xref: /dpdk/drivers/net/bnxt/bnxt_ethdev.c (revision ae2d19da02a95739e98554a42f2fce99b66be103)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Broadcom
3  * All rights reserved.
4  */
5 
6 #include <inttypes.h>
7 #include <stdbool.h>
8 
9 #include <rte_dev.h>
10 #include <rte_ethdev_driver.h>
11 #include <rte_ethdev_pci.h>
12 #include <rte_malloc.h>
13 #include <rte_cycles.h>
14 
15 #include "bnxt.h"
16 #include "bnxt_cpr.h"
17 #include "bnxt_filter.h"
18 #include "bnxt_hwrm.h"
19 #include "bnxt_irq.h"
20 #include "bnxt_ring.h"
21 #include "bnxt_rxq.h"
22 #include "bnxt_rxr.h"
23 #include "bnxt_stats.h"
24 #include "bnxt_txq.h"
25 #include "bnxt_txr.h"
26 #include "bnxt_vnic.h"
27 #include "hsi_struct_def_dpdk.h"
28 #include "bnxt_nvm_defs.h"
29 #include "bnxt_util.h"
30 
31 #define DRV_MODULE_NAME		"bnxt"
32 static const char bnxt_version[] =
33 	"Broadcom NetXtreme driver " DRV_MODULE_NAME;
34 int bnxt_logtype_driver;
35 
36 #define PCI_VENDOR_ID_BROADCOM 0x14E4
37 
38 #define BROADCOM_DEV_ID_STRATUS_NIC_VF1 0x1606
39 #define BROADCOM_DEV_ID_STRATUS_NIC_VF2 0x1609
40 #define BROADCOM_DEV_ID_STRATUS_NIC 0x1614
41 #define BROADCOM_DEV_ID_57414_VF 0x16c1
42 #define BROADCOM_DEV_ID_57301 0x16c8
43 #define BROADCOM_DEV_ID_57302 0x16c9
44 #define BROADCOM_DEV_ID_57304_PF 0x16ca
45 #define BROADCOM_DEV_ID_57304_VF 0x16cb
46 #define BROADCOM_DEV_ID_57417_MF 0x16cc
47 #define BROADCOM_DEV_ID_NS2 0x16cd
48 #define BROADCOM_DEV_ID_57311 0x16ce
49 #define BROADCOM_DEV_ID_57312 0x16cf
50 #define BROADCOM_DEV_ID_57402 0x16d0
51 #define BROADCOM_DEV_ID_57404 0x16d1
52 #define BROADCOM_DEV_ID_57406_PF 0x16d2
53 #define BROADCOM_DEV_ID_57406_VF 0x16d3
54 #define BROADCOM_DEV_ID_57402_MF 0x16d4
55 #define BROADCOM_DEV_ID_57407_RJ45 0x16d5
56 #define BROADCOM_DEV_ID_57412 0x16d6
57 #define BROADCOM_DEV_ID_57414 0x16d7
58 #define BROADCOM_DEV_ID_57416_RJ45 0x16d8
59 #define BROADCOM_DEV_ID_57417_RJ45 0x16d9
60 #define BROADCOM_DEV_ID_5741X_VF 0x16dc
61 #define BROADCOM_DEV_ID_57412_MF 0x16de
62 #define BROADCOM_DEV_ID_57314 0x16df
63 #define BROADCOM_DEV_ID_57317_RJ45 0x16e0
64 #define BROADCOM_DEV_ID_5731X_VF 0x16e1
65 #define BROADCOM_DEV_ID_57417_SFP 0x16e2
66 #define BROADCOM_DEV_ID_57416_SFP 0x16e3
67 #define BROADCOM_DEV_ID_57317_SFP 0x16e4
68 #define BROADCOM_DEV_ID_57404_MF 0x16e7
69 #define BROADCOM_DEV_ID_57406_MF 0x16e8
70 #define BROADCOM_DEV_ID_57407_SFP 0x16e9
71 #define BROADCOM_DEV_ID_57407_MF 0x16ea
72 #define BROADCOM_DEV_ID_57414_MF 0x16ec
73 #define BROADCOM_DEV_ID_57416_MF 0x16ee
74 #define BROADCOM_DEV_ID_57508 0x1750
75 #define BROADCOM_DEV_ID_57504 0x1751
76 #define BROADCOM_DEV_ID_57502 0x1752
77 #define BROADCOM_DEV_ID_57500_VF 0x1807
78 #define BROADCOM_DEV_ID_58802 0xd802
79 #define BROADCOM_DEV_ID_58804 0xd804
80 #define BROADCOM_DEV_ID_58808 0x16f0
81 #define BROADCOM_DEV_ID_58802_VF 0xd800
82 
83 static const struct rte_pci_id bnxt_pci_id_map[] = {
84 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
85 			 BROADCOM_DEV_ID_STRATUS_NIC_VF1) },
86 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
87 			 BROADCOM_DEV_ID_STRATUS_NIC_VF2) },
88 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_STRATUS_NIC) },
89 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_VF) },
90 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57301) },
91 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57302) },
92 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_PF) },
93 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_VF) },
94 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_NS2) },
95 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402) },
96 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404) },
97 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_PF) },
98 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_VF) },
99 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402_MF) },
100 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_RJ45) },
101 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404_MF) },
102 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_MF) },
103 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_SFP) },
104 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_MF) },
105 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5741X_VF) },
106 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5731X_VF) },
107 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57314) },
108 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_MF) },
109 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57311) },
110 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57312) },
111 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412) },
112 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414) },
113 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_RJ45) },
114 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_RJ45) },
115 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412_MF) },
116 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_RJ45) },
117 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_SFP) },
118 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_SFP) },
119 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_SFP) },
120 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_MF) },
121 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_MF) },
122 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58802) },
123 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58804) },
124 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58808) },
125 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58802_VF) },
126 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57508) },
127 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57504) },
128 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57502) },
129 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57500_VF) },
130 	{ .vendor_id = 0, /* sentinel */ },
131 };
132 
133 #define BNXT_ETH_RSS_SUPPORT (	\
134 	ETH_RSS_IPV4 |		\
135 	ETH_RSS_NONFRAG_IPV4_TCP |	\
136 	ETH_RSS_NONFRAG_IPV4_UDP |	\
137 	ETH_RSS_IPV6 |		\
138 	ETH_RSS_NONFRAG_IPV6_TCP |	\
139 	ETH_RSS_NONFRAG_IPV6_UDP)
140 
141 #define BNXT_DEV_TX_OFFLOAD_SUPPORT (DEV_TX_OFFLOAD_VLAN_INSERT | \
142 				     DEV_TX_OFFLOAD_IPV4_CKSUM | \
143 				     DEV_TX_OFFLOAD_TCP_CKSUM | \
144 				     DEV_TX_OFFLOAD_UDP_CKSUM | \
145 				     DEV_TX_OFFLOAD_TCP_TSO | \
146 				     DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM | \
147 				     DEV_TX_OFFLOAD_VXLAN_TNL_TSO | \
148 				     DEV_TX_OFFLOAD_GRE_TNL_TSO | \
149 				     DEV_TX_OFFLOAD_IPIP_TNL_TSO | \
150 				     DEV_TX_OFFLOAD_GENEVE_TNL_TSO | \
151 				     DEV_TX_OFFLOAD_MULTI_SEGS)
152 
153 #define BNXT_DEV_RX_OFFLOAD_SUPPORT (DEV_RX_OFFLOAD_VLAN_FILTER | \
154 				     DEV_RX_OFFLOAD_VLAN_STRIP | \
155 				     DEV_RX_OFFLOAD_IPV4_CKSUM | \
156 				     DEV_RX_OFFLOAD_UDP_CKSUM | \
157 				     DEV_RX_OFFLOAD_TCP_CKSUM | \
158 				     DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM | \
159 				     DEV_RX_OFFLOAD_JUMBO_FRAME | \
160 				     DEV_RX_OFFLOAD_KEEP_CRC | \
161 				     DEV_RX_OFFLOAD_TCP_LRO)
162 
163 static int bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask);
164 static void bnxt_print_link_info(struct rte_eth_dev *eth_dev);
165 static int bnxt_mtu_set_op(struct rte_eth_dev *eth_dev, uint16_t new_mtu);
166 static int bnxt_dev_uninit(struct rte_eth_dev *eth_dev);
167 
168 /***********************/
169 
170 /*
171  * High level utility functions
172  */
173 
174 static uint16_t bnxt_rss_ctxts(const struct bnxt *bp)
175 {
176 	if (!BNXT_CHIP_THOR(bp))
177 		return 1;
178 
179 	return RTE_ALIGN_MUL_CEIL(bp->rx_nr_rings,
180 				  BNXT_RSS_ENTRIES_PER_CTX_THOR) /
181 				    BNXT_RSS_ENTRIES_PER_CTX_THOR;
182 }
183 
184 static uint16_t  bnxt_rss_hash_tbl_size(const struct bnxt *bp)
185 {
186 	if (!BNXT_CHIP_THOR(bp))
187 		return HW_HASH_INDEX_SIZE;
188 
189 	return bnxt_rss_ctxts(bp) * BNXT_RSS_ENTRIES_PER_CTX_THOR;
190 }
191 
192 static void bnxt_free_mem(struct bnxt *bp)
193 {
194 	bnxt_free_filter_mem(bp);
195 	bnxt_free_vnic_attributes(bp);
196 	bnxt_free_vnic_mem(bp);
197 
198 	bnxt_free_stats(bp);
199 	bnxt_free_tx_rings(bp);
200 	bnxt_free_rx_rings(bp);
201 }
202 
203 static int bnxt_alloc_mem(struct bnxt *bp)
204 {
205 	int rc;
206 
207 	rc = bnxt_alloc_vnic_mem(bp);
208 	if (rc)
209 		goto alloc_mem_err;
210 
211 	rc = bnxt_alloc_vnic_attributes(bp);
212 	if (rc)
213 		goto alloc_mem_err;
214 
215 	rc = bnxt_alloc_filter_mem(bp);
216 	if (rc)
217 		goto alloc_mem_err;
218 
219 	return 0;
220 
221 alloc_mem_err:
222 	bnxt_free_mem(bp);
223 	return rc;
224 }
225 
226 static int bnxt_init_chip(struct bnxt *bp)
227 {
228 	struct bnxt_rx_queue *rxq;
229 	struct rte_eth_link new;
230 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(bp->eth_dev);
231 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
232 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
233 	uint64_t rx_offloads = dev_conf->rxmode.offloads;
234 	uint32_t intr_vector = 0;
235 	uint32_t queue_id, base = BNXT_MISC_VEC_ID;
236 	uint32_t vec = BNXT_MISC_VEC_ID;
237 	unsigned int i, j;
238 	int rc;
239 
240 	/* disable uio/vfio intr/eventfd mapping */
241 	rte_intr_disable(intr_handle);
242 
243 	if (bp->eth_dev->data->mtu > RTE_ETHER_MTU) {
244 		bp->eth_dev->data->dev_conf.rxmode.offloads |=
245 			DEV_RX_OFFLOAD_JUMBO_FRAME;
246 		bp->flags |= BNXT_FLAG_JUMBO;
247 	} else {
248 		bp->eth_dev->data->dev_conf.rxmode.offloads &=
249 			~DEV_RX_OFFLOAD_JUMBO_FRAME;
250 		bp->flags &= ~BNXT_FLAG_JUMBO;
251 	}
252 
253 	/* THOR does not support ring groups.
254 	 * But we will use the array to save RSS context IDs.
255 	 */
256 	if (BNXT_CHIP_THOR(bp))
257 		bp->max_ring_grps = BNXT_MAX_RSS_CTXTS_THOR;
258 
259 	rc = bnxt_alloc_all_hwrm_stat_ctxs(bp);
260 	if (rc) {
261 		PMD_DRV_LOG(ERR, "HWRM stat ctx alloc failure rc: %x\n", rc);
262 		goto err_out;
263 	}
264 
265 	rc = bnxt_alloc_hwrm_rings(bp);
266 	if (rc) {
267 		PMD_DRV_LOG(ERR, "HWRM ring alloc failure rc: %x\n", rc);
268 		goto err_out;
269 	}
270 
271 	rc = bnxt_alloc_all_hwrm_ring_grps(bp);
272 	if (rc) {
273 		PMD_DRV_LOG(ERR, "HWRM ring grp alloc failure: %x\n", rc);
274 		goto err_out;
275 	}
276 
277 	rc = bnxt_mq_rx_configure(bp);
278 	if (rc) {
279 		PMD_DRV_LOG(ERR, "MQ mode configure failure rc: %x\n", rc);
280 		goto err_out;
281 	}
282 
283 	/* VNIC configuration */
284 	for (i = 0; i < bp->nr_vnics; i++) {
285 		struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
286 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
287 		uint32_t size = sizeof(*vnic->fw_grp_ids) * bp->max_ring_grps;
288 
289 		vnic->fw_grp_ids = rte_zmalloc("vnic_fw_grp_ids", size, 0);
290 		if (!vnic->fw_grp_ids) {
291 			PMD_DRV_LOG(ERR,
292 				    "Failed to alloc %d bytes for group ids\n",
293 				    size);
294 			rc = -ENOMEM;
295 			goto err_out;
296 		}
297 		memset(vnic->fw_grp_ids, -1, size);
298 
299 		PMD_DRV_LOG(DEBUG, "vnic[%d] = %p vnic->fw_grp_ids = %p\n",
300 			    i, vnic, vnic->fw_grp_ids);
301 
302 		rc = bnxt_hwrm_vnic_alloc(bp, vnic);
303 		if (rc) {
304 			PMD_DRV_LOG(ERR, "HWRM vnic %d alloc failure rc: %x\n",
305 				i, rc);
306 			goto err_out;
307 		}
308 
309 		/* Alloc RSS context only if RSS mode is enabled */
310 		if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS) {
311 			int j, nr_ctxs = bnxt_rss_ctxts(bp);
312 
313 			rc = 0;
314 			for (j = 0; j < nr_ctxs; j++) {
315 				rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, j);
316 				if (rc)
317 					break;
318 			}
319 			if (rc) {
320 				PMD_DRV_LOG(ERR,
321 				  "HWRM vnic %d ctx %d alloc failure rc: %x\n",
322 				  i, j, rc);
323 				goto err_out;
324 			}
325 			vnic->num_lb_ctxts = nr_ctxs;
326 		}
327 
328 		/*
329 		 * Firmware sets pf pair in default vnic cfg. If the VLAN strip
330 		 * setting is not available at this time, it will not be
331 		 * configured correctly in the CFA.
332 		 */
333 		if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
334 			vnic->vlan_strip = true;
335 		else
336 			vnic->vlan_strip = false;
337 
338 		rc = bnxt_hwrm_vnic_cfg(bp, vnic);
339 		if (rc) {
340 			PMD_DRV_LOG(ERR, "HWRM vnic %d cfg failure rc: %x\n",
341 				i, rc);
342 			goto err_out;
343 		}
344 
345 		rc = bnxt_set_hwrm_vnic_filters(bp, vnic);
346 		if (rc) {
347 			PMD_DRV_LOG(ERR,
348 				"HWRM vnic %d filter failure rc: %x\n",
349 				i, rc);
350 			goto err_out;
351 		}
352 
353 		for (j = 0; j < bp->rx_nr_rings; j++) {
354 			rxq = bp->eth_dev->data->rx_queues[j];
355 
356 			PMD_DRV_LOG(DEBUG,
357 				    "rxq[%d]->vnic=%p vnic->fw_grp_ids=%p\n",
358 				    j, rxq->vnic, rxq->vnic->fw_grp_ids);
359 
360 			if (BNXT_HAS_RING_GRPS(bp) && rxq->rx_deferred_start)
361 				rxq->vnic->fw_grp_ids[j] = INVALID_HW_RING_ID;
362 		}
363 
364 		rc = bnxt_vnic_rss_configure(bp, vnic);
365 		if (rc) {
366 			PMD_DRV_LOG(ERR,
367 				    "HWRM vnic set RSS failure rc: %x\n", rc);
368 			goto err_out;
369 		}
370 
371 		bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
372 
373 		if (bp->eth_dev->data->dev_conf.rxmode.offloads &
374 		    DEV_RX_OFFLOAD_TCP_LRO)
375 			bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 1);
376 		else
377 			bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 0);
378 	}
379 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, &bp->vnic_info[0], 0, NULL);
380 	if (rc) {
381 		PMD_DRV_LOG(ERR,
382 			"HWRM cfa l2 rx mask failure rc: %x\n", rc);
383 		goto err_out;
384 	}
385 
386 	/* check and configure queue intr-vector mapping */
387 	if ((rte_intr_cap_multiple(intr_handle) ||
388 	     !RTE_ETH_DEV_SRIOV(bp->eth_dev).active) &&
389 	    bp->eth_dev->data->dev_conf.intr_conf.rxq != 0) {
390 		intr_vector = bp->eth_dev->data->nb_rx_queues;
391 		PMD_DRV_LOG(DEBUG, "intr_vector = %d\n", intr_vector);
392 		if (intr_vector > bp->rx_cp_nr_rings) {
393 			PMD_DRV_LOG(ERR, "At most %d intr queues supported",
394 					bp->rx_cp_nr_rings);
395 			return -ENOTSUP;
396 		}
397 		if (rte_intr_efd_enable(intr_handle, intr_vector))
398 			return -1;
399 	}
400 
401 	if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
402 		intr_handle->intr_vec =
403 			rte_zmalloc("intr_vec",
404 				    bp->eth_dev->data->nb_rx_queues *
405 				    sizeof(int), 0);
406 		if (intr_handle->intr_vec == NULL) {
407 			PMD_DRV_LOG(ERR, "Failed to allocate %d rx_queues"
408 				" intr_vec", bp->eth_dev->data->nb_rx_queues);
409 			return -ENOMEM;
410 		}
411 		PMD_DRV_LOG(DEBUG, "intr_handle->intr_vec = %p "
412 			"intr_handle->nb_efd = %d intr_handle->max_intr = %d\n",
413 			 intr_handle->intr_vec, intr_handle->nb_efd,
414 			intr_handle->max_intr);
415 		for (queue_id = 0; queue_id < bp->eth_dev->data->nb_rx_queues;
416 		     queue_id++) {
417 			intr_handle->intr_vec[queue_id] = vec;
418 			if (vec < base + intr_handle->nb_efd - 1)
419 				vec++;
420 		}
421 	}
422 
423 	/* enable uio/vfio intr/eventfd mapping */
424 	rte_intr_enable(intr_handle);
425 
426 	rc = bnxt_get_hwrm_link_config(bp, &new);
427 	if (rc) {
428 		PMD_DRV_LOG(ERR, "HWRM Get link config failure rc: %x\n", rc);
429 		goto err_out;
430 	}
431 
432 	if (!bp->link_info.link_up) {
433 		rc = bnxt_set_hwrm_link_config(bp, true);
434 		if (rc) {
435 			PMD_DRV_LOG(ERR,
436 				"HWRM link config failure rc: %x\n", rc);
437 			goto err_out;
438 		}
439 	}
440 	bnxt_print_link_info(bp->eth_dev);
441 
442 	return 0;
443 
444 err_out:
445 	bnxt_free_all_hwrm_resources(bp);
446 
447 	/* Some of the error status returned by FW may not be from errno.h */
448 	if (rc > 0)
449 		rc = -EIO;
450 
451 	return rc;
452 }
453 
454 static int bnxt_shutdown_nic(struct bnxt *bp)
455 {
456 	bnxt_free_all_hwrm_resources(bp);
457 	bnxt_free_all_filters(bp);
458 	bnxt_free_all_vnics(bp);
459 	return 0;
460 }
461 
462 static int bnxt_init_nic(struct bnxt *bp)
463 {
464 	int rc;
465 
466 	if (BNXT_HAS_RING_GRPS(bp)) {
467 		rc = bnxt_init_ring_grps(bp);
468 		if (rc)
469 			return rc;
470 	}
471 
472 	bnxt_init_vnics(bp);
473 	bnxt_init_filters(bp);
474 
475 	return 0;
476 }
477 
478 /*
479  * Device configuration and status function
480  */
481 
482 static void bnxt_dev_info_get_op(struct rte_eth_dev *eth_dev,
483 				  struct rte_eth_dev_info *dev_info)
484 {
485 	struct bnxt *bp = eth_dev->data->dev_private;
486 	uint16_t max_vnics, i, j, vpool, vrxq;
487 	unsigned int max_rx_rings;
488 
489 	/* MAC Specifics */
490 	dev_info->max_mac_addrs = bp->max_l2_ctx;
491 	dev_info->max_hash_mac_addrs = 0;
492 
493 	/* PF/VF specifics */
494 	if (BNXT_PF(bp))
495 		dev_info->max_vfs = bp->pdev->max_vfs;
496 	max_rx_rings = RTE_MIN(bp->max_vnics, bp->max_stat_ctx);
497 	/* For the sake of symmetry, max_rx_queues = max_tx_queues */
498 	dev_info->max_rx_queues = max_rx_rings;
499 	dev_info->max_tx_queues = max_rx_rings;
500 	dev_info->reta_size = bnxt_rss_hash_tbl_size(bp);
501 	dev_info->hash_key_size = 40;
502 	max_vnics = bp->max_vnics;
503 
504 	/* Fast path specifics */
505 	dev_info->min_rx_bufsize = 1;
506 	dev_info->max_rx_pktlen = BNXT_MAX_MTU + RTE_ETHER_HDR_LEN +
507 		RTE_ETHER_CRC_LEN + VLAN_TAG_SIZE * 2;
508 
509 	dev_info->rx_offload_capa = BNXT_DEV_RX_OFFLOAD_SUPPORT;
510 	if (bp->flags & BNXT_FLAG_PTP_SUPPORTED)
511 		dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_TIMESTAMP;
512 	dev_info->tx_offload_capa = BNXT_DEV_TX_OFFLOAD_SUPPORT;
513 	dev_info->flow_type_rss_offloads = BNXT_ETH_RSS_SUPPORT;
514 
515 	/* *INDENT-OFF* */
516 	dev_info->default_rxconf = (struct rte_eth_rxconf) {
517 		.rx_thresh = {
518 			.pthresh = 8,
519 			.hthresh = 8,
520 			.wthresh = 0,
521 		},
522 		.rx_free_thresh = 32,
523 		/* If no descriptors available, pkts are dropped by default */
524 		.rx_drop_en = 1,
525 	};
526 
527 	dev_info->default_txconf = (struct rte_eth_txconf) {
528 		.tx_thresh = {
529 			.pthresh = 32,
530 			.hthresh = 0,
531 			.wthresh = 0,
532 		},
533 		.tx_free_thresh = 32,
534 		.tx_rs_thresh = 32,
535 	};
536 	eth_dev->data->dev_conf.intr_conf.lsc = 1;
537 
538 	eth_dev->data->dev_conf.intr_conf.rxq = 1;
539 	dev_info->rx_desc_lim.nb_min = BNXT_MIN_RING_DESC;
540 	dev_info->rx_desc_lim.nb_max = BNXT_MAX_RX_RING_DESC;
541 	dev_info->tx_desc_lim.nb_min = BNXT_MIN_RING_DESC;
542 	dev_info->tx_desc_lim.nb_max = BNXT_MAX_TX_RING_DESC;
543 
544 	/* *INDENT-ON* */
545 
546 	/*
547 	 * TODO: default_rxconf, default_txconf, rx_desc_lim, and tx_desc_lim
548 	 *       need further investigation.
549 	 */
550 
551 	/* VMDq resources */
552 	vpool = 64; /* ETH_64_POOLS */
553 	vrxq = 128; /* ETH_VMDQ_DCB_NUM_QUEUES */
554 	for (i = 0; i < 4; vpool >>= 1, i++) {
555 		if (max_vnics > vpool) {
556 			for (j = 0; j < 5; vrxq >>= 1, j++) {
557 				if (dev_info->max_rx_queues > vrxq) {
558 					if (vpool > vrxq)
559 						vpool = vrxq;
560 					goto found;
561 				}
562 			}
563 			/* Not enough resources to support VMDq */
564 			break;
565 		}
566 	}
567 	/* Not enough resources to support VMDq */
568 	vpool = 0;
569 	vrxq = 0;
570 found:
571 	dev_info->max_vmdq_pools = vpool;
572 	dev_info->vmdq_queue_num = vrxq;
573 
574 	dev_info->vmdq_pool_base = 0;
575 	dev_info->vmdq_queue_base = 0;
576 }
577 
578 /* Configure the device based on the configuration provided */
579 static int bnxt_dev_configure_op(struct rte_eth_dev *eth_dev)
580 {
581 	struct bnxt *bp = eth_dev->data->dev_private;
582 	uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads;
583 	int rc;
584 
585 	bp->rx_queues = (void *)eth_dev->data->rx_queues;
586 	bp->tx_queues = (void *)eth_dev->data->tx_queues;
587 	bp->tx_nr_rings = eth_dev->data->nb_tx_queues;
588 	bp->rx_nr_rings = eth_dev->data->nb_rx_queues;
589 
590 	if (BNXT_VF(bp) && (bp->flags & BNXT_FLAG_NEW_RM)) {
591 		rc = bnxt_hwrm_check_vf_rings(bp);
592 		if (rc) {
593 			PMD_DRV_LOG(ERR, "HWRM insufficient resources\n");
594 			return -ENOSPC;
595 		}
596 
597 		rc = bnxt_hwrm_func_reserve_vf_resc(bp, false);
598 		if (rc) {
599 			PMD_DRV_LOG(ERR, "HWRM resource alloc fail:%x\n", rc);
600 			return -ENOSPC;
601 		}
602 	} else {
603 		/* legacy driver needs to get updated values */
604 		rc = bnxt_hwrm_func_qcaps(bp);
605 		if (rc) {
606 			PMD_DRV_LOG(ERR, "hwrm func qcaps fail:%d\n", rc);
607 			return rc;
608 		}
609 	}
610 
611 	/* Inherit new configurations */
612 	if (eth_dev->data->nb_rx_queues > bp->max_rx_rings ||
613 	    eth_dev->data->nb_tx_queues > bp->max_tx_rings ||
614 	    eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues >
615 	    bp->max_cp_rings ||
616 	    eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues >
617 	    bp->max_stat_ctx)
618 		goto resource_error;
619 
620 	if (BNXT_HAS_RING_GRPS(bp) &&
621 	    (uint32_t)(eth_dev->data->nb_rx_queues) > bp->max_ring_grps)
622 		goto resource_error;
623 
624 	if (!(eth_dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS) &&
625 	    bp->max_vnics < eth_dev->data->nb_rx_queues)
626 		goto resource_error;
627 
628 	bp->rx_cp_nr_rings = bp->rx_nr_rings;
629 	bp->tx_cp_nr_rings = bp->tx_nr_rings;
630 
631 	if (rx_offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
632 		eth_dev->data->mtu =
633 			eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
634 			RTE_ETHER_HDR_LEN - RTE_ETHER_CRC_LEN - VLAN_TAG_SIZE *
635 			BNXT_NUM_VLANS;
636 		bnxt_mtu_set_op(eth_dev, eth_dev->data->mtu);
637 	}
638 	return 0;
639 
640 resource_error:
641 	PMD_DRV_LOG(ERR,
642 		    "Insufficient resources to support requested config\n");
643 	PMD_DRV_LOG(ERR,
644 		    "Num Queues Requested: Tx %d, Rx %d\n",
645 		    eth_dev->data->nb_tx_queues,
646 		    eth_dev->data->nb_rx_queues);
647 	PMD_DRV_LOG(ERR,
648 		    "MAX: TxQ %d, RxQ %d, CQ %d Stat %d, Grp %d, Vnic %d\n",
649 		    bp->max_tx_rings, bp->max_rx_rings, bp->max_cp_rings,
650 		    bp->max_stat_ctx, bp->max_ring_grps, bp->max_vnics);
651 	return -ENOSPC;
652 }
653 
654 static void bnxt_print_link_info(struct rte_eth_dev *eth_dev)
655 {
656 	struct rte_eth_link *link = &eth_dev->data->dev_link;
657 
658 	if (link->link_status)
659 		PMD_DRV_LOG(INFO, "Port %d Link Up - speed %u Mbps - %s\n",
660 			eth_dev->data->port_id,
661 			(uint32_t)link->link_speed,
662 			(link->link_duplex == ETH_LINK_FULL_DUPLEX) ?
663 			("full-duplex") : ("half-duplex\n"));
664 	else
665 		PMD_DRV_LOG(INFO, "Port %d Link Down\n",
666 			eth_dev->data->port_id);
667 }
668 
669 /*
670  * Determine whether the current configuration requires support for scattered
671  * receive; return 1 if scattered receive is required and 0 if not.
672  */
673 static int bnxt_scattered_rx(struct rte_eth_dev *eth_dev)
674 {
675 	uint16_t buf_size;
676 	int i;
677 
678 	for (i = 0; i < eth_dev->data->nb_rx_queues; i++) {
679 		struct bnxt_rx_queue *rxq = eth_dev->data->rx_queues[i];
680 
681 		buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
682 				      RTE_PKTMBUF_HEADROOM);
683 		if (eth_dev->data->dev_conf.rxmode.max_rx_pkt_len > buf_size)
684 			return 1;
685 	}
686 	return 0;
687 }
688 
689 static eth_rx_burst_t
690 bnxt_receive_function(__rte_unused struct rte_eth_dev *eth_dev)
691 {
692 #ifdef RTE_ARCH_X86
693 	/*
694 	 * Vector mode receive can be enabled only if scatter rx is not
695 	 * in use and rx offloads are limited to VLAN stripping and
696 	 * CRC stripping.
697 	 */
698 	if (!eth_dev->data->scattered_rx &&
699 	    !(eth_dev->data->dev_conf.rxmode.offloads &
700 	      ~(DEV_RX_OFFLOAD_VLAN_STRIP |
701 		DEV_RX_OFFLOAD_KEEP_CRC |
702 		DEV_RX_OFFLOAD_JUMBO_FRAME |
703 		DEV_RX_OFFLOAD_IPV4_CKSUM |
704 		DEV_RX_OFFLOAD_UDP_CKSUM |
705 		DEV_RX_OFFLOAD_TCP_CKSUM |
706 		DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
707 		DEV_RX_OFFLOAD_VLAN_FILTER))) {
708 		PMD_DRV_LOG(INFO, "Using vector mode receive for port %d\n",
709 			    eth_dev->data->port_id);
710 		return bnxt_recv_pkts_vec;
711 	}
712 	PMD_DRV_LOG(INFO, "Vector mode receive disabled for port %d\n",
713 		    eth_dev->data->port_id);
714 	PMD_DRV_LOG(INFO,
715 		    "Port %d scatter: %d rx offload: %" PRIX64 "\n",
716 		    eth_dev->data->port_id,
717 		    eth_dev->data->scattered_rx,
718 		    eth_dev->data->dev_conf.rxmode.offloads);
719 #endif
720 	return bnxt_recv_pkts;
721 }
722 
723 static eth_tx_burst_t
724 bnxt_transmit_function(__rte_unused struct rte_eth_dev *eth_dev)
725 {
726 #ifdef RTE_ARCH_X86
727 	/*
728 	 * Vector mode receive can be enabled only if scatter tx is not
729 	 * in use and tx offloads other than VLAN insertion are not
730 	 * in use.
731 	 */
732 	if (!eth_dev->data->scattered_rx &&
733 	    !(eth_dev->data->dev_conf.txmode.offloads &
734 	      ~DEV_TX_OFFLOAD_VLAN_INSERT)) {
735 		PMD_DRV_LOG(INFO, "Using vector mode transmit for port %d\n",
736 			    eth_dev->data->port_id);
737 		return bnxt_xmit_pkts_vec;
738 	}
739 	PMD_DRV_LOG(INFO, "Vector mode transmit disabled for port %d\n",
740 		    eth_dev->data->port_id);
741 	PMD_DRV_LOG(INFO,
742 		    "Port %d scatter: %d tx offload: %" PRIX64 "\n",
743 		    eth_dev->data->port_id,
744 		    eth_dev->data->scattered_rx,
745 		    eth_dev->data->dev_conf.txmode.offloads);
746 #endif
747 	return bnxt_xmit_pkts;
748 }
749 
750 static int bnxt_dev_start_op(struct rte_eth_dev *eth_dev)
751 {
752 	struct bnxt *bp = eth_dev->data->dev_private;
753 	uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads;
754 	int vlan_mask = 0;
755 	int rc;
756 
757 	if (bp->rx_cp_nr_rings > RTE_ETHDEV_QUEUE_STAT_CNTRS) {
758 		PMD_DRV_LOG(ERR,
759 			"RxQ cnt %d > CONFIG_RTE_ETHDEV_QUEUE_STAT_CNTRS %d\n",
760 			bp->rx_cp_nr_rings, RTE_ETHDEV_QUEUE_STAT_CNTRS);
761 	}
762 	bp->dev_stopped = 0;
763 
764 	rc = bnxt_init_chip(bp);
765 	if (rc)
766 		goto error;
767 
768 	eth_dev->data->scattered_rx = bnxt_scattered_rx(eth_dev);
769 
770 	bnxt_link_update_op(eth_dev, 1);
771 
772 	if (rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
773 		vlan_mask |= ETH_VLAN_FILTER_MASK;
774 	if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
775 		vlan_mask |= ETH_VLAN_STRIP_MASK;
776 	rc = bnxt_vlan_offload_set_op(eth_dev, vlan_mask);
777 	if (rc)
778 		goto error;
779 
780 	eth_dev->rx_pkt_burst = bnxt_receive_function(eth_dev);
781 	eth_dev->tx_pkt_burst = bnxt_transmit_function(eth_dev);
782 	bnxt_enable_int(bp);
783 	bp->flags |= BNXT_FLAG_INIT_DONE;
784 	return 0;
785 
786 error:
787 	bnxt_shutdown_nic(bp);
788 	bnxt_free_tx_mbufs(bp);
789 	bnxt_free_rx_mbufs(bp);
790 	return rc;
791 }
792 
793 static int bnxt_dev_set_link_up_op(struct rte_eth_dev *eth_dev)
794 {
795 	struct bnxt *bp = eth_dev->data->dev_private;
796 	int rc = 0;
797 
798 	if (!bp->link_info.link_up)
799 		rc = bnxt_set_hwrm_link_config(bp, true);
800 	if (!rc)
801 		eth_dev->data->dev_link.link_status = 1;
802 
803 	bnxt_print_link_info(eth_dev);
804 	return 0;
805 }
806 
807 static int bnxt_dev_set_link_down_op(struct rte_eth_dev *eth_dev)
808 {
809 	struct bnxt *bp = eth_dev->data->dev_private;
810 
811 	eth_dev->data->dev_link.link_status = 0;
812 	bnxt_set_hwrm_link_config(bp, false);
813 	bp->link_info.link_up = 0;
814 
815 	return 0;
816 }
817 
818 /* Unload the driver, release resources */
819 static void bnxt_dev_stop_op(struct rte_eth_dev *eth_dev)
820 {
821 	struct bnxt *bp = eth_dev->data->dev_private;
822 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
823 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
824 
825 	bnxt_disable_int(bp);
826 
827 	/* disable uio/vfio intr/eventfd mapping */
828 	rte_intr_disable(intr_handle);
829 
830 	bp->flags &= ~BNXT_FLAG_INIT_DONE;
831 	if (bp->eth_dev->data->dev_started) {
832 		/* TBD: STOP HW queues DMA */
833 		eth_dev->data->dev_link.link_status = 0;
834 	}
835 	bnxt_set_hwrm_link_config(bp, false);
836 
837 	/* Clean queue intr-vector mapping */
838 	rte_intr_efd_disable(intr_handle);
839 	if (intr_handle->intr_vec != NULL) {
840 		rte_free(intr_handle->intr_vec);
841 		intr_handle->intr_vec = NULL;
842 	}
843 
844 	bnxt_hwrm_port_clr_stats(bp);
845 	bnxt_free_tx_mbufs(bp);
846 	bnxt_free_rx_mbufs(bp);
847 	bnxt_shutdown_nic(bp);
848 	bp->dev_stopped = 1;
849 }
850 
851 static void bnxt_dev_close_op(struct rte_eth_dev *eth_dev)
852 {
853 	struct bnxt *bp = eth_dev->data->dev_private;
854 
855 	if (bp->dev_stopped == 0)
856 		bnxt_dev_stop_op(eth_dev);
857 
858 	if (eth_dev->data->mac_addrs != NULL) {
859 		rte_free(eth_dev->data->mac_addrs);
860 		eth_dev->data->mac_addrs = NULL;
861 	}
862 	if (bp->grp_info != NULL) {
863 		rte_free(bp->grp_info);
864 		bp->grp_info = NULL;
865 	}
866 
867 	bnxt_dev_uninit(eth_dev);
868 }
869 
870 static void bnxt_mac_addr_remove_op(struct rte_eth_dev *eth_dev,
871 				    uint32_t index)
872 {
873 	struct bnxt *bp = eth_dev->data->dev_private;
874 	uint64_t pool_mask = eth_dev->data->mac_pool_sel[index];
875 	struct bnxt_vnic_info *vnic;
876 	struct bnxt_filter_info *filter, *temp_filter;
877 	uint32_t i;
878 
879 	/*
880 	 * Loop through all VNICs from the specified filter flow pools to
881 	 * remove the corresponding MAC addr filter
882 	 */
883 	for (i = 0; i < bp->nr_vnics; i++) {
884 		if (!(pool_mask & (1ULL << i)))
885 			continue;
886 
887 		vnic = &bp->vnic_info[i];
888 		filter = STAILQ_FIRST(&vnic->filter);
889 		while (filter) {
890 			temp_filter = STAILQ_NEXT(filter, next);
891 			if (filter->mac_index == index) {
892 				STAILQ_REMOVE(&vnic->filter, filter,
893 						bnxt_filter_info, next);
894 				bnxt_hwrm_clear_l2_filter(bp, filter);
895 				filter->mac_index = INVALID_MAC_INDEX;
896 				memset(&filter->l2_addr, 0, RTE_ETHER_ADDR_LEN);
897 				STAILQ_INSERT_TAIL(&bp->free_filter_list,
898 						   filter, next);
899 			}
900 			filter = temp_filter;
901 		}
902 	}
903 }
904 
905 static int bnxt_mac_addr_add_op(struct rte_eth_dev *eth_dev,
906 				struct rte_ether_addr *mac_addr,
907 				uint32_t index, uint32_t pool)
908 {
909 	struct bnxt *bp = eth_dev->data->dev_private;
910 	struct bnxt_vnic_info *vnic = &bp->vnic_info[pool];
911 	struct bnxt_filter_info *filter;
912 
913 	if (BNXT_VF(bp) & !BNXT_VF_IS_TRUSTED(bp)) {
914 		PMD_DRV_LOG(ERR, "Cannot add MAC address to a VF interface\n");
915 		return -ENOTSUP;
916 	}
917 
918 	if (!vnic) {
919 		PMD_DRV_LOG(ERR, "VNIC not found for pool %d!\n", pool);
920 		return -EINVAL;
921 	}
922 	/* Attach requested MAC address to the new l2_filter */
923 	STAILQ_FOREACH(filter, &vnic->filter, next) {
924 		if (filter->mac_index == index) {
925 			PMD_DRV_LOG(ERR,
926 				"MAC addr already existed for pool %d\n", pool);
927 			return 0;
928 		}
929 	}
930 	filter = bnxt_alloc_filter(bp);
931 	if (!filter) {
932 		PMD_DRV_LOG(ERR, "L2 filter alloc failed\n");
933 		return -ENODEV;
934 	}
935 	STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
936 	filter->mac_index = index;
937 	memcpy(filter->l2_addr, mac_addr, RTE_ETHER_ADDR_LEN);
938 	return bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
939 }
940 
941 int bnxt_link_update_op(struct rte_eth_dev *eth_dev, int wait_to_complete)
942 {
943 	int rc = 0;
944 	struct bnxt *bp = eth_dev->data->dev_private;
945 	struct rte_eth_link new;
946 	unsigned int cnt = BNXT_LINK_WAIT_CNT;
947 
948 	memset(&new, 0, sizeof(new));
949 	do {
950 		/* Retrieve link info from hardware */
951 		rc = bnxt_get_hwrm_link_config(bp, &new);
952 		if (rc) {
953 			new.link_speed = ETH_LINK_SPEED_100M;
954 			new.link_duplex = ETH_LINK_FULL_DUPLEX;
955 			PMD_DRV_LOG(ERR,
956 				"Failed to retrieve link rc = 0x%x!\n", rc);
957 			goto out;
958 		}
959 		rte_delay_ms(BNXT_LINK_WAIT_INTERVAL);
960 
961 		if (!wait_to_complete)
962 			break;
963 	} while (!new.link_status && cnt--);
964 
965 out:
966 	/* Timed out or success */
967 	if (new.link_status != eth_dev->data->dev_link.link_status ||
968 	new.link_speed != eth_dev->data->dev_link.link_speed) {
969 		memcpy(&eth_dev->data->dev_link, &new,
970 			sizeof(struct rte_eth_link));
971 
972 		_rte_eth_dev_callback_process(eth_dev,
973 					      RTE_ETH_EVENT_INTR_LSC,
974 					      NULL);
975 
976 		bnxt_print_link_info(eth_dev);
977 	}
978 
979 	return rc;
980 }
981 
982 static void bnxt_promiscuous_enable_op(struct rte_eth_dev *eth_dev)
983 {
984 	struct bnxt *bp = eth_dev->data->dev_private;
985 	struct bnxt_vnic_info *vnic;
986 
987 	if (bp->vnic_info == NULL)
988 		return;
989 
990 	vnic = &bp->vnic_info[0];
991 
992 	vnic->flags |= BNXT_VNIC_INFO_PROMISC;
993 	bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
994 }
995 
996 static void bnxt_promiscuous_disable_op(struct rte_eth_dev *eth_dev)
997 {
998 	struct bnxt *bp = eth_dev->data->dev_private;
999 	struct bnxt_vnic_info *vnic;
1000 
1001 	if (bp->vnic_info == NULL)
1002 		return;
1003 
1004 	vnic = &bp->vnic_info[0];
1005 
1006 	vnic->flags &= ~BNXT_VNIC_INFO_PROMISC;
1007 	bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1008 }
1009 
1010 static void bnxt_allmulticast_enable_op(struct rte_eth_dev *eth_dev)
1011 {
1012 	struct bnxt *bp = eth_dev->data->dev_private;
1013 	struct bnxt_vnic_info *vnic;
1014 
1015 	if (bp->vnic_info == NULL)
1016 		return;
1017 
1018 	vnic = &bp->vnic_info[0];
1019 
1020 	vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
1021 	bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1022 }
1023 
1024 static void bnxt_allmulticast_disable_op(struct rte_eth_dev *eth_dev)
1025 {
1026 	struct bnxt *bp = eth_dev->data->dev_private;
1027 	struct bnxt_vnic_info *vnic;
1028 
1029 	if (bp->vnic_info == NULL)
1030 		return;
1031 
1032 	vnic = &bp->vnic_info[0];
1033 
1034 	vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
1035 	bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1036 }
1037 
1038 /* Return bnxt_rx_queue pointer corresponding to a given rxq. */
1039 static struct bnxt_rx_queue *bnxt_qid_to_rxq(struct bnxt *bp, uint16_t qid)
1040 {
1041 	if (qid >= bp->rx_nr_rings)
1042 		return NULL;
1043 
1044 	return bp->eth_dev->data->rx_queues[qid];
1045 }
1046 
1047 /* Return rxq corresponding to a given rss table ring/group ID. */
1048 static uint16_t bnxt_rss_to_qid(struct bnxt *bp, uint16_t fwr)
1049 {
1050 	struct bnxt_rx_queue *rxq;
1051 	unsigned int i;
1052 
1053 	if (!BNXT_HAS_RING_GRPS(bp)) {
1054 		for (i = 0; i < bp->rx_nr_rings; i++) {
1055 			rxq = bp->eth_dev->data->rx_queues[i];
1056 			if (rxq->rx_ring->rx_ring_struct->fw_ring_id == fwr)
1057 				return rxq->index;
1058 		}
1059 	} else {
1060 		for (i = 0; i < bp->rx_nr_rings; i++) {
1061 			if (bp->grp_info[i].fw_grp_id == fwr)
1062 				return i;
1063 		}
1064 	}
1065 
1066 	return INVALID_HW_RING_ID;
1067 }
1068 
1069 static int bnxt_reta_update_op(struct rte_eth_dev *eth_dev,
1070 			    struct rte_eth_rss_reta_entry64 *reta_conf,
1071 			    uint16_t reta_size)
1072 {
1073 	struct bnxt *bp = eth_dev->data->dev_private;
1074 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
1075 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
1076 	uint16_t tbl_size = bnxt_rss_hash_tbl_size(bp);
1077 	uint16_t idx, sft;
1078 	int i;
1079 
1080 	if (!vnic->rss_table)
1081 		return -EINVAL;
1082 
1083 	if (!(dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
1084 		return -EINVAL;
1085 
1086 	if (reta_size != tbl_size) {
1087 		PMD_DRV_LOG(ERR, "The configured hash table lookup size "
1088 			"(%d) must equal the size supported by the hardware "
1089 			"(%d)\n", reta_size, tbl_size);
1090 		return -EINVAL;
1091 	}
1092 
1093 	for (i = 0; i < reta_size; i++) {
1094 		struct bnxt_rx_queue *rxq;
1095 
1096 		idx = i / RTE_RETA_GROUP_SIZE;
1097 		sft = i % RTE_RETA_GROUP_SIZE;
1098 
1099 		if (!(reta_conf[idx].mask & (1ULL << sft)))
1100 			continue;
1101 
1102 		rxq = bnxt_qid_to_rxq(bp, reta_conf[idx].reta[sft]);
1103 		if (!rxq) {
1104 			PMD_DRV_LOG(ERR, "Invalid ring in reta_conf.\n");
1105 			return -EINVAL;
1106 		}
1107 
1108 		if (BNXT_CHIP_THOR(bp)) {
1109 			vnic->rss_table[i * 2] =
1110 				rxq->rx_ring->rx_ring_struct->fw_ring_id;
1111 			vnic->rss_table[i * 2 + 1] =
1112 				rxq->cp_ring->cp_ring_struct->fw_ring_id;
1113 		} else {
1114 			vnic->rss_table[i] =
1115 			    vnic->fw_grp_ids[reta_conf[idx].reta[sft]];
1116 		}
1117 
1118 		vnic->rss_table[i] =
1119 		    vnic->fw_grp_ids[reta_conf[idx].reta[sft]];
1120 	}
1121 
1122 	bnxt_hwrm_vnic_rss_cfg(bp, vnic);
1123 	return 0;
1124 }
1125 
1126 static int bnxt_reta_query_op(struct rte_eth_dev *eth_dev,
1127 			      struct rte_eth_rss_reta_entry64 *reta_conf,
1128 			      uint16_t reta_size)
1129 {
1130 	struct bnxt *bp = eth_dev->data->dev_private;
1131 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
1132 	uint16_t tbl_size = bnxt_rss_hash_tbl_size(bp);
1133 	uint16_t idx, sft, i;
1134 
1135 	/* Retrieve from the default VNIC */
1136 	if (!vnic)
1137 		return -EINVAL;
1138 	if (!vnic->rss_table)
1139 		return -EINVAL;
1140 
1141 	if (reta_size != tbl_size) {
1142 		PMD_DRV_LOG(ERR, "The configured hash table lookup size "
1143 			"(%d) must equal the size supported by the hardware "
1144 			"(%d)\n", reta_size, tbl_size);
1145 		return -EINVAL;
1146 	}
1147 
1148 	for (idx = 0, i = 0; i < reta_size; i++) {
1149 		idx = i / RTE_RETA_GROUP_SIZE;
1150 		sft = i % RTE_RETA_GROUP_SIZE;
1151 
1152 		if (reta_conf[idx].mask & (1ULL << sft)) {
1153 			uint16_t qid;
1154 
1155 			if (BNXT_CHIP_THOR(bp))
1156 				qid = bnxt_rss_to_qid(bp,
1157 						      vnic->rss_table[i * 2]);
1158 			else
1159 				qid = bnxt_rss_to_qid(bp, vnic->rss_table[i]);
1160 
1161 			if (qid == INVALID_HW_RING_ID) {
1162 				PMD_DRV_LOG(ERR, "Inv. entry in rss table.\n");
1163 				return -EINVAL;
1164 			}
1165 			reta_conf[idx].reta[sft] = qid;
1166 		}
1167 	}
1168 
1169 	return 0;
1170 }
1171 
1172 static int bnxt_rss_hash_update_op(struct rte_eth_dev *eth_dev,
1173 				   struct rte_eth_rss_conf *rss_conf)
1174 {
1175 	struct bnxt *bp = eth_dev->data->dev_private;
1176 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
1177 	struct bnxt_vnic_info *vnic;
1178 	uint16_t hash_type = 0;
1179 	unsigned int i;
1180 
1181 	/*
1182 	 * If RSS enablement were different than dev_configure,
1183 	 * then return -EINVAL
1184 	 */
1185 	if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) {
1186 		if (!rss_conf->rss_hf)
1187 			PMD_DRV_LOG(ERR, "Hash type NONE\n");
1188 	} else {
1189 		if (rss_conf->rss_hf & BNXT_ETH_RSS_SUPPORT)
1190 			return -EINVAL;
1191 	}
1192 
1193 	bp->flags |= BNXT_FLAG_UPDATE_HASH;
1194 	memcpy(&bp->rss_conf, rss_conf, sizeof(*rss_conf));
1195 
1196 	if (rss_conf->rss_hf & ETH_RSS_IPV4)
1197 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
1198 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
1199 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
1200 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
1201 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
1202 	if (rss_conf->rss_hf & ETH_RSS_IPV6)
1203 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
1204 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
1205 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
1206 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
1207 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
1208 
1209 	/* Update the RSS VNIC(s) */
1210 	for (i = 0; i < bp->nr_vnics; i++) {
1211 		vnic = &bp->vnic_info[i];
1212 		vnic->hash_type = hash_type;
1213 
1214 		/*
1215 		 * Use the supplied key if the key length is
1216 		 * acceptable and the rss_key is not NULL
1217 		 */
1218 		if (rss_conf->rss_key &&
1219 		    rss_conf->rss_key_len <= HW_HASH_KEY_SIZE)
1220 			memcpy(vnic->rss_hash_key, rss_conf->rss_key,
1221 			       rss_conf->rss_key_len);
1222 
1223 		bnxt_hwrm_vnic_rss_cfg(bp, vnic);
1224 	}
1225 	return 0;
1226 }
1227 
1228 static int bnxt_rss_hash_conf_get_op(struct rte_eth_dev *eth_dev,
1229 				     struct rte_eth_rss_conf *rss_conf)
1230 {
1231 	struct bnxt *bp = eth_dev->data->dev_private;
1232 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
1233 	int len;
1234 	uint32_t hash_types;
1235 
1236 	/* RSS configuration is the same for all VNICs */
1237 	if (vnic && vnic->rss_hash_key) {
1238 		if (rss_conf->rss_key) {
1239 			len = rss_conf->rss_key_len <= HW_HASH_KEY_SIZE ?
1240 			      rss_conf->rss_key_len : HW_HASH_KEY_SIZE;
1241 			memcpy(rss_conf->rss_key, vnic->rss_hash_key, len);
1242 		}
1243 
1244 		hash_types = vnic->hash_type;
1245 		rss_conf->rss_hf = 0;
1246 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4) {
1247 			rss_conf->rss_hf |= ETH_RSS_IPV4;
1248 			hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
1249 		}
1250 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4) {
1251 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
1252 			hash_types &=
1253 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
1254 		}
1255 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4) {
1256 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
1257 			hash_types &=
1258 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
1259 		}
1260 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6) {
1261 			rss_conf->rss_hf |= ETH_RSS_IPV6;
1262 			hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
1263 		}
1264 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6) {
1265 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
1266 			hash_types &=
1267 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
1268 		}
1269 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6) {
1270 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
1271 			hash_types &=
1272 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
1273 		}
1274 		if (hash_types) {
1275 			PMD_DRV_LOG(ERR,
1276 				"Unknwon RSS config from firmware (%08x), RSS disabled",
1277 				vnic->hash_type);
1278 			return -ENOTSUP;
1279 		}
1280 	} else {
1281 		rss_conf->rss_hf = 0;
1282 	}
1283 	return 0;
1284 }
1285 
1286 static int bnxt_flow_ctrl_get_op(struct rte_eth_dev *dev,
1287 			       struct rte_eth_fc_conf *fc_conf)
1288 {
1289 	struct bnxt *bp = dev->data->dev_private;
1290 	struct rte_eth_link link_info;
1291 	int rc;
1292 
1293 	rc = bnxt_get_hwrm_link_config(bp, &link_info);
1294 	if (rc)
1295 		return rc;
1296 
1297 	memset(fc_conf, 0, sizeof(*fc_conf));
1298 	if (bp->link_info.auto_pause)
1299 		fc_conf->autoneg = 1;
1300 	switch (bp->link_info.pause) {
1301 	case 0:
1302 		fc_conf->mode = RTE_FC_NONE;
1303 		break;
1304 	case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX:
1305 		fc_conf->mode = RTE_FC_TX_PAUSE;
1306 		break;
1307 	case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX:
1308 		fc_conf->mode = RTE_FC_RX_PAUSE;
1309 		break;
1310 	case (HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX |
1311 			HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX):
1312 		fc_conf->mode = RTE_FC_FULL;
1313 		break;
1314 	}
1315 	return 0;
1316 }
1317 
1318 static int bnxt_flow_ctrl_set_op(struct rte_eth_dev *dev,
1319 			       struct rte_eth_fc_conf *fc_conf)
1320 {
1321 	struct bnxt *bp = dev->data->dev_private;
1322 
1323 	if (!BNXT_SINGLE_PF(bp) || BNXT_VF(bp)) {
1324 		PMD_DRV_LOG(ERR, "Flow Control Settings cannot be modified\n");
1325 		return -ENOTSUP;
1326 	}
1327 
1328 	switch (fc_conf->mode) {
1329 	case RTE_FC_NONE:
1330 		bp->link_info.auto_pause = 0;
1331 		bp->link_info.force_pause = 0;
1332 		break;
1333 	case RTE_FC_RX_PAUSE:
1334 		if (fc_conf->autoneg) {
1335 			bp->link_info.auto_pause =
1336 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
1337 			bp->link_info.force_pause = 0;
1338 		} else {
1339 			bp->link_info.auto_pause = 0;
1340 			bp->link_info.force_pause =
1341 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
1342 		}
1343 		break;
1344 	case RTE_FC_TX_PAUSE:
1345 		if (fc_conf->autoneg) {
1346 			bp->link_info.auto_pause =
1347 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX;
1348 			bp->link_info.force_pause = 0;
1349 		} else {
1350 			bp->link_info.auto_pause = 0;
1351 			bp->link_info.force_pause =
1352 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX;
1353 		}
1354 		break;
1355 	case RTE_FC_FULL:
1356 		if (fc_conf->autoneg) {
1357 			bp->link_info.auto_pause =
1358 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX |
1359 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
1360 			bp->link_info.force_pause = 0;
1361 		} else {
1362 			bp->link_info.auto_pause = 0;
1363 			bp->link_info.force_pause =
1364 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX |
1365 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
1366 		}
1367 		break;
1368 	}
1369 	return bnxt_set_hwrm_link_config(bp, true);
1370 }
1371 
1372 /* Add UDP tunneling port */
1373 static int
1374 bnxt_udp_tunnel_port_add_op(struct rte_eth_dev *eth_dev,
1375 			 struct rte_eth_udp_tunnel *udp_tunnel)
1376 {
1377 	struct bnxt *bp = eth_dev->data->dev_private;
1378 	uint16_t tunnel_type = 0;
1379 	int rc = 0;
1380 
1381 	switch (udp_tunnel->prot_type) {
1382 	case RTE_TUNNEL_TYPE_VXLAN:
1383 		if (bp->vxlan_port_cnt) {
1384 			PMD_DRV_LOG(ERR, "Tunnel Port %d already programmed\n",
1385 				udp_tunnel->udp_port);
1386 			if (bp->vxlan_port != udp_tunnel->udp_port) {
1387 				PMD_DRV_LOG(ERR, "Only one port allowed\n");
1388 				return -ENOSPC;
1389 			}
1390 			bp->vxlan_port_cnt++;
1391 			return 0;
1392 		}
1393 		tunnel_type =
1394 			HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_VXLAN;
1395 		bp->vxlan_port_cnt++;
1396 		break;
1397 	case RTE_TUNNEL_TYPE_GENEVE:
1398 		if (bp->geneve_port_cnt) {
1399 			PMD_DRV_LOG(ERR, "Tunnel Port %d already programmed\n",
1400 				udp_tunnel->udp_port);
1401 			if (bp->geneve_port != udp_tunnel->udp_port) {
1402 				PMD_DRV_LOG(ERR, "Only one port allowed\n");
1403 				return -ENOSPC;
1404 			}
1405 			bp->geneve_port_cnt++;
1406 			return 0;
1407 		}
1408 		tunnel_type =
1409 			HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_GENEVE;
1410 		bp->geneve_port_cnt++;
1411 		break;
1412 	default:
1413 		PMD_DRV_LOG(ERR, "Tunnel type is not supported\n");
1414 		return -ENOTSUP;
1415 	}
1416 	rc = bnxt_hwrm_tunnel_dst_port_alloc(bp, udp_tunnel->udp_port,
1417 					     tunnel_type);
1418 	return rc;
1419 }
1420 
1421 static int
1422 bnxt_udp_tunnel_port_del_op(struct rte_eth_dev *eth_dev,
1423 			 struct rte_eth_udp_tunnel *udp_tunnel)
1424 {
1425 	struct bnxt *bp = eth_dev->data->dev_private;
1426 	uint16_t tunnel_type = 0;
1427 	uint16_t port = 0;
1428 	int rc = 0;
1429 
1430 	switch (udp_tunnel->prot_type) {
1431 	case RTE_TUNNEL_TYPE_VXLAN:
1432 		if (!bp->vxlan_port_cnt) {
1433 			PMD_DRV_LOG(ERR, "No Tunnel port configured yet\n");
1434 			return -EINVAL;
1435 		}
1436 		if (bp->vxlan_port != udp_tunnel->udp_port) {
1437 			PMD_DRV_LOG(ERR, "Req Port: %d. Configured port: %d\n",
1438 				udp_tunnel->udp_port, bp->vxlan_port);
1439 			return -EINVAL;
1440 		}
1441 		if (--bp->vxlan_port_cnt)
1442 			return 0;
1443 
1444 		tunnel_type =
1445 			HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN;
1446 		port = bp->vxlan_fw_dst_port_id;
1447 		break;
1448 	case RTE_TUNNEL_TYPE_GENEVE:
1449 		if (!bp->geneve_port_cnt) {
1450 			PMD_DRV_LOG(ERR, "No Tunnel port configured yet\n");
1451 			return -EINVAL;
1452 		}
1453 		if (bp->geneve_port != udp_tunnel->udp_port) {
1454 			PMD_DRV_LOG(ERR, "Req Port: %d. Configured port: %d\n",
1455 				udp_tunnel->udp_port, bp->geneve_port);
1456 			return -EINVAL;
1457 		}
1458 		if (--bp->geneve_port_cnt)
1459 			return 0;
1460 
1461 		tunnel_type =
1462 			HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE;
1463 		port = bp->geneve_fw_dst_port_id;
1464 		break;
1465 	default:
1466 		PMD_DRV_LOG(ERR, "Tunnel type is not supported\n");
1467 		return -ENOTSUP;
1468 	}
1469 
1470 	rc = bnxt_hwrm_tunnel_dst_port_free(bp, port, tunnel_type);
1471 	if (!rc) {
1472 		if (tunnel_type ==
1473 		    HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN)
1474 			bp->vxlan_port = 0;
1475 		if (tunnel_type ==
1476 		    HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE)
1477 			bp->geneve_port = 0;
1478 	}
1479 	return rc;
1480 }
1481 
1482 static int bnxt_del_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
1483 {
1484 	struct bnxt_filter_info *filter, *temp_filter, *new_filter;
1485 	struct bnxt_vnic_info *vnic;
1486 	unsigned int i;
1487 	int rc = 0;
1488 	uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN;
1489 
1490 	/* Cycle through all VNICs */
1491 	for (i = 0; i < bp->nr_vnics; i++) {
1492 		/*
1493 		 * For each VNIC and each associated filter(s)
1494 		 * if VLAN exists && VLAN matches vlan_id
1495 		 *      remove the MAC+VLAN filter
1496 		 *      add a new MAC only filter
1497 		 * else
1498 		 *      VLAN filter doesn't exist, just skip and continue
1499 		 */
1500 		vnic = &bp->vnic_info[i];
1501 		filter = STAILQ_FIRST(&vnic->filter);
1502 		while (filter) {
1503 			temp_filter = STAILQ_NEXT(filter, next);
1504 
1505 			if (filter->enables & chk &&
1506 			    filter->l2_ovlan == vlan_id) {
1507 				/* Must delete the filter */
1508 				STAILQ_REMOVE(&vnic->filter, filter,
1509 					      bnxt_filter_info, next);
1510 				bnxt_hwrm_clear_l2_filter(bp, filter);
1511 				STAILQ_INSERT_TAIL(&bp->free_filter_list,
1512 						   filter, next);
1513 
1514 				/*
1515 				 * Need to examine to see if the MAC
1516 				 * filter already existed or not before
1517 				 * allocating a new one
1518 				 */
1519 
1520 				new_filter = bnxt_alloc_filter(bp);
1521 				if (!new_filter) {
1522 					PMD_DRV_LOG(ERR,
1523 							"MAC/VLAN filter alloc failed\n");
1524 					rc = -ENOMEM;
1525 					goto exit;
1526 				}
1527 				STAILQ_INSERT_TAIL(&vnic->filter,
1528 						new_filter, next);
1529 				/* Inherit MAC from previous filter */
1530 				new_filter->mac_index =
1531 					filter->mac_index;
1532 				memcpy(new_filter->l2_addr, filter->l2_addr,
1533 				       RTE_ETHER_ADDR_LEN);
1534 				/* MAC only filter */
1535 				rc = bnxt_hwrm_set_l2_filter(bp,
1536 							     vnic->fw_vnic_id,
1537 							     new_filter);
1538 				if (rc)
1539 					goto exit;
1540 				PMD_DRV_LOG(INFO,
1541 					    "Del Vlan filter for %d\n",
1542 					    vlan_id);
1543 			}
1544 			filter = temp_filter;
1545 		}
1546 	}
1547 exit:
1548 	return rc;
1549 }
1550 
1551 static int bnxt_add_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
1552 {
1553 	struct bnxt_filter_info *filter, *temp_filter, *new_filter;
1554 	struct bnxt_vnic_info *vnic;
1555 	unsigned int i;
1556 	int rc = 0;
1557 	uint32_t en = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN |
1558 		HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN_MASK;
1559 	uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN;
1560 
1561 	/* Cycle through all VNICs */
1562 	for (i = 0; i < bp->nr_vnics; i++) {
1563 		/*
1564 		 * For each VNIC and each associated filter(s)
1565 		 * if VLAN exists:
1566 		 *   if VLAN matches vlan_id
1567 		 *      VLAN filter already exists, just skip and continue
1568 		 *   else
1569 		 *      add a new MAC+VLAN filter
1570 		 * else
1571 		 *   Remove the old MAC only filter
1572 		 *    Add a new MAC+VLAN filter
1573 		 */
1574 		vnic = &bp->vnic_info[i];
1575 		filter = STAILQ_FIRST(&vnic->filter);
1576 		while (filter) {
1577 			temp_filter = STAILQ_NEXT(filter, next);
1578 
1579 			if (filter->enables & chk) {
1580 				if (filter->l2_ivlan == vlan_id)
1581 					goto cont;
1582 			} else {
1583 				/* Must delete the MAC filter */
1584 				STAILQ_REMOVE(&vnic->filter, filter,
1585 						bnxt_filter_info, next);
1586 				bnxt_hwrm_clear_l2_filter(bp, filter);
1587 				filter->l2_ovlan = 0;
1588 				STAILQ_INSERT_TAIL(&bp->free_filter_list,
1589 						   filter, next);
1590 			}
1591 			new_filter = bnxt_alloc_filter(bp);
1592 			if (!new_filter) {
1593 				PMD_DRV_LOG(ERR,
1594 						"MAC/VLAN filter alloc failed\n");
1595 				rc = -ENOMEM;
1596 				goto exit;
1597 			}
1598 			STAILQ_INSERT_TAIL(&vnic->filter, new_filter, next);
1599 			/* Inherit MAC from the previous filter */
1600 			new_filter->mac_index = filter->mac_index;
1601 			memcpy(new_filter->l2_addr, filter->l2_addr,
1602 			       RTE_ETHER_ADDR_LEN);
1603 			/* MAC + VLAN ID filter */
1604 			new_filter->l2_ivlan = vlan_id;
1605 			new_filter->l2_ivlan_mask = 0xF000;
1606 			new_filter->enables |= en;
1607 			rc = bnxt_hwrm_set_l2_filter(bp,
1608 					vnic->fw_vnic_id,
1609 					new_filter);
1610 			if (rc)
1611 				goto exit;
1612 			PMD_DRV_LOG(INFO,
1613 				    "Added Vlan filter for %d\n", vlan_id);
1614 cont:
1615 			filter = temp_filter;
1616 		}
1617 	}
1618 exit:
1619 	return rc;
1620 }
1621 
1622 static int bnxt_vlan_filter_set_op(struct rte_eth_dev *eth_dev,
1623 		uint16_t vlan_id, int on)
1624 {
1625 	struct bnxt *bp = eth_dev->data->dev_private;
1626 
1627 	/* These operations apply to ALL existing MAC/VLAN filters */
1628 	if (on)
1629 		return bnxt_add_vlan_filter(bp, vlan_id);
1630 	else
1631 		return bnxt_del_vlan_filter(bp, vlan_id);
1632 }
1633 
1634 static int
1635 bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask)
1636 {
1637 	struct bnxt *bp = dev->data->dev_private;
1638 	uint64_t rx_offloads = dev->data->dev_conf.rxmode.offloads;
1639 	unsigned int i;
1640 
1641 	if (mask & ETH_VLAN_FILTER_MASK) {
1642 		if (!(rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER)) {
1643 			/* Remove any VLAN filters programmed */
1644 			for (i = 0; i < 4095; i++)
1645 				bnxt_del_vlan_filter(bp, i);
1646 		}
1647 		PMD_DRV_LOG(DEBUG, "VLAN Filtering: %d\n",
1648 			!!(rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER));
1649 	}
1650 
1651 	if (mask & ETH_VLAN_STRIP_MASK) {
1652 		/* Enable or disable VLAN stripping */
1653 		for (i = 0; i < bp->nr_vnics; i++) {
1654 			struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
1655 			if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1656 				vnic->vlan_strip = true;
1657 			else
1658 				vnic->vlan_strip = false;
1659 			bnxt_hwrm_vnic_cfg(bp, vnic);
1660 		}
1661 		PMD_DRV_LOG(DEBUG, "VLAN Strip Offload: %d\n",
1662 			!!(rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP));
1663 	}
1664 
1665 	if (mask & ETH_VLAN_EXTEND_MASK)
1666 		PMD_DRV_LOG(ERR, "Extend VLAN Not supported\n");
1667 
1668 	return 0;
1669 }
1670 
1671 static int
1672 bnxt_set_default_mac_addr_op(struct rte_eth_dev *dev,
1673 			struct rte_ether_addr *addr)
1674 {
1675 	struct bnxt *bp = dev->data->dev_private;
1676 	/* Default Filter is tied to VNIC 0 */
1677 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
1678 	struct bnxt_filter_info *filter;
1679 	int rc;
1680 
1681 	if (BNXT_VF(bp) && !BNXT_VF_IS_TRUSTED(bp))
1682 		return -EPERM;
1683 
1684 	memcpy(bp->mac_addr, addr, sizeof(bp->mac_addr));
1685 
1686 	STAILQ_FOREACH(filter, &vnic->filter, next) {
1687 		/* Default Filter is at Index 0 */
1688 		if (filter->mac_index != 0)
1689 			continue;
1690 		rc = bnxt_hwrm_clear_l2_filter(bp, filter);
1691 		if (rc)
1692 			return rc;
1693 		memcpy(filter->l2_addr, bp->mac_addr, RTE_ETHER_ADDR_LEN);
1694 		memset(filter->l2_addr_mask, 0xff, RTE_ETHER_ADDR_LEN);
1695 		filter->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_PATH_RX;
1696 		filter->enables |=
1697 			HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR |
1698 			HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR_MASK;
1699 		rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
1700 		if (rc)
1701 			return rc;
1702 		filter->mac_index = 0;
1703 		PMD_DRV_LOG(DEBUG, "Set MAC addr\n");
1704 	}
1705 
1706 	return 0;
1707 }
1708 
1709 static int
1710 bnxt_dev_set_mc_addr_list_op(struct rte_eth_dev *eth_dev,
1711 			  struct rte_ether_addr *mc_addr_set,
1712 			  uint32_t nb_mc_addr)
1713 {
1714 	struct bnxt *bp = eth_dev->data->dev_private;
1715 	char *mc_addr_list = (char *)mc_addr_set;
1716 	struct bnxt_vnic_info *vnic;
1717 	uint32_t off = 0, i = 0;
1718 
1719 	vnic = &bp->vnic_info[0];
1720 
1721 	if (nb_mc_addr > BNXT_MAX_MC_ADDRS) {
1722 		vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
1723 		goto allmulti;
1724 	}
1725 
1726 	/* TODO Check for Duplicate mcast addresses */
1727 	vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
1728 	for (i = 0; i < nb_mc_addr; i++) {
1729 		memcpy(vnic->mc_list + off, &mc_addr_list[i],
1730 			RTE_ETHER_ADDR_LEN);
1731 		off += RTE_ETHER_ADDR_LEN;
1732 	}
1733 
1734 	vnic->mc_addr_cnt = i;
1735 
1736 allmulti:
1737 	return bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1738 }
1739 
1740 static int
1741 bnxt_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
1742 {
1743 	struct bnxt *bp = dev->data->dev_private;
1744 	uint8_t fw_major = (bp->fw_ver >> 24) & 0xff;
1745 	uint8_t fw_minor = (bp->fw_ver >> 16) & 0xff;
1746 	uint8_t fw_updt = (bp->fw_ver >> 8) & 0xff;
1747 	int ret;
1748 
1749 	ret = snprintf(fw_version, fw_size, "%d.%d.%d",
1750 			fw_major, fw_minor, fw_updt);
1751 
1752 	ret += 1; /* add the size of '\0' */
1753 	if (fw_size < (uint32_t)ret)
1754 		return ret;
1755 	else
1756 		return 0;
1757 }
1758 
1759 static void
1760 bnxt_rxq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
1761 	struct rte_eth_rxq_info *qinfo)
1762 {
1763 	struct bnxt_rx_queue *rxq;
1764 
1765 	rxq = dev->data->rx_queues[queue_id];
1766 
1767 	qinfo->mp = rxq->mb_pool;
1768 	qinfo->scattered_rx = dev->data->scattered_rx;
1769 	qinfo->nb_desc = rxq->nb_rx_desc;
1770 
1771 	qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
1772 	qinfo->conf.rx_drop_en = 0;
1773 	qinfo->conf.rx_deferred_start = 0;
1774 }
1775 
1776 static void
1777 bnxt_txq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
1778 	struct rte_eth_txq_info *qinfo)
1779 {
1780 	struct bnxt_tx_queue *txq;
1781 
1782 	txq = dev->data->tx_queues[queue_id];
1783 
1784 	qinfo->nb_desc = txq->nb_tx_desc;
1785 
1786 	qinfo->conf.tx_thresh.pthresh = txq->pthresh;
1787 	qinfo->conf.tx_thresh.hthresh = txq->hthresh;
1788 	qinfo->conf.tx_thresh.wthresh = txq->wthresh;
1789 
1790 	qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
1791 	qinfo->conf.tx_rs_thresh = 0;
1792 	qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
1793 }
1794 
1795 static int bnxt_mtu_set_op(struct rte_eth_dev *eth_dev, uint16_t new_mtu)
1796 {
1797 	struct bnxt *bp = eth_dev->data->dev_private;
1798 	struct rte_eth_dev_info dev_info;
1799 	uint32_t new_pkt_size;
1800 	uint32_t rc = 0;
1801 	uint32_t i;
1802 
1803 	new_pkt_size = new_mtu + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN +
1804 		       VLAN_TAG_SIZE * BNXT_NUM_VLANS;
1805 
1806 	bnxt_dev_info_get_op(eth_dev, &dev_info);
1807 
1808 	if (new_mtu < RTE_ETHER_MIN_MTU || new_mtu > BNXT_MAX_MTU) {
1809 		PMD_DRV_LOG(ERR, "MTU requested must be within (%d, %d)\n",
1810 			RTE_ETHER_MIN_MTU, BNXT_MAX_MTU);
1811 		return -EINVAL;
1812 	}
1813 
1814 #ifdef RTE_ARCH_X86
1815 	/*
1816 	 * If vector-mode tx/rx is active, disallow any MTU change that would
1817 	 * require scattered receive support.
1818 	 */
1819 	if (eth_dev->data->dev_started &&
1820 	    (eth_dev->rx_pkt_burst == bnxt_recv_pkts_vec ||
1821 	     eth_dev->tx_pkt_burst == bnxt_xmit_pkts_vec) &&
1822 	    (new_pkt_size >
1823 	     eth_dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)) {
1824 		PMD_DRV_LOG(ERR,
1825 			    "MTU change would require scattered rx support. ");
1826 		PMD_DRV_LOG(ERR, "Stop port before changing MTU.\n");
1827 		return -EINVAL;
1828 	}
1829 #endif
1830 
1831 	if (new_mtu > RTE_ETHER_MTU) {
1832 		bp->flags |= BNXT_FLAG_JUMBO;
1833 		bp->eth_dev->data->dev_conf.rxmode.offloads |=
1834 			DEV_RX_OFFLOAD_JUMBO_FRAME;
1835 	} else {
1836 		bp->eth_dev->data->dev_conf.rxmode.offloads &=
1837 			~DEV_RX_OFFLOAD_JUMBO_FRAME;
1838 		bp->flags &= ~BNXT_FLAG_JUMBO;
1839 	}
1840 
1841 	eth_dev->data->dev_conf.rxmode.max_rx_pkt_len = new_pkt_size;
1842 
1843 	eth_dev->data->mtu = new_mtu;
1844 	PMD_DRV_LOG(INFO, "New MTU is %d\n", eth_dev->data->mtu);
1845 
1846 	for (i = 0; i < bp->nr_vnics; i++) {
1847 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
1848 		uint16_t size = 0;
1849 
1850 		vnic->mru = bp->eth_dev->data->mtu + RTE_ETHER_HDR_LEN +
1851 					RTE_ETHER_CRC_LEN + VLAN_TAG_SIZE * 2;
1852 		rc = bnxt_hwrm_vnic_cfg(bp, vnic);
1853 		if (rc)
1854 			break;
1855 
1856 		size = rte_pktmbuf_data_room_size(bp->rx_queues[0]->mb_pool);
1857 		size -= RTE_PKTMBUF_HEADROOM;
1858 
1859 		if (size < new_mtu) {
1860 			rc = bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
1861 			if (rc)
1862 				return rc;
1863 		}
1864 	}
1865 
1866 	return rc;
1867 }
1868 
1869 static int
1870 bnxt_vlan_pvid_set_op(struct rte_eth_dev *dev, uint16_t pvid, int on)
1871 {
1872 	struct bnxt *bp = dev->data->dev_private;
1873 	uint16_t vlan = bp->vlan;
1874 	int rc;
1875 
1876 	if (!BNXT_SINGLE_PF(bp) || BNXT_VF(bp)) {
1877 		PMD_DRV_LOG(ERR,
1878 			"PVID cannot be modified for this function\n");
1879 		return -ENOTSUP;
1880 	}
1881 	bp->vlan = on ? pvid : 0;
1882 
1883 	rc = bnxt_hwrm_set_default_vlan(bp, 0, 0);
1884 	if (rc)
1885 		bp->vlan = vlan;
1886 	return rc;
1887 }
1888 
1889 static int
1890 bnxt_dev_led_on_op(struct rte_eth_dev *dev)
1891 {
1892 	struct bnxt *bp = dev->data->dev_private;
1893 
1894 	return bnxt_hwrm_port_led_cfg(bp, true);
1895 }
1896 
1897 static int
1898 bnxt_dev_led_off_op(struct rte_eth_dev *dev)
1899 {
1900 	struct bnxt *bp = dev->data->dev_private;
1901 
1902 	return bnxt_hwrm_port_led_cfg(bp, false);
1903 }
1904 
1905 static uint32_t
1906 bnxt_rx_queue_count_op(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1907 {
1908 	uint32_t desc = 0, raw_cons = 0, cons;
1909 	struct bnxt_cp_ring_info *cpr;
1910 	struct bnxt_rx_queue *rxq;
1911 	struct rx_pkt_cmpl *rxcmp;
1912 	uint16_t cmp_type;
1913 	uint8_t cmp = 1;
1914 	bool valid;
1915 
1916 	rxq = dev->data->rx_queues[rx_queue_id];
1917 	cpr = rxq->cp_ring;
1918 	valid = cpr->valid;
1919 
1920 	while (raw_cons < rxq->nb_rx_desc) {
1921 		cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
1922 		rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1923 
1924 		if (!CMPL_VALID(rxcmp, valid))
1925 			goto nothing_to_do;
1926 		valid = FLIP_VALID(cons, cpr->cp_ring_struct->ring_mask, valid);
1927 		cmp_type = CMP_TYPE(rxcmp);
1928 		if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
1929 			cmp = (rte_le_to_cpu_32(
1930 					((struct rx_tpa_end_cmpl *)
1931 					 (rxcmp))->agg_bufs_v1) &
1932 			       RX_TPA_END_CMPL_AGG_BUFS_MASK) >>
1933 				RX_TPA_END_CMPL_AGG_BUFS_SFT;
1934 			desc++;
1935 		} else if (cmp_type == 0x11) {
1936 			desc++;
1937 			cmp = (rxcmp->agg_bufs_v1 &
1938 				   RX_PKT_CMPL_AGG_BUFS_MASK) >>
1939 				RX_PKT_CMPL_AGG_BUFS_SFT;
1940 		} else {
1941 			cmp = 1;
1942 		}
1943 nothing_to_do:
1944 		raw_cons += cmp ? cmp : 2;
1945 	}
1946 
1947 	return desc;
1948 }
1949 
1950 static int
1951 bnxt_rx_descriptor_status_op(void *rx_queue, uint16_t offset)
1952 {
1953 	struct bnxt_rx_queue *rxq = (struct bnxt_rx_queue *)rx_queue;
1954 	struct bnxt_rx_ring_info *rxr;
1955 	struct bnxt_cp_ring_info *cpr;
1956 	struct bnxt_sw_rx_bd *rx_buf;
1957 	struct rx_pkt_cmpl *rxcmp;
1958 	uint32_t cons, cp_cons;
1959 
1960 	if (!rxq)
1961 		return -EINVAL;
1962 
1963 	cpr = rxq->cp_ring;
1964 	rxr = rxq->rx_ring;
1965 
1966 	if (offset >= rxq->nb_rx_desc)
1967 		return -EINVAL;
1968 
1969 	cons = RING_CMP(cpr->cp_ring_struct, offset);
1970 	cp_cons = cpr->cp_raw_cons;
1971 	rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1972 
1973 	if (cons > cp_cons) {
1974 		if (CMPL_VALID(rxcmp, cpr->valid))
1975 			return RTE_ETH_RX_DESC_DONE;
1976 	} else {
1977 		if (CMPL_VALID(rxcmp, !cpr->valid))
1978 			return RTE_ETH_RX_DESC_DONE;
1979 	}
1980 	rx_buf = &rxr->rx_buf_ring[cons];
1981 	if (rx_buf->mbuf == NULL)
1982 		return RTE_ETH_RX_DESC_UNAVAIL;
1983 
1984 
1985 	return RTE_ETH_RX_DESC_AVAIL;
1986 }
1987 
1988 static int
1989 bnxt_tx_descriptor_status_op(void *tx_queue, uint16_t offset)
1990 {
1991 	struct bnxt_tx_queue *txq = (struct bnxt_tx_queue *)tx_queue;
1992 	struct bnxt_tx_ring_info *txr;
1993 	struct bnxt_cp_ring_info *cpr;
1994 	struct bnxt_sw_tx_bd *tx_buf;
1995 	struct tx_pkt_cmpl *txcmp;
1996 	uint32_t cons, cp_cons;
1997 
1998 	if (!txq)
1999 		return -EINVAL;
2000 
2001 	cpr = txq->cp_ring;
2002 	txr = txq->tx_ring;
2003 
2004 	if (offset >= txq->nb_tx_desc)
2005 		return -EINVAL;
2006 
2007 	cons = RING_CMP(cpr->cp_ring_struct, offset);
2008 	txcmp = (struct tx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
2009 	cp_cons = cpr->cp_raw_cons;
2010 
2011 	if (cons > cp_cons) {
2012 		if (CMPL_VALID(txcmp, cpr->valid))
2013 			return RTE_ETH_TX_DESC_UNAVAIL;
2014 	} else {
2015 		if (CMPL_VALID(txcmp, !cpr->valid))
2016 			return RTE_ETH_TX_DESC_UNAVAIL;
2017 	}
2018 	tx_buf = &txr->tx_buf_ring[cons];
2019 	if (tx_buf->mbuf == NULL)
2020 		return RTE_ETH_TX_DESC_DONE;
2021 
2022 	return RTE_ETH_TX_DESC_FULL;
2023 }
2024 
2025 static struct bnxt_filter_info *
2026 bnxt_match_and_validate_ether_filter(struct bnxt *bp,
2027 				struct rte_eth_ethertype_filter *efilter,
2028 				struct bnxt_vnic_info *vnic0,
2029 				struct bnxt_vnic_info *vnic,
2030 				int *ret)
2031 {
2032 	struct bnxt_filter_info *mfilter = NULL;
2033 	int match = 0;
2034 	*ret = 0;
2035 
2036 	if (efilter->ether_type == RTE_ETHER_TYPE_IPV4 ||
2037 		efilter->ether_type == RTE_ETHER_TYPE_IPV6) {
2038 		PMD_DRV_LOG(ERR, "invalid ether_type(0x%04x) in"
2039 			" ethertype filter.", efilter->ether_type);
2040 		*ret = -EINVAL;
2041 		goto exit;
2042 	}
2043 	if (efilter->queue >= bp->rx_nr_rings) {
2044 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", efilter->queue);
2045 		*ret = -EINVAL;
2046 		goto exit;
2047 	}
2048 
2049 	vnic0 = &bp->vnic_info[0];
2050 	vnic = &bp->vnic_info[efilter->queue];
2051 	if (vnic == NULL) {
2052 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", efilter->queue);
2053 		*ret = -EINVAL;
2054 		goto exit;
2055 	}
2056 
2057 	if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
2058 		STAILQ_FOREACH(mfilter, &vnic0->filter, next) {
2059 			if ((!memcmp(efilter->mac_addr.addr_bytes,
2060 				     mfilter->l2_addr, RTE_ETHER_ADDR_LEN) &&
2061 			     mfilter->flags ==
2062 			     HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP &&
2063 			     mfilter->ethertype == efilter->ether_type)) {
2064 				match = 1;
2065 				break;
2066 			}
2067 		}
2068 	} else {
2069 		STAILQ_FOREACH(mfilter, &vnic->filter, next)
2070 			if ((!memcmp(efilter->mac_addr.addr_bytes,
2071 				     mfilter->l2_addr, RTE_ETHER_ADDR_LEN) &&
2072 			     mfilter->ethertype == efilter->ether_type &&
2073 			     mfilter->flags ==
2074 			     HWRM_CFA_L2_FILTER_CFG_INPUT_FLAGS_PATH_RX)) {
2075 				match = 1;
2076 				break;
2077 			}
2078 	}
2079 
2080 	if (match)
2081 		*ret = -EEXIST;
2082 
2083 exit:
2084 	return mfilter;
2085 }
2086 
2087 static int
2088 bnxt_ethertype_filter(struct rte_eth_dev *dev,
2089 			enum rte_filter_op filter_op,
2090 			void *arg)
2091 {
2092 	struct bnxt *bp = dev->data->dev_private;
2093 	struct rte_eth_ethertype_filter *efilter =
2094 			(struct rte_eth_ethertype_filter *)arg;
2095 	struct bnxt_filter_info *bfilter, *filter1;
2096 	struct bnxt_vnic_info *vnic, *vnic0;
2097 	int ret;
2098 
2099 	if (filter_op == RTE_ETH_FILTER_NOP)
2100 		return 0;
2101 
2102 	if (arg == NULL) {
2103 		PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
2104 			    filter_op);
2105 		return -EINVAL;
2106 	}
2107 
2108 	vnic0 = &bp->vnic_info[0];
2109 	vnic = &bp->vnic_info[efilter->queue];
2110 
2111 	switch (filter_op) {
2112 	case RTE_ETH_FILTER_ADD:
2113 		bnxt_match_and_validate_ether_filter(bp, efilter,
2114 							vnic0, vnic, &ret);
2115 		if (ret < 0)
2116 			return ret;
2117 
2118 		bfilter = bnxt_get_unused_filter(bp);
2119 		if (bfilter == NULL) {
2120 			PMD_DRV_LOG(ERR,
2121 				"Not enough resources for a new filter.\n");
2122 			return -ENOMEM;
2123 		}
2124 		bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
2125 		memcpy(bfilter->l2_addr, efilter->mac_addr.addr_bytes,
2126 		       RTE_ETHER_ADDR_LEN);
2127 		memcpy(bfilter->dst_macaddr, efilter->mac_addr.addr_bytes,
2128 		       RTE_ETHER_ADDR_LEN);
2129 		bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
2130 		bfilter->ethertype = efilter->ether_type;
2131 		bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2132 
2133 		filter1 = bnxt_get_l2_filter(bp, bfilter, vnic0);
2134 		if (filter1 == NULL) {
2135 			ret = -1;
2136 			goto cleanup;
2137 		}
2138 		bfilter->enables |=
2139 			HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
2140 		bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
2141 
2142 		bfilter->dst_id = vnic->fw_vnic_id;
2143 
2144 		if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
2145 			bfilter->flags =
2146 				HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
2147 		}
2148 
2149 		ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
2150 		if (ret)
2151 			goto cleanup;
2152 		STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
2153 		break;
2154 	case RTE_ETH_FILTER_DELETE:
2155 		filter1 = bnxt_match_and_validate_ether_filter(bp, efilter,
2156 							vnic0, vnic, &ret);
2157 		if (ret == -EEXIST) {
2158 			ret = bnxt_hwrm_clear_ntuple_filter(bp, filter1);
2159 
2160 			STAILQ_REMOVE(&vnic->filter, filter1, bnxt_filter_info,
2161 				      next);
2162 			bnxt_free_filter(bp, filter1);
2163 		} else if (ret == 0) {
2164 			PMD_DRV_LOG(ERR, "No matching filter found\n");
2165 		}
2166 		break;
2167 	default:
2168 		PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
2169 		ret = -EINVAL;
2170 		goto error;
2171 	}
2172 	return ret;
2173 cleanup:
2174 	bnxt_free_filter(bp, bfilter);
2175 error:
2176 	return ret;
2177 }
2178 
2179 static inline int
2180 parse_ntuple_filter(struct bnxt *bp,
2181 		    struct rte_eth_ntuple_filter *nfilter,
2182 		    struct bnxt_filter_info *bfilter)
2183 {
2184 	uint32_t en = 0;
2185 
2186 	if (nfilter->queue >= bp->rx_nr_rings) {
2187 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", nfilter->queue);
2188 		return -EINVAL;
2189 	}
2190 
2191 	switch (nfilter->dst_port_mask) {
2192 	case UINT16_MAX:
2193 		bfilter->dst_port_mask = -1;
2194 		bfilter->dst_port = nfilter->dst_port;
2195 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT |
2196 			NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2197 		break;
2198 	default:
2199 		PMD_DRV_LOG(ERR, "invalid dst_port mask.");
2200 		return -EINVAL;
2201 	}
2202 
2203 	bfilter->ip_addr_type = NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2204 	en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2205 
2206 	switch (nfilter->proto_mask) {
2207 	case UINT8_MAX:
2208 		if (nfilter->proto == 17) /* IPPROTO_UDP */
2209 			bfilter->ip_protocol = 17;
2210 		else if (nfilter->proto == 6) /* IPPROTO_TCP */
2211 			bfilter->ip_protocol = 6;
2212 		else
2213 			return -EINVAL;
2214 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2215 		break;
2216 	default:
2217 		PMD_DRV_LOG(ERR, "invalid protocol mask.");
2218 		return -EINVAL;
2219 	}
2220 
2221 	switch (nfilter->dst_ip_mask) {
2222 	case UINT32_MAX:
2223 		bfilter->dst_ipaddr_mask[0] = -1;
2224 		bfilter->dst_ipaddr[0] = nfilter->dst_ip;
2225 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR |
2226 			NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2227 		break;
2228 	default:
2229 		PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
2230 		return -EINVAL;
2231 	}
2232 
2233 	switch (nfilter->src_ip_mask) {
2234 	case UINT32_MAX:
2235 		bfilter->src_ipaddr_mask[0] = -1;
2236 		bfilter->src_ipaddr[0] = nfilter->src_ip;
2237 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR |
2238 			NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2239 		break;
2240 	default:
2241 		PMD_DRV_LOG(ERR, "invalid src_ip mask.");
2242 		return -EINVAL;
2243 	}
2244 
2245 	switch (nfilter->src_port_mask) {
2246 	case UINT16_MAX:
2247 		bfilter->src_port_mask = -1;
2248 		bfilter->src_port = nfilter->src_port;
2249 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT |
2250 			NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2251 		break;
2252 	default:
2253 		PMD_DRV_LOG(ERR, "invalid src_port mask.");
2254 		return -EINVAL;
2255 	}
2256 
2257 	//TODO Priority
2258 	//nfilter->priority = (uint8_t)filter->priority;
2259 
2260 	bfilter->enables = en;
2261 	return 0;
2262 }
2263 
2264 static struct bnxt_filter_info*
2265 bnxt_match_ntuple_filter(struct bnxt *bp,
2266 			 struct bnxt_filter_info *bfilter,
2267 			 struct bnxt_vnic_info **mvnic)
2268 {
2269 	struct bnxt_filter_info *mfilter = NULL;
2270 	int i;
2271 
2272 	for (i = bp->nr_vnics - 1; i >= 0; i--) {
2273 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2274 		STAILQ_FOREACH(mfilter, &vnic->filter, next) {
2275 			if (bfilter->src_ipaddr[0] == mfilter->src_ipaddr[0] &&
2276 			    bfilter->src_ipaddr_mask[0] ==
2277 			    mfilter->src_ipaddr_mask[0] &&
2278 			    bfilter->src_port == mfilter->src_port &&
2279 			    bfilter->src_port_mask == mfilter->src_port_mask &&
2280 			    bfilter->dst_ipaddr[0] == mfilter->dst_ipaddr[0] &&
2281 			    bfilter->dst_ipaddr_mask[0] ==
2282 			    mfilter->dst_ipaddr_mask[0] &&
2283 			    bfilter->dst_port == mfilter->dst_port &&
2284 			    bfilter->dst_port_mask == mfilter->dst_port_mask &&
2285 			    bfilter->flags == mfilter->flags &&
2286 			    bfilter->enables == mfilter->enables) {
2287 				if (mvnic)
2288 					*mvnic = vnic;
2289 				return mfilter;
2290 			}
2291 		}
2292 	}
2293 	return NULL;
2294 }
2295 
2296 static int
2297 bnxt_cfg_ntuple_filter(struct bnxt *bp,
2298 		       struct rte_eth_ntuple_filter *nfilter,
2299 		       enum rte_filter_op filter_op)
2300 {
2301 	struct bnxt_filter_info *bfilter, *mfilter, *filter1;
2302 	struct bnxt_vnic_info *vnic, *vnic0, *mvnic;
2303 	int ret;
2304 
2305 	if (nfilter->flags != RTE_5TUPLE_FLAGS) {
2306 		PMD_DRV_LOG(ERR, "only 5tuple is supported.");
2307 		return -EINVAL;
2308 	}
2309 
2310 	if (nfilter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG) {
2311 		PMD_DRV_LOG(ERR, "Ntuple filter: TCP flags not supported\n");
2312 		return -EINVAL;
2313 	}
2314 
2315 	bfilter = bnxt_get_unused_filter(bp);
2316 	if (bfilter == NULL) {
2317 		PMD_DRV_LOG(ERR,
2318 			"Not enough resources for a new filter.\n");
2319 		return -ENOMEM;
2320 	}
2321 	ret = parse_ntuple_filter(bp, nfilter, bfilter);
2322 	if (ret < 0)
2323 		goto free_filter;
2324 
2325 	vnic = &bp->vnic_info[nfilter->queue];
2326 	vnic0 = &bp->vnic_info[0];
2327 	filter1 = STAILQ_FIRST(&vnic0->filter);
2328 	if (filter1 == NULL) {
2329 		ret = -1;
2330 		goto free_filter;
2331 	}
2332 
2333 	bfilter->dst_id = vnic->fw_vnic_id;
2334 	bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
2335 	bfilter->enables |=
2336 		HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
2337 	bfilter->ethertype = 0x800;
2338 	bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2339 
2340 	mfilter = bnxt_match_ntuple_filter(bp, bfilter, &mvnic);
2341 
2342 	if (mfilter != NULL && filter_op == RTE_ETH_FILTER_ADD &&
2343 	    bfilter->dst_id == mfilter->dst_id) {
2344 		PMD_DRV_LOG(ERR, "filter exists.\n");
2345 		ret = -EEXIST;
2346 		goto free_filter;
2347 	} else if (mfilter != NULL && filter_op == RTE_ETH_FILTER_ADD &&
2348 		   bfilter->dst_id != mfilter->dst_id) {
2349 		mfilter->dst_id = vnic->fw_vnic_id;
2350 		ret = bnxt_hwrm_set_ntuple_filter(bp, mfilter->dst_id, mfilter);
2351 		STAILQ_REMOVE(&mvnic->filter, mfilter, bnxt_filter_info, next);
2352 		STAILQ_INSERT_TAIL(&vnic->filter, mfilter, next);
2353 		PMD_DRV_LOG(ERR, "filter with matching pattern exists.\n");
2354 		PMD_DRV_LOG(ERR, " Updated it to the new destination queue\n");
2355 		goto free_filter;
2356 	}
2357 	if (mfilter == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
2358 		PMD_DRV_LOG(ERR, "filter doesn't exist.");
2359 		ret = -ENOENT;
2360 		goto free_filter;
2361 	}
2362 
2363 	if (filter_op == RTE_ETH_FILTER_ADD) {
2364 		bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
2365 		ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
2366 		if (ret)
2367 			goto free_filter;
2368 		STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
2369 	} else {
2370 		if (mfilter == NULL) {
2371 			/* This should not happen. But for Coverity! */
2372 			ret = -ENOENT;
2373 			goto free_filter;
2374 		}
2375 		ret = bnxt_hwrm_clear_ntuple_filter(bp, mfilter);
2376 
2377 		STAILQ_REMOVE(&vnic->filter, mfilter, bnxt_filter_info, next);
2378 		bnxt_free_filter(bp, mfilter);
2379 		mfilter->fw_l2_filter_id = -1;
2380 		bnxt_free_filter(bp, bfilter);
2381 		bfilter->fw_l2_filter_id = -1;
2382 	}
2383 
2384 	return 0;
2385 free_filter:
2386 	bfilter->fw_l2_filter_id = -1;
2387 	bnxt_free_filter(bp, bfilter);
2388 	return ret;
2389 }
2390 
2391 static int
2392 bnxt_ntuple_filter(struct rte_eth_dev *dev,
2393 			enum rte_filter_op filter_op,
2394 			void *arg)
2395 {
2396 	struct bnxt *bp = dev->data->dev_private;
2397 	int ret;
2398 
2399 	if (filter_op == RTE_ETH_FILTER_NOP)
2400 		return 0;
2401 
2402 	if (arg == NULL) {
2403 		PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
2404 			    filter_op);
2405 		return -EINVAL;
2406 	}
2407 
2408 	switch (filter_op) {
2409 	case RTE_ETH_FILTER_ADD:
2410 		ret = bnxt_cfg_ntuple_filter(bp,
2411 			(struct rte_eth_ntuple_filter *)arg,
2412 			filter_op);
2413 		break;
2414 	case RTE_ETH_FILTER_DELETE:
2415 		ret = bnxt_cfg_ntuple_filter(bp,
2416 			(struct rte_eth_ntuple_filter *)arg,
2417 			filter_op);
2418 		break;
2419 	default:
2420 		PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
2421 		ret = -EINVAL;
2422 		break;
2423 	}
2424 	return ret;
2425 }
2426 
2427 static int
2428 bnxt_parse_fdir_filter(struct bnxt *bp,
2429 		       struct rte_eth_fdir_filter *fdir,
2430 		       struct bnxt_filter_info *filter)
2431 {
2432 	enum rte_fdir_mode fdir_mode =
2433 		bp->eth_dev->data->dev_conf.fdir_conf.mode;
2434 	struct bnxt_vnic_info *vnic0, *vnic;
2435 	struct bnxt_filter_info *filter1;
2436 	uint32_t en = 0;
2437 	int i;
2438 
2439 	if (fdir_mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2440 		return -EINVAL;
2441 
2442 	filter->l2_ovlan = fdir->input.flow_ext.vlan_tci;
2443 	en |= EM_FLOW_ALLOC_INPUT_EN_OVLAN_VID;
2444 
2445 	switch (fdir->input.flow_type) {
2446 	case RTE_ETH_FLOW_IPV4:
2447 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2448 		/* FALLTHROUGH */
2449 		filter->src_ipaddr[0] = fdir->input.flow.ip4_flow.src_ip;
2450 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2451 		filter->dst_ipaddr[0] = fdir->input.flow.ip4_flow.dst_ip;
2452 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2453 		filter->ip_protocol = fdir->input.flow.ip4_flow.proto;
2454 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2455 		filter->ip_addr_type =
2456 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2457 		filter->src_ipaddr_mask[0] = 0xffffffff;
2458 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2459 		filter->dst_ipaddr_mask[0] = 0xffffffff;
2460 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2461 		filter->ethertype = 0x800;
2462 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2463 		break;
2464 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2465 		filter->src_port = fdir->input.flow.tcp4_flow.src_port;
2466 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2467 		filter->dst_port = fdir->input.flow.tcp4_flow.dst_port;
2468 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2469 		filter->dst_port_mask = 0xffff;
2470 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2471 		filter->src_port_mask = 0xffff;
2472 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2473 		filter->src_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.src_ip;
2474 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2475 		filter->dst_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.dst_ip;
2476 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2477 		filter->ip_protocol = 6;
2478 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2479 		filter->ip_addr_type =
2480 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2481 		filter->src_ipaddr_mask[0] = 0xffffffff;
2482 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2483 		filter->dst_ipaddr_mask[0] = 0xffffffff;
2484 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2485 		filter->ethertype = 0x800;
2486 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2487 		break;
2488 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2489 		filter->src_port = fdir->input.flow.udp4_flow.src_port;
2490 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2491 		filter->dst_port = fdir->input.flow.udp4_flow.dst_port;
2492 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2493 		filter->dst_port_mask = 0xffff;
2494 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2495 		filter->src_port_mask = 0xffff;
2496 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2497 		filter->src_ipaddr[0] = fdir->input.flow.udp4_flow.ip.src_ip;
2498 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2499 		filter->dst_ipaddr[0] = fdir->input.flow.udp4_flow.ip.dst_ip;
2500 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2501 		filter->ip_protocol = 17;
2502 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2503 		filter->ip_addr_type =
2504 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2505 		filter->src_ipaddr_mask[0] = 0xffffffff;
2506 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2507 		filter->dst_ipaddr_mask[0] = 0xffffffff;
2508 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2509 		filter->ethertype = 0x800;
2510 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2511 		break;
2512 	case RTE_ETH_FLOW_IPV6:
2513 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2514 		/* FALLTHROUGH */
2515 		filter->ip_addr_type =
2516 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2517 		filter->ip_protocol = fdir->input.flow.ipv6_flow.proto;
2518 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2519 		rte_memcpy(filter->src_ipaddr,
2520 			   fdir->input.flow.ipv6_flow.src_ip, 16);
2521 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2522 		rte_memcpy(filter->dst_ipaddr,
2523 			   fdir->input.flow.ipv6_flow.dst_ip, 16);
2524 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2525 		memset(filter->dst_ipaddr_mask, 0xff, 16);
2526 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2527 		memset(filter->src_ipaddr_mask, 0xff, 16);
2528 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2529 		filter->ethertype = 0x86dd;
2530 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2531 		break;
2532 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2533 		filter->src_port = fdir->input.flow.tcp6_flow.src_port;
2534 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2535 		filter->dst_port = fdir->input.flow.tcp6_flow.dst_port;
2536 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2537 		filter->dst_port_mask = 0xffff;
2538 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2539 		filter->src_port_mask = 0xffff;
2540 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2541 		filter->ip_addr_type =
2542 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2543 		filter->ip_protocol = fdir->input.flow.tcp6_flow.ip.proto;
2544 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2545 		rte_memcpy(filter->src_ipaddr,
2546 			   fdir->input.flow.tcp6_flow.ip.src_ip, 16);
2547 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2548 		rte_memcpy(filter->dst_ipaddr,
2549 			   fdir->input.flow.tcp6_flow.ip.dst_ip, 16);
2550 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2551 		memset(filter->dst_ipaddr_mask, 0xff, 16);
2552 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2553 		memset(filter->src_ipaddr_mask, 0xff, 16);
2554 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2555 		filter->ethertype = 0x86dd;
2556 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2557 		break;
2558 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2559 		filter->src_port = fdir->input.flow.udp6_flow.src_port;
2560 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2561 		filter->dst_port = fdir->input.flow.udp6_flow.dst_port;
2562 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2563 		filter->dst_port_mask = 0xffff;
2564 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2565 		filter->src_port_mask = 0xffff;
2566 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2567 		filter->ip_addr_type =
2568 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2569 		filter->ip_protocol = fdir->input.flow.udp6_flow.ip.proto;
2570 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2571 		rte_memcpy(filter->src_ipaddr,
2572 			   fdir->input.flow.udp6_flow.ip.src_ip, 16);
2573 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2574 		rte_memcpy(filter->dst_ipaddr,
2575 			   fdir->input.flow.udp6_flow.ip.dst_ip, 16);
2576 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2577 		memset(filter->dst_ipaddr_mask, 0xff, 16);
2578 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2579 		memset(filter->src_ipaddr_mask, 0xff, 16);
2580 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2581 		filter->ethertype = 0x86dd;
2582 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2583 		break;
2584 	case RTE_ETH_FLOW_L2_PAYLOAD:
2585 		filter->ethertype = fdir->input.flow.l2_flow.ether_type;
2586 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2587 		break;
2588 	case RTE_ETH_FLOW_VXLAN:
2589 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2590 			return -EINVAL;
2591 		filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
2592 		filter->tunnel_type =
2593 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
2594 		en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
2595 		break;
2596 	case RTE_ETH_FLOW_NVGRE:
2597 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2598 			return -EINVAL;
2599 		filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
2600 		filter->tunnel_type =
2601 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_NVGRE;
2602 		en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
2603 		break;
2604 	case RTE_ETH_FLOW_UNKNOWN:
2605 	case RTE_ETH_FLOW_RAW:
2606 	case RTE_ETH_FLOW_FRAG_IPV4:
2607 	case RTE_ETH_FLOW_NONFRAG_IPV4_SCTP:
2608 	case RTE_ETH_FLOW_FRAG_IPV6:
2609 	case RTE_ETH_FLOW_NONFRAG_IPV6_SCTP:
2610 	case RTE_ETH_FLOW_IPV6_EX:
2611 	case RTE_ETH_FLOW_IPV6_TCP_EX:
2612 	case RTE_ETH_FLOW_IPV6_UDP_EX:
2613 	case RTE_ETH_FLOW_GENEVE:
2614 		/* FALLTHROUGH */
2615 	default:
2616 		return -EINVAL;
2617 	}
2618 
2619 	vnic0 = &bp->vnic_info[0];
2620 	vnic = &bp->vnic_info[fdir->action.rx_queue];
2621 	if (vnic == NULL) {
2622 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", fdir->action.rx_queue);
2623 		return -EINVAL;
2624 	}
2625 
2626 
2627 	if (fdir_mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2628 		rte_memcpy(filter->dst_macaddr,
2629 			fdir->input.flow.mac_vlan_flow.mac_addr.addr_bytes, 6);
2630 			en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
2631 	}
2632 
2633 	if (fdir->action.behavior == RTE_ETH_FDIR_REJECT) {
2634 		filter->flags = HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
2635 		filter1 = STAILQ_FIRST(&vnic0->filter);
2636 		//filter1 = bnxt_get_l2_filter(bp, filter, vnic0);
2637 	} else {
2638 		filter->dst_id = vnic->fw_vnic_id;
2639 		for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
2640 			if (filter->dst_macaddr[i] == 0x00)
2641 				filter1 = STAILQ_FIRST(&vnic0->filter);
2642 			else
2643 				filter1 = bnxt_get_l2_filter(bp, filter, vnic);
2644 	}
2645 
2646 	if (filter1 == NULL)
2647 		return -EINVAL;
2648 
2649 	en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
2650 	filter->fw_l2_filter_id = filter1->fw_l2_filter_id;
2651 
2652 	filter->enables = en;
2653 
2654 	return 0;
2655 }
2656 
2657 static struct bnxt_filter_info *
2658 bnxt_match_fdir(struct bnxt *bp, struct bnxt_filter_info *nf,
2659 		struct bnxt_vnic_info **mvnic)
2660 {
2661 	struct bnxt_filter_info *mf = NULL;
2662 	int i;
2663 
2664 	for (i = bp->nr_vnics - 1; i >= 0; i--) {
2665 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2666 
2667 		STAILQ_FOREACH(mf, &vnic->filter, next) {
2668 			if (mf->filter_type == nf->filter_type &&
2669 			    mf->flags == nf->flags &&
2670 			    mf->src_port == nf->src_port &&
2671 			    mf->src_port_mask == nf->src_port_mask &&
2672 			    mf->dst_port == nf->dst_port &&
2673 			    mf->dst_port_mask == nf->dst_port_mask &&
2674 			    mf->ip_protocol == nf->ip_protocol &&
2675 			    mf->ip_addr_type == nf->ip_addr_type &&
2676 			    mf->ethertype == nf->ethertype &&
2677 			    mf->vni == nf->vni &&
2678 			    mf->tunnel_type == nf->tunnel_type &&
2679 			    mf->l2_ovlan == nf->l2_ovlan &&
2680 			    mf->l2_ovlan_mask == nf->l2_ovlan_mask &&
2681 			    mf->l2_ivlan == nf->l2_ivlan &&
2682 			    mf->l2_ivlan_mask == nf->l2_ivlan_mask &&
2683 			    !memcmp(mf->l2_addr, nf->l2_addr,
2684 				    RTE_ETHER_ADDR_LEN) &&
2685 			    !memcmp(mf->l2_addr_mask, nf->l2_addr_mask,
2686 				    RTE_ETHER_ADDR_LEN) &&
2687 			    !memcmp(mf->src_macaddr, nf->src_macaddr,
2688 				    RTE_ETHER_ADDR_LEN) &&
2689 			    !memcmp(mf->dst_macaddr, nf->dst_macaddr,
2690 				    RTE_ETHER_ADDR_LEN) &&
2691 			    !memcmp(mf->src_ipaddr, nf->src_ipaddr,
2692 				    sizeof(nf->src_ipaddr)) &&
2693 			    !memcmp(mf->src_ipaddr_mask, nf->src_ipaddr_mask,
2694 				    sizeof(nf->src_ipaddr_mask)) &&
2695 			    !memcmp(mf->dst_ipaddr, nf->dst_ipaddr,
2696 				    sizeof(nf->dst_ipaddr)) &&
2697 			    !memcmp(mf->dst_ipaddr_mask, nf->dst_ipaddr_mask,
2698 				    sizeof(nf->dst_ipaddr_mask))) {
2699 				if (mvnic)
2700 					*mvnic = vnic;
2701 				return mf;
2702 			}
2703 		}
2704 	}
2705 	return NULL;
2706 }
2707 
2708 static int
2709 bnxt_fdir_filter(struct rte_eth_dev *dev,
2710 		 enum rte_filter_op filter_op,
2711 		 void *arg)
2712 {
2713 	struct bnxt *bp = dev->data->dev_private;
2714 	struct rte_eth_fdir_filter *fdir  = (struct rte_eth_fdir_filter *)arg;
2715 	struct bnxt_filter_info *filter, *match;
2716 	struct bnxt_vnic_info *vnic, *mvnic;
2717 	int ret = 0, i;
2718 
2719 	if (filter_op == RTE_ETH_FILTER_NOP)
2720 		return 0;
2721 
2722 	if (arg == NULL && filter_op != RTE_ETH_FILTER_FLUSH)
2723 		return -EINVAL;
2724 
2725 	switch (filter_op) {
2726 	case RTE_ETH_FILTER_ADD:
2727 	case RTE_ETH_FILTER_DELETE:
2728 		/* FALLTHROUGH */
2729 		filter = bnxt_get_unused_filter(bp);
2730 		if (filter == NULL) {
2731 			PMD_DRV_LOG(ERR,
2732 				"Not enough resources for a new flow.\n");
2733 			return -ENOMEM;
2734 		}
2735 
2736 		ret = bnxt_parse_fdir_filter(bp, fdir, filter);
2737 		if (ret != 0)
2738 			goto free_filter;
2739 		filter->filter_type = HWRM_CFA_NTUPLE_FILTER;
2740 
2741 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2742 			vnic = &bp->vnic_info[0];
2743 		else
2744 			vnic = &bp->vnic_info[fdir->action.rx_queue];
2745 
2746 		match = bnxt_match_fdir(bp, filter, &mvnic);
2747 		if (match != NULL && filter_op == RTE_ETH_FILTER_ADD) {
2748 			if (match->dst_id == vnic->fw_vnic_id) {
2749 				PMD_DRV_LOG(ERR, "Flow already exists.\n");
2750 				ret = -EEXIST;
2751 				goto free_filter;
2752 			} else {
2753 				match->dst_id = vnic->fw_vnic_id;
2754 				ret = bnxt_hwrm_set_ntuple_filter(bp,
2755 								  match->dst_id,
2756 								  match);
2757 				STAILQ_REMOVE(&mvnic->filter, match,
2758 					      bnxt_filter_info, next);
2759 				STAILQ_INSERT_TAIL(&vnic->filter, match, next);
2760 				PMD_DRV_LOG(ERR,
2761 					"Filter with matching pattern exist\n");
2762 				PMD_DRV_LOG(ERR,
2763 					"Updated it to new destination q\n");
2764 				goto free_filter;
2765 			}
2766 		}
2767 		if (match == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
2768 			PMD_DRV_LOG(ERR, "Flow does not exist.\n");
2769 			ret = -ENOENT;
2770 			goto free_filter;
2771 		}
2772 
2773 		if (filter_op == RTE_ETH_FILTER_ADD) {
2774 			ret = bnxt_hwrm_set_ntuple_filter(bp,
2775 							  filter->dst_id,
2776 							  filter);
2777 			if (ret)
2778 				goto free_filter;
2779 			STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
2780 		} else {
2781 			ret = bnxt_hwrm_clear_ntuple_filter(bp, match);
2782 			STAILQ_REMOVE(&vnic->filter, match,
2783 				      bnxt_filter_info, next);
2784 			bnxt_free_filter(bp, match);
2785 			filter->fw_l2_filter_id = -1;
2786 			bnxt_free_filter(bp, filter);
2787 		}
2788 		break;
2789 	case RTE_ETH_FILTER_FLUSH:
2790 		for (i = bp->nr_vnics - 1; i >= 0; i--) {
2791 			struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2792 
2793 			STAILQ_FOREACH(filter, &vnic->filter, next) {
2794 				if (filter->filter_type ==
2795 				    HWRM_CFA_NTUPLE_FILTER) {
2796 					ret =
2797 					bnxt_hwrm_clear_ntuple_filter(bp,
2798 								      filter);
2799 					STAILQ_REMOVE(&vnic->filter, filter,
2800 						      bnxt_filter_info, next);
2801 				}
2802 			}
2803 		}
2804 		return ret;
2805 	case RTE_ETH_FILTER_UPDATE:
2806 	case RTE_ETH_FILTER_STATS:
2807 	case RTE_ETH_FILTER_INFO:
2808 		PMD_DRV_LOG(ERR, "operation %u not implemented", filter_op);
2809 		break;
2810 	default:
2811 		PMD_DRV_LOG(ERR, "unknown operation %u", filter_op);
2812 		ret = -EINVAL;
2813 		break;
2814 	}
2815 	return ret;
2816 
2817 free_filter:
2818 	filter->fw_l2_filter_id = -1;
2819 	bnxt_free_filter(bp, filter);
2820 	return ret;
2821 }
2822 
2823 static int
2824 bnxt_filter_ctrl_op(struct rte_eth_dev *dev __rte_unused,
2825 		    enum rte_filter_type filter_type,
2826 		    enum rte_filter_op filter_op, void *arg)
2827 {
2828 	int ret = 0;
2829 
2830 	switch (filter_type) {
2831 	case RTE_ETH_FILTER_TUNNEL:
2832 		PMD_DRV_LOG(ERR,
2833 			"filter type: %d: To be implemented\n", filter_type);
2834 		break;
2835 	case RTE_ETH_FILTER_FDIR:
2836 		ret = bnxt_fdir_filter(dev, filter_op, arg);
2837 		break;
2838 	case RTE_ETH_FILTER_NTUPLE:
2839 		ret = bnxt_ntuple_filter(dev, filter_op, arg);
2840 		break;
2841 	case RTE_ETH_FILTER_ETHERTYPE:
2842 		ret = bnxt_ethertype_filter(dev, filter_op, arg);
2843 		break;
2844 	case RTE_ETH_FILTER_GENERIC:
2845 		if (filter_op != RTE_ETH_FILTER_GET)
2846 			return -EINVAL;
2847 		*(const void **)arg = &bnxt_flow_ops;
2848 		break;
2849 	default:
2850 		PMD_DRV_LOG(ERR,
2851 			"Filter type (%d) not supported", filter_type);
2852 		ret = -EINVAL;
2853 		break;
2854 	}
2855 	return ret;
2856 }
2857 
2858 static const uint32_t *
2859 bnxt_dev_supported_ptypes_get_op(struct rte_eth_dev *dev)
2860 {
2861 	static const uint32_t ptypes[] = {
2862 		RTE_PTYPE_L2_ETHER_VLAN,
2863 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
2864 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
2865 		RTE_PTYPE_L4_ICMP,
2866 		RTE_PTYPE_L4_TCP,
2867 		RTE_PTYPE_L4_UDP,
2868 		RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
2869 		RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
2870 		RTE_PTYPE_INNER_L4_ICMP,
2871 		RTE_PTYPE_INNER_L4_TCP,
2872 		RTE_PTYPE_INNER_L4_UDP,
2873 		RTE_PTYPE_UNKNOWN
2874 	};
2875 
2876 	if (!dev->rx_pkt_burst)
2877 		return NULL;
2878 
2879 	return ptypes;
2880 }
2881 
2882 static int bnxt_map_regs(struct bnxt *bp, uint32_t *reg_arr, int count,
2883 			 int reg_win)
2884 {
2885 	uint32_t reg_base = *reg_arr & 0xfffff000;
2886 	uint32_t win_off;
2887 	int i;
2888 
2889 	for (i = 0; i < count; i++) {
2890 		if ((reg_arr[i] & 0xfffff000) != reg_base)
2891 			return -ERANGE;
2892 	}
2893 	win_off = BNXT_GRCPF_REG_WINDOW_BASE_OUT + (reg_win - 1) * 4;
2894 	rte_write32(reg_base, (uint8_t *)bp->bar0 + win_off);
2895 	return 0;
2896 }
2897 
2898 static int bnxt_map_ptp_regs(struct bnxt *bp)
2899 {
2900 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2901 	uint32_t *reg_arr;
2902 	int rc, i;
2903 
2904 	reg_arr = ptp->rx_regs;
2905 	rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_RX_REGS, 5);
2906 	if (rc)
2907 		return rc;
2908 
2909 	reg_arr = ptp->tx_regs;
2910 	rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_TX_REGS, 6);
2911 	if (rc)
2912 		return rc;
2913 
2914 	for (i = 0; i < BNXT_PTP_RX_REGS; i++)
2915 		ptp->rx_mapped_regs[i] = 0x5000 + (ptp->rx_regs[i] & 0xfff);
2916 
2917 	for (i = 0; i < BNXT_PTP_TX_REGS; i++)
2918 		ptp->tx_mapped_regs[i] = 0x6000 + (ptp->tx_regs[i] & 0xfff);
2919 
2920 	return 0;
2921 }
2922 
2923 static void bnxt_unmap_ptp_regs(struct bnxt *bp)
2924 {
2925 	rte_write32(0, (uint8_t *)bp->bar0 +
2926 			 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 16);
2927 	rte_write32(0, (uint8_t *)bp->bar0 +
2928 			 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 20);
2929 }
2930 
2931 static uint64_t bnxt_cc_read(struct bnxt *bp)
2932 {
2933 	uint64_t ns;
2934 
2935 	ns = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2936 			      BNXT_GRCPF_REG_SYNC_TIME));
2937 	ns |= (uint64_t)(rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2938 					  BNXT_GRCPF_REG_SYNC_TIME + 4))) << 32;
2939 	return ns;
2940 }
2941 
2942 static int bnxt_get_tx_ts(struct bnxt *bp, uint64_t *ts)
2943 {
2944 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2945 	uint32_t fifo;
2946 
2947 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2948 				ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
2949 	if (fifo & BNXT_PTP_TX_FIFO_EMPTY)
2950 		return -EAGAIN;
2951 
2952 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2953 				ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
2954 	*ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2955 				ptp->tx_mapped_regs[BNXT_PTP_TX_TS_L]));
2956 	*ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2957 				ptp->tx_mapped_regs[BNXT_PTP_TX_TS_H])) << 32;
2958 
2959 	return 0;
2960 }
2961 
2962 static int bnxt_get_rx_ts(struct bnxt *bp, uint64_t *ts)
2963 {
2964 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2965 	struct bnxt_pf_info *pf = &bp->pf;
2966 	uint16_t port_id;
2967 	uint32_t fifo;
2968 
2969 	if (!ptp)
2970 		return -ENODEV;
2971 
2972 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2973 				ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
2974 	if (!(fifo & BNXT_PTP_RX_FIFO_PENDING))
2975 		return -EAGAIN;
2976 
2977 	port_id = pf->port_id;
2978 	rte_write32(1 << port_id, (uint8_t *)bp->bar0 +
2979 	       ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO_ADV]);
2980 
2981 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2982 				   ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
2983 	if (fifo & BNXT_PTP_RX_FIFO_PENDING) {
2984 /*		bnxt_clr_rx_ts(bp);	  TBD  */
2985 		return -EBUSY;
2986 	}
2987 
2988 	*ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2989 				ptp->rx_mapped_regs[BNXT_PTP_RX_TS_L]));
2990 	*ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2991 				ptp->rx_mapped_regs[BNXT_PTP_RX_TS_H])) << 32;
2992 
2993 	return 0;
2994 }
2995 
2996 static int
2997 bnxt_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
2998 {
2999 	uint64_t ns;
3000 	struct bnxt *bp = dev->data->dev_private;
3001 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3002 
3003 	if (!ptp)
3004 		return 0;
3005 
3006 	ns = rte_timespec_to_ns(ts);
3007 	/* Set the timecounters to a new value. */
3008 	ptp->tc.nsec = ns;
3009 
3010 	return 0;
3011 }
3012 
3013 static int
3014 bnxt_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
3015 {
3016 	uint64_t ns, systime_cycles;
3017 	struct bnxt *bp = dev->data->dev_private;
3018 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3019 
3020 	if (!ptp)
3021 		return 0;
3022 
3023 	systime_cycles = bnxt_cc_read(bp);
3024 	ns = rte_timecounter_update(&ptp->tc, systime_cycles);
3025 	*ts = rte_ns_to_timespec(ns);
3026 
3027 	return 0;
3028 }
3029 static int
3030 bnxt_timesync_enable(struct rte_eth_dev *dev)
3031 {
3032 	struct bnxt *bp = dev->data->dev_private;
3033 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3034 	uint32_t shift = 0;
3035 
3036 	if (!ptp)
3037 		return 0;
3038 
3039 	ptp->rx_filter = 1;
3040 	ptp->tx_tstamp_en = 1;
3041 	ptp->rxctl = BNXT_PTP_MSG_EVENTS;
3042 
3043 	if (!bnxt_hwrm_ptp_cfg(bp))
3044 		bnxt_map_ptp_regs(bp);
3045 
3046 	memset(&ptp->tc, 0, sizeof(struct rte_timecounter));
3047 	memset(&ptp->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
3048 	memset(&ptp->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
3049 
3050 	ptp->tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
3051 	ptp->tc.cc_shift = shift;
3052 	ptp->tc.nsec_mask = (1ULL << shift) - 1;
3053 
3054 	ptp->rx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
3055 	ptp->rx_tstamp_tc.cc_shift = shift;
3056 	ptp->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
3057 
3058 	ptp->tx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
3059 	ptp->tx_tstamp_tc.cc_shift = shift;
3060 	ptp->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
3061 
3062 	return 0;
3063 }
3064 
3065 static int
3066 bnxt_timesync_disable(struct rte_eth_dev *dev)
3067 {
3068 	struct bnxt *bp = dev->data->dev_private;
3069 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3070 
3071 	if (!ptp)
3072 		return 0;
3073 
3074 	ptp->rx_filter = 0;
3075 	ptp->tx_tstamp_en = 0;
3076 	ptp->rxctl = 0;
3077 
3078 	bnxt_hwrm_ptp_cfg(bp);
3079 
3080 	bnxt_unmap_ptp_regs(bp);
3081 
3082 	return 0;
3083 }
3084 
3085 static int
3086 bnxt_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
3087 				 struct timespec *timestamp,
3088 				 uint32_t flags __rte_unused)
3089 {
3090 	struct bnxt *bp = dev->data->dev_private;
3091 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3092 	uint64_t rx_tstamp_cycles = 0;
3093 	uint64_t ns;
3094 
3095 	if (!ptp)
3096 		return 0;
3097 
3098 	bnxt_get_rx_ts(bp, &rx_tstamp_cycles);
3099 	ns = rte_timecounter_update(&ptp->rx_tstamp_tc, rx_tstamp_cycles);
3100 	*timestamp = rte_ns_to_timespec(ns);
3101 	return  0;
3102 }
3103 
3104 static int
3105 bnxt_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
3106 				 struct timespec *timestamp)
3107 {
3108 	struct bnxt *bp = dev->data->dev_private;
3109 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3110 	uint64_t tx_tstamp_cycles = 0;
3111 	uint64_t ns;
3112 
3113 	if (!ptp)
3114 		return 0;
3115 
3116 	bnxt_get_tx_ts(bp, &tx_tstamp_cycles);
3117 	ns = rte_timecounter_update(&ptp->tx_tstamp_tc, tx_tstamp_cycles);
3118 	*timestamp = rte_ns_to_timespec(ns);
3119 
3120 	return 0;
3121 }
3122 
3123 static int
3124 bnxt_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
3125 {
3126 	struct bnxt *bp = dev->data->dev_private;
3127 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3128 
3129 	if (!ptp)
3130 		return 0;
3131 
3132 	ptp->tc.nsec += delta;
3133 
3134 	return 0;
3135 }
3136 
3137 static int
3138 bnxt_get_eeprom_length_op(struct rte_eth_dev *dev)
3139 {
3140 	struct bnxt *bp = dev->data->dev_private;
3141 	int rc;
3142 	uint32_t dir_entries;
3143 	uint32_t entry_length;
3144 
3145 	PMD_DRV_LOG(INFO, "%04x:%02x:%02x:%02x\n",
3146 		bp->pdev->addr.domain, bp->pdev->addr.bus,
3147 		bp->pdev->addr.devid, bp->pdev->addr.function);
3148 
3149 	rc = bnxt_hwrm_nvm_get_dir_info(bp, &dir_entries, &entry_length);
3150 	if (rc != 0)
3151 		return rc;
3152 
3153 	return dir_entries * entry_length;
3154 }
3155 
3156 static int
3157 bnxt_get_eeprom_op(struct rte_eth_dev *dev,
3158 		struct rte_dev_eeprom_info *in_eeprom)
3159 {
3160 	struct bnxt *bp = dev->data->dev_private;
3161 	uint32_t index;
3162 	uint32_t offset;
3163 
3164 	PMD_DRV_LOG(INFO, "%04x:%02x:%02x:%02x in_eeprom->offset = %d "
3165 		"len = %d\n", bp->pdev->addr.domain,
3166 		bp->pdev->addr.bus, bp->pdev->addr.devid,
3167 		bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length);
3168 
3169 	if (in_eeprom->offset == 0) /* special offset value to get directory */
3170 		return bnxt_get_nvram_directory(bp, in_eeprom->length,
3171 						in_eeprom->data);
3172 
3173 	index = in_eeprom->offset >> 24;
3174 	offset = in_eeprom->offset & 0xffffff;
3175 
3176 	if (index != 0)
3177 		return bnxt_hwrm_get_nvram_item(bp, index - 1, offset,
3178 					   in_eeprom->length, in_eeprom->data);
3179 
3180 	return 0;
3181 }
3182 
3183 static bool bnxt_dir_type_is_ape_bin_format(uint16_t dir_type)
3184 {
3185 	switch (dir_type) {
3186 	case BNX_DIR_TYPE_CHIMP_PATCH:
3187 	case BNX_DIR_TYPE_BOOTCODE:
3188 	case BNX_DIR_TYPE_BOOTCODE_2:
3189 	case BNX_DIR_TYPE_APE_FW:
3190 	case BNX_DIR_TYPE_APE_PATCH:
3191 	case BNX_DIR_TYPE_KONG_FW:
3192 	case BNX_DIR_TYPE_KONG_PATCH:
3193 	case BNX_DIR_TYPE_BONO_FW:
3194 	case BNX_DIR_TYPE_BONO_PATCH:
3195 		/* FALLTHROUGH */
3196 		return true;
3197 	}
3198 
3199 	return false;
3200 }
3201 
3202 static bool bnxt_dir_type_is_other_exec_format(uint16_t dir_type)
3203 {
3204 	switch (dir_type) {
3205 	case BNX_DIR_TYPE_AVS:
3206 	case BNX_DIR_TYPE_EXP_ROM_MBA:
3207 	case BNX_DIR_TYPE_PCIE:
3208 	case BNX_DIR_TYPE_TSCF_UCODE:
3209 	case BNX_DIR_TYPE_EXT_PHY:
3210 	case BNX_DIR_TYPE_CCM:
3211 	case BNX_DIR_TYPE_ISCSI_BOOT:
3212 	case BNX_DIR_TYPE_ISCSI_BOOT_IPV6:
3213 	case BNX_DIR_TYPE_ISCSI_BOOT_IPV4N6:
3214 		/* FALLTHROUGH */
3215 		return true;
3216 	}
3217 
3218 	return false;
3219 }
3220 
3221 static bool bnxt_dir_type_is_executable(uint16_t dir_type)
3222 {
3223 	return bnxt_dir_type_is_ape_bin_format(dir_type) ||
3224 		bnxt_dir_type_is_other_exec_format(dir_type);
3225 }
3226 
3227 static int
3228 bnxt_set_eeprom_op(struct rte_eth_dev *dev,
3229 		struct rte_dev_eeprom_info *in_eeprom)
3230 {
3231 	struct bnxt *bp = dev->data->dev_private;
3232 	uint8_t index, dir_op;
3233 	uint16_t type, ext, ordinal, attr;
3234 
3235 	PMD_DRV_LOG(INFO, "%04x:%02x:%02x:%02x in_eeprom->offset = %d "
3236 		"len = %d\n", bp->pdev->addr.domain,
3237 		bp->pdev->addr.bus, bp->pdev->addr.devid,
3238 		bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length);
3239 
3240 	if (!BNXT_PF(bp)) {
3241 		PMD_DRV_LOG(ERR, "NVM write not supported from a VF\n");
3242 		return -EINVAL;
3243 	}
3244 
3245 	type = in_eeprom->magic >> 16;
3246 
3247 	if (type == 0xffff) { /* special value for directory operations */
3248 		index = in_eeprom->magic & 0xff;
3249 		dir_op = in_eeprom->magic >> 8;
3250 		if (index == 0)
3251 			return -EINVAL;
3252 		switch (dir_op) {
3253 		case 0x0e: /* erase */
3254 			if (in_eeprom->offset != ~in_eeprom->magic)
3255 				return -EINVAL;
3256 			return bnxt_hwrm_erase_nvram_directory(bp, index - 1);
3257 		default:
3258 			return -EINVAL;
3259 		}
3260 	}
3261 
3262 	/* Create or re-write an NVM item: */
3263 	if (bnxt_dir_type_is_executable(type) == true)
3264 		return -EOPNOTSUPP;
3265 	ext = in_eeprom->magic & 0xffff;
3266 	ordinal = in_eeprom->offset >> 16;
3267 	attr = in_eeprom->offset & 0xffff;
3268 
3269 	return bnxt_hwrm_flash_nvram(bp, type, ordinal, ext, attr,
3270 				     in_eeprom->data, in_eeprom->length);
3271 	return 0;
3272 }
3273 
3274 /*
3275  * Initialization
3276  */
3277 
3278 static const struct eth_dev_ops bnxt_dev_ops = {
3279 	.dev_infos_get = bnxt_dev_info_get_op,
3280 	.dev_close = bnxt_dev_close_op,
3281 	.dev_configure = bnxt_dev_configure_op,
3282 	.dev_start = bnxt_dev_start_op,
3283 	.dev_stop = bnxt_dev_stop_op,
3284 	.dev_set_link_up = bnxt_dev_set_link_up_op,
3285 	.dev_set_link_down = bnxt_dev_set_link_down_op,
3286 	.stats_get = bnxt_stats_get_op,
3287 	.stats_reset = bnxt_stats_reset_op,
3288 	.rx_queue_setup = bnxt_rx_queue_setup_op,
3289 	.rx_queue_release = bnxt_rx_queue_release_op,
3290 	.tx_queue_setup = bnxt_tx_queue_setup_op,
3291 	.tx_queue_release = bnxt_tx_queue_release_op,
3292 	.rx_queue_intr_enable = bnxt_rx_queue_intr_enable_op,
3293 	.rx_queue_intr_disable = bnxt_rx_queue_intr_disable_op,
3294 	.reta_update = bnxt_reta_update_op,
3295 	.reta_query = bnxt_reta_query_op,
3296 	.rss_hash_update = bnxt_rss_hash_update_op,
3297 	.rss_hash_conf_get = bnxt_rss_hash_conf_get_op,
3298 	.link_update = bnxt_link_update_op,
3299 	.promiscuous_enable = bnxt_promiscuous_enable_op,
3300 	.promiscuous_disable = bnxt_promiscuous_disable_op,
3301 	.allmulticast_enable = bnxt_allmulticast_enable_op,
3302 	.allmulticast_disable = bnxt_allmulticast_disable_op,
3303 	.mac_addr_add = bnxt_mac_addr_add_op,
3304 	.mac_addr_remove = bnxt_mac_addr_remove_op,
3305 	.flow_ctrl_get = bnxt_flow_ctrl_get_op,
3306 	.flow_ctrl_set = bnxt_flow_ctrl_set_op,
3307 	.udp_tunnel_port_add  = bnxt_udp_tunnel_port_add_op,
3308 	.udp_tunnel_port_del  = bnxt_udp_tunnel_port_del_op,
3309 	.vlan_filter_set = bnxt_vlan_filter_set_op,
3310 	.vlan_offload_set = bnxt_vlan_offload_set_op,
3311 	.vlan_pvid_set = bnxt_vlan_pvid_set_op,
3312 	.mtu_set = bnxt_mtu_set_op,
3313 	.mac_addr_set = bnxt_set_default_mac_addr_op,
3314 	.xstats_get = bnxt_dev_xstats_get_op,
3315 	.xstats_get_names = bnxt_dev_xstats_get_names_op,
3316 	.xstats_reset = bnxt_dev_xstats_reset_op,
3317 	.fw_version_get = bnxt_fw_version_get,
3318 	.set_mc_addr_list = bnxt_dev_set_mc_addr_list_op,
3319 	.rxq_info_get = bnxt_rxq_info_get_op,
3320 	.txq_info_get = bnxt_txq_info_get_op,
3321 	.dev_led_on = bnxt_dev_led_on_op,
3322 	.dev_led_off = bnxt_dev_led_off_op,
3323 	.xstats_get_by_id = bnxt_dev_xstats_get_by_id_op,
3324 	.xstats_get_names_by_id = bnxt_dev_xstats_get_names_by_id_op,
3325 	.rx_queue_count = bnxt_rx_queue_count_op,
3326 	.rx_descriptor_status = bnxt_rx_descriptor_status_op,
3327 	.tx_descriptor_status = bnxt_tx_descriptor_status_op,
3328 	.rx_queue_start = bnxt_rx_queue_start,
3329 	.rx_queue_stop = bnxt_rx_queue_stop,
3330 	.tx_queue_start = bnxt_tx_queue_start,
3331 	.tx_queue_stop = bnxt_tx_queue_stop,
3332 	.filter_ctrl = bnxt_filter_ctrl_op,
3333 	.dev_supported_ptypes_get = bnxt_dev_supported_ptypes_get_op,
3334 	.get_eeprom_length    = bnxt_get_eeprom_length_op,
3335 	.get_eeprom           = bnxt_get_eeprom_op,
3336 	.set_eeprom           = bnxt_set_eeprom_op,
3337 	.timesync_enable      = bnxt_timesync_enable,
3338 	.timesync_disable     = bnxt_timesync_disable,
3339 	.timesync_read_time   = bnxt_timesync_read_time,
3340 	.timesync_write_time   = bnxt_timesync_write_time,
3341 	.timesync_adjust_time = bnxt_timesync_adjust_time,
3342 	.timesync_read_rx_timestamp = bnxt_timesync_read_rx_timestamp,
3343 	.timesync_read_tx_timestamp = bnxt_timesync_read_tx_timestamp,
3344 };
3345 
3346 static bool bnxt_vf_pciid(uint16_t id)
3347 {
3348 	if (id == BROADCOM_DEV_ID_57304_VF ||
3349 	    id == BROADCOM_DEV_ID_57406_VF ||
3350 	    id == BROADCOM_DEV_ID_5731X_VF ||
3351 	    id == BROADCOM_DEV_ID_5741X_VF ||
3352 	    id == BROADCOM_DEV_ID_57414_VF ||
3353 	    id == BROADCOM_DEV_ID_STRATUS_NIC_VF1 ||
3354 	    id == BROADCOM_DEV_ID_STRATUS_NIC_VF2 ||
3355 	    id == BROADCOM_DEV_ID_58802_VF ||
3356 	    id == BROADCOM_DEV_ID_57500_VF)
3357 		return true;
3358 	return false;
3359 }
3360 
3361 bool bnxt_stratus_device(struct bnxt *bp)
3362 {
3363 	uint16_t id = bp->pdev->id.device_id;
3364 
3365 	if (id == BROADCOM_DEV_ID_STRATUS_NIC ||
3366 	    id == BROADCOM_DEV_ID_STRATUS_NIC_VF1 ||
3367 	    id == BROADCOM_DEV_ID_STRATUS_NIC_VF2)
3368 		return true;
3369 	return false;
3370 }
3371 
3372 static int bnxt_init_board(struct rte_eth_dev *eth_dev)
3373 {
3374 	struct bnxt *bp = eth_dev->data->dev_private;
3375 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3376 	int rc;
3377 
3378 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
3379 	if (!pci_dev->mem_resource[0].addr) {
3380 		PMD_DRV_LOG(ERR,
3381 			"Cannot find PCI device base address, aborting\n");
3382 		rc = -ENODEV;
3383 		goto init_err_disable;
3384 	}
3385 
3386 	bp->eth_dev = eth_dev;
3387 	bp->pdev = pci_dev;
3388 
3389 	bp->bar0 = (void *)pci_dev->mem_resource[0].addr;
3390 	if (!bp->bar0) {
3391 		PMD_DRV_LOG(ERR, "Cannot map device registers, aborting\n");
3392 		rc = -ENOMEM;
3393 		goto init_err_release;
3394 	}
3395 
3396 	if (!pci_dev->mem_resource[2].addr) {
3397 		PMD_DRV_LOG(ERR,
3398 			    "Cannot find PCI device BAR 2 address, aborting\n");
3399 		rc = -ENODEV;
3400 		goto init_err_release;
3401 	} else {
3402 		bp->doorbell_base = (void *)pci_dev->mem_resource[2].addr;
3403 	}
3404 
3405 	return 0;
3406 
3407 init_err_release:
3408 	if (bp->bar0)
3409 		bp->bar0 = NULL;
3410 	if (bp->doorbell_base)
3411 		bp->doorbell_base = NULL;
3412 
3413 init_err_disable:
3414 
3415 	return rc;
3416 }
3417 
3418 static int bnxt_alloc_ctx_mem_blk(__rte_unused struct bnxt *bp,
3419 				  struct bnxt_ctx_pg_info *ctx_pg,
3420 				  uint32_t mem_size,
3421 				  const char *suffix,
3422 				  uint16_t idx)
3423 {
3424 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
3425 	const struct rte_memzone *mz = NULL;
3426 	char mz_name[RTE_MEMZONE_NAMESIZE];
3427 	rte_iova_t mz_phys_addr;
3428 	uint64_t valid_bits = 0;
3429 	uint32_t sz;
3430 	int i;
3431 
3432 	if (!mem_size)
3433 		return 0;
3434 
3435 	rmem->nr_pages = RTE_ALIGN_MUL_CEIL(mem_size, BNXT_PAGE_SIZE) /
3436 			 BNXT_PAGE_SIZE;
3437 	rmem->page_size = BNXT_PAGE_SIZE;
3438 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
3439 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
3440 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
3441 
3442 	valid_bits = PTU_PTE_VALID;
3443 
3444 	if (rmem->nr_pages > 1) {
3445 		snprintf(mz_name, RTE_MEMZONE_NAMESIZE, "bnxt_ctx_pg_tbl%s_%x",
3446 			 suffix, idx);
3447 		mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
3448 		mz = rte_memzone_lookup(mz_name);
3449 		if (!mz) {
3450 			mz = rte_memzone_reserve_aligned(mz_name,
3451 						rmem->nr_pages * 8,
3452 						SOCKET_ID_ANY,
3453 						RTE_MEMZONE_2MB |
3454 						RTE_MEMZONE_SIZE_HINT_ONLY |
3455 						RTE_MEMZONE_IOVA_CONTIG,
3456 						BNXT_PAGE_SIZE);
3457 			if (mz == NULL)
3458 				return -ENOMEM;
3459 		}
3460 
3461 		memset(mz->addr, 0, mz->len);
3462 		mz_phys_addr = mz->iova;
3463 		if ((unsigned long)mz->addr == mz_phys_addr) {
3464 			PMD_DRV_LOG(WARNING,
3465 				"Memzone physical address same as virtual.\n");
3466 			PMD_DRV_LOG(WARNING,
3467 				    "Using rte_mem_virt2iova()\n");
3468 			mz_phys_addr = rte_mem_virt2iova(mz->addr);
3469 			if (mz_phys_addr == 0) {
3470 				PMD_DRV_LOG(ERR,
3471 					"unable to map addr to phys memory\n");
3472 				return -ENOMEM;
3473 			}
3474 		}
3475 		rte_mem_lock_page(((char *)mz->addr));
3476 
3477 		rmem->pg_tbl = mz->addr;
3478 		rmem->pg_tbl_map = mz_phys_addr;
3479 		rmem->pg_tbl_mz = mz;
3480 	}
3481 
3482 	snprintf(mz_name, RTE_MEMZONE_NAMESIZE, "bnxt_ctx_%s_%x", suffix, idx);
3483 	mz = rte_memzone_lookup(mz_name);
3484 	if (!mz) {
3485 		mz = rte_memzone_reserve_aligned(mz_name,
3486 						 mem_size,
3487 						 SOCKET_ID_ANY,
3488 						 RTE_MEMZONE_1GB |
3489 						 RTE_MEMZONE_SIZE_HINT_ONLY |
3490 						 RTE_MEMZONE_IOVA_CONTIG,
3491 						 BNXT_PAGE_SIZE);
3492 		if (mz == NULL)
3493 			return -ENOMEM;
3494 	}
3495 
3496 	memset(mz->addr, 0, mz->len);
3497 	mz_phys_addr = mz->iova;
3498 	if ((unsigned long)mz->addr == mz_phys_addr) {
3499 		PMD_DRV_LOG(WARNING,
3500 			    "Memzone physical address same as virtual.\n");
3501 		PMD_DRV_LOG(WARNING,
3502 			    "Using rte_mem_virt2iova()\n");
3503 		for (sz = 0; sz < mem_size; sz += BNXT_PAGE_SIZE)
3504 			rte_mem_lock_page(((char *)mz->addr) + sz);
3505 		mz_phys_addr = rte_mem_virt2iova(mz->addr);
3506 		if (mz_phys_addr == RTE_BAD_IOVA) {
3507 			PMD_DRV_LOG(ERR,
3508 				    "unable to map addr to phys memory\n");
3509 			return -ENOMEM;
3510 		}
3511 	}
3512 
3513 	for (sz = 0, i = 0; sz < mem_size; sz += BNXT_PAGE_SIZE, i++) {
3514 		rte_mem_lock_page(((char *)mz->addr) + sz);
3515 		rmem->pg_arr[i] = ((char *)mz->addr) + sz;
3516 		rmem->dma_arr[i] = mz_phys_addr + sz;
3517 
3518 		if (rmem->nr_pages > 1) {
3519 			if (i == rmem->nr_pages - 2 &&
3520 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3521 				valid_bits |= PTU_PTE_NEXT_TO_LAST;
3522 			else if (i == rmem->nr_pages - 1 &&
3523 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3524 				valid_bits |= PTU_PTE_LAST;
3525 
3526 			rmem->pg_tbl[i] = rte_cpu_to_le_64(rmem->dma_arr[i] |
3527 							   valid_bits);
3528 		}
3529 	}
3530 
3531 	rmem->mz = mz;
3532 	if (rmem->vmem_size)
3533 		rmem->vmem = (void **)mz->addr;
3534 	rmem->dma_arr[0] = mz_phys_addr;
3535 	return 0;
3536 }
3537 
3538 static void bnxt_free_ctx_mem(struct bnxt *bp)
3539 {
3540 	int i;
3541 
3542 	if (!bp->ctx || !(bp->ctx->flags & BNXT_CTX_FLAG_INITED))
3543 		return;
3544 
3545 	bp->ctx->flags &= ~BNXT_CTX_FLAG_INITED;
3546 	rte_memzone_free(bp->ctx->qp_mem.ring_mem.mz);
3547 	rte_memzone_free(bp->ctx->srq_mem.ring_mem.mz);
3548 	rte_memzone_free(bp->ctx->cq_mem.ring_mem.mz);
3549 	rte_memzone_free(bp->ctx->vnic_mem.ring_mem.mz);
3550 	rte_memzone_free(bp->ctx->stat_mem.ring_mem.mz);
3551 	rte_memzone_free(bp->ctx->qp_mem.ring_mem.pg_tbl_mz);
3552 	rte_memzone_free(bp->ctx->srq_mem.ring_mem.pg_tbl_mz);
3553 	rte_memzone_free(bp->ctx->cq_mem.ring_mem.pg_tbl_mz);
3554 	rte_memzone_free(bp->ctx->vnic_mem.ring_mem.pg_tbl_mz);
3555 	rte_memzone_free(bp->ctx->stat_mem.ring_mem.pg_tbl_mz);
3556 
3557 	for (i = 0; i < BNXT_MAX_Q; i++) {
3558 		if (bp->ctx->tqm_mem[i])
3559 			rte_memzone_free(bp->ctx->tqm_mem[i]->ring_mem.mz);
3560 	}
3561 
3562 	rte_free(bp->ctx);
3563 	bp->ctx = NULL;
3564 }
3565 
3566 #define bnxt_roundup(x, y)   ((((x) + ((y) - 1)) / (y)) * (y))
3567 
3568 #define min_t(type, x, y) ({                    \
3569 	type __min1 = (x);                      \
3570 	type __min2 = (y);                      \
3571 	__min1 < __min2 ? __min1 : __min2; })
3572 
3573 #define max_t(type, x, y) ({                    \
3574 	type __max1 = (x);                      \
3575 	type __max2 = (y);                      \
3576 	__max1 > __max2 ? __max1 : __max2; })
3577 
3578 #define clamp_t(type, _x, min, max)     min_t(type, max_t(type, _x, min), max)
3579 
3580 int bnxt_alloc_ctx_mem(struct bnxt *bp)
3581 {
3582 	struct bnxt_ctx_pg_info *ctx_pg;
3583 	struct bnxt_ctx_mem_info *ctx;
3584 	uint32_t mem_size, ena, entries;
3585 	int i, rc;
3586 
3587 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
3588 	if (rc) {
3589 		PMD_DRV_LOG(ERR, "Query context mem capability failed\n");
3590 		return rc;
3591 	}
3592 	ctx = bp->ctx;
3593 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
3594 		return 0;
3595 
3596 	ctx_pg = &ctx->qp_mem;
3597 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries;
3598 	mem_size = ctx->qp_entry_size * ctx_pg->entries;
3599 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "qp_mem", 0);
3600 	if (rc)
3601 		return rc;
3602 
3603 	ctx_pg = &ctx->srq_mem;
3604 	ctx_pg->entries = ctx->srq_max_l2_entries;
3605 	mem_size = ctx->srq_entry_size * ctx_pg->entries;
3606 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "srq_mem", 0);
3607 	if (rc)
3608 		return rc;
3609 
3610 	ctx_pg = &ctx->cq_mem;
3611 	ctx_pg->entries = ctx->cq_max_l2_entries;
3612 	mem_size = ctx->cq_entry_size * ctx_pg->entries;
3613 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "cq_mem", 0);
3614 	if (rc)
3615 		return rc;
3616 
3617 	ctx_pg = &ctx->vnic_mem;
3618 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
3619 		ctx->vnic_max_ring_table_entries;
3620 	mem_size = ctx->vnic_entry_size * ctx_pg->entries;
3621 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "vnic_mem", 0);
3622 	if (rc)
3623 		return rc;
3624 
3625 	ctx_pg = &ctx->stat_mem;
3626 	ctx_pg->entries = ctx->stat_max_entries;
3627 	mem_size = ctx->stat_entry_size * ctx_pg->entries;
3628 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "stat_mem", 0);
3629 	if (rc)
3630 		return rc;
3631 
3632 	entries = ctx->qp_max_l2_entries;
3633 	entries = bnxt_roundup(entries, ctx->tqm_entries_multiple);
3634 	entries = clamp_t(uint32_t, entries, ctx->tqm_min_entries_per_ring,
3635 			  ctx->tqm_max_entries_per_ring);
3636 	for (i = 0, ena = 0; i < BNXT_MAX_Q; i++) {
3637 		ctx_pg = ctx->tqm_mem[i];
3638 		/* use min tqm entries for now. */
3639 		ctx_pg->entries = entries;
3640 		mem_size = ctx->tqm_entry_size * ctx_pg->entries;
3641 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "tqm_mem", i);
3642 		if (rc)
3643 			return rc;
3644 		ena |= HWRM_FUNC_BACKING_STORE_CFG_INPUT_ENABLES_TQM_SP << i;
3645 	}
3646 
3647 	ena |= FUNC_BACKING_STORE_CFG_INPUT_DFLT_ENABLES;
3648 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
3649 	if (rc)
3650 		PMD_DRV_LOG(ERR,
3651 			    "Failed to configure context mem: rc = %d\n", rc);
3652 	else
3653 		ctx->flags |= BNXT_CTX_FLAG_INITED;
3654 
3655 	return 0;
3656 }
3657 
3658 static int bnxt_alloc_stats_mem(struct bnxt *bp)
3659 {
3660 	struct rte_pci_device *pci_dev = bp->pdev;
3661 	char mz_name[RTE_MEMZONE_NAMESIZE];
3662 	const struct rte_memzone *mz = NULL;
3663 	uint32_t total_alloc_len;
3664 	rte_iova_t mz_phys_addr;
3665 
3666 	if (pci_dev->id.device_id == BROADCOM_DEV_ID_NS2)
3667 		return 0;
3668 
3669 	snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
3670 		 "bnxt_" PCI_PRI_FMT "-%s", pci_dev->addr.domain,
3671 		 pci_dev->addr.bus, pci_dev->addr.devid,
3672 		 pci_dev->addr.function, "rx_port_stats");
3673 	mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
3674 	mz = rte_memzone_lookup(mz_name);
3675 	total_alloc_len =
3676 		RTE_CACHE_LINE_ROUNDUP(sizeof(struct rx_port_stats) +
3677 				       sizeof(struct rx_port_stats_ext) + 512);
3678 	if (!mz) {
3679 		mz = rte_memzone_reserve(mz_name, total_alloc_len,
3680 					 SOCKET_ID_ANY,
3681 					 RTE_MEMZONE_2MB |
3682 					 RTE_MEMZONE_SIZE_HINT_ONLY |
3683 					 RTE_MEMZONE_IOVA_CONTIG);
3684 		if (mz == NULL)
3685 			return -ENOMEM;
3686 	}
3687 	memset(mz->addr, 0, mz->len);
3688 	mz_phys_addr = mz->iova;
3689 	if ((unsigned long)mz->addr == mz_phys_addr) {
3690 		PMD_DRV_LOG(WARNING,
3691 			    "Memzone physical address same as virtual.\n");
3692 		PMD_DRV_LOG(WARNING,
3693 			    "Using rte_mem_virt2iova()\n");
3694 		mz_phys_addr = rte_mem_virt2iova(mz->addr);
3695 		if (mz_phys_addr == 0) {
3696 			PMD_DRV_LOG(ERR,
3697 				    "Can't map address to physical memory\n");
3698 			return -ENOMEM;
3699 		}
3700 	}
3701 
3702 	bp->rx_mem_zone = (const void *)mz;
3703 	bp->hw_rx_port_stats = mz->addr;
3704 	bp->hw_rx_port_stats_map = mz_phys_addr;
3705 
3706 	snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
3707 		 "bnxt_" PCI_PRI_FMT "-%s", pci_dev->addr.domain,
3708 		 pci_dev->addr.bus, pci_dev->addr.devid,
3709 		 pci_dev->addr.function, "tx_port_stats");
3710 	mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
3711 	mz = rte_memzone_lookup(mz_name);
3712 	total_alloc_len =
3713 		RTE_CACHE_LINE_ROUNDUP(sizeof(struct tx_port_stats) +
3714 				       sizeof(struct tx_port_stats_ext) + 512);
3715 	if (!mz) {
3716 		mz = rte_memzone_reserve(mz_name,
3717 					 total_alloc_len,
3718 					 SOCKET_ID_ANY,
3719 					 RTE_MEMZONE_2MB |
3720 					 RTE_MEMZONE_SIZE_HINT_ONLY |
3721 					 RTE_MEMZONE_IOVA_CONTIG);
3722 		if (mz == NULL)
3723 			return -ENOMEM;
3724 	}
3725 	memset(mz->addr, 0, mz->len);
3726 	mz_phys_addr = mz->iova;
3727 	if ((unsigned long)mz->addr == mz_phys_addr) {
3728 		PMD_DRV_LOG(WARNING,
3729 			    "Memzone physical address same as virtual\n");
3730 		PMD_DRV_LOG(WARNING,
3731 			    "Using rte_mem_virt2iova()\n");
3732 		mz_phys_addr = rte_mem_virt2iova(mz->addr);
3733 		if (mz_phys_addr == 0) {
3734 			PMD_DRV_LOG(ERR,
3735 				    "Can't map address to physical memory\n");
3736 			return -ENOMEM;
3737 		}
3738 	}
3739 
3740 	bp->tx_mem_zone = (const void *)mz;
3741 	bp->hw_tx_port_stats = mz->addr;
3742 	bp->hw_tx_port_stats_map = mz_phys_addr;
3743 	bp->flags |= BNXT_FLAG_PORT_STATS;
3744 
3745 	/* Display extended statistics if FW supports it */
3746 	if (bp->hwrm_spec_code < HWRM_SPEC_CODE_1_8_4 ||
3747 	    bp->hwrm_spec_code == HWRM_SPEC_CODE_1_9_0 ||
3748 	    !(bp->flags & BNXT_FLAG_EXT_STATS_SUPPORTED))
3749 		return 0;
3750 
3751 	bp->hw_rx_port_stats_ext = (void *)
3752 		((uint8_t *)bp->hw_rx_port_stats +
3753 		 sizeof(struct rx_port_stats));
3754 	bp->hw_rx_port_stats_ext_map = bp->hw_rx_port_stats_map +
3755 		sizeof(struct rx_port_stats);
3756 	bp->flags |= BNXT_FLAG_EXT_RX_PORT_STATS;
3757 
3758 	if (bp->hwrm_spec_code < HWRM_SPEC_CODE_1_9_2 ||
3759 	    bp->flags & BNXT_FLAG_EXT_STATS_SUPPORTED) {
3760 		bp->hw_tx_port_stats_ext = (void *)
3761 			((uint8_t *)bp->hw_tx_port_stats +
3762 			 sizeof(struct tx_port_stats));
3763 		bp->hw_tx_port_stats_ext_map =
3764 			bp->hw_tx_port_stats_map +
3765 			sizeof(struct tx_port_stats);
3766 		bp->flags |= BNXT_FLAG_EXT_TX_PORT_STATS;
3767 	}
3768 
3769 	return 0;
3770 }
3771 
3772 static int bnxt_setup_mac_addr(struct rte_eth_dev *eth_dev)
3773 {
3774 	struct bnxt *bp = eth_dev->data->dev_private;
3775 	int rc = 0;
3776 
3777 	eth_dev->data->mac_addrs = rte_zmalloc("bnxt_mac_addr_tbl",
3778 					       RTE_ETHER_ADDR_LEN *
3779 					       bp->max_l2_ctx,
3780 					       0);
3781 	if (eth_dev->data->mac_addrs == NULL) {
3782 		PMD_DRV_LOG(ERR, "Failed to alloc MAC addr tbl\n");
3783 		return -ENOMEM;
3784 	}
3785 
3786 	if (bnxt_check_zero_bytes(bp->dflt_mac_addr, RTE_ETHER_ADDR_LEN)) {
3787 		if (BNXT_PF(bp))
3788 			return -EINVAL;
3789 
3790 		/* Generate a random MAC address, if none was assigned by PF */
3791 		PMD_DRV_LOG(INFO, "VF MAC address not assigned by Host PF\n");
3792 		bnxt_eth_hw_addr_random(bp->mac_addr);
3793 		PMD_DRV_LOG(INFO,
3794 			    "Assign random MAC:%02X:%02X:%02X:%02X:%02X:%02X\n",
3795 			    bp->mac_addr[0], bp->mac_addr[1], bp->mac_addr[2],
3796 			    bp->mac_addr[3], bp->mac_addr[4], bp->mac_addr[5]);
3797 
3798 		rc = bnxt_hwrm_set_mac(bp);
3799 		if (!rc)
3800 			memcpy(&bp->eth_dev->data->mac_addrs[0], bp->mac_addr,
3801 			       RTE_ETHER_ADDR_LEN);
3802 		return rc;
3803 	}
3804 
3805 	/* Copy the permanent MAC from the FUNC_QCAPS response */
3806 	memcpy(bp->mac_addr, bp->dflt_mac_addr, RTE_ETHER_ADDR_LEN);
3807 	memcpy(&eth_dev->data->mac_addrs[0], bp->mac_addr, RTE_ETHER_ADDR_LEN);
3808 
3809 	return rc;
3810 }
3811 
3812 #define ALLOW_FUNC(x)	\
3813 	{ \
3814 		uint32_t arg = (x); \
3815 		bp->pf.vf_req_fwd[((arg) >> 5)] &= \
3816 		~rte_cpu_to_le_32(1 << ((arg) & 0x1f)); \
3817 	}
3818 static int
3819 bnxt_dev_init(struct rte_eth_dev *eth_dev)
3820 {
3821 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3822 	static int version_printed;
3823 	struct bnxt *bp;
3824 	uint16_t mtu;
3825 	int rc;
3826 
3827 	if (version_printed++ == 0)
3828 		PMD_DRV_LOG(INFO, "%s\n", bnxt_version);
3829 
3830 	rte_eth_copy_pci_info(eth_dev, pci_dev);
3831 
3832 	bp = eth_dev->data->dev_private;
3833 
3834 	bp->dev_stopped = 1;
3835 
3836 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3837 		goto skip_init;
3838 
3839 	if (bnxt_vf_pciid(pci_dev->id.device_id))
3840 		bp->flags |= BNXT_FLAG_VF;
3841 
3842 	if (pci_dev->id.device_id == BROADCOM_DEV_ID_57508 ||
3843 	    pci_dev->id.device_id == BROADCOM_DEV_ID_57504 ||
3844 	    pci_dev->id.device_id == BROADCOM_DEV_ID_57502 ||
3845 	    pci_dev->id.device_id == BROADCOM_DEV_ID_57500_VF)
3846 		bp->flags |= BNXT_FLAG_THOR_CHIP;
3847 
3848 	rc = bnxt_init_board(eth_dev);
3849 	if (rc) {
3850 		PMD_DRV_LOG(ERR,
3851 			"Board initialization failed rc: %x\n", rc);
3852 		goto error;
3853 	}
3854 skip_init:
3855 	eth_dev->dev_ops = &bnxt_dev_ops;
3856 	eth_dev->rx_pkt_burst = &bnxt_recv_pkts;
3857 	eth_dev->tx_pkt_burst = &bnxt_xmit_pkts;
3858 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3859 		return 0;
3860 
3861 	rc = bnxt_alloc_hwrm_resources(bp);
3862 	if (rc) {
3863 		PMD_DRV_LOG(ERR,
3864 			"hwrm resource allocation failure rc: %x\n", rc);
3865 		goto error_free;
3866 	}
3867 	rc = bnxt_hwrm_ver_get(bp);
3868 	if (rc)
3869 		goto error_free;
3870 
3871 	rc = bnxt_hwrm_func_reset(bp);
3872 	if (rc) {
3873 		PMD_DRV_LOG(ERR, "hwrm chip reset failure rc: %x\n", rc);
3874 		rc = -EIO;
3875 		goto error_free;
3876 	}
3877 
3878 	rc = bnxt_hwrm_queue_qportcfg(bp);
3879 	if (rc) {
3880 		PMD_DRV_LOG(ERR, "hwrm queue qportcfg failed\n");
3881 		goto error_free;
3882 	}
3883 	/* Get the MAX capabilities for this function */
3884 	rc = bnxt_hwrm_func_qcaps(bp);
3885 	if (rc) {
3886 		PMD_DRV_LOG(ERR, "hwrm query capability failure rc: %x\n", rc);
3887 		goto error_free;
3888 	}
3889 
3890 	rc = bnxt_alloc_stats_mem(bp);
3891 	if (rc)
3892 		goto error_free;
3893 
3894 	if (bp->max_tx_rings == 0) {
3895 		PMD_DRV_LOG(ERR, "No TX rings available!\n");
3896 		rc = -EBUSY;
3897 		goto error_free;
3898 	}
3899 
3900 	rc = bnxt_setup_mac_addr(eth_dev);
3901 	if (rc)
3902 		goto error_free;
3903 
3904 	/* THOR does not support ring groups.
3905 	 * But we will use the array to save RSS context IDs.
3906 	 */
3907 	if (BNXT_CHIP_THOR(bp)) {
3908 		bp->max_ring_grps = BNXT_MAX_RSS_CTXTS_THOR;
3909 	} else if (bp->max_ring_grps < bp->rx_cp_nr_rings) {
3910 		/* 1 ring is for default completion ring */
3911 		PMD_DRV_LOG(ERR, "Insufficient resource: Ring Group\n");
3912 		rc = -ENOSPC;
3913 		goto error_free;
3914 	}
3915 
3916 	if (BNXT_HAS_RING_GRPS(bp)) {
3917 		bp->grp_info = rte_zmalloc("bnxt_grp_info",
3918 					sizeof(*bp->grp_info) *
3919 						bp->max_ring_grps, 0);
3920 		if (!bp->grp_info) {
3921 			PMD_DRV_LOG(ERR,
3922 				"Failed to alloc %zu bytes for grp info tbl.\n",
3923 				sizeof(*bp->grp_info) * bp->max_ring_grps);
3924 			rc = -ENOMEM;
3925 			goto error_free;
3926 		}
3927 	}
3928 
3929 	/* Forward all requests if firmware is new enough */
3930 	if (((bp->fw_ver >= ((20 << 24) | (6 << 16) | (100 << 8))) &&
3931 	    (bp->fw_ver < ((20 << 24) | (7 << 16)))) ||
3932 	    ((bp->fw_ver >= ((20 << 24) | (8 << 16))))) {
3933 		memset(bp->pf.vf_req_fwd, 0xff, sizeof(bp->pf.vf_req_fwd));
3934 	} else {
3935 		PMD_DRV_LOG(WARNING,
3936 			"Firmware too old for VF mailbox functionality\n");
3937 		memset(bp->pf.vf_req_fwd, 0, sizeof(bp->pf.vf_req_fwd));
3938 	}
3939 
3940 	/*
3941 	 * The following are used for driver cleanup.  If we disallow these,
3942 	 * VF drivers can't clean up cleanly.
3943 	 */
3944 	ALLOW_FUNC(HWRM_FUNC_DRV_UNRGTR);
3945 	ALLOW_FUNC(HWRM_VNIC_FREE);
3946 	ALLOW_FUNC(HWRM_RING_FREE);
3947 	ALLOW_FUNC(HWRM_RING_GRP_FREE);
3948 	ALLOW_FUNC(HWRM_VNIC_RSS_COS_LB_CTX_FREE);
3949 	ALLOW_FUNC(HWRM_CFA_L2_FILTER_FREE);
3950 	ALLOW_FUNC(HWRM_STAT_CTX_FREE);
3951 	ALLOW_FUNC(HWRM_PORT_PHY_QCFG);
3952 	ALLOW_FUNC(HWRM_VNIC_TPA_CFG);
3953 	rc = bnxt_hwrm_func_driver_register(bp);
3954 	if (rc) {
3955 		PMD_DRV_LOG(ERR,
3956 			"Failed to register driver");
3957 		rc = -EBUSY;
3958 		goto error_free;
3959 	}
3960 
3961 	PMD_DRV_LOG(INFO,
3962 		DRV_MODULE_NAME " found at mem %" PRIx64 ", node addr %pM\n",
3963 		pci_dev->mem_resource[0].phys_addr,
3964 		pci_dev->mem_resource[0].addr);
3965 
3966 	rc = bnxt_hwrm_func_qcfg(bp, &mtu);
3967 	if (rc) {
3968 		PMD_DRV_LOG(ERR, "hwrm func qcfg failed\n");
3969 		goto error_free;
3970 	}
3971 
3972 	if (mtu >= RTE_ETHER_MIN_MTU && mtu <= BNXT_MAX_MTU &&
3973 	    mtu != eth_dev->data->mtu)
3974 		eth_dev->data->mtu = mtu;
3975 
3976 	if (BNXT_PF(bp)) {
3977 		//if (bp->pf.active_vfs) {
3978 			// TODO: Deallocate VF resources?
3979 		//}
3980 		if (bp->pdev->max_vfs) {
3981 			rc = bnxt_hwrm_allocate_vfs(bp, bp->pdev->max_vfs);
3982 			if (rc) {
3983 				PMD_DRV_LOG(ERR, "Failed to allocate VFs\n");
3984 				goto error_free;
3985 			}
3986 		} else {
3987 			rc = bnxt_hwrm_allocate_pf_only(bp);
3988 			if (rc) {
3989 				PMD_DRV_LOG(ERR,
3990 					"Failed to allocate PF resources\n");
3991 				goto error_free;
3992 			}
3993 		}
3994 	}
3995 
3996 	bnxt_hwrm_port_led_qcaps(bp);
3997 
3998 	rc = bnxt_setup_int(bp);
3999 	if (rc)
4000 		goto error_free;
4001 
4002 	rc = bnxt_alloc_mem(bp);
4003 	if (rc)
4004 		goto error_free_int;
4005 
4006 	rc = bnxt_request_int(bp);
4007 	if (rc)
4008 		goto error_free_int;
4009 
4010 	bnxt_init_nic(bp);
4011 
4012 	return 0;
4013 
4014 error_free_int:
4015 	bnxt_disable_int(bp);
4016 	bnxt_hwrm_func_buf_unrgtr(bp);
4017 	bnxt_free_int(bp);
4018 	bnxt_free_mem(bp);
4019 error_free:
4020 	bnxt_dev_uninit(eth_dev);
4021 error:
4022 	return rc;
4023 }
4024 
4025 static int
4026 bnxt_dev_uninit(struct rte_eth_dev *eth_dev)
4027 {
4028 	struct bnxt *bp = eth_dev->data->dev_private;
4029 	int rc;
4030 
4031 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
4032 		return -EPERM;
4033 
4034 	PMD_DRV_LOG(DEBUG, "Calling Device uninit\n");
4035 	bnxt_disable_int(bp);
4036 	bnxt_free_int(bp);
4037 	bnxt_free_mem(bp);
4038 	if (bp->grp_info != NULL) {
4039 		rte_free(bp->grp_info);
4040 		bp->grp_info = NULL;
4041 	}
4042 	rc = bnxt_hwrm_func_driver_unregister(bp, 0);
4043 	bnxt_free_hwrm_resources(bp);
4044 
4045 	if (bp->tx_mem_zone) {
4046 		rte_memzone_free((const struct rte_memzone *)bp->tx_mem_zone);
4047 		bp->tx_mem_zone = NULL;
4048 	}
4049 
4050 	if (bp->rx_mem_zone) {
4051 		rte_memzone_free((const struct rte_memzone *)bp->rx_mem_zone);
4052 		bp->rx_mem_zone = NULL;
4053 	}
4054 
4055 	if (bp->dev_stopped == 0)
4056 		bnxt_dev_close_op(eth_dev);
4057 	if (bp->pf.vf_info)
4058 		rte_free(bp->pf.vf_info);
4059 	bnxt_free_ctx_mem(bp);
4060 	eth_dev->dev_ops = NULL;
4061 	eth_dev->rx_pkt_burst = NULL;
4062 	eth_dev->tx_pkt_burst = NULL;
4063 
4064 	return rc;
4065 }
4066 
4067 static int bnxt_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
4068 	struct rte_pci_device *pci_dev)
4069 {
4070 	return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct bnxt),
4071 		bnxt_dev_init);
4072 }
4073 
4074 static int bnxt_pci_remove(struct rte_pci_device *pci_dev)
4075 {
4076 	if (rte_eal_process_type() == RTE_PROC_PRIMARY)
4077 		return rte_eth_dev_pci_generic_remove(pci_dev,
4078 				bnxt_dev_uninit);
4079 	else
4080 		return rte_eth_dev_pci_generic_remove(pci_dev, NULL);
4081 }
4082 
4083 static struct rte_pci_driver bnxt_rte_pmd = {
4084 	.id_table = bnxt_pci_id_map,
4085 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
4086 	.probe = bnxt_pci_probe,
4087 	.remove = bnxt_pci_remove,
4088 };
4089 
4090 static bool
4091 is_device_supported(struct rte_eth_dev *dev, struct rte_pci_driver *drv)
4092 {
4093 	if (strcmp(dev->device->driver->name, drv->driver.name))
4094 		return false;
4095 
4096 	return true;
4097 }
4098 
4099 bool is_bnxt_supported(struct rte_eth_dev *dev)
4100 {
4101 	return is_device_supported(dev, &bnxt_rte_pmd);
4102 }
4103 
4104 RTE_INIT(bnxt_init_log)
4105 {
4106 	bnxt_logtype_driver = rte_log_register("pmd.net.bnxt.driver");
4107 	if (bnxt_logtype_driver >= 0)
4108 		rte_log_set_level(bnxt_logtype_driver, RTE_LOG_NOTICE);
4109 }
4110 
4111 RTE_PMD_REGISTER_PCI(net_bnxt, bnxt_rte_pmd);
4112 RTE_PMD_REGISTER_PCI_TABLE(net_bnxt, bnxt_pci_id_map);
4113 RTE_PMD_REGISTER_KMOD_DEP(net_bnxt, "* igb_uio | uio_pci_generic | vfio-pci");
4114