xref: /dpdk/drivers/net/bnxt/bnxt_ethdev.c (revision 4dc9409e01b41a8cd8d53bcc38344666fd42a7c9)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2021 Broadcom
3  * All rights reserved.
4  */
5 
6 #include <inttypes.h>
7 #include <stdbool.h>
8 
9 #include <rte_dev.h>
10 #include <ethdev_driver.h>
11 #include <ethdev_pci.h>
12 #include <rte_malloc.h>
13 #include <rte_cycles.h>
14 #include <rte_alarm.h>
15 #include <rte_kvargs.h>
16 #include <rte_vect.h>
17 
18 #include "bnxt.h"
19 #include "bnxt_filter.h"
20 #include "bnxt_hwrm.h"
21 #include "bnxt_irq.h"
22 #include "bnxt_reps.h"
23 #include "bnxt_ring.h"
24 #include "bnxt_rxq.h"
25 #include "bnxt_rxr.h"
26 #include "bnxt_stats.h"
27 #include "bnxt_txq.h"
28 #include "bnxt_txr.h"
29 #include "bnxt_vnic.h"
30 #include "hsi_struct_def_dpdk.h"
31 #include "bnxt_nvm_defs.h"
32 #include "bnxt_tf_common.h"
33 #include "ulp_flow_db.h"
34 #include "rte_pmd_bnxt.h"
35 
36 #define DRV_MODULE_NAME		"bnxt"
37 static const char bnxt_version[] =
38 	"Broadcom NetXtreme driver " DRV_MODULE_NAME;
39 
40 /*
41  * The set of PCI devices this driver supports
42  */
43 static const struct rte_pci_id bnxt_pci_id_map[] = {
44 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
45 			 BROADCOM_DEV_ID_STRATUS_NIC_VF1) },
46 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
47 			 BROADCOM_DEV_ID_STRATUS_NIC_VF2) },
48 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_STRATUS_NIC) },
49 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_VF) },
50 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_VF) },
51 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_NS2) },
52 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_VF) },
53 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_MF) },
54 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5741X_VF) },
55 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5731X_VF) },
56 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_MF) },
57 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412) },
58 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414) },
59 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_RJ45) },
60 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_RJ45) },
61 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412_MF) },
62 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_RJ45) },
63 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_SFP) },
64 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_SFP) },
65 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_SFP) },
66 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_MF) },
67 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_MF) },
68 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58802) },
69 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58804) },
70 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58808) },
71 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58802_VF) },
72 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57508) },
73 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57504) },
74 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57502) },
75 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57500_VF1) },
76 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57500_VF2) },
77 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57508_MF1) },
78 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57504_MF1) },
79 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57502_MF1) },
80 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57508_MF2) },
81 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57504_MF2) },
82 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57502_MF2) },
83 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58812) },
84 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58814) },
85 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58818) },
86 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58818_VF) },
87 	{ .vendor_id = 0, /* sentinel */ },
88 };
89 
90 #define BNXT_DEVARG_FLOW_XSTAT	"flow-xstat"
91 #define BNXT_DEVARG_MAX_NUM_KFLOWS  "max-num-kflows"
92 #define BNXT_DEVARG_REPRESENTOR	"representor"
93 #define BNXT_DEVARG_REP_BASED_PF  "rep-based-pf"
94 #define BNXT_DEVARG_REP_IS_PF  "rep-is-pf"
95 #define BNXT_DEVARG_REP_Q_R2F  "rep-q-r2f"
96 #define BNXT_DEVARG_REP_Q_F2R  "rep-q-f2r"
97 #define BNXT_DEVARG_REP_FC_R2F  "rep-fc-r2f"
98 #define BNXT_DEVARG_REP_FC_F2R  "rep-fc-f2r"
99 #define BNXT_DEVARG_APP_ID	"app-id"
100 
101 static const char *const bnxt_dev_args[] = {
102 	BNXT_DEVARG_REPRESENTOR,
103 	BNXT_DEVARG_FLOW_XSTAT,
104 	BNXT_DEVARG_MAX_NUM_KFLOWS,
105 	BNXT_DEVARG_REP_BASED_PF,
106 	BNXT_DEVARG_REP_IS_PF,
107 	BNXT_DEVARG_REP_Q_R2F,
108 	BNXT_DEVARG_REP_Q_F2R,
109 	BNXT_DEVARG_REP_FC_R2F,
110 	BNXT_DEVARG_REP_FC_F2R,
111 	BNXT_DEVARG_APP_ID,
112 	NULL
113 };
114 
115 /*
116  * app-id = an non-negative 8-bit number
117  */
118 #define BNXT_DEVARG_APP_ID_INVALID(val)			((val) > 255)
119 
120 /*
121  * flow_xstat == false to disable the feature
122  * flow_xstat == true to enable the feature
123  */
124 #define	BNXT_DEVARG_FLOW_XSTAT_INVALID(flow_xstat)	((flow_xstat) > 1)
125 
126 /*
127  * rep_is_pf == false to indicate VF representor
128  * rep_is_pf == true to indicate PF representor
129  */
130 #define	BNXT_DEVARG_REP_IS_PF_INVALID(rep_is_pf)	((rep_is_pf) > 1)
131 
132 /*
133  * rep_based_pf == Physical index of the PF
134  */
135 #define	BNXT_DEVARG_REP_BASED_PF_INVALID(rep_based_pf)	((rep_based_pf) > 15)
136 /*
137  * rep_q_r2f == Logical COS Queue index for the rep to endpoint direction
138  */
139 #define	BNXT_DEVARG_REP_Q_R2F_INVALID(rep_q_r2f)	((rep_q_r2f) > 3)
140 
141 /*
142  * rep_q_f2r == Logical COS Queue index for the endpoint to rep direction
143  */
144 #define	BNXT_DEVARG_REP_Q_F2R_INVALID(rep_q_f2r)	((rep_q_f2r) > 3)
145 
146 /*
147  * rep_fc_r2f == Flow control for the representor to endpoint direction
148  */
149 #define BNXT_DEVARG_REP_FC_R2F_INVALID(rep_fc_r2f)	((rep_fc_r2f) > 1)
150 
151 /*
152  * rep_fc_f2r == Flow control for the endpoint to representor direction
153  */
154 #define BNXT_DEVARG_REP_FC_F2R_INVALID(rep_fc_f2r)	((rep_fc_f2r) > 1)
155 
156 int bnxt_cfa_code_dynfield_offset = -1;
157 
158 /*
159  * max_num_kflows must be >= 32
160  * and must be a power-of-2 supported value
161  * return: 1 -> invalid
162  *         0 -> valid
163  */
164 static int bnxt_devarg_max_num_kflow_invalid(uint16_t max_num_kflows)
165 {
166 	if (max_num_kflows < 32 || !rte_is_power_of_2(max_num_kflows))
167 		return 1;
168 	return 0;
169 }
170 
171 static int bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask);
172 static int bnxt_dev_uninit(struct rte_eth_dev *eth_dev);
173 static int bnxt_init_resources(struct bnxt *bp, bool reconfig_dev);
174 static int bnxt_uninit_resources(struct bnxt *bp, bool reconfig_dev);
175 static void bnxt_cancel_fw_health_check(struct bnxt *bp);
176 static int bnxt_restore_vlan_filters(struct bnxt *bp);
177 static void bnxt_dev_recover(void *arg);
178 static void bnxt_free_error_recovery_info(struct bnxt *bp);
179 static void bnxt_free_rep_info(struct bnxt *bp);
180 
181 int is_bnxt_in_error(struct bnxt *bp)
182 {
183 	if (bp->flags & BNXT_FLAG_FATAL_ERROR)
184 		return -EIO;
185 	if (bp->flags & BNXT_FLAG_FW_RESET)
186 		return -EBUSY;
187 
188 	return 0;
189 }
190 
191 /***********************/
192 
193 /*
194  * High level utility functions
195  */
196 
197 static uint16_t bnxt_rss_ctxts(const struct bnxt *bp)
198 {
199 	unsigned int num_rss_rings = RTE_MIN(bp->rx_nr_rings,
200 					     BNXT_RSS_TBL_SIZE_P5);
201 
202 	if (!BNXT_CHIP_P5(bp))
203 		return 1;
204 
205 	return RTE_ALIGN_MUL_CEIL(num_rss_rings,
206 				  BNXT_RSS_ENTRIES_PER_CTX_P5) /
207 				  BNXT_RSS_ENTRIES_PER_CTX_P5;
208 }
209 
210 uint16_t bnxt_rss_hash_tbl_size(const struct bnxt *bp)
211 {
212 	if (!BNXT_CHIP_P5(bp))
213 		return HW_HASH_INDEX_SIZE;
214 
215 	return bnxt_rss_ctxts(bp) * BNXT_RSS_ENTRIES_PER_CTX_P5;
216 }
217 
218 static void bnxt_free_parent_info(struct bnxt *bp)
219 {
220 	rte_free(bp->parent);
221 	bp->parent = NULL;
222 }
223 
224 static void bnxt_free_pf_info(struct bnxt *bp)
225 {
226 	rte_free(bp->pf);
227 	bp->pf = NULL;
228 }
229 
230 static void bnxt_free_link_info(struct bnxt *bp)
231 {
232 	rte_free(bp->link_info);
233 	bp->link_info = NULL;
234 }
235 
236 static void bnxt_free_leds_info(struct bnxt *bp)
237 {
238 	if (BNXT_VF(bp))
239 		return;
240 
241 	rte_free(bp->leds);
242 	bp->leds = NULL;
243 }
244 
245 static void bnxt_free_flow_stats_info(struct bnxt *bp)
246 {
247 	rte_free(bp->flow_stat);
248 	bp->flow_stat = NULL;
249 }
250 
251 static void bnxt_free_cos_queues(struct bnxt *bp)
252 {
253 	rte_free(bp->rx_cos_queue);
254 	bp->rx_cos_queue = NULL;
255 	rte_free(bp->tx_cos_queue);
256 	bp->tx_cos_queue = NULL;
257 }
258 
259 static void bnxt_free_mem(struct bnxt *bp, bool reconfig)
260 {
261 	bnxt_free_filter_mem(bp);
262 	bnxt_free_vnic_attributes(bp);
263 	bnxt_free_vnic_mem(bp);
264 
265 	/* tx/rx rings are configured as part of *_queue_setup callbacks.
266 	 * If the number of rings change across fw update,
267 	 * we don't have much choice except to warn the user.
268 	 */
269 	if (!reconfig) {
270 		bnxt_free_stats(bp);
271 		bnxt_free_tx_rings(bp);
272 		bnxt_free_rx_rings(bp);
273 	}
274 	bnxt_free_async_cp_ring(bp);
275 	bnxt_free_rxtx_nq_ring(bp);
276 
277 	rte_free(bp->grp_info);
278 	bp->grp_info = NULL;
279 }
280 
281 static int bnxt_alloc_parent_info(struct bnxt *bp)
282 {
283 	bp->parent = rte_zmalloc("bnxt_parent_info",
284 				 sizeof(struct bnxt_parent_info), 0);
285 	if (bp->parent == NULL)
286 		return -ENOMEM;
287 
288 	return 0;
289 }
290 
291 static int bnxt_alloc_pf_info(struct bnxt *bp)
292 {
293 	bp->pf = rte_zmalloc("bnxt_pf_info", sizeof(struct bnxt_pf_info), 0);
294 	if (bp->pf == NULL)
295 		return -ENOMEM;
296 
297 	return 0;
298 }
299 
300 static int bnxt_alloc_link_info(struct bnxt *bp)
301 {
302 	bp->link_info =
303 		rte_zmalloc("bnxt_link_info", sizeof(struct bnxt_link_info), 0);
304 	if (bp->link_info == NULL)
305 		return -ENOMEM;
306 
307 	return 0;
308 }
309 
310 static int bnxt_alloc_leds_info(struct bnxt *bp)
311 {
312 	if (BNXT_VF(bp))
313 		return 0;
314 
315 	bp->leds = rte_zmalloc("bnxt_leds",
316 			       BNXT_MAX_LED * sizeof(struct bnxt_led_info),
317 			       0);
318 	if (bp->leds == NULL)
319 		return -ENOMEM;
320 
321 	return 0;
322 }
323 
324 static int bnxt_alloc_cos_queues(struct bnxt *bp)
325 {
326 	bp->rx_cos_queue =
327 		rte_zmalloc("bnxt_rx_cosq",
328 			    BNXT_COS_QUEUE_COUNT *
329 			    sizeof(struct bnxt_cos_queue_info),
330 			    0);
331 	if (bp->rx_cos_queue == NULL)
332 		return -ENOMEM;
333 
334 	bp->tx_cos_queue =
335 		rte_zmalloc("bnxt_tx_cosq",
336 			    BNXT_COS_QUEUE_COUNT *
337 			    sizeof(struct bnxt_cos_queue_info),
338 			    0);
339 	if (bp->tx_cos_queue == NULL)
340 		return -ENOMEM;
341 
342 	return 0;
343 }
344 
345 static int bnxt_alloc_flow_stats_info(struct bnxt *bp)
346 {
347 	bp->flow_stat = rte_zmalloc("bnxt_flow_xstat",
348 				    sizeof(struct bnxt_flow_stat_info), 0);
349 	if (bp->flow_stat == NULL)
350 		return -ENOMEM;
351 
352 	return 0;
353 }
354 
355 static int bnxt_alloc_mem(struct bnxt *bp, bool reconfig)
356 {
357 	int rc;
358 
359 	rc = bnxt_alloc_ring_grps(bp);
360 	if (rc)
361 		goto alloc_mem_err;
362 
363 	rc = bnxt_alloc_async_ring_struct(bp);
364 	if (rc)
365 		goto alloc_mem_err;
366 
367 	rc = bnxt_alloc_vnic_mem(bp);
368 	if (rc)
369 		goto alloc_mem_err;
370 
371 	rc = bnxt_alloc_vnic_attributes(bp);
372 	if (rc)
373 		goto alloc_mem_err;
374 
375 	rc = bnxt_alloc_filter_mem(bp);
376 	if (rc)
377 		goto alloc_mem_err;
378 
379 	rc = bnxt_alloc_async_cp_ring(bp);
380 	if (rc)
381 		goto alloc_mem_err;
382 
383 	rc = bnxt_alloc_rxtx_nq_ring(bp);
384 	if (rc)
385 		goto alloc_mem_err;
386 
387 	if (BNXT_FLOW_XSTATS_EN(bp)) {
388 		rc = bnxt_alloc_flow_stats_info(bp);
389 		if (rc)
390 			goto alloc_mem_err;
391 	}
392 
393 	return 0;
394 
395 alloc_mem_err:
396 	bnxt_free_mem(bp, reconfig);
397 	return rc;
398 }
399 
400 static int bnxt_setup_one_vnic(struct bnxt *bp, uint16_t vnic_id)
401 {
402 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
403 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
404 	uint64_t rx_offloads = dev_conf->rxmode.offloads;
405 	struct bnxt_rx_queue *rxq;
406 	unsigned int j;
407 	int rc;
408 
409 	rc = bnxt_vnic_grp_alloc(bp, vnic);
410 	if (rc)
411 		goto err_out;
412 
413 	PMD_DRV_LOG(DEBUG, "vnic[%d] = %p vnic->fw_grp_ids = %p\n",
414 		    vnic_id, vnic, vnic->fw_grp_ids);
415 
416 	rc = bnxt_hwrm_vnic_alloc(bp, vnic);
417 	if (rc)
418 		goto err_out;
419 
420 	/* Alloc RSS context only if RSS mode is enabled */
421 	if (dev_conf->rxmode.mq_mode & RTE_ETH_MQ_RX_RSS) {
422 		int j, nr_ctxs = bnxt_rss_ctxts(bp);
423 
424 		/* RSS table size in Thor is 512.
425 		 * Cap max Rx rings to same value
426 		 */
427 		if (bp->rx_nr_rings > BNXT_RSS_TBL_SIZE_P5) {
428 			PMD_DRV_LOG(ERR, "RxQ cnt %d > reta_size %d\n",
429 				    bp->rx_nr_rings, BNXT_RSS_TBL_SIZE_P5);
430 			goto err_out;
431 		}
432 
433 		rc = 0;
434 		for (j = 0; j < nr_ctxs; j++) {
435 			rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, j);
436 			if (rc)
437 				break;
438 		}
439 		if (rc) {
440 			PMD_DRV_LOG(ERR,
441 				    "HWRM vnic %d ctx %d alloc failure rc: %x\n",
442 				    vnic_id, j, rc);
443 			goto err_out;
444 		}
445 		vnic->num_lb_ctxts = nr_ctxs;
446 	}
447 
448 	/*
449 	 * Firmware sets pf pair in default vnic cfg. If the VLAN strip
450 	 * setting is not available at this time, it will not be
451 	 * configured correctly in the CFA.
452 	 */
453 	if (rx_offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP)
454 		vnic->vlan_strip = true;
455 	else
456 		vnic->vlan_strip = false;
457 
458 	rc = bnxt_hwrm_vnic_cfg(bp, vnic);
459 	if (rc)
460 		goto err_out;
461 
462 	rc = bnxt_set_hwrm_vnic_filters(bp, vnic);
463 	if (rc)
464 		goto err_out;
465 
466 	for (j = 0; j < bp->rx_num_qs_per_vnic; j++) {
467 		rxq = bp->eth_dev->data->rx_queues[j];
468 
469 		PMD_DRV_LOG(DEBUG,
470 			    "rxq[%d]->vnic=%p vnic->fw_grp_ids=%p\n",
471 			    j, rxq->vnic, rxq->vnic->fw_grp_ids);
472 
473 		if (BNXT_HAS_RING_GRPS(bp) && rxq->rx_deferred_start)
474 			rxq->vnic->fw_grp_ids[j] = INVALID_HW_RING_ID;
475 		else
476 			vnic->rx_queue_cnt++;
477 	}
478 
479 	PMD_DRV_LOG(DEBUG, "vnic->rx_queue_cnt = %d\n", vnic->rx_queue_cnt);
480 
481 	rc = bnxt_vnic_rss_configure(bp, vnic);
482 	if (rc)
483 		goto err_out;
484 
485 	bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
486 
487 	rc = bnxt_hwrm_vnic_tpa_cfg(bp, vnic,
488 				    (rx_offloads & RTE_ETH_RX_OFFLOAD_TCP_LRO) ?
489 				    true : false);
490 	if (rc)
491 		goto err_out;
492 
493 	return 0;
494 err_out:
495 	PMD_DRV_LOG(ERR, "HWRM vnic %d cfg failure rc: %x\n",
496 		    vnic_id, rc);
497 	return rc;
498 }
499 
500 static int bnxt_register_fc_ctx_mem(struct bnxt *bp)
501 {
502 	int rc = 0;
503 
504 	rc = bnxt_hwrm_ctx_rgtr(bp, bp->flow_stat->rx_fc_in_tbl.dma,
505 				&bp->flow_stat->rx_fc_in_tbl.ctx_id);
506 	if (rc)
507 		return rc;
508 
509 	PMD_DRV_LOG(DEBUG,
510 		    "rx_fc_in_tbl.va = %p rx_fc_in_tbl.dma = %p"
511 		    " rx_fc_in_tbl.ctx_id = %d\n",
512 		    bp->flow_stat->rx_fc_in_tbl.va,
513 		    (void *)((uintptr_t)bp->flow_stat->rx_fc_in_tbl.dma),
514 		    bp->flow_stat->rx_fc_in_tbl.ctx_id);
515 
516 	rc = bnxt_hwrm_ctx_rgtr(bp, bp->flow_stat->rx_fc_out_tbl.dma,
517 				&bp->flow_stat->rx_fc_out_tbl.ctx_id);
518 	if (rc)
519 		return rc;
520 
521 	PMD_DRV_LOG(DEBUG,
522 		    "rx_fc_out_tbl.va = %p rx_fc_out_tbl.dma = %p"
523 		    " rx_fc_out_tbl.ctx_id = %d\n",
524 		    bp->flow_stat->rx_fc_out_tbl.va,
525 		    (void *)((uintptr_t)bp->flow_stat->rx_fc_out_tbl.dma),
526 		    bp->flow_stat->rx_fc_out_tbl.ctx_id);
527 
528 	rc = bnxt_hwrm_ctx_rgtr(bp, bp->flow_stat->tx_fc_in_tbl.dma,
529 				&bp->flow_stat->tx_fc_in_tbl.ctx_id);
530 	if (rc)
531 		return rc;
532 
533 	PMD_DRV_LOG(DEBUG,
534 		    "tx_fc_in_tbl.va = %p tx_fc_in_tbl.dma = %p"
535 		    " tx_fc_in_tbl.ctx_id = %d\n",
536 		    bp->flow_stat->tx_fc_in_tbl.va,
537 		    (void *)((uintptr_t)bp->flow_stat->tx_fc_in_tbl.dma),
538 		    bp->flow_stat->tx_fc_in_tbl.ctx_id);
539 
540 	rc = bnxt_hwrm_ctx_rgtr(bp, bp->flow_stat->tx_fc_out_tbl.dma,
541 				&bp->flow_stat->tx_fc_out_tbl.ctx_id);
542 	if (rc)
543 		return rc;
544 
545 	PMD_DRV_LOG(DEBUG,
546 		    "tx_fc_out_tbl.va = %p tx_fc_out_tbl.dma = %p"
547 		    " tx_fc_out_tbl.ctx_id = %d\n",
548 		    bp->flow_stat->tx_fc_out_tbl.va,
549 		    (void *)((uintptr_t)bp->flow_stat->tx_fc_out_tbl.dma),
550 		    bp->flow_stat->tx_fc_out_tbl.ctx_id);
551 
552 	memset(bp->flow_stat->rx_fc_out_tbl.va,
553 	       0,
554 	       bp->flow_stat->rx_fc_out_tbl.size);
555 	rc = bnxt_hwrm_cfa_counter_cfg(bp, BNXT_DIR_RX,
556 				       CFA_COUNTER_CFG_IN_COUNTER_TYPE_FC,
557 				       bp->flow_stat->rx_fc_out_tbl.ctx_id,
558 				       bp->flow_stat->max_fc,
559 				       true);
560 	if (rc)
561 		return rc;
562 
563 	memset(bp->flow_stat->tx_fc_out_tbl.va,
564 	       0,
565 	       bp->flow_stat->tx_fc_out_tbl.size);
566 	rc = bnxt_hwrm_cfa_counter_cfg(bp, BNXT_DIR_TX,
567 				       CFA_COUNTER_CFG_IN_COUNTER_TYPE_FC,
568 				       bp->flow_stat->tx_fc_out_tbl.ctx_id,
569 				       bp->flow_stat->max_fc,
570 				       true);
571 
572 	return rc;
573 }
574 
575 static int bnxt_alloc_ctx_mem_buf(struct bnxt *bp, char *type, size_t size,
576 				  struct bnxt_ctx_mem_buf_info *ctx)
577 {
578 	if (!ctx)
579 		return -EINVAL;
580 
581 	ctx->va = rte_zmalloc_socket(type, size, 0,
582 				     bp->eth_dev->device->numa_node);
583 	if (ctx->va == NULL)
584 		return -ENOMEM;
585 	rte_mem_lock_page(ctx->va);
586 	ctx->size = size;
587 	ctx->dma = rte_mem_virt2iova(ctx->va);
588 	if (ctx->dma == RTE_BAD_IOVA)
589 		return -ENOMEM;
590 
591 	return 0;
592 }
593 
594 static int bnxt_init_fc_ctx_mem(struct bnxt *bp)
595 {
596 	struct rte_pci_device *pdev = bp->pdev;
597 	char type[RTE_MEMZONE_NAMESIZE];
598 	uint16_t max_fc;
599 	int rc = 0;
600 
601 	max_fc = bp->flow_stat->max_fc;
602 
603 	sprintf(type, "bnxt_rx_fc_in_" PCI_PRI_FMT, pdev->addr.domain,
604 		pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
605 	/* 4 bytes for each counter-id */
606 	rc = bnxt_alloc_ctx_mem_buf(bp, type,
607 				    max_fc * 4,
608 				    &bp->flow_stat->rx_fc_in_tbl);
609 	if (rc)
610 		return rc;
611 
612 	sprintf(type, "bnxt_rx_fc_out_" PCI_PRI_FMT, pdev->addr.domain,
613 		pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
614 	/* 16 bytes for each counter - 8 bytes pkt_count, 8 bytes byte_count */
615 	rc = bnxt_alloc_ctx_mem_buf(bp, type,
616 				    max_fc * 16,
617 				    &bp->flow_stat->rx_fc_out_tbl);
618 	if (rc)
619 		return rc;
620 
621 	sprintf(type, "bnxt_tx_fc_in_" PCI_PRI_FMT, pdev->addr.domain,
622 		pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
623 	/* 4 bytes for each counter-id */
624 	rc = bnxt_alloc_ctx_mem_buf(bp, type,
625 				    max_fc * 4,
626 				    &bp->flow_stat->tx_fc_in_tbl);
627 	if (rc)
628 		return rc;
629 
630 	sprintf(type, "bnxt_tx_fc_out_" PCI_PRI_FMT, pdev->addr.domain,
631 		pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
632 	/* 16 bytes for each counter - 8 bytes pkt_count, 8 bytes byte_count */
633 	rc = bnxt_alloc_ctx_mem_buf(bp, type,
634 				    max_fc * 16,
635 				    &bp->flow_stat->tx_fc_out_tbl);
636 	if (rc)
637 		return rc;
638 
639 	rc = bnxt_register_fc_ctx_mem(bp);
640 
641 	return rc;
642 }
643 
644 static int bnxt_init_ctx_mem(struct bnxt *bp)
645 {
646 	int rc = 0;
647 
648 	if (!(bp->fw_cap & BNXT_FW_CAP_ADV_FLOW_COUNTERS) ||
649 	    !(BNXT_PF(bp) || BNXT_VF_IS_TRUSTED(bp)) ||
650 	    !BNXT_FLOW_XSTATS_EN(bp))
651 		return 0;
652 
653 	rc = bnxt_hwrm_cfa_counter_qcaps(bp, &bp->flow_stat->max_fc);
654 	if (rc)
655 		return rc;
656 
657 	rc = bnxt_init_fc_ctx_mem(bp);
658 
659 	return rc;
660 }
661 
662 static int bnxt_update_phy_setting(struct bnxt *bp)
663 {
664 	struct rte_eth_link new;
665 	int rc;
666 
667 	rc = bnxt_get_hwrm_link_config(bp, &new);
668 	if (rc) {
669 		PMD_DRV_LOG(ERR, "Failed to get link settings\n");
670 		return rc;
671 	}
672 
673 	/*
674 	 * On BCM957508-N2100 adapters, FW will not allow any user other
675 	 * than BMC to shutdown the port. bnxt_get_hwrm_link_config() call
676 	 * always returns link up. Force phy update always in that case.
677 	 */
678 	if (!new.link_status || IS_BNXT_DEV_957508_N2100(bp)) {
679 		rc = bnxt_set_hwrm_link_config(bp, true);
680 		if (rc) {
681 			PMD_DRV_LOG(ERR, "Failed to update PHY settings\n");
682 			return rc;
683 		}
684 	}
685 
686 	return rc;
687 }
688 
689 static void bnxt_free_prev_ring_stats(struct bnxt *bp)
690 {
691 	rte_free(bp->prev_rx_ring_stats);
692 	rte_free(bp->prev_tx_ring_stats);
693 
694 	bp->prev_rx_ring_stats = NULL;
695 	bp->prev_tx_ring_stats = NULL;
696 }
697 
698 static int bnxt_alloc_prev_ring_stats(struct bnxt *bp)
699 {
700 	bp->prev_rx_ring_stats =  rte_zmalloc("bnxt_prev_rx_ring_stats",
701 					      sizeof(struct bnxt_ring_stats) *
702 					      bp->rx_cp_nr_rings,
703 					      0);
704 	if (bp->prev_rx_ring_stats == NULL)
705 		return -ENOMEM;
706 
707 	bp->prev_tx_ring_stats = rte_zmalloc("bnxt_prev_tx_ring_stats",
708 					     sizeof(struct bnxt_ring_stats) *
709 					     bp->tx_cp_nr_rings,
710 					     0);
711 	if (bp->prev_tx_ring_stats == NULL)
712 		goto error;
713 
714 	return 0;
715 
716 error:
717 	bnxt_free_prev_ring_stats(bp);
718 	return -ENOMEM;
719 }
720 
721 static int bnxt_start_nic(struct bnxt *bp)
722 {
723 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(bp->eth_dev);
724 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
725 	uint32_t intr_vector = 0;
726 	uint32_t queue_id, base = BNXT_MISC_VEC_ID;
727 	uint32_t vec = BNXT_MISC_VEC_ID;
728 	unsigned int i, j;
729 	int rc;
730 
731 	if (bp->eth_dev->data->mtu > RTE_ETHER_MTU)
732 		bp->flags |= BNXT_FLAG_JUMBO;
733 	else
734 		bp->flags &= ~BNXT_FLAG_JUMBO;
735 
736 	/* THOR does not support ring groups.
737 	 * But we will use the array to save RSS context IDs.
738 	 */
739 	if (BNXT_CHIP_P5(bp))
740 		bp->max_ring_grps = BNXT_MAX_RSS_CTXTS_P5;
741 
742 	rc = bnxt_alloc_hwrm_rings(bp);
743 	if (rc) {
744 		PMD_DRV_LOG(ERR, "HWRM ring alloc failure rc: %x\n", rc);
745 		goto err_out;
746 	}
747 
748 	rc = bnxt_alloc_all_hwrm_ring_grps(bp);
749 	if (rc) {
750 		PMD_DRV_LOG(ERR, "HWRM ring grp alloc failure: %x\n", rc);
751 		goto err_out;
752 	}
753 
754 	if (!(bp->vnic_cap_flags & BNXT_VNIC_CAP_COS_CLASSIFY))
755 		goto skip_cosq_cfg;
756 
757 	for (j = 0, i = 0; i < BNXT_COS_QUEUE_COUNT; i++) {
758 		if (bp->rx_cos_queue[i].id != 0xff) {
759 			struct bnxt_vnic_info *vnic = &bp->vnic_info[j++];
760 
761 			if (!vnic) {
762 				PMD_DRV_LOG(ERR,
763 					    "Num pools more than FW profile\n");
764 				rc = -EINVAL;
765 				goto err_out;
766 			}
767 			vnic->cos_queue_id = bp->rx_cos_queue[i].id;
768 			bp->rx_cosq_cnt++;
769 		}
770 	}
771 
772 skip_cosq_cfg:
773 	rc = bnxt_mq_rx_configure(bp);
774 	if (rc) {
775 		PMD_DRV_LOG(ERR, "MQ mode configure failure rc: %x\n", rc);
776 		goto err_out;
777 	}
778 
779 	for (j = 0; j < bp->rx_nr_rings; j++) {
780 		struct bnxt_rx_queue *rxq = bp->rx_queues[j];
781 
782 		if (!rxq->rx_deferred_start) {
783 			bp->eth_dev->data->rx_queue_state[j] =
784 				RTE_ETH_QUEUE_STATE_STARTED;
785 			rxq->rx_started = true;
786 		}
787 	}
788 
789 	/* default vnic 0 */
790 	rc = bnxt_setup_one_vnic(bp, 0);
791 	if (rc)
792 		goto err_out;
793 	/* VNIC configuration */
794 	if (BNXT_RFS_NEEDS_VNIC(bp)) {
795 		for (i = 1; i < bp->nr_vnics; i++) {
796 			rc = bnxt_setup_one_vnic(bp, i);
797 			if (rc)
798 				goto err_out;
799 		}
800 	}
801 
802 	for (j = 0; j < bp->tx_nr_rings; j++) {
803 		struct bnxt_tx_queue *txq = bp->tx_queues[j];
804 
805 		if (!txq->tx_deferred_start) {
806 			bp->eth_dev->data->tx_queue_state[j] =
807 				RTE_ETH_QUEUE_STATE_STARTED;
808 			txq->tx_started = true;
809 		}
810 	}
811 
812 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, &bp->vnic_info[0], 0, NULL);
813 	if (rc) {
814 		PMD_DRV_LOG(ERR,
815 			"HWRM cfa l2 rx mask failure rc: %x\n", rc);
816 		goto err_out;
817 	}
818 
819 	/* check and configure queue intr-vector mapping */
820 	if ((rte_intr_cap_multiple(intr_handle) ||
821 	     !RTE_ETH_DEV_SRIOV(bp->eth_dev).active) &&
822 	    bp->eth_dev->data->dev_conf.intr_conf.rxq != 0) {
823 		intr_vector = bp->eth_dev->data->nb_rx_queues;
824 		PMD_DRV_LOG(DEBUG, "intr_vector = %d\n", intr_vector);
825 		if (intr_vector > bp->rx_cp_nr_rings) {
826 			PMD_DRV_LOG(ERR, "At most %d intr queues supported",
827 					bp->rx_cp_nr_rings);
828 			return -ENOTSUP;
829 		}
830 		rc = rte_intr_efd_enable(intr_handle, intr_vector);
831 		if (rc)
832 			return rc;
833 	}
834 
835 	if (rte_intr_dp_is_en(intr_handle)) {
836 		if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
837 					bp->eth_dev->data->nb_rx_queues)) {
838 			PMD_DRV_LOG(ERR, "Failed to allocate %d rx_queues"
839 				" intr_vec", bp->eth_dev->data->nb_rx_queues);
840 			rc = -ENOMEM;
841 			goto err_out;
842 		}
843 		PMD_DRV_LOG(DEBUG, "intr_handle->nb_efd = %d "
844 			    "intr_handle->max_intr = %d\n",
845 			    rte_intr_nb_efd_get(intr_handle),
846 			    rte_intr_max_intr_get(intr_handle));
847 		for (queue_id = 0; queue_id < bp->eth_dev->data->nb_rx_queues;
848 		     queue_id++) {
849 			rte_intr_vec_list_index_set(intr_handle,
850 					queue_id, vec + BNXT_RX_VEC_START);
851 			if (vec < base + rte_intr_nb_efd_get(intr_handle)
852 			    - 1)
853 				vec++;
854 		}
855 	}
856 
857 	/* enable uio/vfio intr/eventfd mapping */
858 	rc = rte_intr_enable(intr_handle);
859 #ifndef RTE_EXEC_ENV_FREEBSD
860 	/* In FreeBSD OS, nic_uio driver does not support interrupts */
861 	if (rc)
862 		goto err_out;
863 #endif
864 
865 	rc = bnxt_update_phy_setting(bp);
866 	if (rc)
867 		goto err_out;
868 
869 	bp->mark_table = rte_zmalloc("bnxt_mark_table", BNXT_MARK_TABLE_SZ, 0);
870 	if (!bp->mark_table)
871 		PMD_DRV_LOG(ERR, "Allocation of mark table failed\n");
872 
873 	return 0;
874 
875 err_out:
876 	/* Some of the error status returned by FW may not be from errno.h */
877 	if (rc > 0)
878 		rc = -EIO;
879 
880 	return rc;
881 }
882 
883 static int bnxt_shutdown_nic(struct bnxt *bp)
884 {
885 	bnxt_free_all_hwrm_resources(bp);
886 	bnxt_free_all_filters(bp);
887 	bnxt_free_all_vnics(bp);
888 	return 0;
889 }
890 
891 /*
892  * Device configuration and status function
893  */
894 
895 uint32_t bnxt_get_speed_capabilities(struct bnxt *bp)
896 {
897 	uint32_t link_speed = 0;
898 	uint32_t speed_capa = 0;
899 
900 	if (bp->link_info == NULL)
901 		return 0;
902 
903 	link_speed = bp->link_info->support_speeds;
904 
905 	/* If PAM4 is configured, use PAM4 supported speed */
906 	if (link_speed == 0 && bp->link_info->support_pam4_speeds > 0)
907 		link_speed = bp->link_info->support_pam4_speeds;
908 
909 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_100MB)
910 		speed_capa |= RTE_ETH_LINK_SPEED_100M;
911 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_100MBHD)
912 		speed_capa |= RTE_ETH_LINK_SPEED_100M_HD;
913 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_1GB)
914 		speed_capa |= RTE_ETH_LINK_SPEED_1G;
915 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_2_5GB)
916 		speed_capa |= RTE_ETH_LINK_SPEED_2_5G;
917 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_10GB)
918 		speed_capa |= RTE_ETH_LINK_SPEED_10G;
919 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_20GB)
920 		speed_capa |= RTE_ETH_LINK_SPEED_20G;
921 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_25GB)
922 		speed_capa |= RTE_ETH_LINK_SPEED_25G;
923 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_40GB)
924 		speed_capa |= RTE_ETH_LINK_SPEED_40G;
925 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_50GB)
926 		speed_capa |= RTE_ETH_LINK_SPEED_50G;
927 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_100GB)
928 		speed_capa |= RTE_ETH_LINK_SPEED_100G;
929 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_PAM4_SPEEDS_50G)
930 		speed_capa |= RTE_ETH_LINK_SPEED_50G;
931 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_PAM4_SPEEDS_100G)
932 		speed_capa |= RTE_ETH_LINK_SPEED_100G;
933 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_PAM4_SPEEDS_200G)
934 		speed_capa |= RTE_ETH_LINK_SPEED_200G;
935 
936 	if (bp->link_info->auto_mode ==
937 	    HWRM_PORT_PHY_QCFG_OUTPUT_AUTO_MODE_NONE)
938 		speed_capa |= RTE_ETH_LINK_SPEED_FIXED;
939 
940 	return speed_capa;
941 }
942 
943 static int bnxt_dev_info_get_op(struct rte_eth_dev *eth_dev,
944 				struct rte_eth_dev_info *dev_info)
945 {
946 	struct rte_pci_device *pdev = RTE_DEV_TO_PCI(eth_dev->device);
947 	struct bnxt *bp = eth_dev->data->dev_private;
948 	uint16_t max_vnics, i, j, vpool, vrxq;
949 	unsigned int max_rx_rings;
950 	int rc;
951 
952 	rc = is_bnxt_in_error(bp);
953 	if (rc)
954 		return rc;
955 
956 	/* MAC Specifics */
957 	dev_info->max_mac_addrs = bp->max_l2_ctx;
958 	dev_info->max_hash_mac_addrs = 0;
959 
960 	/* PF/VF specifics */
961 	if (BNXT_PF(bp))
962 		dev_info->max_vfs = pdev->max_vfs;
963 
964 	max_rx_rings = bnxt_max_rings(bp);
965 	/* For the sake of symmetry, max_rx_queues = max_tx_queues */
966 	dev_info->max_rx_queues = max_rx_rings;
967 	dev_info->max_tx_queues = max_rx_rings;
968 	dev_info->reta_size = bnxt_rss_hash_tbl_size(bp);
969 	dev_info->hash_key_size = HW_HASH_KEY_SIZE;
970 	max_vnics = bp->max_vnics;
971 
972 	/* MTU specifics */
973 	dev_info->min_mtu = RTE_ETHER_MIN_MTU;
974 	dev_info->max_mtu = BNXT_MAX_MTU;
975 
976 	/* Fast path specifics */
977 	dev_info->min_rx_bufsize = 1;
978 	dev_info->max_rx_pktlen = BNXT_MAX_PKT_LEN;
979 
980 	dev_info->rx_offload_capa = BNXT_DEV_RX_OFFLOAD_SUPPORT;
981 	if (bp->flags & BNXT_FLAG_PTP_SUPPORTED)
982 		dev_info->rx_offload_capa |= RTE_ETH_RX_OFFLOAD_TIMESTAMP;
983 	if (bp->vnic_cap_flags & BNXT_VNIC_CAP_VLAN_RX_STRIP)
984 		dev_info->rx_offload_capa |= RTE_ETH_RX_OFFLOAD_VLAN_STRIP;
985 	dev_info->tx_queue_offload_capa = RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
986 	dev_info->tx_offload_capa = BNXT_DEV_TX_OFFLOAD_SUPPORT |
987 				    dev_info->tx_queue_offload_capa;
988 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
989 		dev_info->tx_offload_capa |= RTE_ETH_TX_OFFLOAD_VLAN_INSERT;
990 	dev_info->flow_type_rss_offloads = BNXT_ETH_RSS_SUPPORT;
991 
992 	dev_info->speed_capa = bnxt_get_speed_capabilities(bp);
993 	dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
994 			     RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
995 	dev_info->dev_capa &= ~RTE_ETH_DEV_CAPA_FLOW_RULE_KEEP;
996 
997 	dev_info->default_rxconf = (struct rte_eth_rxconf) {
998 		.rx_thresh = {
999 			.pthresh = 8,
1000 			.hthresh = 8,
1001 			.wthresh = 0,
1002 		},
1003 		.rx_free_thresh = 32,
1004 		.rx_drop_en = BNXT_DEFAULT_RX_DROP_EN,
1005 	};
1006 
1007 	dev_info->default_txconf = (struct rte_eth_txconf) {
1008 		.tx_thresh = {
1009 			.pthresh = 32,
1010 			.hthresh = 0,
1011 			.wthresh = 0,
1012 		},
1013 		.tx_free_thresh = 32,
1014 		.tx_rs_thresh = 32,
1015 	};
1016 	eth_dev->data->dev_conf.intr_conf.lsc = 1;
1017 
1018 	dev_info->rx_desc_lim.nb_min = BNXT_MIN_RING_DESC;
1019 	dev_info->rx_desc_lim.nb_max = BNXT_MAX_RX_RING_DESC;
1020 	dev_info->tx_desc_lim.nb_min = BNXT_MIN_RING_DESC;
1021 	dev_info->tx_desc_lim.nb_max = BNXT_MAX_TX_RING_DESC;
1022 
1023 	if (BNXT_PF(bp) || BNXT_VF_IS_TRUSTED(bp)) {
1024 		dev_info->switch_info.name = eth_dev->device->name;
1025 		dev_info->switch_info.domain_id = bp->switch_domain_id;
1026 		dev_info->switch_info.port_id =
1027 				BNXT_PF(bp) ? BNXT_SWITCH_PORT_ID_PF :
1028 				    BNXT_SWITCH_PORT_ID_TRUSTED_VF;
1029 	}
1030 
1031 	/*
1032 	 * TODO: default_rxconf, default_txconf, rx_desc_lim, and tx_desc_lim
1033 	 *       need further investigation.
1034 	 */
1035 
1036 	/* VMDq resources */
1037 	vpool = 64; /* RTE_ETH_64_POOLS */
1038 	vrxq = 128; /* RTE_ETH_VMDQ_DCB_NUM_QUEUES */
1039 	for (i = 0; i < 4; vpool >>= 1, i++) {
1040 		if (max_vnics > vpool) {
1041 			for (j = 0; j < 5; vrxq >>= 1, j++) {
1042 				if (dev_info->max_rx_queues > vrxq) {
1043 					if (vpool > vrxq)
1044 						vpool = vrxq;
1045 					goto found;
1046 				}
1047 			}
1048 			/* Not enough resources to support VMDq */
1049 			break;
1050 		}
1051 	}
1052 	/* Not enough resources to support VMDq */
1053 	vpool = 0;
1054 	vrxq = 0;
1055 found:
1056 	dev_info->max_vmdq_pools = vpool;
1057 	dev_info->vmdq_queue_num = vrxq;
1058 
1059 	dev_info->vmdq_pool_base = 0;
1060 	dev_info->vmdq_queue_base = 0;
1061 
1062 	return 0;
1063 }
1064 
1065 /* Configure the device based on the configuration provided */
1066 static int bnxt_dev_configure_op(struct rte_eth_dev *eth_dev)
1067 {
1068 	struct bnxt *bp = eth_dev->data->dev_private;
1069 	uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads;
1070 	int rc;
1071 
1072 	bp->rx_queues = (void *)eth_dev->data->rx_queues;
1073 	bp->tx_queues = (void *)eth_dev->data->tx_queues;
1074 	bp->tx_nr_rings = eth_dev->data->nb_tx_queues;
1075 	bp->rx_nr_rings = eth_dev->data->nb_rx_queues;
1076 
1077 	rc = is_bnxt_in_error(bp);
1078 	if (rc)
1079 		return rc;
1080 
1081 	if (BNXT_VF(bp) && (bp->flags & BNXT_FLAG_NEW_RM)) {
1082 		rc = bnxt_hwrm_check_vf_rings(bp);
1083 		if (rc) {
1084 			PMD_DRV_LOG(ERR, "HWRM insufficient resources\n");
1085 			return -ENOSPC;
1086 		}
1087 
1088 		/* If a resource has already been allocated - in this case
1089 		 * it is the async completion ring, free it. Reallocate it after
1090 		 * resource reservation. This will ensure the resource counts
1091 		 * are calculated correctly.
1092 		 */
1093 
1094 		pthread_mutex_lock(&bp->def_cp_lock);
1095 
1096 		if (!BNXT_HAS_NQ(bp) && bp->async_cp_ring) {
1097 			bnxt_disable_int(bp);
1098 			bnxt_free_cp_ring(bp, bp->async_cp_ring);
1099 		}
1100 
1101 		rc = bnxt_hwrm_func_reserve_vf_resc(bp, false);
1102 		if (rc) {
1103 			PMD_DRV_LOG(ERR, "HWRM resource alloc fail:%x\n", rc);
1104 			pthread_mutex_unlock(&bp->def_cp_lock);
1105 			return -ENOSPC;
1106 		}
1107 
1108 		if (!BNXT_HAS_NQ(bp) && bp->async_cp_ring) {
1109 			rc = bnxt_alloc_async_cp_ring(bp);
1110 			if (rc) {
1111 				pthread_mutex_unlock(&bp->def_cp_lock);
1112 				return rc;
1113 			}
1114 			bnxt_enable_int(bp);
1115 		}
1116 
1117 		pthread_mutex_unlock(&bp->def_cp_lock);
1118 	}
1119 
1120 	/* Inherit new configurations */
1121 	if (eth_dev->data->nb_rx_queues > bp->max_rx_rings ||
1122 	    eth_dev->data->nb_tx_queues > bp->max_tx_rings ||
1123 	    eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues
1124 		+ BNXT_NUM_ASYNC_CPR(bp) > bp->max_cp_rings ||
1125 	    eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues >
1126 	    bp->max_stat_ctx)
1127 		goto resource_error;
1128 
1129 	if (BNXT_HAS_RING_GRPS(bp) &&
1130 	    (uint32_t)(eth_dev->data->nb_rx_queues) > bp->max_ring_grps)
1131 		goto resource_error;
1132 
1133 	if (!(eth_dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS) &&
1134 	    bp->max_vnics < eth_dev->data->nb_rx_queues)
1135 		goto resource_error;
1136 
1137 	bp->rx_cp_nr_rings = bp->rx_nr_rings;
1138 	bp->tx_cp_nr_rings = bp->tx_nr_rings;
1139 
1140 	if (eth_dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
1141 		rx_offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
1142 	eth_dev->data->dev_conf.rxmode.offloads = rx_offloads;
1143 
1144 	bnxt_mtu_set_op(eth_dev, eth_dev->data->mtu);
1145 
1146 	return 0;
1147 
1148 resource_error:
1149 	PMD_DRV_LOG(ERR,
1150 		    "Insufficient resources to support requested config\n");
1151 	PMD_DRV_LOG(ERR,
1152 		    "Num Queues Requested: Tx %d, Rx %d\n",
1153 		    eth_dev->data->nb_tx_queues,
1154 		    eth_dev->data->nb_rx_queues);
1155 	PMD_DRV_LOG(ERR,
1156 		    "MAX: TxQ %d, RxQ %d, CQ %d Stat %d, Grp %d, Vnic %d\n",
1157 		    bp->max_tx_rings, bp->max_rx_rings, bp->max_cp_rings,
1158 		    bp->max_stat_ctx, bp->max_ring_grps, bp->max_vnics);
1159 	return -ENOSPC;
1160 }
1161 
1162 void bnxt_print_link_info(struct rte_eth_dev *eth_dev)
1163 {
1164 	struct rte_eth_link *link = &eth_dev->data->dev_link;
1165 
1166 	if (link->link_status)
1167 		PMD_DRV_LOG(DEBUG, "Port %d Link Up - speed %u Mbps - %s\n",
1168 			eth_dev->data->port_id,
1169 			(uint32_t)link->link_speed,
1170 			(link->link_duplex == RTE_ETH_LINK_FULL_DUPLEX) ?
1171 			("full-duplex") : ("half-duplex\n"));
1172 	else
1173 		PMD_DRV_LOG(INFO, "Port %d Link Down\n",
1174 			eth_dev->data->port_id);
1175 }
1176 
1177 /*
1178  * Determine whether the current configuration requires support for scattered
1179  * receive; return 1 if scattered receive is required and 0 if not.
1180  */
1181 static int bnxt_scattered_rx(struct rte_eth_dev *eth_dev)
1182 {
1183 	uint32_t overhead = BNXT_MAX_PKT_LEN - BNXT_MAX_MTU;
1184 	uint16_t buf_size;
1185 	int i;
1186 
1187 	if (eth_dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_SCATTER)
1188 		return 1;
1189 
1190 	if (eth_dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_TCP_LRO)
1191 		return 1;
1192 
1193 	for (i = 0; i < eth_dev->data->nb_rx_queues; i++) {
1194 		struct bnxt_rx_queue *rxq = eth_dev->data->rx_queues[i];
1195 
1196 		buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
1197 				      RTE_PKTMBUF_HEADROOM);
1198 		if (eth_dev->data->mtu + overhead > buf_size)
1199 			return 1;
1200 	}
1201 	return 0;
1202 }
1203 
1204 static eth_rx_burst_t
1205 bnxt_receive_function(struct rte_eth_dev *eth_dev)
1206 {
1207 	struct bnxt *bp = eth_dev->data->dev_private;
1208 
1209 	/* Disable vector mode RX for Stingray2 for now */
1210 	if (BNXT_CHIP_SR2(bp)) {
1211 		bp->flags &= ~BNXT_FLAG_RX_VECTOR_PKT_MODE;
1212 		return bnxt_recv_pkts;
1213 	}
1214 
1215 #if (defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)) && \
1216 	!defined(RTE_LIBRTE_IEEE1588)
1217 
1218 	/* Vector mode receive cannot be enabled if scattered rx is in use. */
1219 	if (eth_dev->data->scattered_rx)
1220 		goto use_scalar_rx;
1221 
1222 	/*
1223 	 * Vector mode receive cannot be enabled if Truflow is enabled or if
1224 	 * asynchronous completions and receive completions can be placed in
1225 	 * the same completion ring.
1226 	 */
1227 	if (BNXT_TRUFLOW_EN(bp) || !BNXT_NUM_ASYNC_CPR(bp))
1228 		goto use_scalar_rx;
1229 
1230 	/*
1231 	 * Vector mode receive cannot be enabled if any receive offloads outside
1232 	 * a limited subset have been enabled.
1233 	 */
1234 	if (eth_dev->data->dev_conf.rxmode.offloads &
1235 		~(RTE_ETH_RX_OFFLOAD_VLAN_STRIP |
1236 		  RTE_ETH_RX_OFFLOAD_KEEP_CRC |
1237 		  RTE_ETH_RX_OFFLOAD_IPV4_CKSUM |
1238 		  RTE_ETH_RX_OFFLOAD_UDP_CKSUM |
1239 		  RTE_ETH_RX_OFFLOAD_TCP_CKSUM |
1240 		  RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM |
1241 		  RTE_ETH_RX_OFFLOAD_OUTER_UDP_CKSUM |
1242 		  RTE_ETH_RX_OFFLOAD_RSS_HASH |
1243 		  RTE_ETH_RX_OFFLOAD_VLAN_FILTER))
1244 		goto use_scalar_rx;
1245 
1246 #if defined(RTE_ARCH_X86) && defined(CC_AVX2_SUPPORT)
1247 	if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256 &&
1248 	    rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1) {
1249 		PMD_DRV_LOG(INFO,
1250 			    "Using AVX2 vector mode receive for port %d\n",
1251 			    eth_dev->data->port_id);
1252 		bp->flags |= BNXT_FLAG_RX_VECTOR_PKT_MODE;
1253 		return bnxt_recv_pkts_vec_avx2;
1254 	}
1255  #endif
1256 	if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
1257 		PMD_DRV_LOG(INFO,
1258 			    "Using SSE vector mode receive for port %d\n",
1259 			    eth_dev->data->port_id);
1260 		bp->flags |= BNXT_FLAG_RX_VECTOR_PKT_MODE;
1261 		return bnxt_recv_pkts_vec;
1262 	}
1263 
1264 use_scalar_rx:
1265 	PMD_DRV_LOG(INFO, "Vector mode receive disabled for port %d\n",
1266 		    eth_dev->data->port_id);
1267 	PMD_DRV_LOG(INFO,
1268 		    "Port %d scatter: %d rx offload: %" PRIX64 "\n",
1269 		    eth_dev->data->port_id,
1270 		    eth_dev->data->scattered_rx,
1271 		    eth_dev->data->dev_conf.rxmode.offloads);
1272 #endif
1273 	bp->flags &= ~BNXT_FLAG_RX_VECTOR_PKT_MODE;
1274 	return bnxt_recv_pkts;
1275 }
1276 
1277 static eth_tx_burst_t
1278 bnxt_transmit_function(struct rte_eth_dev *eth_dev)
1279 {
1280 	struct bnxt *bp = eth_dev->data->dev_private;
1281 
1282 	/* Disable vector mode TX for Stingray2 for now */
1283 	if (BNXT_CHIP_SR2(bp))
1284 		return bnxt_xmit_pkts;
1285 
1286 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64) && \
1287 	!defined(RTE_LIBRTE_IEEE1588)
1288 	uint64_t offloads = eth_dev->data->dev_conf.txmode.offloads;
1289 
1290 	/*
1291 	 * Vector mode transmit can be enabled only if not using scatter rx
1292 	 * or tx offloads.
1293 	 */
1294 	if (eth_dev->data->scattered_rx ||
1295 	    (offloads & ~RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) ||
1296 	    BNXT_TRUFLOW_EN(bp))
1297 		goto use_scalar_tx;
1298 
1299 #if defined(RTE_ARCH_X86) && defined(CC_AVX2_SUPPORT)
1300 	if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256 &&
1301 	    rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1) {
1302 		PMD_DRV_LOG(INFO,
1303 			    "Using AVX2 vector mode transmit for port %d\n",
1304 			    eth_dev->data->port_id);
1305 		return bnxt_xmit_pkts_vec_avx2;
1306 	}
1307 #endif
1308 	if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
1309 		PMD_DRV_LOG(INFO,
1310 			    "Using SSE vector mode transmit for port %d\n",
1311 			    eth_dev->data->port_id);
1312 		return bnxt_xmit_pkts_vec;
1313 	}
1314 
1315 use_scalar_tx:
1316 	PMD_DRV_LOG(INFO, "Vector mode transmit disabled for port %d\n",
1317 		    eth_dev->data->port_id);
1318 	PMD_DRV_LOG(INFO,
1319 		    "Port %d scatter: %d tx offload: %" PRIX64 "\n",
1320 		    eth_dev->data->port_id,
1321 		    eth_dev->data->scattered_rx,
1322 		    offloads);
1323 #endif
1324 	return bnxt_xmit_pkts;
1325 }
1326 
1327 static int bnxt_handle_if_change_status(struct bnxt *bp)
1328 {
1329 	int rc;
1330 
1331 	/* Since fw has undergone a reset and lost all contexts,
1332 	 * set fatal flag to not issue hwrm during cleanup
1333 	 */
1334 	bp->flags |= BNXT_FLAG_FATAL_ERROR;
1335 	bnxt_uninit_resources(bp, true);
1336 
1337 	/* clear fatal flag so that re-init happens */
1338 	bp->flags &= ~BNXT_FLAG_FATAL_ERROR;
1339 	rc = bnxt_init_resources(bp, true);
1340 
1341 	bp->flags &= ~BNXT_FLAG_IF_CHANGE_HOT_FW_RESET_DONE;
1342 
1343 	return rc;
1344 }
1345 
1346 static int bnxt_dev_set_link_up_op(struct rte_eth_dev *eth_dev)
1347 {
1348 	struct bnxt *bp = eth_dev->data->dev_private;
1349 	int rc = 0;
1350 
1351 	if (!BNXT_SINGLE_PF(bp))
1352 		return -ENOTSUP;
1353 
1354 	if (!bp->link_info->link_up)
1355 		rc = bnxt_set_hwrm_link_config(bp, true);
1356 	if (!rc)
1357 		eth_dev->data->dev_link.link_status = 1;
1358 
1359 	bnxt_print_link_info(eth_dev);
1360 	return rc;
1361 }
1362 
1363 static int bnxt_dev_set_link_down_op(struct rte_eth_dev *eth_dev)
1364 {
1365 	struct bnxt *bp = eth_dev->data->dev_private;
1366 
1367 	if (!BNXT_SINGLE_PF(bp))
1368 		return -ENOTSUP;
1369 
1370 	eth_dev->data->dev_link.link_status = 0;
1371 	bnxt_set_hwrm_link_config(bp, false);
1372 	bp->link_info->link_up = 0;
1373 
1374 	return 0;
1375 }
1376 
1377 static void bnxt_free_switch_domain(struct bnxt *bp)
1378 {
1379 	int rc = 0;
1380 
1381 	if (!(BNXT_PF(bp) || BNXT_VF_IS_TRUSTED(bp)))
1382 		return;
1383 
1384 	rc = rte_eth_switch_domain_free(bp->switch_domain_id);
1385 	if (rc)
1386 		PMD_DRV_LOG(ERR, "free switch domain:%d fail: %d\n",
1387 			    bp->switch_domain_id, rc);
1388 }
1389 
1390 static void bnxt_ptp_get_current_time(void *arg)
1391 {
1392 	struct bnxt *bp = arg;
1393 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
1394 	int rc;
1395 
1396 	rc = is_bnxt_in_error(bp);
1397 	if (rc)
1398 		return;
1399 
1400 	if (!ptp)
1401 		return;
1402 
1403 	bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME,
1404 				&ptp->current_time);
1405 
1406 	rc = rte_eal_alarm_set(US_PER_S, bnxt_ptp_get_current_time, (void *)bp);
1407 	if (rc != 0) {
1408 		PMD_DRV_LOG(ERR, "Failed to re-schedule PTP alarm\n");
1409 		bp->flags2 &= ~BNXT_FLAGS2_PTP_ALARM_SCHEDULED;
1410 	}
1411 }
1412 
1413 static int bnxt_schedule_ptp_alarm(struct bnxt *bp)
1414 {
1415 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
1416 	int rc;
1417 
1418 	if (bp->flags2 & BNXT_FLAGS2_PTP_ALARM_SCHEDULED)
1419 		return 0;
1420 
1421 	bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME,
1422 				&ptp->current_time);
1423 
1424 	rc = rte_eal_alarm_set(US_PER_S, bnxt_ptp_get_current_time, (void *)bp);
1425 	return rc;
1426 }
1427 
1428 static void bnxt_cancel_ptp_alarm(struct bnxt *bp)
1429 {
1430 	if (bp->flags2 & BNXT_FLAGS2_PTP_ALARM_SCHEDULED) {
1431 		rte_eal_alarm_cancel(bnxt_ptp_get_current_time, (void *)bp);
1432 		bp->flags2 &= ~BNXT_FLAGS2_PTP_ALARM_SCHEDULED;
1433 	}
1434 }
1435 
1436 static void bnxt_ptp_stop(struct bnxt *bp)
1437 {
1438 	bnxt_cancel_ptp_alarm(bp);
1439 	bp->flags2 &= ~BNXT_FLAGS2_PTP_TIMESYNC_ENABLED;
1440 }
1441 
1442 static int bnxt_ptp_start(struct bnxt *bp)
1443 {
1444 	int rc;
1445 
1446 	rc = bnxt_schedule_ptp_alarm(bp);
1447 	if (rc != 0) {
1448 		PMD_DRV_LOG(ERR, "Failed to schedule PTP alarm\n");
1449 	} else {
1450 		bp->flags2 |= BNXT_FLAGS2_PTP_TIMESYNC_ENABLED;
1451 		bp->flags2 |= BNXT_FLAGS2_PTP_ALARM_SCHEDULED;
1452 	}
1453 
1454 	return rc;
1455 }
1456 
1457 static int bnxt_dev_stop(struct rte_eth_dev *eth_dev)
1458 {
1459 	struct bnxt *bp = eth_dev->data->dev_private;
1460 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1461 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1462 	struct rte_eth_link link;
1463 	int ret;
1464 
1465 	eth_dev->data->dev_started = 0;
1466 
1467 	/* Prevent crashes when queues are still in use */
1468 	eth_dev->rx_pkt_burst = &bnxt_dummy_recv_pkts;
1469 	eth_dev->tx_pkt_burst = &bnxt_dummy_xmit_pkts;
1470 
1471 	bnxt_disable_int(bp);
1472 
1473 	/* disable uio/vfio intr/eventfd mapping */
1474 	rte_intr_disable(intr_handle);
1475 
1476 	/* Stop the child representors for this device */
1477 	ret = bnxt_rep_stop_all(bp);
1478 	if (ret != 0)
1479 		return ret;
1480 
1481 	/* delete the bnxt ULP port details */
1482 	bnxt_ulp_port_deinit(bp);
1483 
1484 	bnxt_cancel_fw_health_check(bp);
1485 
1486 	if (BNXT_P5_PTP_TIMESYNC_ENABLED(bp))
1487 		bnxt_cancel_ptp_alarm(bp);
1488 
1489 	/* Do not bring link down during reset recovery */
1490 	if (!is_bnxt_in_error(bp)) {
1491 		bnxt_dev_set_link_down_op(eth_dev);
1492 		/* Wait for link to be reset */
1493 		if (BNXT_SINGLE_PF(bp))
1494 			rte_delay_ms(500);
1495 		/* clear the recorded link status */
1496 		memset(&link, 0, sizeof(link));
1497 		rte_eth_linkstatus_set(eth_dev, &link);
1498 	}
1499 
1500 	/* Clean queue intr-vector mapping */
1501 	rte_intr_efd_disable(intr_handle);
1502 	rte_intr_vec_list_free(intr_handle);
1503 
1504 	bnxt_hwrm_port_clr_stats(bp);
1505 	bnxt_free_tx_mbufs(bp);
1506 	bnxt_free_rx_mbufs(bp);
1507 	/* Process any remaining notifications in default completion queue */
1508 	bnxt_int_handler(eth_dev);
1509 	bnxt_shutdown_nic(bp);
1510 	bnxt_hwrm_if_change(bp, false);
1511 
1512 	bnxt_free_prev_ring_stats(bp);
1513 	rte_free(bp->mark_table);
1514 	bp->mark_table = NULL;
1515 
1516 	bp->flags &= ~BNXT_FLAG_RX_VECTOR_PKT_MODE;
1517 	bp->rx_cosq_cnt = 0;
1518 	/* All filters are deleted on a port stop. */
1519 	if (BNXT_FLOW_XSTATS_EN(bp))
1520 		bp->flow_stat->flow_count = 0;
1521 
1522 	eth_dev->data->scattered_rx = 0;
1523 
1524 	return 0;
1525 }
1526 
1527 /* Unload the driver, release resources */
1528 static int bnxt_dev_stop_op(struct rte_eth_dev *eth_dev)
1529 {
1530 	struct bnxt *bp = eth_dev->data->dev_private;
1531 
1532 	pthread_mutex_lock(&bp->err_recovery_lock);
1533 	if (bp->flags & BNXT_FLAG_FW_RESET) {
1534 		PMD_DRV_LOG(ERR,
1535 			    "Adapter recovering from error..Please retry\n");
1536 		pthread_mutex_unlock(&bp->err_recovery_lock);
1537 		return -EAGAIN;
1538 	}
1539 	pthread_mutex_unlock(&bp->err_recovery_lock);
1540 
1541 	return bnxt_dev_stop(eth_dev);
1542 }
1543 
1544 static int bnxt_dev_start_op(struct rte_eth_dev *eth_dev)
1545 {
1546 	struct bnxt *bp = eth_dev->data->dev_private;
1547 	uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads;
1548 	int vlan_mask = 0;
1549 	int rc, retry_cnt = BNXT_IF_CHANGE_RETRY_COUNT;
1550 
1551 	if (!eth_dev->data->nb_tx_queues || !eth_dev->data->nb_rx_queues) {
1552 		PMD_DRV_LOG(ERR, "Queues are not configured yet!\n");
1553 		return -EINVAL;
1554 	}
1555 
1556 	if (bp->rx_cp_nr_rings > RTE_ETHDEV_QUEUE_STAT_CNTRS)
1557 		PMD_DRV_LOG(ERR,
1558 			    "RxQ cnt %d > RTE_ETHDEV_QUEUE_STAT_CNTRS %d\n",
1559 			    bp->rx_cp_nr_rings, RTE_ETHDEV_QUEUE_STAT_CNTRS);
1560 
1561 	do {
1562 		rc = bnxt_hwrm_if_change(bp, true);
1563 		if (rc == 0 || rc != -EAGAIN)
1564 			break;
1565 
1566 		rte_delay_ms(BNXT_IF_CHANGE_RETRY_INTERVAL);
1567 	} while (retry_cnt--);
1568 
1569 	if (rc)
1570 		return rc;
1571 
1572 	if (bp->flags & BNXT_FLAG_IF_CHANGE_HOT_FW_RESET_DONE) {
1573 		rc = bnxt_handle_if_change_status(bp);
1574 		if (rc)
1575 			return rc;
1576 	}
1577 
1578 	bnxt_enable_int(bp);
1579 
1580 	eth_dev->data->scattered_rx = bnxt_scattered_rx(eth_dev);
1581 
1582 	rc = bnxt_start_nic(bp);
1583 	if (rc)
1584 		goto error;
1585 
1586 	rc = bnxt_alloc_prev_ring_stats(bp);
1587 	if (rc)
1588 		goto error;
1589 
1590 	eth_dev->data->dev_started = 1;
1591 
1592 	bnxt_link_update_op(eth_dev, 1);
1593 
1594 	if (rx_offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER)
1595 		vlan_mask |= RTE_ETH_VLAN_FILTER_MASK;
1596 	if (rx_offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP)
1597 		vlan_mask |= RTE_ETH_VLAN_STRIP_MASK;
1598 	rc = bnxt_vlan_offload_set_op(eth_dev, vlan_mask);
1599 	if (rc)
1600 		goto error;
1601 
1602 	/* Initialize bnxt ULP port details */
1603 	rc = bnxt_ulp_port_init(bp);
1604 	if (rc)
1605 		goto error;
1606 
1607 	eth_dev->rx_pkt_burst = bnxt_receive_function(eth_dev);
1608 	eth_dev->tx_pkt_burst = bnxt_transmit_function(eth_dev);
1609 
1610 	bnxt_schedule_fw_health_check(bp);
1611 
1612 	if (BNXT_P5_PTP_TIMESYNC_ENABLED(bp))
1613 		bnxt_schedule_ptp_alarm(bp);
1614 
1615 	return 0;
1616 
1617 error:
1618 	bnxt_dev_stop(eth_dev);
1619 	return rc;
1620 }
1621 
1622 static void
1623 bnxt_uninit_locks(struct bnxt *bp)
1624 {
1625 	pthread_mutex_destroy(&bp->flow_lock);
1626 	pthread_mutex_destroy(&bp->def_cp_lock);
1627 	pthread_mutex_destroy(&bp->health_check_lock);
1628 	pthread_mutex_destroy(&bp->err_recovery_lock);
1629 	if (bp->rep_info) {
1630 		pthread_mutex_destroy(&bp->rep_info->vfr_lock);
1631 		pthread_mutex_destroy(&bp->rep_info->vfr_start_lock);
1632 	}
1633 }
1634 
1635 static void bnxt_drv_uninit(struct bnxt *bp)
1636 {
1637 	bnxt_free_leds_info(bp);
1638 	bnxt_free_cos_queues(bp);
1639 	bnxt_free_link_info(bp);
1640 	bnxt_free_parent_info(bp);
1641 	bnxt_uninit_locks(bp);
1642 
1643 	rte_memzone_free((const struct rte_memzone *)bp->tx_mem_zone);
1644 	bp->tx_mem_zone = NULL;
1645 	rte_memzone_free((const struct rte_memzone *)bp->rx_mem_zone);
1646 	bp->rx_mem_zone = NULL;
1647 
1648 	bnxt_free_vf_info(bp);
1649 	bnxt_free_pf_info(bp);
1650 
1651 	rte_free(bp->grp_info);
1652 	bp->grp_info = NULL;
1653 }
1654 
1655 static int bnxt_dev_close_op(struct rte_eth_dev *eth_dev)
1656 {
1657 	struct bnxt *bp = eth_dev->data->dev_private;
1658 	int ret = 0;
1659 
1660 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1661 		return 0;
1662 
1663 	pthread_mutex_lock(&bp->err_recovery_lock);
1664 	if (bp->flags & BNXT_FLAG_FW_RESET) {
1665 		PMD_DRV_LOG(ERR,
1666 			    "Adapter recovering from error...Please retry\n");
1667 		pthread_mutex_unlock(&bp->err_recovery_lock);
1668 		return -EAGAIN;
1669 	}
1670 	pthread_mutex_unlock(&bp->err_recovery_lock);
1671 
1672 	/* cancel the recovery handler before remove dev */
1673 	rte_eal_alarm_cancel(bnxt_dev_reset_and_resume, (void *)bp);
1674 	rte_eal_alarm_cancel(bnxt_dev_recover, (void *)bp);
1675 	bnxt_cancel_fc_thread(bp);
1676 
1677 	if (eth_dev->data->dev_started)
1678 		ret = bnxt_dev_stop(eth_dev);
1679 
1680 	bnxt_uninit_resources(bp, false);
1681 
1682 	bnxt_drv_uninit(bp);
1683 
1684 	return ret;
1685 }
1686 
1687 static void bnxt_mac_addr_remove_op(struct rte_eth_dev *eth_dev,
1688 				    uint32_t index)
1689 {
1690 	struct bnxt *bp = eth_dev->data->dev_private;
1691 	uint64_t pool_mask = eth_dev->data->mac_pool_sel[index];
1692 	struct bnxt_vnic_info *vnic;
1693 	struct bnxt_filter_info *filter, *temp_filter;
1694 	uint32_t i;
1695 
1696 	if (is_bnxt_in_error(bp))
1697 		return;
1698 
1699 	/*
1700 	 * Loop through all VNICs from the specified filter flow pools to
1701 	 * remove the corresponding MAC addr filter
1702 	 */
1703 	for (i = 0; i < bp->nr_vnics; i++) {
1704 		if (!(pool_mask & (1ULL << i)))
1705 			continue;
1706 
1707 		vnic = &bp->vnic_info[i];
1708 		filter = STAILQ_FIRST(&vnic->filter);
1709 		while (filter) {
1710 			temp_filter = STAILQ_NEXT(filter, next);
1711 			if (filter->mac_index == index) {
1712 				STAILQ_REMOVE(&vnic->filter, filter,
1713 						bnxt_filter_info, next);
1714 				bnxt_hwrm_clear_l2_filter(bp, filter);
1715 				bnxt_free_filter(bp, filter);
1716 			}
1717 			filter = temp_filter;
1718 		}
1719 	}
1720 }
1721 
1722 static int bnxt_add_mac_filter(struct bnxt *bp, struct bnxt_vnic_info *vnic,
1723 			       struct rte_ether_addr *mac_addr, uint32_t index,
1724 			       uint32_t pool)
1725 {
1726 	struct bnxt_filter_info *filter;
1727 	int rc = 0;
1728 
1729 	/* Attach requested MAC address to the new l2_filter */
1730 	STAILQ_FOREACH(filter, &vnic->filter, next) {
1731 		if (filter->mac_index == index) {
1732 			PMD_DRV_LOG(DEBUG,
1733 				    "MAC addr already existed for pool %d\n",
1734 				    pool);
1735 			return 0;
1736 		}
1737 	}
1738 
1739 	filter = bnxt_alloc_filter(bp);
1740 	if (!filter) {
1741 		PMD_DRV_LOG(ERR, "L2 filter alloc failed\n");
1742 		return -ENODEV;
1743 	}
1744 
1745 	/* bnxt_alloc_filter copies default MAC to filter->l2_addr. So,
1746 	 * if the MAC that's been programmed now is a different one, then,
1747 	 * copy that addr to filter->l2_addr
1748 	 */
1749 	if (mac_addr)
1750 		memcpy(filter->l2_addr, mac_addr, RTE_ETHER_ADDR_LEN);
1751 	filter->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_OUTERMOST;
1752 
1753 	rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
1754 	if (!rc) {
1755 		filter->mac_index = index;
1756 		if (filter->mac_index == 0)
1757 			STAILQ_INSERT_HEAD(&vnic->filter, filter, next);
1758 		else
1759 			STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
1760 	} else {
1761 		bnxt_free_filter(bp, filter);
1762 	}
1763 
1764 	return rc;
1765 }
1766 
1767 static int bnxt_mac_addr_add_op(struct rte_eth_dev *eth_dev,
1768 				struct rte_ether_addr *mac_addr,
1769 				uint32_t index, uint32_t pool)
1770 {
1771 	struct bnxt *bp = eth_dev->data->dev_private;
1772 	struct bnxt_vnic_info *vnic = &bp->vnic_info[pool];
1773 	int rc = 0;
1774 
1775 	rc = is_bnxt_in_error(bp);
1776 	if (rc)
1777 		return rc;
1778 
1779 	if (BNXT_VF(bp) && !BNXT_VF_IS_TRUSTED(bp)) {
1780 		PMD_DRV_LOG(ERR, "Cannot add MAC address to a VF interface\n");
1781 		return -ENOTSUP;
1782 	}
1783 
1784 	if (!vnic) {
1785 		PMD_DRV_LOG(ERR, "VNIC not found for pool %d!\n", pool);
1786 		return -EINVAL;
1787 	}
1788 
1789 	/* Filter settings will get applied when port is started */
1790 	if (!eth_dev->data->dev_started)
1791 		return 0;
1792 
1793 	rc = bnxt_add_mac_filter(bp, vnic, mac_addr, index, pool);
1794 
1795 	return rc;
1796 }
1797 
1798 int bnxt_link_update_op(struct rte_eth_dev *eth_dev, int wait_to_complete)
1799 {
1800 	int rc = 0;
1801 	struct bnxt *bp = eth_dev->data->dev_private;
1802 	struct rte_eth_link new;
1803 	int cnt = wait_to_complete ? BNXT_MAX_LINK_WAIT_CNT :
1804 			BNXT_MIN_LINK_WAIT_CNT;
1805 
1806 	rc = is_bnxt_in_error(bp);
1807 	if (rc)
1808 		return rc;
1809 
1810 	memset(&new, 0, sizeof(new));
1811 
1812 	if (bp->link_info == NULL)
1813 		goto out;
1814 
1815 	do {
1816 		/* Retrieve link info from hardware */
1817 		rc = bnxt_get_hwrm_link_config(bp, &new);
1818 		if (rc) {
1819 			new.link_speed = RTE_ETH_LINK_SPEED_100M;
1820 			new.link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
1821 			PMD_DRV_LOG(ERR,
1822 				"Failed to retrieve link rc = 0x%x!\n", rc);
1823 			goto out;
1824 		}
1825 
1826 		if (!wait_to_complete || new.link_status)
1827 			break;
1828 
1829 		rte_delay_ms(BNXT_LINK_WAIT_INTERVAL);
1830 	} while (cnt--);
1831 
1832 	/* Only single function PF can bring phy down.
1833 	 * When port is stopped, report link down for VF/MH/NPAR functions.
1834 	 */
1835 	if (!BNXT_SINGLE_PF(bp) && !eth_dev->data->dev_started)
1836 		memset(&new, 0, sizeof(new));
1837 
1838 out:
1839 	/* Timed out or success */
1840 	if (new.link_status != eth_dev->data->dev_link.link_status ||
1841 	    new.link_speed != eth_dev->data->dev_link.link_speed) {
1842 		rte_eth_linkstatus_set(eth_dev, &new);
1843 		bnxt_print_link_info(eth_dev);
1844 	}
1845 
1846 	return rc;
1847 }
1848 
1849 static int bnxt_promiscuous_enable_op(struct rte_eth_dev *eth_dev)
1850 {
1851 	struct bnxt *bp = eth_dev->data->dev_private;
1852 	struct bnxt_vnic_info *vnic;
1853 	uint32_t old_flags;
1854 	int rc;
1855 
1856 	rc = is_bnxt_in_error(bp);
1857 	if (rc)
1858 		return rc;
1859 
1860 	/* Filter settings will get applied when port is started */
1861 	if (!eth_dev->data->dev_started)
1862 		return 0;
1863 
1864 	if (bp->vnic_info == NULL)
1865 		return 0;
1866 
1867 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
1868 
1869 	old_flags = vnic->flags;
1870 	vnic->flags |= BNXT_VNIC_INFO_PROMISC;
1871 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1872 	if (rc != 0)
1873 		vnic->flags = old_flags;
1874 
1875 	return rc;
1876 }
1877 
1878 static int bnxt_promiscuous_disable_op(struct rte_eth_dev *eth_dev)
1879 {
1880 	struct bnxt *bp = eth_dev->data->dev_private;
1881 	struct bnxt_vnic_info *vnic;
1882 	uint32_t old_flags;
1883 	int rc;
1884 
1885 	rc = is_bnxt_in_error(bp);
1886 	if (rc)
1887 		return rc;
1888 
1889 	/* Filter settings will get applied when port is started */
1890 	if (!eth_dev->data->dev_started)
1891 		return 0;
1892 
1893 	if (bp->vnic_info == NULL)
1894 		return 0;
1895 
1896 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
1897 
1898 	old_flags = vnic->flags;
1899 	vnic->flags &= ~BNXT_VNIC_INFO_PROMISC;
1900 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1901 	if (rc != 0)
1902 		vnic->flags = old_flags;
1903 
1904 	return rc;
1905 }
1906 
1907 static int bnxt_allmulticast_enable_op(struct rte_eth_dev *eth_dev)
1908 {
1909 	struct bnxt *bp = eth_dev->data->dev_private;
1910 	struct bnxt_vnic_info *vnic;
1911 	uint32_t old_flags;
1912 	int rc;
1913 
1914 	rc = is_bnxt_in_error(bp);
1915 	if (rc)
1916 		return rc;
1917 
1918 	/* Filter settings will get applied when port is started */
1919 	if (!eth_dev->data->dev_started)
1920 		return 0;
1921 
1922 	if (bp->vnic_info == NULL)
1923 		return 0;
1924 
1925 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
1926 
1927 	old_flags = vnic->flags;
1928 	vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
1929 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1930 	if (rc != 0)
1931 		vnic->flags = old_flags;
1932 
1933 	return rc;
1934 }
1935 
1936 static int bnxt_allmulticast_disable_op(struct rte_eth_dev *eth_dev)
1937 {
1938 	struct bnxt *bp = eth_dev->data->dev_private;
1939 	struct bnxt_vnic_info *vnic;
1940 	uint32_t old_flags;
1941 	int rc;
1942 
1943 	rc = is_bnxt_in_error(bp);
1944 	if (rc)
1945 		return rc;
1946 
1947 	/* Filter settings will get applied when port is started */
1948 	if (!eth_dev->data->dev_started)
1949 		return 0;
1950 
1951 	if (bp->vnic_info == NULL)
1952 		return 0;
1953 
1954 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
1955 
1956 	old_flags = vnic->flags;
1957 	vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
1958 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1959 	if (rc != 0)
1960 		vnic->flags = old_flags;
1961 
1962 	return rc;
1963 }
1964 
1965 /* Return bnxt_rx_queue pointer corresponding to a given rxq. */
1966 static struct bnxt_rx_queue *bnxt_qid_to_rxq(struct bnxt *bp, uint16_t qid)
1967 {
1968 	if (qid >= bp->rx_nr_rings)
1969 		return NULL;
1970 
1971 	return bp->eth_dev->data->rx_queues[qid];
1972 }
1973 
1974 /* Return rxq corresponding to a given rss table ring/group ID. */
1975 static uint16_t bnxt_rss_to_qid(struct bnxt *bp, uint16_t fwr)
1976 {
1977 	struct bnxt_rx_queue *rxq;
1978 	unsigned int i;
1979 
1980 	if (!BNXT_HAS_RING_GRPS(bp)) {
1981 		for (i = 0; i < bp->rx_nr_rings; i++) {
1982 			rxq = bp->eth_dev->data->rx_queues[i];
1983 			if (rxq->rx_ring->rx_ring_struct->fw_ring_id == fwr)
1984 				return rxq->index;
1985 		}
1986 	} else {
1987 		for (i = 0; i < bp->rx_nr_rings; i++) {
1988 			if (bp->grp_info[i].fw_grp_id == fwr)
1989 				return i;
1990 		}
1991 	}
1992 
1993 	return INVALID_HW_RING_ID;
1994 }
1995 
1996 static int bnxt_reta_update_op(struct rte_eth_dev *eth_dev,
1997 			    struct rte_eth_rss_reta_entry64 *reta_conf,
1998 			    uint16_t reta_size)
1999 {
2000 	struct bnxt *bp = eth_dev->data->dev_private;
2001 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
2002 	struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp);
2003 	uint16_t tbl_size = bnxt_rss_hash_tbl_size(bp);
2004 	uint16_t idx, sft;
2005 	int i, rc;
2006 
2007 	rc = is_bnxt_in_error(bp);
2008 	if (rc)
2009 		return rc;
2010 
2011 	if (!vnic->rss_table)
2012 		return -EINVAL;
2013 
2014 	if (!(dev_conf->rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG))
2015 		return -EINVAL;
2016 
2017 	if (reta_size != tbl_size) {
2018 		PMD_DRV_LOG(ERR, "The configured hash table lookup size "
2019 			"(%d) must equal the size supported by the hardware "
2020 			"(%d)\n", reta_size, tbl_size);
2021 		return -EINVAL;
2022 	}
2023 
2024 	for (i = 0; i < reta_size; i++) {
2025 		struct bnxt_rx_queue *rxq;
2026 
2027 		idx = i / RTE_ETH_RETA_GROUP_SIZE;
2028 		sft = i % RTE_ETH_RETA_GROUP_SIZE;
2029 
2030 		if (!(reta_conf[idx].mask & (1ULL << sft)))
2031 			continue;
2032 
2033 		rxq = bnxt_qid_to_rxq(bp, reta_conf[idx].reta[sft]);
2034 		if (!rxq) {
2035 			PMD_DRV_LOG(ERR, "Invalid ring in reta_conf.\n");
2036 			return -EINVAL;
2037 		}
2038 
2039 		if (BNXT_CHIP_P5(bp)) {
2040 			vnic->rss_table[i * 2] =
2041 				rxq->rx_ring->rx_ring_struct->fw_ring_id;
2042 			vnic->rss_table[i * 2 + 1] =
2043 				rxq->cp_ring->cp_ring_struct->fw_ring_id;
2044 		} else {
2045 			vnic->rss_table[i] =
2046 			    vnic->fw_grp_ids[reta_conf[idx].reta[sft]];
2047 		}
2048 	}
2049 
2050 	rc = bnxt_hwrm_vnic_rss_cfg(bp, vnic);
2051 	return rc;
2052 }
2053 
2054 static int bnxt_reta_query_op(struct rte_eth_dev *eth_dev,
2055 			      struct rte_eth_rss_reta_entry64 *reta_conf,
2056 			      uint16_t reta_size)
2057 {
2058 	struct bnxt *bp = eth_dev->data->dev_private;
2059 	struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp);
2060 	uint16_t tbl_size = bnxt_rss_hash_tbl_size(bp);
2061 	uint16_t idx, sft, i;
2062 	int rc;
2063 
2064 	rc = is_bnxt_in_error(bp);
2065 	if (rc)
2066 		return rc;
2067 
2068 	if (!vnic)
2069 		return -EINVAL;
2070 	if (!vnic->rss_table)
2071 		return -EINVAL;
2072 
2073 	if (reta_size != tbl_size) {
2074 		PMD_DRV_LOG(ERR, "The configured hash table lookup size "
2075 			"(%d) must equal the size supported by the hardware "
2076 			"(%d)\n", reta_size, tbl_size);
2077 		return -EINVAL;
2078 	}
2079 
2080 	for (idx = 0, i = 0; i < reta_size; i++) {
2081 		idx = i / RTE_ETH_RETA_GROUP_SIZE;
2082 		sft = i % RTE_ETH_RETA_GROUP_SIZE;
2083 
2084 		if (reta_conf[idx].mask & (1ULL << sft)) {
2085 			uint16_t qid;
2086 
2087 			if (BNXT_CHIP_P5(bp))
2088 				qid = bnxt_rss_to_qid(bp,
2089 						      vnic->rss_table[i * 2]);
2090 			else
2091 				qid = bnxt_rss_to_qid(bp, vnic->rss_table[i]);
2092 
2093 			if (qid == INVALID_HW_RING_ID) {
2094 				PMD_DRV_LOG(ERR, "Inv. entry in rss table.\n");
2095 				return -EINVAL;
2096 			}
2097 			reta_conf[idx].reta[sft] = qid;
2098 		}
2099 	}
2100 
2101 	return 0;
2102 }
2103 
2104 static int bnxt_rss_hash_update_op(struct rte_eth_dev *eth_dev,
2105 				   struct rte_eth_rss_conf *rss_conf)
2106 {
2107 	struct bnxt *bp = eth_dev->data->dev_private;
2108 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
2109 	struct bnxt_vnic_info *vnic;
2110 	int rc;
2111 
2112 	rc = is_bnxt_in_error(bp);
2113 	if (rc)
2114 		return rc;
2115 
2116 	/*
2117 	 * If RSS enablement were different than dev_configure,
2118 	 * then return -EINVAL
2119 	 */
2120 	if (dev_conf->rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
2121 		if (!rss_conf->rss_hf)
2122 			PMD_DRV_LOG(ERR, "Hash type NONE\n");
2123 	} else {
2124 		if (rss_conf->rss_hf & BNXT_ETH_RSS_SUPPORT)
2125 			return -EINVAL;
2126 	}
2127 
2128 	bp->flags |= BNXT_FLAG_UPDATE_HASH;
2129 	memcpy(&eth_dev->data->dev_conf.rx_adv_conf.rss_conf,
2130 	       rss_conf,
2131 	       sizeof(*rss_conf));
2132 
2133 	/* Update the default RSS VNIC(s) */
2134 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
2135 	vnic->hash_type = bnxt_rte_to_hwrm_hash_types(rss_conf->rss_hf);
2136 	vnic->hash_mode =
2137 		bnxt_rte_to_hwrm_hash_level(bp, rss_conf->rss_hf,
2138 					    RTE_ETH_RSS_LEVEL(rss_conf->rss_hf));
2139 
2140 	/*
2141 	 * If hashkey is not specified, use the previously configured
2142 	 * hashkey
2143 	 */
2144 	if (!rss_conf->rss_key)
2145 		goto rss_config;
2146 
2147 	if (rss_conf->rss_key_len != HW_HASH_KEY_SIZE) {
2148 		PMD_DRV_LOG(ERR,
2149 			    "Invalid hashkey length, should be %d bytes\n",
2150 			    HW_HASH_KEY_SIZE);
2151 		return -EINVAL;
2152 	}
2153 	memcpy(vnic->rss_hash_key, rss_conf->rss_key, rss_conf->rss_key_len);
2154 
2155 rss_config:
2156 	rc = bnxt_hwrm_vnic_rss_cfg(bp, vnic);
2157 	return rc;
2158 }
2159 
2160 static int bnxt_rss_hash_conf_get_op(struct rte_eth_dev *eth_dev,
2161 				     struct rte_eth_rss_conf *rss_conf)
2162 {
2163 	struct bnxt *bp = eth_dev->data->dev_private;
2164 	struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp);
2165 	int len, rc;
2166 	uint32_t hash_types;
2167 
2168 	rc = is_bnxt_in_error(bp);
2169 	if (rc)
2170 		return rc;
2171 
2172 	/* RSS configuration is the same for all VNICs */
2173 	if (vnic && vnic->rss_hash_key) {
2174 		if (rss_conf->rss_key) {
2175 			len = rss_conf->rss_key_len <= HW_HASH_KEY_SIZE ?
2176 			      rss_conf->rss_key_len : HW_HASH_KEY_SIZE;
2177 			memcpy(rss_conf->rss_key, vnic->rss_hash_key, len);
2178 		}
2179 
2180 		hash_types = vnic->hash_type;
2181 		rss_conf->rss_hf = 0;
2182 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4) {
2183 			rss_conf->rss_hf |= RTE_ETH_RSS_IPV4;
2184 			hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
2185 		}
2186 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4) {
2187 			rss_conf->rss_hf |= RTE_ETH_RSS_NONFRAG_IPV4_TCP;
2188 			hash_types &=
2189 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
2190 		}
2191 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4) {
2192 			rss_conf->rss_hf |= RTE_ETH_RSS_NONFRAG_IPV4_UDP;
2193 			hash_types &=
2194 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
2195 		}
2196 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6) {
2197 			rss_conf->rss_hf |= RTE_ETH_RSS_IPV6;
2198 			hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
2199 		}
2200 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6) {
2201 			rss_conf->rss_hf |= RTE_ETH_RSS_NONFRAG_IPV6_TCP;
2202 			hash_types &=
2203 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
2204 		}
2205 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6) {
2206 			rss_conf->rss_hf |= RTE_ETH_RSS_NONFRAG_IPV6_UDP;
2207 			hash_types &=
2208 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
2209 		}
2210 
2211 		rss_conf->rss_hf |=
2212 			bnxt_hwrm_to_rte_rss_level(bp, vnic->hash_mode);
2213 
2214 		if (hash_types) {
2215 			PMD_DRV_LOG(ERR,
2216 				"Unknown RSS config from firmware (%08x), RSS disabled",
2217 				vnic->hash_type);
2218 			return -ENOTSUP;
2219 		}
2220 	} else {
2221 		rss_conf->rss_hf = 0;
2222 	}
2223 	return 0;
2224 }
2225 
2226 static int bnxt_flow_ctrl_get_op(struct rte_eth_dev *dev,
2227 			       struct rte_eth_fc_conf *fc_conf)
2228 {
2229 	struct bnxt *bp = dev->data->dev_private;
2230 	struct rte_eth_link link_info;
2231 	int rc;
2232 
2233 	rc = is_bnxt_in_error(bp);
2234 	if (rc)
2235 		return rc;
2236 
2237 	rc = bnxt_get_hwrm_link_config(bp, &link_info);
2238 	if (rc)
2239 		return rc;
2240 
2241 	memset(fc_conf, 0, sizeof(*fc_conf));
2242 	if (bp->link_info->auto_pause)
2243 		fc_conf->autoneg = 1;
2244 	switch (bp->link_info->pause) {
2245 	case 0:
2246 		fc_conf->mode = RTE_ETH_FC_NONE;
2247 		break;
2248 	case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX:
2249 		fc_conf->mode = RTE_ETH_FC_TX_PAUSE;
2250 		break;
2251 	case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX:
2252 		fc_conf->mode = RTE_ETH_FC_RX_PAUSE;
2253 		break;
2254 	case (HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX |
2255 			HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX):
2256 		fc_conf->mode = RTE_ETH_FC_FULL;
2257 		break;
2258 	}
2259 	return 0;
2260 }
2261 
2262 static int bnxt_flow_ctrl_set_op(struct rte_eth_dev *dev,
2263 			       struct rte_eth_fc_conf *fc_conf)
2264 {
2265 	struct bnxt *bp = dev->data->dev_private;
2266 	int rc;
2267 
2268 	rc = is_bnxt_in_error(bp);
2269 	if (rc)
2270 		return rc;
2271 
2272 	if (!BNXT_SINGLE_PF(bp)) {
2273 		PMD_DRV_LOG(ERR,
2274 			    "Flow Control Settings cannot be modified on VF or on shared PF\n");
2275 		return -ENOTSUP;
2276 	}
2277 
2278 	switch (fc_conf->mode) {
2279 	case RTE_ETH_FC_NONE:
2280 		bp->link_info->auto_pause = 0;
2281 		bp->link_info->force_pause = 0;
2282 		break;
2283 	case RTE_ETH_FC_RX_PAUSE:
2284 		if (fc_conf->autoneg) {
2285 			bp->link_info->auto_pause =
2286 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
2287 			bp->link_info->force_pause = 0;
2288 		} else {
2289 			bp->link_info->auto_pause = 0;
2290 			bp->link_info->force_pause =
2291 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
2292 		}
2293 		break;
2294 	case RTE_ETH_FC_TX_PAUSE:
2295 		if (fc_conf->autoneg) {
2296 			bp->link_info->auto_pause =
2297 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX;
2298 			bp->link_info->force_pause = 0;
2299 		} else {
2300 			bp->link_info->auto_pause = 0;
2301 			bp->link_info->force_pause =
2302 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX;
2303 		}
2304 		break;
2305 	case RTE_ETH_FC_FULL:
2306 		if (fc_conf->autoneg) {
2307 			bp->link_info->auto_pause =
2308 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX |
2309 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
2310 			bp->link_info->force_pause = 0;
2311 		} else {
2312 			bp->link_info->auto_pause = 0;
2313 			bp->link_info->force_pause =
2314 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX |
2315 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
2316 		}
2317 		break;
2318 	}
2319 	return bnxt_set_hwrm_link_config(bp, true);
2320 }
2321 
2322 /* Add UDP tunneling port */
2323 static int
2324 bnxt_udp_tunnel_port_add_op(struct rte_eth_dev *eth_dev,
2325 			 struct rte_eth_udp_tunnel *udp_tunnel)
2326 {
2327 	struct bnxt *bp = eth_dev->data->dev_private;
2328 	uint16_t tunnel_type = 0;
2329 	int rc = 0;
2330 
2331 	rc = is_bnxt_in_error(bp);
2332 	if (rc)
2333 		return rc;
2334 
2335 	switch (udp_tunnel->prot_type) {
2336 	case RTE_ETH_TUNNEL_TYPE_VXLAN:
2337 		if (bp->vxlan_port_cnt) {
2338 			PMD_DRV_LOG(ERR, "Tunnel Port %d already programmed\n",
2339 				udp_tunnel->udp_port);
2340 			if (bp->vxlan_port != udp_tunnel->udp_port) {
2341 				PMD_DRV_LOG(ERR, "Only one port allowed\n");
2342 				return -ENOSPC;
2343 			}
2344 			bp->vxlan_port_cnt++;
2345 			return 0;
2346 		}
2347 		tunnel_type =
2348 			HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_VXLAN;
2349 		break;
2350 	case RTE_ETH_TUNNEL_TYPE_GENEVE:
2351 		if (bp->geneve_port_cnt) {
2352 			PMD_DRV_LOG(ERR, "Tunnel Port %d already programmed\n",
2353 				udp_tunnel->udp_port);
2354 			if (bp->geneve_port != udp_tunnel->udp_port) {
2355 				PMD_DRV_LOG(ERR, "Only one port allowed\n");
2356 				return -ENOSPC;
2357 			}
2358 			bp->geneve_port_cnt++;
2359 			return 0;
2360 		}
2361 		tunnel_type =
2362 			HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_GENEVE;
2363 		break;
2364 	default:
2365 		PMD_DRV_LOG(ERR, "Tunnel type is not supported\n");
2366 		return -ENOTSUP;
2367 	}
2368 	rc = bnxt_hwrm_tunnel_dst_port_alloc(bp, udp_tunnel->udp_port,
2369 					     tunnel_type);
2370 
2371 	if (rc != 0)
2372 		return rc;
2373 
2374 	if (tunnel_type ==
2375 	    HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_VXLAN)
2376 		bp->vxlan_port_cnt++;
2377 
2378 	if (tunnel_type ==
2379 	    HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_GENEVE)
2380 		bp->geneve_port_cnt++;
2381 
2382 	return rc;
2383 }
2384 
2385 static int
2386 bnxt_udp_tunnel_port_del_op(struct rte_eth_dev *eth_dev,
2387 			 struct rte_eth_udp_tunnel *udp_tunnel)
2388 {
2389 	struct bnxt *bp = eth_dev->data->dev_private;
2390 	uint16_t tunnel_type = 0;
2391 	uint16_t port = 0;
2392 	int rc = 0;
2393 
2394 	rc = is_bnxt_in_error(bp);
2395 	if (rc)
2396 		return rc;
2397 
2398 	switch (udp_tunnel->prot_type) {
2399 	case RTE_ETH_TUNNEL_TYPE_VXLAN:
2400 		if (!bp->vxlan_port_cnt) {
2401 			PMD_DRV_LOG(ERR, "No Tunnel port configured yet\n");
2402 			return -EINVAL;
2403 		}
2404 		if (bp->vxlan_port != udp_tunnel->udp_port) {
2405 			PMD_DRV_LOG(ERR, "Req Port: %d. Configured port: %d\n",
2406 				udp_tunnel->udp_port, bp->vxlan_port);
2407 			return -EINVAL;
2408 		}
2409 		if (--bp->vxlan_port_cnt)
2410 			return 0;
2411 
2412 		tunnel_type =
2413 			HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN;
2414 		port = bp->vxlan_fw_dst_port_id;
2415 		break;
2416 	case RTE_ETH_TUNNEL_TYPE_GENEVE:
2417 		if (!bp->geneve_port_cnt) {
2418 			PMD_DRV_LOG(ERR, "No Tunnel port configured yet\n");
2419 			return -EINVAL;
2420 		}
2421 		if (bp->geneve_port != udp_tunnel->udp_port) {
2422 			PMD_DRV_LOG(ERR, "Req Port: %d. Configured port: %d\n",
2423 				udp_tunnel->udp_port, bp->geneve_port);
2424 			return -EINVAL;
2425 		}
2426 		if (--bp->geneve_port_cnt)
2427 			return 0;
2428 
2429 		tunnel_type =
2430 			HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE;
2431 		port = bp->geneve_fw_dst_port_id;
2432 		break;
2433 	default:
2434 		PMD_DRV_LOG(ERR, "Tunnel type is not supported\n");
2435 		return -ENOTSUP;
2436 	}
2437 
2438 	rc = bnxt_hwrm_tunnel_dst_port_free(bp, port, tunnel_type);
2439 	return rc;
2440 }
2441 
2442 static int bnxt_del_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
2443 {
2444 	struct bnxt_filter_info *filter;
2445 	struct bnxt_vnic_info *vnic;
2446 	int rc = 0;
2447 	uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN;
2448 
2449 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
2450 	filter = STAILQ_FIRST(&vnic->filter);
2451 	while (filter) {
2452 		/* Search for this matching MAC+VLAN filter */
2453 		if (bnxt_vlan_filter_exists(bp, filter, chk, vlan_id)) {
2454 			/* Delete the filter */
2455 			rc = bnxt_hwrm_clear_l2_filter(bp, filter);
2456 			if (rc)
2457 				return rc;
2458 			STAILQ_REMOVE(&vnic->filter, filter,
2459 				      bnxt_filter_info, next);
2460 			bnxt_free_filter(bp, filter);
2461 			PMD_DRV_LOG(INFO,
2462 				    "Deleted vlan filter for %d\n",
2463 				    vlan_id);
2464 			return 0;
2465 		}
2466 		filter = STAILQ_NEXT(filter, next);
2467 	}
2468 	return -ENOENT;
2469 }
2470 
2471 static int bnxt_add_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
2472 {
2473 	struct bnxt_filter_info *filter;
2474 	struct bnxt_vnic_info *vnic;
2475 	int rc = 0;
2476 	uint32_t en = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN |
2477 		HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN_MASK;
2478 	uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN;
2479 
2480 	/* Implementation notes on the use of VNIC in this command:
2481 	 *
2482 	 * By default, these filters belong to default vnic for the function.
2483 	 * Once these filters are set up, only destination VNIC can be modified.
2484 	 * If the destination VNIC is not specified in this command,
2485 	 * then the HWRM shall only create an l2 context id.
2486 	 */
2487 
2488 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
2489 	filter = STAILQ_FIRST(&vnic->filter);
2490 	/* Check if the VLAN has already been added */
2491 	while (filter) {
2492 		if (bnxt_vlan_filter_exists(bp, filter, chk, vlan_id))
2493 			return -EEXIST;
2494 
2495 		filter = STAILQ_NEXT(filter, next);
2496 	}
2497 
2498 	/* No match found. Alloc a fresh filter and issue the L2_FILTER_ALLOC
2499 	 * command to create MAC+VLAN filter with the right flags, enables set.
2500 	 */
2501 	filter = bnxt_alloc_filter(bp);
2502 	if (!filter) {
2503 		PMD_DRV_LOG(ERR,
2504 			    "MAC/VLAN filter alloc failed\n");
2505 		return -ENOMEM;
2506 	}
2507 	/* MAC + VLAN ID filter */
2508 	/* If l2_ivlan == 0 and l2_ivlan_mask != 0, only
2509 	 * untagged packets are received
2510 	 *
2511 	 * If l2_ivlan != 0 and l2_ivlan_mask != 0, untagged
2512 	 * packets and only the programmed vlan's packets are received
2513 	 */
2514 	filter->l2_ivlan = vlan_id;
2515 	filter->l2_ivlan_mask = 0x0FFF;
2516 	filter->enables |= en;
2517 	filter->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_OUTERMOST;
2518 
2519 	rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
2520 	if (rc) {
2521 		/* Free the newly allocated filter as we were
2522 		 * not able to create the filter in hardware.
2523 		 */
2524 		bnxt_free_filter(bp, filter);
2525 		return rc;
2526 	}
2527 
2528 	filter->mac_index = 0;
2529 	/* Add this new filter to the list */
2530 	if (vlan_id == 0)
2531 		STAILQ_INSERT_HEAD(&vnic->filter, filter, next);
2532 	else
2533 		STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
2534 
2535 	PMD_DRV_LOG(INFO,
2536 		    "Added Vlan filter for %d\n", vlan_id);
2537 	return rc;
2538 }
2539 
2540 static int bnxt_vlan_filter_set_op(struct rte_eth_dev *eth_dev,
2541 		uint16_t vlan_id, int on)
2542 {
2543 	struct bnxt *bp = eth_dev->data->dev_private;
2544 	int rc;
2545 
2546 	rc = is_bnxt_in_error(bp);
2547 	if (rc)
2548 		return rc;
2549 
2550 	if (!eth_dev->data->dev_started) {
2551 		PMD_DRV_LOG(ERR, "port must be started before setting vlan\n");
2552 		return -EINVAL;
2553 	}
2554 
2555 	/* These operations apply to ALL existing MAC/VLAN filters */
2556 	if (on)
2557 		return bnxt_add_vlan_filter(bp, vlan_id);
2558 	else
2559 		return bnxt_del_vlan_filter(bp, vlan_id);
2560 }
2561 
2562 static int bnxt_del_dflt_mac_filter(struct bnxt *bp,
2563 				    struct bnxt_vnic_info *vnic)
2564 {
2565 	struct bnxt_filter_info *filter;
2566 	int rc;
2567 
2568 	filter = STAILQ_FIRST(&vnic->filter);
2569 	while (filter) {
2570 		if (filter->mac_index == 0 &&
2571 		    !memcmp(filter->l2_addr, bp->mac_addr,
2572 			    RTE_ETHER_ADDR_LEN)) {
2573 			rc = bnxt_hwrm_clear_l2_filter(bp, filter);
2574 			if (!rc) {
2575 				STAILQ_REMOVE(&vnic->filter, filter,
2576 					      bnxt_filter_info, next);
2577 				bnxt_free_filter(bp, filter);
2578 			}
2579 			return rc;
2580 		}
2581 		filter = STAILQ_NEXT(filter, next);
2582 	}
2583 	return 0;
2584 }
2585 
2586 static int
2587 bnxt_config_vlan_hw_filter(struct bnxt *bp, uint64_t rx_offloads)
2588 {
2589 	struct bnxt_vnic_info *vnic;
2590 	unsigned int i;
2591 	int rc;
2592 
2593 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
2594 	if (!(rx_offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER)) {
2595 		/* Remove any VLAN filters programmed */
2596 		for (i = 0; i < RTE_ETHER_MAX_VLAN_ID; i++)
2597 			bnxt_del_vlan_filter(bp, i);
2598 
2599 		rc = bnxt_add_mac_filter(bp, vnic, NULL, 0, 0);
2600 		if (rc)
2601 			return rc;
2602 	} else {
2603 		/* Default filter will allow packets that match the
2604 		 * dest mac. So, it has to be deleted, otherwise, we
2605 		 * will endup receiving vlan packets for which the
2606 		 * filter is not programmed, when hw-vlan-filter
2607 		 * configuration is ON
2608 		 */
2609 		bnxt_del_dflt_mac_filter(bp, vnic);
2610 		/* This filter will allow only untagged packets */
2611 		bnxt_add_vlan_filter(bp, 0);
2612 	}
2613 	PMD_DRV_LOG(DEBUG, "VLAN Filtering: %d\n",
2614 		    !!(rx_offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER));
2615 
2616 	return 0;
2617 }
2618 
2619 static int bnxt_free_one_vnic(struct bnxt *bp, uint16_t vnic_id)
2620 {
2621 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2622 	unsigned int i;
2623 	int rc;
2624 
2625 	/* Destroy vnic filters and vnic */
2626 	if (bp->eth_dev->data->dev_conf.rxmode.offloads &
2627 	    RTE_ETH_RX_OFFLOAD_VLAN_FILTER) {
2628 		for (i = 0; i < RTE_ETHER_MAX_VLAN_ID; i++)
2629 			bnxt_del_vlan_filter(bp, i);
2630 	}
2631 	bnxt_del_dflt_mac_filter(bp, vnic);
2632 
2633 	rc = bnxt_hwrm_vnic_ctx_free(bp, vnic);
2634 	if (rc)
2635 		return rc;
2636 
2637 	rc = bnxt_hwrm_vnic_free(bp, vnic);
2638 	if (rc)
2639 		return rc;
2640 
2641 	rte_free(vnic->fw_grp_ids);
2642 	vnic->fw_grp_ids = NULL;
2643 
2644 	vnic->rx_queue_cnt = 0;
2645 
2646 	return 0;
2647 }
2648 
2649 static int
2650 bnxt_config_vlan_hw_stripping(struct bnxt *bp, uint64_t rx_offloads)
2651 {
2652 	struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp);
2653 	int rc;
2654 
2655 	/* Destroy, recreate and reconfigure the default vnic */
2656 	rc = bnxt_free_one_vnic(bp, 0);
2657 	if (rc)
2658 		return rc;
2659 
2660 	/* default vnic 0 */
2661 	rc = bnxt_setup_one_vnic(bp, 0);
2662 	if (rc)
2663 		return rc;
2664 
2665 	if (bp->eth_dev->data->dev_conf.rxmode.offloads &
2666 	    RTE_ETH_RX_OFFLOAD_VLAN_FILTER) {
2667 		rc = bnxt_add_vlan_filter(bp, 0);
2668 		if (rc)
2669 			return rc;
2670 		rc = bnxt_restore_vlan_filters(bp);
2671 		if (rc)
2672 			return rc;
2673 	} else {
2674 		rc = bnxt_add_mac_filter(bp, vnic, NULL, 0, 0);
2675 		if (rc)
2676 			return rc;
2677 	}
2678 
2679 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
2680 	if (rc)
2681 		return rc;
2682 
2683 	PMD_DRV_LOG(DEBUG, "VLAN Strip Offload: %d\n",
2684 		    !!(rx_offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP));
2685 
2686 	return rc;
2687 }
2688 
2689 static int
2690 bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask)
2691 {
2692 	uint64_t rx_offloads = dev->data->dev_conf.rxmode.offloads;
2693 	struct bnxt *bp = dev->data->dev_private;
2694 	int rc;
2695 
2696 	rc = is_bnxt_in_error(bp);
2697 	if (rc)
2698 		return rc;
2699 
2700 	/* Filter settings will get applied when port is started */
2701 	if (!dev->data->dev_started)
2702 		return 0;
2703 
2704 	if (mask & RTE_ETH_VLAN_FILTER_MASK) {
2705 		/* Enable or disable VLAN filtering */
2706 		rc = bnxt_config_vlan_hw_filter(bp, rx_offloads);
2707 		if (rc)
2708 			return rc;
2709 	}
2710 
2711 	if (mask & RTE_ETH_VLAN_STRIP_MASK) {
2712 		/* Enable or disable VLAN stripping */
2713 		rc = bnxt_config_vlan_hw_stripping(bp, rx_offloads);
2714 		if (rc)
2715 			return rc;
2716 	}
2717 
2718 	if (mask & RTE_ETH_VLAN_EXTEND_MASK) {
2719 		if (rx_offloads & RTE_ETH_RX_OFFLOAD_VLAN_EXTEND)
2720 			PMD_DRV_LOG(DEBUG, "Extend VLAN supported\n");
2721 		else
2722 			PMD_DRV_LOG(INFO, "Extend VLAN unsupported\n");
2723 	}
2724 
2725 	return 0;
2726 }
2727 
2728 static int
2729 bnxt_vlan_tpid_set_op(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
2730 		      uint16_t tpid)
2731 {
2732 	struct bnxt *bp = dev->data->dev_private;
2733 	int qinq = dev->data->dev_conf.rxmode.offloads &
2734 		   RTE_ETH_RX_OFFLOAD_VLAN_EXTEND;
2735 
2736 	if (vlan_type != RTE_ETH_VLAN_TYPE_INNER &&
2737 	    vlan_type != RTE_ETH_VLAN_TYPE_OUTER) {
2738 		PMD_DRV_LOG(ERR,
2739 			    "Unsupported vlan type.");
2740 		return -EINVAL;
2741 	}
2742 	if (!qinq) {
2743 		PMD_DRV_LOG(ERR,
2744 			    "QinQ not enabled. Needs to be ON as we can "
2745 			    "accelerate only outer vlan\n");
2746 		return -EINVAL;
2747 	}
2748 
2749 	if (vlan_type == RTE_ETH_VLAN_TYPE_OUTER) {
2750 		switch (tpid) {
2751 		case RTE_ETHER_TYPE_QINQ:
2752 			bp->outer_tpid_bd =
2753 				TX_BD_LONG_CFA_META_VLAN_TPID_TPID88A8;
2754 				break;
2755 		case RTE_ETHER_TYPE_VLAN:
2756 			bp->outer_tpid_bd =
2757 				TX_BD_LONG_CFA_META_VLAN_TPID_TPID8100;
2758 				break;
2759 		case RTE_ETHER_TYPE_QINQ1:
2760 			bp->outer_tpid_bd =
2761 				TX_BD_LONG_CFA_META_VLAN_TPID_TPID9100;
2762 				break;
2763 		case RTE_ETHER_TYPE_QINQ2:
2764 			bp->outer_tpid_bd =
2765 				TX_BD_LONG_CFA_META_VLAN_TPID_TPID9200;
2766 				break;
2767 		case RTE_ETHER_TYPE_QINQ3:
2768 			bp->outer_tpid_bd =
2769 				 TX_BD_LONG_CFA_META_VLAN_TPID_TPID9300;
2770 				break;
2771 		default:
2772 			PMD_DRV_LOG(ERR, "Invalid TPID: %x\n", tpid);
2773 			return -EINVAL;
2774 		}
2775 		bp->outer_tpid_bd |= tpid;
2776 		PMD_DRV_LOG(INFO, "outer_tpid_bd = %x\n", bp->outer_tpid_bd);
2777 	} else if (vlan_type == RTE_ETH_VLAN_TYPE_INNER) {
2778 		PMD_DRV_LOG(ERR,
2779 			    "Can accelerate only outer vlan in QinQ\n");
2780 		return -EINVAL;
2781 	}
2782 
2783 	return 0;
2784 }
2785 
2786 static int
2787 bnxt_set_default_mac_addr_op(struct rte_eth_dev *dev,
2788 			     struct rte_ether_addr *addr)
2789 {
2790 	struct bnxt *bp = dev->data->dev_private;
2791 	/* Default Filter is tied to VNIC 0 */
2792 	struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp);
2793 	int rc;
2794 
2795 	rc = is_bnxt_in_error(bp);
2796 	if (rc)
2797 		return rc;
2798 
2799 	if (BNXT_VF(bp) && !BNXT_VF_IS_TRUSTED(bp))
2800 		return -EPERM;
2801 
2802 	if (rte_is_zero_ether_addr(addr))
2803 		return -EINVAL;
2804 
2805 	/* Filter settings will get applied when port is started */
2806 	if (!dev->data->dev_started)
2807 		return 0;
2808 
2809 	/* Check if the requested MAC is already added */
2810 	if (memcmp(addr, bp->mac_addr, RTE_ETHER_ADDR_LEN) == 0)
2811 		return 0;
2812 
2813 	/* Destroy filter and re-create it */
2814 	bnxt_del_dflt_mac_filter(bp, vnic);
2815 
2816 	memcpy(bp->mac_addr, addr, RTE_ETHER_ADDR_LEN);
2817 	if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER) {
2818 		/* This filter will allow only untagged packets */
2819 		rc = bnxt_add_vlan_filter(bp, 0);
2820 	} else {
2821 		rc = bnxt_add_mac_filter(bp, vnic, addr, 0, 0);
2822 	}
2823 
2824 	PMD_DRV_LOG(DEBUG, "Set MAC addr\n");
2825 	return rc;
2826 }
2827 
2828 static int
2829 bnxt_dev_set_mc_addr_list_op(struct rte_eth_dev *eth_dev,
2830 			  struct rte_ether_addr *mc_addr_set,
2831 			  uint32_t nb_mc_addr)
2832 {
2833 	struct bnxt *bp = eth_dev->data->dev_private;
2834 	struct bnxt_vnic_info *vnic;
2835 	uint32_t i = 0;
2836 	int rc;
2837 
2838 	rc = is_bnxt_in_error(bp);
2839 	if (rc)
2840 		return rc;
2841 
2842 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
2843 
2844 	bp->nb_mc_addr = nb_mc_addr;
2845 
2846 	if (nb_mc_addr > BNXT_MAX_MC_ADDRS) {
2847 		vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
2848 		goto allmulti;
2849 	}
2850 
2851 	/* TODO Check for Duplicate mcast addresses */
2852 	vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
2853 	for (i = 0; i < nb_mc_addr; i++)
2854 		rte_ether_addr_copy(&mc_addr_set[i], &bp->mcast_addr_list[i]);
2855 
2856 	if (bp->nb_mc_addr)
2857 		vnic->flags |= BNXT_VNIC_INFO_MCAST;
2858 	else
2859 		vnic->flags &= ~BNXT_VNIC_INFO_MCAST;
2860 
2861 allmulti:
2862 	return bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
2863 }
2864 
2865 static int
2866 bnxt_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
2867 {
2868 	struct bnxt *bp = dev->data->dev_private;
2869 	uint8_t fw_major = (bp->fw_ver >> 24) & 0xff;
2870 	uint8_t fw_minor = (bp->fw_ver >> 16) & 0xff;
2871 	uint8_t fw_updt = (bp->fw_ver >> 8) & 0xff;
2872 	uint8_t fw_rsvd = bp->fw_ver & 0xff;
2873 	int ret;
2874 
2875 	ret = snprintf(fw_version, fw_size, "%d.%d.%d.%d",
2876 			fw_major, fw_minor, fw_updt, fw_rsvd);
2877 	if (ret < 0)
2878 		return -EINVAL;
2879 
2880 	ret += 1; /* add the size of '\0' */
2881 	if (fw_size < (size_t)ret)
2882 		return ret;
2883 	else
2884 		return 0;
2885 }
2886 
2887 static void
2888 bnxt_rxq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
2889 	struct rte_eth_rxq_info *qinfo)
2890 {
2891 	struct bnxt *bp = dev->data->dev_private;
2892 	struct bnxt_rx_queue *rxq;
2893 
2894 	if (is_bnxt_in_error(bp))
2895 		return;
2896 
2897 	rxq = dev->data->rx_queues[queue_id];
2898 
2899 	qinfo->mp = rxq->mb_pool;
2900 	qinfo->scattered_rx = dev->data->scattered_rx;
2901 	qinfo->nb_desc = rxq->nb_rx_desc;
2902 
2903 	qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2904 	qinfo->conf.rx_drop_en = rxq->drop_en;
2905 	qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
2906 	qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
2907 }
2908 
2909 static void
2910 bnxt_txq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
2911 	struct rte_eth_txq_info *qinfo)
2912 {
2913 	struct bnxt *bp = dev->data->dev_private;
2914 	struct bnxt_tx_queue *txq;
2915 
2916 	if (is_bnxt_in_error(bp))
2917 		return;
2918 
2919 	txq = dev->data->tx_queues[queue_id];
2920 
2921 	qinfo->nb_desc = txq->nb_tx_desc;
2922 
2923 	qinfo->conf.tx_thresh.pthresh = txq->pthresh;
2924 	qinfo->conf.tx_thresh.hthresh = txq->hthresh;
2925 	qinfo->conf.tx_thresh.wthresh = txq->wthresh;
2926 
2927 	qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
2928 	qinfo->conf.tx_rs_thresh = 0;
2929 	qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
2930 	qinfo->conf.offloads = txq->offloads;
2931 }
2932 
2933 static const struct {
2934 	eth_rx_burst_t pkt_burst;
2935 	const char *info;
2936 } bnxt_rx_burst_info[] = {
2937 	{bnxt_recv_pkts,		"Scalar"},
2938 #if defined(RTE_ARCH_X86)
2939 	{bnxt_recv_pkts_vec,		"Vector SSE"},
2940 #endif
2941 #if defined(RTE_ARCH_X86) && defined(CC_AVX2_SUPPORT)
2942 	{bnxt_recv_pkts_vec_avx2,	"Vector AVX2"},
2943 #endif
2944 #if defined(RTE_ARCH_ARM64)
2945 	{bnxt_recv_pkts_vec,		"Vector Neon"},
2946 #endif
2947 };
2948 
2949 static int
2950 bnxt_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
2951 		       struct rte_eth_burst_mode *mode)
2952 {
2953 	eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
2954 	size_t i;
2955 
2956 	for (i = 0; i < RTE_DIM(bnxt_rx_burst_info); i++) {
2957 		if (pkt_burst == bnxt_rx_burst_info[i].pkt_burst) {
2958 			snprintf(mode->info, sizeof(mode->info), "%s",
2959 				 bnxt_rx_burst_info[i].info);
2960 			return 0;
2961 		}
2962 	}
2963 
2964 	return -EINVAL;
2965 }
2966 
2967 static const struct {
2968 	eth_tx_burst_t pkt_burst;
2969 	const char *info;
2970 } bnxt_tx_burst_info[] = {
2971 	{bnxt_xmit_pkts,		"Scalar"},
2972 #if defined(RTE_ARCH_X86)
2973 	{bnxt_xmit_pkts_vec,		"Vector SSE"},
2974 #endif
2975 #if defined(RTE_ARCH_X86) && defined(CC_AVX2_SUPPORT)
2976 	{bnxt_xmit_pkts_vec_avx2,	"Vector AVX2"},
2977 #endif
2978 #if defined(RTE_ARCH_ARM64)
2979 	{bnxt_xmit_pkts_vec,		"Vector Neon"},
2980 #endif
2981 };
2982 
2983 static int
2984 bnxt_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
2985 		       struct rte_eth_burst_mode *mode)
2986 {
2987 	eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
2988 	size_t i;
2989 
2990 	for (i = 0; i < RTE_DIM(bnxt_tx_burst_info); i++) {
2991 		if (pkt_burst == bnxt_tx_burst_info[i].pkt_burst) {
2992 			snprintf(mode->info, sizeof(mode->info), "%s",
2993 				 bnxt_tx_burst_info[i].info);
2994 			return 0;
2995 		}
2996 	}
2997 
2998 	return -EINVAL;
2999 }
3000 
3001 int bnxt_mtu_set_op(struct rte_eth_dev *eth_dev, uint16_t new_mtu)
3002 {
3003 	uint32_t overhead = BNXT_MAX_PKT_LEN - BNXT_MAX_MTU;
3004 	struct bnxt *bp = eth_dev->data->dev_private;
3005 	uint32_t new_pkt_size;
3006 	uint32_t rc;
3007 	uint32_t i;
3008 
3009 	rc = is_bnxt_in_error(bp);
3010 	if (rc)
3011 		return rc;
3012 
3013 	/* Exit if receive queues are not configured yet */
3014 	if (!eth_dev->data->nb_rx_queues)
3015 		return rc;
3016 
3017 	new_pkt_size = new_mtu + overhead;
3018 
3019 	/*
3020 	 * Disallow any MTU change that would require scattered receive support
3021 	 * if it is not already enabled.
3022 	 */
3023 	if (eth_dev->data->dev_started &&
3024 	    !eth_dev->data->scattered_rx &&
3025 	    (new_pkt_size >
3026 	     eth_dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)) {
3027 		PMD_DRV_LOG(ERR,
3028 			    "MTU change would require scattered rx support. ");
3029 		PMD_DRV_LOG(ERR, "Stop port before changing MTU.\n");
3030 		return -EINVAL;
3031 	}
3032 
3033 	if (new_mtu > RTE_ETHER_MTU)
3034 		bp->flags |= BNXT_FLAG_JUMBO;
3035 	else
3036 		bp->flags &= ~BNXT_FLAG_JUMBO;
3037 
3038 	/* Is there a change in mtu setting? */
3039 	if (eth_dev->data->mtu == new_mtu)
3040 		return rc;
3041 
3042 	for (i = 0; i < bp->nr_vnics; i++) {
3043 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3044 		uint16_t size = 0;
3045 
3046 		vnic->mru = BNXT_VNIC_MRU(new_mtu);
3047 		rc = bnxt_hwrm_vnic_cfg(bp, vnic);
3048 		if (rc)
3049 			break;
3050 
3051 		size = rte_pktmbuf_data_room_size(bp->rx_queues[0]->mb_pool);
3052 		size -= RTE_PKTMBUF_HEADROOM;
3053 
3054 		if (size < new_mtu) {
3055 			rc = bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
3056 			if (rc)
3057 				return rc;
3058 		}
3059 	}
3060 
3061 	if (bnxt_hwrm_config_host_mtu(bp))
3062 		PMD_DRV_LOG(WARNING, "Failed to configure host MTU\n");
3063 
3064 	PMD_DRV_LOG(INFO, "New MTU is %d\n", new_mtu);
3065 
3066 	return rc;
3067 }
3068 
3069 static int
3070 bnxt_vlan_pvid_set_op(struct rte_eth_dev *dev, uint16_t pvid, int on)
3071 {
3072 	struct bnxt *bp = dev->data->dev_private;
3073 	uint16_t vlan = bp->vlan;
3074 	int rc;
3075 
3076 	rc = is_bnxt_in_error(bp);
3077 	if (rc)
3078 		return rc;
3079 
3080 	if (!BNXT_SINGLE_PF(bp)) {
3081 		PMD_DRV_LOG(ERR, "PVID cannot be modified on VF or on shared PF\n");
3082 		return -ENOTSUP;
3083 	}
3084 	bp->vlan = on ? pvid : 0;
3085 
3086 	rc = bnxt_hwrm_set_default_vlan(bp, 0, 0);
3087 	if (rc)
3088 		bp->vlan = vlan;
3089 	return rc;
3090 }
3091 
3092 static int
3093 bnxt_dev_led_on_op(struct rte_eth_dev *dev)
3094 {
3095 	struct bnxt *bp = dev->data->dev_private;
3096 	int rc;
3097 
3098 	rc = is_bnxt_in_error(bp);
3099 	if (rc)
3100 		return rc;
3101 
3102 	return bnxt_hwrm_port_led_cfg(bp, true);
3103 }
3104 
3105 static int
3106 bnxt_dev_led_off_op(struct rte_eth_dev *dev)
3107 {
3108 	struct bnxt *bp = dev->data->dev_private;
3109 	int rc;
3110 
3111 	rc = is_bnxt_in_error(bp);
3112 	if (rc)
3113 		return rc;
3114 
3115 	return bnxt_hwrm_port_led_cfg(bp, false);
3116 }
3117 
3118 static uint32_t
3119 bnxt_rx_queue_count_op(void *rx_queue)
3120 {
3121 	struct bnxt *bp;
3122 	struct bnxt_cp_ring_info *cpr;
3123 	uint32_t desc = 0, raw_cons, cp_ring_size;
3124 	struct bnxt_rx_queue *rxq;
3125 	struct rx_pkt_cmpl *rxcmp;
3126 	int rc;
3127 
3128 	rxq = rx_queue;
3129 	bp = rxq->bp;
3130 
3131 	rc = is_bnxt_in_error(bp);
3132 	if (rc)
3133 		return rc;
3134 
3135 	cpr = rxq->cp_ring;
3136 	raw_cons = cpr->cp_raw_cons;
3137 	cp_ring_size = cpr->cp_ring_struct->ring_size;
3138 
3139 	while (1) {
3140 		uint32_t agg_cnt, cons, cmpl_type;
3141 
3142 		cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
3143 		rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
3144 
3145 		if (!bnxt_cpr_cmp_valid(rxcmp, raw_cons, cp_ring_size))
3146 			break;
3147 
3148 		cmpl_type = CMP_TYPE(rxcmp);
3149 
3150 		switch (cmpl_type) {
3151 		case CMPL_BASE_TYPE_RX_L2:
3152 		case CMPL_BASE_TYPE_RX_L2_V2:
3153 			agg_cnt = BNXT_RX_L2_AGG_BUFS(rxcmp);
3154 			raw_cons = raw_cons + CMP_LEN(cmpl_type) + agg_cnt;
3155 			desc++;
3156 			break;
3157 
3158 		case CMPL_BASE_TYPE_RX_TPA_END:
3159 			if (BNXT_CHIP_P5(rxq->bp)) {
3160 				struct rx_tpa_v2_end_cmpl_hi *p5_tpa_end;
3161 
3162 				p5_tpa_end = (void *)rxcmp;
3163 				agg_cnt = BNXT_TPA_END_AGG_BUFS_TH(p5_tpa_end);
3164 			} else {
3165 				struct rx_tpa_end_cmpl *tpa_end;
3166 
3167 				tpa_end = (void *)rxcmp;
3168 				agg_cnt = BNXT_TPA_END_AGG_BUFS(tpa_end);
3169 			}
3170 
3171 			raw_cons = raw_cons + CMP_LEN(cmpl_type) + agg_cnt;
3172 			desc++;
3173 			break;
3174 
3175 		default:
3176 			raw_cons += CMP_LEN(cmpl_type);
3177 		}
3178 	}
3179 
3180 	return desc;
3181 }
3182 
3183 static int
3184 bnxt_rx_descriptor_status_op(void *rx_queue, uint16_t offset)
3185 {
3186 	struct bnxt_rx_queue *rxq = rx_queue;
3187 	struct bnxt_cp_ring_info *cpr;
3188 	struct bnxt_rx_ring_info *rxr;
3189 	uint32_t desc, raw_cons, cp_ring_size;
3190 	struct bnxt *bp = rxq->bp;
3191 	struct rx_pkt_cmpl *rxcmp;
3192 	int rc;
3193 
3194 	rc = is_bnxt_in_error(bp);
3195 	if (rc)
3196 		return rc;
3197 
3198 	if (offset >= rxq->nb_rx_desc)
3199 		return -EINVAL;
3200 
3201 	rxr = rxq->rx_ring;
3202 	cpr = rxq->cp_ring;
3203 	cp_ring_size = cpr->cp_ring_struct->ring_size;
3204 
3205 	/*
3206 	 * For the vector receive case, the completion at the requested
3207 	 * offset can be indexed directly.
3208 	 */
3209 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
3210 	if (bp->flags & BNXT_FLAG_RX_VECTOR_PKT_MODE) {
3211 		struct rx_pkt_cmpl *rxcmp;
3212 		uint32_t cons;
3213 
3214 		/* Check status of completion descriptor. */
3215 		raw_cons = cpr->cp_raw_cons +
3216 			   offset * CMP_LEN(CMPL_BASE_TYPE_RX_L2);
3217 		cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
3218 		rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
3219 
3220 		if (bnxt_cpr_cmp_valid(rxcmp, raw_cons, cp_ring_size))
3221 			return RTE_ETH_RX_DESC_DONE;
3222 
3223 		/* Check whether rx desc has an mbuf attached. */
3224 		cons = RING_CMP(rxr->rx_ring_struct, raw_cons / 2);
3225 		if (cons >= rxq->rxrearm_start &&
3226 		    cons < rxq->rxrearm_start + rxq->rxrearm_nb) {
3227 			return RTE_ETH_RX_DESC_UNAVAIL;
3228 		}
3229 
3230 		return RTE_ETH_RX_DESC_AVAIL;
3231 	}
3232 #endif
3233 
3234 	/*
3235 	 * For the non-vector receive case, scan the completion ring to
3236 	 * locate the completion descriptor for the requested offset.
3237 	 */
3238 	raw_cons = cpr->cp_raw_cons;
3239 	desc = 0;
3240 	while (1) {
3241 		uint32_t agg_cnt, cons, cmpl_type;
3242 
3243 		cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
3244 		rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
3245 
3246 		if (!bnxt_cpr_cmp_valid(rxcmp, raw_cons, cp_ring_size))
3247 			break;
3248 
3249 		cmpl_type = CMP_TYPE(rxcmp);
3250 
3251 		switch (cmpl_type) {
3252 		case CMPL_BASE_TYPE_RX_L2:
3253 		case CMPL_BASE_TYPE_RX_L2_V2:
3254 			if (desc == offset) {
3255 				cons = rxcmp->opaque;
3256 				if (rxr->rx_buf_ring[cons])
3257 					return RTE_ETH_RX_DESC_DONE;
3258 				else
3259 					return RTE_ETH_RX_DESC_UNAVAIL;
3260 			}
3261 			agg_cnt = BNXT_RX_L2_AGG_BUFS(rxcmp);
3262 			raw_cons = raw_cons + CMP_LEN(cmpl_type) + agg_cnt;
3263 			desc++;
3264 			break;
3265 
3266 		case CMPL_BASE_TYPE_RX_TPA_END:
3267 			if (desc == offset)
3268 				return RTE_ETH_RX_DESC_DONE;
3269 
3270 			if (BNXT_CHIP_P5(rxq->bp)) {
3271 				struct rx_tpa_v2_end_cmpl_hi *p5_tpa_end;
3272 
3273 				p5_tpa_end = (void *)rxcmp;
3274 				agg_cnt = BNXT_TPA_END_AGG_BUFS_TH(p5_tpa_end);
3275 			} else {
3276 				struct rx_tpa_end_cmpl *tpa_end;
3277 
3278 				tpa_end = (void *)rxcmp;
3279 				agg_cnt = BNXT_TPA_END_AGG_BUFS(tpa_end);
3280 			}
3281 
3282 			raw_cons = raw_cons + CMP_LEN(cmpl_type) + agg_cnt;
3283 			desc++;
3284 			break;
3285 
3286 		default:
3287 			raw_cons += CMP_LEN(cmpl_type);
3288 		}
3289 	}
3290 
3291 	return RTE_ETH_RX_DESC_AVAIL;
3292 }
3293 
3294 static int
3295 bnxt_tx_descriptor_status_op(void *tx_queue, uint16_t offset)
3296 {
3297 	struct bnxt_tx_queue *txq = (struct bnxt_tx_queue *)tx_queue;
3298 	struct bnxt_cp_ring_info *cpr = txq->cp_ring;
3299 	uint32_t ring_mask, raw_cons, nb_tx_pkts = 0;
3300 	struct cmpl_base *cp_desc_ring;
3301 	int rc;
3302 
3303 	rc = is_bnxt_in_error(txq->bp);
3304 	if (rc)
3305 		return rc;
3306 
3307 	if (offset >= txq->nb_tx_desc)
3308 		return -EINVAL;
3309 
3310 	/* Return "desc done" if descriptor is available for use. */
3311 	if (bnxt_tx_bds_in_hw(txq) <= offset)
3312 		return RTE_ETH_TX_DESC_DONE;
3313 
3314 	raw_cons = cpr->cp_raw_cons;
3315 	cp_desc_ring = cpr->cp_desc_ring;
3316 	ring_mask = cpr->cp_ring_struct->ring_mask;
3317 
3318 	/* Check to see if hw has posted a completion for the descriptor. */
3319 	while (1) {
3320 		struct tx_cmpl *txcmp;
3321 		uint32_t cons;
3322 
3323 		cons = RING_CMPL(ring_mask, raw_cons);
3324 		txcmp = (struct tx_cmpl *)&cp_desc_ring[cons];
3325 
3326 		if (!bnxt_cpr_cmp_valid(txcmp, raw_cons, ring_mask + 1))
3327 			break;
3328 
3329 		if (CMP_TYPE(txcmp) == TX_CMPL_TYPE_TX_L2)
3330 			nb_tx_pkts += rte_le_to_cpu_32(txcmp->opaque);
3331 
3332 		if (nb_tx_pkts > offset)
3333 			return RTE_ETH_TX_DESC_DONE;
3334 
3335 		raw_cons = NEXT_RAW_CMP(raw_cons);
3336 	}
3337 
3338 	/* Descriptor is pending transmit, not yet completed by hardware. */
3339 	return RTE_ETH_TX_DESC_FULL;
3340 }
3341 
3342 int
3343 bnxt_flow_ops_get_op(struct rte_eth_dev *dev,
3344 		     const struct rte_flow_ops **ops)
3345 {
3346 	struct bnxt *bp = dev->data->dev_private;
3347 	int ret = 0;
3348 
3349 	if (!bp)
3350 		return -EIO;
3351 
3352 	if (BNXT_ETH_DEV_IS_REPRESENTOR(dev)) {
3353 		struct bnxt_representor *vfr = dev->data->dev_private;
3354 		bp = vfr->parent_dev->data->dev_private;
3355 		/* parent is deleted while children are still valid */
3356 		if (!bp) {
3357 			PMD_DRV_LOG(DEBUG, "BNXT Port:%d VFR Error\n",
3358 				    dev->data->port_id);
3359 			return -EIO;
3360 		}
3361 	}
3362 
3363 	ret = is_bnxt_in_error(bp);
3364 	if (ret)
3365 		return ret;
3366 
3367 	/* PMD supports thread-safe flow operations.  rte_flow API
3368 	 * functions can avoid mutex for multi-thread safety.
3369 	 */
3370 	dev->data->dev_flags |= RTE_ETH_DEV_FLOW_OPS_THREAD_SAFE;
3371 
3372 	if (BNXT_TRUFLOW_EN(bp))
3373 		*ops = &bnxt_ulp_rte_flow_ops;
3374 	else
3375 		*ops = &bnxt_flow_ops;
3376 
3377 	return ret;
3378 }
3379 
3380 static const uint32_t *
3381 bnxt_dev_supported_ptypes_get_op(struct rte_eth_dev *dev)
3382 {
3383 	static const uint32_t ptypes[] = {
3384 		RTE_PTYPE_L2_ETHER_VLAN,
3385 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
3386 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
3387 		RTE_PTYPE_L4_ICMP,
3388 		RTE_PTYPE_L4_TCP,
3389 		RTE_PTYPE_L4_UDP,
3390 		RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
3391 		RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
3392 		RTE_PTYPE_INNER_L4_ICMP,
3393 		RTE_PTYPE_INNER_L4_TCP,
3394 		RTE_PTYPE_INNER_L4_UDP,
3395 		RTE_PTYPE_UNKNOWN
3396 	};
3397 
3398 	if (!dev->rx_pkt_burst)
3399 		return NULL;
3400 
3401 	return ptypes;
3402 }
3403 
3404 static int bnxt_map_regs(struct bnxt *bp, uint32_t *reg_arr, int count,
3405 			 int reg_win)
3406 {
3407 	uint32_t reg_base = *reg_arr & 0xfffff000;
3408 	uint32_t win_off;
3409 	int i;
3410 
3411 	for (i = 0; i < count; i++) {
3412 		if ((reg_arr[i] & 0xfffff000) != reg_base)
3413 			return -ERANGE;
3414 	}
3415 	win_off = BNXT_GRCPF_REG_WINDOW_BASE_OUT + (reg_win - 1) * 4;
3416 	rte_write32(reg_base, (uint8_t *)bp->bar0 + win_off);
3417 	return 0;
3418 }
3419 
3420 static int bnxt_map_ptp_regs(struct bnxt *bp)
3421 {
3422 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3423 	uint32_t *reg_arr;
3424 	int rc, i;
3425 
3426 	reg_arr = ptp->rx_regs;
3427 	rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_RX_REGS, 5);
3428 	if (rc)
3429 		return rc;
3430 
3431 	reg_arr = ptp->tx_regs;
3432 	rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_TX_REGS, 6);
3433 	if (rc)
3434 		return rc;
3435 
3436 	for (i = 0; i < BNXT_PTP_RX_REGS; i++)
3437 		ptp->rx_mapped_regs[i] = 0x5000 + (ptp->rx_regs[i] & 0xfff);
3438 
3439 	for (i = 0; i < BNXT_PTP_TX_REGS; i++)
3440 		ptp->tx_mapped_regs[i] = 0x6000 + (ptp->tx_regs[i] & 0xfff);
3441 
3442 	return 0;
3443 }
3444 
3445 static void bnxt_unmap_ptp_regs(struct bnxt *bp)
3446 {
3447 	rte_write32(0, (uint8_t *)bp->bar0 +
3448 			 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 16);
3449 	rte_write32(0, (uint8_t *)bp->bar0 +
3450 			 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 20);
3451 }
3452 
3453 static uint64_t bnxt_cc_read(struct bnxt *bp)
3454 {
3455 	uint64_t ns;
3456 
3457 	ns = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3458 			      BNXT_GRCPF_REG_SYNC_TIME));
3459 	ns |= (uint64_t)(rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3460 					  BNXT_GRCPF_REG_SYNC_TIME + 4))) << 32;
3461 	return ns;
3462 }
3463 
3464 static int bnxt_get_tx_ts(struct bnxt *bp, uint64_t *ts)
3465 {
3466 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3467 	uint32_t fifo;
3468 
3469 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3470 				ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
3471 	if (fifo & BNXT_PTP_TX_FIFO_EMPTY)
3472 		return -EAGAIN;
3473 
3474 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3475 				ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
3476 	*ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3477 				ptp->tx_mapped_regs[BNXT_PTP_TX_TS_L]));
3478 	*ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3479 				ptp->tx_mapped_regs[BNXT_PTP_TX_TS_H])) << 32;
3480 	rte_read32((uint8_t *)bp->bar0 + ptp->tx_mapped_regs[BNXT_PTP_TX_SEQ]);
3481 
3482 	return 0;
3483 }
3484 
3485 static int bnxt_clr_rx_ts(struct bnxt *bp, uint64_t *last_ts)
3486 {
3487 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3488 	struct bnxt_pf_info *pf = bp->pf;
3489 	uint16_t port_id;
3490 	int i = 0;
3491 	uint32_t fifo;
3492 
3493 	if (!ptp || (bp->flags & BNXT_FLAG_CHIP_P5))
3494 		return -EINVAL;
3495 
3496 	port_id = pf->port_id;
3497 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3498 				ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
3499 	while ((fifo & BNXT_PTP_RX_FIFO_PENDING) && (i < BNXT_PTP_RX_PND_CNT)) {
3500 		rte_write32(1 << port_id, (uint8_t *)bp->bar0 +
3501 			    ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO_ADV]);
3502 		fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3503 					ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
3504 		*last_ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3505 					ptp->rx_mapped_regs[BNXT_PTP_RX_TS_L]));
3506 		*last_ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3507 					ptp->rx_mapped_regs[BNXT_PTP_RX_TS_H])) << 32;
3508 		i++;
3509 	}
3510 
3511 	if (i >= BNXT_PTP_RX_PND_CNT)
3512 		return -EBUSY;
3513 
3514 	return 0;
3515 }
3516 
3517 static int bnxt_get_rx_ts(struct bnxt *bp, uint64_t *ts)
3518 {
3519 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3520 	struct bnxt_pf_info *pf = bp->pf;
3521 	uint16_t port_id;
3522 	uint32_t fifo;
3523 
3524 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3525 				ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
3526 	if (!(fifo & BNXT_PTP_RX_FIFO_PENDING))
3527 		return -EAGAIN;
3528 
3529 	port_id = pf->port_id;
3530 	rte_write32(1 << port_id, (uint8_t *)bp->bar0 +
3531 	       ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO_ADV]);
3532 
3533 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3534 				   ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
3535 	if (fifo & BNXT_PTP_RX_FIFO_PENDING)
3536 		return bnxt_clr_rx_ts(bp, ts);
3537 
3538 	*ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3539 				ptp->rx_mapped_regs[BNXT_PTP_RX_TS_L]));
3540 	*ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3541 				ptp->rx_mapped_regs[BNXT_PTP_RX_TS_H])) << 32;
3542 
3543 	return 0;
3544 }
3545 
3546 static int
3547 bnxt_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
3548 {
3549 	uint64_t ns;
3550 	struct bnxt *bp = dev->data->dev_private;
3551 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3552 
3553 	if (!ptp)
3554 		return -ENOTSUP;
3555 
3556 	ns = rte_timespec_to_ns(ts);
3557 	/* Set the timecounters to a new value. */
3558 	ptp->tc.nsec = ns;
3559 	ptp->tx_tstamp_tc.nsec = ns;
3560 	ptp->rx_tstamp_tc.nsec = ns;
3561 
3562 	return 0;
3563 }
3564 
3565 static int
3566 bnxt_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
3567 {
3568 	struct bnxt *bp = dev->data->dev_private;
3569 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3570 	uint64_t ns, systime_cycles = 0;
3571 	int rc = 0;
3572 
3573 	if (!ptp)
3574 		return -ENOTSUP;
3575 
3576 	if (BNXT_CHIP_P5(bp))
3577 		rc = bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME,
3578 					     &systime_cycles);
3579 	else
3580 		systime_cycles = bnxt_cc_read(bp);
3581 
3582 	ns = rte_timecounter_update(&ptp->tc, systime_cycles);
3583 	*ts = rte_ns_to_timespec(ns);
3584 
3585 	return rc;
3586 }
3587 static int
3588 bnxt_timesync_enable(struct rte_eth_dev *dev)
3589 {
3590 	struct bnxt *bp = dev->data->dev_private;
3591 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3592 	uint32_t shift = 0;
3593 	int rc;
3594 
3595 	if (!ptp)
3596 		return -ENOTSUP;
3597 
3598 	ptp->rx_filter = 1;
3599 	ptp->tx_tstamp_en = 1;
3600 	ptp->rxctl = BNXT_PTP_MSG_EVENTS;
3601 
3602 	rc = bnxt_hwrm_ptp_cfg(bp);
3603 	if (rc)
3604 		return rc;
3605 
3606 	memset(&ptp->tc, 0, sizeof(struct rte_timecounter));
3607 	memset(&ptp->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
3608 	memset(&ptp->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
3609 
3610 	ptp->tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
3611 	ptp->tc.cc_shift = shift;
3612 	ptp->tc.nsec_mask = (1ULL << shift) - 1;
3613 
3614 	ptp->rx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
3615 	ptp->rx_tstamp_tc.cc_shift = shift;
3616 	ptp->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
3617 
3618 	ptp->tx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
3619 	ptp->tx_tstamp_tc.cc_shift = shift;
3620 	ptp->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
3621 
3622 	if (!BNXT_CHIP_P5(bp))
3623 		bnxt_map_ptp_regs(bp);
3624 	else
3625 		rc = bnxt_ptp_start(bp);
3626 
3627 	return rc;
3628 }
3629 
3630 static int
3631 bnxt_timesync_disable(struct rte_eth_dev *dev)
3632 {
3633 	struct bnxt *bp = dev->data->dev_private;
3634 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3635 
3636 	if (!ptp)
3637 		return -ENOTSUP;
3638 
3639 	ptp->rx_filter = 0;
3640 	ptp->tx_tstamp_en = 0;
3641 	ptp->rxctl = 0;
3642 
3643 	bnxt_hwrm_ptp_cfg(bp);
3644 
3645 	if (!BNXT_CHIP_P5(bp))
3646 		bnxt_unmap_ptp_regs(bp);
3647 	else
3648 		bnxt_ptp_stop(bp);
3649 
3650 	return 0;
3651 }
3652 
3653 static int
3654 bnxt_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
3655 				 struct timespec *timestamp,
3656 				 uint32_t flags __rte_unused)
3657 {
3658 	struct bnxt *bp = dev->data->dev_private;
3659 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3660 	uint64_t rx_tstamp_cycles = 0;
3661 	uint64_t ns;
3662 
3663 	if (!ptp)
3664 		return -ENOTSUP;
3665 
3666 	if (BNXT_CHIP_P5(bp))
3667 		rx_tstamp_cycles = ptp->rx_timestamp;
3668 	else
3669 		bnxt_get_rx_ts(bp, &rx_tstamp_cycles);
3670 
3671 	ns = rte_timecounter_update(&ptp->rx_tstamp_tc, rx_tstamp_cycles);
3672 	*timestamp = rte_ns_to_timespec(ns);
3673 	return  0;
3674 }
3675 
3676 static int
3677 bnxt_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
3678 				 struct timespec *timestamp)
3679 {
3680 	struct bnxt *bp = dev->data->dev_private;
3681 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3682 	uint64_t tx_tstamp_cycles = 0;
3683 	uint64_t ns;
3684 	int rc = 0;
3685 
3686 	if (!ptp)
3687 		return -ENOTSUP;
3688 
3689 	if (BNXT_CHIP_P5(bp))
3690 		rc = bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_PATH_TX,
3691 					     &tx_tstamp_cycles);
3692 	else
3693 		rc = bnxt_get_tx_ts(bp, &tx_tstamp_cycles);
3694 
3695 	ns = rte_timecounter_update(&ptp->tx_tstamp_tc, tx_tstamp_cycles);
3696 	*timestamp = rte_ns_to_timespec(ns);
3697 
3698 	return rc;
3699 }
3700 
3701 static int
3702 bnxt_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
3703 {
3704 	struct bnxt *bp = dev->data->dev_private;
3705 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3706 
3707 	if (!ptp)
3708 		return -ENOTSUP;
3709 
3710 	ptp->tc.nsec += delta;
3711 	ptp->tx_tstamp_tc.nsec += delta;
3712 	ptp->rx_tstamp_tc.nsec += delta;
3713 
3714 	return 0;
3715 }
3716 
3717 static int
3718 bnxt_get_eeprom_length_op(struct rte_eth_dev *dev)
3719 {
3720 	struct bnxt *bp = dev->data->dev_private;
3721 	int rc;
3722 	uint32_t dir_entries;
3723 	uint32_t entry_length;
3724 
3725 	rc = is_bnxt_in_error(bp);
3726 	if (rc)
3727 		return rc;
3728 
3729 	PMD_DRV_LOG(INFO, PCI_PRI_FMT "\n",
3730 		    bp->pdev->addr.domain, bp->pdev->addr.bus,
3731 		    bp->pdev->addr.devid, bp->pdev->addr.function);
3732 
3733 	rc = bnxt_hwrm_nvm_get_dir_info(bp, &dir_entries, &entry_length);
3734 	if (rc != 0)
3735 		return rc;
3736 
3737 	return dir_entries * entry_length;
3738 }
3739 
3740 static int
3741 bnxt_get_eeprom_op(struct rte_eth_dev *dev,
3742 		struct rte_dev_eeprom_info *in_eeprom)
3743 {
3744 	struct bnxt *bp = dev->data->dev_private;
3745 	uint32_t index;
3746 	uint32_t offset;
3747 	int rc;
3748 
3749 	rc = is_bnxt_in_error(bp);
3750 	if (rc)
3751 		return rc;
3752 
3753 	PMD_DRV_LOG(INFO, PCI_PRI_FMT " in_eeprom->offset = %d len = %d\n",
3754 		    bp->pdev->addr.domain, bp->pdev->addr.bus,
3755 		    bp->pdev->addr.devid, bp->pdev->addr.function,
3756 		    in_eeprom->offset, in_eeprom->length);
3757 
3758 	if (in_eeprom->offset == 0) /* special offset value to get directory */
3759 		return bnxt_get_nvram_directory(bp, in_eeprom->length,
3760 						in_eeprom->data);
3761 
3762 	index = in_eeprom->offset >> 24;
3763 	offset = in_eeprom->offset & 0xffffff;
3764 
3765 	if (index != 0)
3766 		return bnxt_hwrm_get_nvram_item(bp, index - 1, offset,
3767 					   in_eeprom->length, in_eeprom->data);
3768 
3769 	return 0;
3770 }
3771 
3772 static bool bnxt_dir_type_is_ape_bin_format(uint16_t dir_type)
3773 {
3774 	switch (dir_type) {
3775 	case BNX_DIR_TYPE_CHIMP_PATCH:
3776 	case BNX_DIR_TYPE_BOOTCODE:
3777 	case BNX_DIR_TYPE_BOOTCODE_2:
3778 	case BNX_DIR_TYPE_APE_FW:
3779 	case BNX_DIR_TYPE_APE_PATCH:
3780 	case BNX_DIR_TYPE_KONG_FW:
3781 	case BNX_DIR_TYPE_KONG_PATCH:
3782 	case BNX_DIR_TYPE_BONO_FW:
3783 	case BNX_DIR_TYPE_BONO_PATCH:
3784 		/* FALLTHROUGH */
3785 		return true;
3786 	}
3787 
3788 	return false;
3789 }
3790 
3791 static bool bnxt_dir_type_is_other_exec_format(uint16_t dir_type)
3792 {
3793 	switch (dir_type) {
3794 	case BNX_DIR_TYPE_AVS:
3795 	case BNX_DIR_TYPE_EXP_ROM_MBA:
3796 	case BNX_DIR_TYPE_PCIE:
3797 	case BNX_DIR_TYPE_TSCF_UCODE:
3798 	case BNX_DIR_TYPE_EXT_PHY:
3799 	case BNX_DIR_TYPE_CCM:
3800 	case BNX_DIR_TYPE_ISCSI_BOOT:
3801 	case BNX_DIR_TYPE_ISCSI_BOOT_IPV6:
3802 	case BNX_DIR_TYPE_ISCSI_BOOT_IPV4N6:
3803 		/* FALLTHROUGH */
3804 		return true;
3805 	}
3806 
3807 	return false;
3808 }
3809 
3810 static bool bnxt_dir_type_is_executable(uint16_t dir_type)
3811 {
3812 	return bnxt_dir_type_is_ape_bin_format(dir_type) ||
3813 		bnxt_dir_type_is_other_exec_format(dir_type);
3814 }
3815 
3816 static int
3817 bnxt_set_eeprom_op(struct rte_eth_dev *dev,
3818 		struct rte_dev_eeprom_info *in_eeprom)
3819 {
3820 	struct bnxt *bp = dev->data->dev_private;
3821 	uint8_t index, dir_op;
3822 	uint16_t type, ext, ordinal, attr;
3823 	int rc;
3824 
3825 	rc = is_bnxt_in_error(bp);
3826 	if (rc)
3827 		return rc;
3828 
3829 	PMD_DRV_LOG(INFO, PCI_PRI_FMT " in_eeprom->offset = %d len = %d\n",
3830 		    bp->pdev->addr.domain, bp->pdev->addr.bus,
3831 		    bp->pdev->addr.devid, bp->pdev->addr.function,
3832 		    in_eeprom->offset, in_eeprom->length);
3833 
3834 	if (!BNXT_PF(bp)) {
3835 		PMD_DRV_LOG(ERR, "NVM write not supported from a VF\n");
3836 		return -EINVAL;
3837 	}
3838 
3839 	type = in_eeprom->magic >> 16;
3840 
3841 	if (type == 0xffff) { /* special value for directory operations */
3842 		index = in_eeprom->magic & 0xff;
3843 		dir_op = in_eeprom->magic >> 8;
3844 		if (index == 0)
3845 			return -EINVAL;
3846 		switch (dir_op) {
3847 		case 0x0e: /* erase */
3848 			if (in_eeprom->offset != ~in_eeprom->magic)
3849 				return -EINVAL;
3850 			return bnxt_hwrm_erase_nvram_directory(bp, index - 1);
3851 		default:
3852 			return -EINVAL;
3853 		}
3854 	}
3855 
3856 	/* Create or re-write an NVM item: */
3857 	if (bnxt_dir_type_is_executable(type) == true)
3858 		return -EOPNOTSUPP;
3859 	ext = in_eeprom->magic & 0xffff;
3860 	ordinal = in_eeprom->offset >> 16;
3861 	attr = in_eeprom->offset & 0xffff;
3862 
3863 	return bnxt_hwrm_flash_nvram(bp, type, ordinal, ext, attr,
3864 				     in_eeprom->data, in_eeprom->length);
3865 }
3866 
3867 static int bnxt_get_module_info(struct rte_eth_dev *dev,
3868 				struct rte_eth_dev_module_info *modinfo)
3869 {
3870 	uint8_t module_info[SFF_DIAG_SUPPORT_OFFSET + 1];
3871 	struct bnxt *bp = dev->data->dev_private;
3872 	int rc;
3873 
3874 	/* No point in going further if phy status indicates
3875 	 * module is not inserted or if it is powered down or
3876 	 * if it is of type 10GBase-T
3877 	 */
3878 	if (bp->link_info->module_status >
3879 	    HWRM_PORT_PHY_QCFG_OUTPUT_MODULE_STATUS_WARNINGMSG) {
3880 		PMD_DRV_LOG(NOTICE, "Port %u : Module is not inserted or is powered down\n",
3881 			    dev->data->port_id);
3882 		return -ENOTSUP;
3883 	}
3884 
3885 	/* This feature is not supported in older firmware versions */
3886 	if (bp->hwrm_spec_code < 0x10202) {
3887 		PMD_DRV_LOG(NOTICE, "Port %u : Feature is not supported in older firmware\n",
3888 			    dev->data->port_id);
3889 		return -ENOTSUP;
3890 	}
3891 
3892 	rc = bnxt_hwrm_read_sfp_module_eeprom_info(bp, I2C_DEV_ADDR_A0, 0, 0,
3893 						   SFF_DIAG_SUPPORT_OFFSET + 1,
3894 						   module_info);
3895 
3896 	if (rc)
3897 		return rc;
3898 
3899 	switch (module_info[0]) {
3900 	case SFF_MODULE_ID_SFP:
3901 		modinfo->type = RTE_ETH_MODULE_SFF_8472;
3902 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
3903 		if (module_info[SFF_DIAG_SUPPORT_OFFSET] == 0)
3904 			modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_LEN;
3905 		break;
3906 	case SFF_MODULE_ID_QSFP:
3907 	case SFF_MODULE_ID_QSFP_PLUS:
3908 		modinfo->type = RTE_ETH_MODULE_SFF_8436;
3909 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_LEN;
3910 		break;
3911 	case SFF_MODULE_ID_QSFP28:
3912 		modinfo->type = RTE_ETH_MODULE_SFF_8636;
3913 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
3914 		if (module_info[SFF8636_FLATMEM_OFFSET] & SFF8636_FLATMEM_MASK)
3915 			modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_LEN;
3916 		break;
3917 	default:
3918 		PMD_DRV_LOG(NOTICE, "Port %u : Unsupported module\n", dev->data->port_id);
3919 		return -ENOTSUP;
3920 	}
3921 
3922 	PMD_DRV_LOG(INFO, "Port %u : modinfo->type = %d modinfo->eeprom_len = %d\n",
3923 		    dev->data->port_id, modinfo->type, modinfo->eeprom_len);
3924 
3925 	return 0;
3926 }
3927 
3928 static int bnxt_get_module_eeprom(struct rte_eth_dev *dev,
3929 				  struct rte_dev_eeprom_info *info)
3930 {
3931 	uint8_t pg_addr[5] = { I2C_DEV_ADDR_A0, I2C_DEV_ADDR_A0 };
3932 	uint32_t offset = info->offset, length = info->length;
3933 	uint8_t module_info[SFF_DIAG_SUPPORT_OFFSET + 1];
3934 	struct bnxt *bp = dev->data->dev_private;
3935 	uint8_t *data = info->data;
3936 	uint8_t page = offset >> 7;
3937 	uint8_t max_pages = 2;
3938 	uint8_t opt_pages;
3939 	int rc;
3940 
3941 	rc = bnxt_hwrm_read_sfp_module_eeprom_info(bp, I2C_DEV_ADDR_A0, 0, 0,
3942 						   SFF_DIAG_SUPPORT_OFFSET + 1,
3943 						   module_info);
3944 	if (rc)
3945 		return rc;
3946 
3947 	switch (module_info[0]) {
3948 	case SFF_MODULE_ID_SFP:
3949 		module_info[SFF_DIAG_SUPPORT_OFFSET] = 0;
3950 		if (module_info[SFF_DIAG_SUPPORT_OFFSET]) {
3951 			pg_addr[2] = I2C_DEV_ADDR_A2;
3952 			pg_addr[3] = I2C_DEV_ADDR_A2;
3953 			max_pages = 4;
3954 		}
3955 		break;
3956 	case SFF_MODULE_ID_QSFP28:
3957 		rc = bnxt_hwrm_read_sfp_module_eeprom_info(bp, I2C_DEV_ADDR_A0, 0,
3958 							   SFF8636_OPT_PAGES_OFFSET,
3959 							   1, &opt_pages);
3960 		if (rc)
3961 			return rc;
3962 
3963 		if (opt_pages & SFF8636_PAGE1_MASK) {
3964 			pg_addr[2] = I2C_DEV_ADDR_A0;
3965 			max_pages = 3;
3966 		}
3967 		if (opt_pages & SFF8636_PAGE2_MASK) {
3968 			pg_addr[3] = I2C_DEV_ADDR_A0;
3969 			max_pages = 4;
3970 		}
3971 		if (~module_info[SFF8636_FLATMEM_OFFSET] & SFF8636_FLATMEM_MASK) {
3972 			pg_addr[4] = I2C_DEV_ADDR_A0;
3973 			max_pages = 5;
3974 		}
3975 		break;
3976 	default:
3977 		break;
3978 	}
3979 
3980 	memset(data, 0, length);
3981 
3982 	offset &= 0xff;
3983 	while (length && page < max_pages) {
3984 		uint8_t raw_page = page ? page - 1 : 0;
3985 		uint16_t chunk;
3986 
3987 		if (pg_addr[page] == I2C_DEV_ADDR_A2)
3988 			raw_page = 0;
3989 		else if (page)
3990 			offset |= 0x80;
3991 		chunk = RTE_MIN(length, 256 - offset);
3992 
3993 		if (pg_addr[page]) {
3994 			rc = bnxt_hwrm_read_sfp_module_eeprom_info(bp, pg_addr[page],
3995 								   raw_page, offset,
3996 								   chunk, data);
3997 			if (rc)
3998 				return rc;
3999 		}
4000 
4001 		data += chunk;
4002 		length -= chunk;
4003 		offset = 0;
4004 		page += 1 + (chunk > 128);
4005 	}
4006 
4007 	return length ? -EINVAL : 0;
4008 }
4009 
4010 /*
4011  * Initialization
4012  */
4013 
4014 static const struct eth_dev_ops bnxt_dev_ops = {
4015 	.dev_infos_get = bnxt_dev_info_get_op,
4016 	.dev_close = bnxt_dev_close_op,
4017 	.dev_configure = bnxt_dev_configure_op,
4018 	.dev_start = bnxt_dev_start_op,
4019 	.dev_stop = bnxt_dev_stop_op,
4020 	.dev_set_link_up = bnxt_dev_set_link_up_op,
4021 	.dev_set_link_down = bnxt_dev_set_link_down_op,
4022 	.stats_get = bnxt_stats_get_op,
4023 	.stats_reset = bnxt_stats_reset_op,
4024 	.rx_queue_setup = bnxt_rx_queue_setup_op,
4025 	.rx_queue_release = bnxt_rx_queue_release_op,
4026 	.tx_queue_setup = bnxt_tx_queue_setup_op,
4027 	.tx_queue_release = bnxt_tx_queue_release_op,
4028 	.rx_queue_intr_enable = bnxt_rx_queue_intr_enable_op,
4029 	.rx_queue_intr_disable = bnxt_rx_queue_intr_disable_op,
4030 	.reta_update = bnxt_reta_update_op,
4031 	.reta_query = bnxt_reta_query_op,
4032 	.rss_hash_update = bnxt_rss_hash_update_op,
4033 	.rss_hash_conf_get = bnxt_rss_hash_conf_get_op,
4034 	.link_update = bnxt_link_update_op,
4035 	.promiscuous_enable = bnxt_promiscuous_enable_op,
4036 	.promiscuous_disable = bnxt_promiscuous_disable_op,
4037 	.allmulticast_enable = bnxt_allmulticast_enable_op,
4038 	.allmulticast_disable = bnxt_allmulticast_disable_op,
4039 	.mac_addr_add = bnxt_mac_addr_add_op,
4040 	.mac_addr_remove = bnxt_mac_addr_remove_op,
4041 	.flow_ctrl_get = bnxt_flow_ctrl_get_op,
4042 	.flow_ctrl_set = bnxt_flow_ctrl_set_op,
4043 	.udp_tunnel_port_add  = bnxt_udp_tunnel_port_add_op,
4044 	.udp_tunnel_port_del  = bnxt_udp_tunnel_port_del_op,
4045 	.vlan_filter_set = bnxt_vlan_filter_set_op,
4046 	.vlan_offload_set = bnxt_vlan_offload_set_op,
4047 	.vlan_tpid_set = bnxt_vlan_tpid_set_op,
4048 	.vlan_pvid_set = bnxt_vlan_pvid_set_op,
4049 	.mtu_set = bnxt_mtu_set_op,
4050 	.mac_addr_set = bnxt_set_default_mac_addr_op,
4051 	.xstats_get = bnxt_dev_xstats_get_op,
4052 	.xstats_get_names = bnxt_dev_xstats_get_names_op,
4053 	.xstats_reset = bnxt_dev_xstats_reset_op,
4054 	.fw_version_get = bnxt_fw_version_get,
4055 	.set_mc_addr_list = bnxt_dev_set_mc_addr_list_op,
4056 	.rxq_info_get = bnxt_rxq_info_get_op,
4057 	.txq_info_get = bnxt_txq_info_get_op,
4058 	.rx_burst_mode_get = bnxt_rx_burst_mode_get,
4059 	.tx_burst_mode_get = bnxt_tx_burst_mode_get,
4060 	.dev_led_on = bnxt_dev_led_on_op,
4061 	.dev_led_off = bnxt_dev_led_off_op,
4062 	.rx_queue_start = bnxt_rx_queue_start,
4063 	.rx_queue_stop = bnxt_rx_queue_stop,
4064 	.tx_queue_start = bnxt_tx_queue_start,
4065 	.tx_queue_stop = bnxt_tx_queue_stop,
4066 	.flow_ops_get = bnxt_flow_ops_get_op,
4067 	.dev_supported_ptypes_get = bnxt_dev_supported_ptypes_get_op,
4068 	.get_eeprom_length    = bnxt_get_eeprom_length_op,
4069 	.get_eeprom           = bnxt_get_eeprom_op,
4070 	.set_eeprom           = bnxt_set_eeprom_op,
4071 	.get_module_info = bnxt_get_module_info,
4072 	.get_module_eeprom = bnxt_get_module_eeprom,
4073 	.timesync_enable      = bnxt_timesync_enable,
4074 	.timesync_disable     = bnxt_timesync_disable,
4075 	.timesync_read_time   = bnxt_timesync_read_time,
4076 	.timesync_write_time   = bnxt_timesync_write_time,
4077 	.timesync_adjust_time = bnxt_timesync_adjust_time,
4078 	.timesync_read_rx_timestamp = bnxt_timesync_read_rx_timestamp,
4079 	.timesync_read_tx_timestamp = bnxt_timesync_read_tx_timestamp,
4080 };
4081 
4082 static uint32_t bnxt_map_reset_regs(struct bnxt *bp, uint32_t reg)
4083 {
4084 	uint32_t offset;
4085 
4086 	/* Only pre-map the reset GRC registers using window 3 */
4087 	rte_write32(reg & 0xfffff000, (uint8_t *)bp->bar0 +
4088 		    BNXT_GRCPF_REG_WINDOW_BASE_OUT + 8);
4089 
4090 	offset = BNXT_GRCP_WINDOW_3_BASE + (reg & 0xffc);
4091 
4092 	return offset;
4093 }
4094 
4095 int bnxt_map_fw_health_status_regs(struct bnxt *bp)
4096 {
4097 	struct bnxt_error_recovery_info *info = bp->recovery_info;
4098 	uint32_t reg_base = 0xffffffff;
4099 	int i;
4100 
4101 	/* Only pre-map the monitoring GRC registers using window 2 */
4102 	for (i = 0; i < BNXT_FW_STATUS_REG_CNT; i++) {
4103 		uint32_t reg = info->status_regs[i];
4104 
4105 		if (BNXT_FW_STATUS_REG_TYPE(reg) != BNXT_FW_STATUS_REG_TYPE_GRC)
4106 			continue;
4107 
4108 		if (reg_base == 0xffffffff)
4109 			reg_base = reg & 0xfffff000;
4110 		if ((reg & 0xfffff000) != reg_base)
4111 			return -ERANGE;
4112 
4113 		/* Use mask 0xffc as the Lower 2 bits indicates
4114 		 * address space location
4115 		 */
4116 		info->mapped_status_regs[i] = BNXT_GRCP_WINDOW_2_BASE +
4117 						(reg & 0xffc);
4118 	}
4119 
4120 	if (reg_base == 0xffffffff)
4121 		return 0;
4122 
4123 	rte_write32(reg_base, (uint8_t *)bp->bar0 +
4124 		    BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
4125 
4126 	return 0;
4127 }
4128 
4129 static void bnxt_write_fw_reset_reg(struct bnxt *bp, uint32_t index)
4130 {
4131 	struct bnxt_error_recovery_info *info = bp->recovery_info;
4132 	uint32_t delay = info->delay_after_reset[index];
4133 	uint32_t val = info->reset_reg_val[index];
4134 	uint32_t reg = info->reset_reg[index];
4135 	uint32_t type, offset;
4136 	int ret;
4137 
4138 	type = BNXT_FW_STATUS_REG_TYPE(reg);
4139 	offset = BNXT_FW_STATUS_REG_OFF(reg);
4140 
4141 	switch (type) {
4142 	case BNXT_FW_STATUS_REG_TYPE_CFG:
4143 		ret = rte_pci_write_config(bp->pdev, &val, sizeof(val), offset);
4144 		if (ret < 0) {
4145 			PMD_DRV_LOG(ERR, "Failed to write %#x at PCI offset %#x",
4146 				    val, offset);
4147 			return;
4148 		}
4149 		break;
4150 	case BNXT_FW_STATUS_REG_TYPE_GRC:
4151 		offset = bnxt_map_reset_regs(bp, offset);
4152 		rte_write32(val, (uint8_t *)bp->bar0 + offset);
4153 		break;
4154 	case BNXT_FW_STATUS_REG_TYPE_BAR0:
4155 		rte_write32(val, (uint8_t *)bp->bar0 + offset);
4156 		break;
4157 	}
4158 	/* wait on a specific interval of time until core reset is complete */
4159 	if (delay)
4160 		rte_delay_ms(delay);
4161 }
4162 
4163 static void bnxt_dev_cleanup(struct bnxt *bp)
4164 {
4165 	bp->eth_dev->data->dev_link.link_status = 0;
4166 	bp->link_info->link_up = 0;
4167 	if (bp->eth_dev->data->dev_started)
4168 		bnxt_dev_stop(bp->eth_dev);
4169 
4170 	bnxt_uninit_resources(bp, true);
4171 }
4172 
4173 static int
4174 bnxt_check_fw_reset_done(struct bnxt *bp)
4175 {
4176 	int timeout = bp->fw_reset_max_msecs;
4177 	uint16_t val = 0;
4178 	int rc;
4179 
4180 	do {
4181 		rc = rte_pci_read_config(bp->pdev, &val, sizeof(val), PCI_SUBSYSTEM_ID_OFFSET);
4182 		if (rc < 0) {
4183 			PMD_DRV_LOG(ERR, "Failed to read PCI offset 0x%x", PCI_SUBSYSTEM_ID_OFFSET);
4184 			return rc;
4185 		}
4186 		if (val != 0xffff)
4187 			break;
4188 		rte_delay_ms(1);
4189 	} while (timeout--);
4190 
4191 	if (val == 0xffff) {
4192 		PMD_DRV_LOG(ERR, "Firmware reset aborted, PCI config space invalid\n");
4193 		return -1;
4194 	}
4195 
4196 	return 0;
4197 }
4198 
4199 static int bnxt_restore_vlan_filters(struct bnxt *bp)
4200 {
4201 	struct rte_eth_dev *dev = bp->eth_dev;
4202 	struct rte_vlan_filter_conf *vfc;
4203 	int vidx, vbit, rc;
4204 	uint16_t vlan_id;
4205 
4206 	for (vlan_id = 1; vlan_id <= RTE_ETHER_MAX_VLAN_ID; vlan_id++) {
4207 		vfc = &dev->data->vlan_filter_conf;
4208 		vidx = vlan_id / 64;
4209 		vbit = vlan_id % 64;
4210 
4211 		/* Each bit corresponds to a VLAN id */
4212 		if (vfc->ids[vidx] & (UINT64_C(1) << vbit)) {
4213 			rc = bnxt_add_vlan_filter(bp, vlan_id);
4214 			if (rc)
4215 				return rc;
4216 		}
4217 	}
4218 
4219 	return 0;
4220 }
4221 
4222 static int bnxt_restore_mac_filters(struct bnxt *bp)
4223 {
4224 	struct rte_eth_dev *dev = bp->eth_dev;
4225 	struct rte_eth_dev_info dev_info;
4226 	struct rte_ether_addr *addr;
4227 	uint64_t pool_mask;
4228 	uint32_t pool = 0;
4229 	uint32_t i;
4230 	int rc;
4231 
4232 	if (BNXT_VF(bp) && !BNXT_VF_IS_TRUSTED(bp))
4233 		return 0;
4234 
4235 	rc = bnxt_dev_info_get_op(dev, &dev_info);
4236 	if (rc)
4237 		return rc;
4238 
4239 	/* replay MAC address configuration */
4240 	for (i = 1; i < dev_info.max_mac_addrs; i++) {
4241 		addr = &dev->data->mac_addrs[i];
4242 
4243 		/* skip zero address */
4244 		if (rte_is_zero_ether_addr(addr))
4245 			continue;
4246 
4247 		pool = 0;
4248 		pool_mask = dev->data->mac_pool_sel[i];
4249 
4250 		do {
4251 			if (pool_mask & 1ULL) {
4252 				rc = bnxt_mac_addr_add_op(dev, addr, i, pool);
4253 				if (rc)
4254 					return rc;
4255 			}
4256 			pool_mask >>= 1;
4257 			pool++;
4258 		} while (pool_mask);
4259 	}
4260 
4261 	return 0;
4262 }
4263 
4264 static int bnxt_restore_filters(struct bnxt *bp)
4265 {
4266 	struct rte_eth_dev *dev = bp->eth_dev;
4267 	int ret = 0;
4268 
4269 	if (dev->data->all_multicast) {
4270 		ret = bnxt_allmulticast_enable_op(dev);
4271 		if (ret)
4272 			return ret;
4273 	}
4274 	if (dev->data->promiscuous) {
4275 		ret = bnxt_promiscuous_enable_op(dev);
4276 		if (ret)
4277 			return ret;
4278 	}
4279 
4280 	ret = bnxt_restore_mac_filters(bp);
4281 	if (ret)
4282 		return ret;
4283 
4284 	ret = bnxt_restore_vlan_filters(bp);
4285 	/* TODO restore other filters as well */
4286 	return ret;
4287 }
4288 
4289 static int bnxt_check_fw_ready(struct bnxt *bp)
4290 {
4291 	int timeout = bp->fw_reset_max_msecs;
4292 	int rc = 0;
4293 
4294 	do {
4295 		rc = bnxt_hwrm_poll_ver_get(bp);
4296 		if (rc == 0)
4297 			break;
4298 		rte_delay_ms(BNXT_FW_READY_WAIT_INTERVAL);
4299 		timeout -= BNXT_FW_READY_WAIT_INTERVAL;
4300 	} while (rc && timeout > 0);
4301 
4302 	if (rc)
4303 		PMD_DRV_LOG(ERR, "FW is not Ready after reset\n");
4304 
4305 	return rc;
4306 }
4307 
4308 static void bnxt_dev_recover(void *arg)
4309 {
4310 	struct bnxt *bp = arg;
4311 	int rc = 0;
4312 
4313 	pthread_mutex_lock(&bp->err_recovery_lock);
4314 
4315 	if (!bp->fw_reset_min_msecs) {
4316 		rc = bnxt_check_fw_reset_done(bp);
4317 		if (rc)
4318 			goto err;
4319 	}
4320 
4321 	/* Clear Error flag so that device re-init should happen */
4322 	bp->flags &= ~BNXT_FLAG_FATAL_ERROR;
4323 	PMD_DRV_LOG(INFO, "Port: %u Starting recovery...\n",
4324 		    bp->eth_dev->data->port_id);
4325 
4326 	rc = bnxt_check_fw_ready(bp);
4327 	if (rc)
4328 		goto err;
4329 
4330 	rc = bnxt_init_resources(bp, true);
4331 	if (rc) {
4332 		PMD_DRV_LOG(ERR,
4333 			    "Failed to initialize resources after reset\n");
4334 		goto err;
4335 	}
4336 	/* clear reset flag as the device is initialized now */
4337 	bp->flags &= ~BNXT_FLAG_FW_RESET;
4338 
4339 	rc = bnxt_dev_start_op(bp->eth_dev);
4340 	if (rc) {
4341 		PMD_DRV_LOG(ERR, "Failed to start port after reset\n");
4342 		goto err_start;
4343 	}
4344 
4345 	rte_eth_fp_ops[bp->eth_dev->data->port_id].rx_pkt_burst =
4346 		bp->eth_dev->rx_pkt_burst;
4347 	rte_eth_fp_ops[bp->eth_dev->data->port_id].tx_pkt_burst =
4348 		bp->eth_dev->tx_pkt_burst;
4349 	rte_mb();
4350 
4351 	rc = bnxt_restore_filters(bp);
4352 	if (rc)
4353 		goto err_start;
4354 
4355 	PMD_DRV_LOG(INFO, "Port: %u Recovered from FW reset\n",
4356 		    bp->eth_dev->data->port_id);
4357 	pthread_mutex_unlock(&bp->err_recovery_lock);
4358 
4359 	return;
4360 err_start:
4361 	bnxt_dev_stop(bp->eth_dev);
4362 err:
4363 	bp->flags |= BNXT_FLAG_FATAL_ERROR;
4364 	bnxt_uninit_resources(bp, false);
4365 	if (bp->eth_dev->data->dev_conf.intr_conf.rmv)
4366 		rte_eth_dev_callback_process(bp->eth_dev,
4367 					     RTE_ETH_EVENT_INTR_RMV,
4368 					     NULL);
4369 	pthread_mutex_unlock(&bp->err_recovery_lock);
4370 	PMD_DRV_LOG(ERR, "Failed to recover from FW reset\n");
4371 }
4372 
4373 void bnxt_dev_reset_and_resume(void *arg)
4374 {
4375 	struct bnxt *bp = arg;
4376 	uint32_t us = US_PER_MS * bp->fw_reset_min_msecs;
4377 	uint16_t val = 0;
4378 	int rc;
4379 
4380 	bnxt_dev_cleanup(bp);
4381 	PMD_DRV_LOG(INFO, "Port: %u Finished bnxt_dev_cleanup\n",
4382 		    bp->eth_dev->data->port_id);
4383 
4384 	bnxt_wait_for_device_shutdown(bp);
4385 
4386 	/* During some fatal firmware error conditions, the PCI config space
4387 	 * register 0x2e which normally contains the subsystem ID will become
4388 	 * 0xffff. This register will revert back to the normal value after
4389 	 * the chip has completed core reset. If we detect this condition,
4390 	 * we can poll this config register immediately for the value to revert.
4391 	 */
4392 	if (bp->flags & BNXT_FLAG_FATAL_ERROR) {
4393 		rc = rte_pci_read_config(bp->pdev, &val, sizeof(val), PCI_SUBSYSTEM_ID_OFFSET);
4394 		if (rc < 0) {
4395 			PMD_DRV_LOG(ERR, "Failed to read PCI offset 0x%x", PCI_SUBSYSTEM_ID_OFFSET);
4396 			return;
4397 		}
4398 		if (val == 0xffff) {
4399 			bp->fw_reset_min_msecs = 0;
4400 			us = 1;
4401 		}
4402 	}
4403 
4404 	rc = rte_eal_alarm_set(us, bnxt_dev_recover, (void *)bp);
4405 	if (rc)
4406 		PMD_DRV_LOG(ERR, "Error setting recovery alarm");
4407 }
4408 
4409 uint32_t bnxt_read_fw_status_reg(struct bnxt *bp, uint32_t index)
4410 {
4411 	struct bnxt_error_recovery_info *info = bp->recovery_info;
4412 	uint32_t reg = info->status_regs[index];
4413 	uint32_t type, offset, val = 0;
4414 	int ret = 0;
4415 
4416 	type = BNXT_FW_STATUS_REG_TYPE(reg);
4417 	offset = BNXT_FW_STATUS_REG_OFF(reg);
4418 
4419 	switch (type) {
4420 	case BNXT_FW_STATUS_REG_TYPE_CFG:
4421 		ret = rte_pci_read_config(bp->pdev, &val, sizeof(val), offset);
4422 		if (ret < 0)
4423 			PMD_DRV_LOG(ERR, "Failed to read PCI offset %#x",
4424 				    offset);
4425 		break;
4426 	case BNXT_FW_STATUS_REG_TYPE_GRC:
4427 		offset = info->mapped_status_regs[index];
4428 		/* FALLTHROUGH */
4429 	case BNXT_FW_STATUS_REG_TYPE_BAR0:
4430 		val = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
4431 				       offset));
4432 		break;
4433 	}
4434 
4435 	return val;
4436 }
4437 
4438 static int bnxt_fw_reset_all(struct bnxt *bp)
4439 {
4440 	struct bnxt_error_recovery_info *info = bp->recovery_info;
4441 	uint32_t i;
4442 	int rc = 0;
4443 
4444 	if (info->flags & BNXT_FLAG_ERROR_RECOVERY_HOST) {
4445 		/* Reset through primary function driver */
4446 		for (i = 0; i < info->reg_array_cnt; i++)
4447 			bnxt_write_fw_reset_reg(bp, i);
4448 		/* Wait for time specified by FW after triggering reset */
4449 		rte_delay_ms(info->primary_func_wait_period_after_reset);
4450 	} else if (info->flags & BNXT_FLAG_ERROR_RECOVERY_CO_CPU) {
4451 		/* Reset with the help of Kong processor */
4452 		rc = bnxt_hwrm_fw_reset(bp);
4453 		if (rc)
4454 			PMD_DRV_LOG(ERR, "Failed to reset FW\n");
4455 	}
4456 
4457 	return rc;
4458 }
4459 
4460 static void bnxt_fw_reset_cb(void *arg)
4461 {
4462 	struct bnxt *bp = arg;
4463 	struct bnxt_error_recovery_info *info = bp->recovery_info;
4464 	int rc = 0;
4465 
4466 	/* Only Primary function can do FW reset */
4467 	if (bnxt_is_primary_func(bp) &&
4468 	    bnxt_is_recovery_enabled(bp)) {
4469 		rc = bnxt_fw_reset_all(bp);
4470 		if (rc) {
4471 			PMD_DRV_LOG(ERR, "Adapter recovery failed\n");
4472 			return;
4473 		}
4474 	}
4475 
4476 	/* if recovery method is ERROR_RECOVERY_CO_CPU, KONG will send
4477 	 * EXCEPTION_FATAL_ASYNC event to all the functions
4478 	 * (including MASTER FUNC). After receiving this Async, all the active
4479 	 * drivers should treat this case as FW initiated recovery
4480 	 */
4481 	if (info->flags & BNXT_FLAG_ERROR_RECOVERY_HOST) {
4482 		bp->fw_reset_min_msecs = BNXT_MIN_FW_READY_TIMEOUT;
4483 		bp->fw_reset_max_msecs = BNXT_MAX_FW_RESET_TIMEOUT;
4484 
4485 		/* To recover from error */
4486 		rte_eal_alarm_set(US_PER_MS, bnxt_dev_reset_and_resume,
4487 				  (void *)bp);
4488 	}
4489 }
4490 
4491 /* Driver should poll FW heartbeat, reset_counter with the frequency
4492  * advertised by FW in HWRM_ERROR_RECOVERY_QCFG.
4493  * When the driver detects heartbeat stop or change in reset_counter,
4494  * it has to trigger a reset to recover from the error condition.
4495  * A “primary function” is the function who will have the privilege to
4496  * initiate the chimp reset. The primary function will be elected by the
4497  * firmware and will be notified through async message.
4498  */
4499 static void bnxt_check_fw_health(void *arg)
4500 {
4501 	struct bnxt *bp = arg;
4502 	struct bnxt_error_recovery_info *info = bp->recovery_info;
4503 	uint32_t val = 0, wait_msec;
4504 
4505 	if (!info || !bnxt_is_recovery_enabled(bp) ||
4506 	    is_bnxt_in_error(bp))
4507 		return;
4508 
4509 	val = bnxt_read_fw_status_reg(bp, BNXT_FW_HEARTBEAT_CNT_REG);
4510 	if (val == info->last_heart_beat)
4511 		goto reset;
4512 
4513 	info->last_heart_beat = val;
4514 
4515 	val = bnxt_read_fw_status_reg(bp, BNXT_FW_RECOVERY_CNT_REG);
4516 	if (val != info->last_reset_counter)
4517 		goto reset;
4518 
4519 	info->last_reset_counter = val;
4520 
4521 	rte_eal_alarm_set(US_PER_MS * info->driver_polling_freq,
4522 			  bnxt_check_fw_health, (void *)bp);
4523 
4524 	return;
4525 reset:
4526 	/* Stop DMA to/from device */
4527 	bp->flags |= BNXT_FLAG_FATAL_ERROR;
4528 	bp->flags |= BNXT_FLAG_FW_RESET;
4529 
4530 	bnxt_stop_rxtx(bp);
4531 
4532 	PMD_DRV_LOG(ERR, "Detected FW dead condition\n");
4533 
4534 	if (bnxt_is_primary_func(bp))
4535 		wait_msec = info->primary_func_wait_period;
4536 	else
4537 		wait_msec = info->normal_func_wait_period;
4538 
4539 	rte_eal_alarm_set(US_PER_MS * wait_msec,
4540 			  bnxt_fw_reset_cb, (void *)bp);
4541 }
4542 
4543 void bnxt_schedule_fw_health_check(struct bnxt *bp)
4544 {
4545 	uint32_t polling_freq;
4546 
4547 	pthread_mutex_lock(&bp->health_check_lock);
4548 
4549 	if (!bnxt_is_recovery_enabled(bp))
4550 		goto done;
4551 
4552 	if (bp->flags & BNXT_FLAG_FW_HEALTH_CHECK_SCHEDULED)
4553 		goto done;
4554 
4555 	polling_freq = bp->recovery_info->driver_polling_freq;
4556 
4557 	rte_eal_alarm_set(US_PER_MS * polling_freq,
4558 			  bnxt_check_fw_health, (void *)bp);
4559 	bp->flags |= BNXT_FLAG_FW_HEALTH_CHECK_SCHEDULED;
4560 
4561 done:
4562 	pthread_mutex_unlock(&bp->health_check_lock);
4563 }
4564 
4565 static void bnxt_cancel_fw_health_check(struct bnxt *bp)
4566 {
4567 	rte_eal_alarm_cancel(bnxt_check_fw_health, (void *)bp);
4568 	bp->flags &= ~BNXT_FLAG_FW_HEALTH_CHECK_SCHEDULED;
4569 }
4570 
4571 static bool bnxt_vf_pciid(uint16_t device_id)
4572 {
4573 	switch (device_id) {
4574 	case BROADCOM_DEV_ID_57304_VF:
4575 	case BROADCOM_DEV_ID_57406_VF:
4576 	case BROADCOM_DEV_ID_5731X_VF:
4577 	case BROADCOM_DEV_ID_5741X_VF:
4578 	case BROADCOM_DEV_ID_57414_VF:
4579 	case BROADCOM_DEV_ID_STRATUS_NIC_VF1:
4580 	case BROADCOM_DEV_ID_STRATUS_NIC_VF2:
4581 	case BROADCOM_DEV_ID_58802_VF:
4582 	case BROADCOM_DEV_ID_57500_VF1:
4583 	case BROADCOM_DEV_ID_57500_VF2:
4584 	case BROADCOM_DEV_ID_58818_VF:
4585 		/* FALLTHROUGH */
4586 		return true;
4587 	default:
4588 		return false;
4589 	}
4590 }
4591 
4592 /* Phase 5 device */
4593 static bool bnxt_p5_device(uint16_t device_id)
4594 {
4595 	switch (device_id) {
4596 	case BROADCOM_DEV_ID_57508:
4597 	case BROADCOM_DEV_ID_57504:
4598 	case BROADCOM_DEV_ID_57502:
4599 	case BROADCOM_DEV_ID_57508_MF1:
4600 	case BROADCOM_DEV_ID_57504_MF1:
4601 	case BROADCOM_DEV_ID_57502_MF1:
4602 	case BROADCOM_DEV_ID_57508_MF2:
4603 	case BROADCOM_DEV_ID_57504_MF2:
4604 	case BROADCOM_DEV_ID_57502_MF2:
4605 	case BROADCOM_DEV_ID_57500_VF1:
4606 	case BROADCOM_DEV_ID_57500_VF2:
4607 	case BROADCOM_DEV_ID_58812:
4608 	case BROADCOM_DEV_ID_58814:
4609 	case BROADCOM_DEV_ID_58818:
4610 	case BROADCOM_DEV_ID_58818_VF:
4611 		/* FALLTHROUGH */
4612 		return true;
4613 	default:
4614 		return false;
4615 	}
4616 }
4617 
4618 bool bnxt_stratus_device(struct bnxt *bp)
4619 {
4620 	uint16_t device_id = bp->pdev->id.device_id;
4621 
4622 	switch (device_id) {
4623 	case BROADCOM_DEV_ID_STRATUS_NIC:
4624 	case BROADCOM_DEV_ID_STRATUS_NIC_VF1:
4625 	case BROADCOM_DEV_ID_STRATUS_NIC_VF2:
4626 		/* FALLTHROUGH */
4627 		return true;
4628 	default:
4629 		return false;
4630 	}
4631 }
4632 
4633 static int bnxt_map_pci_bars(struct rte_eth_dev *eth_dev)
4634 {
4635 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
4636 	struct bnxt *bp = eth_dev->data->dev_private;
4637 
4638 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
4639 	bp->bar0 = (void *)pci_dev->mem_resource[0].addr;
4640 	bp->doorbell_base = (void *)pci_dev->mem_resource[2].addr;
4641 	if (!bp->bar0 || !bp->doorbell_base) {
4642 		PMD_DRV_LOG(ERR, "Unable to access Hardware\n");
4643 		return -ENODEV;
4644 	}
4645 
4646 	bp->eth_dev = eth_dev;
4647 	bp->pdev = pci_dev;
4648 
4649 	return 0;
4650 }
4651 
4652 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
4653 				  struct bnxt_ctx_pg_info *ctx_pg,
4654 				  uint32_t mem_size,
4655 				  const char *suffix,
4656 				  uint16_t idx)
4657 {
4658 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
4659 	const struct rte_memzone *mz = NULL;
4660 	char mz_name[RTE_MEMZONE_NAMESIZE];
4661 	rte_iova_t mz_phys_addr;
4662 	uint64_t valid_bits = 0;
4663 	uint32_t sz;
4664 	int i;
4665 
4666 	if (!mem_size)
4667 		return 0;
4668 
4669 	rmem->nr_pages = RTE_ALIGN_MUL_CEIL(mem_size, BNXT_PAGE_SIZE) /
4670 			 BNXT_PAGE_SIZE;
4671 	rmem->page_size = BNXT_PAGE_SIZE;
4672 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
4673 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
4674 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
4675 
4676 	valid_bits = PTU_PTE_VALID;
4677 
4678 	if (rmem->nr_pages > 1) {
4679 		snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
4680 			 "bnxt_ctx_pg_tbl%s_%x_%d",
4681 			 suffix, idx, bp->eth_dev->data->port_id);
4682 		mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
4683 		mz = rte_memzone_lookup(mz_name);
4684 		if (!mz) {
4685 			mz = rte_memzone_reserve_aligned(mz_name,
4686 						rmem->nr_pages * 8,
4687 						bp->eth_dev->device->numa_node,
4688 						RTE_MEMZONE_2MB |
4689 						RTE_MEMZONE_SIZE_HINT_ONLY |
4690 						RTE_MEMZONE_IOVA_CONTIG,
4691 						BNXT_PAGE_SIZE);
4692 			if (mz == NULL)
4693 				return -ENOMEM;
4694 		}
4695 
4696 		memset(mz->addr, 0, mz->len);
4697 		mz_phys_addr = mz->iova;
4698 
4699 		rmem->pg_tbl = mz->addr;
4700 		rmem->pg_tbl_map = mz_phys_addr;
4701 		rmem->pg_tbl_mz = mz;
4702 	}
4703 
4704 	snprintf(mz_name, RTE_MEMZONE_NAMESIZE, "bnxt_ctx_%s_%x_%d",
4705 		 suffix, idx, bp->eth_dev->data->port_id);
4706 	mz = rte_memzone_lookup(mz_name);
4707 	if (!mz) {
4708 		mz = rte_memzone_reserve_aligned(mz_name,
4709 						 mem_size,
4710 						 bp->eth_dev->device->numa_node,
4711 						 RTE_MEMZONE_1GB |
4712 						 RTE_MEMZONE_SIZE_HINT_ONLY |
4713 						 RTE_MEMZONE_IOVA_CONTIG,
4714 						 BNXT_PAGE_SIZE);
4715 		if (mz == NULL)
4716 			return -ENOMEM;
4717 	}
4718 
4719 	memset(mz->addr, 0, mz->len);
4720 	mz_phys_addr = mz->iova;
4721 
4722 	for (sz = 0, i = 0; sz < mem_size; sz += BNXT_PAGE_SIZE, i++) {
4723 		rmem->pg_arr[i] = ((char *)mz->addr) + sz;
4724 		rmem->dma_arr[i] = mz_phys_addr + sz;
4725 
4726 		if (rmem->nr_pages > 1) {
4727 			if (i == rmem->nr_pages - 2 &&
4728 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
4729 				valid_bits |= PTU_PTE_NEXT_TO_LAST;
4730 			else if (i == rmem->nr_pages - 1 &&
4731 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
4732 				valid_bits |= PTU_PTE_LAST;
4733 
4734 			rmem->pg_tbl[i] = rte_cpu_to_le_64(rmem->dma_arr[i] |
4735 							   valid_bits);
4736 		}
4737 	}
4738 
4739 	rmem->mz = mz;
4740 	if (rmem->vmem_size)
4741 		rmem->vmem = (void **)mz->addr;
4742 	rmem->dma_arr[0] = mz_phys_addr;
4743 	return 0;
4744 }
4745 
4746 static void bnxt_free_ctx_mem(struct bnxt *bp)
4747 {
4748 	int i;
4749 
4750 	if (!bp->ctx || !(bp->ctx->flags & BNXT_CTX_FLAG_INITED))
4751 		return;
4752 
4753 	bp->ctx->flags &= ~BNXT_CTX_FLAG_INITED;
4754 	rte_memzone_free(bp->ctx->qp_mem.ring_mem.mz);
4755 	rte_memzone_free(bp->ctx->srq_mem.ring_mem.mz);
4756 	rte_memzone_free(bp->ctx->cq_mem.ring_mem.mz);
4757 	rte_memzone_free(bp->ctx->vnic_mem.ring_mem.mz);
4758 	rte_memzone_free(bp->ctx->stat_mem.ring_mem.mz);
4759 	rte_memzone_free(bp->ctx->qp_mem.ring_mem.pg_tbl_mz);
4760 	rte_memzone_free(bp->ctx->srq_mem.ring_mem.pg_tbl_mz);
4761 	rte_memzone_free(bp->ctx->cq_mem.ring_mem.pg_tbl_mz);
4762 	rte_memzone_free(bp->ctx->vnic_mem.ring_mem.pg_tbl_mz);
4763 	rte_memzone_free(bp->ctx->stat_mem.ring_mem.pg_tbl_mz);
4764 
4765 	for (i = 0; i < bp->ctx->tqm_fp_rings_count + 1; i++) {
4766 		if (bp->ctx->tqm_mem[i])
4767 			rte_memzone_free(bp->ctx->tqm_mem[i]->ring_mem.mz);
4768 	}
4769 
4770 	rte_free(bp->ctx);
4771 	bp->ctx = NULL;
4772 }
4773 
4774 #define bnxt_roundup(x, y)   ((((x) + ((y) - 1)) / (y)) * (y))
4775 
4776 #define min_t(type, x, y) ({                    \
4777 	type __min1 = (x);                      \
4778 	type __min2 = (y);                      \
4779 	__min1 < __min2 ? __min1 : __min2; })
4780 
4781 #define max_t(type, x, y) ({                    \
4782 	type __max1 = (x);                      \
4783 	type __max2 = (y);                      \
4784 	__max1 > __max2 ? __max1 : __max2; })
4785 
4786 #define clamp_t(type, _x, min, max)     min_t(type, max_t(type, _x, min), max)
4787 
4788 int bnxt_alloc_ctx_mem(struct bnxt *bp)
4789 {
4790 	struct bnxt_ctx_pg_info *ctx_pg;
4791 	struct bnxt_ctx_mem_info *ctx;
4792 	uint32_t mem_size, ena, entries;
4793 	uint32_t entries_sp, min;
4794 	int i, rc;
4795 
4796 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
4797 	if (rc) {
4798 		PMD_DRV_LOG(ERR, "Query context mem capability failed\n");
4799 		return rc;
4800 	}
4801 	ctx = bp->ctx;
4802 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
4803 		return 0;
4804 
4805 	ctx_pg = &ctx->qp_mem;
4806 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries;
4807 	if (ctx->qp_entry_size) {
4808 		mem_size = ctx->qp_entry_size * ctx_pg->entries;
4809 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "qp_mem", 0);
4810 		if (rc)
4811 			return rc;
4812 	}
4813 
4814 	ctx_pg = &ctx->srq_mem;
4815 	ctx_pg->entries = ctx->srq_max_l2_entries;
4816 	if (ctx->srq_entry_size) {
4817 		mem_size = ctx->srq_entry_size * ctx_pg->entries;
4818 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "srq_mem", 0);
4819 		if (rc)
4820 			return rc;
4821 	}
4822 
4823 	ctx_pg = &ctx->cq_mem;
4824 	ctx_pg->entries = ctx->cq_max_l2_entries;
4825 	if (ctx->cq_entry_size) {
4826 		mem_size = ctx->cq_entry_size * ctx_pg->entries;
4827 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "cq_mem", 0);
4828 		if (rc)
4829 			return rc;
4830 	}
4831 
4832 	ctx_pg = &ctx->vnic_mem;
4833 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
4834 		ctx->vnic_max_ring_table_entries;
4835 	if (ctx->vnic_entry_size) {
4836 		mem_size = ctx->vnic_entry_size * ctx_pg->entries;
4837 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "vnic_mem", 0);
4838 		if (rc)
4839 			return rc;
4840 	}
4841 
4842 	ctx_pg = &ctx->stat_mem;
4843 	ctx_pg->entries = ctx->stat_max_entries;
4844 	if (ctx->stat_entry_size) {
4845 		mem_size = ctx->stat_entry_size * ctx_pg->entries;
4846 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "stat_mem", 0);
4847 		if (rc)
4848 			return rc;
4849 	}
4850 
4851 	min = ctx->tqm_min_entries_per_ring;
4852 
4853 	entries_sp = ctx->qp_max_l2_entries +
4854 		     ctx->vnic_max_vnic_entries +
4855 		     2 * ctx->qp_min_qp1_entries + min;
4856 	entries_sp = bnxt_roundup(entries_sp, ctx->tqm_entries_multiple);
4857 
4858 	entries = ctx->qp_max_l2_entries + ctx->qp_min_qp1_entries;
4859 	entries = bnxt_roundup(entries, ctx->tqm_entries_multiple);
4860 	entries = clamp_t(uint32_t, entries, min,
4861 			  ctx->tqm_max_entries_per_ring);
4862 	for (i = 0, ena = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
4863 		/* i=0 is for TQM_SP. i=1 to i=8 applies to RING0 to RING7.
4864 		 * i > 8 is other ext rings.
4865 		 */
4866 		ctx_pg = ctx->tqm_mem[i];
4867 		ctx_pg->entries = i ? entries : entries_sp;
4868 		if (ctx->tqm_entry_size) {
4869 			mem_size = ctx->tqm_entry_size * ctx_pg->entries;
4870 			rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size,
4871 						    "tqm_mem", i);
4872 			if (rc)
4873 				return rc;
4874 		}
4875 		if (i < BNXT_MAX_TQM_LEGACY_RINGS)
4876 			ena |= HWRM_FUNC_BACKING_STORE_CFG_INPUT_ENABLES_TQM_SP << i;
4877 		else
4878 			ena |= HWRM_FUNC_BACKING_STORE_CFG_INPUT_ENABLES_TQM_RING8;
4879 	}
4880 
4881 	ena |= FUNC_BACKING_STORE_CFG_INPUT_DFLT_ENABLES;
4882 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
4883 	if (rc)
4884 		PMD_DRV_LOG(ERR,
4885 			    "Failed to configure context mem: rc = %d\n", rc);
4886 	else
4887 		ctx->flags |= BNXT_CTX_FLAG_INITED;
4888 
4889 	return rc;
4890 }
4891 
4892 static int bnxt_alloc_stats_mem(struct bnxt *bp)
4893 {
4894 	struct rte_pci_device *pci_dev = bp->pdev;
4895 	char mz_name[RTE_MEMZONE_NAMESIZE];
4896 	const struct rte_memzone *mz = NULL;
4897 	uint32_t total_alloc_len;
4898 	rte_iova_t mz_phys_addr;
4899 
4900 	if (pci_dev->id.device_id == BROADCOM_DEV_ID_NS2)
4901 		return 0;
4902 
4903 	snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
4904 		 "bnxt_" PCI_PRI_FMT "-%s", pci_dev->addr.domain,
4905 		 pci_dev->addr.bus, pci_dev->addr.devid,
4906 		 pci_dev->addr.function, "rx_port_stats");
4907 	mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
4908 	mz = rte_memzone_lookup(mz_name);
4909 	total_alloc_len =
4910 		RTE_CACHE_LINE_ROUNDUP(sizeof(struct rx_port_stats) +
4911 				       sizeof(struct rx_port_stats_ext) + 512);
4912 	if (!mz) {
4913 		mz = rte_memzone_reserve(mz_name, total_alloc_len,
4914 					 SOCKET_ID_ANY,
4915 					 RTE_MEMZONE_2MB |
4916 					 RTE_MEMZONE_SIZE_HINT_ONLY |
4917 					 RTE_MEMZONE_IOVA_CONTIG);
4918 		if (mz == NULL)
4919 			return -ENOMEM;
4920 	}
4921 	memset(mz->addr, 0, mz->len);
4922 	mz_phys_addr = mz->iova;
4923 
4924 	bp->rx_mem_zone = (const void *)mz;
4925 	bp->hw_rx_port_stats = mz->addr;
4926 	bp->hw_rx_port_stats_map = mz_phys_addr;
4927 
4928 	snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
4929 		 "bnxt_" PCI_PRI_FMT "-%s", pci_dev->addr.domain,
4930 		 pci_dev->addr.bus, pci_dev->addr.devid,
4931 		 pci_dev->addr.function, "tx_port_stats");
4932 	mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
4933 	mz = rte_memzone_lookup(mz_name);
4934 	total_alloc_len =
4935 		RTE_CACHE_LINE_ROUNDUP(sizeof(struct tx_port_stats) +
4936 				       sizeof(struct tx_port_stats_ext) + 512);
4937 	if (!mz) {
4938 		mz = rte_memzone_reserve(mz_name,
4939 					 total_alloc_len,
4940 					 SOCKET_ID_ANY,
4941 					 RTE_MEMZONE_2MB |
4942 					 RTE_MEMZONE_SIZE_HINT_ONLY |
4943 					 RTE_MEMZONE_IOVA_CONTIG);
4944 		if (mz == NULL)
4945 			return -ENOMEM;
4946 	}
4947 	memset(mz->addr, 0, mz->len);
4948 	mz_phys_addr = mz->iova;
4949 
4950 	bp->tx_mem_zone = (const void *)mz;
4951 	bp->hw_tx_port_stats = mz->addr;
4952 	bp->hw_tx_port_stats_map = mz_phys_addr;
4953 	bp->flags |= BNXT_FLAG_PORT_STATS;
4954 
4955 	/* Display extended statistics if FW supports it */
4956 	if (bp->hwrm_spec_code < HWRM_SPEC_CODE_1_8_4 ||
4957 	    bp->hwrm_spec_code == HWRM_SPEC_CODE_1_9_0 ||
4958 	    !(bp->flags & BNXT_FLAG_EXT_STATS_SUPPORTED))
4959 		return 0;
4960 
4961 	bp->hw_rx_port_stats_ext = (void *)
4962 		((uint8_t *)bp->hw_rx_port_stats +
4963 		 sizeof(struct rx_port_stats));
4964 	bp->hw_rx_port_stats_ext_map = bp->hw_rx_port_stats_map +
4965 		sizeof(struct rx_port_stats);
4966 	bp->flags |= BNXT_FLAG_EXT_RX_PORT_STATS;
4967 
4968 	if (bp->hwrm_spec_code < HWRM_SPEC_CODE_1_9_2 ||
4969 	    bp->flags & BNXT_FLAG_EXT_STATS_SUPPORTED) {
4970 		bp->hw_tx_port_stats_ext = (void *)
4971 			((uint8_t *)bp->hw_tx_port_stats +
4972 			 sizeof(struct tx_port_stats));
4973 		bp->hw_tx_port_stats_ext_map =
4974 			bp->hw_tx_port_stats_map +
4975 			sizeof(struct tx_port_stats);
4976 		bp->flags |= BNXT_FLAG_EXT_TX_PORT_STATS;
4977 	}
4978 
4979 	return 0;
4980 }
4981 
4982 static int bnxt_setup_mac_addr(struct rte_eth_dev *eth_dev)
4983 {
4984 	struct bnxt *bp = eth_dev->data->dev_private;
4985 	int rc = 0;
4986 
4987 	eth_dev->data->mac_addrs = rte_zmalloc("bnxt_mac_addr_tbl",
4988 					       RTE_ETHER_ADDR_LEN *
4989 					       bp->max_l2_ctx,
4990 					       0);
4991 	if (eth_dev->data->mac_addrs == NULL) {
4992 		PMD_DRV_LOG(ERR, "Failed to alloc MAC addr tbl\n");
4993 		return -ENOMEM;
4994 	}
4995 
4996 	if (!BNXT_HAS_DFLT_MAC_SET(bp)) {
4997 		if (BNXT_PF(bp))
4998 			return -EINVAL;
4999 
5000 		/* Generate a random MAC address, if none was assigned by PF */
5001 		PMD_DRV_LOG(INFO, "VF MAC address not assigned by Host PF\n");
5002 		bnxt_eth_hw_addr_random(bp->mac_addr);
5003 		PMD_DRV_LOG(INFO,
5004 			    "Assign random MAC:" RTE_ETHER_ADDR_PRT_FMT "\n",
5005 			    bp->mac_addr[0], bp->mac_addr[1], bp->mac_addr[2],
5006 			    bp->mac_addr[3], bp->mac_addr[4], bp->mac_addr[5]);
5007 
5008 		rc = bnxt_hwrm_set_mac(bp);
5009 		if (rc)
5010 			return rc;
5011 	}
5012 
5013 	/* Copy the permanent MAC from the FUNC_QCAPS response */
5014 	memcpy(&eth_dev->data->mac_addrs[0], bp->mac_addr, RTE_ETHER_ADDR_LEN);
5015 
5016 	/*
5017 	 *  Allocate memory to hold multicast mac addresses added.
5018 	 *  Used to restore them during reset recovery
5019 	 */
5020 	bp->mcast_addr_list = rte_zmalloc("bnxt_mcast_addr_tbl",
5021 					  sizeof(struct rte_ether_addr) *
5022 					  BNXT_MAX_MC_ADDRS, 0);
5023 	if (bp->mcast_addr_list == NULL) {
5024 		PMD_DRV_LOG(ERR, "Failed to allocate multicast addr table\n");
5025 		return -ENOMEM;
5026 	}
5027 	bp->mc_list_dma_addr = rte_malloc_virt2iova(bp->mcast_addr_list);
5028 	if (bp->mc_list_dma_addr == RTE_BAD_IOVA) {
5029 		PMD_DRV_LOG(ERR, "Fail to map mcast_addr_list to physical memory\n");
5030 		return -ENOMEM;
5031 	}
5032 
5033 	return rc;
5034 }
5035 
5036 static int bnxt_restore_dflt_mac(struct bnxt *bp)
5037 {
5038 	int rc = 0;
5039 
5040 	/* MAC is already configured in FW */
5041 	if (BNXT_HAS_DFLT_MAC_SET(bp))
5042 		return 0;
5043 
5044 	/* Restore the old MAC configured */
5045 	rc = bnxt_hwrm_set_mac(bp);
5046 	if (rc)
5047 		PMD_DRV_LOG(ERR, "Failed to restore MAC address\n");
5048 
5049 	return rc;
5050 }
5051 
5052 static void bnxt_config_vf_req_fwd(struct bnxt *bp)
5053 {
5054 	if (!BNXT_PF(bp))
5055 		return;
5056 
5057 	memset(bp->pf->vf_req_fwd, 0, sizeof(bp->pf->vf_req_fwd));
5058 
5059 	if (!(bp->fw_cap & BNXT_FW_CAP_LINK_ADMIN))
5060 		BNXT_HWRM_CMD_TO_FORWARD(HWRM_PORT_PHY_QCFG);
5061 	BNXT_HWRM_CMD_TO_FORWARD(HWRM_FUNC_CFG);
5062 	BNXT_HWRM_CMD_TO_FORWARD(HWRM_FUNC_VF_CFG);
5063 	BNXT_HWRM_CMD_TO_FORWARD(HWRM_CFA_L2_FILTER_ALLOC);
5064 	BNXT_HWRM_CMD_TO_FORWARD(HWRM_OEM_CMD);
5065 }
5066 
5067 static void bnxt_alloc_error_recovery_info(struct bnxt *bp)
5068 {
5069 	struct bnxt_error_recovery_info *info = bp->recovery_info;
5070 
5071 	if (info) {
5072 		if (!(bp->fw_cap & BNXT_FW_CAP_HCOMM_FW_STATUS))
5073 			memset(info, 0, sizeof(*info));
5074 		return;
5075 	}
5076 
5077 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
5078 		return;
5079 
5080 	info = rte_zmalloc("bnxt_hwrm_error_recovery_qcfg",
5081 			   sizeof(*info), 0);
5082 	if (!info)
5083 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
5084 
5085 	bp->recovery_info = info;
5086 }
5087 
5088 static void bnxt_check_fw_status(struct bnxt *bp)
5089 {
5090 	uint32_t fw_status;
5091 
5092 	if (!(bp->recovery_info &&
5093 	      (bp->fw_cap & BNXT_FW_CAP_HCOMM_FW_STATUS)))
5094 		return;
5095 
5096 	fw_status = bnxt_read_fw_status_reg(bp, BNXT_FW_STATUS_REG);
5097 	if (fw_status != BNXT_FW_STATUS_HEALTHY)
5098 		PMD_DRV_LOG(ERR, "Firmware not responding, status: %#x\n",
5099 			    fw_status);
5100 }
5101 
5102 static int bnxt_map_hcomm_fw_status_reg(struct bnxt *bp)
5103 {
5104 	struct bnxt_error_recovery_info *info = bp->recovery_info;
5105 	uint32_t status_loc;
5106 	uint32_t sig_ver;
5107 
5108 	rte_write32(HCOMM_STATUS_STRUCT_LOC, (uint8_t *)bp->bar0 +
5109 		    BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
5110 	sig_ver = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
5111 				   BNXT_GRCP_WINDOW_2_BASE +
5112 				   offsetof(struct hcomm_status,
5113 					    sig_ver)));
5114 	/* If the signature is absent, then FW does not support this feature */
5115 	if ((sig_ver & HCOMM_STATUS_SIGNATURE_MASK) !=
5116 	    HCOMM_STATUS_SIGNATURE_VAL)
5117 		return 0;
5118 
5119 	if (!info) {
5120 		info = rte_zmalloc("bnxt_hwrm_error_recovery_qcfg",
5121 				   sizeof(*info), 0);
5122 		if (!info)
5123 			return -ENOMEM;
5124 		bp->recovery_info = info;
5125 	} else {
5126 		memset(info, 0, sizeof(*info));
5127 	}
5128 
5129 	status_loc = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
5130 				      BNXT_GRCP_WINDOW_2_BASE +
5131 				      offsetof(struct hcomm_status,
5132 					       fw_status_loc)));
5133 
5134 	/* Only pre-map the FW health status GRC register */
5135 	if (BNXT_FW_STATUS_REG_TYPE(status_loc) != BNXT_FW_STATUS_REG_TYPE_GRC)
5136 		return 0;
5137 
5138 	info->status_regs[BNXT_FW_STATUS_REG] = status_loc;
5139 	info->mapped_status_regs[BNXT_FW_STATUS_REG] =
5140 		BNXT_GRCP_WINDOW_2_BASE + (status_loc & BNXT_GRCP_OFFSET_MASK);
5141 
5142 	rte_write32((status_loc & BNXT_GRCP_BASE_MASK), (uint8_t *)bp->bar0 +
5143 		    BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
5144 
5145 	bp->fw_cap |= BNXT_FW_CAP_HCOMM_FW_STATUS;
5146 
5147 	return 0;
5148 }
5149 
5150 /* This function gets the FW version along with the
5151  * capabilities(MAX and current) of the function, vnic,
5152  * error recovery, phy and other chip related info
5153  */
5154 static int bnxt_get_config(struct bnxt *bp)
5155 {
5156 	uint16_t mtu;
5157 	int rc = 0;
5158 
5159 	bp->fw_cap = 0;
5160 
5161 	rc = bnxt_map_hcomm_fw_status_reg(bp);
5162 	if (rc)
5163 		return rc;
5164 
5165 	rc = bnxt_hwrm_ver_get(bp, DFLT_HWRM_CMD_TIMEOUT);
5166 	if (rc) {
5167 		bnxt_check_fw_status(bp);
5168 		return rc;
5169 	}
5170 
5171 	rc = bnxt_hwrm_func_reset(bp);
5172 	if (rc)
5173 		return -EIO;
5174 
5175 	rc = bnxt_hwrm_vnic_qcaps(bp);
5176 	if (rc)
5177 		return rc;
5178 
5179 	rc = bnxt_hwrm_queue_qportcfg(bp);
5180 	if (rc)
5181 		return rc;
5182 
5183 	/* Get the MAX capabilities for this function.
5184 	 * This function also allocates context memory for TQM rings and
5185 	 * informs the firmware about this allocated backing store memory.
5186 	 */
5187 	rc = bnxt_hwrm_func_qcaps(bp);
5188 	if (rc)
5189 		return rc;
5190 
5191 	rc = bnxt_hwrm_func_qcfg(bp, &mtu);
5192 	if (rc)
5193 		return rc;
5194 
5195 	rc = bnxt_hwrm_cfa_adv_flow_mgmt_qcaps(bp);
5196 	if (rc)
5197 		return rc;
5198 
5199 	bnxt_hwrm_port_mac_qcfg(bp);
5200 
5201 	bnxt_hwrm_parent_pf_qcfg(bp);
5202 
5203 	bnxt_hwrm_port_phy_qcaps(bp);
5204 
5205 	bnxt_alloc_error_recovery_info(bp);
5206 	/* Get the adapter error recovery support info */
5207 	rc = bnxt_hwrm_error_recovery_qcfg(bp);
5208 	if (rc)
5209 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
5210 
5211 	bnxt_hwrm_port_led_qcaps(bp);
5212 
5213 	return 0;
5214 }
5215 
5216 static int
5217 bnxt_init_locks(struct bnxt *bp)
5218 {
5219 	int err;
5220 
5221 	err = pthread_mutex_init(&bp->flow_lock, NULL);
5222 	if (err) {
5223 		PMD_DRV_LOG(ERR, "Unable to initialize flow_lock\n");
5224 		return err;
5225 	}
5226 
5227 	err = pthread_mutex_init(&bp->def_cp_lock, NULL);
5228 	if (err) {
5229 		PMD_DRV_LOG(ERR, "Unable to initialize def_cp_lock\n");
5230 		return err;
5231 	}
5232 
5233 	err = pthread_mutex_init(&bp->health_check_lock, NULL);
5234 	if (err) {
5235 		PMD_DRV_LOG(ERR, "Unable to initialize health_check_lock\n");
5236 		return err;
5237 	}
5238 
5239 	err = pthread_mutex_init(&bp->err_recovery_lock, NULL);
5240 	if (err)
5241 		PMD_DRV_LOG(ERR, "Unable to initialize err_recovery_lock\n");
5242 
5243 	return err;
5244 }
5245 
5246 static int bnxt_init_resources(struct bnxt *bp, bool reconfig_dev)
5247 {
5248 	int rc = 0;
5249 
5250 	rc = bnxt_get_config(bp);
5251 	if (rc)
5252 		return rc;
5253 
5254 	if (!reconfig_dev) {
5255 		rc = bnxt_setup_mac_addr(bp->eth_dev);
5256 		if (rc)
5257 			return rc;
5258 	} else {
5259 		rc = bnxt_restore_dflt_mac(bp);
5260 		if (rc)
5261 			return rc;
5262 	}
5263 
5264 	bnxt_config_vf_req_fwd(bp);
5265 
5266 	rc = bnxt_hwrm_func_driver_register(bp);
5267 	if (rc) {
5268 		PMD_DRV_LOG(ERR, "Failed to register driver");
5269 		return -EBUSY;
5270 	}
5271 
5272 	if (BNXT_PF(bp)) {
5273 		if (bp->pdev->max_vfs) {
5274 			rc = bnxt_hwrm_allocate_vfs(bp, bp->pdev->max_vfs);
5275 			if (rc) {
5276 				PMD_DRV_LOG(ERR, "Failed to allocate VFs\n");
5277 				return rc;
5278 			}
5279 		} else {
5280 			rc = bnxt_hwrm_allocate_pf_only(bp);
5281 			if (rc) {
5282 				PMD_DRV_LOG(ERR,
5283 					    "Failed to allocate PF resources");
5284 				return rc;
5285 			}
5286 		}
5287 	}
5288 
5289 	rc = bnxt_alloc_mem(bp, reconfig_dev);
5290 	if (rc)
5291 		return rc;
5292 
5293 	rc = bnxt_setup_int(bp);
5294 	if (rc)
5295 		return rc;
5296 
5297 	rc = bnxt_request_int(bp);
5298 	if (rc)
5299 		return rc;
5300 
5301 	rc = bnxt_init_ctx_mem(bp);
5302 	if (rc) {
5303 		PMD_DRV_LOG(ERR, "Failed to init adv_flow_counters\n");
5304 		return rc;
5305 	}
5306 
5307 	return 0;
5308 }
5309 
5310 static int
5311 bnxt_parse_devarg_flow_xstat(__rte_unused const char *key,
5312 			     const char *value, void *opaque_arg)
5313 {
5314 	struct bnxt *bp = opaque_arg;
5315 	unsigned long flow_xstat;
5316 	char *end = NULL;
5317 
5318 	if (!value || !opaque_arg) {
5319 		PMD_DRV_LOG(ERR,
5320 			    "Invalid parameter passed to flow_xstat devarg.\n");
5321 		return -EINVAL;
5322 	}
5323 
5324 	flow_xstat = strtoul(value, &end, 10);
5325 	if (end == NULL || *end != '\0' ||
5326 	    (flow_xstat == ULONG_MAX && errno == ERANGE)) {
5327 		PMD_DRV_LOG(ERR,
5328 			    "Invalid parameter passed to flow_xstat devarg.\n");
5329 		return -EINVAL;
5330 	}
5331 
5332 	if (BNXT_DEVARG_FLOW_XSTAT_INVALID(flow_xstat)) {
5333 		PMD_DRV_LOG(ERR,
5334 			    "Invalid value passed to flow_xstat devarg.\n");
5335 		return -EINVAL;
5336 	}
5337 
5338 	bp->flags |= BNXT_FLAG_FLOW_XSTATS_EN;
5339 	if (BNXT_FLOW_XSTATS_EN(bp))
5340 		PMD_DRV_LOG(INFO, "flow_xstat feature enabled.\n");
5341 
5342 	return 0;
5343 }
5344 
5345 static int
5346 bnxt_parse_devarg_max_num_kflows(__rte_unused const char *key,
5347 					const char *value, void *opaque_arg)
5348 {
5349 	struct bnxt *bp = opaque_arg;
5350 	unsigned long max_num_kflows;
5351 	char *end = NULL;
5352 
5353 	if (!value || !opaque_arg) {
5354 		PMD_DRV_LOG(ERR,
5355 			"Invalid parameter passed to max_num_kflows devarg.\n");
5356 		return -EINVAL;
5357 	}
5358 
5359 	max_num_kflows = strtoul(value, &end, 10);
5360 	if (end == NULL || *end != '\0' ||
5361 		(max_num_kflows == ULONG_MAX && errno == ERANGE)) {
5362 		PMD_DRV_LOG(ERR,
5363 			"Invalid parameter passed to max_num_kflows devarg.\n");
5364 		return -EINVAL;
5365 	}
5366 
5367 	if (bnxt_devarg_max_num_kflow_invalid(max_num_kflows)) {
5368 		PMD_DRV_LOG(ERR,
5369 			"Invalid value passed to max_num_kflows devarg.\n");
5370 		return -EINVAL;
5371 	}
5372 
5373 	bp->max_num_kflows = max_num_kflows;
5374 	if (bp->max_num_kflows)
5375 		PMD_DRV_LOG(INFO, "max_num_kflows set as %ldK.\n",
5376 				max_num_kflows);
5377 
5378 	return 0;
5379 }
5380 
5381 static int
5382 bnxt_parse_devarg_app_id(__rte_unused const char *key,
5383 				 const char *value, void *opaque_arg)
5384 {
5385 	struct bnxt *bp = opaque_arg;
5386 	unsigned long app_id;
5387 	char *end = NULL;
5388 
5389 	if (!value || !opaque_arg) {
5390 		PMD_DRV_LOG(ERR,
5391 			    "Invalid parameter passed to app-id "
5392 			    "devargs.\n");
5393 		return -EINVAL;
5394 	}
5395 
5396 	app_id = strtoul(value, &end, 10);
5397 	if (end == NULL || *end != '\0' ||
5398 	    (app_id == ULONG_MAX && errno == ERANGE)) {
5399 		PMD_DRV_LOG(ERR,
5400 			    "Invalid parameter passed to app_id "
5401 			    "devargs.\n");
5402 		return -EINVAL;
5403 	}
5404 
5405 	if (BNXT_DEVARG_APP_ID_INVALID(app_id)) {
5406 		PMD_DRV_LOG(ERR, "Invalid app-id(%d) devargs.\n",
5407 			    (uint16_t)app_id);
5408 		return -EINVAL;
5409 	}
5410 
5411 	bp->app_id = app_id;
5412 	PMD_DRV_LOG(INFO, "app-id=%d feature enabled.\n", (uint16_t)app_id);
5413 
5414 	return 0;
5415 }
5416 
5417 static int
5418 bnxt_parse_devarg_rep_is_pf(__rte_unused const char *key,
5419 			    const char *value, void *opaque_arg)
5420 {
5421 	struct bnxt_representor *vfr_bp = opaque_arg;
5422 	unsigned long rep_is_pf;
5423 	char *end = NULL;
5424 
5425 	if (!value || !opaque_arg) {
5426 		PMD_DRV_LOG(ERR,
5427 			    "Invalid parameter passed to rep_is_pf devargs.\n");
5428 		return -EINVAL;
5429 	}
5430 
5431 	rep_is_pf = strtoul(value, &end, 10);
5432 	if (end == NULL || *end != '\0' ||
5433 	    (rep_is_pf == ULONG_MAX && errno == ERANGE)) {
5434 		PMD_DRV_LOG(ERR,
5435 			    "Invalid parameter passed to rep_is_pf devargs.\n");
5436 		return -EINVAL;
5437 	}
5438 
5439 	if (BNXT_DEVARG_REP_IS_PF_INVALID(rep_is_pf)) {
5440 		PMD_DRV_LOG(ERR,
5441 			    "Invalid value passed to rep_is_pf devargs.\n");
5442 		return -EINVAL;
5443 	}
5444 
5445 	vfr_bp->flags |= rep_is_pf;
5446 	if (BNXT_REP_PF(vfr_bp))
5447 		PMD_DRV_LOG(INFO, "PF representor\n");
5448 	else
5449 		PMD_DRV_LOG(INFO, "VF representor\n");
5450 
5451 	return 0;
5452 }
5453 
5454 static int
5455 bnxt_parse_devarg_rep_based_pf(__rte_unused const char *key,
5456 			       const char *value, void *opaque_arg)
5457 {
5458 	struct bnxt_representor *vfr_bp = opaque_arg;
5459 	unsigned long rep_based_pf;
5460 	char *end = NULL;
5461 
5462 	if (!value || !opaque_arg) {
5463 		PMD_DRV_LOG(ERR,
5464 			    "Invalid parameter passed to rep_based_pf "
5465 			    "devargs.\n");
5466 		return -EINVAL;
5467 	}
5468 
5469 	rep_based_pf = strtoul(value, &end, 10);
5470 	if (end == NULL || *end != '\0' ||
5471 	    (rep_based_pf == ULONG_MAX && errno == ERANGE)) {
5472 		PMD_DRV_LOG(ERR,
5473 			    "Invalid parameter passed to rep_based_pf "
5474 			    "devargs.\n");
5475 		return -EINVAL;
5476 	}
5477 
5478 	if (BNXT_DEVARG_REP_BASED_PF_INVALID(rep_based_pf)) {
5479 		PMD_DRV_LOG(ERR,
5480 			    "Invalid value passed to rep_based_pf devargs.\n");
5481 		return -EINVAL;
5482 	}
5483 
5484 	vfr_bp->rep_based_pf = rep_based_pf;
5485 	vfr_bp->flags |= BNXT_REP_BASED_PF_VALID;
5486 
5487 	PMD_DRV_LOG(INFO, "rep-based-pf = %d\n", vfr_bp->rep_based_pf);
5488 
5489 	return 0;
5490 }
5491 
5492 static int
5493 bnxt_parse_devarg_rep_q_r2f(__rte_unused const char *key,
5494 			    const char *value, void *opaque_arg)
5495 {
5496 	struct bnxt_representor *vfr_bp = opaque_arg;
5497 	unsigned long rep_q_r2f;
5498 	char *end = NULL;
5499 
5500 	if (!value || !opaque_arg) {
5501 		PMD_DRV_LOG(ERR,
5502 			    "Invalid parameter passed to rep_q_r2f "
5503 			    "devargs.\n");
5504 		return -EINVAL;
5505 	}
5506 
5507 	rep_q_r2f = strtoul(value, &end, 10);
5508 	if (end == NULL || *end != '\0' ||
5509 	    (rep_q_r2f == ULONG_MAX && errno == ERANGE)) {
5510 		PMD_DRV_LOG(ERR,
5511 			    "Invalid parameter passed to rep_q_r2f "
5512 			    "devargs.\n");
5513 		return -EINVAL;
5514 	}
5515 
5516 	if (BNXT_DEVARG_REP_Q_R2F_INVALID(rep_q_r2f)) {
5517 		PMD_DRV_LOG(ERR,
5518 			    "Invalid value passed to rep_q_r2f devargs.\n");
5519 		return -EINVAL;
5520 	}
5521 
5522 	vfr_bp->rep_q_r2f = rep_q_r2f;
5523 	vfr_bp->flags |= BNXT_REP_Q_R2F_VALID;
5524 	PMD_DRV_LOG(INFO, "rep-q-r2f = %d\n", vfr_bp->rep_q_r2f);
5525 
5526 	return 0;
5527 }
5528 
5529 static int
5530 bnxt_parse_devarg_rep_q_f2r(__rte_unused const char *key,
5531 			    const char *value, void *opaque_arg)
5532 {
5533 	struct bnxt_representor *vfr_bp = opaque_arg;
5534 	unsigned long rep_q_f2r;
5535 	char *end = NULL;
5536 
5537 	if (!value || !opaque_arg) {
5538 		PMD_DRV_LOG(ERR,
5539 			    "Invalid parameter passed to rep_q_f2r "
5540 			    "devargs.\n");
5541 		return -EINVAL;
5542 	}
5543 
5544 	rep_q_f2r = strtoul(value, &end, 10);
5545 	if (end == NULL || *end != '\0' ||
5546 	    (rep_q_f2r == ULONG_MAX && errno == ERANGE)) {
5547 		PMD_DRV_LOG(ERR,
5548 			    "Invalid parameter passed to rep_q_f2r "
5549 			    "devargs.\n");
5550 		return -EINVAL;
5551 	}
5552 
5553 	if (BNXT_DEVARG_REP_Q_F2R_INVALID(rep_q_f2r)) {
5554 		PMD_DRV_LOG(ERR,
5555 			    "Invalid value passed to rep_q_f2r devargs.\n");
5556 		return -EINVAL;
5557 	}
5558 
5559 	vfr_bp->rep_q_f2r = rep_q_f2r;
5560 	vfr_bp->flags |= BNXT_REP_Q_F2R_VALID;
5561 	PMD_DRV_LOG(INFO, "rep-q-f2r = %d\n", vfr_bp->rep_q_f2r);
5562 
5563 	return 0;
5564 }
5565 
5566 static int
5567 bnxt_parse_devarg_rep_fc_r2f(__rte_unused const char *key,
5568 			     const char *value, void *opaque_arg)
5569 {
5570 	struct bnxt_representor *vfr_bp = opaque_arg;
5571 	unsigned long rep_fc_r2f;
5572 	char *end = NULL;
5573 
5574 	if (!value || !opaque_arg) {
5575 		PMD_DRV_LOG(ERR,
5576 			    "Invalid parameter passed to rep_fc_r2f "
5577 			    "devargs.\n");
5578 		return -EINVAL;
5579 	}
5580 
5581 	rep_fc_r2f = strtoul(value, &end, 10);
5582 	if (end == NULL || *end != '\0' ||
5583 	    (rep_fc_r2f == ULONG_MAX && errno == ERANGE)) {
5584 		PMD_DRV_LOG(ERR,
5585 			    "Invalid parameter passed to rep_fc_r2f "
5586 			    "devargs.\n");
5587 		return -EINVAL;
5588 	}
5589 
5590 	if (BNXT_DEVARG_REP_FC_R2F_INVALID(rep_fc_r2f)) {
5591 		PMD_DRV_LOG(ERR,
5592 			    "Invalid value passed to rep_fc_r2f devargs.\n");
5593 		return -EINVAL;
5594 	}
5595 
5596 	vfr_bp->flags |= BNXT_REP_FC_R2F_VALID;
5597 	vfr_bp->rep_fc_r2f = rep_fc_r2f;
5598 	PMD_DRV_LOG(INFO, "rep-fc-r2f = %lu\n", rep_fc_r2f);
5599 
5600 	return 0;
5601 }
5602 
5603 static int
5604 bnxt_parse_devarg_rep_fc_f2r(__rte_unused const char *key,
5605 			     const char *value, void *opaque_arg)
5606 {
5607 	struct bnxt_representor *vfr_bp = opaque_arg;
5608 	unsigned long rep_fc_f2r;
5609 	char *end = NULL;
5610 
5611 	if (!value || !opaque_arg) {
5612 		PMD_DRV_LOG(ERR,
5613 			    "Invalid parameter passed to rep_fc_f2r "
5614 			    "devargs.\n");
5615 		return -EINVAL;
5616 	}
5617 
5618 	rep_fc_f2r = strtoul(value, &end, 10);
5619 	if (end == NULL || *end != '\0' ||
5620 	    (rep_fc_f2r == ULONG_MAX && errno == ERANGE)) {
5621 		PMD_DRV_LOG(ERR,
5622 			    "Invalid parameter passed to rep_fc_f2r "
5623 			    "devargs.\n");
5624 		return -EINVAL;
5625 	}
5626 
5627 	if (BNXT_DEVARG_REP_FC_F2R_INVALID(rep_fc_f2r)) {
5628 		PMD_DRV_LOG(ERR,
5629 			    "Invalid value passed to rep_fc_f2r devargs.\n");
5630 		return -EINVAL;
5631 	}
5632 
5633 	vfr_bp->flags |= BNXT_REP_FC_F2R_VALID;
5634 	vfr_bp->rep_fc_f2r = rep_fc_f2r;
5635 	PMD_DRV_LOG(INFO, "rep-fc-f2r = %lu\n", rep_fc_f2r);
5636 
5637 	return 0;
5638 }
5639 
5640 static int
5641 bnxt_parse_dev_args(struct bnxt *bp, struct rte_devargs *devargs)
5642 {
5643 	struct rte_kvargs *kvlist;
5644 	int ret;
5645 
5646 	if (devargs == NULL)
5647 		return 0;
5648 
5649 	kvlist = rte_kvargs_parse(devargs->args, bnxt_dev_args);
5650 	if (kvlist == NULL)
5651 		return -EINVAL;
5652 
5653 	/*
5654 	 * Handler for "flow_xstat" devarg.
5655 	 * Invoked as for ex: "-a 0000:00:0d.0,flow_xstat=1"
5656 	 */
5657 	ret = rte_kvargs_process(kvlist, BNXT_DEVARG_FLOW_XSTAT,
5658 				 bnxt_parse_devarg_flow_xstat, bp);
5659 	if (ret)
5660 		goto err;
5661 
5662 	/*
5663 	 * Handler for "max_num_kflows" devarg.
5664 	 * Invoked as for ex: "-a 000:00:0d.0,max_num_kflows=32"
5665 	 */
5666 	ret = rte_kvargs_process(kvlist, BNXT_DEVARG_MAX_NUM_KFLOWS,
5667 				 bnxt_parse_devarg_max_num_kflows, bp);
5668 	if (ret)
5669 		goto err;
5670 
5671 err:
5672 	/*
5673 	 * Handler for "app-id" devarg.
5674 	 * Invoked as for ex: "-a 000:00:0d.0,app-id=1"
5675 	 */
5676 	rte_kvargs_process(kvlist, BNXT_DEVARG_APP_ID,
5677 			   bnxt_parse_devarg_app_id, bp);
5678 
5679 	rte_kvargs_free(kvlist);
5680 	return ret;
5681 }
5682 
5683 static int bnxt_alloc_switch_domain(struct bnxt *bp)
5684 {
5685 	int rc = 0;
5686 
5687 	if (BNXT_PF(bp) || BNXT_VF_IS_TRUSTED(bp)) {
5688 		rc = rte_eth_switch_domain_alloc(&bp->switch_domain_id);
5689 		if (rc)
5690 			PMD_DRV_LOG(ERR,
5691 				    "Failed to alloc switch domain: %d\n", rc);
5692 		else
5693 			PMD_DRV_LOG(INFO,
5694 				    "Switch domain allocated %d\n",
5695 				    bp->switch_domain_id);
5696 	}
5697 
5698 	return rc;
5699 }
5700 
5701 /* Allocate and initialize various fields in bnxt struct that
5702  * need to be allocated/destroyed only once in the lifetime of the driver
5703  */
5704 static int bnxt_drv_init(struct rte_eth_dev *eth_dev)
5705 {
5706 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
5707 	struct bnxt *bp = eth_dev->data->dev_private;
5708 	int rc = 0;
5709 
5710 	bp->flags &= ~BNXT_FLAG_RX_VECTOR_PKT_MODE;
5711 
5712 	if (bnxt_vf_pciid(pci_dev->id.device_id))
5713 		bp->flags |= BNXT_FLAG_VF;
5714 
5715 	if (bnxt_p5_device(pci_dev->id.device_id))
5716 		bp->flags |= BNXT_FLAG_CHIP_P5;
5717 
5718 	if (pci_dev->id.device_id == BROADCOM_DEV_ID_58802 ||
5719 	    pci_dev->id.device_id == BROADCOM_DEV_ID_58804 ||
5720 	    pci_dev->id.device_id == BROADCOM_DEV_ID_58808 ||
5721 	    pci_dev->id.device_id == BROADCOM_DEV_ID_58802_VF)
5722 		bp->flags |= BNXT_FLAG_STINGRAY;
5723 
5724 	if (BNXT_TRUFLOW_EN(bp)) {
5725 		/* extra mbuf field is required to store CFA code from mark */
5726 		static const struct rte_mbuf_dynfield bnxt_cfa_code_dynfield_desc = {
5727 			.name = RTE_PMD_BNXT_CFA_CODE_DYNFIELD_NAME,
5728 			.size = sizeof(bnxt_cfa_code_dynfield_t),
5729 			.align = __alignof__(bnxt_cfa_code_dynfield_t),
5730 		};
5731 		bnxt_cfa_code_dynfield_offset =
5732 			rte_mbuf_dynfield_register(&bnxt_cfa_code_dynfield_desc);
5733 		if (bnxt_cfa_code_dynfield_offset < 0) {
5734 			PMD_DRV_LOG(ERR,
5735 			    "Failed to register mbuf field for TruFlow mark\n");
5736 			return -rte_errno;
5737 		}
5738 	}
5739 
5740 	rc = bnxt_map_pci_bars(eth_dev);
5741 	if (rc) {
5742 		PMD_DRV_LOG(ERR,
5743 			    "Failed to initialize board rc: %x\n", rc);
5744 		return rc;
5745 	}
5746 
5747 	rc = bnxt_alloc_pf_info(bp);
5748 	if (rc)
5749 		return rc;
5750 
5751 	rc = bnxt_alloc_link_info(bp);
5752 	if (rc)
5753 		return rc;
5754 
5755 	rc = bnxt_alloc_parent_info(bp);
5756 	if (rc)
5757 		return rc;
5758 
5759 	rc = bnxt_alloc_hwrm_resources(bp);
5760 	if (rc) {
5761 		PMD_DRV_LOG(ERR,
5762 			    "Failed to allocate response buffer rc: %x\n", rc);
5763 		return rc;
5764 	}
5765 	rc = bnxt_alloc_leds_info(bp);
5766 	if (rc)
5767 		return rc;
5768 
5769 	rc = bnxt_alloc_cos_queues(bp);
5770 	if (rc)
5771 		return rc;
5772 
5773 	rc = bnxt_init_locks(bp);
5774 	if (rc)
5775 		return rc;
5776 
5777 	rc = bnxt_alloc_switch_domain(bp);
5778 	if (rc)
5779 		return rc;
5780 
5781 	return rc;
5782 }
5783 
5784 static int
5785 bnxt_dev_init(struct rte_eth_dev *eth_dev, void *params __rte_unused)
5786 {
5787 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
5788 	static int version_printed;
5789 	struct bnxt *bp;
5790 	int rc;
5791 
5792 	if (version_printed++ == 0)
5793 		PMD_DRV_LOG(INFO, "%s\n", bnxt_version);
5794 
5795 	eth_dev->dev_ops = &bnxt_dev_ops;
5796 	eth_dev->rx_queue_count = bnxt_rx_queue_count_op;
5797 	eth_dev->rx_descriptor_status = bnxt_rx_descriptor_status_op;
5798 	eth_dev->tx_descriptor_status = bnxt_tx_descriptor_status_op;
5799 	eth_dev->rx_pkt_burst = &bnxt_recv_pkts;
5800 	eth_dev->tx_pkt_burst = &bnxt_xmit_pkts;
5801 
5802 	/*
5803 	 * For secondary processes, we don't initialise any further
5804 	 * as primary has already done this work.
5805 	 */
5806 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
5807 		return 0;
5808 
5809 	rte_eth_copy_pci_info(eth_dev, pci_dev);
5810 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
5811 
5812 	bp = eth_dev->data->dev_private;
5813 
5814 	/* Parse dev arguments passed on when starting the DPDK application. */
5815 	rc = bnxt_parse_dev_args(bp, pci_dev->device.devargs);
5816 	if (rc)
5817 		goto error_free;
5818 
5819 	rc = bnxt_drv_init(eth_dev);
5820 	if (rc)
5821 		goto error_free;
5822 
5823 	rc = bnxt_init_resources(bp, false);
5824 	if (rc)
5825 		goto error_free;
5826 
5827 	rc = bnxt_alloc_stats_mem(bp);
5828 	if (rc)
5829 		goto error_free;
5830 
5831 	PMD_DRV_LOG(INFO,
5832 		    "Found %s device at mem %" PRIX64 ", node addr %pM\n",
5833 		    DRV_MODULE_NAME,
5834 		    pci_dev->mem_resource[0].phys_addr,
5835 		    pci_dev->mem_resource[0].addr);
5836 
5837 	return 0;
5838 
5839 error_free:
5840 	bnxt_dev_uninit(eth_dev);
5841 	return rc;
5842 }
5843 
5844 
5845 static void bnxt_free_ctx_mem_buf(struct bnxt_ctx_mem_buf_info *ctx)
5846 {
5847 	if (!ctx)
5848 		return;
5849 
5850 	if (ctx->va)
5851 		rte_free(ctx->va);
5852 
5853 	ctx->va = NULL;
5854 	ctx->dma = RTE_BAD_IOVA;
5855 	ctx->ctx_id = BNXT_CTX_VAL_INVAL;
5856 }
5857 
5858 static void bnxt_unregister_fc_ctx_mem(struct bnxt *bp)
5859 {
5860 	bnxt_hwrm_cfa_counter_cfg(bp, BNXT_DIR_RX,
5861 				  CFA_COUNTER_CFG_IN_COUNTER_TYPE_FC,
5862 				  bp->flow_stat->rx_fc_out_tbl.ctx_id,
5863 				  bp->flow_stat->max_fc,
5864 				  false);
5865 
5866 	bnxt_hwrm_cfa_counter_cfg(bp, BNXT_DIR_TX,
5867 				  CFA_COUNTER_CFG_IN_COUNTER_TYPE_FC,
5868 				  bp->flow_stat->tx_fc_out_tbl.ctx_id,
5869 				  bp->flow_stat->max_fc,
5870 				  false);
5871 
5872 	if (bp->flow_stat->rx_fc_in_tbl.ctx_id != BNXT_CTX_VAL_INVAL)
5873 		bnxt_hwrm_ctx_unrgtr(bp, bp->flow_stat->rx_fc_in_tbl.ctx_id);
5874 	bp->flow_stat->rx_fc_in_tbl.ctx_id = BNXT_CTX_VAL_INVAL;
5875 
5876 	if (bp->flow_stat->rx_fc_out_tbl.ctx_id != BNXT_CTX_VAL_INVAL)
5877 		bnxt_hwrm_ctx_unrgtr(bp, bp->flow_stat->rx_fc_out_tbl.ctx_id);
5878 	bp->flow_stat->rx_fc_out_tbl.ctx_id = BNXT_CTX_VAL_INVAL;
5879 
5880 	if (bp->flow_stat->tx_fc_in_tbl.ctx_id != BNXT_CTX_VAL_INVAL)
5881 		bnxt_hwrm_ctx_unrgtr(bp, bp->flow_stat->tx_fc_in_tbl.ctx_id);
5882 	bp->flow_stat->tx_fc_in_tbl.ctx_id = BNXT_CTX_VAL_INVAL;
5883 
5884 	if (bp->flow_stat->tx_fc_out_tbl.ctx_id != BNXT_CTX_VAL_INVAL)
5885 		bnxt_hwrm_ctx_unrgtr(bp, bp->flow_stat->tx_fc_out_tbl.ctx_id);
5886 	bp->flow_stat->tx_fc_out_tbl.ctx_id = BNXT_CTX_VAL_INVAL;
5887 }
5888 
5889 static void bnxt_uninit_fc_ctx_mem(struct bnxt *bp)
5890 {
5891 	bnxt_unregister_fc_ctx_mem(bp);
5892 
5893 	bnxt_free_ctx_mem_buf(&bp->flow_stat->rx_fc_in_tbl);
5894 	bnxt_free_ctx_mem_buf(&bp->flow_stat->rx_fc_out_tbl);
5895 	bnxt_free_ctx_mem_buf(&bp->flow_stat->tx_fc_in_tbl);
5896 	bnxt_free_ctx_mem_buf(&bp->flow_stat->tx_fc_out_tbl);
5897 }
5898 
5899 static void bnxt_uninit_ctx_mem(struct bnxt *bp)
5900 {
5901 	if (BNXT_FLOW_XSTATS_EN(bp))
5902 		bnxt_uninit_fc_ctx_mem(bp);
5903 }
5904 
5905 static void
5906 bnxt_free_error_recovery_info(struct bnxt *bp)
5907 {
5908 	rte_free(bp->recovery_info);
5909 	bp->recovery_info = NULL;
5910 	bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
5911 }
5912 
5913 static int
5914 bnxt_uninit_resources(struct bnxt *bp, bool reconfig_dev)
5915 {
5916 	int rc;
5917 
5918 	bnxt_free_int(bp);
5919 	bnxt_free_mem(bp, reconfig_dev);
5920 
5921 	bnxt_hwrm_func_buf_unrgtr(bp);
5922 	if (bp->pf != NULL) {
5923 		rte_free(bp->pf->vf_req_buf);
5924 		bp->pf->vf_req_buf = NULL;
5925 	}
5926 
5927 	rc = bnxt_hwrm_func_driver_unregister(bp);
5928 	bp->flags &= ~BNXT_FLAG_REGISTERED;
5929 	bnxt_free_ctx_mem(bp);
5930 	if (!reconfig_dev) {
5931 		bnxt_free_hwrm_resources(bp);
5932 		bnxt_free_error_recovery_info(bp);
5933 		rte_free(bp->mcast_addr_list);
5934 		bp->mcast_addr_list = NULL;
5935 	}
5936 
5937 	bnxt_uninit_ctx_mem(bp);
5938 
5939 	bnxt_free_flow_stats_info(bp);
5940 	if (bp->rep_info != NULL)
5941 		bnxt_free_switch_domain(bp);
5942 	bnxt_free_rep_info(bp);
5943 	rte_free(bp->ptp_cfg);
5944 	bp->ptp_cfg = NULL;
5945 	return rc;
5946 }
5947 
5948 static int
5949 bnxt_dev_uninit(struct rte_eth_dev *eth_dev)
5950 {
5951 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
5952 		return -EPERM;
5953 
5954 	PMD_DRV_LOG(DEBUG, "Calling Device uninit\n");
5955 
5956 	if (eth_dev->state != RTE_ETH_DEV_UNUSED)
5957 		bnxt_dev_close_op(eth_dev);
5958 
5959 	return 0;
5960 }
5961 
5962 static int bnxt_pci_remove_dev_with_reps(struct rte_eth_dev *eth_dev)
5963 {
5964 	struct bnxt *bp = eth_dev->data->dev_private;
5965 	struct rte_eth_dev *vf_rep_eth_dev;
5966 	int ret = 0, i;
5967 
5968 	if (!bp)
5969 		return -EINVAL;
5970 
5971 	for (i = 0; i < bp->num_reps; i++) {
5972 		vf_rep_eth_dev = bp->rep_info[i].vfr_eth_dev;
5973 		if (!vf_rep_eth_dev)
5974 			continue;
5975 		PMD_DRV_LOG(DEBUG, "BNXT Port:%d VFR pci remove\n",
5976 			    vf_rep_eth_dev->data->port_id);
5977 		rte_eth_dev_destroy(vf_rep_eth_dev, bnxt_representor_uninit);
5978 	}
5979 	PMD_DRV_LOG(DEBUG, "BNXT Port:%d pci remove\n",
5980 		    eth_dev->data->port_id);
5981 	ret = rte_eth_dev_destroy(eth_dev, bnxt_dev_uninit);
5982 
5983 	return ret;
5984 }
5985 
5986 static void bnxt_free_rep_info(struct bnxt *bp)
5987 {
5988 	rte_free(bp->rep_info);
5989 	bp->rep_info = NULL;
5990 	rte_free(bp->cfa_code_map);
5991 	bp->cfa_code_map = NULL;
5992 }
5993 
5994 static int bnxt_init_rep_info(struct bnxt *bp)
5995 {
5996 	int i = 0, rc;
5997 
5998 	if (bp->rep_info)
5999 		return 0;
6000 
6001 	bp->rep_info = rte_zmalloc("bnxt_rep_info",
6002 				   sizeof(bp->rep_info[0]) * BNXT_MAX_VF_REPS(bp),
6003 				   0);
6004 	if (!bp->rep_info) {
6005 		PMD_DRV_LOG(ERR, "Failed to alloc memory for rep info\n");
6006 		return -ENOMEM;
6007 	}
6008 	bp->cfa_code_map = rte_zmalloc("bnxt_cfa_code_map",
6009 				       sizeof(*bp->cfa_code_map) *
6010 				       BNXT_MAX_CFA_CODE, 0);
6011 	if (!bp->cfa_code_map) {
6012 		PMD_DRV_LOG(ERR, "Failed to alloc memory for cfa_code_map\n");
6013 		bnxt_free_rep_info(bp);
6014 		return -ENOMEM;
6015 	}
6016 
6017 	for (i = 0; i < BNXT_MAX_CFA_CODE; i++)
6018 		bp->cfa_code_map[i] = BNXT_VF_IDX_INVALID;
6019 
6020 	rc = pthread_mutex_init(&bp->rep_info->vfr_lock, NULL);
6021 	if (rc) {
6022 		PMD_DRV_LOG(ERR, "Unable to initialize vfr_lock\n");
6023 		bnxt_free_rep_info(bp);
6024 		return rc;
6025 	}
6026 
6027 	rc = pthread_mutex_init(&bp->rep_info->vfr_start_lock, NULL);
6028 	if (rc) {
6029 		PMD_DRV_LOG(ERR, "Unable to initialize vfr_start_lock\n");
6030 		bnxt_free_rep_info(bp);
6031 		return rc;
6032 	}
6033 
6034 	return rc;
6035 }
6036 
6037 static int bnxt_rep_port_probe(struct rte_pci_device *pci_dev,
6038 			       struct rte_eth_devargs *eth_da,
6039 			       struct rte_eth_dev *backing_eth_dev,
6040 			       const char *dev_args)
6041 {
6042 	struct rte_eth_dev *vf_rep_eth_dev;
6043 	char name[RTE_ETH_NAME_MAX_LEN];
6044 	struct bnxt *backing_bp = backing_eth_dev->data->dev_private;
6045 	uint16_t max_vf_reps = BNXT_MAX_VF_REPS(backing_bp);
6046 
6047 	uint16_t num_rep;
6048 	int i, ret = 0;
6049 	struct rte_kvargs *kvlist = NULL;
6050 
6051 	if (eth_da->type == RTE_ETH_REPRESENTOR_NONE)
6052 		return 0;
6053 	if (eth_da->type != RTE_ETH_REPRESENTOR_VF) {
6054 		PMD_DRV_LOG(ERR, "unsupported representor type %d\n",
6055 			    eth_da->type);
6056 		return -ENOTSUP;
6057 	}
6058 	num_rep = eth_da->nb_representor_ports;
6059 	if (num_rep > max_vf_reps) {
6060 		PMD_DRV_LOG(ERR, "nb_representor_ports = %d > %d MAX VF REPS\n",
6061 			    num_rep, max_vf_reps);
6062 		return -EINVAL;
6063 	}
6064 
6065 	if (num_rep >= RTE_MAX_ETHPORTS) {
6066 		PMD_DRV_LOG(ERR,
6067 			    "nb_representor_ports = %d > %d MAX ETHPORTS\n",
6068 			    num_rep, RTE_MAX_ETHPORTS);
6069 		return -EINVAL;
6070 	}
6071 
6072 	if (!(BNXT_PF(backing_bp) || BNXT_VF_IS_TRUSTED(backing_bp))) {
6073 		PMD_DRV_LOG(ERR,
6074 			    "Not a PF or trusted VF. No Representor support\n");
6075 		/* Returning an error is not an option.
6076 		 * Applications are not handling this correctly
6077 		 */
6078 		return 0;
6079 	}
6080 
6081 	if (bnxt_init_rep_info(backing_bp))
6082 		return 0;
6083 
6084 	for (i = 0; i < num_rep; i++) {
6085 		struct bnxt_representor representor = {
6086 			.vf_id = eth_da->representor_ports[i],
6087 			.switch_domain_id = backing_bp->switch_domain_id,
6088 			.parent_dev = backing_eth_dev
6089 		};
6090 
6091 		if (representor.vf_id >= max_vf_reps) {
6092 			PMD_DRV_LOG(ERR, "VF-Rep id %d >= %d MAX VF ID\n",
6093 				    representor.vf_id, max_vf_reps);
6094 			continue;
6095 		}
6096 
6097 		/* representor port net_bdf_port */
6098 		snprintf(name, sizeof(name), "net_%s_representor_%d",
6099 			 pci_dev->device.name, eth_da->representor_ports[i]);
6100 
6101 		kvlist = rte_kvargs_parse(dev_args, bnxt_dev_args);
6102 		if (kvlist) {
6103 			/*
6104 			 * Handler for "rep_is_pf" devarg.
6105 			 * Invoked as for ex: "-a 000:00:0d.0,
6106 			 * rep-based-pf=<pf index> rep-is-pf=<VF=0 or PF=1>"
6107 			 */
6108 			ret = rte_kvargs_process(kvlist, BNXT_DEVARG_REP_IS_PF,
6109 						 bnxt_parse_devarg_rep_is_pf,
6110 						 (void *)&representor);
6111 			if (ret) {
6112 				ret = -EINVAL;
6113 				goto err;
6114 			}
6115 			/*
6116 			 * Handler for "rep_based_pf" devarg.
6117 			 * Invoked as for ex: "-a 000:00:0d.0,
6118 			 * rep-based-pf=<pf index> rep-is-pf=<VF=0 or PF=1>"
6119 			 */
6120 			ret = rte_kvargs_process(kvlist,
6121 						 BNXT_DEVARG_REP_BASED_PF,
6122 						 bnxt_parse_devarg_rep_based_pf,
6123 						 (void *)&representor);
6124 			if (ret) {
6125 				ret = -EINVAL;
6126 				goto err;
6127 			}
6128 			/*
6129 			 * Handler for "rep_based_pf" devarg.
6130 			 * Invoked as for ex: "-a 000:00:0d.0,
6131 			 * rep-based-pf=<pf index> rep-is-pf=<VF=0 or PF=1>"
6132 			 */
6133 			ret = rte_kvargs_process(kvlist, BNXT_DEVARG_REP_Q_R2F,
6134 						 bnxt_parse_devarg_rep_q_r2f,
6135 						 (void *)&representor);
6136 			if (ret) {
6137 				ret = -EINVAL;
6138 				goto err;
6139 			}
6140 			/*
6141 			 * Handler for "rep_based_pf" devarg.
6142 			 * Invoked as for ex: "-a 000:00:0d.0,
6143 			 * rep-based-pf=<pf index> rep-is-pf=<VF=0 or PF=1>"
6144 			 */
6145 			ret = rte_kvargs_process(kvlist, BNXT_DEVARG_REP_Q_F2R,
6146 						 bnxt_parse_devarg_rep_q_f2r,
6147 						 (void *)&representor);
6148 			if (ret) {
6149 				ret = -EINVAL;
6150 				goto err;
6151 			}
6152 			/*
6153 			 * Handler for "rep_based_pf" devarg.
6154 			 * Invoked as for ex: "-a 000:00:0d.0,
6155 			 * rep-based-pf=<pf index> rep-is-pf=<VF=0 or PF=1>"
6156 			 */
6157 			ret = rte_kvargs_process(kvlist, BNXT_DEVARG_REP_FC_R2F,
6158 						 bnxt_parse_devarg_rep_fc_r2f,
6159 						 (void *)&representor);
6160 			if (ret) {
6161 				ret = -EINVAL;
6162 				goto err;
6163 			}
6164 			/*
6165 			 * Handler for "rep_based_pf" devarg.
6166 			 * Invoked as for ex: "-a 000:00:0d.0,
6167 			 * rep-based-pf=<pf index> rep-is-pf=<VF=0 or PF=1>"
6168 			 */
6169 			ret = rte_kvargs_process(kvlist, BNXT_DEVARG_REP_FC_F2R,
6170 						 bnxt_parse_devarg_rep_fc_f2r,
6171 						 (void *)&representor);
6172 			if (ret) {
6173 				ret = -EINVAL;
6174 				goto err;
6175 			}
6176 		}
6177 
6178 		ret = rte_eth_dev_create(&pci_dev->device, name,
6179 					 sizeof(struct bnxt_representor),
6180 					 NULL, NULL,
6181 					 bnxt_representor_init,
6182 					 &representor);
6183 		if (ret) {
6184 			PMD_DRV_LOG(ERR, "failed to create bnxt vf "
6185 				    "representor %s.", name);
6186 			goto err;
6187 		}
6188 
6189 		vf_rep_eth_dev = rte_eth_dev_allocated(name);
6190 		if (!vf_rep_eth_dev) {
6191 			PMD_DRV_LOG(ERR, "Failed to find the eth_dev"
6192 				    " for VF-Rep: %s.", name);
6193 			ret = -ENODEV;
6194 			goto err;
6195 		}
6196 
6197 		PMD_DRV_LOG(DEBUG, "BNXT Port:%d VFR pci probe\n",
6198 			    backing_eth_dev->data->port_id);
6199 		backing_bp->rep_info[representor.vf_id].vfr_eth_dev =
6200 							 vf_rep_eth_dev;
6201 		backing_bp->num_reps++;
6202 
6203 	}
6204 
6205 	rte_kvargs_free(kvlist);
6206 	return 0;
6207 
6208 err:
6209 	/* If num_rep > 1, then rollback already created
6210 	 * ports, since we'll be failing the probe anyway
6211 	 */
6212 	if (num_rep > 1)
6213 		bnxt_pci_remove_dev_with_reps(backing_eth_dev);
6214 	rte_errno = -ret;
6215 	rte_kvargs_free(kvlist);
6216 
6217 	return ret;
6218 }
6219 
6220 static int bnxt_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
6221 			  struct rte_pci_device *pci_dev)
6222 {
6223 	struct rte_eth_devargs eth_da = { .nb_representor_ports = 0 };
6224 	struct rte_eth_dev *backing_eth_dev;
6225 	uint16_t num_rep;
6226 	int ret = 0;
6227 
6228 	if (pci_dev->device.devargs) {
6229 		ret = rte_eth_devargs_parse(pci_dev->device.devargs->args,
6230 					    &eth_da);
6231 		if (ret)
6232 			return ret;
6233 	}
6234 
6235 	num_rep = eth_da.nb_representor_ports;
6236 	PMD_DRV_LOG(DEBUG, "nb_representor_ports = %d\n",
6237 		    num_rep);
6238 
6239 	/* We could come here after first level of probe is already invoked
6240 	 * as part of an application bringup(OVS-DPDK vswitchd), so first check
6241 	 * for already allocated eth_dev for the backing device (PF/Trusted VF)
6242 	 */
6243 	backing_eth_dev = rte_eth_dev_allocated(pci_dev->device.name);
6244 	if (backing_eth_dev == NULL) {
6245 		ret = rte_eth_dev_create(&pci_dev->device, pci_dev->device.name,
6246 					 sizeof(struct bnxt),
6247 					 eth_dev_pci_specific_init, pci_dev,
6248 					 bnxt_dev_init, NULL);
6249 
6250 		if (ret || !num_rep)
6251 			return ret;
6252 
6253 		backing_eth_dev = rte_eth_dev_allocated(pci_dev->device.name);
6254 	}
6255 	PMD_DRV_LOG(DEBUG, "BNXT Port:%d pci probe\n",
6256 		    backing_eth_dev->data->port_id);
6257 
6258 	if (!num_rep)
6259 		return ret;
6260 
6261 	/* probe representor ports now */
6262 	ret = bnxt_rep_port_probe(pci_dev, &eth_da, backing_eth_dev,
6263 				  pci_dev->device.devargs->args);
6264 
6265 	return ret;
6266 }
6267 
6268 static int bnxt_pci_remove(struct rte_pci_device *pci_dev)
6269 {
6270 	struct rte_eth_dev *eth_dev;
6271 
6272 	eth_dev = rte_eth_dev_allocated(pci_dev->device.name);
6273 	if (!eth_dev)
6274 		return 0; /* Invoked typically only by OVS-DPDK, by the
6275 			   * time it comes here the eth_dev is already
6276 			   * deleted by rte_eth_dev_close(), so returning
6277 			   * +ve value will at least help in proper cleanup
6278 			   */
6279 
6280 	PMD_DRV_LOG(DEBUG, "BNXT Port:%d pci remove\n", eth_dev->data->port_id);
6281 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
6282 		if (eth_dev->data->dev_flags & RTE_ETH_DEV_REPRESENTOR)
6283 			return rte_eth_dev_destroy(eth_dev,
6284 						   bnxt_representor_uninit);
6285 		else
6286 			return rte_eth_dev_destroy(eth_dev,
6287 						   bnxt_dev_uninit);
6288 	} else {
6289 		return rte_eth_dev_pci_generic_remove(pci_dev, NULL);
6290 	}
6291 }
6292 
6293 static struct rte_pci_driver bnxt_rte_pmd = {
6294 	.id_table = bnxt_pci_id_map,
6295 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
6296 			RTE_PCI_DRV_INTR_RMV |
6297 			RTE_PCI_DRV_PROBE_AGAIN, /* Needed in case of VF-REPs
6298 						  * and OVS-DPDK
6299 						  */
6300 	.probe = bnxt_pci_probe,
6301 	.remove = bnxt_pci_remove,
6302 };
6303 
6304 static bool
6305 is_device_supported(struct rte_eth_dev *dev, struct rte_pci_driver *drv)
6306 {
6307 	if (strcmp(dev->device->driver->name, drv->driver.name))
6308 		return false;
6309 
6310 	return true;
6311 }
6312 
6313 bool is_bnxt_supported(struct rte_eth_dev *dev)
6314 {
6315 	return is_device_supported(dev, &bnxt_rte_pmd);
6316 }
6317 
6318 RTE_LOG_REGISTER_SUFFIX(bnxt_logtype_driver, driver, NOTICE);
6319 RTE_PMD_REGISTER_PCI(net_bnxt, bnxt_rte_pmd);
6320 RTE_PMD_REGISTER_PCI_TABLE(net_bnxt, bnxt_pci_id_map);
6321 
6322