ret = bnxt_ethertype_filter(dev, filter_op, arg);
2501 		break;
2502 	case RTE_ETH_FILTER_GENERIC:
2503 		if (filter_op != RTE_ETH_FILTER_GET)
2504 			return -EINVAL;
2505 		*(const void **)arg = &bnxt_flow_ops;
2506 		break;
2507 	default:
2508 		RTE_LOG(ERR, PMD,
2509 			"Filter type (%d) not supported", filter_type);
2510 		ret = -EINVAL;
2511 		break;
2512 	}
2513 	return ret;
2514 }
2515 
2516 static const uint32_t *
2517 bnxt_dev_supported_ptypes_get_op(struct rte_eth_dev *dev)
2518 {
2519 	static const uint32_t ptypes[] = {
2520 		RTE_PTYPE_L2_ETHER_VLAN,
2521 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
2522 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
2523 		RTE_PTYPE_L4_ICMP,
2524 		RTE_PTYPE_L4_TCP,
2525 		RTE_PTYPE_L4_UDP,
2526 		RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
2527 		RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
2528 		RTE_PTYPE_INNER_L4_ICMP,
2529 		RTE_PTYPE_INNER_L4_TCP,
2530 		RTE_PTYPE_INNER_L4_UDP,
2531 		RTE_PTYPE_UNKNOWN
2532 	};
2533 
2534 	if (dev->rx_pkt_burst == bnxt_recv_pkts)
2535 		return ptypes;
2536 	return NULL;
2537 }
2538 
2539 static int bnxt_map_regs(struct bnxt *bp, uint32_t *reg_arr, int count,
2540 			 int reg_win)
2541 {
2542 	uint32_t reg_base = *reg_arr & 0xfffff000;
2543 	uint32_t win_off;
2544 	int i;
2545 
2546 	for (i = 0; i < count; i++) {
2547 		if ((reg_arr[i] & 0xfffff000) != reg_base)
2548 			return -ERANGE;
2549 	}
2550 	win_off = BNXT_GRCPF_REG_WINDOW_BASE_OUT + (reg_win - 1) * 4;
2551 	rte_cpu_to_le_32(rte_write32(reg_base, (uint8_t *)bp->bar0 + win_off));
2552 	return 0;
2553 }
2554 
2555 static int bnxt_map_ptp_regs(struct bnxt *bp)
2556 {
2557 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2558 	uint32_t *reg_arr;
2559 	int rc, i;
2560 
2561 	reg_arr = ptp->rx_regs;
2562 	rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_RX_REGS, 5);
2563 	if (rc)
2564 		return rc;
2565 
2566 	reg_arr = ptp->tx_regs;
2567 	rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_TX_REGS, 6);
2568 	if (rc)
2569 		return rc;
2570 
2571 	for (i = 0; i < BNXT_PTP_RX_REGS; i++)
2572 		ptp->rx_mapped_regs[i] = 0x5000 + (ptp->rx_regs[i] & 0xfff);
2573 
2574 	for (i = 0; i < BNXT_PTP_TX_REGS; i++)
2575 		ptp->tx_mapped_regs[i] = 0x6000 + (ptp->tx_regs[i] & 0xfff);
2576 
2577 	return 0;
2578 }
2579 
2580 static void bnxt_unmap_ptp_regs(struct bnxt *bp)
2581 {
2582 	rte_cpu_to_le_32(rte_write32(0, (uint8_t *)bp->bar0 +
2583 			 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 16));
2584 	rte_cpu_to_le_32(rte_write32(0, (uint8_t *)bp->bar0 +
2585 			 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 20));
2586 }
2587 
2588 static uint64_t bnxt_cc_read(struct bnxt *bp)
2589 {
2590 	uint64_t ns;
2591 
2592 	ns = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2593 			      BNXT_GRCPF_REG_SYNC_TIME));
2594 	ns |= (uint64_t)(rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2595 					  BNXT_GRCPF_REG_SYNC_TIME + 4))) << 32;
2596 	return ns;
2597 }
2598 
2599 static int bnxt_get_tx_ts(struct bnxt *bp, uint64_t *ts)
2600 {
2601 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2602 	uint32_t fifo;
2603 
2604 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2605 				ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
2606 	if (fifo & BNXT_PTP_TX_FIFO_EMPTY)
2607 		return -EAGAIN;
2608 
2609 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2610 				ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
2611 	*ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2612 				ptp->tx_mapped_regs[BNXT_PTP_TX_TS_L]));
2613 	*ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2614 				ptp->tx_mapped_regs[BNXT_PTP_TX_TS_H])) << 32;
2615 
2616 	return 0;
2617 }
2618 
2619 static int bnxt_get_rx_ts(struct bnxt *bp, uint64_t *ts)
2620 {
2621 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2622 	struct bnxt_pf_info *pf = &bp->pf;
2623 	uint16_t port_id;
2624 	uint32_t fifo;
2625 
2626 	if (!ptp)
2627 		return -ENODEV;
2628 
2629 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2630 				ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
2631 	if (!(fifo & BNXT_PTP_RX_FIFO_PENDING))
2632 		return -EAGAIN;
2633 
2634 	port_id = pf->port_id;
2635 	rte_cpu_to_le_32(rte_write32(1 << port_id, (uint8_t *)bp->bar0 +
2636 	       ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO_ADV]));
2637 
2638 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2639 				   ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
2640 	if (fifo & BNXT_PTP_RX_FIFO_PENDING) {
2641 /*		bnxt_clr_rx_ts(bp);	  TBD  */
2642 		return -EBUSY;
2643 	}
2644 
2645 	*ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2646 				ptp->rx_mapped_regs[BNXT_PTP_RX_TS_L]));
2647 	*ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2648 				ptp->rx_mapped_regs[BNXT_PTP_RX_TS_H])) << 32;
2649 
2650 	return 0;
2651 }
2652 
2653 static int
2654 bnxt_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
2655 {
2656 	uint64_t ns;
2657 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2658 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2659 
2660 	if (!ptp)
2661 		return 0;
2662 
2663 	ns = rte_timespec_to_ns(ts);
2664 	/* Set the timecounters to a new value. */
2665 	ptp->tc.nsec = ns;
2666 
2667 	return 0;
2668 }
2669 
2670 static int
2671 bnxt_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
2672 {
2673 	uint64_t ns, systime_cycles;
2674 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2675 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2676 
2677 	if (!ptp)
2678 		return 0;
2679 
2680 	systime_cycles = bnxt_cc_read(bp);
2681 	ns = rte_timecounter_update(&ptp->tc, systime_cycles);
2682 	*ts = rte_ns_to_timespec(ns);
2683 
2684 	return 0;
2685 }
2686 static int
2687 bnxt_timesync_enable(struct rte_eth_dev *dev)
2688 {
2689 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2690 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2691 	uint32_t shift = 0;
2692 
2693 	if (!ptp)
2694 		return 0;
2695 
2696 	ptp->rx_filter = 1;
2697 	ptp->tx_tstamp_en = 1;
2698 	ptp->rxctl = BNXT_PTP_MSG_EVENTS;
2699 
2700 	if (!bnxt_hwrm_ptp_cfg(bp))
2701 		bnxt_map_ptp_regs(bp);
2702 
2703 	memset(&ptp->tc, 0, sizeof(struct rte_timecounter));
2704 	memset(&ptp->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
2705 	memset(&ptp->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
2706 
2707 	ptp->tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
2708 	ptp->tc.cc_shift = shift;
2709 	ptp->tc.nsec_mask = (1ULL << shift) - 1;
2710 
2711 	ptp->rx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
2712 	ptp->rx_tstamp_tc.cc_shift = shift;
2713 	ptp->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
2714 
2715 	ptp->tx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
2716 	ptp->tx_tstamp_tc.cc_shift = shift;
2717 	ptp->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
2718 
2719 	return 0;
2720 }
2721 
2722 static int
2723 bnxt_timesync_disable(struct rte_eth_dev *dev)
2724 {
2725 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2726 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2727 
2728 	if (!ptp)
2729 		return 0;
2730 
2731 	ptp->rx_filter = 0;
2732 	ptp->tx_tstamp_en = 0;
2733 	ptp->rxctl = 0;
2734 
2735 	bnxt_hwrm_ptp_cfg(bp);
2736 
2737 	bnxt_unmap_ptp_regs(bp);
2738 
2739 	return 0;
2740 }
2741 
2742 static int
2743 bnxt_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
2744 				 struct timespec *timestamp,
2745 				 uint32_t flags __rte_unused)
2746 {
2747 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2748 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2749 	uint64_t rx_tstamp_cycles = 0;
2750 	uint64_t ns;
2751 
2752 	if (!ptp)
2753 		return 0;
2754 
2755 	bnxt_get_rx_ts(bp, &rx_tstamp_cycles);
2756 	ns = rte_timecounter_update(&ptp->rx_tstamp_tc, rx_tstamp_cycles);
2757 	*timestamp = rte_ns_to_timespec(ns);
2758 	return  0;
2759 }
2760 
2761 static int
2762 bnxt_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
2763 				 struct timespec *timestamp)
2764 {
2765 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2766 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2767 	uint64_t tx_tstamp_cycles = 0;
2768 	uint64_t ns;
2769 
2770 	if (!ptp)
2771 		return 0;
2772 
2773 	bnxt_get_tx_ts(bp, &tx_tstamp_cycles);
2774 	ns = rte_timecounter_update(&ptp->tx_tstamp_tc, tx_tstamp_cycles);
2775 	*timestamp = rte_ns_to_timespec(ns);
2776 
2777 	return 0;
2778 }
2779 
2780 static int
2781 bnxt_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
2782 {
2783 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2784 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2785 
2786 	if (!ptp)
2787 		return 0;
2788 
2789 	ptp->tc.nsec += delta;
2790 
2791 	return 0;
2792 }
2793 
2794 static int
2795 bnxt_get_eeprom_length_op(struct rte_eth_dev *dev)
2796 {
2797 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2798 	int rc;
2799 	uint32_t dir_entries;
2800 	uint32_t entry_length;
2801 
2802 	RTE_LOG(INFO, PMD, "%s(): %04x:%02x:%02x:%02x\n",
2803 		__func__, bp->pdev->addr.domain, bp->pdev->addr.bus,
2804 		bp->pdev->addr.devid, bp->pdev->addr.function);
2805 
2806 	rc = bnxt_hwrm_nvm_get_dir_info(bp, &dir_entries, &entry_length);
2807 	if (rc != 0)
2808 		return rc;
2809 
2810 	return dir_entries * entry_length;
2811 }
2812 
2813 static int
2814 bnxt_get_eeprom_op(struct rte_eth_dev *dev,
2815 		struct rte_dev_eeprom_info *in_eeprom)
2816 {
2817 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2818 	uint32_t index;
2819 	uint32_t offset;
2820 
2821 	RTE_LOG(INFO, PMD, "%s(): %04x:%02x:%02x:%02x in_eeprom->offset = %d "
2822 		"len = %d\n", __func__, bp->pdev->addr.domain,
2823 		bp->pdev->addr.bus, bp->pdev->addr.devid,
2824 		bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length);
2825 
2826 	if (in_eeprom->offset == 0) /* special offset value to get directory */
2827 		return bnxt_get_nvram_directory(bp, in_eeprom->length,
2828 						in_eeprom->data);
2829 
2830 	index = in_eeprom->offset >> 24;
2831 	offset = in_eeprom->offset & 0xffffff;
2832 
2833 	if (index != 0)
2834 		return bnxt_hwrm_get_nvram_item(bp, index - 1, offset,
2835 					   in_eeprom->length, in_eeprom->data);
2836 
2837 	return 0;
2838 }
2839 
2840 static bool bnxt_dir_type_is_ape_bin_format(uint16_t dir_type)
2841 {
2842 	switch (dir_type) {
2843 	case BNX_DIR_TYPE_CHIMP_PATCH:
2844 	case BNX_DIR_TYPE_BOOTCODE:
2845 	case BNX_DIR_TYPE_BOOTCODE_2:
2846 	case BNX_DIR_TYPE_APE_FW:
2847 	case BNX_DIR_TYPE_APE_PATCH:
2848 	case BNX_DIR_TYPE_KONG_FW:
2849 	case BNX_DIR_TYPE_KONG_PATCH:
2850 	case BNX_DIR_TYPE_BONO_FW:
2851 	case BNX_DIR_TYPE_BONO_PATCH:
2852 		return true;
2853 	}
2854 
2855 	return false;
2856 }
2857 
2858 static bool bnxt_dir_type_is_other_exec_format(uint16_t dir_type)
2859 {
2860 	switch (dir_type) {
2861 	case BNX_DIR_TYPE_AVS:
2862 	case BNX_DIR_TYPE_EXP_ROM_MBA:
2863 	case BNX_DIR_TYPE_PCIE:
2864 	case BNX_DIR_TYPE_TSCF_UCODE:
2865 	case BNX_DIR_TYPE_EXT_PHY:
2866 	case BNX_DIR_TYPE_CCM:
2867 	case BNX_DIR_TYPE_ISCSI_BOOT:
2868 	case BNX_DIR_TYPE_ISCSI_BOOT_IPV6:
2869 	case BNX_DIR_TYPE_ISCSI_BOOT_IPV4N6:
2870 		return true;
2871 	}
2872 
2873 	return false;
2874 }
2875 
2876 static bool bnxt_dir_type_is_executable(uint16_t dir_type)
2877 {
2878 	return bnxt_dir_type_is_ape_bin_format(dir_type) ||
2879 		bnxt_dir_type_is_other_exec_format(dir_type);
2880 }
2881 
2882 static int
2883 bnxt_set_eeprom_op(struct rte_eth_dev *dev,
2884 		struct rte_dev_eeprom_info *in_eeprom)
2885 {
2886 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2887 	uint8_t index, dir_op;
2888 	uint16_t type, ext, ordinal, attr;
2889 
2890 	RTE_LOG(INFO, PMD, "%s(): %04x:%02x:%02x:%02x in_eeprom->offset = %d "
2891 		"len = %d\n", __func__, bp->pdev->addr.domain,
2892 		bp->pdev->addr.bus, bp->pdev->addr.devid,
2893 		bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length);
2894 
2895 	if (!BNXT_PF(bp)) {
2896 		RTE_LOG(ERR, PMD, "NVM write not supported from a VF\n");
2897 		return -EINVAL;
2898 	}
2899 
2900 	type = in_eeprom->magic >> 16;
2901 
2902 	if (type == 0xffff) { /* special value for directory operations */
2903 		index = in_eeprom->magic & 0xff;
2904 		dir_op = in_eeprom->magic >> 8;
2905 		if (index == 0)
2906 			return -EINVAL;
2907 		switch (dir_op) {
2908 		case 0x0e: /* erase */
2909 			if (in_eeprom->offset != ~in_eeprom->magic)
2910 				return -EINVAL;
2911 			return bnxt_hwrm_erase_nvram_directory(bp, index - 1);
2912 		default:
2913 			return -EINVAL;
2914 		}
2915 	}
2916 
2917 	/* Create or re-write an NVM item: */
2918 	if (bnxt_dir_type_is_executable(type) == true)
2919 		return -EOPNOTSUPP;
2920 	ext = in_eeprom->magic & 0xffff;
2921 	ordinal = in_eeprom->offset >> 16;
2922 	attr = in_eeprom->offset & 0xffff;
2923 
2924 	return bnxt_hwrm_flash_nvram(bp, type, ordinal, ext, attr,
2925 				     in_eeprom->data, in_eeprom->length);
2926 	return 0;
2927 }
2928 
2929 /*
2930  * Initialization
2931  */
2932 
2933 static const struct eth_dev_ops bnxt_dev_ops = {
2934 	.dev_infos_get = bnxt_dev_info_get_op,
2935 	.dev_close = bnxt_dev_close_op,
2936 	.dev_configure = bnxt_dev_configure_op,
2937 	.dev_start = bnxt_dev_start_op,
2938 	.dev_stop = bnxt_dev_stop_op,
2939 	.dev_set_link_up = bnxt_dev_set_link_up_op,
2940 	.dev_set_link_down = bnxt_dev_set_link_down_op,
2941 	.stats_get = bnxt_stats_get_op,
2942 	.stats_reset = bnxt_stats_reset_op,
2943 	.rx_queue_setup = bnxt_rx_queue_setup_op,
2944 	.rx_queue_release = bnxt_rx_queue_release_op,
2945 	.tx_queue_setup = bnxt_tx_queue_setup_op,
2946 	.tx_queue_release = bnxt_tx_queue_release_op,
2947 	.rx_queue_intr_enable = bnxt_rx_queue_intr_enable_op,
2948 	.rx_queue_intr_disable = bnxt_rx_queue_intr_disable_op,
2949 	.reta_update = bnxt_reta_update_op,
2950 	.reta_query = bnxt_reta_query_op,
2951 	.rss_hash_update = bnxt_rss_hash_update_op,
2952 	.rss_hash_conf_get = bnxt_rss_hash_conf_get_op,
2953 	.link_update = bnxt_link_update_op,
2954 	.promiscuous_enable = bnxt_promiscuous_enable_op,
2955 	.promiscuous_disable = bnxt_promiscuous_disable_op,
2956 	.allmulticast_enable = bnxt_allmulticast_enable_op,
2957 	.allmulticast_disable = bnxt_allmulticast_disable_op,
2958 	.mac_addr_add = bnxt_mac_addr_add_op,
2959 	.mac_addr_remove = bnxt_mac_addr_remove_op,
2960 	.flow_ctrl_get = bnxt_flow_ctrl_get_op,
2961 	.flow_ctrl_set = bnxt_flow_ctrl_set_op,
2962 	.udp_tunnel_port_add  = bnxt_udp_tunnel_port_add_op,
2963 	.udp_tunnel_port_del  = bnxt_udp_tunnel_port_del_op,
2964 	.vlan_filter_set = bnxt_vlan_filter_set_op,
2965 	.vlan_offload_set = bnxt_vlan_offload_set_op,
2966 	.vlan_pvid_set = bnxt_vlan_pvid_set_op,
2967 	.mtu_set = bnxt_mtu_set_op,
2968 	.mac_addr_set = bnxt_set_default_mac_addr_op,
2969 	.xstats_get = bnxt_dev_xstats_get_op,
2970 	.xstats_get_names = bnxt_dev_xstats_get_names_op,
2971 	.xstats_reset = bnxt_dev_xstats_reset_op,
2972 	.fw_version_get = bnxt_fw_version_get,
2973 	.set_mc_addr_list = bnxt_dev_set_mc_addr_list_op,
2974 	.rxq_info_get = bnxt_rxq_info_get_op,
2975 	.txq_info_get = bnxt_txq_info_get_op,
2976 	.dev_led_on = bnxt_dev_led_on_op,
2977 	.dev_led_off = bnxt_dev_led_off_op,
2978 	.xstats_get_by_id = bnxt_dev_xstats_get_by_id_op,
2979 	.xstats_get_names_by_id = bnxt_dev_xstats_get_names_by_id_op,
2980 	.rx_queue_count = bnxt_rx_queue_count_op,
2981 	.rx_descriptor_status = bnxt_rx_descriptor_status_op,
2982 	.tx_descriptor_status = bnxt_tx_descriptor_status_op,
2983 	.filter_ctrl = bnxt_filter_ctrl_op,
2984 	.dev_supported_ptypes_get = bnxt_dev_supported_ptypes_get_op,
2985 	.get_eeprom_length    = bnxt_get_eeprom_length_op,
2986 	.get_eeprom           = bnxt_get_eeprom_op,
2987 	.set_eeprom           = bnxt_set_eeprom_op,
2988 	.timesync_enable      = bnxt_timesync_enable,
2989 	.timesync_disable     = bnxt_timesync_disable,
2990 	.timesync_read_time   = bnxt_timesync_read_time,
2991 	.timesync_write_time   = bnxt_timesync_write_time,
2992 	.timesync_adjust_time = bnxt_timesync_adjust_time,
2993 	.timesync_read_rx_timestamp = bnxt_timesync_read_rx_timestamp,
2994 	.timesync_read_tx_timestamp = bnxt_timesync_read_tx_timestamp,
2995 };
2996 
2997 static bool bnxt_vf_pciid(uint16_t id)
2998 {
2999 	if (id == BROADCOM_DEV_ID_57304_VF ||
3000 	    id == BROADCOM_DEV_ID_57406_VF ||
3001 	    id == BROADCOM_DEV_ID_5731X_VF ||
3002 	    id == BROADCOM_DEV_ID_5741X_VF ||
3003 	    id == BROADCOM_DEV_ID_57414_VF ||
3004 	    id == BROADCOM_DEV_ID_STRATUS_NIC_VF)
3005 		return true;
3006 	return false;
3007 }
3008 
3009 static int bnxt_init_board(struct rte_eth_dev *eth_dev)
3010 {
3011 	struct bnxt *bp = eth_dev->data->dev_private;
3012 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3013 	int rc;
3014 
3015 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
3016 	if (!pci_dev->mem_resource[0].addr) {
3017 		RTE_LOG(ERR, PMD,
3018 			"Cannot find PCI device base address, aborting\n");
3019 		rc = -ENODEV;
3020 		goto init_err_disable;
3021 	}
3022 
3023 	bp->eth_dev = eth_dev;
3024 	bp->pdev = pci_dev;
3025 
3026 	bp->bar0 = (void *)pci_dev->mem_resource[0].addr;
3027 	if (!bp->bar0) {
3028 		RTE_LOG(ERR, PMD, "Cannot map device registers, aborting\n");
3029 		rc = -ENOMEM;
3030 		goto init_err_release;
3031 	}
3032 	return 0;
3033 
3034 init_err_release:
3035 	if (bp->bar0)
3036 		bp->bar0 = NULL;
3037 
3038 init_err_disable:
3039 
3040 	return rc;
3041 }
3042 
3043 static int bnxt_dev_uninit(struct rte_eth_dev *eth_dev);
3044 
3045 #define ALLOW_FUNC(x)	\
3046 	{ \
3047 		typeof(x) arg = (x); \
3048 		bp->pf.vf_req_fwd[((arg) >> 5)] &= \
3049 		~rte_cpu_to_le_32(1 << ((arg) & 0x1f)); \
3050 	}
3051 static int
3052 bnxt_dev_init(struct rte_eth_dev *eth_dev)
3053 {
3054 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3055 	char mz_name[RTE_MEMZONE_NAMESIZE];
3056 	const struct rte_memzone *mz = NULL;
3057 	static int version_printed;
3058 	uint32_t total_alloc_len;
3059 	rte_iova_t mz_phys_addr;
3060 	struct bnxt *bp;
3061 	int rc;
3062 
3063 	if (version_printed++ == 0)
3064 		RTE_LOG(INFO, PMD, "%s\n", bnxt_version);
3065 
3066 	rte_eth_copy_pci_info(eth_dev, pci_dev);
3067 
3068 	bp = eth_dev->data->dev_private;
3069 
3070 	rte_atomic64_init(&bp->rx_mbuf_alloc_fail);
3071 	bp->dev_stopped = 1;
3072 
3073 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3074 		goto skip_init;
3075 
3076 	if (bnxt_vf_pciid(pci_dev->id.device_id))
3077 		bp->flags |= BNXT_FLAG_VF;
3078 
3079 	rc = bnxt_init_board(eth_dev);
3080 	if (rc) {
3081 		RTE_LOG(ERR, PMD,
3082 			"Board initialization failed rc: %x\n", rc);
3083 		goto error;
3084 	}
3085 skip_init:
3086 	eth_dev->dev_ops = &bnxt_dev_ops;
3087 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3088 		return 0;
3089 	eth_dev->rx_pkt_burst = &bnxt_recv_pkts;
3090 	eth_dev->tx_pkt_burst = &bnxt_xmit_pkts;
3091 
3092 	if (BNXT_PF(bp) && pci_dev->id.device_id != BROADCOM_DEV_ID_NS2) {
3093 		snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
3094 			 "bnxt_%04x:%02x:%02x:%02x-%s", pci_dev->addr.domain,
3095 			 pci_dev->addr.bus, pci_dev->addr.devid,
3096 			 pci_dev->addr.function, "rx_port_stats");
3097 		mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
3098 		mz = rte_memzone_lookup(mz_name);
3099 		total_alloc_len = RTE_CACHE_LINE_ROUNDUP(
3100 				sizeof(struct rx_port_stats) + 512);
3101 		if (!mz) {
3102 			mz = rte_memzone_reserve(mz_name, total_alloc_len,
3103 						 SOCKET_ID_ANY,
3104 						 RTE_MEMZONE_2MB |
3105 						 RTE_MEMZONE_SIZE_HINT_ONLY);
3106 			if (mz == NULL)
3107 				return -ENOMEM;
3108 		}
3109 		memset(mz->addr, 0, mz->len);
3110 		mz_phys_addr = mz->iova;
3111 		if ((unsigned long)mz->addr == mz_phys_addr) {
3112 			RTE_LOG(WARNING, PMD,
3113 				"Memzone physical address same as virtual.\n");
3114 			RTE_LOG(WARNING, PMD,
3115 				"Using rte_mem_virt2iova()\n");
3116 			mz_phys_addr = rte_mem_virt2iova(mz->addr);
3117 			if (mz_phys_addr == 0) {
3118 				RTE_LOG(ERR, PMD,
3119 				"unable to map address to physical memory\n");
3120 				return -ENOMEM;
3121 			}
3122 		}
3123 
3124 		bp->rx_mem_zone = (const void *)mz;
3125 		bp->hw_rx_port_stats = mz->addr;
3126 		bp->hw_rx_port_stats_map = mz_phys_addr;
3127 
3128 		snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
3129 			 "bnxt_%04x:%02x:%02x:%02x-%s", pci_dev->addr.domain,
3130 			 pci_dev->addr.bus, pci_dev->addr.devid,
3131 			 pci_dev->addr.function, "tx_port_stats");
3132 		mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
3133 		mz = rte_memzone_lookup(mz_name);
3134 		total_alloc_len = RTE_CACHE_LINE_ROUNDUP(
3135 				sizeof(struct tx_port_stats) + 512);
3136 		if (!mz) {
3137 			mz = rte_memzone_reserve(mz_name, total_alloc_len,
3138 						 SOCKET_ID_ANY,
3139 						 RTE_MEMZONE_2MB |
3140 						 RTE_MEMZONE_SIZE_HINT_ONLY);
3141 			if (mz == NULL)
3142 				return -ENOMEM;
3143 		}
3144 		memset(mz->addr, 0, mz->len);
3145 		mz_phys_addr = mz->iova;
3146 		if ((unsigned long)mz->addr == mz_phys_addr) {
3147 			RTE_LOG(WARNING, PMD,
3148 				"Memzone physical address same as virtual.\n");
3149 			RTE_LOG(WARNING, PMD,
3150 				"Using rte_mem_virt2iova()\n");
3151 			mz_phys_addr = rte_mem_virt2iova(mz->addr);
3152 			if (mz_phys_addr == 0) {
3153 				RTE_LOG(ERR, PMD,
3154 				"unable to map address to physical memory\n");
3155 				return -ENOMEM;
3156 			}
3157 		}
3158 
3159 		bp->tx_mem_zone = (const void *)mz;
3160 		bp->hw_tx_port_stats = mz->addr;
3161 		bp->hw_tx_port_stats_map = mz_phys_addr;
3162 
3163 		bp->flags |= BNXT_FLAG_PORT_STATS;
3164 	}
3165 
3166 	rc = bnxt_alloc_hwrm_resources(bp);
3167 	if (rc) {
3168 		RTE_LOG(ERR, PMD,
3169 			"hwrm resource allocation failure rc: %x\n", rc);
3170 		goto error_free;
3171 	}
3172 	rc = bnxt_hwrm_ver_get(bp);
3173 	if (rc)
3174 		goto error_free;
3175 	bnxt_hwrm_queue_qportcfg(bp);
3176 
3177 	bnxt_hwrm_func_qcfg(bp);
3178 
3179 	/* Get the MAX capabilities for this function */
3180 	rc = bnxt_hwrm_func_qcaps(bp);
3181 	if (rc) {
3182 		RTE_LOG(ERR, PMD, "hwrm query capability failure rc: %x\n", rc);
3183 		goto error_free;
3184 	}
3185 	if (bp->max_tx_rings == 0) {
3186 		RTE_LOG(ERR, PMD, "No TX rings available!\n");
3187 		rc = -EBUSY;
3188 		goto error_free;
3189 	}
3190 	eth_dev->data->mac_addrs = rte_zmalloc("bnxt_mac_addr_tbl",
3191 					ETHER_ADDR_LEN * bp->max_l2_ctx, 0);
3192 	if (eth_dev->data->mac_addrs == NULL) {
3193 		RTE_LOG(ERR, PMD,
3194 			"Failed to alloc %u bytes needed to store MAC addr tbl",
3195 			ETHER_ADDR_LEN * bp->max_l2_ctx);
3196 		rc = -ENOMEM;
3197 		goto error_free;
3198 	}
3199 	/* Copy the permanent MAC from the qcap response address now. */
3200 	memcpy(bp->mac_addr, bp->dflt_mac_addr, sizeof(bp->mac_addr));
3201 	memcpy(&eth_dev->data->mac_addrs[0], bp->mac_addr, ETHER_ADDR_LEN);
3202 	bp->grp_info = rte_zmalloc("bnxt_grp_info",
3203 				sizeof(*bp->grp_info) * bp->max_ring_grps, 0);
3204 	if (!bp->grp_info) {
3205 		RTE_LOG(ERR, PMD,
3206 			"Failed to alloc %zu bytes needed to store group info table\n",
3207 			sizeof(*bp->grp_info) * bp->max_ring_grps);
3208 		rc = -ENOMEM;
3209 		goto error_free;
3210 	}
3211 
3212 	/* Forward all requests if firmware is new enough */
3213 	if (((bp->fw_ver >= ((20 << 24) | (6 << 16) | (100 << 8))) &&
3214 	    (bp->fw_ver < ((20 << 24) | (7 << 16)))) ||
3215 	    ((bp->fw_ver >= ((20 << 24) | (8 << 16))))) {
3216 		memset(bp->pf.vf_req_fwd, 0xff, sizeof(bp->pf.vf_req_fwd));
3217 	} else {
3218 		RTE_LOG(WARNING, PMD,
3219 			"Firmware too old for VF mailbox functionality\n");
3220 		memset(bp->pf.vf_req_fwd, 0, sizeof(bp->pf.vf_req_fwd));
3221 	}
3222 
3223 	/*
3224 	 * The following are used for driver cleanup.  If we disallow these,
3225 	 * VF drivers can't clean up cleanly.
3226 	 */
3227 	ALLOW_FUNC(HWRM_FUNC_DRV_UNRGTR);
3228 	ALLOW_FUNC(HWRM_VNIC_FREE);
3229 	ALLOW_FUNC(HWRM_RING_FREE);
3230 	ALLOW_FUNC(HWRM_RING_GRP_FREE);
3231 	ALLOW_FUNC(HWRM_VNIC_RSS_COS_LB_CTX_FREE);
3232 	ALLOW_FUNC(HWRM_CFA_L2_FILTER_FREE);
3233 	ALLOW_FUNC(HWRM_STAT_CTX_FREE);
3234 	ALLOW_FUNC(HWRM_PORT_PHY_QCFG);
3235 	ALLOW_FUNC(HWRM_VNIC_TPA_CFG);
3236 	rc = bnxt_hwrm_func_driver_register(bp);
3237 	if (rc) {
3238 		RTE_LOG(ERR, PMD,
3239 			"Failed to register driver");
3240 		rc = -EBUSY;
3241 		goto error_free;
3242 	}
3243 
3244 	RTE_LOG(INFO, PMD,
3245 		DRV_MODULE_NAME " found at mem %" PRIx64 ", node addr %pM\n",
3246 		pci_dev->mem_resource[0].phys_addr,
3247 		pci_dev->mem_resource[0].addr);
3248 
3249 	rc = bnxt_hwrm_func_reset(bp);
3250 	if (rc) {
3251 		RTE_LOG(ERR, PMD, "hwrm chip reset failure rc: %x\n", rc);
3252 		rc = -1;
3253 		goto error_free;
3254 	}
3255 
3256 	if (BNXT_PF(bp)) {
3257 		//if (bp->pf.active_vfs) {
3258 			// TODO: Deallocate VF resources?
3259 		//}
3260 		if (bp->pdev->max_vfs) {
3261 			rc = bnxt_hwrm_allocate_vfs(bp, bp->pdev->max_vfs);
3262 			if (rc) {
3263 				RTE_LOG(ERR, PMD, "Failed to allocate VFs\n");
3264 				goto error_free;
3265 			}
3266 		} else {
3267 			rc = bnxt_hwrm_allocate_pf_only(bp);
3268 			if (rc) {
3269 				RTE_LOG(ERR, PMD,
3270 					"Failed to allocate PF resources\n");
3271 				goto error_free;
3272 			}
3273 		}
3274 	}
3275 
3276 	bnxt_hwrm_port_led_qcaps(bp);
3277 
3278 	rc = bnxt_setup_int(bp);
3279 	if (rc)
3280 		goto error_free;
3281 
3282 	rc = bnxt_alloc_mem(bp);
3283 	if (rc)
3284 		goto error_free_int;
3285 
3286 	rc = bnxt_request_int(bp);
3287 	if (rc)
3288 		goto error_free_int;
3289 
3290 	rc = bnxt_alloc_def_cp_ring(bp);
3291 	if (rc)
3292 		goto error_free_int;
3293 
3294 	bnxt_enable_int(bp);
3295 
3296 	return 0;
3297 
3298 error_free_int:
3299 	bnxt_disable_int(bp);
3300 	bnxt_free_def_cp_ring(bp);
3301 	bnxt_hwrm_func_buf_unrgtr(bp);
3302 	bnxt_free_int(bp);
3303 	bnxt_free_mem(bp);
3304 error_free:
3305 	bnxt_dev_uninit(eth_dev);
3306 error:
3307 	return rc;
3308 }
3309 
3310 static int
3311 bnxt_dev_uninit(struct rte_eth_dev *eth_dev) {
3312 	struct bnxt *bp = eth_dev->data->dev_private;
3313 	int rc;
3314 
3315 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3316 		return -EPERM;
3317 
3318 	bnxt_disable_int(bp);
3319 	bnxt_free_int(bp);
3320 	bnxt_free_mem(bp);
3321 	if (eth_dev->data->mac_addrs != NULL) {
3322 		rte_free(eth_dev->data->mac_addrs);
3323 		eth_dev->data->mac_addrs = NULL;
3324 	}
3325 	if (bp->grp_info != NULL) {
3326 		rte_free(bp->grp_info);
3327 		bp->grp_info = NULL;
3328 	}
3329 	rc = bnxt_hwrm_func_driver_unregister(bp, 0);
3330 	bnxt_free_hwrm_resources(bp);
3331 	rte_memzone_free((const struct rte_memzone *)bp->tx_mem_zone);
3332 	rte_memzone_free((const struct rte_memzone *)bp->rx_mem_zone);
3333 	if (bp->dev_stopped == 0)
3334 		bnxt_dev_close_op(eth_dev);
3335 	if (bp->pf.vf_info)
3336 		rte_free(bp->pf.vf_info);
3337 	eth_dev->dev_ops = NULL;
3338 	eth_dev->rx_pkt_burst = NULL;
3339 	eth_dev->tx_pkt_burst = NULL;
3340 
3341 	return rc;
3342 }
3343 
3344 static int bnxt_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3345 	struct rte_pci_device *pci_dev)
3346 {
3347 	return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct bnxt),
3348 		bnxt_dev_init);
3349 }
3350 
3351 static int bnxt_pci_remove(struct rte_pci_device *pci_dev)
3352 {
3353 	return rte_eth_dev_pci_generic_remove(pci_dev, bnxt_dev_uninit);
3354 }
3355 
3356 static struct rte_pci_driver bnxt_rte_pmd = {
3357 	.id_table = bnxt_pci_id_map,
3358 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING |
3359 		RTE_PCI_DRV_INTR_LSC,
3360 	.probe = bnxt_pci_probe,
3361 	.remove = bnxt_pci_remove,
3362 };
3363 
3364 static bool
3365 is_device_supported(struct rte_eth_dev *dev, struct rte_pci_driver *drv)
3366 {
3367 	if (strcmp(dev->device->driver->name, drv->driver.name))
3368 		return false;
3369 
3370 	return true;
3371 }
3372 
3373 bool is_bnxt_supported(struct rte_eth_dev *dev)
3374 {
3375 	return is_device_supported(dev, &bnxt_rte_pmd);
3376 }
3377 
3378 RTE_PMD_REGISTER_PCI(net_bnxt, bnxt_rte_pmd);
3379 RTE_PMD_REGISTER_PCI_TABLE(net_bnxt, bnxt_pci_id_map);
3380 RTE_PMD_REGISTER_KMOD_DEP(net_bnxt, "* igb_uio | uio_pci_generic | vfio-pci");
3381