xref: /dpdk/drivers/net/bnxt/bnxt_ethdev.c (revision 3bb3ebb51b789d4ecb417cbdb1dce5c7211f6f18)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2021 Broadcom
3  * All rights reserved.
4  */
5 
6 #include <inttypes.h>
7 #include <stdbool.h>
8 
9 #include <rte_dev.h>
10 #include <ethdev_driver.h>
11 #include <ethdev_pci.h>
12 #include <rte_malloc.h>
13 #include <rte_cycles.h>
14 #include <rte_alarm.h>
15 #include <rte_kvargs.h>
16 #include <rte_vect.h>
17 
18 #include "bnxt.h"
19 #include "bnxt_filter.h"
20 #include "bnxt_hwrm.h"
21 #include "bnxt_irq.h"
22 #include "bnxt_reps.h"
23 #include "bnxt_ring.h"
24 #include "bnxt_rxq.h"
25 #include "bnxt_rxr.h"
26 #include "bnxt_stats.h"
27 #include "bnxt_txq.h"
28 #include "bnxt_txr.h"
29 #include "bnxt_vnic.h"
30 #include "hsi_struct_def_dpdk.h"
31 #include "bnxt_nvm_defs.h"
32 #include "bnxt_tf_common.h"
33 #include "ulp_flow_db.h"
34 #include "rte_pmd_bnxt.h"
35 
36 #define DRV_MODULE_NAME		"bnxt"
37 static const char bnxt_version[] =
38 	"Broadcom NetXtreme driver " DRV_MODULE_NAME;
39 
40 /*
41  * The set of PCI devices this driver supports
42  */
43 static const struct rte_pci_id bnxt_pci_id_map[] = {
44 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
45 			 BROADCOM_DEV_ID_STRATUS_NIC_VF1) },
46 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
47 			 BROADCOM_DEV_ID_STRATUS_NIC_VF2) },
48 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_STRATUS_NIC) },
49 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_VF) },
50 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_VF) },
51 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_NS2) },
52 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_VF) },
53 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_MF) },
54 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5741X_VF) },
55 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5731X_VF) },
56 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_MF) },
57 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412) },
58 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414) },
59 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_RJ45) },
60 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_RJ45) },
61 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412_MF) },
62 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_RJ45) },
63 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_SFP) },
64 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_SFP) },
65 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_SFP) },
66 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_MF) },
67 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_MF) },
68 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58802) },
69 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58804) },
70 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58808) },
71 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58802_VF) },
72 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57508) },
73 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57504) },
74 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57502) },
75 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57500_VF1) },
76 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57500_VF2) },
77 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57508_MF1) },
78 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57504_MF1) },
79 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57502_MF1) },
80 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57508_MF2) },
81 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57504_MF2) },
82 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57502_MF2) },
83 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58812) },
84 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58814) },
85 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58818) },
86 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58818_VF) },
87 	{ .vendor_id = 0, /* sentinel */ },
88 };
89 
90 #define BNXT_DEVARG_TRUFLOW	"host-based-truflow"
91 #define BNXT_DEVARG_FLOW_XSTAT	"flow-xstat"
92 #define BNXT_DEVARG_MAX_NUM_KFLOWS  "max-num-kflows"
93 #define BNXT_DEVARG_REPRESENTOR	"representor"
94 #define BNXT_DEVARG_REP_BASED_PF  "rep-based-pf"
95 #define BNXT_DEVARG_REP_IS_PF  "rep-is-pf"
96 #define BNXT_DEVARG_REP_Q_R2F  "rep-q-r2f"
97 #define BNXT_DEVARG_REP_Q_F2R  "rep-q-f2r"
98 #define BNXT_DEVARG_REP_FC_R2F  "rep-fc-r2f"
99 #define BNXT_DEVARG_REP_FC_F2R  "rep-fc-f2r"
100 
101 static const char *const bnxt_dev_args[] = {
102 	BNXT_DEVARG_REPRESENTOR,
103 	BNXT_DEVARG_TRUFLOW,
104 	BNXT_DEVARG_FLOW_XSTAT,
105 	BNXT_DEVARG_MAX_NUM_KFLOWS,
106 	BNXT_DEVARG_REP_BASED_PF,
107 	BNXT_DEVARG_REP_IS_PF,
108 	BNXT_DEVARG_REP_Q_R2F,
109 	BNXT_DEVARG_REP_Q_F2R,
110 	BNXT_DEVARG_REP_FC_R2F,
111 	BNXT_DEVARG_REP_FC_F2R,
112 	NULL
113 };
114 
115 /*
116  * truflow == false to disable the feature
117  * truflow == true to enable the feature
118  */
119 #define	BNXT_DEVARG_TRUFLOW_INVALID(truflow)	((truflow) > 1)
120 
121 /*
122  * flow_xstat == false to disable the feature
123  * flow_xstat == true to enable the feature
124  */
125 #define	BNXT_DEVARG_FLOW_XSTAT_INVALID(flow_xstat)	((flow_xstat) > 1)
126 
127 /*
128  * rep_is_pf == false to indicate VF representor
129  * rep_is_pf == true to indicate PF representor
130  */
131 #define	BNXT_DEVARG_REP_IS_PF_INVALID(rep_is_pf)	((rep_is_pf) > 1)
132 
133 /*
134  * rep_based_pf == Physical index of the PF
135  */
136 #define	BNXT_DEVARG_REP_BASED_PF_INVALID(rep_based_pf)	((rep_based_pf) > 15)
137 /*
138  * rep_q_r2f == Logical COS Queue index for the rep to endpoint direction
139  */
140 #define	BNXT_DEVARG_REP_Q_R2F_INVALID(rep_q_r2f)	((rep_q_r2f) > 3)
141 
142 /*
143  * rep_q_f2r == Logical COS Queue index for the endpoint to rep direction
144  */
145 #define	BNXT_DEVARG_REP_Q_F2R_INVALID(rep_q_f2r)	((rep_q_f2r) > 3)
146 
147 /*
148  * rep_fc_r2f == Flow control for the representor to endpoint direction
149  */
150 #define BNXT_DEVARG_REP_FC_R2F_INVALID(rep_fc_r2f)	((rep_fc_r2f) > 1)
151 
152 /*
153  * rep_fc_f2r == Flow control for the endpoint to representor direction
154  */
155 #define BNXT_DEVARG_REP_FC_F2R_INVALID(rep_fc_f2r)	((rep_fc_f2r) > 1)
156 
157 int bnxt_cfa_code_dynfield_offset = -1;
158 
159 /*
160  * max_num_kflows must be >= 32
161  * and must be a power-of-2 supported value
162  * return: 1 -> invalid
163  *         0 -> valid
164  */
165 static int bnxt_devarg_max_num_kflow_invalid(uint16_t max_num_kflows)
166 {
167 	if (max_num_kflows < 32 || !rte_is_power_of_2(max_num_kflows))
168 		return 1;
169 	return 0;
170 }
171 
172 static int bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask);
173 static int bnxt_dev_uninit(struct rte_eth_dev *eth_dev);
174 static int bnxt_init_resources(struct bnxt *bp, bool reconfig_dev);
175 static int bnxt_uninit_resources(struct bnxt *bp, bool reconfig_dev);
176 static void bnxt_cancel_fw_health_check(struct bnxt *bp);
177 static int bnxt_restore_vlan_filters(struct bnxt *bp);
178 static void bnxt_dev_recover(void *arg);
179 static void bnxt_free_error_recovery_info(struct bnxt *bp);
180 static void bnxt_free_rep_info(struct bnxt *bp);
181 
182 int is_bnxt_in_error(struct bnxt *bp)
183 {
184 	if (bp->flags & BNXT_FLAG_FATAL_ERROR)
185 		return -EIO;
186 	if (bp->flags & BNXT_FLAG_FW_RESET)
187 		return -EBUSY;
188 
189 	return 0;
190 }
191 
192 /***********************/
193 
194 /*
195  * High level utility functions
196  */
197 
198 static uint16_t bnxt_rss_ctxts(const struct bnxt *bp)
199 {
200 	unsigned int num_rss_rings = RTE_MIN(bp->rx_nr_rings,
201 					     BNXT_RSS_TBL_SIZE_P5);
202 
203 	if (!BNXT_CHIP_P5(bp))
204 		return 1;
205 
206 	return RTE_ALIGN_MUL_CEIL(num_rss_rings,
207 				  BNXT_RSS_ENTRIES_PER_CTX_P5) /
208 				  BNXT_RSS_ENTRIES_PER_CTX_P5;
209 }
210 
211 uint16_t bnxt_rss_hash_tbl_size(const struct bnxt *bp)
212 {
213 	if (!BNXT_CHIP_P5(bp))
214 		return HW_HASH_INDEX_SIZE;
215 
216 	return bnxt_rss_ctxts(bp) * BNXT_RSS_ENTRIES_PER_CTX_P5;
217 }
218 
219 static void bnxt_free_parent_info(struct bnxt *bp)
220 {
221 	rte_free(bp->parent);
222 }
223 
224 static void bnxt_free_pf_info(struct bnxt *bp)
225 {
226 	rte_free(bp->pf);
227 }
228 
229 static void bnxt_free_link_info(struct bnxt *bp)
230 {
231 	rte_free(bp->link_info);
232 }
233 
234 static void bnxt_free_leds_info(struct bnxt *bp)
235 {
236 	if (BNXT_VF(bp))
237 		return;
238 
239 	rte_free(bp->leds);
240 	bp->leds = NULL;
241 }
242 
243 static void bnxt_free_flow_stats_info(struct bnxt *bp)
244 {
245 	rte_free(bp->flow_stat);
246 	bp->flow_stat = NULL;
247 }
248 
249 static void bnxt_free_cos_queues(struct bnxt *bp)
250 {
251 	rte_free(bp->rx_cos_queue);
252 	rte_free(bp->tx_cos_queue);
253 }
254 
255 static void bnxt_free_mem(struct bnxt *bp, bool reconfig)
256 {
257 	bnxt_free_filter_mem(bp);
258 	bnxt_free_vnic_attributes(bp);
259 	bnxt_free_vnic_mem(bp);
260 
261 	/* tx/rx rings are configured as part of *_queue_setup callbacks.
262 	 * If the number of rings change across fw update,
263 	 * we don't have much choice except to warn the user.
264 	 */
265 	if (!reconfig) {
266 		bnxt_free_stats(bp);
267 		bnxt_free_tx_rings(bp);
268 		bnxt_free_rx_rings(bp);
269 	}
270 	bnxt_free_async_cp_ring(bp);
271 	bnxt_free_rxtx_nq_ring(bp);
272 
273 	rte_free(bp->grp_info);
274 	bp->grp_info = NULL;
275 }
276 
277 static int bnxt_alloc_parent_info(struct bnxt *bp)
278 {
279 	bp->parent = rte_zmalloc("bnxt_parent_info",
280 				 sizeof(struct bnxt_parent_info), 0);
281 	if (bp->parent == NULL)
282 		return -ENOMEM;
283 
284 	return 0;
285 }
286 
287 static int bnxt_alloc_pf_info(struct bnxt *bp)
288 {
289 	bp->pf = rte_zmalloc("bnxt_pf_info", sizeof(struct bnxt_pf_info), 0);
290 	if (bp->pf == NULL)
291 		return -ENOMEM;
292 
293 	return 0;
294 }
295 
296 static int bnxt_alloc_link_info(struct bnxt *bp)
297 {
298 	bp->link_info =
299 		rte_zmalloc("bnxt_link_info", sizeof(struct bnxt_link_info), 0);
300 	if (bp->link_info == NULL)
301 		return -ENOMEM;
302 
303 	return 0;
304 }
305 
306 static int bnxt_alloc_leds_info(struct bnxt *bp)
307 {
308 	if (BNXT_VF(bp))
309 		return 0;
310 
311 	bp->leds = rte_zmalloc("bnxt_leds",
312 			       BNXT_MAX_LED * sizeof(struct bnxt_led_info),
313 			       0);
314 	if (bp->leds == NULL)
315 		return -ENOMEM;
316 
317 	return 0;
318 }
319 
320 static int bnxt_alloc_cos_queues(struct bnxt *bp)
321 {
322 	bp->rx_cos_queue =
323 		rte_zmalloc("bnxt_rx_cosq",
324 			    BNXT_COS_QUEUE_COUNT *
325 			    sizeof(struct bnxt_cos_queue_info),
326 			    0);
327 	if (bp->rx_cos_queue == NULL)
328 		return -ENOMEM;
329 
330 	bp->tx_cos_queue =
331 		rte_zmalloc("bnxt_tx_cosq",
332 			    BNXT_COS_QUEUE_COUNT *
333 			    sizeof(struct bnxt_cos_queue_info),
334 			    0);
335 	if (bp->tx_cos_queue == NULL)
336 		return -ENOMEM;
337 
338 	return 0;
339 }
340 
341 static int bnxt_alloc_flow_stats_info(struct bnxt *bp)
342 {
343 	bp->flow_stat = rte_zmalloc("bnxt_flow_xstat",
344 				    sizeof(struct bnxt_flow_stat_info), 0);
345 	if (bp->flow_stat == NULL)
346 		return -ENOMEM;
347 
348 	return 0;
349 }
350 
351 static int bnxt_alloc_mem(struct bnxt *bp, bool reconfig)
352 {
353 	int rc;
354 
355 	rc = bnxt_alloc_ring_grps(bp);
356 	if (rc)
357 		goto alloc_mem_err;
358 
359 	rc = bnxt_alloc_async_ring_struct(bp);
360 	if (rc)
361 		goto alloc_mem_err;
362 
363 	rc = bnxt_alloc_vnic_mem(bp);
364 	if (rc)
365 		goto alloc_mem_err;
366 
367 	rc = bnxt_alloc_vnic_attributes(bp);
368 	if (rc)
369 		goto alloc_mem_err;
370 
371 	rc = bnxt_alloc_filter_mem(bp);
372 	if (rc)
373 		goto alloc_mem_err;
374 
375 	rc = bnxt_alloc_async_cp_ring(bp);
376 	if (rc)
377 		goto alloc_mem_err;
378 
379 	rc = bnxt_alloc_rxtx_nq_ring(bp);
380 	if (rc)
381 		goto alloc_mem_err;
382 
383 	if (BNXT_FLOW_XSTATS_EN(bp)) {
384 		rc = bnxt_alloc_flow_stats_info(bp);
385 		if (rc)
386 			goto alloc_mem_err;
387 	}
388 
389 	return 0;
390 
391 alloc_mem_err:
392 	bnxt_free_mem(bp, reconfig);
393 	return rc;
394 }
395 
396 static int bnxt_setup_one_vnic(struct bnxt *bp, uint16_t vnic_id)
397 {
398 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
399 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
400 	uint64_t rx_offloads = dev_conf->rxmode.offloads;
401 	struct bnxt_rx_queue *rxq;
402 	unsigned int j;
403 	int rc;
404 
405 	rc = bnxt_vnic_grp_alloc(bp, vnic);
406 	if (rc)
407 		goto err_out;
408 
409 	PMD_DRV_LOG(DEBUG, "vnic[%d] = %p vnic->fw_grp_ids = %p\n",
410 		    vnic_id, vnic, vnic->fw_grp_ids);
411 
412 	rc = bnxt_hwrm_vnic_alloc(bp, vnic);
413 	if (rc)
414 		goto err_out;
415 
416 	/* Alloc RSS context only if RSS mode is enabled */
417 	if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS) {
418 		int j, nr_ctxs = bnxt_rss_ctxts(bp);
419 
420 		if (bp->rx_nr_rings > BNXT_RSS_TBL_SIZE_P5) {
421 			PMD_DRV_LOG(ERR, "RxQ cnt %d > reta_size %d\n",
422 				    bp->rx_nr_rings, BNXT_RSS_TBL_SIZE_P5);
423 			PMD_DRV_LOG(ERR,
424 				    "Only queues 0-%d will be in RSS table\n",
425 				    BNXT_RSS_TBL_SIZE_P5 - 1);
426 		}
427 
428 		rc = 0;
429 		for (j = 0; j < nr_ctxs; j++) {
430 			rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, j);
431 			if (rc)
432 				break;
433 		}
434 		if (rc) {
435 			PMD_DRV_LOG(ERR,
436 				    "HWRM vnic %d ctx %d alloc failure rc: %x\n",
437 				    vnic_id, j, rc);
438 			goto err_out;
439 		}
440 		vnic->num_lb_ctxts = nr_ctxs;
441 	}
442 
443 	/*
444 	 * Firmware sets pf pair in default vnic cfg. If the VLAN strip
445 	 * setting is not available at this time, it will not be
446 	 * configured correctly in the CFA.
447 	 */
448 	if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
449 		vnic->vlan_strip = true;
450 	else
451 		vnic->vlan_strip = false;
452 
453 	rc = bnxt_hwrm_vnic_cfg(bp, vnic);
454 	if (rc)
455 		goto err_out;
456 
457 	rc = bnxt_set_hwrm_vnic_filters(bp, vnic);
458 	if (rc)
459 		goto err_out;
460 
461 	for (j = 0; j < bp->rx_num_qs_per_vnic; j++) {
462 		rxq = bp->eth_dev->data->rx_queues[j];
463 
464 		PMD_DRV_LOG(DEBUG,
465 			    "rxq[%d]->vnic=%p vnic->fw_grp_ids=%p\n",
466 			    j, rxq->vnic, rxq->vnic->fw_grp_ids);
467 
468 		if (BNXT_HAS_RING_GRPS(bp) && rxq->rx_deferred_start)
469 			rxq->vnic->fw_grp_ids[j] = INVALID_HW_RING_ID;
470 		else
471 			vnic->rx_queue_cnt++;
472 	}
473 
474 	PMD_DRV_LOG(DEBUG, "vnic->rx_queue_cnt = %d\n", vnic->rx_queue_cnt);
475 
476 	rc = bnxt_vnic_rss_configure(bp, vnic);
477 	if (rc)
478 		goto err_out;
479 
480 	bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
481 
482 	if (rx_offloads & DEV_RX_OFFLOAD_TCP_LRO)
483 		bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 1);
484 	else
485 		bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 0);
486 
487 	return 0;
488 err_out:
489 	PMD_DRV_LOG(ERR, "HWRM vnic %d cfg failure rc: %x\n",
490 		    vnic_id, rc);
491 	return rc;
492 }
493 
494 static int bnxt_register_fc_ctx_mem(struct bnxt *bp)
495 {
496 	int rc = 0;
497 
498 	rc = bnxt_hwrm_ctx_rgtr(bp, bp->flow_stat->rx_fc_in_tbl.dma,
499 				&bp->flow_stat->rx_fc_in_tbl.ctx_id);
500 	if (rc)
501 		return rc;
502 
503 	PMD_DRV_LOG(DEBUG,
504 		    "rx_fc_in_tbl.va = %p rx_fc_in_tbl.dma = %p"
505 		    " rx_fc_in_tbl.ctx_id = %d\n",
506 		    bp->flow_stat->rx_fc_in_tbl.va,
507 		    (void *)((uintptr_t)bp->flow_stat->rx_fc_in_tbl.dma),
508 		    bp->flow_stat->rx_fc_in_tbl.ctx_id);
509 
510 	rc = bnxt_hwrm_ctx_rgtr(bp, bp->flow_stat->rx_fc_out_tbl.dma,
511 				&bp->flow_stat->rx_fc_out_tbl.ctx_id);
512 	if (rc)
513 		return rc;
514 
515 	PMD_DRV_LOG(DEBUG,
516 		    "rx_fc_out_tbl.va = %p rx_fc_out_tbl.dma = %p"
517 		    " rx_fc_out_tbl.ctx_id = %d\n",
518 		    bp->flow_stat->rx_fc_out_tbl.va,
519 		    (void *)((uintptr_t)bp->flow_stat->rx_fc_out_tbl.dma),
520 		    bp->flow_stat->rx_fc_out_tbl.ctx_id);
521 
522 	rc = bnxt_hwrm_ctx_rgtr(bp, bp->flow_stat->tx_fc_in_tbl.dma,
523 				&bp->flow_stat->tx_fc_in_tbl.ctx_id);
524 	if (rc)
525 		return rc;
526 
527 	PMD_DRV_LOG(DEBUG,
528 		    "tx_fc_in_tbl.va = %p tx_fc_in_tbl.dma = %p"
529 		    " tx_fc_in_tbl.ctx_id = %d\n",
530 		    bp->flow_stat->tx_fc_in_tbl.va,
531 		    (void *)((uintptr_t)bp->flow_stat->tx_fc_in_tbl.dma),
532 		    bp->flow_stat->tx_fc_in_tbl.ctx_id);
533 
534 	rc = bnxt_hwrm_ctx_rgtr(bp, bp->flow_stat->tx_fc_out_tbl.dma,
535 				&bp->flow_stat->tx_fc_out_tbl.ctx_id);
536 	if (rc)
537 		return rc;
538 
539 	PMD_DRV_LOG(DEBUG,
540 		    "tx_fc_out_tbl.va = %p tx_fc_out_tbl.dma = %p"
541 		    " tx_fc_out_tbl.ctx_id = %d\n",
542 		    bp->flow_stat->tx_fc_out_tbl.va,
543 		    (void *)((uintptr_t)bp->flow_stat->tx_fc_out_tbl.dma),
544 		    bp->flow_stat->tx_fc_out_tbl.ctx_id);
545 
546 	memset(bp->flow_stat->rx_fc_out_tbl.va,
547 	       0,
548 	       bp->flow_stat->rx_fc_out_tbl.size);
549 	rc = bnxt_hwrm_cfa_counter_cfg(bp, BNXT_DIR_RX,
550 				       CFA_COUNTER_CFG_IN_COUNTER_TYPE_FC,
551 				       bp->flow_stat->rx_fc_out_tbl.ctx_id,
552 				       bp->flow_stat->max_fc,
553 				       true);
554 	if (rc)
555 		return rc;
556 
557 	memset(bp->flow_stat->tx_fc_out_tbl.va,
558 	       0,
559 	       bp->flow_stat->tx_fc_out_tbl.size);
560 	rc = bnxt_hwrm_cfa_counter_cfg(bp, BNXT_DIR_TX,
561 				       CFA_COUNTER_CFG_IN_COUNTER_TYPE_FC,
562 				       bp->flow_stat->tx_fc_out_tbl.ctx_id,
563 				       bp->flow_stat->max_fc,
564 				       true);
565 
566 	return rc;
567 }
568 
569 static int bnxt_alloc_ctx_mem_buf(char *type, size_t size,
570 				  struct bnxt_ctx_mem_buf_info *ctx)
571 {
572 	if (!ctx)
573 		return -EINVAL;
574 
575 	ctx->va = rte_zmalloc(type, size, 0);
576 	if (ctx->va == NULL)
577 		return -ENOMEM;
578 	rte_mem_lock_page(ctx->va);
579 	ctx->size = size;
580 	ctx->dma = rte_mem_virt2iova(ctx->va);
581 	if (ctx->dma == RTE_BAD_IOVA)
582 		return -ENOMEM;
583 
584 	return 0;
585 }
586 
587 static int bnxt_init_fc_ctx_mem(struct bnxt *bp)
588 {
589 	struct rte_pci_device *pdev = bp->pdev;
590 	char type[RTE_MEMZONE_NAMESIZE];
591 	uint16_t max_fc;
592 	int rc = 0;
593 
594 	max_fc = bp->flow_stat->max_fc;
595 
596 	sprintf(type, "bnxt_rx_fc_in_" PCI_PRI_FMT, pdev->addr.domain,
597 		pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
598 	/* 4 bytes for each counter-id */
599 	rc = bnxt_alloc_ctx_mem_buf(type,
600 				    max_fc * 4,
601 				    &bp->flow_stat->rx_fc_in_tbl);
602 	if (rc)
603 		return rc;
604 
605 	sprintf(type, "bnxt_rx_fc_out_" PCI_PRI_FMT, pdev->addr.domain,
606 		pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
607 	/* 16 bytes for each counter - 8 bytes pkt_count, 8 bytes byte_count */
608 	rc = bnxt_alloc_ctx_mem_buf(type,
609 				    max_fc * 16,
610 				    &bp->flow_stat->rx_fc_out_tbl);
611 	if (rc)
612 		return rc;
613 
614 	sprintf(type, "bnxt_tx_fc_in_" PCI_PRI_FMT, pdev->addr.domain,
615 		pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
616 	/* 4 bytes for each counter-id */
617 	rc = bnxt_alloc_ctx_mem_buf(type,
618 				    max_fc * 4,
619 				    &bp->flow_stat->tx_fc_in_tbl);
620 	if (rc)
621 		return rc;
622 
623 	sprintf(type, "bnxt_tx_fc_out_" PCI_PRI_FMT, pdev->addr.domain,
624 		pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
625 	/* 16 bytes for each counter - 8 bytes pkt_count, 8 bytes byte_count */
626 	rc = bnxt_alloc_ctx_mem_buf(type,
627 				    max_fc * 16,
628 				    &bp->flow_stat->tx_fc_out_tbl);
629 	if (rc)
630 		return rc;
631 
632 	rc = bnxt_register_fc_ctx_mem(bp);
633 
634 	return rc;
635 }
636 
637 static int bnxt_init_ctx_mem(struct bnxt *bp)
638 {
639 	int rc = 0;
640 
641 	if (!(bp->fw_cap & BNXT_FW_CAP_ADV_FLOW_COUNTERS) ||
642 	    !(BNXT_PF(bp) || BNXT_VF_IS_TRUSTED(bp)) ||
643 	    !BNXT_FLOW_XSTATS_EN(bp))
644 		return 0;
645 
646 	rc = bnxt_hwrm_cfa_counter_qcaps(bp, &bp->flow_stat->max_fc);
647 	if (rc)
648 		return rc;
649 
650 	rc = bnxt_init_fc_ctx_mem(bp);
651 
652 	return rc;
653 }
654 
655 static int bnxt_update_phy_setting(struct bnxt *bp)
656 {
657 	struct rte_eth_link new;
658 	int rc;
659 
660 	rc = bnxt_get_hwrm_link_config(bp, &new);
661 	if (rc) {
662 		PMD_DRV_LOG(ERR, "Failed to get link settings\n");
663 		return rc;
664 	}
665 
666 	/*
667 	 * On BCM957508-N2100 adapters, FW will not allow any user other
668 	 * than BMC to shutdown the port. bnxt_get_hwrm_link_config() call
669 	 * always returns link up. Force phy update always in that case.
670 	 */
671 	if (!new.link_status || IS_BNXT_DEV_957508_N2100(bp)) {
672 		rc = bnxt_set_hwrm_link_config(bp, true);
673 		if (rc) {
674 			PMD_DRV_LOG(ERR, "Failed to update PHY settings\n");
675 			return rc;
676 		}
677 	}
678 
679 	return rc;
680 }
681 
682 static int bnxt_start_nic(struct bnxt *bp)
683 {
684 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(bp->eth_dev);
685 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
686 	uint32_t intr_vector = 0;
687 	uint32_t queue_id, base = BNXT_MISC_VEC_ID;
688 	uint32_t vec = BNXT_MISC_VEC_ID;
689 	unsigned int i, j;
690 	int rc;
691 
692 	if (bp->eth_dev->data->mtu > RTE_ETHER_MTU) {
693 		bp->eth_dev->data->dev_conf.rxmode.offloads |=
694 			DEV_RX_OFFLOAD_JUMBO_FRAME;
695 		bp->flags |= BNXT_FLAG_JUMBO;
696 	} else {
697 		bp->eth_dev->data->dev_conf.rxmode.offloads &=
698 			~DEV_RX_OFFLOAD_JUMBO_FRAME;
699 		bp->flags &= ~BNXT_FLAG_JUMBO;
700 	}
701 
702 	/* THOR does not support ring groups.
703 	 * But we will use the array to save RSS context IDs.
704 	 */
705 	if (BNXT_CHIP_P5(bp))
706 		bp->max_ring_grps = BNXT_MAX_RSS_CTXTS_P5;
707 
708 	rc = bnxt_alloc_all_hwrm_stat_ctxs(bp);
709 	if (rc) {
710 		PMD_DRV_LOG(ERR, "HWRM stat ctx alloc failure rc: %x\n", rc);
711 		goto err_out;
712 	}
713 
714 	rc = bnxt_alloc_hwrm_rings(bp);
715 	if (rc) {
716 		PMD_DRV_LOG(ERR, "HWRM ring alloc failure rc: %x\n", rc);
717 		goto err_out;
718 	}
719 
720 	rc = bnxt_alloc_all_hwrm_ring_grps(bp);
721 	if (rc) {
722 		PMD_DRV_LOG(ERR, "HWRM ring grp alloc failure: %x\n", rc);
723 		goto err_out;
724 	}
725 
726 	if (!(bp->vnic_cap_flags & BNXT_VNIC_CAP_COS_CLASSIFY))
727 		goto skip_cosq_cfg;
728 
729 	for (j = 0, i = 0; i < BNXT_COS_QUEUE_COUNT; i++) {
730 		if (bp->rx_cos_queue[i].id != 0xff) {
731 			struct bnxt_vnic_info *vnic = &bp->vnic_info[j++];
732 
733 			if (!vnic) {
734 				PMD_DRV_LOG(ERR,
735 					    "Num pools more than FW profile\n");
736 				rc = -EINVAL;
737 				goto err_out;
738 			}
739 			vnic->cos_queue_id = bp->rx_cos_queue[i].id;
740 			bp->rx_cosq_cnt++;
741 		}
742 	}
743 
744 skip_cosq_cfg:
745 	rc = bnxt_mq_rx_configure(bp);
746 	if (rc) {
747 		PMD_DRV_LOG(ERR, "MQ mode configure failure rc: %x\n", rc);
748 		goto err_out;
749 	}
750 
751 	/* default vnic 0 */
752 	rc = bnxt_setup_one_vnic(bp, 0);
753 	if (rc)
754 		goto err_out;
755 	/* VNIC configuration */
756 	if (BNXT_RFS_NEEDS_VNIC(bp)) {
757 		for (i = 1; i < bp->nr_vnics; i++) {
758 			rc = bnxt_setup_one_vnic(bp, i);
759 			if (rc)
760 				goto err_out;
761 		}
762 	}
763 
764 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, &bp->vnic_info[0], 0, NULL);
765 	if (rc) {
766 		PMD_DRV_LOG(ERR,
767 			"HWRM cfa l2 rx mask failure rc: %x\n", rc);
768 		goto err_out;
769 	}
770 
771 	/* check and configure queue intr-vector mapping */
772 	if ((rte_intr_cap_multiple(intr_handle) ||
773 	     !RTE_ETH_DEV_SRIOV(bp->eth_dev).active) &&
774 	    bp->eth_dev->data->dev_conf.intr_conf.rxq != 0) {
775 		intr_vector = bp->eth_dev->data->nb_rx_queues;
776 		PMD_DRV_LOG(DEBUG, "intr_vector = %d\n", intr_vector);
777 		if (intr_vector > bp->rx_cp_nr_rings) {
778 			PMD_DRV_LOG(ERR, "At most %d intr queues supported",
779 					bp->rx_cp_nr_rings);
780 			return -ENOTSUP;
781 		}
782 		rc = rte_intr_efd_enable(intr_handle, intr_vector);
783 		if (rc)
784 			return rc;
785 	}
786 
787 	if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
788 		intr_handle->intr_vec =
789 			rte_zmalloc("intr_vec",
790 				    bp->eth_dev->data->nb_rx_queues *
791 				    sizeof(int), 0);
792 		if (intr_handle->intr_vec == NULL) {
793 			PMD_DRV_LOG(ERR, "Failed to allocate %d rx_queues"
794 				" intr_vec", bp->eth_dev->data->nb_rx_queues);
795 			rc = -ENOMEM;
796 			goto err_disable;
797 		}
798 		PMD_DRV_LOG(DEBUG, "intr_handle->intr_vec = %p "
799 			"intr_handle->nb_efd = %d intr_handle->max_intr = %d\n",
800 			 intr_handle->intr_vec, intr_handle->nb_efd,
801 			intr_handle->max_intr);
802 		for (queue_id = 0; queue_id < bp->eth_dev->data->nb_rx_queues;
803 		     queue_id++) {
804 			intr_handle->intr_vec[queue_id] =
805 							vec + BNXT_RX_VEC_START;
806 			if (vec < base + intr_handle->nb_efd - 1)
807 				vec++;
808 		}
809 	}
810 
811 	/* enable uio/vfio intr/eventfd mapping */
812 	rc = rte_intr_enable(intr_handle);
813 #ifndef RTE_EXEC_ENV_FREEBSD
814 	/* In FreeBSD OS, nic_uio driver does not support interrupts */
815 	if (rc)
816 		goto err_free;
817 #endif
818 
819 	rc = bnxt_update_phy_setting(bp);
820 	if (rc)
821 		goto err_free;
822 
823 	bp->mark_table = rte_zmalloc("bnxt_mark_table", BNXT_MARK_TABLE_SZ, 0);
824 	if (!bp->mark_table)
825 		PMD_DRV_LOG(ERR, "Allocation of mark table failed\n");
826 
827 	return 0;
828 
829 err_free:
830 	rte_free(intr_handle->intr_vec);
831 err_disable:
832 	rte_intr_efd_disable(intr_handle);
833 err_out:
834 	/* Some of the error status returned by FW may not be from errno.h */
835 	if (rc > 0)
836 		rc = -EIO;
837 
838 	return rc;
839 }
840 
841 static int bnxt_shutdown_nic(struct bnxt *bp)
842 {
843 	bnxt_free_all_hwrm_resources(bp);
844 	bnxt_free_all_filters(bp);
845 	bnxt_free_all_vnics(bp);
846 	return 0;
847 }
848 
849 /*
850  * Device configuration and status function
851  */
852 
853 uint32_t bnxt_get_speed_capabilities(struct bnxt *bp)
854 {
855 	uint32_t link_speed = bp->link_info->support_speeds;
856 	uint32_t speed_capa = 0;
857 
858 	/* If PAM4 is configured, use PAM4 supported speed */
859 	if (link_speed == 0 && bp->link_info->support_pam4_speeds > 0)
860 		link_speed = bp->link_info->support_pam4_speeds;
861 
862 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_100MB)
863 		speed_capa |= ETH_LINK_SPEED_100M;
864 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_100MBHD)
865 		speed_capa |= ETH_LINK_SPEED_100M_HD;
866 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_1GB)
867 		speed_capa |= ETH_LINK_SPEED_1G;
868 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_2_5GB)
869 		speed_capa |= ETH_LINK_SPEED_2_5G;
870 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_10GB)
871 		speed_capa |= ETH_LINK_SPEED_10G;
872 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_20GB)
873 		speed_capa |= ETH_LINK_SPEED_20G;
874 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_25GB)
875 		speed_capa |= ETH_LINK_SPEED_25G;
876 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_40GB)
877 		speed_capa |= ETH_LINK_SPEED_40G;
878 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_50GB)
879 		speed_capa |= ETH_LINK_SPEED_50G;
880 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_100GB)
881 		speed_capa |= ETH_LINK_SPEED_100G;
882 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_PAM4_SPEEDS_50G)
883 		speed_capa |= ETH_LINK_SPEED_50G;
884 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_PAM4_SPEEDS_100G)
885 		speed_capa |= ETH_LINK_SPEED_100G;
886 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_PAM4_SPEEDS_200G)
887 		speed_capa |= ETH_LINK_SPEED_200G;
888 
889 	if (bp->link_info->auto_mode ==
890 	    HWRM_PORT_PHY_QCFG_OUTPUT_AUTO_MODE_NONE)
891 		speed_capa |= ETH_LINK_SPEED_FIXED;
892 	else
893 		speed_capa |= ETH_LINK_SPEED_AUTONEG;
894 
895 	return speed_capa;
896 }
897 
898 static int bnxt_dev_info_get_op(struct rte_eth_dev *eth_dev,
899 				struct rte_eth_dev_info *dev_info)
900 {
901 	struct rte_pci_device *pdev = RTE_DEV_TO_PCI(eth_dev->device);
902 	struct bnxt *bp = eth_dev->data->dev_private;
903 	uint16_t max_vnics, i, j, vpool, vrxq;
904 	unsigned int max_rx_rings;
905 	int rc;
906 
907 	rc = is_bnxt_in_error(bp);
908 	if (rc)
909 		return rc;
910 
911 	/* MAC Specifics */
912 	dev_info->max_mac_addrs = bp->max_l2_ctx;
913 	dev_info->max_hash_mac_addrs = 0;
914 
915 	/* PF/VF specifics */
916 	if (BNXT_PF(bp))
917 		dev_info->max_vfs = pdev->max_vfs;
918 
919 	max_rx_rings = bnxt_max_rings(bp);
920 	/* For the sake of symmetry, max_rx_queues = max_tx_queues */
921 	dev_info->max_rx_queues = max_rx_rings;
922 	dev_info->max_tx_queues = max_rx_rings;
923 	dev_info->reta_size = bnxt_rss_hash_tbl_size(bp);
924 	dev_info->hash_key_size = 40;
925 	max_vnics = bp->max_vnics;
926 
927 	/* MTU specifics */
928 	dev_info->min_mtu = RTE_ETHER_MIN_MTU;
929 	dev_info->max_mtu = BNXT_MAX_MTU;
930 
931 	/* Fast path specifics */
932 	dev_info->min_rx_bufsize = 1;
933 	dev_info->max_rx_pktlen = BNXT_MAX_PKT_LEN;
934 
935 	dev_info->rx_offload_capa = BNXT_DEV_RX_OFFLOAD_SUPPORT;
936 	if (bp->flags & BNXT_FLAG_PTP_SUPPORTED)
937 		dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_TIMESTAMP;
938 	dev_info->tx_queue_offload_capa = DEV_TX_OFFLOAD_MBUF_FAST_FREE;
939 	dev_info->tx_offload_capa = BNXT_DEV_TX_OFFLOAD_SUPPORT |
940 				    dev_info->tx_queue_offload_capa;
941 	dev_info->flow_type_rss_offloads = BNXT_ETH_RSS_SUPPORT;
942 
943 	dev_info->speed_capa = bnxt_get_speed_capabilities(bp);
944 
945 	/* *INDENT-OFF* */
946 	dev_info->default_rxconf = (struct rte_eth_rxconf) {
947 		.rx_thresh = {
948 			.pthresh = 8,
949 			.hthresh = 8,
950 			.wthresh = 0,
951 		},
952 		.rx_free_thresh = 32,
953 		.rx_drop_en = BNXT_DEFAULT_RX_DROP_EN,
954 	};
955 
956 	dev_info->default_txconf = (struct rte_eth_txconf) {
957 		.tx_thresh = {
958 			.pthresh = 32,
959 			.hthresh = 0,
960 			.wthresh = 0,
961 		},
962 		.tx_free_thresh = 32,
963 		.tx_rs_thresh = 32,
964 	};
965 	eth_dev->data->dev_conf.intr_conf.lsc = 1;
966 
967 	eth_dev->data->dev_conf.intr_conf.rxq = 1;
968 	dev_info->rx_desc_lim.nb_min = BNXT_MIN_RING_DESC;
969 	dev_info->rx_desc_lim.nb_max = BNXT_MAX_RX_RING_DESC;
970 	dev_info->tx_desc_lim.nb_min = BNXT_MIN_RING_DESC;
971 	dev_info->tx_desc_lim.nb_max = BNXT_MAX_TX_RING_DESC;
972 
973 	if (BNXT_PF(bp) || BNXT_VF_IS_TRUSTED(bp)) {
974 		dev_info->switch_info.name = eth_dev->device->name;
975 		dev_info->switch_info.domain_id = bp->switch_domain_id;
976 		dev_info->switch_info.port_id =
977 				BNXT_PF(bp) ? BNXT_SWITCH_PORT_ID_PF :
978 				    BNXT_SWITCH_PORT_ID_TRUSTED_VF;
979 	}
980 
981 	/* *INDENT-ON* */
982 
983 	/*
984 	 * TODO: default_rxconf, default_txconf, rx_desc_lim, and tx_desc_lim
985 	 *       need further investigation.
986 	 */
987 
988 	/* VMDq resources */
989 	vpool = 64; /* ETH_64_POOLS */
990 	vrxq = 128; /* ETH_VMDQ_DCB_NUM_QUEUES */
991 	for (i = 0; i < 4; vpool >>= 1, i++) {
992 		if (max_vnics > vpool) {
993 			for (j = 0; j < 5; vrxq >>= 1, j++) {
994 				if (dev_info->max_rx_queues > vrxq) {
995 					if (vpool > vrxq)
996 						vpool = vrxq;
997 					goto found;
998 				}
999 			}
1000 			/* Not enough resources to support VMDq */
1001 			break;
1002 		}
1003 	}
1004 	/* Not enough resources to support VMDq */
1005 	vpool = 0;
1006 	vrxq = 0;
1007 found:
1008 	dev_info->max_vmdq_pools = vpool;
1009 	dev_info->vmdq_queue_num = vrxq;
1010 
1011 	dev_info->vmdq_pool_base = 0;
1012 	dev_info->vmdq_queue_base = 0;
1013 
1014 	return 0;
1015 }
1016 
1017 /* Configure the device based on the configuration provided */
1018 static int bnxt_dev_configure_op(struct rte_eth_dev *eth_dev)
1019 {
1020 	struct bnxt *bp = eth_dev->data->dev_private;
1021 	uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads;
1022 	int rc;
1023 
1024 	bp->rx_queues = (void *)eth_dev->data->rx_queues;
1025 	bp->tx_queues = (void *)eth_dev->data->tx_queues;
1026 	bp->tx_nr_rings = eth_dev->data->nb_tx_queues;
1027 	bp->rx_nr_rings = eth_dev->data->nb_rx_queues;
1028 
1029 	rc = is_bnxt_in_error(bp);
1030 	if (rc)
1031 		return rc;
1032 
1033 	if (BNXT_VF(bp) && (bp->flags & BNXT_FLAG_NEW_RM)) {
1034 		rc = bnxt_hwrm_check_vf_rings(bp);
1035 		if (rc) {
1036 			PMD_DRV_LOG(ERR, "HWRM insufficient resources\n");
1037 			return -ENOSPC;
1038 		}
1039 
1040 		/* If a resource has already been allocated - in this case
1041 		 * it is the async completion ring, free it. Reallocate it after
1042 		 * resource reservation. This will ensure the resource counts
1043 		 * are calculated correctly.
1044 		 */
1045 
1046 		pthread_mutex_lock(&bp->def_cp_lock);
1047 
1048 		if (!BNXT_HAS_NQ(bp) && bp->async_cp_ring) {
1049 			bnxt_disable_int(bp);
1050 			bnxt_free_cp_ring(bp, bp->async_cp_ring);
1051 		}
1052 
1053 		rc = bnxt_hwrm_func_reserve_vf_resc(bp, false);
1054 		if (rc) {
1055 			PMD_DRV_LOG(ERR, "HWRM resource alloc fail:%x\n", rc);
1056 			pthread_mutex_unlock(&bp->def_cp_lock);
1057 			return -ENOSPC;
1058 		}
1059 
1060 		if (!BNXT_HAS_NQ(bp) && bp->async_cp_ring) {
1061 			rc = bnxt_alloc_async_cp_ring(bp);
1062 			if (rc) {
1063 				pthread_mutex_unlock(&bp->def_cp_lock);
1064 				return rc;
1065 			}
1066 			bnxt_enable_int(bp);
1067 		}
1068 
1069 		pthread_mutex_unlock(&bp->def_cp_lock);
1070 	}
1071 
1072 	/* Inherit new configurations */
1073 	if (eth_dev->data->nb_rx_queues > bp->max_rx_rings ||
1074 	    eth_dev->data->nb_tx_queues > bp->max_tx_rings ||
1075 	    eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues
1076 		+ BNXT_NUM_ASYNC_CPR(bp) > bp->max_cp_rings ||
1077 	    eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues >
1078 	    bp->max_stat_ctx)
1079 		goto resource_error;
1080 
1081 	if (BNXT_HAS_RING_GRPS(bp) &&
1082 	    (uint32_t)(eth_dev->data->nb_rx_queues) > bp->max_ring_grps)
1083 		goto resource_error;
1084 
1085 	if (!(eth_dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS) &&
1086 	    bp->max_vnics < eth_dev->data->nb_rx_queues)
1087 		goto resource_error;
1088 
1089 	bp->rx_cp_nr_rings = bp->rx_nr_rings;
1090 	bp->tx_cp_nr_rings = bp->tx_nr_rings;
1091 
1092 	if (eth_dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
1093 		rx_offloads |= DEV_RX_OFFLOAD_RSS_HASH;
1094 	eth_dev->data->dev_conf.rxmode.offloads = rx_offloads;
1095 
1096 	if (rx_offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
1097 		eth_dev->data->mtu =
1098 			eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
1099 			RTE_ETHER_HDR_LEN - RTE_ETHER_CRC_LEN - VLAN_TAG_SIZE *
1100 			BNXT_NUM_VLANS;
1101 		bnxt_mtu_set_op(eth_dev, eth_dev->data->mtu);
1102 	}
1103 	return 0;
1104 
1105 resource_error:
1106 	PMD_DRV_LOG(ERR,
1107 		    "Insufficient resources to support requested config\n");
1108 	PMD_DRV_LOG(ERR,
1109 		    "Num Queues Requested: Tx %d, Rx %d\n",
1110 		    eth_dev->data->nb_tx_queues,
1111 		    eth_dev->data->nb_rx_queues);
1112 	PMD_DRV_LOG(ERR,
1113 		    "MAX: TxQ %d, RxQ %d, CQ %d Stat %d, Grp %d, Vnic %d\n",
1114 		    bp->max_tx_rings, bp->max_rx_rings, bp->max_cp_rings,
1115 		    bp->max_stat_ctx, bp->max_ring_grps, bp->max_vnics);
1116 	return -ENOSPC;
1117 }
1118 
1119 void bnxt_print_link_info(struct rte_eth_dev *eth_dev)
1120 {
1121 	struct rte_eth_link *link = &eth_dev->data->dev_link;
1122 
1123 	if (link->link_status)
1124 		PMD_DRV_LOG(INFO, "Port %d Link Up - speed %u Mbps - %s\n",
1125 			eth_dev->data->port_id,
1126 			(uint32_t)link->link_speed,
1127 			(link->link_duplex == ETH_LINK_FULL_DUPLEX) ?
1128 			("full-duplex") : ("half-duplex\n"));
1129 	else
1130 		PMD_DRV_LOG(INFO, "Port %d Link Down\n",
1131 			eth_dev->data->port_id);
1132 }
1133 
1134 /*
1135  * Determine whether the current configuration requires support for scattered
1136  * receive; return 1 if scattered receive is required and 0 if not.
1137  */
1138 static int bnxt_scattered_rx(struct rte_eth_dev *eth_dev)
1139 {
1140 	uint16_t buf_size;
1141 	int i;
1142 
1143 	if (eth_dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER)
1144 		return 1;
1145 
1146 	if (eth_dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO)
1147 		return 1;
1148 
1149 	for (i = 0; i < eth_dev->data->nb_rx_queues; i++) {
1150 		struct bnxt_rx_queue *rxq = eth_dev->data->rx_queues[i];
1151 
1152 		buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
1153 				      RTE_PKTMBUF_HEADROOM);
1154 		if (eth_dev->data->dev_conf.rxmode.max_rx_pkt_len > buf_size)
1155 			return 1;
1156 	}
1157 	return 0;
1158 }
1159 
1160 static eth_rx_burst_t
1161 bnxt_receive_function(struct rte_eth_dev *eth_dev)
1162 {
1163 	struct bnxt *bp = eth_dev->data->dev_private;
1164 
1165 	/* Disable vector mode RX for Stingray2 for now */
1166 	if (BNXT_CHIP_SR2(bp)) {
1167 		bp->flags &= ~BNXT_FLAG_RX_VECTOR_PKT_MODE;
1168 		return bnxt_recv_pkts;
1169 	}
1170 
1171 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
1172 #ifndef RTE_LIBRTE_IEEE1588
1173 	/*
1174 	 * Vector mode receive can be enabled only if scatter rx is not
1175 	 * in use and rx offloads are limited to VLAN stripping and
1176 	 * CRC stripping.
1177 	 */
1178 	if (!eth_dev->data->scattered_rx &&
1179 	    !(eth_dev->data->dev_conf.rxmode.offloads &
1180 	      ~(DEV_RX_OFFLOAD_VLAN_STRIP |
1181 		DEV_RX_OFFLOAD_KEEP_CRC |
1182 		DEV_RX_OFFLOAD_JUMBO_FRAME |
1183 		DEV_RX_OFFLOAD_IPV4_CKSUM |
1184 		DEV_RX_OFFLOAD_UDP_CKSUM |
1185 		DEV_RX_OFFLOAD_TCP_CKSUM |
1186 		DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
1187 		DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
1188 		DEV_RX_OFFLOAD_RSS_HASH |
1189 		DEV_RX_OFFLOAD_VLAN_FILTER)) &&
1190 	    !BNXT_TRUFLOW_EN(bp) && BNXT_NUM_ASYNC_CPR(bp) &&
1191 	    rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
1192 		PMD_DRV_LOG(INFO, "Using vector mode receive for port %d\n",
1193 			    eth_dev->data->port_id);
1194 		bp->flags |= BNXT_FLAG_RX_VECTOR_PKT_MODE;
1195 		return bnxt_recv_pkts_vec;
1196 	}
1197 	PMD_DRV_LOG(INFO, "Vector mode receive disabled for port %d\n",
1198 		    eth_dev->data->port_id);
1199 	PMD_DRV_LOG(INFO,
1200 		    "Port %d scatter: %d rx offload: %" PRIX64 "\n",
1201 		    eth_dev->data->port_id,
1202 		    eth_dev->data->scattered_rx,
1203 		    eth_dev->data->dev_conf.rxmode.offloads);
1204 #endif
1205 #endif
1206 	bp->flags &= ~BNXT_FLAG_RX_VECTOR_PKT_MODE;
1207 	return bnxt_recv_pkts;
1208 }
1209 
1210 static eth_tx_burst_t
1211 bnxt_transmit_function(struct rte_eth_dev *eth_dev)
1212 {
1213 	struct bnxt *bp = eth_dev->data->dev_private;
1214 
1215 	/* Disable vector mode TX for Stingray2 for now */
1216 	if (BNXT_CHIP_SR2(bp))
1217 		return bnxt_xmit_pkts;
1218 
1219 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
1220 #ifndef RTE_LIBRTE_IEEE1588
1221 	uint64_t offloads = eth_dev->data->dev_conf.txmode.offloads;
1222 
1223 	/*
1224 	 * Vector mode transmit can be enabled only if not using scatter rx
1225 	 * or tx offloads.
1226 	 */
1227 	if (!eth_dev->data->scattered_rx &&
1228 	    !(offloads & ~DEV_TX_OFFLOAD_MBUF_FAST_FREE) &&
1229 	    !BNXT_TRUFLOW_EN(bp) &&
1230 	    rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
1231 		PMD_DRV_LOG(INFO, "Using vector mode transmit for port %d\n",
1232 			    eth_dev->data->port_id);
1233 		return bnxt_xmit_pkts_vec;
1234 	}
1235 	PMD_DRV_LOG(INFO, "Vector mode transmit disabled for port %d\n",
1236 		    eth_dev->data->port_id);
1237 	PMD_DRV_LOG(INFO,
1238 		    "Port %d scatter: %d tx offload: %" PRIX64 "\n",
1239 		    eth_dev->data->port_id,
1240 		    eth_dev->data->scattered_rx,
1241 		    offloads);
1242 #endif
1243 #endif
1244 	return bnxt_xmit_pkts;
1245 }
1246 
1247 static int bnxt_handle_if_change_status(struct bnxt *bp)
1248 {
1249 	int rc;
1250 
1251 	/* Since fw has undergone a reset and lost all contexts,
1252 	 * set fatal flag to not issue hwrm during cleanup
1253 	 */
1254 	bp->flags |= BNXT_FLAG_FATAL_ERROR;
1255 	bnxt_uninit_resources(bp, true);
1256 
1257 	/* clear fatal flag so that re-init happens */
1258 	bp->flags &= ~BNXT_FLAG_FATAL_ERROR;
1259 	rc = bnxt_init_resources(bp, true);
1260 
1261 	bp->flags &= ~BNXT_FLAG_IF_CHANGE_HOT_FW_RESET_DONE;
1262 
1263 	return rc;
1264 }
1265 
1266 static int bnxt_dev_set_link_up_op(struct rte_eth_dev *eth_dev)
1267 {
1268 	struct bnxt *bp = eth_dev->data->dev_private;
1269 	int rc = 0;
1270 
1271 	if (!bp->link_info->link_up)
1272 		rc = bnxt_set_hwrm_link_config(bp, true);
1273 	if (!rc)
1274 		eth_dev->data->dev_link.link_status = 1;
1275 
1276 	bnxt_print_link_info(eth_dev);
1277 	return rc;
1278 }
1279 
1280 static int bnxt_dev_set_link_down_op(struct rte_eth_dev *eth_dev)
1281 {
1282 	struct bnxt *bp = eth_dev->data->dev_private;
1283 
1284 	eth_dev->data->dev_link.link_status = 0;
1285 	bnxt_set_hwrm_link_config(bp, false);
1286 	bp->link_info->link_up = 0;
1287 
1288 	return 0;
1289 }
1290 
1291 static void bnxt_free_switch_domain(struct bnxt *bp)
1292 {
1293 	int rc = 0;
1294 
1295 	if (bp->switch_domain_id) {
1296 		rc = rte_eth_switch_domain_free(bp->switch_domain_id);
1297 		if (rc)
1298 			PMD_DRV_LOG(ERR, "free switch domain:%d fail: %d\n",
1299 				    bp->switch_domain_id, rc);
1300 	}
1301 }
1302 
1303 static void bnxt_ptp_get_current_time(void *arg)
1304 {
1305 	struct bnxt *bp = arg;
1306 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
1307 	int rc;
1308 
1309 	rc = is_bnxt_in_error(bp);
1310 	if (rc)
1311 		return;
1312 
1313 	if (!ptp)
1314 		return;
1315 
1316 	bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME,
1317 				&ptp->current_time);
1318 
1319 	rc = rte_eal_alarm_set(US_PER_S, bnxt_ptp_get_current_time, (void *)bp);
1320 	if (rc != 0) {
1321 		PMD_DRV_LOG(ERR, "Failed to re-schedule PTP alarm\n");
1322 		bp->flags2 &= ~BNXT_FLAGS2_PTP_ALARM_SCHEDULED;
1323 	}
1324 }
1325 
1326 static int bnxt_schedule_ptp_alarm(struct bnxt *bp)
1327 {
1328 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
1329 	int rc;
1330 
1331 	if (bp->flags2 & BNXT_FLAGS2_PTP_ALARM_SCHEDULED)
1332 		return 0;
1333 
1334 	bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME,
1335 				&ptp->current_time);
1336 
1337 	rc = rte_eal_alarm_set(US_PER_S, bnxt_ptp_get_current_time, (void *)bp);
1338 	return rc;
1339 }
1340 
1341 static void bnxt_cancel_ptp_alarm(struct bnxt *bp)
1342 {
1343 	if (bp->flags2 & BNXT_FLAGS2_PTP_ALARM_SCHEDULED) {
1344 		rte_eal_alarm_cancel(bnxt_ptp_get_current_time, (void *)bp);
1345 		bp->flags2 &= ~BNXT_FLAGS2_PTP_ALARM_SCHEDULED;
1346 	}
1347 }
1348 
1349 static void bnxt_ptp_stop(struct bnxt *bp)
1350 {
1351 	bnxt_cancel_ptp_alarm(bp);
1352 	bp->flags2 &= ~BNXT_FLAGS2_PTP_TIMESYNC_ENABLED;
1353 }
1354 
1355 static int bnxt_ptp_start(struct bnxt *bp)
1356 {
1357 	int rc;
1358 
1359 	rc = bnxt_schedule_ptp_alarm(bp);
1360 	if (rc != 0) {
1361 		PMD_DRV_LOG(ERR, "Failed to schedule PTP alarm\n");
1362 	} else {
1363 		bp->flags2 |= BNXT_FLAGS2_PTP_TIMESYNC_ENABLED;
1364 		bp->flags2 |= BNXT_FLAGS2_PTP_ALARM_SCHEDULED;
1365 	}
1366 
1367 	return rc;
1368 }
1369 
1370 static int bnxt_dev_stop(struct rte_eth_dev *eth_dev)
1371 {
1372 	struct bnxt *bp = eth_dev->data->dev_private;
1373 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1374 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1375 	struct rte_eth_link link;
1376 	int ret;
1377 
1378 	eth_dev->data->dev_started = 0;
1379 	eth_dev->data->scattered_rx = 0;
1380 
1381 	/* Prevent crashes when queues are still in use */
1382 	eth_dev->rx_pkt_burst = &bnxt_dummy_recv_pkts;
1383 	eth_dev->tx_pkt_burst = &bnxt_dummy_xmit_pkts;
1384 
1385 	bnxt_disable_int(bp);
1386 
1387 	/* disable uio/vfio intr/eventfd mapping */
1388 	rte_intr_disable(intr_handle);
1389 
1390 	/* Stop the child representors for this device */
1391 	ret = bnxt_rep_stop_all(bp);
1392 	if (ret != 0)
1393 		return ret;
1394 
1395 	/* delete the bnxt ULP port details */
1396 	bnxt_ulp_port_deinit(bp);
1397 
1398 	bnxt_cancel_fw_health_check(bp);
1399 
1400 	if (BNXT_P5_PTP_TIMESYNC_ENABLED(bp))
1401 		bnxt_cancel_ptp_alarm(bp);
1402 
1403 	/* Do not bring link down during reset recovery */
1404 	if (!is_bnxt_in_error(bp)) {
1405 		bnxt_dev_set_link_down_op(eth_dev);
1406 		/* Wait for link to be reset */
1407 		if (BNXT_SINGLE_PF(bp))
1408 			rte_delay_ms(500);
1409 		/* clear the recorded link status */
1410 		memset(&link, 0, sizeof(link));
1411 		rte_eth_linkstatus_set(eth_dev, &link);
1412 	}
1413 
1414 	/* Clean queue intr-vector mapping */
1415 	rte_intr_efd_disable(intr_handle);
1416 	if (intr_handle->intr_vec != NULL) {
1417 		rte_free(intr_handle->intr_vec);
1418 		intr_handle->intr_vec = NULL;
1419 	}
1420 
1421 	bnxt_hwrm_port_clr_stats(bp);
1422 	bnxt_free_tx_mbufs(bp);
1423 	bnxt_free_rx_mbufs(bp);
1424 	/* Process any remaining notifications in default completion queue */
1425 	bnxt_int_handler(eth_dev);
1426 	bnxt_shutdown_nic(bp);
1427 	bnxt_hwrm_if_change(bp, false);
1428 
1429 	rte_free(bp->mark_table);
1430 	bp->mark_table = NULL;
1431 
1432 	bp->flags &= ~BNXT_FLAG_RX_VECTOR_PKT_MODE;
1433 	bp->rx_cosq_cnt = 0;
1434 	/* All filters are deleted on a port stop. */
1435 	if (BNXT_FLOW_XSTATS_EN(bp))
1436 		bp->flow_stat->flow_count = 0;
1437 
1438 	return 0;
1439 }
1440 
1441 /* Unload the driver, release resources */
1442 static int bnxt_dev_stop_op(struct rte_eth_dev *eth_dev)
1443 {
1444 	struct bnxt *bp = eth_dev->data->dev_private;
1445 
1446 	pthread_mutex_lock(&bp->err_recovery_lock);
1447 	if (bp->flags & BNXT_FLAG_FW_RESET) {
1448 		PMD_DRV_LOG(ERR,
1449 			    "Adapter recovering from error..Please retry\n");
1450 		pthread_mutex_unlock(&bp->err_recovery_lock);
1451 		return -EAGAIN;
1452 	}
1453 	pthread_mutex_unlock(&bp->err_recovery_lock);
1454 
1455 	return bnxt_dev_stop(eth_dev);
1456 }
1457 
1458 static int bnxt_dev_start_op(struct rte_eth_dev *eth_dev)
1459 {
1460 	struct bnxt *bp = eth_dev->data->dev_private;
1461 	uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads;
1462 	int vlan_mask = 0;
1463 	int rc, retry_cnt = BNXT_IF_CHANGE_RETRY_COUNT;
1464 
1465 	if (!eth_dev->data->nb_tx_queues || !eth_dev->data->nb_rx_queues) {
1466 		PMD_DRV_LOG(ERR, "Queues are not configured yet!\n");
1467 		return -EINVAL;
1468 	}
1469 
1470 	if (bp->rx_cp_nr_rings > RTE_ETHDEV_QUEUE_STAT_CNTRS)
1471 		PMD_DRV_LOG(ERR,
1472 			    "RxQ cnt %d > RTE_ETHDEV_QUEUE_STAT_CNTRS %d\n",
1473 			    bp->rx_cp_nr_rings, RTE_ETHDEV_QUEUE_STAT_CNTRS);
1474 
1475 	do {
1476 		rc = bnxt_hwrm_if_change(bp, true);
1477 		if (rc == 0 || rc != -EAGAIN)
1478 			break;
1479 
1480 		rte_delay_ms(BNXT_IF_CHANGE_RETRY_INTERVAL);
1481 	} while (retry_cnt--);
1482 
1483 	if (rc)
1484 		return rc;
1485 
1486 	if (bp->flags & BNXT_FLAG_IF_CHANGE_HOT_FW_RESET_DONE) {
1487 		rc = bnxt_handle_if_change_status(bp);
1488 		if (rc)
1489 			return rc;
1490 	}
1491 
1492 	bnxt_enable_int(bp);
1493 
1494 	eth_dev->data->scattered_rx = bnxt_scattered_rx(eth_dev);
1495 
1496 	rc = bnxt_start_nic(bp);
1497 	if (rc)
1498 		goto error;
1499 
1500 	eth_dev->data->dev_started = 1;
1501 
1502 	bnxt_link_update_op(eth_dev, 1);
1503 
1504 	if (rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
1505 		vlan_mask |= ETH_VLAN_FILTER_MASK;
1506 	if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1507 		vlan_mask |= ETH_VLAN_STRIP_MASK;
1508 	rc = bnxt_vlan_offload_set_op(eth_dev, vlan_mask);
1509 	if (rc)
1510 		goto error;
1511 
1512 	/* Initialize bnxt ULP port details */
1513 	rc = bnxt_ulp_port_init(bp);
1514 	if (rc)
1515 		goto error;
1516 
1517 	eth_dev->rx_pkt_burst = bnxt_receive_function(eth_dev);
1518 	eth_dev->tx_pkt_burst = bnxt_transmit_function(eth_dev);
1519 
1520 	bnxt_schedule_fw_health_check(bp);
1521 
1522 	if (BNXT_P5_PTP_TIMESYNC_ENABLED(bp))
1523 		bnxt_schedule_ptp_alarm(bp);
1524 
1525 	return 0;
1526 
1527 error:
1528 	bnxt_dev_stop(eth_dev);
1529 	return rc;
1530 }
1531 
1532 static void
1533 bnxt_uninit_locks(struct bnxt *bp)
1534 {
1535 	pthread_mutex_destroy(&bp->flow_lock);
1536 	pthread_mutex_destroy(&bp->def_cp_lock);
1537 	pthread_mutex_destroy(&bp->health_check_lock);
1538 	pthread_mutex_destroy(&bp->err_recovery_lock);
1539 	if (bp->rep_info) {
1540 		pthread_mutex_destroy(&bp->rep_info->vfr_lock);
1541 		pthread_mutex_destroy(&bp->rep_info->vfr_start_lock);
1542 	}
1543 }
1544 
1545 static void bnxt_drv_uninit(struct bnxt *bp)
1546 {
1547 	bnxt_free_switch_domain(bp);
1548 	bnxt_free_leds_info(bp);
1549 	bnxt_free_cos_queues(bp);
1550 	bnxt_free_link_info(bp);
1551 	bnxt_free_pf_info(bp);
1552 	bnxt_free_parent_info(bp);
1553 	bnxt_uninit_locks(bp);
1554 
1555 	rte_memzone_free((const struct rte_memzone *)bp->tx_mem_zone);
1556 	bp->tx_mem_zone = NULL;
1557 	rte_memzone_free((const struct rte_memzone *)bp->rx_mem_zone);
1558 	bp->rx_mem_zone = NULL;
1559 
1560 	bnxt_free_vf_info(bp);
1561 
1562 	rte_free(bp->grp_info);
1563 	bp->grp_info = NULL;
1564 }
1565 
1566 static int bnxt_dev_close_op(struct rte_eth_dev *eth_dev)
1567 {
1568 	struct bnxt *bp = eth_dev->data->dev_private;
1569 	int ret = 0;
1570 
1571 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1572 		return 0;
1573 
1574 	pthread_mutex_lock(&bp->err_recovery_lock);
1575 	if (bp->flags & BNXT_FLAG_FW_RESET) {
1576 		PMD_DRV_LOG(ERR,
1577 			    "Adapter recovering from error...Please retry\n");
1578 		pthread_mutex_unlock(&bp->err_recovery_lock);
1579 		return -EAGAIN;
1580 	}
1581 	pthread_mutex_unlock(&bp->err_recovery_lock);
1582 
1583 	/* cancel the recovery handler before remove dev */
1584 	rte_eal_alarm_cancel(bnxt_dev_reset_and_resume, (void *)bp);
1585 	rte_eal_alarm_cancel(bnxt_dev_recover, (void *)bp);
1586 	bnxt_cancel_fc_thread(bp);
1587 
1588 	if (eth_dev->data->dev_started)
1589 		ret = bnxt_dev_stop(eth_dev);
1590 
1591 	bnxt_uninit_resources(bp, false);
1592 
1593 	bnxt_drv_uninit(bp);
1594 
1595 	return ret;
1596 }
1597 
1598 static void bnxt_mac_addr_remove_op(struct rte_eth_dev *eth_dev,
1599 				    uint32_t index)
1600 {
1601 	struct bnxt *bp = eth_dev->data->dev_private;
1602 	uint64_t pool_mask = eth_dev->data->mac_pool_sel[index];
1603 	struct bnxt_vnic_info *vnic;
1604 	struct bnxt_filter_info *filter, *temp_filter;
1605 	uint32_t i;
1606 
1607 	if (is_bnxt_in_error(bp))
1608 		return;
1609 
1610 	/*
1611 	 * Loop through all VNICs from the specified filter flow pools to
1612 	 * remove the corresponding MAC addr filter
1613 	 */
1614 	for (i = 0; i < bp->nr_vnics; i++) {
1615 		if (!(pool_mask & (1ULL << i)))
1616 			continue;
1617 
1618 		vnic = &bp->vnic_info[i];
1619 		filter = STAILQ_FIRST(&vnic->filter);
1620 		while (filter) {
1621 			temp_filter = STAILQ_NEXT(filter, next);
1622 			if (filter->mac_index == index) {
1623 				STAILQ_REMOVE(&vnic->filter, filter,
1624 						bnxt_filter_info, next);
1625 				bnxt_hwrm_clear_l2_filter(bp, filter);
1626 				bnxt_free_filter(bp, filter);
1627 			}
1628 			filter = temp_filter;
1629 		}
1630 	}
1631 }
1632 
1633 static int bnxt_add_mac_filter(struct bnxt *bp, struct bnxt_vnic_info *vnic,
1634 			       struct rte_ether_addr *mac_addr, uint32_t index,
1635 			       uint32_t pool)
1636 {
1637 	struct bnxt_filter_info *filter;
1638 	int rc = 0;
1639 
1640 	/* Attach requested MAC address to the new l2_filter */
1641 	STAILQ_FOREACH(filter, &vnic->filter, next) {
1642 		if (filter->mac_index == index) {
1643 			PMD_DRV_LOG(DEBUG,
1644 				    "MAC addr already existed for pool %d\n",
1645 				    pool);
1646 			return 0;
1647 		}
1648 	}
1649 
1650 	filter = bnxt_alloc_filter(bp);
1651 	if (!filter) {
1652 		PMD_DRV_LOG(ERR, "L2 filter alloc failed\n");
1653 		return -ENODEV;
1654 	}
1655 
1656 	/* bnxt_alloc_filter copies default MAC to filter->l2_addr. So,
1657 	 * if the MAC that's been programmed now is a different one, then,
1658 	 * copy that addr to filter->l2_addr
1659 	 */
1660 	if (mac_addr)
1661 		memcpy(filter->l2_addr, mac_addr, RTE_ETHER_ADDR_LEN);
1662 	filter->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_OUTERMOST;
1663 
1664 	rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
1665 	if (!rc) {
1666 		filter->mac_index = index;
1667 		if (filter->mac_index == 0)
1668 			STAILQ_INSERT_HEAD(&vnic->filter, filter, next);
1669 		else
1670 			STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
1671 	} else {
1672 		bnxt_free_filter(bp, filter);
1673 	}
1674 
1675 	return rc;
1676 }
1677 
1678 static int bnxt_mac_addr_add_op(struct rte_eth_dev *eth_dev,
1679 				struct rte_ether_addr *mac_addr,
1680 				uint32_t index, uint32_t pool)
1681 {
1682 	struct bnxt *bp = eth_dev->data->dev_private;
1683 	struct bnxt_vnic_info *vnic = &bp->vnic_info[pool];
1684 	int rc = 0;
1685 
1686 	rc = is_bnxt_in_error(bp);
1687 	if (rc)
1688 		return rc;
1689 
1690 	if (BNXT_VF(bp) && !BNXT_VF_IS_TRUSTED(bp)) {
1691 		PMD_DRV_LOG(ERR, "Cannot add MAC address to a VF interface\n");
1692 		return -ENOTSUP;
1693 	}
1694 
1695 	if (!vnic) {
1696 		PMD_DRV_LOG(ERR, "VNIC not found for pool %d!\n", pool);
1697 		return -EINVAL;
1698 	}
1699 
1700 	/* Filter settings will get applied when port is started */
1701 	if (!eth_dev->data->dev_started)
1702 		return 0;
1703 
1704 	rc = bnxt_add_mac_filter(bp, vnic, mac_addr, index, pool);
1705 
1706 	return rc;
1707 }
1708 
1709 int bnxt_link_update_op(struct rte_eth_dev *eth_dev, int wait_to_complete)
1710 {
1711 	int rc = 0;
1712 	struct bnxt *bp = eth_dev->data->dev_private;
1713 	struct rte_eth_link new;
1714 	int cnt = wait_to_complete ? BNXT_MAX_LINK_WAIT_CNT :
1715 			BNXT_MIN_LINK_WAIT_CNT;
1716 
1717 	rc = is_bnxt_in_error(bp);
1718 	if (rc)
1719 		return rc;
1720 
1721 	memset(&new, 0, sizeof(new));
1722 	do {
1723 		/* Retrieve link info from hardware */
1724 		rc = bnxt_get_hwrm_link_config(bp, &new);
1725 		if (rc) {
1726 			new.link_speed = ETH_LINK_SPEED_100M;
1727 			new.link_duplex = ETH_LINK_FULL_DUPLEX;
1728 			PMD_DRV_LOG(ERR,
1729 				"Failed to retrieve link rc = 0x%x!\n", rc);
1730 			goto out;
1731 		}
1732 
1733 		if (!wait_to_complete || new.link_status)
1734 			break;
1735 
1736 		rte_delay_ms(BNXT_LINK_WAIT_INTERVAL);
1737 	} while (cnt--);
1738 
1739 	/* Only single function PF can bring phy down.
1740 	 * When port is stopped, report link down for VF/MH/NPAR functions.
1741 	 */
1742 	if (!BNXT_SINGLE_PF(bp) && !eth_dev->data->dev_started)
1743 		memset(&new, 0, sizeof(new));
1744 
1745 out:
1746 	/* Timed out or success */
1747 	if (new.link_status != eth_dev->data->dev_link.link_status ||
1748 	    new.link_speed != eth_dev->data->dev_link.link_speed) {
1749 		rte_eth_linkstatus_set(eth_dev, &new);
1750 
1751 		rte_eth_dev_callback_process(eth_dev,
1752 					     RTE_ETH_EVENT_INTR_LSC,
1753 					     NULL);
1754 
1755 		bnxt_print_link_info(eth_dev);
1756 	}
1757 
1758 	return rc;
1759 }
1760 
1761 static int bnxt_promiscuous_enable_op(struct rte_eth_dev *eth_dev)
1762 {
1763 	struct bnxt *bp = eth_dev->data->dev_private;
1764 	struct bnxt_vnic_info *vnic;
1765 	uint32_t old_flags;
1766 	int rc;
1767 
1768 	rc = is_bnxt_in_error(bp);
1769 	if (rc)
1770 		return rc;
1771 
1772 	/* Filter settings will get applied when port is started */
1773 	if (!eth_dev->data->dev_started)
1774 		return 0;
1775 
1776 	if (bp->vnic_info == NULL)
1777 		return 0;
1778 
1779 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
1780 
1781 	old_flags = vnic->flags;
1782 	vnic->flags |= BNXT_VNIC_INFO_PROMISC;
1783 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1784 	if (rc != 0)
1785 		vnic->flags = old_flags;
1786 
1787 	return rc;
1788 }
1789 
1790 static int bnxt_promiscuous_disable_op(struct rte_eth_dev *eth_dev)
1791 {
1792 	struct bnxt *bp = eth_dev->data->dev_private;
1793 	struct bnxt_vnic_info *vnic;
1794 	uint32_t old_flags;
1795 	int rc;
1796 
1797 	rc = is_bnxt_in_error(bp);
1798 	if (rc)
1799 		return rc;
1800 
1801 	/* Filter settings will get applied when port is started */
1802 	if (!eth_dev->data->dev_started)
1803 		return 0;
1804 
1805 	if (bp->vnic_info == NULL)
1806 		return 0;
1807 
1808 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
1809 
1810 	old_flags = vnic->flags;
1811 	vnic->flags &= ~BNXT_VNIC_INFO_PROMISC;
1812 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1813 	if (rc != 0)
1814 		vnic->flags = old_flags;
1815 
1816 	return rc;
1817 }
1818 
1819 static int bnxt_allmulticast_enable_op(struct rte_eth_dev *eth_dev)
1820 {
1821 	struct bnxt *bp = eth_dev->data->dev_private;
1822 	struct bnxt_vnic_info *vnic;
1823 	uint32_t old_flags;
1824 	int rc;
1825 
1826 	rc = is_bnxt_in_error(bp);
1827 	if (rc)
1828 		return rc;
1829 
1830 	/* Filter settings will get applied when port is started */
1831 	if (!eth_dev->data->dev_started)
1832 		return 0;
1833 
1834 	if (bp->vnic_info == NULL)
1835 		return 0;
1836 
1837 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
1838 
1839 	old_flags = vnic->flags;
1840 	vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
1841 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1842 	if (rc != 0)
1843 		vnic->flags = old_flags;
1844 
1845 	return rc;
1846 }
1847 
1848 static int bnxt_allmulticast_disable_op(struct rte_eth_dev *eth_dev)
1849 {
1850 	struct bnxt *bp = eth_dev->data->dev_private;
1851 	struct bnxt_vnic_info *vnic;
1852 	uint32_t old_flags;
1853 	int rc;
1854 
1855 	rc = is_bnxt_in_error(bp);
1856 	if (rc)
1857 		return rc;
1858 
1859 	/* Filter settings will get applied when port is started */
1860 	if (!eth_dev->data->dev_started)
1861 		return 0;
1862 
1863 	if (bp->vnic_info == NULL)
1864 		return 0;
1865 
1866 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
1867 
1868 	old_flags = vnic->flags;
1869 	vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
1870 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1871 	if (rc != 0)
1872 		vnic->flags = old_flags;
1873 
1874 	return rc;
1875 }
1876 
1877 /* Return bnxt_rx_queue pointer corresponding to a given rxq. */
1878 static struct bnxt_rx_queue *bnxt_qid_to_rxq(struct bnxt *bp, uint16_t qid)
1879 {
1880 	if (qid >= bp->rx_nr_rings)
1881 		return NULL;
1882 
1883 	return bp->eth_dev->data->rx_queues[qid];
1884 }
1885 
1886 /* Return rxq corresponding to a given rss table ring/group ID. */
1887 static uint16_t bnxt_rss_to_qid(struct bnxt *bp, uint16_t fwr)
1888 {
1889 	struct bnxt_rx_queue *rxq;
1890 	unsigned int i;
1891 
1892 	if (!BNXT_HAS_RING_GRPS(bp)) {
1893 		for (i = 0; i < bp->rx_nr_rings; i++) {
1894 			rxq = bp->eth_dev->data->rx_queues[i];
1895 			if (rxq->rx_ring->rx_ring_struct->fw_ring_id == fwr)
1896 				return rxq->index;
1897 		}
1898 	} else {
1899 		for (i = 0; i < bp->rx_nr_rings; i++) {
1900 			if (bp->grp_info[i].fw_grp_id == fwr)
1901 				return i;
1902 		}
1903 	}
1904 
1905 	return INVALID_HW_RING_ID;
1906 }
1907 
1908 static int bnxt_reta_update_op(struct rte_eth_dev *eth_dev,
1909 			    struct rte_eth_rss_reta_entry64 *reta_conf,
1910 			    uint16_t reta_size)
1911 {
1912 	struct bnxt *bp = eth_dev->data->dev_private;
1913 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
1914 	struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp);
1915 	uint16_t tbl_size = bnxt_rss_hash_tbl_size(bp);
1916 	uint16_t idx, sft;
1917 	int i, rc;
1918 
1919 	rc = is_bnxt_in_error(bp);
1920 	if (rc)
1921 		return rc;
1922 
1923 	if (!vnic->rss_table)
1924 		return -EINVAL;
1925 
1926 	if (!(dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
1927 		return -EINVAL;
1928 
1929 	if (reta_size != tbl_size) {
1930 		PMD_DRV_LOG(ERR, "The configured hash table lookup size "
1931 			"(%d) must equal the size supported by the hardware "
1932 			"(%d)\n", reta_size, tbl_size);
1933 		return -EINVAL;
1934 	}
1935 
1936 	for (i = 0; i < reta_size; i++) {
1937 		struct bnxt_rx_queue *rxq;
1938 
1939 		idx = i / RTE_RETA_GROUP_SIZE;
1940 		sft = i % RTE_RETA_GROUP_SIZE;
1941 
1942 		if (!(reta_conf[idx].mask & (1ULL << sft)))
1943 			continue;
1944 
1945 		rxq = bnxt_qid_to_rxq(bp, reta_conf[idx].reta[sft]);
1946 		if (!rxq) {
1947 			PMD_DRV_LOG(ERR, "Invalid ring in reta_conf.\n");
1948 			return -EINVAL;
1949 		}
1950 
1951 		if (BNXT_CHIP_P5(bp)) {
1952 			vnic->rss_table[i * 2] =
1953 				rxq->rx_ring->rx_ring_struct->fw_ring_id;
1954 			vnic->rss_table[i * 2 + 1] =
1955 				rxq->cp_ring->cp_ring_struct->fw_ring_id;
1956 		} else {
1957 			vnic->rss_table[i] =
1958 			    vnic->fw_grp_ids[reta_conf[idx].reta[sft]];
1959 		}
1960 	}
1961 
1962 	rc = bnxt_hwrm_vnic_rss_cfg(bp, vnic);
1963 	return rc;
1964 }
1965 
1966 static int bnxt_reta_query_op(struct rte_eth_dev *eth_dev,
1967 			      struct rte_eth_rss_reta_entry64 *reta_conf,
1968 			      uint16_t reta_size)
1969 {
1970 	struct bnxt *bp = eth_dev->data->dev_private;
1971 	struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp);
1972 	uint16_t tbl_size = bnxt_rss_hash_tbl_size(bp);
1973 	uint16_t idx, sft, i;
1974 	int rc;
1975 
1976 	rc = is_bnxt_in_error(bp);
1977 	if (rc)
1978 		return rc;
1979 
1980 	/* Retrieve from the default VNIC */
1981 	if (!vnic)
1982 		return -EINVAL;
1983 	if (!vnic->rss_table)
1984 		return -EINVAL;
1985 
1986 	if (reta_size != tbl_size) {
1987 		PMD_DRV_LOG(ERR, "The configured hash table lookup size "
1988 			"(%d) must equal the size supported by the hardware "
1989 			"(%d)\n", reta_size, tbl_size);
1990 		return -EINVAL;
1991 	}
1992 
1993 	for (idx = 0, i = 0; i < reta_size; i++) {
1994 		idx = i / RTE_RETA_GROUP_SIZE;
1995 		sft = i % RTE_RETA_GROUP_SIZE;
1996 
1997 		if (reta_conf[idx].mask & (1ULL << sft)) {
1998 			uint16_t qid;
1999 
2000 			if (BNXT_CHIP_P5(bp))
2001 				qid = bnxt_rss_to_qid(bp,
2002 						      vnic->rss_table[i * 2]);
2003 			else
2004 				qid = bnxt_rss_to_qid(bp, vnic->rss_table[i]);
2005 
2006 			if (qid == INVALID_HW_RING_ID) {
2007 				PMD_DRV_LOG(ERR, "Inv. entry in rss table.\n");
2008 				return -EINVAL;
2009 			}
2010 			reta_conf[idx].reta[sft] = qid;
2011 		}
2012 	}
2013 
2014 	return 0;
2015 }
2016 
2017 static int bnxt_rss_hash_update_op(struct rte_eth_dev *eth_dev,
2018 				   struct rte_eth_rss_conf *rss_conf)
2019 {
2020 	struct bnxt *bp = eth_dev->data->dev_private;
2021 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
2022 	struct bnxt_vnic_info *vnic;
2023 	int rc;
2024 
2025 	rc = is_bnxt_in_error(bp);
2026 	if (rc)
2027 		return rc;
2028 
2029 	/*
2030 	 * If RSS enablement were different than dev_configure,
2031 	 * then return -EINVAL
2032 	 */
2033 	if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) {
2034 		if (!rss_conf->rss_hf)
2035 			PMD_DRV_LOG(ERR, "Hash type NONE\n");
2036 	} else {
2037 		if (rss_conf->rss_hf & BNXT_ETH_RSS_SUPPORT)
2038 			return -EINVAL;
2039 	}
2040 
2041 	bp->flags |= BNXT_FLAG_UPDATE_HASH;
2042 	memcpy(&eth_dev->data->dev_conf.rx_adv_conf.rss_conf,
2043 	       rss_conf,
2044 	       sizeof(*rss_conf));
2045 
2046 	/* Update the default RSS VNIC(s) */
2047 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
2048 	vnic->hash_type = bnxt_rte_to_hwrm_hash_types(rss_conf->rss_hf);
2049 	vnic->hash_mode =
2050 		bnxt_rte_to_hwrm_hash_level(bp, rss_conf->rss_hf,
2051 					    ETH_RSS_LEVEL(rss_conf->rss_hf));
2052 
2053 	/*
2054 	 * If hashkey is not specified, use the previously configured
2055 	 * hashkey
2056 	 */
2057 	if (!rss_conf->rss_key)
2058 		goto rss_config;
2059 
2060 	if (rss_conf->rss_key_len != HW_HASH_KEY_SIZE) {
2061 		PMD_DRV_LOG(ERR,
2062 			    "Invalid hashkey length, should be 16 bytes\n");
2063 		return -EINVAL;
2064 	}
2065 	memcpy(vnic->rss_hash_key, rss_conf->rss_key, rss_conf->rss_key_len);
2066 
2067 rss_config:
2068 	rc = bnxt_hwrm_vnic_rss_cfg(bp, vnic);
2069 	return rc;
2070 }
2071 
2072 static int bnxt_rss_hash_conf_get_op(struct rte_eth_dev *eth_dev,
2073 				     struct rte_eth_rss_conf *rss_conf)
2074 {
2075 	struct bnxt *bp = eth_dev->data->dev_private;
2076 	struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp);
2077 	int len, rc;
2078 	uint32_t hash_types;
2079 
2080 	rc = is_bnxt_in_error(bp);
2081 	if (rc)
2082 		return rc;
2083 
2084 	/* RSS configuration is the same for all VNICs */
2085 	if (vnic && vnic->rss_hash_key) {
2086 		if (rss_conf->rss_key) {
2087 			len = rss_conf->rss_key_len <= HW_HASH_KEY_SIZE ?
2088 			      rss_conf->rss_key_len : HW_HASH_KEY_SIZE;
2089 			memcpy(rss_conf->rss_key, vnic->rss_hash_key, len);
2090 		}
2091 
2092 		hash_types = vnic->hash_type;
2093 		rss_conf->rss_hf = 0;
2094 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4) {
2095 			rss_conf->rss_hf |= ETH_RSS_IPV4;
2096 			hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
2097 		}
2098 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4) {
2099 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
2100 			hash_types &=
2101 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
2102 		}
2103 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4) {
2104 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
2105 			hash_types &=
2106 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
2107 		}
2108 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6) {
2109 			rss_conf->rss_hf |= ETH_RSS_IPV6;
2110 			hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
2111 		}
2112 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6) {
2113 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
2114 			hash_types &=
2115 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
2116 		}
2117 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6) {
2118 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
2119 			hash_types &=
2120 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
2121 		}
2122 
2123 		rss_conf->rss_hf |=
2124 			bnxt_hwrm_to_rte_rss_level(bp, vnic->hash_mode);
2125 
2126 		if (hash_types) {
2127 			PMD_DRV_LOG(ERR,
2128 				"Unknown RSS config from firmware (%08x), RSS disabled",
2129 				vnic->hash_type);
2130 			return -ENOTSUP;
2131 		}
2132 	} else {
2133 		rss_conf->rss_hf = 0;
2134 	}
2135 	return 0;
2136 }
2137 
2138 static int bnxt_flow_ctrl_get_op(struct rte_eth_dev *dev,
2139 			       struct rte_eth_fc_conf *fc_conf)
2140 {
2141 	struct bnxt *bp = dev->data->dev_private;
2142 	struct rte_eth_link link_info;
2143 	int rc;
2144 
2145 	rc = is_bnxt_in_error(bp);
2146 	if (rc)
2147 		return rc;
2148 
2149 	rc = bnxt_get_hwrm_link_config(bp, &link_info);
2150 	if (rc)
2151 		return rc;
2152 
2153 	memset(fc_conf, 0, sizeof(*fc_conf));
2154 	if (bp->link_info->auto_pause)
2155 		fc_conf->autoneg = 1;
2156 	switch (bp->link_info->pause) {
2157 	case 0:
2158 		fc_conf->mode = RTE_FC_NONE;
2159 		break;
2160 	case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX:
2161 		fc_conf->mode = RTE_FC_TX_PAUSE;
2162 		break;
2163 	case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX:
2164 		fc_conf->mode = RTE_FC_RX_PAUSE;
2165 		break;
2166 	case (HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX |
2167 			HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX):
2168 		fc_conf->mode = RTE_FC_FULL;
2169 		break;
2170 	}
2171 	return 0;
2172 }
2173 
2174 static int bnxt_flow_ctrl_set_op(struct rte_eth_dev *dev,
2175 			       struct rte_eth_fc_conf *fc_conf)
2176 {
2177 	struct bnxt *bp = dev->data->dev_private;
2178 	int rc;
2179 
2180 	rc = is_bnxt_in_error(bp);
2181 	if (rc)
2182 		return rc;
2183 
2184 	if (!BNXT_SINGLE_PF(bp) || BNXT_VF(bp)) {
2185 		PMD_DRV_LOG(ERR, "Flow Control Settings cannot be modified\n");
2186 		return -ENOTSUP;
2187 	}
2188 
2189 	switch (fc_conf->mode) {
2190 	case RTE_FC_NONE:
2191 		bp->link_info->auto_pause = 0;
2192 		bp->link_info->force_pause = 0;
2193 		break;
2194 	case RTE_FC_RX_PAUSE:
2195 		if (fc_conf->autoneg) {
2196 			bp->link_info->auto_pause =
2197 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
2198 			bp->link_info->force_pause = 0;
2199 		} else {
2200 			bp->link_info->auto_pause = 0;
2201 			bp->link_info->force_pause =
2202 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
2203 		}
2204 		break;
2205 	case RTE_FC_TX_PAUSE:
2206 		if (fc_conf->autoneg) {
2207 			bp->link_info->auto_pause =
2208 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX;
2209 			bp->link_info->force_pause = 0;
2210 		} else {
2211 			bp->link_info->auto_pause = 0;
2212 			bp->link_info->force_pause =
2213 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX;
2214 		}
2215 		break;
2216 	case RTE_FC_FULL:
2217 		if (fc_conf->autoneg) {
2218 			bp->link_info->auto_pause =
2219 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX |
2220 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
2221 			bp->link_info->force_pause = 0;
2222 		} else {
2223 			bp->link_info->auto_pause = 0;
2224 			bp->link_info->force_pause =
2225 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX |
2226 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
2227 		}
2228 		break;
2229 	}
2230 	return bnxt_set_hwrm_link_config(bp, true);
2231 }
2232 
2233 /* Add UDP tunneling port */
2234 static int
2235 bnxt_udp_tunnel_port_add_op(struct rte_eth_dev *eth_dev,
2236 			 struct rte_eth_udp_tunnel *udp_tunnel)
2237 {
2238 	struct bnxt *bp = eth_dev->data->dev_private;
2239 	uint16_t tunnel_type = 0;
2240 	int rc = 0;
2241 
2242 	rc = is_bnxt_in_error(bp);
2243 	if (rc)
2244 		return rc;
2245 
2246 	switch (udp_tunnel->prot_type) {
2247 	case RTE_TUNNEL_TYPE_VXLAN:
2248 		if (bp->vxlan_port_cnt) {
2249 			PMD_DRV_LOG(ERR, "Tunnel Port %d already programmed\n",
2250 				udp_tunnel->udp_port);
2251 			if (bp->vxlan_port != udp_tunnel->udp_port) {
2252 				PMD_DRV_LOG(ERR, "Only one port allowed\n");
2253 				return -ENOSPC;
2254 			}
2255 			bp->vxlan_port_cnt++;
2256 			return 0;
2257 		}
2258 		tunnel_type =
2259 			HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_VXLAN;
2260 		bp->vxlan_port_cnt++;
2261 		break;
2262 	case RTE_TUNNEL_TYPE_GENEVE:
2263 		if (bp->geneve_port_cnt) {
2264 			PMD_DRV_LOG(ERR, "Tunnel Port %d already programmed\n",
2265 				udp_tunnel->udp_port);
2266 			if (bp->geneve_port != udp_tunnel->udp_port) {
2267 				PMD_DRV_LOG(ERR, "Only one port allowed\n");
2268 				return -ENOSPC;
2269 			}
2270 			bp->geneve_port_cnt++;
2271 			return 0;
2272 		}
2273 		tunnel_type =
2274 			HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_GENEVE;
2275 		bp->geneve_port_cnt++;
2276 		break;
2277 	default:
2278 		PMD_DRV_LOG(ERR, "Tunnel type is not supported\n");
2279 		return -ENOTSUP;
2280 	}
2281 	rc = bnxt_hwrm_tunnel_dst_port_alloc(bp, udp_tunnel->udp_port,
2282 					     tunnel_type);
2283 	return rc;
2284 }
2285 
2286 static int
2287 bnxt_udp_tunnel_port_del_op(struct rte_eth_dev *eth_dev,
2288 			 struct rte_eth_udp_tunnel *udp_tunnel)
2289 {
2290 	struct bnxt *bp = eth_dev->data->dev_private;
2291 	uint16_t tunnel_type = 0;
2292 	uint16_t port = 0;
2293 	int rc = 0;
2294 
2295 	rc = is_bnxt_in_error(bp);
2296 	if (rc)
2297 		return rc;
2298 
2299 	switch (udp_tunnel->prot_type) {
2300 	case RTE_TUNNEL_TYPE_VXLAN:
2301 		if (!bp->vxlan_port_cnt) {
2302 			PMD_DRV_LOG(ERR, "No Tunnel port configured yet\n");
2303 			return -EINVAL;
2304 		}
2305 		if (bp->vxlan_port != udp_tunnel->udp_port) {
2306 			PMD_DRV_LOG(ERR, "Req Port: %d. Configured port: %d\n",
2307 				udp_tunnel->udp_port, bp->vxlan_port);
2308 			return -EINVAL;
2309 		}
2310 		if (--bp->vxlan_port_cnt)
2311 			return 0;
2312 
2313 		tunnel_type =
2314 			HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN;
2315 		port = bp->vxlan_fw_dst_port_id;
2316 		break;
2317 	case RTE_TUNNEL_TYPE_GENEVE:
2318 		if (!bp->geneve_port_cnt) {
2319 			PMD_DRV_LOG(ERR, "No Tunnel port configured yet\n");
2320 			return -EINVAL;
2321 		}
2322 		if (bp->geneve_port != udp_tunnel->udp_port) {
2323 			PMD_DRV_LOG(ERR, "Req Port: %d. Configured port: %d\n",
2324 				udp_tunnel->udp_port, bp->geneve_port);
2325 			return -EINVAL;
2326 		}
2327 		if (--bp->geneve_port_cnt)
2328 			return 0;
2329 
2330 		tunnel_type =
2331 			HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE;
2332 		port = bp->geneve_fw_dst_port_id;
2333 		break;
2334 	default:
2335 		PMD_DRV_LOG(ERR, "Tunnel type is not supported\n");
2336 		return -ENOTSUP;
2337 	}
2338 
2339 	rc = bnxt_hwrm_tunnel_dst_port_free(bp, port, tunnel_type);
2340 	return rc;
2341 }
2342 
2343 static int bnxt_del_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
2344 {
2345 	struct bnxt_filter_info *filter;
2346 	struct bnxt_vnic_info *vnic;
2347 	int rc = 0;
2348 	uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN;
2349 
2350 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
2351 	filter = STAILQ_FIRST(&vnic->filter);
2352 	while (filter) {
2353 		/* Search for this matching MAC+VLAN filter */
2354 		if (bnxt_vlan_filter_exists(bp, filter, chk, vlan_id)) {
2355 			/* Delete the filter */
2356 			rc = bnxt_hwrm_clear_l2_filter(bp, filter);
2357 			if (rc)
2358 				return rc;
2359 			STAILQ_REMOVE(&vnic->filter, filter,
2360 				      bnxt_filter_info, next);
2361 			bnxt_free_filter(bp, filter);
2362 			PMD_DRV_LOG(INFO,
2363 				    "Deleted vlan filter for %d\n",
2364 				    vlan_id);
2365 			return 0;
2366 		}
2367 		filter = STAILQ_NEXT(filter, next);
2368 	}
2369 	return -ENOENT;
2370 }
2371 
2372 static int bnxt_add_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
2373 {
2374 	struct bnxt_filter_info *filter;
2375 	struct bnxt_vnic_info *vnic;
2376 	int rc = 0;
2377 	uint32_t en = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN |
2378 		HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN_MASK;
2379 	uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN;
2380 
2381 	/* Implementation notes on the use of VNIC in this command:
2382 	 *
2383 	 * By default, these filters belong to default vnic for the function.
2384 	 * Once these filters are set up, only destination VNIC can be modified.
2385 	 * If the destination VNIC is not specified in this command,
2386 	 * then the HWRM shall only create an l2 context id.
2387 	 */
2388 
2389 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
2390 	filter = STAILQ_FIRST(&vnic->filter);
2391 	/* Check if the VLAN has already been added */
2392 	while (filter) {
2393 		if (bnxt_vlan_filter_exists(bp, filter, chk, vlan_id))
2394 			return -EEXIST;
2395 
2396 		filter = STAILQ_NEXT(filter, next);
2397 	}
2398 
2399 	/* No match found. Alloc a fresh filter and issue the L2_FILTER_ALLOC
2400 	 * command to create MAC+VLAN filter with the right flags, enables set.
2401 	 */
2402 	filter = bnxt_alloc_filter(bp);
2403 	if (!filter) {
2404 		PMD_DRV_LOG(ERR,
2405 			    "MAC/VLAN filter alloc failed\n");
2406 		return -ENOMEM;
2407 	}
2408 	/* MAC + VLAN ID filter */
2409 	/* If l2_ivlan == 0 and l2_ivlan_mask != 0, only
2410 	 * untagged packets are received
2411 	 *
2412 	 * If l2_ivlan != 0 and l2_ivlan_mask != 0, untagged
2413 	 * packets and only the programmed vlan's packets are received
2414 	 */
2415 	filter->l2_ivlan = vlan_id;
2416 	filter->l2_ivlan_mask = 0x0FFF;
2417 	filter->enables |= en;
2418 	filter->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_OUTERMOST;
2419 
2420 	rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
2421 	if (rc) {
2422 		/* Free the newly allocated filter as we were
2423 		 * not able to create the filter in hardware.
2424 		 */
2425 		bnxt_free_filter(bp, filter);
2426 		return rc;
2427 	}
2428 
2429 	filter->mac_index = 0;
2430 	/* Add this new filter to the list */
2431 	if (vlan_id == 0)
2432 		STAILQ_INSERT_HEAD(&vnic->filter, filter, next);
2433 	else
2434 		STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
2435 
2436 	PMD_DRV_LOG(INFO,
2437 		    "Added Vlan filter for %d\n", vlan_id);
2438 	return rc;
2439 }
2440 
2441 static int bnxt_vlan_filter_set_op(struct rte_eth_dev *eth_dev,
2442 		uint16_t vlan_id, int on)
2443 {
2444 	struct bnxt *bp = eth_dev->data->dev_private;
2445 	int rc;
2446 
2447 	rc = is_bnxt_in_error(bp);
2448 	if (rc)
2449 		return rc;
2450 
2451 	if (!eth_dev->data->dev_started) {
2452 		PMD_DRV_LOG(ERR, "port must be started before setting vlan\n");
2453 		return -EINVAL;
2454 	}
2455 
2456 	/* These operations apply to ALL existing MAC/VLAN filters */
2457 	if (on)
2458 		return bnxt_add_vlan_filter(bp, vlan_id);
2459 	else
2460 		return bnxt_del_vlan_filter(bp, vlan_id);
2461 }
2462 
2463 static int bnxt_del_dflt_mac_filter(struct bnxt *bp,
2464 				    struct bnxt_vnic_info *vnic)
2465 {
2466 	struct bnxt_filter_info *filter;
2467 	int rc;
2468 
2469 	filter = STAILQ_FIRST(&vnic->filter);
2470 	while (filter) {
2471 		if (filter->mac_index == 0 &&
2472 		    !memcmp(filter->l2_addr, bp->mac_addr,
2473 			    RTE_ETHER_ADDR_LEN)) {
2474 			rc = bnxt_hwrm_clear_l2_filter(bp, filter);
2475 			if (!rc) {
2476 				STAILQ_REMOVE(&vnic->filter, filter,
2477 					      bnxt_filter_info, next);
2478 				bnxt_free_filter(bp, filter);
2479 			}
2480 			return rc;
2481 		}
2482 		filter = STAILQ_NEXT(filter, next);
2483 	}
2484 	return 0;
2485 }
2486 
2487 static int
2488 bnxt_config_vlan_hw_filter(struct bnxt *bp, uint64_t rx_offloads)
2489 {
2490 	struct bnxt_vnic_info *vnic;
2491 	unsigned int i;
2492 	int rc;
2493 
2494 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
2495 	if (!(rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER)) {
2496 		/* Remove any VLAN filters programmed */
2497 		for (i = 0; i < RTE_ETHER_MAX_VLAN_ID; i++)
2498 			bnxt_del_vlan_filter(bp, i);
2499 
2500 		rc = bnxt_add_mac_filter(bp, vnic, NULL, 0, 0);
2501 		if (rc)
2502 			return rc;
2503 	} else {
2504 		/* Default filter will allow packets that match the
2505 		 * dest mac. So, it has to be deleted, otherwise, we
2506 		 * will endup receiving vlan packets for which the
2507 		 * filter is not programmed, when hw-vlan-filter
2508 		 * configuration is ON
2509 		 */
2510 		bnxt_del_dflt_mac_filter(bp, vnic);
2511 		/* This filter will allow only untagged packets */
2512 		bnxt_add_vlan_filter(bp, 0);
2513 	}
2514 	PMD_DRV_LOG(DEBUG, "VLAN Filtering: %d\n",
2515 		    !!(rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER));
2516 
2517 	return 0;
2518 }
2519 
2520 static int bnxt_free_one_vnic(struct bnxt *bp, uint16_t vnic_id)
2521 {
2522 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2523 	unsigned int i;
2524 	int rc;
2525 
2526 	/* Destroy vnic filters and vnic */
2527 	if (bp->eth_dev->data->dev_conf.rxmode.offloads &
2528 	    DEV_RX_OFFLOAD_VLAN_FILTER) {
2529 		for (i = 0; i < RTE_ETHER_MAX_VLAN_ID; i++)
2530 			bnxt_del_vlan_filter(bp, i);
2531 	}
2532 	bnxt_del_dflt_mac_filter(bp, vnic);
2533 
2534 	rc = bnxt_hwrm_vnic_free(bp, vnic);
2535 	if (rc)
2536 		return rc;
2537 
2538 	rte_free(vnic->fw_grp_ids);
2539 	vnic->fw_grp_ids = NULL;
2540 
2541 	vnic->rx_queue_cnt = 0;
2542 
2543 	return 0;
2544 }
2545 
2546 static int
2547 bnxt_config_vlan_hw_stripping(struct bnxt *bp, uint64_t rx_offloads)
2548 {
2549 	struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp);
2550 	int rc;
2551 
2552 	/* Destroy, recreate and reconfigure the default vnic */
2553 	rc = bnxt_free_one_vnic(bp, 0);
2554 	if (rc)
2555 		return rc;
2556 
2557 	/* default vnic 0 */
2558 	rc = bnxt_setup_one_vnic(bp, 0);
2559 	if (rc)
2560 		return rc;
2561 
2562 	if (bp->eth_dev->data->dev_conf.rxmode.offloads &
2563 	    DEV_RX_OFFLOAD_VLAN_FILTER) {
2564 		rc = bnxt_add_vlan_filter(bp, 0);
2565 		if (rc)
2566 			return rc;
2567 		rc = bnxt_restore_vlan_filters(bp);
2568 		if (rc)
2569 			return rc;
2570 	} else {
2571 		rc = bnxt_add_mac_filter(bp, vnic, NULL, 0, 0);
2572 		if (rc)
2573 			return rc;
2574 	}
2575 
2576 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
2577 	if (rc)
2578 		return rc;
2579 
2580 	PMD_DRV_LOG(DEBUG, "VLAN Strip Offload: %d\n",
2581 		    !!(rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP));
2582 
2583 	return rc;
2584 }
2585 
2586 static int
2587 bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask)
2588 {
2589 	uint64_t rx_offloads = dev->data->dev_conf.rxmode.offloads;
2590 	struct bnxt *bp = dev->data->dev_private;
2591 	int rc;
2592 
2593 	rc = is_bnxt_in_error(bp);
2594 	if (rc)
2595 		return rc;
2596 
2597 	/* Filter settings will get applied when port is started */
2598 	if (!dev->data->dev_started)
2599 		return 0;
2600 
2601 	if (mask & ETH_VLAN_FILTER_MASK) {
2602 		/* Enable or disable VLAN filtering */
2603 		rc = bnxt_config_vlan_hw_filter(bp, rx_offloads);
2604 		if (rc)
2605 			return rc;
2606 	}
2607 
2608 	if (mask & ETH_VLAN_STRIP_MASK) {
2609 		/* Enable or disable VLAN stripping */
2610 		rc = bnxt_config_vlan_hw_stripping(bp, rx_offloads);
2611 		if (rc)
2612 			return rc;
2613 	}
2614 
2615 	if (mask & ETH_VLAN_EXTEND_MASK) {
2616 		if (rx_offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
2617 			PMD_DRV_LOG(DEBUG, "Extend VLAN supported\n");
2618 		else
2619 			PMD_DRV_LOG(INFO, "Extend VLAN unsupported\n");
2620 	}
2621 
2622 	return 0;
2623 }
2624 
2625 static int
2626 bnxt_vlan_tpid_set_op(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
2627 		      uint16_t tpid)
2628 {
2629 	struct bnxt *bp = dev->data->dev_private;
2630 	int qinq = dev->data->dev_conf.rxmode.offloads &
2631 		   DEV_RX_OFFLOAD_VLAN_EXTEND;
2632 
2633 	if (vlan_type != ETH_VLAN_TYPE_INNER &&
2634 	    vlan_type != ETH_VLAN_TYPE_OUTER) {
2635 		PMD_DRV_LOG(ERR,
2636 			    "Unsupported vlan type.");
2637 		return -EINVAL;
2638 	}
2639 	if (!qinq) {
2640 		PMD_DRV_LOG(ERR,
2641 			    "QinQ not enabled. Needs to be ON as we can "
2642 			    "accelerate only outer vlan\n");
2643 		return -EINVAL;
2644 	}
2645 
2646 	if (vlan_type == ETH_VLAN_TYPE_OUTER) {
2647 		switch (tpid) {
2648 		case RTE_ETHER_TYPE_QINQ:
2649 			bp->outer_tpid_bd =
2650 				TX_BD_LONG_CFA_META_VLAN_TPID_TPID88A8;
2651 				break;
2652 		case RTE_ETHER_TYPE_VLAN:
2653 			bp->outer_tpid_bd =
2654 				TX_BD_LONG_CFA_META_VLAN_TPID_TPID8100;
2655 				break;
2656 		case RTE_ETHER_TYPE_QINQ1:
2657 			bp->outer_tpid_bd =
2658 				TX_BD_LONG_CFA_META_VLAN_TPID_TPID9100;
2659 				break;
2660 		case RTE_ETHER_TYPE_QINQ2:
2661 			bp->outer_tpid_bd =
2662 				TX_BD_LONG_CFA_META_VLAN_TPID_TPID9200;
2663 				break;
2664 		case RTE_ETHER_TYPE_QINQ3:
2665 			bp->outer_tpid_bd =
2666 				 TX_BD_LONG_CFA_META_VLAN_TPID_TPID9300;
2667 				break;
2668 		default:
2669 			PMD_DRV_LOG(ERR, "Invalid TPID: %x\n", tpid);
2670 			return -EINVAL;
2671 		}
2672 		bp->outer_tpid_bd |= tpid;
2673 		PMD_DRV_LOG(INFO, "outer_tpid_bd = %x\n", bp->outer_tpid_bd);
2674 	} else if (vlan_type == ETH_VLAN_TYPE_INNER) {
2675 		PMD_DRV_LOG(ERR,
2676 			    "Can accelerate only outer vlan in QinQ\n");
2677 		return -EINVAL;
2678 	}
2679 
2680 	return 0;
2681 }
2682 
2683 static int
2684 bnxt_set_default_mac_addr_op(struct rte_eth_dev *dev,
2685 			     struct rte_ether_addr *addr)
2686 {
2687 	struct bnxt *bp = dev->data->dev_private;
2688 	/* Default Filter is tied to VNIC 0 */
2689 	struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp);
2690 	int rc;
2691 
2692 	rc = is_bnxt_in_error(bp);
2693 	if (rc)
2694 		return rc;
2695 
2696 	if (BNXT_VF(bp) && !BNXT_VF_IS_TRUSTED(bp))
2697 		return -EPERM;
2698 
2699 	if (rte_is_zero_ether_addr(addr))
2700 		return -EINVAL;
2701 
2702 	/* Filter settings will get applied when port is started */
2703 	if (!dev->data->dev_started)
2704 		return 0;
2705 
2706 	/* Check if the requested MAC is already added */
2707 	if (memcmp(addr, bp->mac_addr, RTE_ETHER_ADDR_LEN) == 0)
2708 		return 0;
2709 
2710 	/* Destroy filter and re-create it */
2711 	bnxt_del_dflt_mac_filter(bp, vnic);
2712 
2713 	memcpy(bp->mac_addr, addr, RTE_ETHER_ADDR_LEN);
2714 	if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
2715 		/* This filter will allow only untagged packets */
2716 		rc = bnxt_add_vlan_filter(bp, 0);
2717 	} else {
2718 		rc = bnxt_add_mac_filter(bp, vnic, addr, 0, 0);
2719 	}
2720 
2721 	PMD_DRV_LOG(DEBUG, "Set MAC addr\n");
2722 	return rc;
2723 }
2724 
2725 static int
2726 bnxt_dev_set_mc_addr_list_op(struct rte_eth_dev *eth_dev,
2727 			  struct rte_ether_addr *mc_addr_set,
2728 			  uint32_t nb_mc_addr)
2729 {
2730 	struct bnxt *bp = eth_dev->data->dev_private;
2731 	char *mc_addr_list = (char *)mc_addr_set;
2732 	struct bnxt_vnic_info *vnic;
2733 	uint32_t off = 0, i = 0;
2734 	int rc;
2735 
2736 	rc = is_bnxt_in_error(bp);
2737 	if (rc)
2738 		return rc;
2739 
2740 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
2741 
2742 	if (nb_mc_addr > BNXT_MAX_MC_ADDRS) {
2743 		vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
2744 		goto allmulti;
2745 	}
2746 
2747 	/* TODO Check for Duplicate mcast addresses */
2748 	vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
2749 	for (i = 0; i < nb_mc_addr; i++) {
2750 		memcpy(vnic->mc_list + off, &mc_addr_list[i],
2751 			RTE_ETHER_ADDR_LEN);
2752 		off += RTE_ETHER_ADDR_LEN;
2753 	}
2754 
2755 	vnic->mc_addr_cnt = i;
2756 	if (vnic->mc_addr_cnt)
2757 		vnic->flags |= BNXT_VNIC_INFO_MCAST;
2758 	else
2759 		vnic->flags &= ~BNXT_VNIC_INFO_MCAST;
2760 
2761 allmulti:
2762 	return bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
2763 }
2764 
2765 static int
2766 bnxt_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
2767 {
2768 	struct bnxt *bp = dev->data->dev_private;
2769 	uint8_t fw_major = (bp->fw_ver >> 24) & 0xff;
2770 	uint8_t fw_minor = (bp->fw_ver >> 16) & 0xff;
2771 	uint8_t fw_updt = (bp->fw_ver >> 8) & 0xff;
2772 	uint8_t fw_rsvd = bp->fw_ver & 0xff;
2773 	int ret;
2774 
2775 	ret = snprintf(fw_version, fw_size, "%d.%d.%d.%d",
2776 			fw_major, fw_minor, fw_updt, fw_rsvd);
2777 
2778 	ret += 1; /* add the size of '\0' */
2779 	if (fw_size < (uint32_t)ret)
2780 		return ret;
2781 	else
2782 		return 0;
2783 }
2784 
2785 static void
2786 bnxt_rxq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
2787 	struct rte_eth_rxq_info *qinfo)
2788 {
2789 	struct bnxt *bp = dev->data->dev_private;
2790 	struct bnxt_rx_queue *rxq;
2791 
2792 	if (is_bnxt_in_error(bp))
2793 		return;
2794 
2795 	rxq = dev->data->rx_queues[queue_id];
2796 
2797 	qinfo->mp = rxq->mb_pool;
2798 	qinfo->scattered_rx = dev->data->scattered_rx;
2799 	qinfo->nb_desc = rxq->nb_rx_desc;
2800 
2801 	qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2802 	qinfo->conf.rx_drop_en = rxq->drop_en;
2803 	qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
2804 	qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
2805 }
2806 
2807 static void
2808 bnxt_txq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
2809 	struct rte_eth_txq_info *qinfo)
2810 {
2811 	struct bnxt *bp = dev->data->dev_private;
2812 	struct bnxt_tx_queue *txq;
2813 
2814 	if (is_bnxt_in_error(bp))
2815 		return;
2816 
2817 	txq = dev->data->tx_queues[queue_id];
2818 
2819 	qinfo->nb_desc = txq->nb_tx_desc;
2820 
2821 	qinfo->conf.tx_thresh.pthresh = txq->pthresh;
2822 	qinfo->conf.tx_thresh.hthresh = txq->hthresh;
2823 	qinfo->conf.tx_thresh.wthresh = txq->wthresh;
2824 
2825 	qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
2826 	qinfo->conf.tx_rs_thresh = 0;
2827 	qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
2828 	qinfo->conf.offloads = txq->offloads;
2829 }
2830 
2831 static const struct {
2832 	eth_rx_burst_t pkt_burst;
2833 	const char *info;
2834 } bnxt_rx_burst_info[] = {
2835 	{bnxt_recv_pkts,	"Scalar"},
2836 #if defined(RTE_ARCH_X86)
2837 	{bnxt_recv_pkts_vec,	"Vector SSE"},
2838 #elif defined(RTE_ARCH_ARM64)
2839 	{bnxt_recv_pkts_vec,	"Vector Neon"},
2840 #endif
2841 };
2842 
2843 static int
2844 bnxt_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
2845 		       struct rte_eth_burst_mode *mode)
2846 {
2847 	eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
2848 	size_t i;
2849 
2850 	for (i = 0; i < RTE_DIM(bnxt_rx_burst_info); i++) {
2851 		if (pkt_burst == bnxt_rx_burst_info[i].pkt_burst) {
2852 			snprintf(mode->info, sizeof(mode->info), "%s",
2853 				 bnxt_rx_burst_info[i].info);
2854 			return 0;
2855 		}
2856 	}
2857 
2858 	return -EINVAL;
2859 }
2860 
2861 static const struct {
2862 	eth_tx_burst_t pkt_burst;
2863 	const char *info;
2864 } bnxt_tx_burst_info[] = {
2865 	{bnxt_xmit_pkts,	"Scalar"},
2866 #if defined(RTE_ARCH_X86)
2867 	{bnxt_xmit_pkts_vec,	"Vector SSE"},
2868 #elif defined(RTE_ARCH_ARM64)
2869 	{bnxt_xmit_pkts_vec,	"Vector Neon"},
2870 #endif
2871 };
2872 
2873 static int
2874 bnxt_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
2875 		       struct rte_eth_burst_mode *mode)
2876 {
2877 	eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
2878 	size_t i;
2879 
2880 	for (i = 0; i < RTE_DIM(bnxt_tx_burst_info); i++) {
2881 		if (pkt_burst == bnxt_tx_burst_info[i].pkt_burst) {
2882 			snprintf(mode->info, sizeof(mode->info), "%s",
2883 				 bnxt_tx_burst_info[i].info);
2884 			return 0;
2885 		}
2886 	}
2887 
2888 	return -EINVAL;
2889 }
2890 
2891 int bnxt_mtu_set_op(struct rte_eth_dev *eth_dev, uint16_t new_mtu)
2892 {
2893 	struct bnxt *bp = eth_dev->data->dev_private;
2894 	uint32_t new_pkt_size;
2895 	uint32_t rc = 0;
2896 	uint32_t i;
2897 
2898 	rc = is_bnxt_in_error(bp);
2899 	if (rc)
2900 		return rc;
2901 
2902 	/* Exit if receive queues are not configured yet */
2903 	if (!eth_dev->data->nb_rx_queues)
2904 		return rc;
2905 
2906 	new_pkt_size = new_mtu + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN +
2907 		       VLAN_TAG_SIZE * BNXT_NUM_VLANS;
2908 
2909 	/*
2910 	 * Disallow any MTU change that would require scattered receive support
2911 	 * if it is not already enabled.
2912 	 */
2913 	if (eth_dev->data->dev_started &&
2914 	    !eth_dev->data->scattered_rx &&
2915 	    (new_pkt_size >
2916 	     eth_dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)) {
2917 		PMD_DRV_LOG(ERR,
2918 			    "MTU change would require scattered rx support. ");
2919 		PMD_DRV_LOG(ERR, "Stop port before changing MTU.\n");
2920 		return -EINVAL;
2921 	}
2922 
2923 	if (new_mtu > RTE_ETHER_MTU) {
2924 		bp->flags |= BNXT_FLAG_JUMBO;
2925 		bp->eth_dev->data->dev_conf.rxmode.offloads |=
2926 			DEV_RX_OFFLOAD_JUMBO_FRAME;
2927 	} else {
2928 		bp->eth_dev->data->dev_conf.rxmode.offloads &=
2929 			~DEV_RX_OFFLOAD_JUMBO_FRAME;
2930 		bp->flags &= ~BNXT_FLAG_JUMBO;
2931 	}
2932 
2933 	/* Is there a change in mtu setting? */
2934 	if (eth_dev->data->dev_conf.rxmode.max_rx_pkt_len == new_pkt_size)
2935 		return rc;
2936 
2937 	for (i = 0; i < bp->nr_vnics; i++) {
2938 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2939 		uint16_t size = 0;
2940 
2941 		vnic->mru = BNXT_VNIC_MRU(new_mtu);
2942 		rc = bnxt_hwrm_vnic_cfg(bp, vnic);
2943 		if (rc)
2944 			break;
2945 
2946 		size = rte_pktmbuf_data_room_size(bp->rx_queues[0]->mb_pool);
2947 		size -= RTE_PKTMBUF_HEADROOM;
2948 
2949 		if (size < new_mtu) {
2950 			rc = bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
2951 			if (rc)
2952 				return rc;
2953 		}
2954 	}
2955 
2956 	if (!rc)
2957 		eth_dev->data->dev_conf.rxmode.max_rx_pkt_len = new_pkt_size;
2958 
2959 	PMD_DRV_LOG(INFO, "New MTU is %d\n", new_mtu);
2960 
2961 	return rc;
2962 }
2963 
2964 static int
2965 bnxt_vlan_pvid_set_op(struct rte_eth_dev *dev, uint16_t pvid, int on)
2966 {
2967 	struct bnxt *bp = dev->data->dev_private;
2968 	uint16_t vlan = bp->vlan;
2969 	int rc;
2970 
2971 	rc = is_bnxt_in_error(bp);
2972 	if (rc)
2973 		return rc;
2974 
2975 	if (!BNXT_SINGLE_PF(bp) || BNXT_VF(bp)) {
2976 		PMD_DRV_LOG(ERR,
2977 			"PVID cannot be modified for this function\n");
2978 		return -ENOTSUP;
2979 	}
2980 	bp->vlan = on ? pvid : 0;
2981 
2982 	rc = bnxt_hwrm_set_default_vlan(bp, 0, 0);
2983 	if (rc)
2984 		bp->vlan = vlan;
2985 	return rc;
2986 }
2987 
2988 static int
2989 bnxt_dev_led_on_op(struct rte_eth_dev *dev)
2990 {
2991 	struct bnxt *bp = dev->data->dev_private;
2992 	int rc;
2993 
2994 	rc = is_bnxt_in_error(bp);
2995 	if (rc)
2996 		return rc;
2997 
2998 	return bnxt_hwrm_port_led_cfg(bp, true);
2999 }
3000 
3001 static int
3002 bnxt_dev_led_off_op(struct rte_eth_dev *dev)
3003 {
3004 	struct bnxt *bp = dev->data->dev_private;
3005 	int rc;
3006 
3007 	rc = is_bnxt_in_error(bp);
3008 	if (rc)
3009 		return rc;
3010 
3011 	return bnxt_hwrm_port_led_cfg(bp, false);
3012 }
3013 
3014 static uint32_t
3015 bnxt_rx_queue_count_op(struct rte_eth_dev *dev, uint16_t rx_queue_id)
3016 {
3017 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
3018 	struct bnxt_cp_ring_info *cpr;
3019 	uint32_t desc = 0, raw_cons;
3020 	struct bnxt_rx_queue *rxq;
3021 	struct rx_pkt_cmpl *rxcmp;
3022 	int rc;
3023 
3024 	rc = is_bnxt_in_error(bp);
3025 	if (rc)
3026 		return rc;
3027 
3028 	rxq = dev->data->rx_queues[rx_queue_id];
3029 	cpr = rxq->cp_ring;
3030 	raw_cons = cpr->cp_raw_cons;
3031 
3032 	while (1) {
3033 		uint32_t agg_cnt, cons, cmpl_type;
3034 
3035 		cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
3036 		rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
3037 
3038 		if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct))
3039 			break;
3040 
3041 		cmpl_type = CMP_TYPE(rxcmp);
3042 
3043 		switch (cmpl_type) {
3044 		case CMPL_BASE_TYPE_RX_L2:
3045 		case CMPL_BASE_TYPE_RX_L2_V2:
3046 			agg_cnt = BNXT_RX_L2_AGG_BUFS(rxcmp);
3047 			raw_cons = raw_cons + CMP_LEN(cmpl_type) + agg_cnt;
3048 			desc++;
3049 			break;
3050 
3051 		case CMPL_BASE_TYPE_RX_TPA_END:
3052 			if (BNXT_CHIP_P5(rxq->bp)) {
3053 				struct rx_tpa_v2_end_cmpl_hi *p5_tpa_end;
3054 
3055 				p5_tpa_end = (void *)rxcmp;
3056 				agg_cnt = BNXT_TPA_END_AGG_BUFS_TH(p5_tpa_end);
3057 			} else {
3058 				struct rx_tpa_end_cmpl *tpa_end;
3059 
3060 				tpa_end = (void *)rxcmp;
3061 				agg_cnt = BNXT_TPA_END_AGG_BUFS(tpa_end);
3062 			}
3063 
3064 			raw_cons = raw_cons + CMP_LEN(cmpl_type) + agg_cnt;
3065 			desc++;
3066 			break;
3067 
3068 		default:
3069 			raw_cons += CMP_LEN(cmpl_type);
3070 		}
3071 	}
3072 
3073 	return desc;
3074 }
3075 
3076 static int
3077 bnxt_rx_descriptor_status_op(void *rx_queue, uint16_t offset)
3078 {
3079 	struct bnxt_rx_queue *rxq = rx_queue;
3080 	struct bnxt_cp_ring_info *cpr;
3081 	struct bnxt_rx_ring_info *rxr;
3082 	uint32_t desc, raw_cons;
3083 	struct bnxt *bp = rxq->bp;
3084 	struct rx_pkt_cmpl *rxcmp;
3085 	int rc;
3086 
3087 	rc = is_bnxt_in_error(bp);
3088 	if (rc)
3089 		return rc;
3090 
3091 	if (offset >= rxq->nb_rx_desc)
3092 		return -EINVAL;
3093 
3094 	rxr = rxq->rx_ring;
3095 	cpr = rxq->cp_ring;
3096 
3097 	/*
3098 	 * For the vector receive case, the completion at the requested
3099 	 * offset can be indexed directly.
3100 	 */
3101 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
3102 	if (bp->flags & BNXT_FLAG_RX_VECTOR_PKT_MODE) {
3103 		struct rx_pkt_cmpl *rxcmp;
3104 		uint32_t cons;
3105 
3106 		/* Check status of completion descriptor. */
3107 		raw_cons = cpr->cp_raw_cons +
3108 			   offset * CMP_LEN(CMPL_BASE_TYPE_RX_L2);
3109 		cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
3110 		rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
3111 
3112 		if (CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct))
3113 			return RTE_ETH_RX_DESC_DONE;
3114 
3115 		/* Check whether rx desc has an mbuf attached. */
3116 		cons = RING_CMP(rxr->rx_ring_struct, raw_cons / 2);
3117 		if (cons >= rxq->rxrearm_start &&
3118 		    cons < rxq->rxrearm_start + rxq->rxrearm_nb) {
3119 			return RTE_ETH_RX_DESC_UNAVAIL;
3120 		}
3121 
3122 		return RTE_ETH_RX_DESC_AVAIL;
3123 	}
3124 #endif
3125 
3126 	/*
3127 	 * For the non-vector receive case, scan the completion ring to
3128 	 * locate the completion descriptor for the requested offset.
3129 	 */
3130 	raw_cons = cpr->cp_raw_cons;
3131 	desc = 0;
3132 	while (1) {
3133 		uint32_t agg_cnt, cons, cmpl_type;
3134 
3135 		cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
3136 		rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
3137 
3138 		if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct))
3139 			break;
3140 
3141 		cmpl_type = CMP_TYPE(rxcmp);
3142 
3143 		switch (cmpl_type) {
3144 		case CMPL_BASE_TYPE_RX_L2:
3145 		case CMPL_BASE_TYPE_RX_L2_V2:
3146 			if (desc == offset) {
3147 				cons = rxcmp->opaque;
3148 				if (rxr->rx_buf_ring[cons])
3149 					return RTE_ETH_RX_DESC_DONE;
3150 				else
3151 					return RTE_ETH_RX_DESC_UNAVAIL;
3152 			}
3153 			agg_cnt = BNXT_RX_L2_AGG_BUFS(rxcmp);
3154 			raw_cons = raw_cons + CMP_LEN(cmpl_type) + agg_cnt;
3155 			desc++;
3156 			break;
3157 
3158 		case CMPL_BASE_TYPE_RX_TPA_END:
3159 			if (desc == offset)
3160 				return RTE_ETH_RX_DESC_DONE;
3161 
3162 			if (BNXT_CHIP_P5(rxq->bp)) {
3163 				struct rx_tpa_v2_end_cmpl_hi *p5_tpa_end;
3164 
3165 				p5_tpa_end = (void *)rxcmp;
3166 				agg_cnt = BNXT_TPA_END_AGG_BUFS_TH(p5_tpa_end);
3167 			} else {
3168 				struct rx_tpa_end_cmpl *tpa_end;
3169 
3170 				tpa_end = (void *)rxcmp;
3171 				agg_cnt = BNXT_TPA_END_AGG_BUFS(tpa_end);
3172 			}
3173 
3174 			raw_cons = raw_cons + CMP_LEN(cmpl_type) + agg_cnt;
3175 			desc++;
3176 			break;
3177 
3178 		default:
3179 			raw_cons += CMP_LEN(cmpl_type);
3180 		}
3181 	}
3182 
3183 	return RTE_ETH_RX_DESC_AVAIL;
3184 }
3185 
3186 static int
3187 bnxt_tx_descriptor_status_op(void *tx_queue, uint16_t offset)
3188 {
3189 	struct bnxt_tx_queue *txq = (struct bnxt_tx_queue *)tx_queue;
3190 	struct bnxt_tx_ring_info *txr;
3191 	struct bnxt_cp_ring_info *cpr;
3192 	struct rte_mbuf **tx_buf;
3193 	struct tx_pkt_cmpl *txcmp;
3194 	uint32_t cons, cp_cons;
3195 	int rc;
3196 
3197 	if (!txq)
3198 		return -EINVAL;
3199 
3200 	rc = is_bnxt_in_error(txq->bp);
3201 	if (rc)
3202 		return rc;
3203 
3204 	cpr = txq->cp_ring;
3205 	txr = txq->tx_ring;
3206 
3207 	if (offset >= txq->nb_tx_desc)
3208 		return -EINVAL;
3209 
3210 	cons = RING_CMP(cpr->cp_ring_struct, offset);
3211 	txcmp = (struct tx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
3212 	cp_cons = cpr->cp_raw_cons;
3213 
3214 	if (cons > cp_cons) {
3215 		if (CMPL_VALID(txcmp, cpr->valid))
3216 			return RTE_ETH_TX_DESC_UNAVAIL;
3217 	} else {
3218 		if (CMPL_VALID(txcmp, !cpr->valid))
3219 			return RTE_ETH_TX_DESC_UNAVAIL;
3220 	}
3221 	tx_buf = &txr->tx_buf_ring[cons];
3222 	if (*tx_buf == NULL)
3223 		return RTE_ETH_TX_DESC_DONE;
3224 
3225 	return RTE_ETH_TX_DESC_FULL;
3226 }
3227 
3228 int
3229 bnxt_filter_ctrl_op(struct rte_eth_dev *dev,
3230 		    enum rte_filter_type filter_type,
3231 		    enum rte_filter_op filter_op, void *arg)
3232 {
3233 	struct bnxt *bp = dev->data->dev_private;
3234 	int ret = 0;
3235 
3236 	if (!bp)
3237 		return -EIO;
3238 
3239 	if (BNXT_ETH_DEV_IS_REPRESENTOR(dev)) {
3240 		struct bnxt_representor *vfr = dev->data->dev_private;
3241 		bp = vfr->parent_dev->data->dev_private;
3242 		/* parent is deleted while children are still valid */
3243 		if (!bp) {
3244 			PMD_DRV_LOG(DEBUG, "BNXT Port:%d VFR Error %d:%d\n",
3245 				    dev->data->port_id,
3246 				    filter_type,
3247 				    filter_op);
3248 			return -EIO;
3249 		}
3250 	}
3251 
3252 	ret = is_bnxt_in_error(bp);
3253 	if (ret)
3254 		return ret;
3255 
3256 	switch (filter_type) {
3257 	case RTE_ETH_FILTER_GENERIC:
3258 		if (filter_op != RTE_ETH_FILTER_GET)
3259 			return -EINVAL;
3260 
3261 		/* PMD supports thread-safe flow operations.  rte_flow API
3262 		 * functions can avoid mutex for multi-thread safety.
3263 		 */
3264 		dev->data->dev_flags |= RTE_ETH_DEV_FLOW_OPS_THREAD_SAFE;
3265 
3266 		if (BNXT_TRUFLOW_EN(bp))
3267 			*(const void **)arg = &bnxt_ulp_rte_flow_ops;
3268 		else
3269 			*(const void **)arg = &bnxt_flow_ops;
3270 		break;
3271 	default:
3272 		PMD_DRV_LOG(ERR,
3273 			"Filter type (%d) not supported", filter_type);
3274 		ret = -EINVAL;
3275 		break;
3276 	}
3277 	return ret;
3278 }
3279 
3280 static const uint32_t *
3281 bnxt_dev_supported_ptypes_get_op(struct rte_eth_dev *dev)
3282 {
3283 	static const uint32_t ptypes[] = {
3284 		RTE_PTYPE_L2_ETHER_VLAN,
3285 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
3286 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
3287 		RTE_PTYPE_L4_ICMP,
3288 		RTE_PTYPE_L4_TCP,
3289 		RTE_PTYPE_L4_UDP,
3290 		RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
3291 		RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
3292 		RTE_PTYPE_INNER_L4_ICMP,
3293 		RTE_PTYPE_INNER_L4_TCP,
3294 		RTE_PTYPE_INNER_L4_UDP,
3295 		RTE_PTYPE_UNKNOWN
3296 	};
3297 
3298 	if (!dev->rx_pkt_burst)
3299 		return NULL;
3300 
3301 	return ptypes;
3302 }
3303 
3304 static int bnxt_map_regs(struct bnxt *bp, uint32_t *reg_arr, int count,
3305 			 int reg_win)
3306 {
3307 	uint32_t reg_base = *reg_arr & 0xfffff000;
3308 	uint32_t win_off;
3309 	int i;
3310 
3311 	for (i = 0; i < count; i++) {
3312 		if ((reg_arr[i] & 0xfffff000) != reg_base)
3313 			return -ERANGE;
3314 	}
3315 	win_off = BNXT_GRCPF_REG_WINDOW_BASE_OUT + (reg_win - 1) * 4;
3316 	rte_write32(reg_base, (uint8_t *)bp->bar0 + win_off);
3317 	return 0;
3318 }
3319 
3320 static int bnxt_map_ptp_regs(struct bnxt *bp)
3321 {
3322 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3323 	uint32_t *reg_arr;
3324 	int rc, i;
3325 
3326 	reg_arr = ptp->rx_regs;
3327 	rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_RX_REGS, 5);
3328 	if (rc)
3329 		return rc;
3330 
3331 	reg_arr = ptp->tx_regs;
3332 	rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_TX_REGS, 6);
3333 	if (rc)
3334 		return rc;
3335 
3336 	for (i = 0; i < BNXT_PTP_RX_REGS; i++)
3337 		ptp->rx_mapped_regs[i] = 0x5000 + (ptp->rx_regs[i] & 0xfff);
3338 
3339 	for (i = 0; i < BNXT_PTP_TX_REGS; i++)
3340 		ptp->tx_mapped_regs[i] = 0x6000 + (ptp->tx_regs[i] & 0xfff);
3341 
3342 	return 0;
3343 }
3344 
3345 static void bnxt_unmap_ptp_regs(struct bnxt *bp)
3346 {
3347 	rte_write32(0, (uint8_t *)bp->bar0 +
3348 			 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 16);
3349 	rte_write32(0, (uint8_t *)bp->bar0 +
3350 			 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 20);
3351 }
3352 
3353 static uint64_t bnxt_cc_read(struct bnxt *bp)
3354 {
3355 	uint64_t ns;
3356 
3357 	ns = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3358 			      BNXT_GRCPF_REG_SYNC_TIME));
3359 	ns |= (uint64_t)(rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3360 					  BNXT_GRCPF_REG_SYNC_TIME + 4))) << 32;
3361 	return ns;
3362 }
3363 
3364 static int bnxt_get_tx_ts(struct bnxt *bp, uint64_t *ts)
3365 {
3366 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3367 	uint32_t fifo;
3368 
3369 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3370 				ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
3371 	if (fifo & BNXT_PTP_TX_FIFO_EMPTY)
3372 		return -EAGAIN;
3373 
3374 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3375 				ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
3376 	*ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3377 				ptp->tx_mapped_regs[BNXT_PTP_TX_TS_L]));
3378 	*ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3379 				ptp->tx_mapped_regs[BNXT_PTP_TX_TS_H])) << 32;
3380 
3381 	return 0;
3382 }
3383 
3384 static int bnxt_get_rx_ts(struct bnxt *bp, uint64_t *ts)
3385 {
3386 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3387 	struct bnxt_pf_info *pf = bp->pf;
3388 	uint16_t port_id;
3389 	uint32_t fifo;
3390 
3391 	if (!ptp)
3392 		return -ENODEV;
3393 
3394 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3395 				ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
3396 	if (!(fifo & BNXT_PTP_RX_FIFO_PENDING))
3397 		return -EAGAIN;
3398 
3399 	port_id = pf->port_id;
3400 	rte_write32(1 << port_id, (uint8_t *)bp->bar0 +
3401 	       ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO_ADV]);
3402 
3403 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3404 				   ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
3405 	if (fifo & BNXT_PTP_RX_FIFO_PENDING) {
3406 /*		bnxt_clr_rx_ts(bp);	  TBD  */
3407 		return -EBUSY;
3408 	}
3409 
3410 	*ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3411 				ptp->rx_mapped_regs[BNXT_PTP_RX_TS_L]));
3412 	*ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3413 				ptp->rx_mapped_regs[BNXT_PTP_RX_TS_H])) << 32;
3414 
3415 	return 0;
3416 }
3417 
3418 static int
3419 bnxt_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
3420 {
3421 	uint64_t ns;
3422 	struct bnxt *bp = dev->data->dev_private;
3423 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3424 
3425 	if (!ptp)
3426 		return 0;
3427 
3428 	ns = rte_timespec_to_ns(ts);
3429 	/* Set the timecounters to a new value. */
3430 	ptp->tc.nsec = ns;
3431 	ptp->tx_tstamp_tc.nsec = ns;
3432 	ptp->rx_tstamp_tc.nsec = ns;
3433 
3434 	return 0;
3435 }
3436 
3437 static int
3438 bnxt_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
3439 {
3440 	struct bnxt *bp = dev->data->dev_private;
3441 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3442 	uint64_t ns, systime_cycles = 0;
3443 	int rc = 0;
3444 
3445 	if (!ptp)
3446 		return 0;
3447 
3448 	if (BNXT_CHIP_P5(bp))
3449 		rc = bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME,
3450 					     &systime_cycles);
3451 	else
3452 		systime_cycles = bnxt_cc_read(bp);
3453 
3454 	ns = rte_timecounter_update(&ptp->tc, systime_cycles);
3455 	*ts = rte_ns_to_timespec(ns);
3456 
3457 	return rc;
3458 }
3459 static int
3460 bnxt_timesync_enable(struct rte_eth_dev *dev)
3461 {
3462 	struct bnxt *bp = dev->data->dev_private;
3463 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3464 	uint32_t shift = 0;
3465 	int rc;
3466 
3467 	if (!ptp)
3468 		return 0;
3469 
3470 	ptp->rx_filter = 1;
3471 	ptp->tx_tstamp_en = 1;
3472 	ptp->rxctl = BNXT_PTP_MSG_EVENTS;
3473 
3474 	rc = bnxt_hwrm_ptp_cfg(bp);
3475 	if (rc)
3476 		return rc;
3477 
3478 	memset(&ptp->tc, 0, sizeof(struct rte_timecounter));
3479 	memset(&ptp->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
3480 	memset(&ptp->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
3481 
3482 	ptp->tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
3483 	ptp->tc.cc_shift = shift;
3484 	ptp->tc.nsec_mask = (1ULL << shift) - 1;
3485 
3486 	ptp->rx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
3487 	ptp->rx_tstamp_tc.cc_shift = shift;
3488 	ptp->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
3489 
3490 	ptp->tx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
3491 	ptp->tx_tstamp_tc.cc_shift = shift;
3492 	ptp->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
3493 
3494 	if (!BNXT_CHIP_P5(bp))
3495 		bnxt_map_ptp_regs(bp);
3496 	else
3497 		rc = bnxt_ptp_start(bp);
3498 
3499 	return rc;
3500 }
3501 
3502 static int
3503 bnxt_timesync_disable(struct rte_eth_dev *dev)
3504 {
3505 	struct bnxt *bp = dev->data->dev_private;
3506 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3507 
3508 	if (!ptp)
3509 		return 0;
3510 
3511 	ptp->rx_filter = 0;
3512 	ptp->tx_tstamp_en = 0;
3513 	ptp->rxctl = 0;
3514 
3515 	bnxt_hwrm_ptp_cfg(bp);
3516 
3517 	if (!BNXT_CHIP_P5(bp))
3518 		bnxt_unmap_ptp_regs(bp);
3519 	else
3520 		bnxt_ptp_stop(bp);
3521 
3522 	return 0;
3523 }
3524 
3525 static int
3526 bnxt_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
3527 				 struct timespec *timestamp,
3528 				 uint32_t flags __rte_unused)
3529 {
3530 	struct bnxt *bp = dev->data->dev_private;
3531 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3532 	uint64_t rx_tstamp_cycles = 0;
3533 	uint64_t ns;
3534 
3535 	if (!ptp)
3536 		return 0;
3537 
3538 	if (BNXT_CHIP_P5(bp))
3539 		rx_tstamp_cycles = ptp->rx_timestamp;
3540 	else
3541 		bnxt_get_rx_ts(bp, &rx_tstamp_cycles);
3542 
3543 	ns = rte_timecounter_update(&ptp->rx_tstamp_tc, rx_tstamp_cycles);
3544 	*timestamp = rte_ns_to_timespec(ns);
3545 	return  0;
3546 }
3547 
3548 static int
3549 bnxt_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
3550 				 struct timespec *timestamp)
3551 {
3552 	struct bnxt *bp = dev->data->dev_private;
3553 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3554 	uint64_t tx_tstamp_cycles = 0;
3555 	uint64_t ns;
3556 	int rc = 0;
3557 
3558 	if (!ptp)
3559 		return 0;
3560 
3561 	if (BNXT_CHIP_P5(bp))
3562 		rc = bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_PATH_TX,
3563 					     &tx_tstamp_cycles);
3564 	else
3565 		rc = bnxt_get_tx_ts(bp, &tx_tstamp_cycles);
3566 
3567 	ns = rte_timecounter_update(&ptp->tx_tstamp_tc, tx_tstamp_cycles);
3568 	*timestamp = rte_ns_to_timespec(ns);
3569 
3570 	return rc;
3571 }
3572 
3573 static int
3574 bnxt_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
3575 {
3576 	struct bnxt *bp = dev->data->dev_private;
3577 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3578 
3579 	if (!ptp)
3580 		return 0;
3581 
3582 	ptp->tc.nsec += delta;
3583 	ptp->tx_tstamp_tc.nsec += delta;
3584 	ptp->rx_tstamp_tc.nsec += delta;
3585 
3586 	return 0;
3587 }
3588 
3589 static int
3590 bnxt_get_eeprom_length_op(struct rte_eth_dev *dev)
3591 {
3592 	struct bnxt *bp = dev->data->dev_private;
3593 	int rc;
3594 	uint32_t dir_entries;
3595 	uint32_t entry_length;
3596 
3597 	rc = is_bnxt_in_error(bp);
3598 	if (rc)
3599 		return rc;
3600 
3601 	PMD_DRV_LOG(INFO, PCI_PRI_FMT "\n",
3602 		    bp->pdev->addr.domain, bp->pdev->addr.bus,
3603 		    bp->pdev->addr.devid, bp->pdev->addr.function);
3604 
3605 	rc = bnxt_hwrm_nvm_get_dir_info(bp, &dir_entries, &entry_length);
3606 	if (rc != 0)
3607 		return rc;
3608 
3609 	return dir_entries * entry_length;
3610 }
3611 
3612 static int
3613 bnxt_get_eeprom_op(struct rte_eth_dev *dev,
3614 		struct rte_dev_eeprom_info *in_eeprom)
3615 {
3616 	struct bnxt *bp = dev->data->dev_private;
3617 	uint32_t index;
3618 	uint32_t offset;
3619 	int rc;
3620 
3621 	rc = is_bnxt_in_error(bp);
3622 	if (rc)
3623 		return rc;
3624 
3625 	PMD_DRV_LOG(INFO, PCI_PRI_FMT " in_eeprom->offset = %d len = %d\n",
3626 		    bp->pdev->addr.domain, bp->pdev->addr.bus,
3627 		    bp->pdev->addr.devid, bp->pdev->addr.function,
3628 		    in_eeprom->offset, in_eeprom->length);
3629 
3630 	if (in_eeprom->offset == 0) /* special offset value to get directory */
3631 		return bnxt_get_nvram_directory(bp, in_eeprom->length,
3632 						in_eeprom->data);
3633 
3634 	index = in_eeprom->offset >> 24;
3635 	offset = in_eeprom->offset & 0xffffff;
3636 
3637 	if (index != 0)
3638 		return bnxt_hwrm_get_nvram_item(bp, index - 1, offset,
3639 					   in_eeprom->length, in_eeprom->data);
3640 
3641 	return 0;
3642 }
3643 
3644 static bool bnxt_dir_type_is_ape_bin_format(uint16_t dir_type)
3645 {
3646 	switch (dir_type) {
3647 	case BNX_DIR_TYPE_CHIMP_PATCH:
3648 	case BNX_DIR_TYPE_BOOTCODE:
3649 	case BNX_DIR_TYPE_BOOTCODE_2:
3650 	case BNX_DIR_TYPE_APE_FW:
3651 	case BNX_DIR_TYPE_APE_PATCH:
3652 	case BNX_DIR_TYPE_KONG_FW:
3653 	case BNX_DIR_TYPE_KONG_PATCH:
3654 	case BNX_DIR_TYPE_BONO_FW:
3655 	case BNX_DIR_TYPE_BONO_PATCH:
3656 		/* FALLTHROUGH */
3657 		return true;
3658 	}
3659 
3660 	return false;
3661 }
3662 
3663 static bool bnxt_dir_type_is_other_exec_format(uint16_t dir_type)
3664 {
3665 	switch (dir_type) {
3666 	case BNX_DIR_TYPE_AVS:
3667 	case BNX_DIR_TYPE_EXP_ROM_MBA:
3668 	case BNX_DIR_TYPE_PCIE:
3669 	case BNX_DIR_TYPE_TSCF_UCODE:
3670 	case BNX_DIR_TYPE_EXT_PHY:
3671 	case BNX_DIR_TYPE_CCM:
3672 	case BNX_DIR_TYPE_ISCSI_BOOT:
3673 	case BNX_DIR_TYPE_ISCSI_BOOT_IPV6:
3674 	case BNX_DIR_TYPE_ISCSI_BOOT_IPV4N6:
3675 		/* FALLTHROUGH */
3676 		return true;
3677 	}
3678 
3679 	return false;
3680 }
3681 
3682 static bool bnxt_dir_type_is_executable(uint16_t dir_type)
3683 {
3684 	return bnxt_dir_type_is_ape_bin_format(dir_type) ||
3685 		bnxt_dir_type_is_other_exec_format(dir_type);
3686 }
3687 
3688 static int
3689 bnxt_set_eeprom_op(struct rte_eth_dev *dev,
3690 		struct rte_dev_eeprom_info *in_eeprom)
3691 {
3692 	struct bnxt *bp = dev->data->dev_private;
3693 	uint8_t index, dir_op;
3694 	uint16_t type, ext, ordinal, attr;
3695 	int rc;
3696 
3697 	rc = is_bnxt_in_error(bp);
3698 	if (rc)
3699 		return rc;
3700 
3701 	PMD_DRV_LOG(INFO, PCI_PRI_FMT " in_eeprom->offset = %d len = %d\n",
3702 		    bp->pdev->addr.domain, bp->pdev->addr.bus,
3703 		    bp->pdev->addr.devid, bp->pdev->addr.function,
3704 		    in_eeprom->offset, in_eeprom->length);
3705 
3706 	if (!BNXT_PF(bp)) {
3707 		PMD_DRV_LOG(ERR, "NVM write not supported from a VF\n");
3708 		return -EINVAL;
3709 	}
3710 
3711 	type = in_eeprom->magic >> 16;
3712 
3713 	if (type == 0xffff) { /* special value for directory operations */
3714 		index = in_eeprom->magic & 0xff;
3715 		dir_op = in_eeprom->magic >> 8;
3716 		if (index == 0)
3717 			return -EINVAL;
3718 		switch (dir_op) {
3719 		case 0x0e: /* erase */
3720 			if (in_eeprom->offset != ~in_eeprom->magic)
3721 				return -EINVAL;
3722 			return bnxt_hwrm_erase_nvram_directory(bp, index - 1);
3723 		default:
3724 			return -EINVAL;
3725 		}
3726 	}
3727 
3728 	/* Create or re-write an NVM item: */
3729 	if (bnxt_dir_type_is_executable(type) == true)
3730 		return -EOPNOTSUPP;
3731 	ext = in_eeprom->magic & 0xffff;
3732 	ordinal = in_eeprom->offset >> 16;
3733 	attr = in_eeprom->offset & 0xffff;
3734 
3735 	return bnxt_hwrm_flash_nvram(bp, type, ordinal, ext, attr,
3736 				     in_eeprom->data, in_eeprom->length);
3737 }
3738 
3739 /*
3740  * Initialization
3741  */
3742 
3743 static const struct eth_dev_ops bnxt_dev_ops = {
3744 	.dev_infos_get = bnxt_dev_info_get_op,
3745 	.dev_close = bnxt_dev_close_op,
3746 	.dev_configure = bnxt_dev_configure_op,
3747 	.dev_start = bnxt_dev_start_op,
3748 	.dev_stop = bnxt_dev_stop_op,
3749 	.dev_set_link_up = bnxt_dev_set_link_up_op,
3750 	.dev_set_link_down = bnxt_dev_set_link_down_op,
3751 	.stats_get = bnxt_stats_get_op,
3752 	.stats_reset = bnxt_stats_reset_op,
3753 	.rx_queue_setup = bnxt_rx_queue_setup_op,
3754 	.rx_queue_release = bnxt_rx_queue_release_op,
3755 	.tx_queue_setup = bnxt_tx_queue_setup_op,
3756 	.tx_queue_release = bnxt_tx_queue_release_op,
3757 	.rx_queue_intr_enable = bnxt_rx_queue_intr_enable_op,
3758 	.rx_queue_intr_disable = bnxt_rx_queue_intr_disable_op,
3759 	.reta_update = bnxt_reta_update_op,
3760 	.reta_query = bnxt_reta_query_op,
3761 	.rss_hash_update = bnxt_rss_hash_update_op,
3762 	.rss_hash_conf_get = bnxt_rss_hash_conf_get_op,
3763 	.link_update = bnxt_link_update_op,
3764 	.promiscuous_enable = bnxt_promiscuous_enable_op,
3765 	.promiscuous_disable = bnxt_promiscuous_disable_op,
3766 	.allmulticast_enable = bnxt_allmulticast_enable_op,
3767 	.allmulticast_disable = bnxt_allmulticast_disable_op,
3768 	.mac_addr_add = bnxt_mac_addr_add_op,
3769 	.mac_addr_remove = bnxt_mac_addr_remove_op,
3770 	.flow_ctrl_get = bnxt_flow_ctrl_get_op,
3771 	.flow_ctrl_set = bnxt_flow_ctrl_set_op,
3772 	.udp_tunnel_port_add  = bnxt_udp_tunnel_port_add_op,
3773 	.udp_tunnel_port_del  = bnxt_udp_tunnel_port_del_op,
3774 	.vlan_filter_set = bnxt_vlan_filter_set_op,
3775 	.vlan_offload_set = bnxt_vlan_offload_set_op,
3776 	.vlan_tpid_set = bnxt_vlan_tpid_set_op,
3777 	.vlan_pvid_set = bnxt_vlan_pvid_set_op,
3778 	.mtu_set = bnxt_mtu_set_op,
3779 	.mac_addr_set = bnxt_set_default_mac_addr_op,
3780 	.xstats_get = bnxt_dev_xstats_get_op,
3781 	.xstats_get_names = bnxt_dev_xstats_get_names_op,
3782 	.xstats_reset = bnxt_dev_xstats_reset_op,
3783 	.fw_version_get = bnxt_fw_version_get,
3784 	.set_mc_addr_list = bnxt_dev_set_mc_addr_list_op,
3785 	.rxq_info_get = bnxt_rxq_info_get_op,
3786 	.txq_info_get = bnxt_txq_info_get_op,
3787 	.rx_burst_mode_get = bnxt_rx_burst_mode_get,
3788 	.tx_burst_mode_get = bnxt_tx_burst_mode_get,
3789 	.dev_led_on = bnxt_dev_led_on_op,
3790 	.dev_led_off = bnxt_dev_led_off_op,
3791 	.rx_queue_start = bnxt_rx_queue_start,
3792 	.rx_queue_stop = bnxt_rx_queue_stop,
3793 	.tx_queue_start = bnxt_tx_queue_start,
3794 	.tx_queue_stop = bnxt_tx_queue_stop,
3795 	.filter_ctrl = bnxt_filter_ctrl_op,
3796 	.dev_supported_ptypes_get = bnxt_dev_supported_ptypes_get_op,
3797 	.get_eeprom_length    = bnxt_get_eeprom_length_op,
3798 	.get_eeprom           = bnxt_get_eeprom_op,
3799 	.set_eeprom           = bnxt_set_eeprom_op,
3800 	.timesync_enable      = bnxt_timesync_enable,
3801 	.timesync_disable     = bnxt_timesync_disable,
3802 	.timesync_read_time   = bnxt_timesync_read_time,
3803 	.timesync_write_time   = bnxt_timesync_write_time,
3804 	.timesync_adjust_time = bnxt_timesync_adjust_time,
3805 	.timesync_read_rx_timestamp = bnxt_timesync_read_rx_timestamp,
3806 	.timesync_read_tx_timestamp = bnxt_timesync_read_tx_timestamp,
3807 };
3808 
3809 static uint32_t bnxt_map_reset_regs(struct bnxt *bp, uint32_t reg)
3810 {
3811 	uint32_t offset;
3812 
3813 	/* Only pre-map the reset GRC registers using window 3 */
3814 	rte_write32(reg & 0xfffff000, (uint8_t *)bp->bar0 +
3815 		    BNXT_GRCPF_REG_WINDOW_BASE_OUT + 8);
3816 
3817 	offset = BNXT_GRCP_WINDOW_3_BASE + (reg & 0xffc);
3818 
3819 	return offset;
3820 }
3821 
3822 int bnxt_map_fw_health_status_regs(struct bnxt *bp)
3823 {
3824 	struct bnxt_error_recovery_info *info = bp->recovery_info;
3825 	uint32_t reg_base = 0xffffffff;
3826 	int i;
3827 
3828 	/* Only pre-map the monitoring GRC registers using window 2 */
3829 	for (i = 0; i < BNXT_FW_STATUS_REG_CNT; i++) {
3830 		uint32_t reg = info->status_regs[i];
3831 
3832 		if (BNXT_FW_STATUS_REG_TYPE(reg) != BNXT_FW_STATUS_REG_TYPE_GRC)
3833 			continue;
3834 
3835 		if (reg_base == 0xffffffff)
3836 			reg_base = reg & 0xfffff000;
3837 		if ((reg & 0xfffff000) != reg_base)
3838 			return -ERANGE;
3839 
3840 		/* Use mask 0xffc as the Lower 2 bits indicates
3841 		 * address space location
3842 		 */
3843 		info->mapped_status_regs[i] = BNXT_GRCP_WINDOW_2_BASE +
3844 						(reg & 0xffc);
3845 	}
3846 
3847 	if (reg_base == 0xffffffff)
3848 		return 0;
3849 
3850 	rte_write32(reg_base, (uint8_t *)bp->bar0 +
3851 		    BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
3852 
3853 	return 0;
3854 }
3855 
3856 static void bnxt_write_fw_reset_reg(struct bnxt *bp, uint32_t index)
3857 {
3858 	struct bnxt_error_recovery_info *info = bp->recovery_info;
3859 	uint32_t delay = info->delay_after_reset[index];
3860 	uint32_t val = info->reset_reg_val[index];
3861 	uint32_t reg = info->reset_reg[index];
3862 	uint32_t type, offset;
3863 
3864 	type = BNXT_FW_STATUS_REG_TYPE(reg);
3865 	offset = BNXT_FW_STATUS_REG_OFF(reg);
3866 
3867 	switch (type) {
3868 	case BNXT_FW_STATUS_REG_TYPE_CFG:
3869 		rte_pci_write_config(bp->pdev, &val, sizeof(val), offset);
3870 		break;
3871 	case BNXT_FW_STATUS_REG_TYPE_GRC:
3872 		offset = bnxt_map_reset_regs(bp, offset);
3873 		rte_write32(val, (uint8_t *)bp->bar0 + offset);
3874 		break;
3875 	case BNXT_FW_STATUS_REG_TYPE_BAR0:
3876 		rte_write32(val, (uint8_t *)bp->bar0 + offset);
3877 		break;
3878 	}
3879 	/* wait on a specific interval of time until core reset is complete */
3880 	if (delay)
3881 		rte_delay_ms(delay);
3882 }
3883 
3884 static void bnxt_dev_cleanup(struct bnxt *bp)
3885 {
3886 	bp->eth_dev->data->dev_link.link_status = 0;
3887 	bp->link_info->link_up = 0;
3888 	if (bp->eth_dev->data->dev_started)
3889 		bnxt_dev_stop(bp->eth_dev);
3890 
3891 	bnxt_uninit_resources(bp, true);
3892 }
3893 
3894 static int
3895 bnxt_check_fw_reset_done(struct bnxt *bp)
3896 {
3897 	int timeout = bp->fw_reset_max_msecs;
3898 	uint16_t val = 0;
3899 	int rc;
3900 
3901 	do {
3902 		rc = rte_pci_read_config(bp->pdev, &val, sizeof(val), PCI_SUBSYSTEM_ID_OFFSET);
3903 		if (rc < 0) {
3904 			PMD_DRV_LOG(ERR, "Failed to read PCI offset 0x%x", PCI_SUBSYSTEM_ID_OFFSET);
3905 			return rc;
3906 		}
3907 		if (val != 0xffff)
3908 			break;
3909 		rte_delay_ms(1);
3910 	} while (timeout--);
3911 
3912 	if (val == 0xffff) {
3913 		PMD_DRV_LOG(ERR, "Firmware reset aborted, PCI config space invalid\n");
3914 		return -1;
3915 	}
3916 
3917 	return 0;
3918 }
3919 
3920 static int bnxt_restore_vlan_filters(struct bnxt *bp)
3921 {
3922 	struct rte_eth_dev *dev = bp->eth_dev;
3923 	struct rte_vlan_filter_conf *vfc;
3924 	int vidx, vbit, rc;
3925 	uint16_t vlan_id;
3926 
3927 	for (vlan_id = 1; vlan_id <= RTE_ETHER_MAX_VLAN_ID; vlan_id++) {
3928 		vfc = &dev->data->vlan_filter_conf;
3929 		vidx = vlan_id / 64;
3930 		vbit = vlan_id % 64;
3931 
3932 		/* Each bit corresponds to a VLAN id */
3933 		if (vfc->ids[vidx] & (UINT64_C(1) << vbit)) {
3934 			rc = bnxt_add_vlan_filter(bp, vlan_id);
3935 			if (rc)
3936 				return rc;
3937 		}
3938 	}
3939 
3940 	return 0;
3941 }
3942 
3943 static int bnxt_restore_mac_filters(struct bnxt *bp)
3944 {
3945 	struct rte_eth_dev *dev = bp->eth_dev;
3946 	struct rte_eth_dev_info dev_info;
3947 	struct rte_ether_addr *addr;
3948 	uint64_t pool_mask;
3949 	uint32_t pool = 0;
3950 	uint16_t i;
3951 	int rc;
3952 
3953 	if (BNXT_VF(bp) && !BNXT_VF_IS_TRUSTED(bp))
3954 		return 0;
3955 
3956 	rc = bnxt_dev_info_get_op(dev, &dev_info);
3957 	if (rc)
3958 		return rc;
3959 
3960 	/* replay MAC address configuration */
3961 	for (i = 1; i < dev_info.max_mac_addrs; i++) {
3962 		addr = &dev->data->mac_addrs[i];
3963 
3964 		/* skip zero address */
3965 		if (rte_is_zero_ether_addr(addr))
3966 			continue;
3967 
3968 		pool = 0;
3969 		pool_mask = dev->data->mac_pool_sel[i];
3970 
3971 		do {
3972 			if (pool_mask & 1ULL) {
3973 				rc = bnxt_mac_addr_add_op(dev, addr, i, pool);
3974 				if (rc)
3975 					return rc;
3976 			}
3977 			pool_mask >>= 1;
3978 			pool++;
3979 		} while (pool_mask);
3980 	}
3981 
3982 	return 0;
3983 }
3984 
3985 static int bnxt_restore_filters(struct bnxt *bp)
3986 {
3987 	struct rte_eth_dev *dev = bp->eth_dev;
3988 	int ret = 0;
3989 
3990 	if (dev->data->all_multicast) {
3991 		ret = bnxt_allmulticast_enable_op(dev);
3992 		if (ret)
3993 			return ret;
3994 	}
3995 	if (dev->data->promiscuous) {
3996 		ret = bnxt_promiscuous_enable_op(dev);
3997 		if (ret)
3998 			return ret;
3999 	}
4000 
4001 	ret = bnxt_restore_mac_filters(bp);
4002 	if (ret)
4003 		return ret;
4004 
4005 	ret = bnxt_restore_vlan_filters(bp);
4006 	/* TODO restore other filters as well */
4007 	return ret;
4008 }
4009 
4010 static int bnxt_check_fw_ready(struct bnxt *bp)
4011 {
4012 	int timeout = bp->fw_reset_max_msecs;
4013 	int rc = 0;
4014 
4015 	do {
4016 		rc = bnxt_hwrm_poll_ver_get(bp);
4017 		if (rc == 0)
4018 			break;
4019 		rte_delay_ms(BNXT_FW_READY_WAIT_INTERVAL);
4020 		timeout -= BNXT_FW_READY_WAIT_INTERVAL;
4021 	} while (rc && timeout > 0);
4022 
4023 	if (rc)
4024 		PMD_DRV_LOG(ERR, "FW is not Ready after reset\n");
4025 
4026 	return rc;
4027 }
4028 
4029 static void bnxt_dev_recover(void *arg)
4030 {
4031 	struct bnxt *bp = arg;
4032 	int rc = 0;
4033 
4034 	pthread_mutex_lock(&bp->err_recovery_lock);
4035 
4036 	if (!bp->fw_reset_min_msecs) {
4037 		rc = bnxt_check_fw_reset_done(bp);
4038 		if (rc)
4039 			goto err;
4040 	}
4041 
4042 	/* Clear Error flag so that device re-init should happen */
4043 	bp->flags &= ~BNXT_FLAG_FATAL_ERROR;
4044 
4045 	rc = bnxt_check_fw_ready(bp);
4046 	if (rc)
4047 		goto err;
4048 
4049 	rc = bnxt_init_resources(bp, true);
4050 	if (rc) {
4051 		PMD_DRV_LOG(ERR,
4052 			    "Failed to initialize resources after reset\n");
4053 		goto err;
4054 	}
4055 	/* clear reset flag as the device is initialized now */
4056 	bp->flags &= ~BNXT_FLAG_FW_RESET;
4057 
4058 	rc = bnxt_dev_start_op(bp->eth_dev);
4059 	if (rc) {
4060 		PMD_DRV_LOG(ERR, "Failed to start port after reset\n");
4061 		goto err_start;
4062 	}
4063 
4064 	rc = bnxt_restore_filters(bp);
4065 	if (rc)
4066 		goto err_start;
4067 
4068 	PMD_DRV_LOG(INFO, "Recovered from FW reset\n");
4069 	pthread_mutex_unlock(&bp->err_recovery_lock);
4070 
4071 	return;
4072 err_start:
4073 	bnxt_dev_stop(bp->eth_dev);
4074 err:
4075 	bp->flags |= BNXT_FLAG_FATAL_ERROR;
4076 	bnxt_uninit_resources(bp, false);
4077 	pthread_mutex_unlock(&bp->err_recovery_lock);
4078 	PMD_DRV_LOG(ERR, "Failed to recover from FW reset\n");
4079 }
4080 
4081 void bnxt_dev_reset_and_resume(void *arg)
4082 {
4083 	struct bnxt *bp = arg;
4084 	uint32_t us = US_PER_MS * bp->fw_reset_min_msecs;
4085 	uint16_t val = 0;
4086 	int rc;
4087 
4088 	bnxt_dev_cleanup(bp);
4089 
4090 	bnxt_wait_for_device_shutdown(bp);
4091 
4092 	/* During some fatal firmware error conditions, the PCI config space
4093 	 * register 0x2e which normally contains the subsystem ID will become
4094 	 * 0xffff. This register will revert back to the normal value after
4095 	 * the chip has completed core reset. If we detect this condition,
4096 	 * we can poll this config register immediately for the value to revert.
4097 	 */
4098 	if (bp->flags & BNXT_FLAG_FATAL_ERROR) {
4099 		rc = rte_pci_read_config(bp->pdev, &val, sizeof(val), PCI_SUBSYSTEM_ID_OFFSET);
4100 		if (rc < 0) {
4101 			PMD_DRV_LOG(ERR, "Failed to read PCI offset 0x%x", PCI_SUBSYSTEM_ID_OFFSET);
4102 			return;
4103 		}
4104 		if (val == 0xffff) {
4105 			bp->fw_reset_min_msecs = 0;
4106 			us = 1;
4107 		}
4108 	}
4109 
4110 	rc = rte_eal_alarm_set(us, bnxt_dev_recover, (void *)bp);
4111 	if (rc)
4112 		PMD_DRV_LOG(ERR, "Error setting recovery alarm");
4113 }
4114 
4115 uint32_t bnxt_read_fw_status_reg(struct bnxt *bp, uint32_t index)
4116 {
4117 	struct bnxt_error_recovery_info *info = bp->recovery_info;
4118 	uint32_t reg = info->status_regs[index];
4119 	uint32_t type, offset, val = 0;
4120 
4121 	type = BNXT_FW_STATUS_REG_TYPE(reg);
4122 	offset = BNXT_FW_STATUS_REG_OFF(reg);
4123 
4124 	switch (type) {
4125 	case BNXT_FW_STATUS_REG_TYPE_CFG:
4126 		rte_pci_read_config(bp->pdev, &val, sizeof(val), offset);
4127 		break;
4128 	case BNXT_FW_STATUS_REG_TYPE_GRC:
4129 		offset = info->mapped_status_regs[index];
4130 		/* FALLTHROUGH */
4131 	case BNXT_FW_STATUS_REG_TYPE_BAR0:
4132 		val = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
4133 				       offset));
4134 		break;
4135 	}
4136 
4137 	return val;
4138 }
4139 
4140 static int bnxt_fw_reset_all(struct bnxt *bp)
4141 {
4142 	struct bnxt_error_recovery_info *info = bp->recovery_info;
4143 	uint32_t i;
4144 	int rc = 0;
4145 
4146 	if (info->flags & BNXT_FLAG_ERROR_RECOVERY_HOST) {
4147 		/* Reset through master function driver */
4148 		for (i = 0; i < info->reg_array_cnt; i++)
4149 			bnxt_write_fw_reset_reg(bp, i);
4150 		/* Wait for time specified by FW after triggering reset */
4151 		rte_delay_ms(info->master_func_wait_period_after_reset);
4152 	} else if (info->flags & BNXT_FLAG_ERROR_RECOVERY_CO_CPU) {
4153 		/* Reset with the help of Kong processor */
4154 		rc = bnxt_hwrm_fw_reset(bp);
4155 		if (rc)
4156 			PMD_DRV_LOG(ERR, "Failed to reset FW\n");
4157 	}
4158 
4159 	return rc;
4160 }
4161 
4162 static void bnxt_fw_reset_cb(void *arg)
4163 {
4164 	struct bnxt *bp = arg;
4165 	struct bnxt_error_recovery_info *info = bp->recovery_info;
4166 	int rc = 0;
4167 
4168 	/* Only Master function can do FW reset */
4169 	if (bnxt_is_master_func(bp) &&
4170 	    bnxt_is_recovery_enabled(bp)) {
4171 		rc = bnxt_fw_reset_all(bp);
4172 		if (rc) {
4173 			PMD_DRV_LOG(ERR, "Adapter recovery failed\n");
4174 			return;
4175 		}
4176 	}
4177 
4178 	/* if recovery method is ERROR_RECOVERY_CO_CPU, KONG will send
4179 	 * EXCEPTION_FATAL_ASYNC event to all the functions
4180 	 * (including MASTER FUNC). After receiving this Async, all the active
4181 	 * drivers should treat this case as FW initiated recovery
4182 	 */
4183 	if (info->flags & BNXT_FLAG_ERROR_RECOVERY_HOST) {
4184 		bp->fw_reset_min_msecs = BNXT_MIN_FW_READY_TIMEOUT;
4185 		bp->fw_reset_max_msecs = BNXT_MAX_FW_RESET_TIMEOUT;
4186 
4187 		/* To recover from error */
4188 		rte_eal_alarm_set(US_PER_MS, bnxt_dev_reset_and_resume,
4189 				  (void *)bp);
4190 	}
4191 }
4192 
4193 /* Driver should poll FW heartbeat, reset_counter with the frequency
4194  * advertised by FW in HWRM_ERROR_RECOVERY_QCFG.
4195  * When the driver detects heartbeat stop or change in reset_counter,
4196  * it has to trigger a reset to recover from the error condition.
4197  * A “master PF” is the function who will have the privilege to
4198  * initiate the chimp reset. The master PF will be elected by the
4199  * firmware and will be notified through async message.
4200  */
4201 static void bnxt_check_fw_health(void *arg)
4202 {
4203 	struct bnxt *bp = arg;
4204 	struct bnxt_error_recovery_info *info = bp->recovery_info;
4205 	uint32_t val = 0, wait_msec;
4206 
4207 	if (!info || !bnxt_is_recovery_enabled(bp) ||
4208 	    is_bnxt_in_error(bp))
4209 		return;
4210 
4211 	val = bnxt_read_fw_status_reg(bp, BNXT_FW_HEARTBEAT_CNT_REG);
4212 	if (val == info->last_heart_beat)
4213 		goto reset;
4214 
4215 	info->last_heart_beat = val;
4216 
4217 	val = bnxt_read_fw_status_reg(bp, BNXT_FW_RECOVERY_CNT_REG);
4218 	if (val != info->last_reset_counter)
4219 		goto reset;
4220 
4221 	info->last_reset_counter = val;
4222 
4223 	rte_eal_alarm_set(US_PER_MS * info->driver_polling_freq,
4224 			  bnxt_check_fw_health, (void *)bp);
4225 
4226 	return;
4227 reset:
4228 	/* Stop DMA to/from device */
4229 	bp->flags |= BNXT_FLAG_FATAL_ERROR;
4230 	bp->flags |= BNXT_FLAG_FW_RESET;
4231 
4232 	PMD_DRV_LOG(ERR, "Detected FW dead condition\n");
4233 
4234 	if (bnxt_is_master_func(bp))
4235 		wait_msec = info->master_func_wait_period;
4236 	else
4237 		wait_msec = info->normal_func_wait_period;
4238 
4239 	rte_eal_alarm_set(US_PER_MS * wait_msec,
4240 			  bnxt_fw_reset_cb, (void *)bp);
4241 }
4242 
4243 void bnxt_schedule_fw_health_check(struct bnxt *bp)
4244 {
4245 	uint32_t polling_freq;
4246 
4247 	pthread_mutex_lock(&bp->health_check_lock);
4248 
4249 	if (!bnxt_is_recovery_enabled(bp))
4250 		goto done;
4251 
4252 	if (bp->flags & BNXT_FLAG_FW_HEALTH_CHECK_SCHEDULED)
4253 		goto done;
4254 
4255 	polling_freq = bp->recovery_info->driver_polling_freq;
4256 
4257 	rte_eal_alarm_set(US_PER_MS * polling_freq,
4258 			  bnxt_check_fw_health, (void *)bp);
4259 	bp->flags |= BNXT_FLAG_FW_HEALTH_CHECK_SCHEDULED;
4260 
4261 done:
4262 	pthread_mutex_unlock(&bp->health_check_lock);
4263 }
4264 
4265 static void bnxt_cancel_fw_health_check(struct bnxt *bp)
4266 {
4267 	if (!bnxt_is_recovery_enabled(bp))
4268 		return;
4269 
4270 	rte_eal_alarm_cancel(bnxt_check_fw_health, (void *)bp);
4271 	bp->flags &= ~BNXT_FLAG_FW_HEALTH_CHECK_SCHEDULED;
4272 }
4273 
4274 static bool bnxt_vf_pciid(uint16_t device_id)
4275 {
4276 	switch (device_id) {
4277 	case BROADCOM_DEV_ID_57304_VF:
4278 	case BROADCOM_DEV_ID_57406_VF:
4279 	case BROADCOM_DEV_ID_5731X_VF:
4280 	case BROADCOM_DEV_ID_5741X_VF:
4281 	case BROADCOM_DEV_ID_57414_VF:
4282 	case BROADCOM_DEV_ID_STRATUS_NIC_VF1:
4283 	case BROADCOM_DEV_ID_STRATUS_NIC_VF2:
4284 	case BROADCOM_DEV_ID_58802_VF:
4285 	case BROADCOM_DEV_ID_57500_VF1:
4286 	case BROADCOM_DEV_ID_57500_VF2:
4287 	case BROADCOM_DEV_ID_58818_VF:
4288 		/* FALLTHROUGH */
4289 		return true;
4290 	default:
4291 		return false;
4292 	}
4293 }
4294 
4295 /* Phase 5 device */
4296 static bool bnxt_p5_device(uint16_t device_id)
4297 {
4298 	switch (device_id) {
4299 	case BROADCOM_DEV_ID_57508:
4300 	case BROADCOM_DEV_ID_57504:
4301 	case BROADCOM_DEV_ID_57502:
4302 	case BROADCOM_DEV_ID_57508_MF1:
4303 	case BROADCOM_DEV_ID_57504_MF1:
4304 	case BROADCOM_DEV_ID_57502_MF1:
4305 	case BROADCOM_DEV_ID_57508_MF2:
4306 	case BROADCOM_DEV_ID_57504_MF2:
4307 	case BROADCOM_DEV_ID_57502_MF2:
4308 	case BROADCOM_DEV_ID_57500_VF1:
4309 	case BROADCOM_DEV_ID_57500_VF2:
4310 	case BROADCOM_DEV_ID_58812:
4311 	case BROADCOM_DEV_ID_58814:
4312 	case BROADCOM_DEV_ID_58818:
4313 	case BROADCOM_DEV_ID_58818_VF:
4314 		/* FALLTHROUGH */
4315 		return true;
4316 	default:
4317 		return false;
4318 	}
4319 }
4320 
4321 bool bnxt_stratus_device(struct bnxt *bp)
4322 {
4323 	uint16_t device_id = bp->pdev->id.device_id;
4324 
4325 	switch (device_id) {
4326 	case BROADCOM_DEV_ID_STRATUS_NIC:
4327 	case BROADCOM_DEV_ID_STRATUS_NIC_VF1:
4328 	case BROADCOM_DEV_ID_STRATUS_NIC_VF2:
4329 		/* FALLTHROUGH */
4330 		return true;
4331 	default:
4332 		return false;
4333 	}
4334 }
4335 
4336 static int bnxt_map_pci_bars(struct rte_eth_dev *eth_dev)
4337 {
4338 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
4339 	struct bnxt *bp = eth_dev->data->dev_private;
4340 
4341 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
4342 	bp->bar0 = (void *)pci_dev->mem_resource[0].addr;
4343 	bp->doorbell_base = (void *)pci_dev->mem_resource[2].addr;
4344 	if (!bp->bar0 || !bp->doorbell_base) {
4345 		PMD_DRV_LOG(ERR, "Unable to access Hardware\n");
4346 		return -ENODEV;
4347 	}
4348 
4349 	bp->eth_dev = eth_dev;
4350 	bp->pdev = pci_dev;
4351 
4352 	return 0;
4353 }
4354 
4355 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
4356 				  struct bnxt_ctx_pg_info *ctx_pg,
4357 				  uint32_t mem_size,
4358 				  const char *suffix,
4359 				  uint16_t idx)
4360 {
4361 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
4362 	const struct rte_memzone *mz = NULL;
4363 	char mz_name[RTE_MEMZONE_NAMESIZE];
4364 	rte_iova_t mz_phys_addr;
4365 	uint64_t valid_bits = 0;
4366 	uint32_t sz;
4367 	int i;
4368 
4369 	if (!mem_size)
4370 		return 0;
4371 
4372 	rmem->nr_pages = RTE_ALIGN_MUL_CEIL(mem_size, BNXT_PAGE_SIZE) /
4373 			 BNXT_PAGE_SIZE;
4374 	rmem->page_size = BNXT_PAGE_SIZE;
4375 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
4376 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
4377 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
4378 
4379 	valid_bits = PTU_PTE_VALID;
4380 
4381 	if (rmem->nr_pages > 1) {
4382 		snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
4383 			 "bnxt_ctx_pg_tbl%s_%x_%d",
4384 			 suffix, idx, bp->eth_dev->data->port_id);
4385 		mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
4386 		mz = rte_memzone_lookup(mz_name);
4387 		if (!mz) {
4388 			mz = rte_memzone_reserve_aligned(mz_name,
4389 						rmem->nr_pages * 8,
4390 						SOCKET_ID_ANY,
4391 						RTE_MEMZONE_2MB |
4392 						RTE_MEMZONE_SIZE_HINT_ONLY |
4393 						RTE_MEMZONE_IOVA_CONTIG,
4394 						BNXT_PAGE_SIZE);
4395 			if (mz == NULL)
4396 				return -ENOMEM;
4397 		}
4398 
4399 		memset(mz->addr, 0, mz->len);
4400 		mz_phys_addr = mz->iova;
4401 
4402 		rmem->pg_tbl = mz->addr;
4403 		rmem->pg_tbl_map = mz_phys_addr;
4404 		rmem->pg_tbl_mz = mz;
4405 	}
4406 
4407 	snprintf(mz_name, RTE_MEMZONE_NAMESIZE, "bnxt_ctx_%s_%x_%d",
4408 		 suffix, idx, bp->eth_dev->data->port_id);
4409 	mz = rte_memzone_lookup(mz_name);
4410 	if (!mz) {
4411 		mz = rte_memzone_reserve_aligned(mz_name,
4412 						 mem_size,
4413 						 SOCKET_ID_ANY,
4414 						 RTE_MEMZONE_1GB |
4415 						 RTE_MEMZONE_SIZE_HINT_ONLY |
4416 						 RTE_MEMZONE_IOVA_CONTIG,
4417 						 BNXT_PAGE_SIZE);
4418 		if (mz == NULL)
4419 			return -ENOMEM;
4420 	}
4421 
4422 	memset(mz->addr, 0, mz->len);
4423 	mz_phys_addr = mz->iova;
4424 
4425 	for (sz = 0, i = 0; sz < mem_size; sz += BNXT_PAGE_SIZE, i++) {
4426 		rmem->pg_arr[i] = ((char *)mz->addr) + sz;
4427 		rmem->dma_arr[i] = mz_phys_addr + sz;
4428 
4429 		if (rmem->nr_pages > 1) {
4430 			if (i == rmem->nr_pages - 2 &&
4431 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
4432 				valid_bits |= PTU_PTE_NEXT_TO_LAST;
4433 			else if (i == rmem->nr_pages - 1 &&
4434 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
4435 				valid_bits |= PTU_PTE_LAST;
4436 
4437 			rmem->pg_tbl[i] = rte_cpu_to_le_64(rmem->dma_arr[i] |
4438 							   valid_bits);
4439 		}
4440 	}
4441 
4442 	rmem->mz = mz;
4443 	if (rmem->vmem_size)
4444 		rmem->vmem = (void **)mz->addr;
4445 	rmem->dma_arr[0] = mz_phys_addr;
4446 	return 0;
4447 }
4448 
4449 static void bnxt_free_ctx_mem(struct bnxt *bp)
4450 {
4451 	int i;
4452 
4453 	if (!bp->ctx || !(bp->ctx->flags & BNXT_CTX_FLAG_INITED))
4454 		return;
4455 
4456 	bp->ctx->flags &= ~BNXT_CTX_FLAG_INITED;
4457 	rte_memzone_free(bp->ctx->qp_mem.ring_mem.mz);
4458 	rte_memzone_free(bp->ctx->srq_mem.ring_mem.mz);
4459 	rte_memzone_free(bp->ctx->cq_mem.ring_mem.mz);
4460 	rte_memzone_free(bp->ctx->vnic_mem.ring_mem.mz);
4461 	rte_memzone_free(bp->ctx->stat_mem.ring_mem.mz);
4462 	rte_memzone_free(bp->ctx->qp_mem.ring_mem.pg_tbl_mz);
4463 	rte_memzone_free(bp->ctx->srq_mem.ring_mem.pg_tbl_mz);
4464 	rte_memzone_free(bp->ctx->cq_mem.ring_mem.pg_tbl_mz);
4465 	rte_memzone_free(bp->ctx->vnic_mem.ring_mem.pg_tbl_mz);
4466 	rte_memzone_free(bp->ctx->stat_mem.ring_mem.pg_tbl_mz);
4467 
4468 	for (i = 0; i < bp->ctx->tqm_fp_rings_count + 1; i++) {
4469 		if (bp->ctx->tqm_mem[i])
4470 			rte_memzone_free(bp->ctx->tqm_mem[i]->ring_mem.mz);
4471 	}
4472 
4473 	rte_free(bp->ctx);
4474 	bp->ctx = NULL;
4475 }
4476 
4477 #define bnxt_roundup(x, y)   ((((x) + ((y) - 1)) / (y)) * (y))
4478 
4479 #define min_t(type, x, y) ({                    \
4480 	type __min1 = (x);                      \
4481 	type __min2 = (y);                      \
4482 	__min1 < __min2 ? __min1 : __min2; })
4483 
4484 #define max_t(type, x, y) ({                    \
4485 	type __max1 = (x);                      \
4486 	type __max2 = (y);                      \
4487 	__max1 > __max2 ? __max1 : __max2; })
4488 
4489 #define clamp_t(type, _x, min, max)     min_t(type, max_t(type, _x, min), max)
4490 
4491 int bnxt_alloc_ctx_mem(struct bnxt *bp)
4492 {
4493 	struct bnxt_ctx_pg_info *ctx_pg;
4494 	struct bnxt_ctx_mem_info *ctx;
4495 	uint32_t mem_size, ena, entries;
4496 	uint32_t entries_sp, min;
4497 	int i, rc;
4498 
4499 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
4500 	if (rc) {
4501 		PMD_DRV_LOG(ERR, "Query context mem capability failed\n");
4502 		return rc;
4503 	}
4504 	ctx = bp->ctx;
4505 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
4506 		return 0;
4507 
4508 	ctx_pg = &ctx->qp_mem;
4509 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries;
4510 	if (ctx->qp_entry_size) {
4511 		mem_size = ctx->qp_entry_size * ctx_pg->entries;
4512 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "qp_mem", 0);
4513 		if (rc)
4514 			return rc;
4515 	}
4516 
4517 	ctx_pg = &ctx->srq_mem;
4518 	ctx_pg->entries = ctx->srq_max_l2_entries;
4519 	if (ctx->srq_entry_size) {
4520 		mem_size = ctx->srq_entry_size * ctx_pg->entries;
4521 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "srq_mem", 0);
4522 		if (rc)
4523 			return rc;
4524 	}
4525 
4526 	ctx_pg = &ctx->cq_mem;
4527 	ctx_pg->entries = ctx->cq_max_l2_entries;
4528 	if (ctx->cq_entry_size) {
4529 		mem_size = ctx->cq_entry_size * ctx_pg->entries;
4530 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "cq_mem", 0);
4531 		if (rc)
4532 			return rc;
4533 	}
4534 
4535 	ctx_pg = &ctx->vnic_mem;
4536 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
4537 		ctx->vnic_max_ring_table_entries;
4538 	if (ctx->vnic_entry_size) {
4539 		mem_size = ctx->vnic_entry_size * ctx_pg->entries;
4540 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "vnic_mem", 0);
4541 		if (rc)
4542 			return rc;
4543 	}
4544 
4545 	ctx_pg = &ctx->stat_mem;
4546 	ctx_pg->entries = ctx->stat_max_entries;
4547 	if (ctx->stat_entry_size) {
4548 		mem_size = ctx->stat_entry_size * ctx_pg->entries;
4549 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "stat_mem", 0);
4550 		if (rc)
4551 			return rc;
4552 	}
4553 
4554 	min = ctx->tqm_min_entries_per_ring;
4555 
4556 	entries_sp = ctx->qp_max_l2_entries +
4557 		     ctx->vnic_max_vnic_entries +
4558 		     2 * ctx->qp_min_qp1_entries + min;
4559 	entries_sp = bnxt_roundup(entries_sp, ctx->tqm_entries_multiple);
4560 
4561 	entries = ctx->qp_max_l2_entries + ctx->qp_min_qp1_entries;
4562 	entries = bnxt_roundup(entries, ctx->tqm_entries_multiple);
4563 	entries = clamp_t(uint32_t, entries, min,
4564 			  ctx->tqm_max_entries_per_ring);
4565 	for (i = 0, ena = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
4566 		/* i=0 is for TQM_SP. i=1 to i=8 applies to RING0 to RING7.
4567 		 * i > 8 is other ext rings.
4568 		 */
4569 		ctx_pg = ctx->tqm_mem[i];
4570 		ctx_pg->entries = i ? entries : entries_sp;
4571 		if (ctx->tqm_entry_size) {
4572 			mem_size = ctx->tqm_entry_size * ctx_pg->entries;
4573 			rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size,
4574 						    "tqm_mem", i);
4575 			if (rc)
4576 				return rc;
4577 		}
4578 		if (i < BNXT_MAX_TQM_LEGACY_RINGS)
4579 			ena |= HWRM_FUNC_BACKING_STORE_CFG_INPUT_ENABLES_TQM_SP << i;
4580 		else
4581 			ena |= HWRM_FUNC_BACKING_STORE_CFG_INPUT_ENABLES_TQM_RING8;
4582 	}
4583 
4584 	ena |= FUNC_BACKING_STORE_CFG_INPUT_DFLT_ENABLES;
4585 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
4586 	if (rc)
4587 		PMD_DRV_LOG(ERR,
4588 			    "Failed to configure context mem: rc = %d\n", rc);
4589 	else
4590 		ctx->flags |= BNXT_CTX_FLAG_INITED;
4591 
4592 	return rc;
4593 }
4594 
4595 static int bnxt_alloc_stats_mem(struct bnxt *bp)
4596 {
4597 	struct rte_pci_device *pci_dev = bp->pdev;
4598 	char mz_name[RTE_MEMZONE_NAMESIZE];
4599 	const struct rte_memzone *mz = NULL;
4600 	uint32_t total_alloc_len;
4601 	rte_iova_t mz_phys_addr;
4602 
4603 	if (pci_dev->id.device_id == BROADCOM_DEV_ID_NS2)
4604 		return 0;
4605 
4606 	snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
4607 		 "bnxt_" PCI_PRI_FMT "-%s", pci_dev->addr.domain,
4608 		 pci_dev->addr.bus, pci_dev->addr.devid,
4609 		 pci_dev->addr.function, "rx_port_stats");
4610 	mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
4611 	mz = rte_memzone_lookup(mz_name);
4612 	total_alloc_len =
4613 		RTE_CACHE_LINE_ROUNDUP(sizeof(struct rx_port_stats) +
4614 				       sizeof(struct rx_port_stats_ext) + 512);
4615 	if (!mz) {
4616 		mz = rte_memzone_reserve(mz_name, total_alloc_len,
4617 					 SOCKET_ID_ANY,
4618 					 RTE_MEMZONE_2MB |
4619 					 RTE_MEMZONE_SIZE_HINT_ONLY |
4620 					 RTE_MEMZONE_IOVA_CONTIG);
4621 		if (mz == NULL)
4622 			return -ENOMEM;
4623 	}
4624 	memset(mz->addr, 0, mz->len);
4625 	mz_phys_addr = mz->iova;
4626 
4627 	bp->rx_mem_zone = (const void *)mz;
4628 	bp->hw_rx_port_stats = mz->addr;
4629 	bp->hw_rx_port_stats_map = mz_phys_addr;
4630 
4631 	snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
4632 		 "bnxt_" PCI_PRI_FMT "-%s", pci_dev->addr.domain,
4633 		 pci_dev->addr.bus, pci_dev->addr.devid,
4634 		 pci_dev->addr.function, "tx_port_stats");
4635 	mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
4636 	mz = rte_memzone_lookup(mz_name);
4637 	total_alloc_len =
4638 		RTE_CACHE_LINE_ROUNDUP(sizeof(struct tx_port_stats) +
4639 				       sizeof(struct tx_port_stats_ext) + 512);
4640 	if (!mz) {
4641 		mz = rte_memzone_reserve(mz_name,
4642 					 total_alloc_len,
4643 					 SOCKET_ID_ANY,
4644 					 RTE_MEMZONE_2MB |
4645 					 RTE_MEMZONE_SIZE_HINT_ONLY |
4646 					 RTE_MEMZONE_IOVA_CONTIG);
4647 		if (mz == NULL)
4648 			return -ENOMEM;
4649 	}
4650 	memset(mz->addr, 0, mz->len);
4651 	mz_phys_addr = mz->iova;
4652 
4653 	bp->tx_mem_zone = (const void *)mz;
4654 	bp->hw_tx_port_stats = mz->addr;
4655 	bp->hw_tx_port_stats_map = mz_phys_addr;
4656 	bp->flags |= BNXT_FLAG_PORT_STATS;
4657 
4658 	/* Display extended statistics if FW supports it */
4659 	if (bp->hwrm_spec_code < HWRM_SPEC_CODE_1_8_4 ||
4660 	    bp->hwrm_spec_code == HWRM_SPEC_CODE_1_9_0 ||
4661 	    !(bp->flags & BNXT_FLAG_EXT_STATS_SUPPORTED))
4662 		return 0;
4663 
4664 	bp->hw_rx_port_stats_ext = (void *)
4665 		((uint8_t *)bp->hw_rx_port_stats +
4666 		 sizeof(struct rx_port_stats));
4667 	bp->hw_rx_port_stats_ext_map = bp->hw_rx_port_stats_map +
4668 		sizeof(struct rx_port_stats);
4669 	bp->flags |= BNXT_FLAG_EXT_RX_PORT_STATS;
4670 
4671 	if (bp->hwrm_spec_code < HWRM_SPEC_CODE_1_9_2 ||
4672 	    bp->flags & BNXT_FLAG_EXT_STATS_SUPPORTED) {
4673 		bp->hw_tx_port_stats_ext = (void *)
4674 			((uint8_t *)bp->hw_tx_port_stats +
4675 			 sizeof(struct tx_port_stats));
4676 		bp->hw_tx_port_stats_ext_map =
4677 			bp->hw_tx_port_stats_map +
4678 			sizeof(struct tx_port_stats);
4679 		bp->flags |= BNXT_FLAG_EXT_TX_PORT_STATS;
4680 	}
4681 
4682 	return 0;
4683 }
4684 
4685 static int bnxt_setup_mac_addr(struct rte_eth_dev *eth_dev)
4686 {
4687 	struct bnxt *bp = eth_dev->data->dev_private;
4688 	int rc = 0;
4689 
4690 	eth_dev->data->mac_addrs = rte_zmalloc("bnxt_mac_addr_tbl",
4691 					       RTE_ETHER_ADDR_LEN *
4692 					       bp->max_l2_ctx,
4693 					       0);
4694 	if (eth_dev->data->mac_addrs == NULL) {
4695 		PMD_DRV_LOG(ERR, "Failed to alloc MAC addr tbl\n");
4696 		return -ENOMEM;
4697 	}
4698 
4699 	if (!BNXT_HAS_DFLT_MAC_SET(bp)) {
4700 		if (BNXT_PF(bp))
4701 			return -EINVAL;
4702 
4703 		/* Generate a random MAC address, if none was assigned by PF */
4704 		PMD_DRV_LOG(INFO, "VF MAC address not assigned by Host PF\n");
4705 		bnxt_eth_hw_addr_random(bp->mac_addr);
4706 		PMD_DRV_LOG(INFO,
4707 			    "Assign random MAC:%02X:%02X:%02X:%02X:%02X:%02X\n",
4708 			    bp->mac_addr[0], bp->mac_addr[1], bp->mac_addr[2],
4709 			    bp->mac_addr[3], bp->mac_addr[4], bp->mac_addr[5]);
4710 
4711 		rc = bnxt_hwrm_set_mac(bp);
4712 		if (rc)
4713 			return rc;
4714 	}
4715 
4716 	/* Copy the permanent MAC from the FUNC_QCAPS response */
4717 	memcpy(&eth_dev->data->mac_addrs[0], bp->mac_addr, RTE_ETHER_ADDR_LEN);
4718 
4719 	return rc;
4720 }
4721 
4722 static int bnxt_restore_dflt_mac(struct bnxt *bp)
4723 {
4724 	int rc = 0;
4725 
4726 	/* MAC is already configured in FW */
4727 	if (BNXT_HAS_DFLT_MAC_SET(bp))
4728 		return 0;
4729 
4730 	/* Restore the old MAC configured */
4731 	rc = bnxt_hwrm_set_mac(bp);
4732 	if (rc)
4733 		PMD_DRV_LOG(ERR, "Failed to restore MAC address\n");
4734 
4735 	return rc;
4736 }
4737 
4738 static void bnxt_config_vf_req_fwd(struct bnxt *bp)
4739 {
4740 	if (!BNXT_PF(bp))
4741 		return;
4742 
4743 	memset(bp->pf->vf_req_fwd, 0, sizeof(bp->pf->vf_req_fwd));
4744 
4745 	if (!(bp->fw_cap & BNXT_FW_CAP_LINK_ADMIN))
4746 		BNXT_HWRM_CMD_TO_FORWARD(HWRM_PORT_PHY_QCFG);
4747 	BNXT_HWRM_CMD_TO_FORWARD(HWRM_FUNC_CFG);
4748 	BNXT_HWRM_CMD_TO_FORWARD(HWRM_FUNC_VF_CFG);
4749 	BNXT_HWRM_CMD_TO_FORWARD(HWRM_CFA_L2_FILTER_ALLOC);
4750 	BNXT_HWRM_CMD_TO_FORWARD(HWRM_OEM_CMD);
4751 }
4752 
4753 uint16_t
4754 bnxt_get_svif(uint16_t port_id, bool func_svif,
4755 	      enum bnxt_ulp_intf_type type)
4756 {
4757 	struct rte_eth_dev *eth_dev;
4758 	struct bnxt *bp;
4759 
4760 	eth_dev = &rte_eth_devices[port_id];
4761 	if (BNXT_ETH_DEV_IS_REPRESENTOR(eth_dev)) {
4762 		struct bnxt_representor *vfr = eth_dev->data->dev_private;
4763 		if (!vfr)
4764 			return 0;
4765 
4766 		if (type == BNXT_ULP_INTF_TYPE_VF_REP)
4767 			return vfr->svif;
4768 
4769 		eth_dev = vfr->parent_dev;
4770 	}
4771 
4772 	bp = eth_dev->data->dev_private;
4773 
4774 	return func_svif ? bp->func_svif : bp->port_svif;
4775 }
4776 
4777 uint16_t
4778 bnxt_get_vnic_id(uint16_t port, enum bnxt_ulp_intf_type type)
4779 {
4780 	struct rte_eth_dev *eth_dev;
4781 	struct bnxt_vnic_info *vnic;
4782 	struct bnxt *bp;
4783 
4784 	eth_dev = &rte_eth_devices[port];
4785 	if (BNXT_ETH_DEV_IS_REPRESENTOR(eth_dev)) {
4786 		struct bnxt_representor *vfr = eth_dev->data->dev_private;
4787 		if (!vfr)
4788 			return 0;
4789 
4790 		if (type == BNXT_ULP_INTF_TYPE_VF_REP)
4791 			return vfr->dflt_vnic_id;
4792 
4793 		eth_dev = vfr->parent_dev;
4794 	}
4795 
4796 	bp = eth_dev->data->dev_private;
4797 
4798 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
4799 
4800 	return vnic->fw_vnic_id;
4801 }
4802 
4803 uint16_t
4804 bnxt_get_fw_func_id(uint16_t port, enum bnxt_ulp_intf_type type)
4805 {
4806 	struct rte_eth_dev *eth_dev;
4807 	struct bnxt *bp;
4808 
4809 	eth_dev = &rte_eth_devices[port];
4810 	if (BNXT_ETH_DEV_IS_REPRESENTOR(eth_dev)) {
4811 		struct bnxt_representor *vfr = eth_dev->data->dev_private;
4812 		if (!vfr)
4813 			return 0;
4814 
4815 		if (type == BNXT_ULP_INTF_TYPE_VF_REP)
4816 			return vfr->fw_fid;
4817 
4818 		eth_dev = vfr->parent_dev;
4819 	}
4820 
4821 	bp = eth_dev->data->dev_private;
4822 
4823 	return bp->fw_fid;
4824 }
4825 
4826 enum bnxt_ulp_intf_type
4827 bnxt_get_interface_type(uint16_t port)
4828 {
4829 	struct rte_eth_dev *eth_dev;
4830 	struct bnxt *bp;
4831 
4832 	eth_dev = &rte_eth_devices[port];
4833 	if (BNXT_ETH_DEV_IS_REPRESENTOR(eth_dev))
4834 		return BNXT_ULP_INTF_TYPE_VF_REP;
4835 
4836 	bp = eth_dev->data->dev_private;
4837 	if (BNXT_PF(bp))
4838 		return BNXT_ULP_INTF_TYPE_PF;
4839 	else if (BNXT_VF_IS_TRUSTED(bp))
4840 		return BNXT_ULP_INTF_TYPE_TRUSTED_VF;
4841 	else if (BNXT_VF(bp))
4842 		return BNXT_ULP_INTF_TYPE_VF;
4843 
4844 	return BNXT_ULP_INTF_TYPE_INVALID;
4845 }
4846 
4847 uint16_t
4848 bnxt_get_phy_port_id(uint16_t port_id)
4849 {
4850 	struct bnxt_representor *vfr;
4851 	struct rte_eth_dev *eth_dev;
4852 	struct bnxt *bp;
4853 
4854 	eth_dev = &rte_eth_devices[port_id];
4855 	if (BNXT_ETH_DEV_IS_REPRESENTOR(eth_dev)) {
4856 		vfr = eth_dev->data->dev_private;
4857 		if (!vfr)
4858 			return 0;
4859 
4860 		eth_dev = vfr->parent_dev;
4861 	}
4862 
4863 	bp = eth_dev->data->dev_private;
4864 
4865 	return BNXT_PF(bp) ? bp->pf->port_id : bp->parent->port_id;
4866 }
4867 
4868 uint16_t
4869 bnxt_get_parif(uint16_t port_id, enum bnxt_ulp_intf_type type)
4870 {
4871 	struct rte_eth_dev *eth_dev;
4872 	struct bnxt *bp;
4873 
4874 	eth_dev = &rte_eth_devices[port_id];
4875 	if (BNXT_ETH_DEV_IS_REPRESENTOR(eth_dev)) {
4876 		struct bnxt_representor *vfr = eth_dev->data->dev_private;
4877 		if (!vfr)
4878 			return 0;
4879 
4880 		if (type == BNXT_ULP_INTF_TYPE_VF_REP)
4881 			return vfr->fw_fid - 1;
4882 
4883 		eth_dev = vfr->parent_dev;
4884 	}
4885 
4886 	bp = eth_dev->data->dev_private;
4887 
4888 	return BNXT_PF(bp) ? bp->fw_fid - 1 : bp->parent->fid - 1;
4889 }
4890 
4891 uint16_t
4892 bnxt_get_vport(uint16_t port_id)
4893 {
4894 	return (1 << bnxt_get_phy_port_id(port_id));
4895 }
4896 
4897 static void bnxt_alloc_error_recovery_info(struct bnxt *bp)
4898 {
4899 	struct bnxt_error_recovery_info *info = bp->recovery_info;
4900 
4901 	if (info) {
4902 		if (!(bp->fw_cap & BNXT_FW_CAP_HCOMM_FW_STATUS))
4903 			memset(info, 0, sizeof(*info));
4904 		return;
4905 	}
4906 
4907 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
4908 		return;
4909 
4910 	info = rte_zmalloc("bnxt_hwrm_error_recovery_qcfg",
4911 			   sizeof(*info), 0);
4912 	if (!info)
4913 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
4914 
4915 	bp->recovery_info = info;
4916 }
4917 
4918 static void bnxt_check_fw_status(struct bnxt *bp)
4919 {
4920 	uint32_t fw_status;
4921 
4922 	if (!(bp->recovery_info &&
4923 	      (bp->fw_cap & BNXT_FW_CAP_HCOMM_FW_STATUS)))
4924 		return;
4925 
4926 	fw_status = bnxt_read_fw_status_reg(bp, BNXT_FW_STATUS_REG);
4927 	if (fw_status != BNXT_FW_STATUS_HEALTHY)
4928 		PMD_DRV_LOG(ERR, "Firmware not responding, status: %#x\n",
4929 			    fw_status);
4930 }
4931 
4932 static int bnxt_map_hcomm_fw_status_reg(struct bnxt *bp)
4933 {
4934 	struct bnxt_error_recovery_info *info = bp->recovery_info;
4935 	uint32_t status_loc;
4936 	uint32_t sig_ver;
4937 
4938 	rte_write32(HCOMM_STATUS_STRUCT_LOC, (uint8_t *)bp->bar0 +
4939 		    BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
4940 	sig_ver = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
4941 				   BNXT_GRCP_WINDOW_2_BASE +
4942 				   offsetof(struct hcomm_status,
4943 					    sig_ver)));
4944 	/* If the signature is absent, then FW does not support this feature */
4945 	if ((sig_ver & HCOMM_STATUS_SIGNATURE_MASK) !=
4946 	    HCOMM_STATUS_SIGNATURE_VAL)
4947 		return 0;
4948 
4949 	if (!info) {
4950 		info = rte_zmalloc("bnxt_hwrm_error_recovery_qcfg",
4951 				   sizeof(*info), 0);
4952 		if (!info)
4953 			return -ENOMEM;
4954 		bp->recovery_info = info;
4955 	} else {
4956 		memset(info, 0, sizeof(*info));
4957 	}
4958 
4959 	status_loc = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
4960 				      BNXT_GRCP_WINDOW_2_BASE +
4961 				      offsetof(struct hcomm_status,
4962 					       fw_status_loc)));
4963 
4964 	/* Only pre-map the FW health status GRC register */
4965 	if (BNXT_FW_STATUS_REG_TYPE(status_loc) != BNXT_FW_STATUS_REG_TYPE_GRC)
4966 		return 0;
4967 
4968 	info->status_regs[BNXT_FW_STATUS_REG] = status_loc;
4969 	info->mapped_status_regs[BNXT_FW_STATUS_REG] =
4970 		BNXT_GRCP_WINDOW_2_BASE + (status_loc & BNXT_GRCP_OFFSET_MASK);
4971 
4972 	rte_write32((status_loc & BNXT_GRCP_BASE_MASK), (uint8_t *)bp->bar0 +
4973 		    BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
4974 
4975 	bp->fw_cap |= BNXT_FW_CAP_HCOMM_FW_STATUS;
4976 
4977 	return 0;
4978 }
4979 
4980 /* This function gets the FW version along with the
4981  * capabilities(MAX and current) of the function, vnic,
4982  * error recovery, phy and other chip related info
4983  */
4984 static int bnxt_get_config(struct bnxt *bp)
4985 {
4986 	uint16_t mtu;
4987 	int rc = 0;
4988 
4989 	bp->fw_cap = 0;
4990 
4991 	rc = bnxt_map_hcomm_fw_status_reg(bp);
4992 	if (rc)
4993 		return rc;
4994 
4995 	rc = bnxt_hwrm_ver_get(bp, DFLT_HWRM_CMD_TIMEOUT);
4996 	if (rc) {
4997 		bnxt_check_fw_status(bp);
4998 		return rc;
4999 	}
5000 
5001 	rc = bnxt_hwrm_func_reset(bp);
5002 	if (rc)
5003 		return -EIO;
5004 
5005 	rc = bnxt_hwrm_vnic_qcaps(bp);
5006 	if (rc)
5007 		return rc;
5008 
5009 	rc = bnxt_hwrm_queue_qportcfg(bp);
5010 	if (rc)
5011 		return rc;
5012 
5013 	/* Get the MAX capabilities for this function.
5014 	 * This function also allocates context memory for TQM rings and
5015 	 * informs the firmware about this allocated backing store memory.
5016 	 */
5017 	rc = bnxt_hwrm_func_qcaps(bp);
5018 	if (rc)
5019 		return rc;
5020 
5021 	rc = bnxt_hwrm_func_qcfg(bp, &mtu);
5022 	if (rc)
5023 		return rc;
5024 
5025 	rc = bnxt_hwrm_cfa_adv_flow_mgmt_qcaps(bp);
5026 	if (rc)
5027 		return rc;
5028 
5029 	bnxt_hwrm_port_mac_qcfg(bp);
5030 
5031 	bnxt_hwrm_parent_pf_qcfg(bp);
5032 
5033 	bnxt_hwrm_port_phy_qcaps(bp);
5034 
5035 	bnxt_alloc_error_recovery_info(bp);
5036 	/* Get the adapter error recovery support info */
5037 	rc = bnxt_hwrm_error_recovery_qcfg(bp);
5038 	if (rc)
5039 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
5040 
5041 	bnxt_hwrm_port_led_qcaps(bp);
5042 
5043 	return 0;
5044 }
5045 
5046 static int
5047 bnxt_init_locks(struct bnxt *bp)
5048 {
5049 	int err;
5050 
5051 	err = pthread_mutex_init(&bp->flow_lock, NULL);
5052 	if (err) {
5053 		PMD_DRV_LOG(ERR, "Unable to initialize flow_lock\n");
5054 		return err;
5055 	}
5056 
5057 	err = pthread_mutex_init(&bp->def_cp_lock, NULL);
5058 	if (err) {
5059 		PMD_DRV_LOG(ERR, "Unable to initialize def_cp_lock\n");
5060 		return err;
5061 	}
5062 
5063 	err = pthread_mutex_init(&bp->health_check_lock, NULL);
5064 	if (err) {
5065 		PMD_DRV_LOG(ERR, "Unable to initialize health_check_lock\n");
5066 		return err;
5067 	}
5068 
5069 	err = pthread_mutex_init(&bp->err_recovery_lock, NULL);
5070 	if (err)
5071 		PMD_DRV_LOG(ERR, "Unable to initialize err_recovery_lock\n");
5072 
5073 	return err;
5074 }
5075 
5076 static int bnxt_init_resources(struct bnxt *bp, bool reconfig_dev)
5077 {
5078 	int rc = 0;
5079 
5080 	rc = bnxt_get_config(bp);
5081 	if (rc)
5082 		return rc;
5083 
5084 	if (!reconfig_dev) {
5085 		rc = bnxt_setup_mac_addr(bp->eth_dev);
5086 		if (rc)
5087 			return rc;
5088 	} else {
5089 		rc = bnxt_restore_dflt_mac(bp);
5090 		if (rc)
5091 			return rc;
5092 	}
5093 
5094 	bnxt_config_vf_req_fwd(bp);
5095 
5096 	rc = bnxt_hwrm_func_driver_register(bp);
5097 	if (rc) {
5098 		PMD_DRV_LOG(ERR, "Failed to register driver");
5099 		return -EBUSY;
5100 	}
5101 
5102 	if (BNXT_PF(bp)) {
5103 		if (bp->pdev->max_vfs) {
5104 			rc = bnxt_hwrm_allocate_vfs(bp, bp->pdev->max_vfs);
5105 			if (rc) {
5106 				PMD_DRV_LOG(ERR, "Failed to allocate VFs\n");
5107 				return rc;
5108 			}
5109 		} else {
5110 			rc = bnxt_hwrm_allocate_pf_only(bp);
5111 			if (rc) {
5112 				PMD_DRV_LOG(ERR,
5113 					    "Failed to allocate PF resources");
5114 				return rc;
5115 			}
5116 		}
5117 	}
5118 
5119 	rc = bnxt_alloc_mem(bp, reconfig_dev);
5120 	if (rc)
5121 		return rc;
5122 
5123 	rc = bnxt_setup_int(bp);
5124 	if (rc)
5125 		return rc;
5126 
5127 	rc = bnxt_request_int(bp);
5128 	if (rc)
5129 		return rc;
5130 
5131 	rc = bnxt_init_ctx_mem(bp);
5132 	if (rc) {
5133 		PMD_DRV_LOG(ERR, "Failed to init adv_flow_counters\n");
5134 		return rc;
5135 	}
5136 
5137 	return 0;
5138 }
5139 
5140 static int
5141 bnxt_parse_devarg_truflow(__rte_unused const char *key,
5142 			  const char *value, void *opaque_arg)
5143 {
5144 	struct bnxt *bp = opaque_arg;
5145 	unsigned long truflow;
5146 	char *end = NULL;
5147 
5148 	if (!value || !opaque_arg) {
5149 		PMD_DRV_LOG(ERR,
5150 			    "Invalid parameter passed to truflow devargs.\n");
5151 		return -EINVAL;
5152 	}
5153 
5154 	truflow = strtoul(value, &end, 10);
5155 	if (end == NULL || *end != '\0' ||
5156 	    (truflow == ULONG_MAX && errno == ERANGE)) {
5157 		PMD_DRV_LOG(ERR,
5158 			    "Invalid parameter passed to truflow devargs.\n");
5159 		return -EINVAL;
5160 	}
5161 
5162 	if (BNXT_DEVARG_TRUFLOW_INVALID(truflow)) {
5163 		PMD_DRV_LOG(ERR,
5164 			    "Invalid value passed to truflow devargs.\n");
5165 		return -EINVAL;
5166 	}
5167 
5168 	if (truflow) {
5169 		bp->flags |= BNXT_FLAG_TRUFLOW_EN;
5170 		PMD_DRV_LOG(INFO, "Host-based truflow feature enabled.\n");
5171 	} else {
5172 		bp->flags &= ~BNXT_FLAG_TRUFLOW_EN;
5173 		PMD_DRV_LOG(INFO, "Host-based truflow feature disabled.\n");
5174 	}
5175 
5176 	return 0;
5177 }
5178 
5179 static int
5180 bnxt_parse_devarg_flow_xstat(__rte_unused const char *key,
5181 			     const char *value, void *opaque_arg)
5182 {
5183 	struct bnxt *bp = opaque_arg;
5184 	unsigned long flow_xstat;
5185 	char *end = NULL;
5186 
5187 	if (!value || !opaque_arg) {
5188 		PMD_DRV_LOG(ERR,
5189 			    "Invalid parameter passed to flow_xstat devarg.\n");
5190 		return -EINVAL;
5191 	}
5192 
5193 	flow_xstat = strtoul(value, &end, 10);
5194 	if (end == NULL || *end != '\0' ||
5195 	    (flow_xstat == ULONG_MAX && errno == ERANGE)) {
5196 		PMD_DRV_LOG(ERR,
5197 			    "Invalid parameter passed to flow_xstat devarg.\n");
5198 		return -EINVAL;
5199 	}
5200 
5201 	if (BNXT_DEVARG_FLOW_XSTAT_INVALID(flow_xstat)) {
5202 		PMD_DRV_LOG(ERR,
5203 			    "Invalid value passed to flow_xstat devarg.\n");
5204 		return -EINVAL;
5205 	}
5206 
5207 	bp->flags |= BNXT_FLAG_FLOW_XSTATS_EN;
5208 	if (BNXT_FLOW_XSTATS_EN(bp))
5209 		PMD_DRV_LOG(INFO, "flow_xstat feature enabled.\n");
5210 
5211 	return 0;
5212 }
5213 
5214 static int
5215 bnxt_parse_devarg_max_num_kflows(__rte_unused const char *key,
5216 					const char *value, void *opaque_arg)
5217 {
5218 	struct bnxt *bp = opaque_arg;
5219 	unsigned long max_num_kflows;
5220 	char *end = NULL;
5221 
5222 	if (!value || !opaque_arg) {
5223 		PMD_DRV_LOG(ERR,
5224 			"Invalid parameter passed to max_num_kflows devarg.\n");
5225 		return -EINVAL;
5226 	}
5227 
5228 	max_num_kflows = strtoul(value, &end, 10);
5229 	if (end == NULL || *end != '\0' ||
5230 		(max_num_kflows == ULONG_MAX && errno == ERANGE)) {
5231 		PMD_DRV_LOG(ERR,
5232 			"Invalid parameter passed to max_num_kflows devarg.\n");
5233 		return -EINVAL;
5234 	}
5235 
5236 	if (bnxt_devarg_max_num_kflow_invalid(max_num_kflows)) {
5237 		PMD_DRV_LOG(ERR,
5238 			"Invalid value passed to max_num_kflows devarg.\n");
5239 		return -EINVAL;
5240 	}
5241 
5242 	bp->max_num_kflows = max_num_kflows;
5243 	if (bp->max_num_kflows)
5244 		PMD_DRV_LOG(INFO, "max_num_kflows set as %ldK.\n",
5245 				max_num_kflows);
5246 
5247 	return 0;
5248 }
5249 
5250 static int
5251 bnxt_parse_devarg_rep_is_pf(__rte_unused const char *key,
5252 			    const char *value, void *opaque_arg)
5253 {
5254 	struct bnxt_representor *vfr_bp = opaque_arg;
5255 	unsigned long rep_is_pf;
5256 	char *end = NULL;
5257 
5258 	if (!value || !opaque_arg) {
5259 		PMD_DRV_LOG(ERR,
5260 			    "Invalid parameter passed to rep_is_pf devargs.\n");
5261 		return -EINVAL;
5262 	}
5263 
5264 	rep_is_pf = strtoul(value, &end, 10);
5265 	if (end == NULL || *end != '\0' ||
5266 	    (rep_is_pf == ULONG_MAX && errno == ERANGE)) {
5267 		PMD_DRV_LOG(ERR,
5268 			    "Invalid parameter passed to rep_is_pf devargs.\n");
5269 		return -EINVAL;
5270 	}
5271 
5272 	if (BNXT_DEVARG_REP_IS_PF_INVALID(rep_is_pf)) {
5273 		PMD_DRV_LOG(ERR,
5274 			    "Invalid value passed to rep_is_pf devargs.\n");
5275 		return -EINVAL;
5276 	}
5277 
5278 	vfr_bp->flags |= rep_is_pf;
5279 	if (BNXT_REP_PF(vfr_bp))
5280 		PMD_DRV_LOG(INFO, "PF representor\n");
5281 	else
5282 		PMD_DRV_LOG(INFO, "VF representor\n");
5283 
5284 	return 0;
5285 }
5286 
5287 static int
5288 bnxt_parse_devarg_rep_based_pf(__rte_unused const char *key,
5289 			       const char *value, void *opaque_arg)
5290 {
5291 	struct bnxt_representor *vfr_bp = opaque_arg;
5292 	unsigned long rep_based_pf;
5293 	char *end = NULL;
5294 
5295 	if (!value || !opaque_arg) {
5296 		PMD_DRV_LOG(ERR,
5297 			    "Invalid parameter passed to rep_based_pf "
5298 			    "devargs.\n");
5299 		return -EINVAL;
5300 	}
5301 
5302 	rep_based_pf = strtoul(value, &end, 10);
5303 	if (end == NULL || *end != '\0' ||
5304 	    (rep_based_pf == ULONG_MAX && errno == ERANGE)) {
5305 		PMD_DRV_LOG(ERR,
5306 			    "Invalid parameter passed to rep_based_pf "
5307 			    "devargs.\n");
5308 		return -EINVAL;
5309 	}
5310 
5311 	if (BNXT_DEVARG_REP_BASED_PF_INVALID(rep_based_pf)) {
5312 		PMD_DRV_LOG(ERR,
5313 			    "Invalid value passed to rep_based_pf devargs.\n");
5314 		return -EINVAL;
5315 	}
5316 
5317 	vfr_bp->rep_based_pf = rep_based_pf;
5318 	vfr_bp->flags |= BNXT_REP_BASED_PF_VALID;
5319 
5320 	PMD_DRV_LOG(INFO, "rep-based-pf = %d\n", vfr_bp->rep_based_pf);
5321 
5322 	return 0;
5323 }
5324 
5325 static int
5326 bnxt_parse_devarg_rep_q_r2f(__rte_unused const char *key,
5327 			    const char *value, void *opaque_arg)
5328 {
5329 	struct bnxt_representor *vfr_bp = opaque_arg;
5330 	unsigned long rep_q_r2f;
5331 	char *end = NULL;
5332 
5333 	if (!value || !opaque_arg) {
5334 		PMD_DRV_LOG(ERR,
5335 			    "Invalid parameter passed to rep_q_r2f "
5336 			    "devargs.\n");
5337 		return -EINVAL;
5338 	}
5339 
5340 	rep_q_r2f = strtoul(value, &end, 10);
5341 	if (end == NULL || *end != '\0' ||
5342 	    (rep_q_r2f == ULONG_MAX && errno == ERANGE)) {
5343 		PMD_DRV_LOG(ERR,
5344 			    "Invalid parameter passed to rep_q_r2f "
5345 			    "devargs.\n");
5346 		return -EINVAL;
5347 	}
5348 
5349 	if (BNXT_DEVARG_REP_Q_R2F_INVALID(rep_q_r2f)) {
5350 		PMD_DRV_LOG(ERR,
5351 			    "Invalid value passed to rep_q_r2f devargs.\n");
5352 		return -EINVAL;
5353 	}
5354 
5355 	vfr_bp->rep_q_r2f = rep_q_r2f;
5356 	vfr_bp->flags |= BNXT_REP_Q_R2F_VALID;
5357 	PMD_DRV_LOG(INFO, "rep-q-r2f = %d\n", vfr_bp->rep_q_r2f);
5358 
5359 	return 0;
5360 }
5361 
5362 static int
5363 bnxt_parse_devarg_rep_q_f2r(__rte_unused const char *key,
5364 			    const char *value, void *opaque_arg)
5365 {
5366 	struct bnxt_representor *vfr_bp = opaque_arg;
5367 	unsigned long rep_q_f2r;
5368 	char *end = NULL;
5369 
5370 	if (!value || !opaque_arg) {
5371 		PMD_DRV_LOG(ERR,
5372 			    "Invalid parameter passed to rep_q_f2r "
5373 			    "devargs.\n");
5374 		return -EINVAL;
5375 	}
5376 
5377 	rep_q_f2r = strtoul(value, &end, 10);
5378 	if (end == NULL || *end != '\0' ||
5379 	    (rep_q_f2r == ULONG_MAX && errno == ERANGE)) {
5380 		PMD_DRV_LOG(ERR,
5381 			    "Invalid parameter passed to rep_q_f2r "
5382 			    "devargs.\n");
5383 		return -EINVAL;
5384 	}
5385 
5386 	if (BNXT_DEVARG_REP_Q_F2R_INVALID(rep_q_f2r)) {
5387 		PMD_DRV_LOG(ERR,
5388 			    "Invalid value passed to rep_q_f2r devargs.\n");
5389 		return -EINVAL;
5390 	}
5391 
5392 	vfr_bp->rep_q_f2r = rep_q_f2r;
5393 	vfr_bp->flags |= BNXT_REP_Q_F2R_VALID;
5394 	PMD_DRV_LOG(INFO, "rep-q-f2r = %d\n", vfr_bp->rep_q_f2r);
5395 
5396 	return 0;
5397 }
5398 
5399 static int
5400 bnxt_parse_devarg_rep_fc_r2f(__rte_unused const char *key,
5401 			     const char *value, void *opaque_arg)
5402 {
5403 	struct bnxt_representor *vfr_bp = opaque_arg;
5404 	unsigned long rep_fc_r2f;
5405 	char *end = NULL;
5406 
5407 	if (!value || !opaque_arg) {
5408 		PMD_DRV_LOG(ERR,
5409 			    "Invalid parameter passed to rep_fc_r2f "
5410 			    "devargs.\n");
5411 		return -EINVAL;
5412 	}
5413 
5414 	rep_fc_r2f = strtoul(value, &end, 10);
5415 	if (end == NULL || *end != '\0' ||
5416 	    (rep_fc_r2f == ULONG_MAX && errno == ERANGE)) {
5417 		PMD_DRV_LOG(ERR,
5418 			    "Invalid parameter passed to rep_fc_r2f "
5419 			    "devargs.\n");
5420 		return -EINVAL;
5421 	}
5422 
5423 	if (BNXT_DEVARG_REP_FC_R2F_INVALID(rep_fc_r2f)) {
5424 		PMD_DRV_LOG(ERR,
5425 			    "Invalid value passed to rep_fc_r2f devargs.\n");
5426 		return -EINVAL;
5427 	}
5428 
5429 	vfr_bp->flags |= BNXT_REP_FC_R2F_VALID;
5430 	vfr_bp->rep_fc_r2f = rep_fc_r2f;
5431 	PMD_DRV_LOG(INFO, "rep-fc-r2f = %lu\n", rep_fc_r2f);
5432 
5433 	return 0;
5434 }
5435 
5436 static int
5437 bnxt_parse_devarg_rep_fc_f2r(__rte_unused const char *key,
5438 			     const char *value, void *opaque_arg)
5439 {
5440 	struct bnxt_representor *vfr_bp = opaque_arg;
5441 	unsigned long rep_fc_f2r;
5442 	char *end = NULL;
5443 
5444 	if (!value || !opaque_arg) {
5445 		PMD_DRV_LOG(ERR,
5446 			    "Invalid parameter passed to rep_fc_f2r "
5447 			    "devargs.\n");
5448 		return -EINVAL;
5449 	}
5450 
5451 	rep_fc_f2r = strtoul(value, &end, 10);
5452 	if (end == NULL || *end != '\0' ||
5453 	    (rep_fc_f2r == ULONG_MAX && errno == ERANGE)) {
5454 		PMD_DRV_LOG(ERR,
5455 			    "Invalid parameter passed to rep_fc_f2r "
5456 			    "devargs.\n");
5457 		return -EINVAL;
5458 	}
5459 
5460 	if (BNXT_DEVARG_REP_FC_F2R_INVALID(rep_fc_f2r)) {
5461 		PMD_DRV_LOG(ERR,
5462 			    "Invalid value passed to rep_fc_f2r devargs.\n");
5463 		return -EINVAL;
5464 	}
5465 
5466 	vfr_bp->flags |= BNXT_REP_FC_F2R_VALID;
5467 	vfr_bp->rep_fc_f2r = rep_fc_f2r;
5468 	PMD_DRV_LOG(INFO, "rep-fc-f2r = %lu\n", rep_fc_f2r);
5469 
5470 	return 0;
5471 }
5472 
5473 static void
5474 bnxt_parse_dev_args(struct bnxt *bp, struct rte_devargs *devargs)
5475 {
5476 	struct rte_kvargs *kvlist;
5477 
5478 	if (devargs == NULL)
5479 		return;
5480 
5481 	kvlist = rte_kvargs_parse(devargs->args, bnxt_dev_args);
5482 	if (kvlist == NULL)
5483 		return;
5484 
5485 	/*
5486 	 * Handler for "truflow" devarg.
5487 	 * Invoked as for ex: "-a 0000:00:0d.0,host-based-truflow=1"
5488 	 */
5489 	rte_kvargs_process(kvlist, BNXT_DEVARG_TRUFLOW,
5490 			   bnxt_parse_devarg_truflow, bp);
5491 
5492 	/*
5493 	 * Handler for "flow_xstat" devarg.
5494 	 * Invoked as for ex: "-a 0000:00:0d.0,flow_xstat=1"
5495 	 */
5496 	rte_kvargs_process(kvlist, BNXT_DEVARG_FLOW_XSTAT,
5497 			   bnxt_parse_devarg_flow_xstat, bp);
5498 
5499 	/*
5500 	 * Handler for "max_num_kflows" devarg.
5501 	 * Invoked as for ex: "-a 000:00:0d.0,max_num_kflows=32"
5502 	 */
5503 	rte_kvargs_process(kvlist, BNXT_DEVARG_MAX_NUM_KFLOWS,
5504 			   bnxt_parse_devarg_max_num_kflows, bp);
5505 
5506 	rte_kvargs_free(kvlist);
5507 }
5508 
5509 static int bnxt_alloc_switch_domain(struct bnxt *bp)
5510 {
5511 	int rc = 0;
5512 
5513 	if (BNXT_PF(bp) || BNXT_VF_IS_TRUSTED(bp)) {
5514 		rc = rte_eth_switch_domain_alloc(&bp->switch_domain_id);
5515 		if (rc)
5516 			PMD_DRV_LOG(ERR,
5517 				    "Failed to alloc switch domain: %d\n", rc);
5518 		else
5519 			PMD_DRV_LOG(INFO,
5520 				    "Switch domain allocated %d\n",
5521 				    bp->switch_domain_id);
5522 	}
5523 
5524 	return rc;
5525 }
5526 
5527 /* Allocate and initialize various fields in bnxt struct that
5528  * need to be allocated/destroyed only once in the lifetime of the driver
5529  */
5530 static int bnxt_drv_init(struct rte_eth_dev *eth_dev)
5531 {
5532 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
5533 	struct bnxt *bp = eth_dev->data->dev_private;
5534 	int rc = 0;
5535 
5536 	bp->flags &= ~BNXT_FLAG_RX_VECTOR_PKT_MODE;
5537 
5538 	if (bnxt_vf_pciid(pci_dev->id.device_id))
5539 		bp->flags |= BNXT_FLAG_VF;
5540 
5541 	if (bnxt_p5_device(pci_dev->id.device_id))
5542 		bp->flags |= BNXT_FLAG_CHIP_P5;
5543 
5544 	if (pci_dev->id.device_id == BROADCOM_DEV_ID_58802 ||
5545 	    pci_dev->id.device_id == BROADCOM_DEV_ID_58804 ||
5546 	    pci_dev->id.device_id == BROADCOM_DEV_ID_58808 ||
5547 	    pci_dev->id.device_id == BROADCOM_DEV_ID_58802_VF)
5548 		bp->flags |= BNXT_FLAG_STINGRAY;
5549 
5550 	if (BNXT_TRUFLOW_EN(bp)) {
5551 		/* extra mbuf field is required to store CFA code from mark */
5552 		static const struct rte_mbuf_dynfield bnxt_cfa_code_dynfield_desc = {
5553 			.name = RTE_PMD_BNXT_CFA_CODE_DYNFIELD_NAME,
5554 			.size = sizeof(bnxt_cfa_code_dynfield_t),
5555 			.align = __alignof__(bnxt_cfa_code_dynfield_t),
5556 		};
5557 		bnxt_cfa_code_dynfield_offset =
5558 			rte_mbuf_dynfield_register(&bnxt_cfa_code_dynfield_desc);
5559 		if (bnxt_cfa_code_dynfield_offset < 0) {
5560 			PMD_DRV_LOG(ERR,
5561 			    "Failed to register mbuf field for TruFlow mark\n");
5562 			return -rte_errno;
5563 		}
5564 	}
5565 
5566 	rc = bnxt_map_pci_bars(eth_dev);
5567 	if (rc) {
5568 		PMD_DRV_LOG(ERR,
5569 			    "Failed to initialize board rc: %x\n", rc);
5570 		return rc;
5571 	}
5572 
5573 	rc = bnxt_alloc_pf_info(bp);
5574 	if (rc)
5575 		return rc;
5576 
5577 	rc = bnxt_alloc_link_info(bp);
5578 	if (rc)
5579 		return rc;
5580 
5581 	rc = bnxt_alloc_parent_info(bp);
5582 	if (rc)
5583 		return rc;
5584 
5585 	rc = bnxt_alloc_hwrm_resources(bp);
5586 	if (rc) {
5587 		PMD_DRV_LOG(ERR,
5588 			    "Failed to allocate hwrm resource rc: %x\n", rc);
5589 		return rc;
5590 	}
5591 	rc = bnxt_alloc_leds_info(bp);
5592 	if (rc)
5593 		return rc;
5594 
5595 	rc = bnxt_alloc_cos_queues(bp);
5596 	if (rc)
5597 		return rc;
5598 
5599 	rc = bnxt_init_locks(bp);
5600 	if (rc)
5601 		return rc;
5602 
5603 	rc = bnxt_alloc_switch_domain(bp);
5604 	if (rc)
5605 		return rc;
5606 
5607 	return rc;
5608 }
5609 
5610 static int
5611 bnxt_dev_init(struct rte_eth_dev *eth_dev, void *params __rte_unused)
5612 {
5613 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
5614 	static int version_printed;
5615 	struct bnxt *bp;
5616 	int rc;
5617 
5618 	if (version_printed++ == 0)
5619 		PMD_DRV_LOG(INFO, "%s\n", bnxt_version);
5620 
5621 	eth_dev->dev_ops = &bnxt_dev_ops;
5622 	eth_dev->rx_queue_count = bnxt_rx_queue_count_op;
5623 	eth_dev->rx_descriptor_status = bnxt_rx_descriptor_status_op;
5624 	eth_dev->tx_descriptor_status = bnxt_tx_descriptor_status_op;
5625 	eth_dev->rx_pkt_burst = &bnxt_recv_pkts;
5626 	eth_dev->tx_pkt_burst = &bnxt_xmit_pkts;
5627 
5628 	/*
5629 	 * For secondary processes, we don't initialise any further
5630 	 * as primary has already done this work.
5631 	 */
5632 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
5633 		return 0;
5634 
5635 	rte_eth_copy_pci_info(eth_dev, pci_dev);
5636 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
5637 
5638 	bp = eth_dev->data->dev_private;
5639 
5640 	/* Parse dev arguments passed on when starting the DPDK application. */
5641 	bnxt_parse_dev_args(bp, pci_dev->device.devargs);
5642 
5643 	rc = bnxt_drv_init(eth_dev);
5644 	if (rc)
5645 		goto error_free;
5646 
5647 	rc = bnxt_init_resources(bp, false);
5648 	if (rc)
5649 		goto error_free;
5650 
5651 	rc = bnxt_alloc_stats_mem(bp);
5652 	if (rc)
5653 		goto error_free;
5654 
5655 	PMD_DRV_LOG(INFO,
5656 		    DRV_MODULE_NAME "found at mem %" PRIX64 ", node addr %pM\n",
5657 		    pci_dev->mem_resource[0].phys_addr,
5658 		    pci_dev->mem_resource[0].addr);
5659 
5660 	return 0;
5661 
5662 error_free:
5663 	bnxt_dev_uninit(eth_dev);
5664 	return rc;
5665 }
5666 
5667 
5668 static void bnxt_free_ctx_mem_buf(struct bnxt_ctx_mem_buf_info *ctx)
5669 {
5670 	if (!ctx)
5671 		return;
5672 
5673 	if (ctx->va)
5674 		rte_free(ctx->va);
5675 
5676 	ctx->va = NULL;
5677 	ctx->dma = RTE_BAD_IOVA;
5678 	ctx->ctx_id = BNXT_CTX_VAL_INVAL;
5679 }
5680 
5681 static void bnxt_unregister_fc_ctx_mem(struct bnxt *bp)
5682 {
5683 	bnxt_hwrm_cfa_counter_cfg(bp, BNXT_DIR_RX,
5684 				  CFA_COUNTER_CFG_IN_COUNTER_TYPE_FC,
5685 				  bp->flow_stat->rx_fc_out_tbl.ctx_id,
5686 				  bp->flow_stat->max_fc,
5687 				  false);
5688 
5689 	bnxt_hwrm_cfa_counter_cfg(bp, BNXT_DIR_TX,
5690 				  CFA_COUNTER_CFG_IN_COUNTER_TYPE_FC,
5691 				  bp->flow_stat->tx_fc_out_tbl.ctx_id,
5692 				  bp->flow_stat->max_fc,
5693 				  false);
5694 
5695 	if (bp->flow_stat->rx_fc_in_tbl.ctx_id != BNXT_CTX_VAL_INVAL)
5696 		bnxt_hwrm_ctx_unrgtr(bp, bp->flow_stat->rx_fc_in_tbl.ctx_id);
5697 	bp->flow_stat->rx_fc_in_tbl.ctx_id = BNXT_CTX_VAL_INVAL;
5698 
5699 	if (bp->flow_stat->rx_fc_out_tbl.ctx_id != BNXT_CTX_VAL_INVAL)
5700 		bnxt_hwrm_ctx_unrgtr(bp, bp->flow_stat->rx_fc_out_tbl.ctx_id);
5701 	bp->flow_stat->rx_fc_out_tbl.ctx_id = BNXT_CTX_VAL_INVAL;
5702 
5703 	if (bp->flow_stat->tx_fc_in_tbl.ctx_id != BNXT_CTX_VAL_INVAL)
5704 		bnxt_hwrm_ctx_unrgtr(bp, bp->flow_stat->tx_fc_in_tbl.ctx_id);
5705 	bp->flow_stat->tx_fc_in_tbl.ctx_id = BNXT_CTX_VAL_INVAL;
5706 
5707 	if (bp->flow_stat->tx_fc_out_tbl.ctx_id != BNXT_CTX_VAL_INVAL)
5708 		bnxt_hwrm_ctx_unrgtr(bp, bp->flow_stat->tx_fc_out_tbl.ctx_id);
5709 	bp->flow_stat->tx_fc_out_tbl.ctx_id = BNXT_CTX_VAL_INVAL;
5710 }
5711 
5712 static void bnxt_uninit_fc_ctx_mem(struct bnxt *bp)
5713 {
5714 	bnxt_unregister_fc_ctx_mem(bp);
5715 
5716 	bnxt_free_ctx_mem_buf(&bp->flow_stat->rx_fc_in_tbl);
5717 	bnxt_free_ctx_mem_buf(&bp->flow_stat->rx_fc_out_tbl);
5718 	bnxt_free_ctx_mem_buf(&bp->flow_stat->tx_fc_in_tbl);
5719 	bnxt_free_ctx_mem_buf(&bp->flow_stat->tx_fc_out_tbl);
5720 }
5721 
5722 static void bnxt_uninit_ctx_mem(struct bnxt *bp)
5723 {
5724 	if (BNXT_FLOW_XSTATS_EN(bp))
5725 		bnxt_uninit_fc_ctx_mem(bp);
5726 }
5727 
5728 static void
5729 bnxt_free_error_recovery_info(struct bnxt *bp)
5730 {
5731 	rte_free(bp->recovery_info);
5732 	bp->recovery_info = NULL;
5733 	bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
5734 }
5735 
5736 static int
5737 bnxt_uninit_resources(struct bnxt *bp, bool reconfig_dev)
5738 {
5739 	int rc;
5740 
5741 	bnxt_free_int(bp);
5742 	bnxt_free_mem(bp, reconfig_dev);
5743 
5744 	bnxt_hwrm_func_buf_unrgtr(bp);
5745 	rte_free(bp->pf->vf_req_buf);
5746 
5747 	rc = bnxt_hwrm_func_driver_unregister(bp, 0);
5748 	bp->flags &= ~BNXT_FLAG_REGISTERED;
5749 	bnxt_free_ctx_mem(bp);
5750 	if (!reconfig_dev) {
5751 		bnxt_free_hwrm_resources(bp);
5752 		bnxt_free_error_recovery_info(bp);
5753 	}
5754 
5755 	bnxt_uninit_ctx_mem(bp);
5756 
5757 	bnxt_free_flow_stats_info(bp);
5758 	bnxt_free_rep_info(bp);
5759 	rte_free(bp->ptp_cfg);
5760 	bp->ptp_cfg = NULL;
5761 	return rc;
5762 }
5763 
5764 static int
5765 bnxt_dev_uninit(struct rte_eth_dev *eth_dev)
5766 {
5767 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
5768 		return -EPERM;
5769 
5770 	PMD_DRV_LOG(DEBUG, "Calling Device uninit\n");
5771 
5772 	if (eth_dev->state != RTE_ETH_DEV_UNUSED)
5773 		bnxt_dev_close_op(eth_dev);
5774 
5775 	return 0;
5776 }
5777 
5778 static int bnxt_pci_remove_dev_with_reps(struct rte_eth_dev *eth_dev)
5779 {
5780 	struct bnxt *bp = eth_dev->data->dev_private;
5781 	struct rte_eth_dev *vf_rep_eth_dev;
5782 	int ret = 0, i;
5783 
5784 	if (!bp)
5785 		return -EINVAL;
5786 
5787 	for (i = 0; i < bp->num_reps; i++) {
5788 		vf_rep_eth_dev = bp->rep_info[i].vfr_eth_dev;
5789 		if (!vf_rep_eth_dev)
5790 			continue;
5791 		PMD_DRV_LOG(DEBUG, "BNXT Port:%d VFR pci remove\n",
5792 			    vf_rep_eth_dev->data->port_id);
5793 		rte_eth_dev_destroy(vf_rep_eth_dev, bnxt_representor_uninit);
5794 	}
5795 	PMD_DRV_LOG(DEBUG, "BNXT Port:%d pci remove\n",
5796 		    eth_dev->data->port_id);
5797 	ret = rte_eth_dev_destroy(eth_dev, bnxt_dev_uninit);
5798 
5799 	return ret;
5800 }
5801 
5802 static void bnxt_free_rep_info(struct bnxt *bp)
5803 {
5804 	rte_free(bp->rep_info);
5805 	bp->rep_info = NULL;
5806 	rte_free(bp->cfa_code_map);
5807 	bp->cfa_code_map = NULL;
5808 }
5809 
5810 static int bnxt_init_rep_info(struct bnxt *bp)
5811 {
5812 	int i = 0, rc;
5813 
5814 	if (bp->rep_info)
5815 		return 0;
5816 
5817 	bp->rep_info = rte_zmalloc("bnxt_rep_info",
5818 				   sizeof(bp->rep_info[0]) * BNXT_MAX_VF_REPS,
5819 				   0);
5820 	if (!bp->rep_info) {
5821 		PMD_DRV_LOG(ERR, "Failed to alloc memory for rep info\n");
5822 		return -ENOMEM;
5823 	}
5824 	bp->cfa_code_map = rte_zmalloc("bnxt_cfa_code_map",
5825 				       sizeof(*bp->cfa_code_map) *
5826 				       BNXT_MAX_CFA_CODE, 0);
5827 	if (!bp->cfa_code_map) {
5828 		PMD_DRV_LOG(ERR, "Failed to alloc memory for cfa_code_map\n");
5829 		bnxt_free_rep_info(bp);
5830 		return -ENOMEM;
5831 	}
5832 
5833 	for (i = 0; i < BNXT_MAX_CFA_CODE; i++)
5834 		bp->cfa_code_map[i] = BNXT_VF_IDX_INVALID;
5835 
5836 	rc = pthread_mutex_init(&bp->rep_info->vfr_lock, NULL);
5837 	if (rc) {
5838 		PMD_DRV_LOG(ERR, "Unable to initialize vfr_lock\n");
5839 		bnxt_free_rep_info(bp);
5840 		return rc;
5841 	}
5842 
5843 	rc = pthread_mutex_init(&bp->rep_info->vfr_start_lock, NULL);
5844 	if (rc) {
5845 		PMD_DRV_LOG(ERR, "Unable to initialize vfr_start_lock\n");
5846 		bnxt_free_rep_info(bp);
5847 		return rc;
5848 	}
5849 
5850 	return rc;
5851 }
5852 
5853 static int bnxt_rep_port_probe(struct rte_pci_device *pci_dev,
5854 			       struct rte_eth_devargs *eth_da,
5855 			       struct rte_eth_dev *backing_eth_dev,
5856 			       const char *dev_args)
5857 {
5858 	struct rte_eth_dev *vf_rep_eth_dev;
5859 	char name[RTE_ETH_NAME_MAX_LEN];
5860 	struct bnxt *backing_bp;
5861 	uint16_t num_rep;
5862 	int i, ret = 0;
5863 	struct rte_kvargs *kvlist = NULL;
5864 
5865 	if (eth_da->type == RTE_ETH_REPRESENTOR_NONE)
5866 		return 0;
5867 	if (eth_da->type != RTE_ETH_REPRESENTOR_VF) {
5868 		PMD_DRV_LOG(ERR, "unsupported representor type %d\n",
5869 			    eth_da->type);
5870 		return -ENOTSUP;
5871 	}
5872 	num_rep = eth_da->nb_representor_ports;
5873 	if (num_rep > BNXT_MAX_VF_REPS) {
5874 		PMD_DRV_LOG(ERR, "nb_representor_ports = %d > %d MAX VF REPS\n",
5875 			    num_rep, BNXT_MAX_VF_REPS);
5876 		return -EINVAL;
5877 	}
5878 
5879 	if (num_rep >= RTE_MAX_ETHPORTS) {
5880 		PMD_DRV_LOG(ERR,
5881 			    "nb_representor_ports = %d > %d MAX ETHPORTS\n",
5882 			    num_rep, RTE_MAX_ETHPORTS);
5883 		return -EINVAL;
5884 	}
5885 
5886 	backing_bp = backing_eth_dev->data->dev_private;
5887 
5888 	if (!(BNXT_PF(backing_bp) || BNXT_VF_IS_TRUSTED(backing_bp))) {
5889 		PMD_DRV_LOG(ERR,
5890 			    "Not a PF or trusted VF. No Representor support\n");
5891 		/* Returning an error is not an option.
5892 		 * Applications are not handling this correctly
5893 		 */
5894 		return 0;
5895 	}
5896 
5897 	if (bnxt_init_rep_info(backing_bp))
5898 		return 0;
5899 
5900 	for (i = 0; i < num_rep; i++) {
5901 		struct bnxt_representor representor = {
5902 			.vf_id = eth_da->representor_ports[i],
5903 			.switch_domain_id = backing_bp->switch_domain_id,
5904 			.parent_dev = backing_eth_dev
5905 		};
5906 
5907 		if (representor.vf_id >= BNXT_MAX_VF_REPS) {
5908 			PMD_DRV_LOG(ERR, "VF-Rep id %d >= %d MAX VF ID\n",
5909 				    representor.vf_id, BNXT_MAX_VF_REPS);
5910 			continue;
5911 		}
5912 
5913 		/* representor port net_bdf_port */
5914 		snprintf(name, sizeof(name), "net_%s_representor_%d",
5915 			 pci_dev->device.name, eth_da->representor_ports[i]);
5916 
5917 		kvlist = rte_kvargs_parse(dev_args, bnxt_dev_args);
5918 		if (kvlist) {
5919 			/*
5920 			 * Handler for "rep_is_pf" devarg.
5921 			 * Invoked as for ex: "-a 000:00:0d.0,
5922 			 * rep-based-pf=<pf index> rep-is-pf=<VF=0 or PF=1>"
5923 			 */
5924 			ret = rte_kvargs_process(kvlist, BNXT_DEVARG_REP_IS_PF,
5925 						 bnxt_parse_devarg_rep_is_pf,
5926 						 (void *)&representor);
5927 			if (ret) {
5928 				ret = -EINVAL;
5929 				goto err;
5930 			}
5931 			/*
5932 			 * Handler for "rep_based_pf" devarg.
5933 			 * Invoked as for ex: "-a 000:00:0d.0,
5934 			 * rep-based-pf=<pf index> rep-is-pf=<VF=0 or PF=1>"
5935 			 */
5936 			ret = rte_kvargs_process(kvlist,
5937 						 BNXT_DEVARG_REP_BASED_PF,
5938 						 bnxt_parse_devarg_rep_based_pf,
5939 						 (void *)&representor);
5940 			if (ret) {
5941 				ret = -EINVAL;
5942 				goto err;
5943 			}
5944 			/*
5945 			 * Handler for "rep_based_pf" devarg.
5946 			 * Invoked as for ex: "-a 000:00:0d.0,
5947 			 * rep-based-pf=<pf index> rep-is-pf=<VF=0 or PF=1>"
5948 			 */
5949 			ret = rte_kvargs_process(kvlist, BNXT_DEVARG_REP_Q_R2F,
5950 						 bnxt_parse_devarg_rep_q_r2f,
5951 						 (void *)&representor);
5952 			if (ret) {
5953 				ret = -EINVAL;
5954 				goto err;
5955 			}
5956 			/*
5957 			 * Handler for "rep_based_pf" devarg.
5958 			 * Invoked as for ex: "-a 000:00:0d.0,
5959 			 * rep-based-pf=<pf index> rep-is-pf=<VF=0 or PF=1>"
5960 			 */
5961 			ret = rte_kvargs_process(kvlist, BNXT_DEVARG_REP_Q_F2R,
5962 						 bnxt_parse_devarg_rep_q_f2r,
5963 						 (void *)&representor);
5964 			if (ret) {
5965 				ret = -EINVAL;
5966 				goto err;
5967 			}
5968 			/*
5969 			 * Handler for "rep_based_pf" devarg.
5970 			 * Invoked as for ex: "-a 000:00:0d.0,
5971 			 * rep-based-pf=<pf index> rep-is-pf=<VF=0 or PF=1>"
5972 			 */
5973 			ret = rte_kvargs_process(kvlist, BNXT_DEVARG_REP_FC_R2F,
5974 						 bnxt_parse_devarg_rep_fc_r2f,
5975 						 (void *)&representor);
5976 			if (ret) {
5977 				ret = -EINVAL;
5978 				goto err;
5979 			}
5980 			/*
5981 			 * Handler for "rep_based_pf" devarg.
5982 			 * Invoked as for ex: "-a 000:00:0d.0,
5983 			 * rep-based-pf=<pf index> rep-is-pf=<VF=0 or PF=1>"
5984 			 */
5985 			ret = rte_kvargs_process(kvlist, BNXT_DEVARG_REP_FC_F2R,
5986 						 bnxt_parse_devarg_rep_fc_f2r,
5987 						 (void *)&representor);
5988 			if (ret) {
5989 				ret = -EINVAL;
5990 				goto err;
5991 			}
5992 		}
5993 
5994 		ret = rte_eth_dev_create(&pci_dev->device, name,
5995 					 sizeof(struct bnxt_representor),
5996 					 NULL, NULL,
5997 					 bnxt_representor_init,
5998 					 &representor);
5999 		if (ret) {
6000 			PMD_DRV_LOG(ERR, "failed to create bnxt vf "
6001 				    "representor %s.", name);
6002 			goto err;
6003 		}
6004 
6005 		vf_rep_eth_dev = rte_eth_dev_allocated(name);
6006 		if (!vf_rep_eth_dev) {
6007 			PMD_DRV_LOG(ERR, "Failed to find the eth_dev"
6008 				    " for VF-Rep: %s.", name);
6009 			ret = -ENODEV;
6010 			goto err;
6011 		}
6012 
6013 		PMD_DRV_LOG(DEBUG, "BNXT Port:%d VFR pci probe\n",
6014 			    backing_eth_dev->data->port_id);
6015 		backing_bp->rep_info[representor.vf_id].vfr_eth_dev =
6016 							 vf_rep_eth_dev;
6017 		backing_bp->num_reps++;
6018 
6019 	}
6020 
6021 	rte_kvargs_free(kvlist);
6022 	return 0;
6023 
6024 err:
6025 	/* If num_rep > 1, then rollback already created
6026 	 * ports, since we'll be failing the probe anyway
6027 	 */
6028 	if (num_rep > 1)
6029 		bnxt_pci_remove_dev_with_reps(backing_eth_dev);
6030 	rte_errno = -ret;
6031 	rte_kvargs_free(kvlist);
6032 
6033 	return ret;
6034 }
6035 
6036 static int bnxt_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
6037 			  struct rte_pci_device *pci_dev)
6038 {
6039 	struct rte_eth_devargs eth_da = { .nb_representor_ports = 0 };
6040 	struct rte_eth_dev *backing_eth_dev;
6041 	uint16_t num_rep;
6042 	int ret = 0;
6043 
6044 	if (pci_dev->device.devargs) {
6045 		ret = rte_eth_devargs_parse(pci_dev->device.devargs->args,
6046 					    &eth_da);
6047 		if (ret)
6048 			return ret;
6049 	}
6050 
6051 	num_rep = eth_da.nb_representor_ports;
6052 	PMD_DRV_LOG(DEBUG, "nb_representor_ports = %d\n",
6053 		    num_rep);
6054 
6055 	/* We could come here after first level of probe is already invoked
6056 	 * as part of an application bringup(OVS-DPDK vswitchd), so first check
6057 	 * for already allocated eth_dev for the backing device (PF/Trusted VF)
6058 	 */
6059 	backing_eth_dev = rte_eth_dev_allocated(pci_dev->device.name);
6060 	if (backing_eth_dev == NULL) {
6061 		ret = rte_eth_dev_create(&pci_dev->device, pci_dev->device.name,
6062 					 sizeof(struct bnxt),
6063 					 eth_dev_pci_specific_init, pci_dev,
6064 					 bnxt_dev_init, NULL);
6065 
6066 		if (ret || !num_rep)
6067 			return ret;
6068 
6069 		backing_eth_dev = rte_eth_dev_allocated(pci_dev->device.name);
6070 	}
6071 	PMD_DRV_LOG(DEBUG, "BNXT Port:%d pci probe\n",
6072 		    backing_eth_dev->data->port_id);
6073 
6074 	if (!num_rep)
6075 		return ret;
6076 
6077 	/* probe representor ports now */
6078 	ret = bnxt_rep_port_probe(pci_dev, &eth_da, backing_eth_dev,
6079 				  pci_dev->device.devargs->args);
6080 
6081 	return ret;
6082 }
6083 
6084 static int bnxt_pci_remove(struct rte_pci_device *pci_dev)
6085 {
6086 	struct rte_eth_dev *eth_dev;
6087 
6088 	eth_dev = rte_eth_dev_allocated(pci_dev->device.name);
6089 	if (!eth_dev)
6090 		return 0; /* Invoked typically only by OVS-DPDK, by the
6091 			   * time it comes here the eth_dev is already
6092 			   * deleted by rte_eth_dev_close(), so returning
6093 			   * +ve value will at least help in proper cleanup
6094 			   */
6095 
6096 	PMD_DRV_LOG(DEBUG, "BNXT Port:%d pci remove\n", eth_dev->data->port_id);
6097 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
6098 		if (eth_dev->data->dev_flags & RTE_ETH_DEV_REPRESENTOR)
6099 			return rte_eth_dev_destroy(eth_dev,
6100 						   bnxt_representor_uninit);
6101 		else
6102 			return rte_eth_dev_destroy(eth_dev,
6103 						   bnxt_dev_uninit);
6104 	} else {
6105 		return rte_eth_dev_pci_generic_remove(pci_dev, NULL);
6106 	}
6107 }
6108 
6109 static struct rte_pci_driver bnxt_rte_pmd = {
6110 	.id_table = bnxt_pci_id_map,
6111 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
6112 			RTE_PCI_DRV_PROBE_AGAIN, /* Needed in case of VF-REPs
6113 						  * and OVS-DPDK
6114 						  */
6115 	.probe = bnxt_pci_probe,
6116 	.remove = bnxt_pci_remove,
6117 };
6118 
6119 static bool
6120 is_device_supported(struct rte_eth_dev *dev, struct rte_pci_driver *drv)
6121 {
6122 	if (strcmp(dev->device->driver->name, drv->driver.name))
6123 		return false;
6124 
6125 	return true;
6126 }
6127 
6128 bool is_bnxt_supported(struct rte_eth_dev *dev)
6129 {
6130 	return is_device_supported(dev, &bnxt_rte_pmd);
6131 }
6132 
6133 RTE_LOG_REGISTER(bnxt_logtype_driver, pmd.net.bnxt.driver, NOTICE);
6134 RTE_PMD_REGISTER_PCI(net_bnxt, bnxt_rte_pmd);
6135 RTE_PMD_REGISTER_PCI_TABLE(net_bnxt, bnxt_pci_id_map);
6136 RTE_PMD_REGISTER_KMOD_DEP(net_bnxt, "* igb_uio | uio_pci_generic | vfio-pci");
6137