xref: /dpdk/drivers/net/bnxt/bnxt_ethdev.c (revision 34c0ba839baeaf9a8621e4e3524eec96f82dfce0)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Broadcom
3  * All rights reserved.
4  */
5 
6 #include <inttypes.h>
7 #include <stdbool.h>
8 
9 #include <rte_dev.h>
10 #include <rte_ethdev_driver.h>
11 #include <rte_ethdev_pci.h>
12 #include <rte_malloc.h>
13 #include <rte_cycles.h>
14 #include <rte_alarm.h>
15 
16 #include "bnxt.h"
17 #include "bnxt_cpr.h"
18 #include "bnxt_filter.h"
19 #include "bnxt_hwrm.h"
20 #include "bnxt_irq.h"
21 #include "bnxt_ring.h"
22 #include "bnxt_rxq.h"
23 #include "bnxt_rxr.h"
24 #include "bnxt_stats.h"
25 #include "bnxt_txq.h"
26 #include "bnxt_txr.h"
27 #include "bnxt_vnic.h"
28 #include "hsi_struct_def_dpdk.h"
29 #include "bnxt_nvm_defs.h"
30 #include "bnxt_util.h"
31 
32 #define DRV_MODULE_NAME		"bnxt"
33 static const char bnxt_version[] =
34 	"Broadcom NetXtreme driver " DRV_MODULE_NAME;
35 int bnxt_logtype_driver;
36 
37 #define PCI_VENDOR_ID_BROADCOM 0x14E4
38 
39 #define BROADCOM_DEV_ID_STRATUS_NIC_VF1 0x1606
40 #define BROADCOM_DEV_ID_STRATUS_NIC_VF2 0x1609
41 #define BROADCOM_DEV_ID_STRATUS_NIC 0x1614
42 #define BROADCOM_DEV_ID_57414_VF 0x16c1
43 #define BROADCOM_DEV_ID_57301 0x16c8
44 #define BROADCOM_DEV_ID_57302 0x16c9
45 #define BROADCOM_DEV_ID_57304_PF 0x16ca
46 #define BROADCOM_DEV_ID_57304_VF 0x16cb
47 #define BROADCOM_DEV_ID_57417_MF 0x16cc
48 #define BROADCOM_DEV_ID_NS2 0x16cd
49 #define BROADCOM_DEV_ID_57311 0x16ce
50 #define BROADCOM_DEV_ID_57312 0x16cf
51 #define BROADCOM_DEV_ID_57402 0x16d0
52 #define BROADCOM_DEV_ID_57404 0x16d1
53 #define BROADCOM_DEV_ID_57406_PF 0x16d2
54 #define BROADCOM_DEV_ID_57406_VF 0x16d3
55 #define BROADCOM_DEV_ID_57402_MF 0x16d4
56 #define BROADCOM_DEV_ID_57407_RJ45 0x16d5
57 #define BROADCOM_DEV_ID_57412 0x16d6
58 #define BROADCOM_DEV_ID_57414 0x16d7
59 #define BROADCOM_DEV_ID_57416_RJ45 0x16d8
60 #define BROADCOM_DEV_ID_57417_RJ45 0x16d9
61 #define BROADCOM_DEV_ID_5741X_VF 0x16dc
62 #define BROADCOM_DEV_ID_57412_MF 0x16de
63 #define BROADCOM_DEV_ID_57314 0x16df
64 #define BROADCOM_DEV_ID_57317_RJ45 0x16e0
65 #define BROADCOM_DEV_ID_5731X_VF 0x16e1
66 #define BROADCOM_DEV_ID_57417_SFP 0x16e2
67 #define BROADCOM_DEV_ID_57416_SFP 0x16e3
68 #define BROADCOM_DEV_ID_57317_SFP 0x16e4
69 #define BROADCOM_DEV_ID_57404_MF 0x16e7
70 #define BROADCOM_DEV_ID_57406_MF 0x16e8
71 #define BROADCOM_DEV_ID_57407_SFP 0x16e9
72 #define BROADCOM_DEV_ID_57407_MF 0x16ea
73 #define BROADCOM_DEV_ID_57414_MF 0x16ec
74 #define BROADCOM_DEV_ID_57416_MF 0x16ee
75 #define BROADCOM_DEV_ID_57508 0x1750
76 #define BROADCOM_DEV_ID_57504 0x1751
77 #define BROADCOM_DEV_ID_57502 0x1752
78 #define BROADCOM_DEV_ID_57500_VF1 0x1806
79 #define BROADCOM_DEV_ID_57500_VF2 0x1807
80 #define BROADCOM_DEV_ID_58802 0xd802
81 #define BROADCOM_DEV_ID_58804 0xd804
82 #define BROADCOM_DEV_ID_58808 0x16f0
83 #define BROADCOM_DEV_ID_58802_VF 0xd800
84 
85 static const struct rte_pci_id bnxt_pci_id_map[] = {
86 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
87 			 BROADCOM_DEV_ID_STRATUS_NIC_VF1) },
88 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
89 			 BROADCOM_DEV_ID_STRATUS_NIC_VF2) },
90 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_STRATUS_NIC) },
91 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_VF) },
92 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57301) },
93 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57302) },
94 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_PF) },
95 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_VF) },
96 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_NS2) },
97 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402) },
98 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404) },
99 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_PF) },
100 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_VF) },
101 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402_MF) },
102 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_RJ45) },
103 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404_MF) },
104 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_MF) },
105 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_SFP) },
106 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_MF) },
107 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5741X_VF) },
108 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5731X_VF) },
109 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57314) },
110 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_MF) },
111 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57311) },
112 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57312) },
113 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412) },
114 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414) },
115 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_RJ45) },
116 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_RJ45) },
117 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412_MF) },
118 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_RJ45) },
119 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_SFP) },
120 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_SFP) },
121 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_SFP) },
122 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_MF) },
123 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_MF) },
124 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58802) },
125 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58804) },
126 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58808) },
127 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58802_VF) },
128 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57508) },
129 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57504) },
130 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57502) },
131 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57500_VF1) },
132 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57500_VF2) },
133 	{ .vendor_id = 0, /* sentinel */ },
134 };
135 
136 #define BNXT_ETH_RSS_SUPPORT (	\
137 	ETH_RSS_IPV4 |		\
138 	ETH_RSS_NONFRAG_IPV4_TCP |	\
139 	ETH_RSS_NONFRAG_IPV4_UDP |	\
140 	ETH_RSS_IPV6 |		\
141 	ETH_RSS_NONFRAG_IPV6_TCP |	\
142 	ETH_RSS_NONFRAG_IPV6_UDP)
143 
144 #define BNXT_DEV_TX_OFFLOAD_SUPPORT (DEV_TX_OFFLOAD_VLAN_INSERT | \
145 				     DEV_TX_OFFLOAD_IPV4_CKSUM | \
146 				     DEV_TX_OFFLOAD_TCP_CKSUM | \
147 				     DEV_TX_OFFLOAD_UDP_CKSUM | \
148 				     DEV_TX_OFFLOAD_TCP_TSO | \
149 				     DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM | \
150 				     DEV_TX_OFFLOAD_VXLAN_TNL_TSO | \
151 				     DEV_TX_OFFLOAD_GRE_TNL_TSO | \
152 				     DEV_TX_OFFLOAD_IPIP_TNL_TSO | \
153 				     DEV_TX_OFFLOAD_GENEVE_TNL_TSO | \
154 				     DEV_TX_OFFLOAD_MULTI_SEGS)
155 
156 #define BNXT_DEV_RX_OFFLOAD_SUPPORT (DEV_RX_OFFLOAD_VLAN_FILTER | \
157 				     DEV_RX_OFFLOAD_VLAN_STRIP | \
158 				     DEV_RX_OFFLOAD_IPV4_CKSUM | \
159 				     DEV_RX_OFFLOAD_UDP_CKSUM | \
160 				     DEV_RX_OFFLOAD_TCP_CKSUM | \
161 				     DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM | \
162 				     DEV_RX_OFFLOAD_JUMBO_FRAME | \
163 				     DEV_RX_OFFLOAD_KEEP_CRC | \
164 				     DEV_RX_OFFLOAD_TCP_LRO)
165 
166 static int bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask);
167 static void bnxt_print_link_info(struct rte_eth_dev *eth_dev);
168 static int bnxt_mtu_set_op(struct rte_eth_dev *eth_dev, uint16_t new_mtu);
169 static int bnxt_dev_uninit(struct rte_eth_dev *eth_dev);
170 static int bnxt_init_resources(struct bnxt *bp, bool reconfig_dev);
171 static int bnxt_uninit_resources(struct bnxt *bp, bool reconfig_dev);
172 static void bnxt_cancel_fw_health_check(struct bnxt *bp);
173 
174 int is_bnxt_in_error(struct bnxt *bp)
175 {
176 	if (bp->flags & BNXT_FLAG_FATAL_ERROR)
177 		return -EIO;
178 	if (bp->flags & BNXT_FLAG_FW_RESET)
179 		return -EBUSY;
180 
181 	return 0;
182 }
183 
184 /***********************/
185 
186 /*
187  * High level utility functions
188  */
189 
190 static uint16_t bnxt_rss_ctxts(const struct bnxt *bp)
191 {
192 	if (!BNXT_CHIP_THOR(bp))
193 		return 1;
194 
195 	return RTE_ALIGN_MUL_CEIL(bp->rx_nr_rings,
196 				  BNXT_RSS_ENTRIES_PER_CTX_THOR) /
197 				    BNXT_RSS_ENTRIES_PER_CTX_THOR;
198 }
199 
200 static uint16_t  bnxt_rss_hash_tbl_size(const struct bnxt *bp)
201 {
202 	if (!BNXT_CHIP_THOR(bp))
203 		return HW_HASH_INDEX_SIZE;
204 
205 	return bnxt_rss_ctxts(bp) * BNXT_RSS_ENTRIES_PER_CTX_THOR;
206 }
207 
208 static void bnxt_free_mem(struct bnxt *bp, bool reconfig)
209 {
210 	bnxt_free_filter_mem(bp);
211 	bnxt_free_vnic_attributes(bp);
212 	bnxt_free_vnic_mem(bp);
213 
214 	/* tx/rx rings are configured as part of *_queue_setup callbacks.
215 	 * If the number of rings change across fw update,
216 	 * we don't have much choice except to warn the user.
217 	 */
218 	if (!reconfig) {
219 		bnxt_free_stats(bp);
220 		bnxt_free_tx_rings(bp);
221 		bnxt_free_rx_rings(bp);
222 	}
223 	bnxt_free_async_cp_ring(bp);
224 }
225 
226 static int bnxt_alloc_mem(struct bnxt *bp, bool reconfig)
227 {
228 	int rc;
229 
230 	rc = bnxt_alloc_ring_grps(bp);
231 	if (rc)
232 		goto alloc_mem_err;
233 
234 	rc = bnxt_alloc_async_ring_struct(bp);
235 	if (rc)
236 		goto alloc_mem_err;
237 
238 	rc = bnxt_alloc_vnic_mem(bp);
239 	if (rc)
240 		goto alloc_mem_err;
241 
242 	rc = bnxt_alloc_vnic_attributes(bp);
243 	if (rc)
244 		goto alloc_mem_err;
245 
246 	rc = bnxt_alloc_filter_mem(bp);
247 	if (rc)
248 		goto alloc_mem_err;
249 
250 	rc = bnxt_alloc_async_cp_ring(bp);
251 	if (rc)
252 		goto alloc_mem_err;
253 
254 	return 0;
255 
256 alloc_mem_err:
257 	bnxt_free_mem(bp, reconfig);
258 	return rc;
259 }
260 
261 static int bnxt_init_chip(struct bnxt *bp)
262 {
263 	struct bnxt_rx_queue *rxq;
264 	struct rte_eth_link new;
265 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(bp->eth_dev);
266 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
267 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
268 	uint64_t rx_offloads = dev_conf->rxmode.offloads;
269 	uint32_t intr_vector = 0;
270 	uint32_t queue_id, base = BNXT_MISC_VEC_ID;
271 	uint32_t vec = BNXT_MISC_VEC_ID;
272 	unsigned int i, j;
273 	int rc;
274 
275 	if (bp->eth_dev->data->mtu > RTE_ETHER_MTU) {
276 		bp->eth_dev->data->dev_conf.rxmode.offloads |=
277 			DEV_RX_OFFLOAD_JUMBO_FRAME;
278 		bp->flags |= BNXT_FLAG_JUMBO;
279 	} else {
280 		bp->eth_dev->data->dev_conf.rxmode.offloads &=
281 			~DEV_RX_OFFLOAD_JUMBO_FRAME;
282 		bp->flags &= ~BNXT_FLAG_JUMBO;
283 	}
284 
285 	/* THOR does not support ring groups.
286 	 * But we will use the array to save RSS context IDs.
287 	 */
288 	if (BNXT_CHIP_THOR(bp))
289 		bp->max_ring_grps = BNXT_MAX_RSS_CTXTS_THOR;
290 
291 	rc = bnxt_alloc_all_hwrm_stat_ctxs(bp);
292 	if (rc) {
293 		PMD_DRV_LOG(ERR, "HWRM stat ctx alloc failure rc: %x\n", rc);
294 		goto err_out;
295 	}
296 
297 	rc = bnxt_alloc_hwrm_rings(bp);
298 	if (rc) {
299 		PMD_DRV_LOG(ERR, "HWRM ring alloc failure rc: %x\n", rc);
300 		goto err_out;
301 	}
302 
303 	rc = bnxt_alloc_all_hwrm_ring_grps(bp);
304 	if (rc) {
305 		PMD_DRV_LOG(ERR, "HWRM ring grp alloc failure: %x\n", rc);
306 		goto err_out;
307 	}
308 
309 	rc = bnxt_mq_rx_configure(bp);
310 	if (rc) {
311 		PMD_DRV_LOG(ERR, "MQ mode configure failure rc: %x\n", rc);
312 		goto err_out;
313 	}
314 
315 	/* VNIC configuration */
316 	for (i = 0; i < bp->nr_vnics; i++) {
317 		struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
318 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
319 		uint32_t size = sizeof(*vnic->fw_grp_ids) * bp->max_ring_grps;
320 
321 		vnic->fw_grp_ids = rte_zmalloc("vnic_fw_grp_ids", size, 0);
322 		if (!vnic->fw_grp_ids) {
323 			PMD_DRV_LOG(ERR,
324 				    "Failed to alloc %d bytes for group ids\n",
325 				    size);
326 			rc = -ENOMEM;
327 			goto err_out;
328 		}
329 		memset(vnic->fw_grp_ids, -1, size);
330 
331 		PMD_DRV_LOG(DEBUG, "vnic[%d] = %p vnic->fw_grp_ids = %p\n",
332 			    i, vnic, vnic->fw_grp_ids);
333 
334 		rc = bnxt_hwrm_vnic_alloc(bp, vnic);
335 		if (rc) {
336 			PMD_DRV_LOG(ERR, "HWRM vnic %d alloc failure rc: %x\n",
337 				i, rc);
338 			goto err_out;
339 		}
340 
341 		/* Alloc RSS context only if RSS mode is enabled */
342 		if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS) {
343 			int j, nr_ctxs = bnxt_rss_ctxts(bp);
344 
345 			rc = 0;
346 			for (j = 0; j < nr_ctxs; j++) {
347 				rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, j);
348 				if (rc)
349 					break;
350 			}
351 			if (rc) {
352 				PMD_DRV_LOG(ERR,
353 				  "HWRM vnic %d ctx %d alloc failure rc: %x\n",
354 				  i, j, rc);
355 				goto err_out;
356 			}
357 			vnic->num_lb_ctxts = nr_ctxs;
358 		}
359 
360 		/*
361 		 * Firmware sets pf pair in default vnic cfg. If the VLAN strip
362 		 * setting is not available at this time, it will not be
363 		 * configured correctly in the CFA.
364 		 */
365 		if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
366 			vnic->vlan_strip = true;
367 		else
368 			vnic->vlan_strip = false;
369 
370 		rc = bnxt_hwrm_vnic_cfg(bp, vnic);
371 		if (rc) {
372 			PMD_DRV_LOG(ERR, "HWRM vnic %d cfg failure rc: %x\n",
373 				i, rc);
374 			goto err_out;
375 		}
376 
377 		rc = bnxt_set_hwrm_vnic_filters(bp, vnic);
378 		if (rc) {
379 			PMD_DRV_LOG(ERR,
380 				"HWRM vnic %d filter failure rc: %x\n",
381 				i, rc);
382 			goto err_out;
383 		}
384 
385 		for (j = 0; j < bp->rx_nr_rings; j++) {
386 			rxq = bp->eth_dev->data->rx_queues[j];
387 
388 			PMD_DRV_LOG(DEBUG,
389 				    "rxq[%d]->vnic=%p vnic->fw_grp_ids=%p\n",
390 				    j, rxq->vnic, rxq->vnic->fw_grp_ids);
391 
392 			if (BNXT_HAS_RING_GRPS(bp) && rxq->rx_deferred_start)
393 				rxq->vnic->fw_grp_ids[j] = INVALID_HW_RING_ID;
394 		}
395 
396 		rc = bnxt_vnic_rss_configure(bp, vnic);
397 		if (rc) {
398 			PMD_DRV_LOG(ERR,
399 				    "HWRM vnic set RSS failure rc: %x\n", rc);
400 			goto err_out;
401 		}
402 
403 		bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
404 
405 		if (bp->eth_dev->data->dev_conf.rxmode.offloads &
406 		    DEV_RX_OFFLOAD_TCP_LRO)
407 			bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 1);
408 		else
409 			bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 0);
410 	}
411 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, &bp->vnic_info[0], 0, NULL);
412 	if (rc) {
413 		PMD_DRV_LOG(ERR,
414 			"HWRM cfa l2 rx mask failure rc: %x\n", rc);
415 		goto err_out;
416 	}
417 
418 	/* check and configure queue intr-vector mapping */
419 	if ((rte_intr_cap_multiple(intr_handle) ||
420 	     !RTE_ETH_DEV_SRIOV(bp->eth_dev).active) &&
421 	    bp->eth_dev->data->dev_conf.intr_conf.rxq != 0) {
422 		intr_vector = bp->eth_dev->data->nb_rx_queues;
423 		PMD_DRV_LOG(DEBUG, "intr_vector = %d\n", intr_vector);
424 		if (intr_vector > bp->rx_cp_nr_rings) {
425 			PMD_DRV_LOG(ERR, "At most %d intr queues supported",
426 					bp->rx_cp_nr_rings);
427 			return -ENOTSUP;
428 		}
429 		rc = rte_intr_efd_enable(intr_handle, intr_vector);
430 		if (rc)
431 			return rc;
432 	}
433 
434 	if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
435 		intr_handle->intr_vec =
436 			rte_zmalloc("intr_vec",
437 				    bp->eth_dev->data->nb_rx_queues *
438 				    sizeof(int), 0);
439 		if (intr_handle->intr_vec == NULL) {
440 			PMD_DRV_LOG(ERR, "Failed to allocate %d rx_queues"
441 				" intr_vec", bp->eth_dev->data->nb_rx_queues);
442 			rc = -ENOMEM;
443 			goto err_disable;
444 		}
445 		PMD_DRV_LOG(DEBUG, "intr_handle->intr_vec = %p "
446 			"intr_handle->nb_efd = %d intr_handle->max_intr = %d\n",
447 			 intr_handle->intr_vec, intr_handle->nb_efd,
448 			intr_handle->max_intr);
449 		for (queue_id = 0; queue_id < bp->eth_dev->data->nb_rx_queues;
450 		     queue_id++) {
451 			intr_handle->intr_vec[queue_id] =
452 							vec + BNXT_RX_VEC_START;
453 			if (vec < base + intr_handle->nb_efd - 1)
454 				vec++;
455 		}
456 	}
457 
458 	/* enable uio/vfio intr/eventfd mapping */
459 	rc = rte_intr_enable(intr_handle);
460 	if (rc)
461 		goto err_free;
462 
463 	rc = bnxt_get_hwrm_link_config(bp, &new);
464 	if (rc) {
465 		PMD_DRV_LOG(ERR, "HWRM Get link config failure rc: %x\n", rc);
466 		goto err_free;
467 	}
468 
469 	if (!bp->link_info.link_up) {
470 		rc = bnxt_set_hwrm_link_config(bp, true);
471 		if (rc) {
472 			PMD_DRV_LOG(ERR,
473 				"HWRM link config failure rc: %x\n", rc);
474 			goto err_free;
475 		}
476 	}
477 	bnxt_print_link_info(bp->eth_dev);
478 
479 	return 0;
480 
481 err_free:
482 	rte_free(intr_handle->intr_vec);
483 err_disable:
484 	rte_intr_efd_disable(intr_handle);
485 err_out:
486 	/* Some of the error status returned by FW may not be from errno.h */
487 	if (rc > 0)
488 		rc = -EIO;
489 
490 	return rc;
491 }
492 
493 static int bnxt_shutdown_nic(struct bnxt *bp)
494 {
495 	bnxt_free_all_hwrm_resources(bp);
496 	bnxt_free_all_filters(bp);
497 	bnxt_free_all_vnics(bp);
498 	return 0;
499 }
500 
501 static int bnxt_init_nic(struct bnxt *bp)
502 {
503 	int rc;
504 
505 	if (BNXT_HAS_RING_GRPS(bp)) {
506 		rc = bnxt_init_ring_grps(bp);
507 		if (rc)
508 			return rc;
509 	}
510 
511 	bnxt_init_vnics(bp);
512 	bnxt_init_filters(bp);
513 
514 	return 0;
515 }
516 
517 /*
518  * Device configuration and status function
519  */
520 
521 static int bnxt_dev_info_get_op(struct rte_eth_dev *eth_dev,
522 				struct rte_eth_dev_info *dev_info)
523 {
524 	struct bnxt *bp = eth_dev->data->dev_private;
525 	uint16_t max_vnics, i, j, vpool, vrxq;
526 	unsigned int max_rx_rings;
527 	int rc;
528 
529 	rc = is_bnxt_in_error(bp);
530 	if (rc)
531 		return rc;
532 
533 	/* MAC Specifics */
534 	dev_info->max_mac_addrs = bp->max_l2_ctx;
535 	dev_info->max_hash_mac_addrs = 0;
536 
537 	/* PF/VF specifics */
538 	if (BNXT_PF(bp))
539 		dev_info->max_vfs = bp->pdev->max_vfs;
540 	max_rx_rings = RTE_MIN(bp->max_rx_rings, bp->max_stat_ctx);
541 	/* For the sake of symmetry, max_rx_queues = max_tx_queues */
542 	dev_info->max_rx_queues = max_rx_rings;
543 	dev_info->max_tx_queues = max_rx_rings;
544 	dev_info->reta_size = bnxt_rss_hash_tbl_size(bp);
545 	dev_info->hash_key_size = 40;
546 	max_vnics = bp->max_vnics;
547 
548 	/* MTU specifics */
549 	dev_info->min_mtu = RTE_ETHER_MIN_MTU;
550 	dev_info->max_mtu = BNXT_MAX_MTU;
551 
552 	/* Fast path specifics */
553 	dev_info->min_rx_bufsize = 1;
554 	dev_info->max_rx_pktlen = BNXT_MAX_PKT_LEN;
555 
556 	dev_info->rx_offload_capa = BNXT_DEV_RX_OFFLOAD_SUPPORT;
557 	if (bp->flags & BNXT_FLAG_PTP_SUPPORTED)
558 		dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_TIMESTAMP;
559 	dev_info->tx_offload_capa = BNXT_DEV_TX_OFFLOAD_SUPPORT;
560 	dev_info->flow_type_rss_offloads = BNXT_ETH_RSS_SUPPORT;
561 
562 	/* *INDENT-OFF* */
563 	dev_info->default_rxconf = (struct rte_eth_rxconf) {
564 		.rx_thresh = {
565 			.pthresh = 8,
566 			.hthresh = 8,
567 			.wthresh = 0,
568 		},
569 		.rx_free_thresh = 32,
570 		/* If no descriptors available, pkts are dropped by default */
571 		.rx_drop_en = 1,
572 	};
573 
574 	dev_info->default_txconf = (struct rte_eth_txconf) {
575 		.tx_thresh = {
576 			.pthresh = 32,
577 			.hthresh = 0,
578 			.wthresh = 0,
579 		},
580 		.tx_free_thresh = 32,
581 		.tx_rs_thresh = 32,
582 	};
583 	eth_dev->data->dev_conf.intr_conf.lsc = 1;
584 
585 	eth_dev->data->dev_conf.intr_conf.rxq = 1;
586 	dev_info->rx_desc_lim.nb_min = BNXT_MIN_RING_DESC;
587 	dev_info->rx_desc_lim.nb_max = BNXT_MAX_RX_RING_DESC;
588 	dev_info->tx_desc_lim.nb_min = BNXT_MIN_RING_DESC;
589 	dev_info->tx_desc_lim.nb_max = BNXT_MAX_TX_RING_DESC;
590 
591 	/* *INDENT-ON* */
592 
593 	/*
594 	 * TODO: default_rxconf, default_txconf, rx_desc_lim, and tx_desc_lim
595 	 *       need further investigation.
596 	 */
597 
598 	/* VMDq resources */
599 	vpool = 64; /* ETH_64_POOLS */
600 	vrxq = 128; /* ETH_VMDQ_DCB_NUM_QUEUES */
601 	for (i = 0; i < 4; vpool >>= 1, i++) {
602 		if (max_vnics > vpool) {
603 			for (j = 0; j < 5; vrxq >>= 1, j++) {
604 				if (dev_info->max_rx_queues > vrxq) {
605 					if (vpool > vrxq)
606 						vpool = vrxq;
607 					goto found;
608 				}
609 			}
610 			/* Not enough resources to support VMDq */
611 			break;
612 		}
613 	}
614 	/* Not enough resources to support VMDq */
615 	vpool = 0;
616 	vrxq = 0;
617 found:
618 	dev_info->max_vmdq_pools = vpool;
619 	dev_info->vmdq_queue_num = vrxq;
620 
621 	dev_info->vmdq_pool_base = 0;
622 	dev_info->vmdq_queue_base = 0;
623 
624 	return 0;
625 }
626 
627 /* Configure the device based on the configuration provided */
628 static int bnxt_dev_configure_op(struct rte_eth_dev *eth_dev)
629 {
630 	struct bnxt *bp = eth_dev->data->dev_private;
631 	uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads;
632 	int rc;
633 
634 	bp->rx_queues = (void *)eth_dev->data->rx_queues;
635 	bp->tx_queues = (void *)eth_dev->data->tx_queues;
636 	bp->tx_nr_rings = eth_dev->data->nb_tx_queues;
637 	bp->rx_nr_rings = eth_dev->data->nb_rx_queues;
638 
639 	rc = is_bnxt_in_error(bp);
640 	if (rc)
641 		return rc;
642 
643 	if (BNXT_VF(bp) && (bp->flags & BNXT_FLAG_NEW_RM)) {
644 		rc = bnxt_hwrm_check_vf_rings(bp);
645 		if (rc) {
646 			PMD_DRV_LOG(ERR, "HWRM insufficient resources\n");
647 			return -ENOSPC;
648 		}
649 
650 		rc = bnxt_hwrm_func_reserve_vf_resc(bp, false);
651 		if (rc) {
652 			PMD_DRV_LOG(ERR, "HWRM resource alloc fail:%x\n", rc);
653 			return -ENOSPC;
654 		}
655 	} else {
656 		/* legacy driver needs to get updated values */
657 		rc = bnxt_hwrm_func_qcaps(bp);
658 		if (rc) {
659 			PMD_DRV_LOG(ERR, "hwrm func qcaps fail:%d\n", rc);
660 			return rc;
661 		}
662 	}
663 
664 	/* Inherit new configurations */
665 	if (eth_dev->data->nb_rx_queues > bp->max_rx_rings ||
666 	    eth_dev->data->nb_tx_queues > bp->max_tx_rings ||
667 	    eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues
668 		+ BNXT_NUM_ASYNC_CPR(bp) > bp->max_cp_rings ||
669 	    eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues >
670 	    bp->max_stat_ctx)
671 		goto resource_error;
672 
673 	if (BNXT_HAS_RING_GRPS(bp) &&
674 	    (uint32_t)(eth_dev->data->nb_rx_queues) > bp->max_ring_grps)
675 		goto resource_error;
676 
677 	if (!(eth_dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS) &&
678 	    bp->max_vnics < eth_dev->data->nb_rx_queues)
679 		goto resource_error;
680 
681 	bp->rx_cp_nr_rings = bp->rx_nr_rings;
682 	bp->tx_cp_nr_rings = bp->tx_nr_rings;
683 
684 	if (rx_offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
685 		eth_dev->data->mtu =
686 			eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
687 			RTE_ETHER_HDR_LEN - RTE_ETHER_CRC_LEN - VLAN_TAG_SIZE *
688 			BNXT_NUM_VLANS;
689 		bnxt_mtu_set_op(eth_dev, eth_dev->data->mtu);
690 	}
691 	return 0;
692 
693 resource_error:
694 	PMD_DRV_LOG(ERR,
695 		    "Insufficient resources to support requested config\n");
696 	PMD_DRV_LOG(ERR,
697 		    "Num Queues Requested: Tx %d, Rx %d\n",
698 		    eth_dev->data->nb_tx_queues,
699 		    eth_dev->data->nb_rx_queues);
700 	PMD_DRV_LOG(ERR,
701 		    "MAX: TxQ %d, RxQ %d, CQ %d Stat %d, Grp %d, Vnic %d\n",
702 		    bp->max_tx_rings, bp->max_rx_rings, bp->max_cp_rings,
703 		    bp->max_stat_ctx, bp->max_ring_grps, bp->max_vnics);
704 	return -ENOSPC;
705 }
706 
707 static void bnxt_print_link_info(struct rte_eth_dev *eth_dev)
708 {
709 	struct rte_eth_link *link = &eth_dev->data->dev_link;
710 
711 	if (link->link_status)
712 		PMD_DRV_LOG(INFO, "Port %d Link Up - speed %u Mbps - %s\n",
713 			eth_dev->data->port_id,
714 			(uint32_t)link->link_speed,
715 			(link->link_duplex == ETH_LINK_FULL_DUPLEX) ?
716 			("full-duplex") : ("half-duplex\n"));
717 	else
718 		PMD_DRV_LOG(INFO, "Port %d Link Down\n",
719 			eth_dev->data->port_id);
720 }
721 
722 /*
723  * Determine whether the current configuration requires support for scattered
724  * receive; return 1 if scattered receive is required and 0 if not.
725  */
726 static int bnxt_scattered_rx(struct rte_eth_dev *eth_dev)
727 {
728 	uint16_t buf_size;
729 	int i;
730 
731 	for (i = 0; i < eth_dev->data->nb_rx_queues; i++) {
732 		struct bnxt_rx_queue *rxq = eth_dev->data->rx_queues[i];
733 
734 		buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
735 				      RTE_PKTMBUF_HEADROOM);
736 		if (eth_dev->data->dev_conf.rxmode.max_rx_pkt_len > buf_size)
737 			return 1;
738 	}
739 	return 0;
740 }
741 
742 static eth_rx_burst_t
743 bnxt_receive_function(__rte_unused struct rte_eth_dev *eth_dev)
744 {
745 #ifdef RTE_ARCH_X86
746 #ifndef RTE_LIBRTE_IEEE1588
747 	/*
748 	 * Vector mode receive can be enabled only if scatter rx is not
749 	 * in use and rx offloads are limited to VLAN stripping and
750 	 * CRC stripping.
751 	 */
752 	if (!eth_dev->data->scattered_rx &&
753 	    !(eth_dev->data->dev_conf.rxmode.offloads &
754 	      ~(DEV_RX_OFFLOAD_VLAN_STRIP |
755 		DEV_RX_OFFLOAD_KEEP_CRC |
756 		DEV_RX_OFFLOAD_JUMBO_FRAME |
757 		DEV_RX_OFFLOAD_IPV4_CKSUM |
758 		DEV_RX_OFFLOAD_UDP_CKSUM |
759 		DEV_RX_OFFLOAD_TCP_CKSUM |
760 		DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
761 		DEV_RX_OFFLOAD_VLAN_FILTER))) {
762 		PMD_DRV_LOG(INFO, "Using vector mode receive for port %d\n",
763 			    eth_dev->data->port_id);
764 		return bnxt_recv_pkts_vec;
765 	}
766 	PMD_DRV_LOG(INFO, "Vector mode receive disabled for port %d\n",
767 		    eth_dev->data->port_id);
768 	PMD_DRV_LOG(INFO,
769 		    "Port %d scatter: %d rx offload: %" PRIX64 "\n",
770 		    eth_dev->data->port_id,
771 		    eth_dev->data->scattered_rx,
772 		    eth_dev->data->dev_conf.rxmode.offloads);
773 #endif
774 #endif
775 	return bnxt_recv_pkts;
776 }
777 
778 static eth_tx_burst_t
779 bnxt_transmit_function(__rte_unused struct rte_eth_dev *eth_dev)
780 {
781 #ifdef RTE_ARCH_X86
782 #ifndef RTE_LIBRTE_IEEE1588
783 	/*
784 	 * Vector mode transmit can be enabled only if not using scatter rx
785 	 * or tx offloads.
786 	 */
787 	if (!eth_dev->data->scattered_rx &&
788 	    !eth_dev->data->dev_conf.txmode.offloads) {
789 		PMD_DRV_LOG(INFO, "Using vector mode transmit for port %d\n",
790 			    eth_dev->data->port_id);
791 		return bnxt_xmit_pkts_vec;
792 	}
793 	PMD_DRV_LOG(INFO, "Vector mode transmit disabled for port %d\n",
794 		    eth_dev->data->port_id);
795 	PMD_DRV_LOG(INFO,
796 		    "Port %d scatter: %d tx offload: %" PRIX64 "\n",
797 		    eth_dev->data->port_id,
798 		    eth_dev->data->scattered_rx,
799 		    eth_dev->data->dev_conf.txmode.offloads);
800 #endif
801 #endif
802 	return bnxt_xmit_pkts;
803 }
804 
805 static int bnxt_handle_if_change_status(struct bnxt *bp)
806 {
807 	int rc;
808 
809 	/* Since fw has undergone a reset and lost all contexts,
810 	 * set fatal flag to not issue hwrm during cleanup
811 	 */
812 	bp->flags |= BNXT_FLAG_FATAL_ERROR;
813 	bnxt_uninit_resources(bp, true);
814 
815 	/* clear fatal flag so that re-init happens */
816 	bp->flags &= ~BNXT_FLAG_FATAL_ERROR;
817 	rc = bnxt_init_resources(bp, true);
818 
819 	bp->flags &= ~BNXT_FLAG_IF_CHANGE_HOT_FW_RESET_DONE;
820 
821 	return rc;
822 }
823 
824 static int bnxt_dev_start_op(struct rte_eth_dev *eth_dev)
825 {
826 	struct bnxt *bp = eth_dev->data->dev_private;
827 	uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads;
828 	int vlan_mask = 0;
829 	int rc;
830 
831 	if (bp->rx_cp_nr_rings > RTE_ETHDEV_QUEUE_STAT_CNTRS) {
832 		PMD_DRV_LOG(ERR,
833 			"RxQ cnt %d > CONFIG_RTE_ETHDEV_QUEUE_STAT_CNTRS %d\n",
834 			bp->rx_cp_nr_rings, RTE_ETHDEV_QUEUE_STAT_CNTRS);
835 	}
836 
837 	bnxt_enable_int(bp);
838 	rc = bnxt_hwrm_if_change(bp, 1);
839 	if (!rc) {
840 		if (bp->flags & BNXT_FLAG_IF_CHANGE_HOT_FW_RESET_DONE) {
841 			rc = bnxt_handle_if_change_status(bp);
842 			if (rc)
843 				return rc;
844 		}
845 	}
846 
847 	rc = bnxt_init_chip(bp);
848 	if (rc)
849 		goto error;
850 
851 	eth_dev->data->scattered_rx = bnxt_scattered_rx(eth_dev);
852 
853 	bnxt_link_update_op(eth_dev, 1);
854 
855 	if (rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
856 		vlan_mask |= ETH_VLAN_FILTER_MASK;
857 	if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
858 		vlan_mask |= ETH_VLAN_STRIP_MASK;
859 	rc = bnxt_vlan_offload_set_op(eth_dev, vlan_mask);
860 	if (rc)
861 		goto error;
862 
863 	eth_dev->rx_pkt_burst = bnxt_receive_function(eth_dev);
864 	eth_dev->tx_pkt_burst = bnxt_transmit_function(eth_dev);
865 
866 	bp->flags |= BNXT_FLAG_INIT_DONE;
867 	eth_dev->data->dev_started = 1;
868 	bp->dev_stopped = 0;
869 	bnxt_schedule_fw_health_check(bp);
870 	return 0;
871 
872 error:
873 	bnxt_hwrm_if_change(bp, 0);
874 	bnxt_shutdown_nic(bp);
875 	bnxt_free_tx_mbufs(bp);
876 	bnxt_free_rx_mbufs(bp);
877 	return rc;
878 }
879 
880 static int bnxt_dev_set_link_up_op(struct rte_eth_dev *eth_dev)
881 {
882 	struct bnxt *bp = eth_dev->data->dev_private;
883 	int rc = 0;
884 
885 	if (!bp->link_info.link_up)
886 		rc = bnxt_set_hwrm_link_config(bp, true);
887 	if (!rc)
888 		eth_dev->data->dev_link.link_status = 1;
889 
890 	bnxt_print_link_info(eth_dev);
891 	return 0;
892 }
893 
894 static int bnxt_dev_set_link_down_op(struct rte_eth_dev *eth_dev)
895 {
896 	struct bnxt *bp = eth_dev->data->dev_private;
897 
898 	eth_dev->data->dev_link.link_status = 0;
899 	bnxt_set_hwrm_link_config(bp, false);
900 	bp->link_info.link_up = 0;
901 
902 	return 0;
903 }
904 
905 /* Unload the driver, release resources */
906 static void bnxt_dev_stop_op(struct rte_eth_dev *eth_dev)
907 {
908 	struct bnxt *bp = eth_dev->data->dev_private;
909 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
910 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
911 
912 	eth_dev->data->dev_started = 0;
913 	/* Prevent crashes when queues are still in use */
914 	eth_dev->rx_pkt_burst = &bnxt_dummy_recv_pkts;
915 	eth_dev->tx_pkt_burst = &bnxt_dummy_xmit_pkts;
916 
917 	bnxt_disable_int(bp);
918 
919 	/* disable uio/vfio intr/eventfd mapping */
920 	rte_intr_disable(intr_handle);
921 
922 	bnxt_cancel_fw_health_check(bp);
923 
924 	bp->flags &= ~BNXT_FLAG_INIT_DONE;
925 	if (bp->eth_dev->data->dev_started) {
926 		/* TBD: STOP HW queues DMA */
927 		eth_dev->data->dev_link.link_status = 0;
928 	}
929 	bnxt_dev_set_link_down_op(eth_dev);
930 	/* Wait for link to be reset and the async notification to process. */
931 	rte_delay_ms(BNXT_LINK_WAIT_INTERVAL * 2);
932 
933 	/* Clean queue intr-vector mapping */
934 	rte_intr_efd_disable(intr_handle);
935 	if (intr_handle->intr_vec != NULL) {
936 		rte_free(intr_handle->intr_vec);
937 		intr_handle->intr_vec = NULL;
938 	}
939 
940 	bnxt_hwrm_port_clr_stats(bp);
941 	bnxt_free_tx_mbufs(bp);
942 	bnxt_free_rx_mbufs(bp);
943 	/* Process any remaining notifications in default completion queue */
944 	bnxt_int_handler(eth_dev);
945 	bnxt_shutdown_nic(bp);
946 	bnxt_hwrm_if_change(bp, 0);
947 	bp->dev_stopped = 1;
948 }
949 
950 static void bnxt_dev_close_op(struct rte_eth_dev *eth_dev)
951 {
952 	struct bnxt *bp = eth_dev->data->dev_private;
953 
954 	if (bp->dev_stopped == 0)
955 		bnxt_dev_stop_op(eth_dev);
956 
957 	if (eth_dev->data->mac_addrs != NULL) {
958 		rte_free(eth_dev->data->mac_addrs);
959 		eth_dev->data->mac_addrs = NULL;
960 	}
961 	if (bp->grp_info != NULL) {
962 		rte_free(bp->grp_info);
963 		bp->grp_info = NULL;
964 	}
965 
966 	bnxt_dev_uninit(eth_dev);
967 }
968 
969 static void bnxt_mac_addr_remove_op(struct rte_eth_dev *eth_dev,
970 				    uint32_t index)
971 {
972 	struct bnxt *bp = eth_dev->data->dev_private;
973 	uint64_t pool_mask = eth_dev->data->mac_pool_sel[index];
974 	struct bnxt_vnic_info *vnic;
975 	struct bnxt_filter_info *filter, *temp_filter;
976 	uint32_t i;
977 
978 	if (is_bnxt_in_error(bp))
979 		return;
980 
981 	/*
982 	 * Loop through all VNICs from the specified filter flow pools to
983 	 * remove the corresponding MAC addr filter
984 	 */
985 	for (i = 0; i < bp->nr_vnics; i++) {
986 		if (!(pool_mask & (1ULL << i)))
987 			continue;
988 
989 		vnic = &bp->vnic_info[i];
990 		filter = STAILQ_FIRST(&vnic->filter);
991 		while (filter) {
992 			temp_filter = STAILQ_NEXT(filter, next);
993 			if (filter->mac_index == index) {
994 				STAILQ_REMOVE(&vnic->filter, filter,
995 						bnxt_filter_info, next);
996 				bnxt_hwrm_clear_l2_filter(bp, filter);
997 				filter->mac_index = INVALID_MAC_INDEX;
998 				memset(&filter->l2_addr, 0, RTE_ETHER_ADDR_LEN);
999 				STAILQ_INSERT_TAIL(&bp->free_filter_list,
1000 						   filter, next);
1001 			}
1002 			filter = temp_filter;
1003 		}
1004 	}
1005 }
1006 
1007 static int bnxt_mac_addr_add_op(struct rte_eth_dev *eth_dev,
1008 				struct rte_ether_addr *mac_addr,
1009 				uint32_t index, uint32_t pool)
1010 {
1011 	struct bnxt *bp = eth_dev->data->dev_private;
1012 	struct bnxt_vnic_info *vnic = &bp->vnic_info[pool];
1013 	struct bnxt_filter_info *filter;
1014 	int rc = 0;
1015 
1016 	rc = is_bnxt_in_error(bp);
1017 	if (rc)
1018 		return rc;
1019 
1020 	if (BNXT_VF(bp) & !BNXT_VF_IS_TRUSTED(bp)) {
1021 		PMD_DRV_LOG(ERR, "Cannot add MAC address to a VF interface\n");
1022 		return -ENOTSUP;
1023 	}
1024 
1025 	if (!vnic) {
1026 		PMD_DRV_LOG(ERR, "VNIC not found for pool %d!\n", pool);
1027 		return -EINVAL;
1028 	}
1029 	/* Attach requested MAC address to the new l2_filter */
1030 	STAILQ_FOREACH(filter, &vnic->filter, next) {
1031 		if (filter->mac_index == index) {
1032 			PMD_DRV_LOG(ERR,
1033 				"MAC addr already existed for pool %d\n", pool);
1034 			return 0;
1035 		}
1036 	}
1037 	filter = bnxt_alloc_filter(bp);
1038 	if (!filter) {
1039 		PMD_DRV_LOG(ERR, "L2 filter alloc failed\n");
1040 		return -ENODEV;
1041 	}
1042 
1043 	filter->mac_index = index;
1044 	memcpy(filter->l2_addr, mac_addr, RTE_ETHER_ADDR_LEN);
1045 
1046 	rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
1047 	if (!rc) {
1048 		STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
1049 	} else {
1050 		filter->mac_index = INVALID_MAC_INDEX;
1051 		memset(&filter->l2_addr, 0, RTE_ETHER_ADDR_LEN);
1052 		bnxt_free_filter(bp, filter);
1053 	}
1054 
1055 	return rc;
1056 }
1057 
1058 int bnxt_link_update_op(struct rte_eth_dev *eth_dev, int wait_to_complete)
1059 {
1060 	int rc = 0;
1061 	struct bnxt *bp = eth_dev->data->dev_private;
1062 	struct rte_eth_link new;
1063 	unsigned int cnt = BNXT_LINK_WAIT_CNT;
1064 
1065 	rc = is_bnxt_in_error(bp);
1066 	if (rc)
1067 		return rc;
1068 
1069 	memset(&new, 0, sizeof(new));
1070 	do {
1071 		/* Retrieve link info from hardware */
1072 		rc = bnxt_get_hwrm_link_config(bp, &new);
1073 		if (rc) {
1074 			new.link_speed = ETH_LINK_SPEED_100M;
1075 			new.link_duplex = ETH_LINK_FULL_DUPLEX;
1076 			PMD_DRV_LOG(ERR,
1077 				"Failed to retrieve link rc = 0x%x!\n", rc);
1078 			goto out;
1079 		}
1080 
1081 		if (!wait_to_complete || new.link_status)
1082 			break;
1083 
1084 		rte_delay_ms(BNXT_LINK_WAIT_INTERVAL);
1085 	} while (cnt--);
1086 
1087 out:
1088 	/* Timed out or success */
1089 	if (new.link_status != eth_dev->data->dev_link.link_status ||
1090 	new.link_speed != eth_dev->data->dev_link.link_speed) {
1091 		rte_eth_linkstatus_set(eth_dev, &new);
1092 
1093 		_rte_eth_dev_callback_process(eth_dev,
1094 					      RTE_ETH_EVENT_INTR_LSC,
1095 					      NULL);
1096 
1097 		bnxt_print_link_info(eth_dev);
1098 	}
1099 
1100 	return rc;
1101 }
1102 
1103 static int bnxt_promiscuous_enable_op(struct rte_eth_dev *eth_dev)
1104 {
1105 	struct bnxt *bp = eth_dev->data->dev_private;
1106 	struct bnxt_vnic_info *vnic;
1107 	uint32_t old_flags;
1108 	int rc;
1109 
1110 	rc = is_bnxt_in_error(bp);
1111 	if (rc)
1112 		return rc;
1113 
1114 	if (bp->vnic_info == NULL)
1115 		return 0;
1116 
1117 	vnic = &bp->vnic_info[0];
1118 
1119 	old_flags = vnic->flags;
1120 	vnic->flags |= BNXT_VNIC_INFO_PROMISC;
1121 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1122 	if (rc != 0)
1123 		vnic->flags = old_flags;
1124 
1125 	return rc;
1126 }
1127 
1128 static int bnxt_promiscuous_disable_op(struct rte_eth_dev *eth_dev)
1129 {
1130 	struct bnxt *bp = eth_dev->data->dev_private;
1131 	struct bnxt_vnic_info *vnic;
1132 	uint32_t old_flags;
1133 	int rc;
1134 
1135 	rc = is_bnxt_in_error(bp);
1136 	if (rc)
1137 		return rc;
1138 
1139 	if (bp->vnic_info == NULL)
1140 		return 0;
1141 
1142 	vnic = &bp->vnic_info[0];
1143 
1144 	old_flags = vnic->flags;
1145 	vnic->flags &= ~BNXT_VNIC_INFO_PROMISC;
1146 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1147 	if (rc != 0)
1148 		vnic->flags = old_flags;
1149 
1150 	return rc;
1151 }
1152 
1153 static int bnxt_allmulticast_enable_op(struct rte_eth_dev *eth_dev)
1154 {
1155 	struct bnxt *bp = eth_dev->data->dev_private;
1156 	struct bnxt_vnic_info *vnic;
1157 	uint32_t old_flags;
1158 	int rc;
1159 
1160 	rc = is_bnxt_in_error(bp);
1161 	if (rc)
1162 		return rc;
1163 
1164 	if (bp->vnic_info == NULL)
1165 		return 0;
1166 
1167 	vnic = &bp->vnic_info[0];
1168 
1169 	old_flags = vnic->flags;
1170 	vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
1171 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1172 	if (rc != 0)
1173 		vnic->flags = old_flags;
1174 
1175 	return rc;
1176 }
1177 
1178 static int bnxt_allmulticast_disable_op(struct rte_eth_dev *eth_dev)
1179 {
1180 	struct bnxt *bp = eth_dev->data->dev_private;
1181 	struct bnxt_vnic_info *vnic;
1182 	uint32_t old_flags;
1183 	int rc;
1184 
1185 	rc = is_bnxt_in_error(bp);
1186 	if (rc)
1187 		return rc;
1188 
1189 	if (bp->vnic_info == NULL)
1190 		return 0;
1191 
1192 	vnic = &bp->vnic_info[0];
1193 
1194 	old_flags = vnic->flags;
1195 	vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
1196 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1197 	if (rc != 0)
1198 		vnic->flags = old_flags;
1199 
1200 	return rc;
1201 }
1202 
1203 /* Return bnxt_rx_queue pointer corresponding to a given rxq. */
1204 static struct bnxt_rx_queue *bnxt_qid_to_rxq(struct bnxt *bp, uint16_t qid)
1205 {
1206 	if (qid >= bp->rx_nr_rings)
1207 		return NULL;
1208 
1209 	return bp->eth_dev->data->rx_queues[qid];
1210 }
1211 
1212 /* Return rxq corresponding to a given rss table ring/group ID. */
1213 static uint16_t bnxt_rss_to_qid(struct bnxt *bp, uint16_t fwr)
1214 {
1215 	struct bnxt_rx_queue *rxq;
1216 	unsigned int i;
1217 
1218 	if (!BNXT_HAS_RING_GRPS(bp)) {
1219 		for (i = 0; i < bp->rx_nr_rings; i++) {
1220 			rxq = bp->eth_dev->data->rx_queues[i];
1221 			if (rxq->rx_ring->rx_ring_struct->fw_ring_id == fwr)
1222 				return rxq->index;
1223 		}
1224 	} else {
1225 		for (i = 0; i < bp->rx_nr_rings; i++) {
1226 			if (bp->grp_info[i].fw_grp_id == fwr)
1227 				return i;
1228 		}
1229 	}
1230 
1231 	return INVALID_HW_RING_ID;
1232 }
1233 
1234 static int bnxt_reta_update_op(struct rte_eth_dev *eth_dev,
1235 			    struct rte_eth_rss_reta_entry64 *reta_conf,
1236 			    uint16_t reta_size)
1237 {
1238 	struct bnxt *bp = eth_dev->data->dev_private;
1239 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
1240 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
1241 	uint16_t tbl_size = bnxt_rss_hash_tbl_size(bp);
1242 	uint16_t idx, sft;
1243 	int i, rc;
1244 
1245 	rc = is_bnxt_in_error(bp);
1246 	if (rc)
1247 		return rc;
1248 
1249 	if (!vnic->rss_table)
1250 		return -EINVAL;
1251 
1252 	if (!(dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
1253 		return -EINVAL;
1254 
1255 	if (reta_size != tbl_size) {
1256 		PMD_DRV_LOG(ERR, "The configured hash table lookup size "
1257 			"(%d) must equal the size supported by the hardware "
1258 			"(%d)\n", reta_size, tbl_size);
1259 		return -EINVAL;
1260 	}
1261 
1262 	for (i = 0; i < reta_size; i++) {
1263 		struct bnxt_rx_queue *rxq;
1264 
1265 		idx = i / RTE_RETA_GROUP_SIZE;
1266 		sft = i % RTE_RETA_GROUP_SIZE;
1267 
1268 		if (!(reta_conf[idx].mask & (1ULL << sft)))
1269 			continue;
1270 
1271 		rxq = bnxt_qid_to_rxq(bp, reta_conf[idx].reta[sft]);
1272 		if (!rxq) {
1273 			PMD_DRV_LOG(ERR, "Invalid ring in reta_conf.\n");
1274 			return -EINVAL;
1275 		}
1276 
1277 		if (BNXT_CHIP_THOR(bp)) {
1278 			vnic->rss_table[i * 2] =
1279 				rxq->rx_ring->rx_ring_struct->fw_ring_id;
1280 			vnic->rss_table[i * 2 + 1] =
1281 				rxq->cp_ring->cp_ring_struct->fw_ring_id;
1282 		} else {
1283 			vnic->rss_table[i] =
1284 			    vnic->fw_grp_ids[reta_conf[idx].reta[sft]];
1285 		}
1286 
1287 		vnic->rss_table[i] =
1288 		    vnic->fw_grp_ids[reta_conf[idx].reta[sft]];
1289 	}
1290 
1291 	bnxt_hwrm_vnic_rss_cfg(bp, vnic);
1292 	return 0;
1293 }
1294 
1295 static int bnxt_reta_query_op(struct rte_eth_dev *eth_dev,
1296 			      struct rte_eth_rss_reta_entry64 *reta_conf,
1297 			      uint16_t reta_size)
1298 {
1299 	struct bnxt *bp = eth_dev->data->dev_private;
1300 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
1301 	uint16_t tbl_size = bnxt_rss_hash_tbl_size(bp);
1302 	uint16_t idx, sft, i;
1303 	int rc;
1304 
1305 	rc = is_bnxt_in_error(bp);
1306 	if (rc)
1307 		return rc;
1308 
1309 	/* Retrieve from the default VNIC */
1310 	if (!vnic)
1311 		return -EINVAL;
1312 	if (!vnic->rss_table)
1313 		return -EINVAL;
1314 
1315 	if (reta_size != tbl_size) {
1316 		PMD_DRV_LOG(ERR, "The configured hash table lookup size "
1317 			"(%d) must equal the size supported by the hardware "
1318 			"(%d)\n", reta_size, tbl_size);
1319 		return -EINVAL;
1320 	}
1321 
1322 	for (idx = 0, i = 0; i < reta_size; i++) {
1323 		idx = i / RTE_RETA_GROUP_SIZE;
1324 		sft = i % RTE_RETA_GROUP_SIZE;
1325 
1326 		if (reta_conf[idx].mask & (1ULL << sft)) {
1327 			uint16_t qid;
1328 
1329 			if (BNXT_CHIP_THOR(bp))
1330 				qid = bnxt_rss_to_qid(bp,
1331 						      vnic->rss_table[i * 2]);
1332 			else
1333 				qid = bnxt_rss_to_qid(bp, vnic->rss_table[i]);
1334 
1335 			if (qid == INVALID_HW_RING_ID) {
1336 				PMD_DRV_LOG(ERR, "Inv. entry in rss table.\n");
1337 				return -EINVAL;
1338 			}
1339 			reta_conf[idx].reta[sft] = qid;
1340 		}
1341 	}
1342 
1343 	return 0;
1344 }
1345 
1346 static int bnxt_rss_hash_update_op(struct rte_eth_dev *eth_dev,
1347 				   struct rte_eth_rss_conf *rss_conf)
1348 {
1349 	struct bnxt *bp = eth_dev->data->dev_private;
1350 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
1351 	struct bnxt_vnic_info *vnic;
1352 	uint16_t hash_type = 0;
1353 	unsigned int i;
1354 	int rc;
1355 
1356 	rc = is_bnxt_in_error(bp);
1357 	if (rc)
1358 		return rc;
1359 
1360 	/*
1361 	 * If RSS enablement were different than dev_configure,
1362 	 * then return -EINVAL
1363 	 */
1364 	if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) {
1365 		if (!rss_conf->rss_hf)
1366 			PMD_DRV_LOG(ERR, "Hash type NONE\n");
1367 	} else {
1368 		if (rss_conf->rss_hf & BNXT_ETH_RSS_SUPPORT)
1369 			return -EINVAL;
1370 	}
1371 
1372 	bp->flags |= BNXT_FLAG_UPDATE_HASH;
1373 	memcpy(&bp->rss_conf, rss_conf, sizeof(*rss_conf));
1374 
1375 	if (rss_conf->rss_hf & ETH_RSS_IPV4)
1376 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
1377 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
1378 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
1379 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
1380 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
1381 	if (rss_conf->rss_hf & ETH_RSS_IPV6)
1382 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
1383 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
1384 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
1385 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
1386 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
1387 
1388 	/* Update the RSS VNIC(s) */
1389 	for (i = 0; i < bp->nr_vnics; i++) {
1390 		vnic = &bp->vnic_info[i];
1391 		vnic->hash_type = hash_type;
1392 
1393 		/*
1394 		 * Use the supplied key if the key length is
1395 		 * acceptable and the rss_key is not NULL
1396 		 */
1397 		if (rss_conf->rss_key &&
1398 		    rss_conf->rss_key_len <= HW_HASH_KEY_SIZE)
1399 			memcpy(vnic->rss_hash_key, rss_conf->rss_key,
1400 			       rss_conf->rss_key_len);
1401 
1402 		bnxt_hwrm_vnic_rss_cfg(bp, vnic);
1403 	}
1404 	return 0;
1405 }
1406 
1407 static int bnxt_rss_hash_conf_get_op(struct rte_eth_dev *eth_dev,
1408 				     struct rte_eth_rss_conf *rss_conf)
1409 {
1410 	struct bnxt *bp = eth_dev->data->dev_private;
1411 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
1412 	int len, rc;
1413 	uint32_t hash_types;
1414 
1415 	rc = is_bnxt_in_error(bp);
1416 	if (rc)
1417 		return rc;
1418 
1419 	/* RSS configuration is the same for all VNICs */
1420 	if (vnic && vnic->rss_hash_key) {
1421 		if (rss_conf->rss_key) {
1422 			len = rss_conf->rss_key_len <= HW_HASH_KEY_SIZE ?
1423 			      rss_conf->rss_key_len : HW_HASH_KEY_SIZE;
1424 			memcpy(rss_conf->rss_key, vnic->rss_hash_key, len);
1425 		}
1426 
1427 		hash_types = vnic->hash_type;
1428 		rss_conf->rss_hf = 0;
1429 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4) {
1430 			rss_conf->rss_hf |= ETH_RSS_IPV4;
1431 			hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
1432 		}
1433 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4) {
1434 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
1435 			hash_types &=
1436 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
1437 		}
1438 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4) {
1439 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
1440 			hash_types &=
1441 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
1442 		}
1443 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6) {
1444 			rss_conf->rss_hf |= ETH_RSS_IPV6;
1445 			hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
1446 		}
1447 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6) {
1448 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
1449 			hash_types &=
1450 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
1451 		}
1452 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6) {
1453 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
1454 			hash_types &=
1455 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
1456 		}
1457 		if (hash_types) {
1458 			PMD_DRV_LOG(ERR,
1459 				"Unknwon RSS config from firmware (%08x), RSS disabled",
1460 				vnic->hash_type);
1461 			return -ENOTSUP;
1462 		}
1463 	} else {
1464 		rss_conf->rss_hf = 0;
1465 	}
1466 	return 0;
1467 }
1468 
1469 static int bnxt_flow_ctrl_get_op(struct rte_eth_dev *dev,
1470 			       struct rte_eth_fc_conf *fc_conf)
1471 {
1472 	struct bnxt *bp = dev->data->dev_private;
1473 	struct rte_eth_link link_info;
1474 	int rc;
1475 
1476 	rc = is_bnxt_in_error(bp);
1477 	if (rc)
1478 		return rc;
1479 
1480 	rc = bnxt_get_hwrm_link_config(bp, &link_info);
1481 	if (rc)
1482 		return rc;
1483 
1484 	memset(fc_conf, 0, sizeof(*fc_conf));
1485 	if (bp->link_info.auto_pause)
1486 		fc_conf->autoneg = 1;
1487 	switch (bp->link_info.pause) {
1488 	case 0:
1489 		fc_conf->mode = RTE_FC_NONE;
1490 		break;
1491 	case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX:
1492 		fc_conf->mode = RTE_FC_TX_PAUSE;
1493 		break;
1494 	case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX:
1495 		fc_conf->mode = RTE_FC_RX_PAUSE;
1496 		break;
1497 	case (HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX |
1498 			HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX):
1499 		fc_conf->mode = RTE_FC_FULL;
1500 		break;
1501 	}
1502 	return 0;
1503 }
1504 
1505 static int bnxt_flow_ctrl_set_op(struct rte_eth_dev *dev,
1506 			       struct rte_eth_fc_conf *fc_conf)
1507 {
1508 	struct bnxt *bp = dev->data->dev_private;
1509 	int rc;
1510 
1511 	rc = is_bnxt_in_error(bp);
1512 	if (rc)
1513 		return rc;
1514 
1515 	if (!BNXT_SINGLE_PF(bp) || BNXT_VF(bp)) {
1516 		PMD_DRV_LOG(ERR, "Flow Control Settings cannot be modified\n");
1517 		return -ENOTSUP;
1518 	}
1519 
1520 	switch (fc_conf->mode) {
1521 	case RTE_FC_NONE:
1522 		bp->link_info.auto_pause = 0;
1523 		bp->link_info.force_pause = 0;
1524 		break;
1525 	case RTE_FC_RX_PAUSE:
1526 		if (fc_conf->autoneg) {
1527 			bp->link_info.auto_pause =
1528 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
1529 			bp->link_info.force_pause = 0;
1530 		} else {
1531 			bp->link_info.auto_pause = 0;
1532 			bp->link_info.force_pause =
1533 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
1534 		}
1535 		break;
1536 	case RTE_FC_TX_PAUSE:
1537 		if (fc_conf->autoneg) {
1538 			bp->link_info.auto_pause =
1539 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX;
1540 			bp->link_info.force_pause = 0;
1541 		} else {
1542 			bp->link_info.auto_pause = 0;
1543 			bp->link_info.force_pause =
1544 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX;
1545 		}
1546 		break;
1547 	case RTE_FC_FULL:
1548 		if (fc_conf->autoneg) {
1549 			bp->link_info.auto_pause =
1550 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX |
1551 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
1552 			bp->link_info.force_pause = 0;
1553 		} else {
1554 			bp->link_info.auto_pause = 0;
1555 			bp->link_info.force_pause =
1556 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX |
1557 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
1558 		}
1559 		break;
1560 	}
1561 	return bnxt_set_hwrm_link_config(bp, true);
1562 }
1563 
1564 /* Add UDP tunneling port */
1565 static int
1566 bnxt_udp_tunnel_port_add_op(struct rte_eth_dev *eth_dev,
1567 			 struct rte_eth_udp_tunnel *udp_tunnel)
1568 {
1569 	struct bnxt *bp = eth_dev->data->dev_private;
1570 	uint16_t tunnel_type = 0;
1571 	int rc = 0;
1572 
1573 	rc = is_bnxt_in_error(bp);
1574 	if (rc)
1575 		return rc;
1576 
1577 	switch (udp_tunnel->prot_type) {
1578 	case RTE_TUNNEL_TYPE_VXLAN:
1579 		if (bp->vxlan_port_cnt) {
1580 			PMD_DRV_LOG(ERR, "Tunnel Port %d already programmed\n",
1581 				udp_tunnel->udp_port);
1582 			if (bp->vxlan_port != udp_tunnel->udp_port) {
1583 				PMD_DRV_LOG(ERR, "Only one port allowed\n");
1584 				return -ENOSPC;
1585 			}
1586 			bp->vxlan_port_cnt++;
1587 			return 0;
1588 		}
1589 		tunnel_type =
1590 			HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_VXLAN;
1591 		bp->vxlan_port_cnt++;
1592 		break;
1593 	case RTE_TUNNEL_TYPE_GENEVE:
1594 		if (bp->geneve_port_cnt) {
1595 			PMD_DRV_LOG(ERR, "Tunnel Port %d already programmed\n",
1596 				udp_tunnel->udp_port);
1597 			if (bp->geneve_port != udp_tunnel->udp_port) {
1598 				PMD_DRV_LOG(ERR, "Only one port allowed\n");
1599 				return -ENOSPC;
1600 			}
1601 			bp->geneve_port_cnt++;
1602 			return 0;
1603 		}
1604 		tunnel_type =
1605 			HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_GENEVE;
1606 		bp->geneve_port_cnt++;
1607 		break;
1608 	default:
1609 		PMD_DRV_LOG(ERR, "Tunnel type is not supported\n");
1610 		return -ENOTSUP;
1611 	}
1612 	rc = bnxt_hwrm_tunnel_dst_port_alloc(bp, udp_tunnel->udp_port,
1613 					     tunnel_type);
1614 	return rc;
1615 }
1616 
1617 static int
1618 bnxt_udp_tunnel_port_del_op(struct rte_eth_dev *eth_dev,
1619 			 struct rte_eth_udp_tunnel *udp_tunnel)
1620 {
1621 	struct bnxt *bp = eth_dev->data->dev_private;
1622 	uint16_t tunnel_type = 0;
1623 	uint16_t port = 0;
1624 	int rc = 0;
1625 
1626 	rc = is_bnxt_in_error(bp);
1627 	if (rc)
1628 		return rc;
1629 
1630 	switch (udp_tunnel->prot_type) {
1631 	case RTE_TUNNEL_TYPE_VXLAN:
1632 		if (!bp->vxlan_port_cnt) {
1633 			PMD_DRV_LOG(ERR, "No Tunnel port configured yet\n");
1634 			return -EINVAL;
1635 		}
1636 		if (bp->vxlan_port != udp_tunnel->udp_port) {
1637 			PMD_DRV_LOG(ERR, "Req Port: %d. Configured port: %d\n",
1638 				udp_tunnel->udp_port, bp->vxlan_port);
1639 			return -EINVAL;
1640 		}
1641 		if (--bp->vxlan_port_cnt)
1642 			return 0;
1643 
1644 		tunnel_type =
1645 			HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN;
1646 		port = bp->vxlan_fw_dst_port_id;
1647 		break;
1648 	case RTE_TUNNEL_TYPE_GENEVE:
1649 		if (!bp->geneve_port_cnt) {
1650 			PMD_DRV_LOG(ERR, "No Tunnel port configured yet\n");
1651 			return -EINVAL;
1652 		}
1653 		if (bp->geneve_port != udp_tunnel->udp_port) {
1654 			PMD_DRV_LOG(ERR, "Req Port: %d. Configured port: %d\n",
1655 				udp_tunnel->udp_port, bp->geneve_port);
1656 			return -EINVAL;
1657 		}
1658 		if (--bp->geneve_port_cnt)
1659 			return 0;
1660 
1661 		tunnel_type =
1662 			HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE;
1663 		port = bp->geneve_fw_dst_port_id;
1664 		break;
1665 	default:
1666 		PMD_DRV_LOG(ERR, "Tunnel type is not supported\n");
1667 		return -ENOTSUP;
1668 	}
1669 
1670 	rc = bnxt_hwrm_tunnel_dst_port_free(bp, port, tunnel_type);
1671 	if (!rc) {
1672 		if (tunnel_type ==
1673 		    HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN)
1674 			bp->vxlan_port = 0;
1675 		if (tunnel_type ==
1676 		    HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE)
1677 			bp->geneve_port = 0;
1678 	}
1679 	return rc;
1680 }
1681 
1682 static int bnxt_del_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
1683 {
1684 	struct bnxt_filter_info *filter;
1685 	struct bnxt_vnic_info *vnic;
1686 	int rc = 0;
1687 	uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN;
1688 
1689 	/* if VLAN exists && VLAN matches vlan_id
1690 	 *      remove the MAC+VLAN filter
1691 	 *      add a new MAC only filter
1692 	 * else
1693 	 *      VLAN filter doesn't exist, just skip and continue
1694 	 */
1695 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
1696 	filter = STAILQ_FIRST(&vnic->filter);
1697 	while (filter) {
1698 		/* Search for this matching MAC+VLAN filter */
1699 		if (filter->enables & chk && filter->l2_ivlan == vlan_id &&
1700 		    !memcmp(filter->l2_addr,
1701 			    bp->mac_addr,
1702 			    RTE_ETHER_ADDR_LEN)) {
1703 			/* Delete the filter */
1704 			rc = bnxt_hwrm_clear_l2_filter(bp, filter);
1705 			if (rc)
1706 				return rc;
1707 			STAILQ_REMOVE(&vnic->filter, filter,
1708 				      bnxt_filter_info, next);
1709 			STAILQ_INSERT_TAIL(&bp->free_filter_list, filter, next);
1710 
1711 			PMD_DRV_LOG(INFO,
1712 				    "Del Vlan filter for %d\n",
1713 				    vlan_id);
1714 			return rc;
1715 		}
1716 		filter = STAILQ_NEXT(filter, next);
1717 	}
1718 	return -ENOENT;
1719 }
1720 
1721 static int bnxt_add_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
1722 {
1723 	struct bnxt_filter_info *filter;
1724 	struct bnxt_vnic_info *vnic;
1725 	int rc = 0;
1726 	uint32_t en = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN |
1727 		HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN_MASK;
1728 	uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN;
1729 
1730 	/* Implementation notes on the use of VNIC in this command:
1731 	 *
1732 	 * By default, these filters belong to default vnic for the function.
1733 	 * Once these filters are set up, only destination VNIC can be modified.
1734 	 * If the destination VNIC is not specified in this command,
1735 	 * then the HWRM shall only create an l2 context id.
1736 	 */
1737 
1738 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
1739 	filter = STAILQ_FIRST(&vnic->filter);
1740 	/* Check if the VLAN has already been added */
1741 	while (filter) {
1742 		if (filter->enables & chk && filter->l2_ivlan == vlan_id &&
1743 		    !memcmp(filter->l2_addr, bp->mac_addr, RTE_ETHER_ADDR_LEN))
1744 			return -EEXIST;
1745 
1746 		filter = STAILQ_NEXT(filter, next);
1747 	}
1748 
1749 	/* No match found. Alloc a fresh filter and issue the L2_FILTER_ALLOC
1750 	 * command to create MAC+VLAN filter with the right flags, enables set.
1751 	 */
1752 	filter = bnxt_alloc_filter(bp);
1753 	if (!filter) {
1754 		PMD_DRV_LOG(ERR,
1755 			    "MAC/VLAN filter alloc failed\n");
1756 		return -ENOMEM;
1757 	}
1758 	/* MAC + VLAN ID filter */
1759 	filter->l2_ivlan = vlan_id;
1760 	filter->l2_ivlan_mask = 0x0FFF;
1761 	filter->enables |= en;
1762 	rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
1763 	if (rc) {
1764 		/* Free the newly allocated filter as we were
1765 		 * not able to create the filter in hardware.
1766 		 */
1767 		filter->fw_l2_filter_id = UINT64_MAX;
1768 		STAILQ_INSERT_TAIL(&bp->free_filter_list, filter, next);
1769 		return rc;
1770 	}
1771 
1772 	/* Add this new filter to the list */
1773 	STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
1774 	PMD_DRV_LOG(INFO,
1775 		    "Added Vlan filter for %d\n", vlan_id);
1776 	return rc;
1777 }
1778 
1779 static int bnxt_vlan_filter_set_op(struct rte_eth_dev *eth_dev,
1780 		uint16_t vlan_id, int on)
1781 {
1782 	struct bnxt *bp = eth_dev->data->dev_private;
1783 	int rc;
1784 
1785 	rc = is_bnxt_in_error(bp);
1786 	if (rc)
1787 		return rc;
1788 
1789 	/* These operations apply to ALL existing MAC/VLAN filters */
1790 	if (on)
1791 		return bnxt_add_vlan_filter(bp, vlan_id);
1792 	else
1793 		return bnxt_del_vlan_filter(bp, vlan_id);
1794 }
1795 
1796 static int
1797 bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask)
1798 {
1799 	struct bnxt *bp = dev->data->dev_private;
1800 	uint64_t rx_offloads = dev->data->dev_conf.rxmode.offloads;
1801 	unsigned int i;
1802 	int rc;
1803 
1804 	rc = is_bnxt_in_error(bp);
1805 	if (rc)
1806 		return rc;
1807 
1808 	if (mask & ETH_VLAN_FILTER_MASK) {
1809 		if (!(rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER)) {
1810 			/* Remove any VLAN filters programmed */
1811 			for (i = 0; i < 4095; i++)
1812 				bnxt_del_vlan_filter(bp, i);
1813 		}
1814 		PMD_DRV_LOG(DEBUG, "VLAN Filtering: %d\n",
1815 			!!(rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER));
1816 	}
1817 
1818 	if (mask & ETH_VLAN_STRIP_MASK) {
1819 		/* Enable or disable VLAN stripping */
1820 		for (i = 0; i < bp->nr_vnics; i++) {
1821 			struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
1822 			if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1823 				vnic->vlan_strip = true;
1824 			else
1825 				vnic->vlan_strip = false;
1826 			bnxt_hwrm_vnic_cfg(bp, vnic);
1827 		}
1828 		PMD_DRV_LOG(DEBUG, "VLAN Strip Offload: %d\n",
1829 			!!(rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP));
1830 	}
1831 
1832 	if (mask & ETH_VLAN_EXTEND_MASK)
1833 		PMD_DRV_LOG(ERR, "Extend VLAN Not supported\n");
1834 
1835 	return 0;
1836 }
1837 
1838 static int
1839 bnxt_set_default_mac_addr_op(struct rte_eth_dev *dev,
1840 			struct rte_ether_addr *addr)
1841 {
1842 	struct bnxt *bp = dev->data->dev_private;
1843 	/* Default Filter is tied to VNIC 0 */
1844 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
1845 	struct bnxt_filter_info *filter;
1846 	int rc;
1847 
1848 	rc = is_bnxt_in_error(bp);
1849 	if (rc)
1850 		return rc;
1851 
1852 	if (BNXT_VF(bp) && !BNXT_VF_IS_TRUSTED(bp))
1853 		return -EPERM;
1854 
1855 	if (rte_is_zero_ether_addr(addr))
1856 		return -EINVAL;
1857 
1858 	STAILQ_FOREACH(filter, &vnic->filter, next) {
1859 		/* Default Filter is at Index 0 */
1860 		if (filter->mac_index != 0)
1861 			continue;
1862 
1863 		memcpy(filter->l2_addr, bp->mac_addr, RTE_ETHER_ADDR_LEN);
1864 		memset(filter->l2_addr_mask, 0xff, RTE_ETHER_ADDR_LEN);
1865 		filter->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_PATH_RX;
1866 		filter->enables |=
1867 			HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR |
1868 			HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR_MASK;
1869 
1870 		rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
1871 		if (rc)
1872 			return rc;
1873 
1874 		memcpy(bp->mac_addr, addr, RTE_ETHER_ADDR_LEN);
1875 		PMD_DRV_LOG(DEBUG, "Set MAC addr\n");
1876 		return 0;
1877 	}
1878 
1879 	return 0;
1880 }
1881 
1882 static int
1883 bnxt_dev_set_mc_addr_list_op(struct rte_eth_dev *eth_dev,
1884 			  struct rte_ether_addr *mc_addr_set,
1885 			  uint32_t nb_mc_addr)
1886 {
1887 	struct bnxt *bp = eth_dev->data->dev_private;
1888 	char *mc_addr_list = (char *)mc_addr_set;
1889 	struct bnxt_vnic_info *vnic;
1890 	uint32_t off = 0, i = 0;
1891 	int rc;
1892 
1893 	rc = is_bnxt_in_error(bp);
1894 	if (rc)
1895 		return rc;
1896 
1897 	vnic = &bp->vnic_info[0];
1898 
1899 	if (nb_mc_addr > BNXT_MAX_MC_ADDRS) {
1900 		vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
1901 		goto allmulti;
1902 	}
1903 
1904 	/* TODO Check for Duplicate mcast addresses */
1905 	vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
1906 	for (i = 0; i < nb_mc_addr; i++) {
1907 		memcpy(vnic->mc_list + off, &mc_addr_list[i],
1908 			RTE_ETHER_ADDR_LEN);
1909 		off += RTE_ETHER_ADDR_LEN;
1910 	}
1911 
1912 	vnic->mc_addr_cnt = i;
1913 
1914 allmulti:
1915 	return bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1916 }
1917 
1918 static int
1919 bnxt_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
1920 {
1921 	struct bnxt *bp = dev->data->dev_private;
1922 	uint8_t fw_major = (bp->fw_ver >> 24) & 0xff;
1923 	uint8_t fw_minor = (bp->fw_ver >> 16) & 0xff;
1924 	uint8_t fw_updt = (bp->fw_ver >> 8) & 0xff;
1925 	int ret;
1926 
1927 	ret = snprintf(fw_version, fw_size, "%d.%d.%d",
1928 			fw_major, fw_minor, fw_updt);
1929 
1930 	ret += 1; /* add the size of '\0' */
1931 	if (fw_size < (uint32_t)ret)
1932 		return ret;
1933 	else
1934 		return 0;
1935 }
1936 
1937 static void
1938 bnxt_rxq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
1939 	struct rte_eth_rxq_info *qinfo)
1940 {
1941 	struct bnxt_rx_queue *rxq;
1942 
1943 	rxq = dev->data->rx_queues[queue_id];
1944 
1945 	qinfo->mp = rxq->mb_pool;
1946 	qinfo->scattered_rx = dev->data->scattered_rx;
1947 	qinfo->nb_desc = rxq->nb_rx_desc;
1948 
1949 	qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
1950 	qinfo->conf.rx_drop_en = 0;
1951 	qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
1952 }
1953 
1954 static void
1955 bnxt_txq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
1956 	struct rte_eth_txq_info *qinfo)
1957 {
1958 	struct bnxt_tx_queue *txq;
1959 
1960 	txq = dev->data->tx_queues[queue_id];
1961 
1962 	qinfo->nb_desc = txq->nb_tx_desc;
1963 
1964 	qinfo->conf.tx_thresh.pthresh = txq->pthresh;
1965 	qinfo->conf.tx_thresh.hthresh = txq->hthresh;
1966 	qinfo->conf.tx_thresh.wthresh = txq->wthresh;
1967 
1968 	qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
1969 	qinfo->conf.tx_rs_thresh = 0;
1970 	qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
1971 }
1972 
1973 static int bnxt_mtu_set_op(struct rte_eth_dev *eth_dev, uint16_t new_mtu)
1974 {
1975 	struct bnxt *bp = eth_dev->data->dev_private;
1976 	uint32_t new_pkt_size;
1977 	uint32_t rc = 0;
1978 	uint32_t i;
1979 
1980 	rc = is_bnxt_in_error(bp);
1981 	if (rc)
1982 		return rc;
1983 
1984 	new_pkt_size = new_mtu + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN +
1985 		       VLAN_TAG_SIZE * BNXT_NUM_VLANS;
1986 
1987 #ifdef RTE_ARCH_X86
1988 	/*
1989 	 * If vector-mode tx/rx is active, disallow any MTU change that would
1990 	 * require scattered receive support.
1991 	 */
1992 	if (eth_dev->data->dev_started &&
1993 	    (eth_dev->rx_pkt_burst == bnxt_recv_pkts_vec ||
1994 	     eth_dev->tx_pkt_burst == bnxt_xmit_pkts_vec) &&
1995 	    (new_pkt_size >
1996 	     eth_dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)) {
1997 		PMD_DRV_LOG(ERR,
1998 			    "MTU change would require scattered rx support. ");
1999 		PMD_DRV_LOG(ERR, "Stop port before changing MTU.\n");
2000 		return -EINVAL;
2001 	}
2002 #endif
2003 
2004 	if (new_mtu > RTE_ETHER_MTU) {
2005 		bp->flags |= BNXT_FLAG_JUMBO;
2006 		bp->eth_dev->data->dev_conf.rxmode.offloads |=
2007 			DEV_RX_OFFLOAD_JUMBO_FRAME;
2008 	} else {
2009 		bp->eth_dev->data->dev_conf.rxmode.offloads &=
2010 			~DEV_RX_OFFLOAD_JUMBO_FRAME;
2011 		bp->flags &= ~BNXT_FLAG_JUMBO;
2012 	}
2013 
2014 	eth_dev->data->dev_conf.rxmode.max_rx_pkt_len = new_pkt_size;
2015 
2016 	for (i = 0; i < bp->nr_vnics; i++) {
2017 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2018 		uint16_t size = 0;
2019 
2020 		vnic->mru = new_mtu + RTE_ETHER_HDR_LEN +
2021 				RTE_ETHER_CRC_LEN + VLAN_TAG_SIZE * 2;
2022 		rc = bnxt_hwrm_vnic_cfg(bp, vnic);
2023 		if (rc)
2024 			break;
2025 
2026 		size = rte_pktmbuf_data_room_size(bp->rx_queues[0]->mb_pool);
2027 		size -= RTE_PKTMBUF_HEADROOM;
2028 
2029 		if (size < new_mtu) {
2030 			rc = bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
2031 			if (rc)
2032 				return rc;
2033 		}
2034 	}
2035 
2036 	PMD_DRV_LOG(INFO, "New MTU is %d\n", new_mtu);
2037 
2038 	return rc;
2039 }
2040 
2041 static int
2042 bnxt_vlan_pvid_set_op(struct rte_eth_dev *dev, uint16_t pvid, int on)
2043 {
2044 	struct bnxt *bp = dev->data->dev_private;
2045 	uint16_t vlan = bp->vlan;
2046 	int rc;
2047 
2048 	rc = is_bnxt_in_error(bp);
2049 	if (rc)
2050 		return rc;
2051 
2052 	if (!BNXT_SINGLE_PF(bp) || BNXT_VF(bp)) {
2053 		PMD_DRV_LOG(ERR,
2054 			"PVID cannot be modified for this function\n");
2055 		return -ENOTSUP;
2056 	}
2057 	bp->vlan = on ? pvid : 0;
2058 
2059 	rc = bnxt_hwrm_set_default_vlan(bp, 0, 0);
2060 	if (rc)
2061 		bp->vlan = vlan;
2062 	return rc;
2063 }
2064 
2065 static int
2066 bnxt_dev_led_on_op(struct rte_eth_dev *dev)
2067 {
2068 	struct bnxt *bp = dev->data->dev_private;
2069 	int rc;
2070 
2071 	rc = is_bnxt_in_error(bp);
2072 	if (rc)
2073 		return rc;
2074 
2075 	return bnxt_hwrm_port_led_cfg(bp, true);
2076 }
2077 
2078 static int
2079 bnxt_dev_led_off_op(struct rte_eth_dev *dev)
2080 {
2081 	struct bnxt *bp = dev->data->dev_private;
2082 	int rc;
2083 
2084 	rc = is_bnxt_in_error(bp);
2085 	if (rc)
2086 		return rc;
2087 
2088 	return bnxt_hwrm_port_led_cfg(bp, false);
2089 }
2090 
2091 static uint32_t
2092 bnxt_rx_queue_count_op(struct rte_eth_dev *dev, uint16_t rx_queue_id)
2093 {
2094 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2095 	uint32_t desc = 0, raw_cons = 0, cons;
2096 	struct bnxt_cp_ring_info *cpr;
2097 	struct bnxt_rx_queue *rxq;
2098 	struct rx_pkt_cmpl *rxcmp;
2099 	int rc;
2100 
2101 	rc = is_bnxt_in_error(bp);
2102 	if (rc)
2103 		return rc;
2104 
2105 	rxq = dev->data->rx_queues[rx_queue_id];
2106 	cpr = rxq->cp_ring;
2107 	raw_cons = cpr->cp_raw_cons;
2108 
2109 	while (1) {
2110 		cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
2111 		rte_prefetch0(&cpr->cp_desc_ring[cons]);
2112 		rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
2113 
2114 		if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct)) {
2115 			break;
2116 		} else {
2117 			raw_cons++;
2118 			desc++;
2119 		}
2120 	}
2121 
2122 	return desc;
2123 }
2124 
2125 static int
2126 bnxt_rx_descriptor_status_op(void *rx_queue, uint16_t offset)
2127 {
2128 	struct bnxt_rx_queue *rxq = (struct bnxt_rx_queue *)rx_queue;
2129 	struct bnxt_rx_ring_info *rxr;
2130 	struct bnxt_cp_ring_info *cpr;
2131 	struct bnxt_sw_rx_bd *rx_buf;
2132 	struct rx_pkt_cmpl *rxcmp;
2133 	uint32_t cons, cp_cons;
2134 	int rc;
2135 
2136 	if (!rxq)
2137 		return -EINVAL;
2138 
2139 	rc = is_bnxt_in_error(rxq->bp);
2140 	if (rc)
2141 		return rc;
2142 
2143 	cpr = rxq->cp_ring;
2144 	rxr = rxq->rx_ring;
2145 
2146 	if (offset >= rxq->nb_rx_desc)
2147 		return -EINVAL;
2148 
2149 	cons = RING_CMP(cpr->cp_ring_struct, offset);
2150 	cp_cons = cpr->cp_raw_cons;
2151 	rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
2152 
2153 	if (cons > cp_cons) {
2154 		if (CMPL_VALID(rxcmp, cpr->valid))
2155 			return RTE_ETH_RX_DESC_DONE;
2156 	} else {
2157 		if (CMPL_VALID(rxcmp, !cpr->valid))
2158 			return RTE_ETH_RX_DESC_DONE;
2159 	}
2160 	rx_buf = &rxr->rx_buf_ring[cons];
2161 	if (rx_buf->mbuf == NULL)
2162 		return RTE_ETH_RX_DESC_UNAVAIL;
2163 
2164 
2165 	return RTE_ETH_RX_DESC_AVAIL;
2166 }
2167 
2168 static int
2169 bnxt_tx_descriptor_status_op(void *tx_queue, uint16_t offset)
2170 {
2171 	struct bnxt_tx_queue *txq = (struct bnxt_tx_queue *)tx_queue;
2172 	struct bnxt_tx_ring_info *txr;
2173 	struct bnxt_cp_ring_info *cpr;
2174 	struct bnxt_sw_tx_bd *tx_buf;
2175 	struct tx_pkt_cmpl *txcmp;
2176 	uint32_t cons, cp_cons;
2177 	int rc;
2178 
2179 	if (!txq)
2180 		return -EINVAL;
2181 
2182 	rc = is_bnxt_in_error(txq->bp);
2183 	if (rc)
2184 		return rc;
2185 
2186 	cpr = txq->cp_ring;
2187 	txr = txq->tx_ring;
2188 
2189 	if (offset >= txq->nb_tx_desc)
2190 		return -EINVAL;
2191 
2192 	cons = RING_CMP(cpr->cp_ring_struct, offset);
2193 	txcmp = (struct tx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
2194 	cp_cons = cpr->cp_raw_cons;
2195 
2196 	if (cons > cp_cons) {
2197 		if (CMPL_VALID(txcmp, cpr->valid))
2198 			return RTE_ETH_TX_DESC_UNAVAIL;
2199 	} else {
2200 		if (CMPL_VALID(txcmp, !cpr->valid))
2201 			return RTE_ETH_TX_DESC_UNAVAIL;
2202 	}
2203 	tx_buf = &txr->tx_buf_ring[cons];
2204 	if (tx_buf->mbuf == NULL)
2205 		return RTE_ETH_TX_DESC_DONE;
2206 
2207 	return RTE_ETH_TX_DESC_FULL;
2208 }
2209 
2210 static struct bnxt_filter_info *
2211 bnxt_match_and_validate_ether_filter(struct bnxt *bp,
2212 				struct rte_eth_ethertype_filter *efilter,
2213 				struct bnxt_vnic_info *vnic0,
2214 				struct bnxt_vnic_info *vnic,
2215 				int *ret)
2216 {
2217 	struct bnxt_filter_info *mfilter = NULL;
2218 	int match = 0;
2219 	*ret = 0;
2220 
2221 	if (efilter->ether_type == RTE_ETHER_TYPE_IPV4 ||
2222 		efilter->ether_type == RTE_ETHER_TYPE_IPV6) {
2223 		PMD_DRV_LOG(ERR, "invalid ether_type(0x%04x) in"
2224 			" ethertype filter.", efilter->ether_type);
2225 		*ret = -EINVAL;
2226 		goto exit;
2227 	}
2228 	if (efilter->queue >= bp->rx_nr_rings) {
2229 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", efilter->queue);
2230 		*ret = -EINVAL;
2231 		goto exit;
2232 	}
2233 
2234 	vnic0 = &bp->vnic_info[0];
2235 	vnic = &bp->vnic_info[efilter->queue];
2236 	if (vnic == NULL) {
2237 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", efilter->queue);
2238 		*ret = -EINVAL;
2239 		goto exit;
2240 	}
2241 
2242 	if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
2243 		STAILQ_FOREACH(mfilter, &vnic0->filter, next) {
2244 			if ((!memcmp(efilter->mac_addr.addr_bytes,
2245 				     mfilter->l2_addr, RTE_ETHER_ADDR_LEN) &&
2246 			     mfilter->flags ==
2247 			     HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP &&
2248 			     mfilter->ethertype == efilter->ether_type)) {
2249 				match = 1;
2250 				break;
2251 			}
2252 		}
2253 	} else {
2254 		STAILQ_FOREACH(mfilter, &vnic->filter, next)
2255 			if ((!memcmp(efilter->mac_addr.addr_bytes,
2256 				     mfilter->l2_addr, RTE_ETHER_ADDR_LEN) &&
2257 			     mfilter->ethertype == efilter->ether_type &&
2258 			     mfilter->flags ==
2259 			     HWRM_CFA_L2_FILTER_CFG_INPUT_FLAGS_PATH_RX)) {
2260 				match = 1;
2261 				break;
2262 			}
2263 	}
2264 
2265 	if (match)
2266 		*ret = -EEXIST;
2267 
2268 exit:
2269 	return mfilter;
2270 }
2271 
2272 static int
2273 bnxt_ethertype_filter(struct rte_eth_dev *dev,
2274 			enum rte_filter_op filter_op,
2275 			void *arg)
2276 {
2277 	struct bnxt *bp = dev->data->dev_private;
2278 	struct rte_eth_ethertype_filter *efilter =
2279 			(struct rte_eth_ethertype_filter *)arg;
2280 	struct bnxt_filter_info *bfilter, *filter1;
2281 	struct bnxt_vnic_info *vnic, *vnic0;
2282 	int ret;
2283 
2284 	if (filter_op == RTE_ETH_FILTER_NOP)
2285 		return 0;
2286 
2287 	if (arg == NULL) {
2288 		PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
2289 			    filter_op);
2290 		return -EINVAL;
2291 	}
2292 
2293 	vnic0 = &bp->vnic_info[0];
2294 	vnic = &bp->vnic_info[efilter->queue];
2295 
2296 	switch (filter_op) {
2297 	case RTE_ETH_FILTER_ADD:
2298 		bnxt_match_and_validate_ether_filter(bp, efilter,
2299 							vnic0, vnic, &ret);
2300 		if (ret < 0)
2301 			return ret;
2302 
2303 		bfilter = bnxt_get_unused_filter(bp);
2304 		if (bfilter == NULL) {
2305 			PMD_DRV_LOG(ERR,
2306 				"Not enough resources for a new filter.\n");
2307 			return -ENOMEM;
2308 		}
2309 		bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
2310 		memcpy(bfilter->l2_addr, efilter->mac_addr.addr_bytes,
2311 		       RTE_ETHER_ADDR_LEN);
2312 		memcpy(bfilter->dst_macaddr, efilter->mac_addr.addr_bytes,
2313 		       RTE_ETHER_ADDR_LEN);
2314 		bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
2315 		bfilter->ethertype = efilter->ether_type;
2316 		bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2317 
2318 		filter1 = bnxt_get_l2_filter(bp, bfilter, vnic0);
2319 		if (filter1 == NULL) {
2320 			ret = -EINVAL;
2321 			goto cleanup;
2322 		}
2323 		bfilter->enables |=
2324 			HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
2325 		bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
2326 
2327 		bfilter->dst_id = vnic->fw_vnic_id;
2328 
2329 		if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
2330 			bfilter->flags =
2331 				HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
2332 		}
2333 
2334 		ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
2335 		if (ret)
2336 			goto cleanup;
2337 		STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
2338 		break;
2339 	case RTE_ETH_FILTER_DELETE:
2340 		filter1 = bnxt_match_and_validate_ether_filter(bp, efilter,
2341 							vnic0, vnic, &ret);
2342 		if (ret == -EEXIST) {
2343 			ret = bnxt_hwrm_clear_ntuple_filter(bp, filter1);
2344 
2345 			STAILQ_REMOVE(&vnic->filter, filter1, bnxt_filter_info,
2346 				      next);
2347 			bnxt_free_filter(bp, filter1);
2348 		} else if (ret == 0) {
2349 			PMD_DRV_LOG(ERR, "No matching filter found\n");
2350 		}
2351 		break;
2352 	default:
2353 		PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
2354 		ret = -EINVAL;
2355 		goto error;
2356 	}
2357 	return ret;
2358 cleanup:
2359 	bnxt_free_filter(bp, bfilter);
2360 error:
2361 	return ret;
2362 }
2363 
2364 static inline int
2365 parse_ntuple_filter(struct bnxt *bp,
2366 		    struct rte_eth_ntuple_filter *nfilter,
2367 		    struct bnxt_filter_info *bfilter)
2368 {
2369 	uint32_t en = 0;
2370 
2371 	if (nfilter->queue >= bp->rx_nr_rings) {
2372 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", nfilter->queue);
2373 		return -EINVAL;
2374 	}
2375 
2376 	switch (nfilter->dst_port_mask) {
2377 	case UINT16_MAX:
2378 		bfilter->dst_port_mask = -1;
2379 		bfilter->dst_port = nfilter->dst_port;
2380 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT |
2381 			NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2382 		break;
2383 	default:
2384 		PMD_DRV_LOG(ERR, "invalid dst_port mask.");
2385 		return -EINVAL;
2386 	}
2387 
2388 	bfilter->ip_addr_type = NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2389 	en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2390 
2391 	switch (nfilter->proto_mask) {
2392 	case UINT8_MAX:
2393 		if (nfilter->proto == 17) /* IPPROTO_UDP */
2394 			bfilter->ip_protocol = 17;
2395 		else if (nfilter->proto == 6) /* IPPROTO_TCP */
2396 			bfilter->ip_protocol = 6;
2397 		else
2398 			return -EINVAL;
2399 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2400 		break;
2401 	default:
2402 		PMD_DRV_LOG(ERR, "invalid protocol mask.");
2403 		return -EINVAL;
2404 	}
2405 
2406 	switch (nfilter->dst_ip_mask) {
2407 	case UINT32_MAX:
2408 		bfilter->dst_ipaddr_mask[0] = -1;
2409 		bfilter->dst_ipaddr[0] = nfilter->dst_ip;
2410 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR |
2411 			NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2412 		break;
2413 	default:
2414 		PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
2415 		return -EINVAL;
2416 	}
2417 
2418 	switch (nfilter->src_ip_mask) {
2419 	case UINT32_MAX:
2420 		bfilter->src_ipaddr_mask[0] = -1;
2421 		bfilter->src_ipaddr[0] = nfilter->src_ip;
2422 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR |
2423 			NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2424 		break;
2425 	default:
2426 		PMD_DRV_LOG(ERR, "invalid src_ip mask.");
2427 		return -EINVAL;
2428 	}
2429 
2430 	switch (nfilter->src_port_mask) {
2431 	case UINT16_MAX:
2432 		bfilter->src_port_mask = -1;
2433 		bfilter->src_port = nfilter->src_port;
2434 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT |
2435 			NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2436 		break;
2437 	default:
2438 		PMD_DRV_LOG(ERR, "invalid src_port mask.");
2439 		return -EINVAL;
2440 	}
2441 
2442 	//TODO Priority
2443 	//nfilter->priority = (uint8_t)filter->priority;
2444 
2445 	bfilter->enables = en;
2446 	return 0;
2447 }
2448 
2449 static struct bnxt_filter_info*
2450 bnxt_match_ntuple_filter(struct bnxt *bp,
2451 			 struct bnxt_filter_info *bfilter,
2452 			 struct bnxt_vnic_info **mvnic)
2453 {
2454 	struct bnxt_filter_info *mfilter = NULL;
2455 	int i;
2456 
2457 	for (i = bp->nr_vnics - 1; i >= 0; i--) {
2458 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2459 		STAILQ_FOREACH(mfilter, &vnic->filter, next) {
2460 			if (bfilter->src_ipaddr[0] == mfilter->src_ipaddr[0] &&
2461 			    bfilter->src_ipaddr_mask[0] ==
2462 			    mfilter->src_ipaddr_mask[0] &&
2463 			    bfilter->src_port == mfilter->src_port &&
2464 			    bfilter->src_port_mask == mfilter->src_port_mask &&
2465 			    bfilter->dst_ipaddr[0] == mfilter->dst_ipaddr[0] &&
2466 			    bfilter->dst_ipaddr_mask[0] ==
2467 			    mfilter->dst_ipaddr_mask[0] &&
2468 			    bfilter->dst_port == mfilter->dst_port &&
2469 			    bfilter->dst_port_mask == mfilter->dst_port_mask &&
2470 			    bfilter->flags == mfilter->flags &&
2471 			    bfilter->enables == mfilter->enables) {
2472 				if (mvnic)
2473 					*mvnic = vnic;
2474 				return mfilter;
2475 			}
2476 		}
2477 	}
2478 	return NULL;
2479 }
2480 
2481 static int
2482 bnxt_cfg_ntuple_filter(struct bnxt *bp,
2483 		       struct rte_eth_ntuple_filter *nfilter,
2484 		       enum rte_filter_op filter_op)
2485 {
2486 	struct bnxt_filter_info *bfilter, *mfilter, *filter1;
2487 	struct bnxt_vnic_info *vnic, *vnic0, *mvnic;
2488 	int ret;
2489 
2490 	if (nfilter->flags != RTE_5TUPLE_FLAGS) {
2491 		PMD_DRV_LOG(ERR, "only 5tuple is supported.");
2492 		return -EINVAL;
2493 	}
2494 
2495 	if (nfilter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG) {
2496 		PMD_DRV_LOG(ERR, "Ntuple filter: TCP flags not supported\n");
2497 		return -EINVAL;
2498 	}
2499 
2500 	bfilter = bnxt_get_unused_filter(bp);
2501 	if (bfilter == NULL) {
2502 		PMD_DRV_LOG(ERR,
2503 			"Not enough resources for a new filter.\n");
2504 		return -ENOMEM;
2505 	}
2506 	ret = parse_ntuple_filter(bp, nfilter, bfilter);
2507 	if (ret < 0)
2508 		goto free_filter;
2509 
2510 	vnic = &bp->vnic_info[nfilter->queue];
2511 	vnic0 = &bp->vnic_info[0];
2512 	filter1 = STAILQ_FIRST(&vnic0->filter);
2513 	if (filter1 == NULL) {
2514 		ret = -EINVAL;
2515 		goto free_filter;
2516 	}
2517 
2518 	bfilter->dst_id = vnic->fw_vnic_id;
2519 	bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
2520 	bfilter->enables |=
2521 		HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
2522 	bfilter->ethertype = 0x800;
2523 	bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2524 
2525 	mfilter = bnxt_match_ntuple_filter(bp, bfilter, &mvnic);
2526 
2527 	if (mfilter != NULL && filter_op == RTE_ETH_FILTER_ADD &&
2528 	    bfilter->dst_id == mfilter->dst_id) {
2529 		PMD_DRV_LOG(ERR, "filter exists.\n");
2530 		ret = -EEXIST;
2531 		goto free_filter;
2532 	} else if (mfilter != NULL && filter_op == RTE_ETH_FILTER_ADD &&
2533 		   bfilter->dst_id != mfilter->dst_id) {
2534 		mfilter->dst_id = vnic->fw_vnic_id;
2535 		ret = bnxt_hwrm_set_ntuple_filter(bp, mfilter->dst_id, mfilter);
2536 		STAILQ_REMOVE(&mvnic->filter, mfilter, bnxt_filter_info, next);
2537 		STAILQ_INSERT_TAIL(&vnic->filter, mfilter, next);
2538 		PMD_DRV_LOG(ERR, "filter with matching pattern exists.\n");
2539 		PMD_DRV_LOG(ERR, " Updated it to the new destination queue\n");
2540 		goto free_filter;
2541 	}
2542 	if (mfilter == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
2543 		PMD_DRV_LOG(ERR, "filter doesn't exist.");
2544 		ret = -ENOENT;
2545 		goto free_filter;
2546 	}
2547 
2548 	if (filter_op == RTE_ETH_FILTER_ADD) {
2549 		bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
2550 		ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
2551 		if (ret)
2552 			goto free_filter;
2553 		STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
2554 	} else {
2555 		if (mfilter == NULL) {
2556 			/* This should not happen. But for Coverity! */
2557 			ret = -ENOENT;
2558 			goto free_filter;
2559 		}
2560 		ret = bnxt_hwrm_clear_ntuple_filter(bp, mfilter);
2561 
2562 		STAILQ_REMOVE(&vnic->filter, mfilter, bnxt_filter_info, next);
2563 		bnxt_free_filter(bp, mfilter);
2564 		mfilter->fw_l2_filter_id = -1;
2565 		bnxt_free_filter(bp, bfilter);
2566 		bfilter->fw_l2_filter_id = -1;
2567 	}
2568 
2569 	return 0;
2570 free_filter:
2571 	bfilter->fw_l2_filter_id = -1;
2572 	bnxt_free_filter(bp, bfilter);
2573 	return ret;
2574 }
2575 
2576 static int
2577 bnxt_ntuple_filter(struct rte_eth_dev *dev,
2578 			enum rte_filter_op filter_op,
2579 			void *arg)
2580 {
2581 	struct bnxt *bp = dev->data->dev_private;
2582 	int ret;
2583 
2584 	if (filter_op == RTE_ETH_FILTER_NOP)
2585 		return 0;
2586 
2587 	if (arg == NULL) {
2588 		PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
2589 			    filter_op);
2590 		return -EINVAL;
2591 	}
2592 
2593 	switch (filter_op) {
2594 	case RTE_ETH_FILTER_ADD:
2595 		ret = bnxt_cfg_ntuple_filter(bp,
2596 			(struct rte_eth_ntuple_filter *)arg,
2597 			filter_op);
2598 		break;
2599 	case RTE_ETH_FILTER_DELETE:
2600 		ret = bnxt_cfg_ntuple_filter(bp,
2601 			(struct rte_eth_ntuple_filter *)arg,
2602 			filter_op);
2603 		break;
2604 	default:
2605 		PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
2606 		ret = -EINVAL;
2607 		break;
2608 	}
2609 	return ret;
2610 }
2611 
2612 static int
2613 bnxt_parse_fdir_filter(struct bnxt *bp,
2614 		       struct rte_eth_fdir_filter *fdir,
2615 		       struct bnxt_filter_info *filter)
2616 {
2617 	enum rte_fdir_mode fdir_mode =
2618 		bp->eth_dev->data->dev_conf.fdir_conf.mode;
2619 	struct bnxt_vnic_info *vnic0, *vnic;
2620 	struct bnxt_filter_info *filter1;
2621 	uint32_t en = 0;
2622 	int i;
2623 
2624 	if (fdir_mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2625 		return -EINVAL;
2626 
2627 	filter->l2_ovlan = fdir->input.flow_ext.vlan_tci;
2628 	en |= EM_FLOW_ALLOC_INPUT_EN_OVLAN_VID;
2629 
2630 	switch (fdir->input.flow_type) {
2631 	case RTE_ETH_FLOW_IPV4:
2632 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2633 		/* FALLTHROUGH */
2634 		filter->src_ipaddr[0] = fdir->input.flow.ip4_flow.src_ip;
2635 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2636 		filter->dst_ipaddr[0] = fdir->input.flow.ip4_flow.dst_ip;
2637 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2638 		filter->ip_protocol = fdir->input.flow.ip4_flow.proto;
2639 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2640 		filter->ip_addr_type =
2641 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2642 		filter->src_ipaddr_mask[0] = 0xffffffff;
2643 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2644 		filter->dst_ipaddr_mask[0] = 0xffffffff;
2645 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2646 		filter->ethertype = 0x800;
2647 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2648 		break;
2649 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2650 		filter->src_port = fdir->input.flow.tcp4_flow.src_port;
2651 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2652 		filter->dst_port = fdir->input.flow.tcp4_flow.dst_port;
2653 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2654 		filter->dst_port_mask = 0xffff;
2655 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2656 		filter->src_port_mask = 0xffff;
2657 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2658 		filter->src_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.src_ip;
2659 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2660 		filter->dst_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.dst_ip;
2661 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2662 		filter->ip_protocol = 6;
2663 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2664 		filter->ip_addr_type =
2665 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2666 		filter->src_ipaddr_mask[0] = 0xffffffff;
2667 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2668 		filter->dst_ipaddr_mask[0] = 0xffffffff;
2669 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2670 		filter->ethertype = 0x800;
2671 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2672 		break;
2673 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2674 		filter->src_port = fdir->input.flow.udp4_flow.src_port;
2675 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2676 		filter->dst_port = fdir->input.flow.udp4_flow.dst_port;
2677 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2678 		filter->dst_port_mask = 0xffff;
2679 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2680 		filter->src_port_mask = 0xffff;
2681 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2682 		filter->src_ipaddr[0] = fdir->input.flow.udp4_flow.ip.src_ip;
2683 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2684 		filter->dst_ipaddr[0] = fdir->input.flow.udp4_flow.ip.dst_ip;
2685 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2686 		filter->ip_protocol = 17;
2687 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2688 		filter->ip_addr_type =
2689 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2690 		filter->src_ipaddr_mask[0] = 0xffffffff;
2691 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2692 		filter->dst_ipaddr_mask[0] = 0xffffffff;
2693 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2694 		filter->ethertype = 0x800;
2695 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2696 		break;
2697 	case RTE_ETH_FLOW_IPV6:
2698 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2699 		/* FALLTHROUGH */
2700 		filter->ip_addr_type =
2701 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2702 		filter->ip_protocol = fdir->input.flow.ipv6_flow.proto;
2703 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2704 		rte_memcpy(filter->src_ipaddr,
2705 			   fdir->input.flow.ipv6_flow.src_ip, 16);
2706 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2707 		rte_memcpy(filter->dst_ipaddr,
2708 			   fdir->input.flow.ipv6_flow.dst_ip, 16);
2709 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2710 		memset(filter->dst_ipaddr_mask, 0xff, 16);
2711 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2712 		memset(filter->src_ipaddr_mask, 0xff, 16);
2713 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2714 		filter->ethertype = 0x86dd;
2715 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2716 		break;
2717 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2718 		filter->src_port = fdir->input.flow.tcp6_flow.src_port;
2719 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2720 		filter->dst_port = fdir->input.flow.tcp6_flow.dst_port;
2721 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2722 		filter->dst_port_mask = 0xffff;
2723 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2724 		filter->src_port_mask = 0xffff;
2725 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2726 		filter->ip_addr_type =
2727 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2728 		filter->ip_protocol = fdir->input.flow.tcp6_flow.ip.proto;
2729 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2730 		rte_memcpy(filter->src_ipaddr,
2731 			   fdir->input.flow.tcp6_flow.ip.src_ip, 16);
2732 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2733 		rte_memcpy(filter->dst_ipaddr,
2734 			   fdir->input.flow.tcp6_flow.ip.dst_ip, 16);
2735 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2736 		memset(filter->dst_ipaddr_mask, 0xff, 16);
2737 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2738 		memset(filter->src_ipaddr_mask, 0xff, 16);
2739 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2740 		filter->ethertype = 0x86dd;
2741 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2742 		break;
2743 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2744 		filter->src_port = fdir->input.flow.udp6_flow.src_port;
2745 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2746 		filter->dst_port = fdir->input.flow.udp6_flow.dst_port;
2747 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2748 		filter->dst_port_mask = 0xffff;
2749 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2750 		filter->src_port_mask = 0xffff;
2751 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2752 		filter->ip_addr_type =
2753 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2754 		filter->ip_protocol = fdir->input.flow.udp6_flow.ip.proto;
2755 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2756 		rte_memcpy(filter->src_ipaddr,
2757 			   fdir->input.flow.udp6_flow.ip.src_ip, 16);
2758 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2759 		rte_memcpy(filter->dst_ipaddr,
2760 			   fdir->input.flow.udp6_flow.ip.dst_ip, 16);
2761 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2762 		memset(filter->dst_ipaddr_mask, 0xff, 16);
2763 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2764 		memset(filter->src_ipaddr_mask, 0xff, 16);
2765 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2766 		filter->ethertype = 0x86dd;
2767 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2768 		break;
2769 	case RTE_ETH_FLOW_L2_PAYLOAD:
2770 		filter->ethertype = fdir->input.flow.l2_flow.ether_type;
2771 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2772 		break;
2773 	case RTE_ETH_FLOW_VXLAN:
2774 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2775 			return -EINVAL;
2776 		filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
2777 		filter->tunnel_type =
2778 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
2779 		en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
2780 		break;
2781 	case RTE_ETH_FLOW_NVGRE:
2782 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2783 			return -EINVAL;
2784 		filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
2785 		filter->tunnel_type =
2786 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_NVGRE;
2787 		en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
2788 		break;
2789 	case RTE_ETH_FLOW_UNKNOWN:
2790 	case RTE_ETH_FLOW_RAW:
2791 	case RTE_ETH_FLOW_FRAG_IPV4:
2792 	case RTE_ETH_FLOW_NONFRAG_IPV4_SCTP:
2793 	case RTE_ETH_FLOW_FRAG_IPV6:
2794 	case RTE_ETH_FLOW_NONFRAG_IPV6_SCTP:
2795 	case RTE_ETH_FLOW_IPV6_EX:
2796 	case RTE_ETH_FLOW_IPV6_TCP_EX:
2797 	case RTE_ETH_FLOW_IPV6_UDP_EX:
2798 	case RTE_ETH_FLOW_GENEVE:
2799 		/* FALLTHROUGH */
2800 	default:
2801 		return -EINVAL;
2802 	}
2803 
2804 	vnic0 = &bp->vnic_info[0];
2805 	vnic = &bp->vnic_info[fdir->action.rx_queue];
2806 	if (vnic == NULL) {
2807 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", fdir->action.rx_queue);
2808 		return -EINVAL;
2809 	}
2810 
2811 
2812 	if (fdir_mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2813 		rte_memcpy(filter->dst_macaddr,
2814 			fdir->input.flow.mac_vlan_flow.mac_addr.addr_bytes, 6);
2815 			en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
2816 	}
2817 
2818 	if (fdir->action.behavior == RTE_ETH_FDIR_REJECT) {
2819 		filter->flags = HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
2820 		filter1 = STAILQ_FIRST(&vnic0->filter);
2821 		//filter1 = bnxt_get_l2_filter(bp, filter, vnic0);
2822 	} else {
2823 		filter->dst_id = vnic->fw_vnic_id;
2824 		for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
2825 			if (filter->dst_macaddr[i] == 0x00)
2826 				filter1 = STAILQ_FIRST(&vnic0->filter);
2827 			else
2828 				filter1 = bnxt_get_l2_filter(bp, filter, vnic);
2829 	}
2830 
2831 	if (filter1 == NULL)
2832 		return -EINVAL;
2833 
2834 	en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
2835 	filter->fw_l2_filter_id = filter1->fw_l2_filter_id;
2836 
2837 	filter->enables = en;
2838 
2839 	return 0;
2840 }
2841 
2842 static struct bnxt_filter_info *
2843 bnxt_match_fdir(struct bnxt *bp, struct bnxt_filter_info *nf,
2844 		struct bnxt_vnic_info **mvnic)
2845 {
2846 	struct bnxt_filter_info *mf = NULL;
2847 	int i;
2848 
2849 	for (i = bp->nr_vnics - 1; i >= 0; i--) {
2850 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2851 
2852 		STAILQ_FOREACH(mf, &vnic->filter, next) {
2853 			if (mf->filter_type == nf->filter_type &&
2854 			    mf->flags == nf->flags &&
2855 			    mf->src_port == nf->src_port &&
2856 			    mf->src_port_mask == nf->src_port_mask &&
2857 			    mf->dst_port == nf->dst_port &&
2858 			    mf->dst_port_mask == nf->dst_port_mask &&
2859 			    mf->ip_protocol == nf->ip_protocol &&
2860 			    mf->ip_addr_type == nf->ip_addr_type &&
2861 			    mf->ethertype == nf->ethertype &&
2862 			    mf->vni == nf->vni &&
2863 			    mf->tunnel_type == nf->tunnel_type &&
2864 			    mf->l2_ovlan == nf->l2_ovlan &&
2865 			    mf->l2_ovlan_mask == nf->l2_ovlan_mask &&
2866 			    mf->l2_ivlan == nf->l2_ivlan &&
2867 			    mf->l2_ivlan_mask == nf->l2_ivlan_mask &&
2868 			    !memcmp(mf->l2_addr, nf->l2_addr,
2869 				    RTE_ETHER_ADDR_LEN) &&
2870 			    !memcmp(mf->l2_addr_mask, nf->l2_addr_mask,
2871 				    RTE_ETHER_ADDR_LEN) &&
2872 			    !memcmp(mf->src_macaddr, nf->src_macaddr,
2873 				    RTE_ETHER_ADDR_LEN) &&
2874 			    !memcmp(mf->dst_macaddr, nf->dst_macaddr,
2875 				    RTE_ETHER_ADDR_LEN) &&
2876 			    !memcmp(mf->src_ipaddr, nf->src_ipaddr,
2877 				    sizeof(nf->src_ipaddr)) &&
2878 			    !memcmp(mf->src_ipaddr_mask, nf->src_ipaddr_mask,
2879 				    sizeof(nf->src_ipaddr_mask)) &&
2880 			    !memcmp(mf->dst_ipaddr, nf->dst_ipaddr,
2881 				    sizeof(nf->dst_ipaddr)) &&
2882 			    !memcmp(mf->dst_ipaddr_mask, nf->dst_ipaddr_mask,
2883 				    sizeof(nf->dst_ipaddr_mask))) {
2884 				if (mvnic)
2885 					*mvnic = vnic;
2886 				return mf;
2887 			}
2888 		}
2889 	}
2890 	return NULL;
2891 }
2892 
2893 static int
2894 bnxt_fdir_filter(struct rte_eth_dev *dev,
2895 		 enum rte_filter_op filter_op,
2896 		 void *arg)
2897 {
2898 	struct bnxt *bp = dev->data->dev_private;
2899 	struct rte_eth_fdir_filter *fdir  = (struct rte_eth_fdir_filter *)arg;
2900 	struct bnxt_filter_info *filter, *match;
2901 	struct bnxt_vnic_info *vnic, *mvnic;
2902 	int ret = 0, i;
2903 
2904 	if (filter_op == RTE_ETH_FILTER_NOP)
2905 		return 0;
2906 
2907 	if (arg == NULL && filter_op != RTE_ETH_FILTER_FLUSH)
2908 		return -EINVAL;
2909 
2910 	switch (filter_op) {
2911 	case RTE_ETH_FILTER_ADD:
2912 	case RTE_ETH_FILTER_DELETE:
2913 		/* FALLTHROUGH */
2914 		filter = bnxt_get_unused_filter(bp);
2915 		if (filter == NULL) {
2916 			PMD_DRV_LOG(ERR,
2917 				"Not enough resources for a new flow.\n");
2918 			return -ENOMEM;
2919 		}
2920 
2921 		ret = bnxt_parse_fdir_filter(bp, fdir, filter);
2922 		if (ret != 0)
2923 			goto free_filter;
2924 		filter->filter_type = HWRM_CFA_NTUPLE_FILTER;
2925 
2926 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2927 			vnic = &bp->vnic_info[0];
2928 		else
2929 			vnic = &bp->vnic_info[fdir->action.rx_queue];
2930 
2931 		match = bnxt_match_fdir(bp, filter, &mvnic);
2932 		if (match != NULL && filter_op == RTE_ETH_FILTER_ADD) {
2933 			if (match->dst_id == vnic->fw_vnic_id) {
2934 				PMD_DRV_LOG(ERR, "Flow already exists.\n");
2935 				ret = -EEXIST;
2936 				goto free_filter;
2937 			} else {
2938 				match->dst_id = vnic->fw_vnic_id;
2939 				ret = bnxt_hwrm_set_ntuple_filter(bp,
2940 								  match->dst_id,
2941 								  match);
2942 				STAILQ_REMOVE(&mvnic->filter, match,
2943 					      bnxt_filter_info, next);
2944 				STAILQ_INSERT_TAIL(&vnic->filter, match, next);
2945 				PMD_DRV_LOG(ERR,
2946 					"Filter with matching pattern exist\n");
2947 				PMD_DRV_LOG(ERR,
2948 					"Updated it to new destination q\n");
2949 				goto free_filter;
2950 			}
2951 		}
2952 		if (match == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
2953 			PMD_DRV_LOG(ERR, "Flow does not exist.\n");
2954 			ret = -ENOENT;
2955 			goto free_filter;
2956 		}
2957 
2958 		if (filter_op == RTE_ETH_FILTER_ADD) {
2959 			ret = bnxt_hwrm_set_ntuple_filter(bp,
2960 							  filter->dst_id,
2961 							  filter);
2962 			if (ret)
2963 				goto free_filter;
2964 			STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
2965 		} else {
2966 			ret = bnxt_hwrm_clear_ntuple_filter(bp, match);
2967 			STAILQ_REMOVE(&vnic->filter, match,
2968 				      bnxt_filter_info, next);
2969 			bnxt_free_filter(bp, match);
2970 			filter->fw_l2_filter_id = -1;
2971 			bnxt_free_filter(bp, filter);
2972 		}
2973 		break;
2974 	case RTE_ETH_FILTER_FLUSH:
2975 		for (i = bp->nr_vnics - 1; i >= 0; i--) {
2976 			struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2977 
2978 			STAILQ_FOREACH(filter, &vnic->filter, next) {
2979 				if (filter->filter_type ==
2980 				    HWRM_CFA_NTUPLE_FILTER) {
2981 					ret =
2982 					bnxt_hwrm_clear_ntuple_filter(bp,
2983 								      filter);
2984 					STAILQ_REMOVE(&vnic->filter, filter,
2985 						      bnxt_filter_info, next);
2986 				}
2987 			}
2988 		}
2989 		return ret;
2990 	case RTE_ETH_FILTER_UPDATE:
2991 	case RTE_ETH_FILTER_STATS:
2992 	case RTE_ETH_FILTER_INFO:
2993 		PMD_DRV_LOG(ERR, "operation %u not implemented", filter_op);
2994 		break;
2995 	default:
2996 		PMD_DRV_LOG(ERR, "unknown operation %u", filter_op);
2997 		ret = -EINVAL;
2998 		break;
2999 	}
3000 	return ret;
3001 
3002 free_filter:
3003 	filter->fw_l2_filter_id = -1;
3004 	bnxt_free_filter(bp, filter);
3005 	return ret;
3006 }
3007 
3008 static int
3009 bnxt_filter_ctrl_op(struct rte_eth_dev *dev __rte_unused,
3010 		    enum rte_filter_type filter_type,
3011 		    enum rte_filter_op filter_op, void *arg)
3012 {
3013 	int ret = 0;
3014 
3015 	ret = is_bnxt_in_error(dev->data->dev_private);
3016 	if (ret)
3017 		return ret;
3018 
3019 	switch (filter_type) {
3020 	case RTE_ETH_FILTER_TUNNEL:
3021 		PMD_DRV_LOG(ERR,
3022 			"filter type: %d: To be implemented\n", filter_type);
3023 		break;
3024 	case RTE_ETH_FILTER_FDIR:
3025 		ret = bnxt_fdir_filter(dev, filter_op, arg);
3026 		break;
3027 	case RTE_ETH_FILTER_NTUPLE:
3028 		ret = bnxt_ntuple_filter(dev, filter_op, arg);
3029 		break;
3030 	case RTE_ETH_FILTER_ETHERTYPE:
3031 		ret = bnxt_ethertype_filter(dev, filter_op, arg);
3032 		break;
3033 	case RTE_ETH_FILTER_GENERIC:
3034 		if (filter_op != RTE_ETH_FILTER_GET)
3035 			return -EINVAL;
3036 		*(const void **)arg = &bnxt_flow_ops;
3037 		break;
3038 	default:
3039 		PMD_DRV_LOG(ERR,
3040 			"Filter type (%d) not supported", filter_type);
3041 		ret = -EINVAL;
3042 		break;
3043 	}
3044 	return ret;
3045 }
3046 
3047 static const uint32_t *
3048 bnxt_dev_supported_ptypes_get_op(struct rte_eth_dev *dev)
3049 {
3050 	static const uint32_t ptypes[] = {
3051 		RTE_PTYPE_L2_ETHER_VLAN,
3052 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
3053 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
3054 		RTE_PTYPE_L4_ICMP,
3055 		RTE_PTYPE_L4_TCP,
3056 		RTE_PTYPE_L4_UDP,
3057 		RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
3058 		RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
3059 		RTE_PTYPE_INNER_L4_ICMP,
3060 		RTE_PTYPE_INNER_L4_TCP,
3061 		RTE_PTYPE_INNER_L4_UDP,
3062 		RTE_PTYPE_UNKNOWN
3063 	};
3064 
3065 	if (!dev->rx_pkt_burst)
3066 		return NULL;
3067 
3068 	return ptypes;
3069 }
3070 
3071 static int bnxt_map_regs(struct bnxt *bp, uint32_t *reg_arr, int count,
3072 			 int reg_win)
3073 {
3074 	uint32_t reg_base = *reg_arr & 0xfffff000;
3075 	uint32_t win_off;
3076 	int i;
3077 
3078 	for (i = 0; i < count; i++) {
3079 		if ((reg_arr[i] & 0xfffff000) != reg_base)
3080 			return -ERANGE;
3081 	}
3082 	win_off = BNXT_GRCPF_REG_WINDOW_BASE_OUT + (reg_win - 1) * 4;
3083 	rte_write32(reg_base, (uint8_t *)bp->bar0 + win_off);
3084 	return 0;
3085 }
3086 
3087 static int bnxt_map_ptp_regs(struct bnxt *bp)
3088 {
3089 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3090 	uint32_t *reg_arr;
3091 	int rc, i;
3092 
3093 	reg_arr = ptp->rx_regs;
3094 	rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_RX_REGS, 5);
3095 	if (rc)
3096 		return rc;
3097 
3098 	reg_arr = ptp->tx_regs;
3099 	rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_TX_REGS, 6);
3100 	if (rc)
3101 		return rc;
3102 
3103 	for (i = 0; i < BNXT_PTP_RX_REGS; i++)
3104 		ptp->rx_mapped_regs[i] = 0x5000 + (ptp->rx_regs[i] & 0xfff);
3105 
3106 	for (i = 0; i < BNXT_PTP_TX_REGS; i++)
3107 		ptp->tx_mapped_regs[i] = 0x6000 + (ptp->tx_regs[i] & 0xfff);
3108 
3109 	return 0;
3110 }
3111 
3112 static void bnxt_unmap_ptp_regs(struct bnxt *bp)
3113 {
3114 	rte_write32(0, (uint8_t *)bp->bar0 +
3115 			 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 16);
3116 	rte_write32(0, (uint8_t *)bp->bar0 +
3117 			 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 20);
3118 }
3119 
3120 static uint64_t bnxt_cc_read(struct bnxt *bp)
3121 {
3122 	uint64_t ns;
3123 
3124 	ns = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3125 			      BNXT_GRCPF_REG_SYNC_TIME));
3126 	ns |= (uint64_t)(rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3127 					  BNXT_GRCPF_REG_SYNC_TIME + 4))) << 32;
3128 	return ns;
3129 }
3130 
3131 static int bnxt_get_tx_ts(struct bnxt *bp, uint64_t *ts)
3132 {
3133 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3134 	uint32_t fifo;
3135 
3136 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3137 				ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
3138 	if (fifo & BNXT_PTP_TX_FIFO_EMPTY)
3139 		return -EAGAIN;
3140 
3141 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3142 				ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
3143 	*ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3144 				ptp->tx_mapped_regs[BNXT_PTP_TX_TS_L]));
3145 	*ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3146 				ptp->tx_mapped_regs[BNXT_PTP_TX_TS_H])) << 32;
3147 
3148 	return 0;
3149 }
3150 
3151 static int bnxt_get_rx_ts(struct bnxt *bp, uint64_t *ts)
3152 {
3153 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3154 	struct bnxt_pf_info *pf = &bp->pf;
3155 	uint16_t port_id;
3156 	uint32_t fifo;
3157 
3158 	if (!ptp)
3159 		return -ENODEV;
3160 
3161 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3162 				ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
3163 	if (!(fifo & BNXT_PTP_RX_FIFO_PENDING))
3164 		return -EAGAIN;
3165 
3166 	port_id = pf->port_id;
3167 	rte_write32(1 << port_id, (uint8_t *)bp->bar0 +
3168 	       ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO_ADV]);
3169 
3170 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3171 				   ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
3172 	if (fifo & BNXT_PTP_RX_FIFO_PENDING) {
3173 /*		bnxt_clr_rx_ts(bp);	  TBD  */
3174 		return -EBUSY;
3175 	}
3176 
3177 	*ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3178 				ptp->rx_mapped_regs[BNXT_PTP_RX_TS_L]));
3179 	*ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3180 				ptp->rx_mapped_regs[BNXT_PTP_RX_TS_H])) << 32;
3181 
3182 	return 0;
3183 }
3184 
3185 static int
3186 bnxt_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
3187 {
3188 	uint64_t ns;
3189 	struct bnxt *bp = dev->data->dev_private;
3190 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3191 
3192 	if (!ptp)
3193 		return 0;
3194 
3195 	ns = rte_timespec_to_ns(ts);
3196 	/* Set the timecounters to a new value. */
3197 	ptp->tc.nsec = ns;
3198 
3199 	return 0;
3200 }
3201 
3202 static int
3203 bnxt_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
3204 {
3205 	struct bnxt *bp = dev->data->dev_private;
3206 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3207 	uint64_t ns, systime_cycles = 0;
3208 	int rc = 0;
3209 
3210 	if (!ptp)
3211 		return 0;
3212 
3213 	if (BNXT_CHIP_THOR(bp))
3214 		rc = bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME,
3215 					     &systime_cycles);
3216 	else
3217 		systime_cycles = bnxt_cc_read(bp);
3218 
3219 	ns = rte_timecounter_update(&ptp->tc, systime_cycles);
3220 	*ts = rte_ns_to_timespec(ns);
3221 
3222 	return rc;
3223 }
3224 static int
3225 bnxt_timesync_enable(struct rte_eth_dev *dev)
3226 {
3227 	struct bnxt *bp = dev->data->dev_private;
3228 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3229 	uint32_t shift = 0;
3230 	int rc;
3231 
3232 	if (!ptp)
3233 		return 0;
3234 
3235 	ptp->rx_filter = 1;
3236 	ptp->tx_tstamp_en = 1;
3237 	ptp->rxctl = BNXT_PTP_MSG_EVENTS;
3238 
3239 	rc = bnxt_hwrm_ptp_cfg(bp);
3240 	if (rc)
3241 		return rc;
3242 
3243 	memset(&ptp->tc, 0, sizeof(struct rte_timecounter));
3244 	memset(&ptp->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
3245 	memset(&ptp->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
3246 
3247 	ptp->tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
3248 	ptp->tc.cc_shift = shift;
3249 	ptp->tc.nsec_mask = (1ULL << shift) - 1;
3250 
3251 	ptp->rx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
3252 	ptp->rx_tstamp_tc.cc_shift = shift;
3253 	ptp->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
3254 
3255 	ptp->tx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
3256 	ptp->tx_tstamp_tc.cc_shift = shift;
3257 	ptp->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
3258 
3259 	if (!BNXT_CHIP_THOR(bp))
3260 		bnxt_map_ptp_regs(bp);
3261 
3262 	return 0;
3263 }
3264 
3265 static int
3266 bnxt_timesync_disable(struct rte_eth_dev *dev)
3267 {
3268 	struct bnxt *bp = dev->data->dev_private;
3269 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3270 
3271 	if (!ptp)
3272 		return 0;
3273 
3274 	ptp->rx_filter = 0;
3275 	ptp->tx_tstamp_en = 0;
3276 	ptp->rxctl = 0;
3277 
3278 	bnxt_hwrm_ptp_cfg(bp);
3279 
3280 	if (!BNXT_CHIP_THOR(bp))
3281 		bnxt_unmap_ptp_regs(bp);
3282 
3283 	return 0;
3284 }
3285 
3286 static int
3287 bnxt_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
3288 				 struct timespec *timestamp,
3289 				 uint32_t flags __rte_unused)
3290 {
3291 	struct bnxt *bp = dev->data->dev_private;
3292 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3293 	uint64_t rx_tstamp_cycles = 0;
3294 	uint64_t ns;
3295 
3296 	if (!ptp)
3297 		return 0;
3298 
3299 	if (BNXT_CHIP_THOR(bp))
3300 		rx_tstamp_cycles = ptp->rx_timestamp;
3301 	else
3302 		bnxt_get_rx_ts(bp, &rx_tstamp_cycles);
3303 
3304 	ns = rte_timecounter_update(&ptp->rx_tstamp_tc, rx_tstamp_cycles);
3305 	*timestamp = rte_ns_to_timespec(ns);
3306 	return  0;
3307 }
3308 
3309 static int
3310 bnxt_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
3311 				 struct timespec *timestamp)
3312 {
3313 	struct bnxt *bp = dev->data->dev_private;
3314 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3315 	uint64_t tx_tstamp_cycles = 0;
3316 	uint64_t ns;
3317 	int rc = 0;
3318 
3319 	if (!ptp)
3320 		return 0;
3321 
3322 	if (BNXT_CHIP_THOR(bp))
3323 		rc = bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_PATH_TX,
3324 					     &tx_tstamp_cycles);
3325 	else
3326 		rc = bnxt_get_tx_ts(bp, &tx_tstamp_cycles);
3327 
3328 	ns = rte_timecounter_update(&ptp->tx_tstamp_tc, tx_tstamp_cycles);
3329 	*timestamp = rte_ns_to_timespec(ns);
3330 
3331 	return rc;
3332 }
3333 
3334 static int
3335 bnxt_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
3336 {
3337 	struct bnxt *bp = dev->data->dev_private;
3338 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3339 
3340 	if (!ptp)
3341 		return 0;
3342 
3343 	ptp->tc.nsec += delta;
3344 
3345 	return 0;
3346 }
3347 
3348 static int
3349 bnxt_get_eeprom_length_op(struct rte_eth_dev *dev)
3350 {
3351 	struct bnxt *bp = dev->data->dev_private;
3352 	int rc;
3353 	uint32_t dir_entries;
3354 	uint32_t entry_length;
3355 
3356 	rc = is_bnxt_in_error(bp);
3357 	if (rc)
3358 		return rc;
3359 
3360 	PMD_DRV_LOG(INFO, "%04x:%02x:%02x:%02x\n",
3361 		bp->pdev->addr.domain, bp->pdev->addr.bus,
3362 		bp->pdev->addr.devid, bp->pdev->addr.function);
3363 
3364 	rc = bnxt_hwrm_nvm_get_dir_info(bp, &dir_entries, &entry_length);
3365 	if (rc != 0)
3366 		return rc;
3367 
3368 	return dir_entries * entry_length;
3369 }
3370 
3371 static int
3372 bnxt_get_eeprom_op(struct rte_eth_dev *dev,
3373 		struct rte_dev_eeprom_info *in_eeprom)
3374 {
3375 	struct bnxt *bp = dev->data->dev_private;
3376 	uint32_t index;
3377 	uint32_t offset;
3378 	int rc;
3379 
3380 	rc = is_bnxt_in_error(bp);
3381 	if (rc)
3382 		return rc;
3383 
3384 	PMD_DRV_LOG(INFO, "%04x:%02x:%02x:%02x in_eeprom->offset = %d "
3385 		"len = %d\n", bp->pdev->addr.domain,
3386 		bp->pdev->addr.bus, bp->pdev->addr.devid,
3387 		bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length);
3388 
3389 	if (in_eeprom->offset == 0) /* special offset value to get directory */
3390 		return bnxt_get_nvram_directory(bp, in_eeprom->length,
3391 						in_eeprom->data);
3392 
3393 	index = in_eeprom->offset >> 24;
3394 	offset = in_eeprom->offset & 0xffffff;
3395 
3396 	if (index != 0)
3397 		return bnxt_hwrm_get_nvram_item(bp, index - 1, offset,
3398 					   in_eeprom->length, in_eeprom->data);
3399 
3400 	return 0;
3401 }
3402 
3403 static bool bnxt_dir_type_is_ape_bin_format(uint16_t dir_type)
3404 {
3405 	switch (dir_type) {
3406 	case BNX_DIR_TYPE_CHIMP_PATCH:
3407 	case BNX_DIR_TYPE_BOOTCODE:
3408 	case BNX_DIR_TYPE_BOOTCODE_2:
3409 	case BNX_DIR_TYPE_APE_FW:
3410 	case BNX_DIR_TYPE_APE_PATCH:
3411 	case BNX_DIR_TYPE_KONG_FW:
3412 	case BNX_DIR_TYPE_KONG_PATCH:
3413 	case BNX_DIR_TYPE_BONO_FW:
3414 	case BNX_DIR_TYPE_BONO_PATCH:
3415 		/* FALLTHROUGH */
3416 		return true;
3417 	}
3418 
3419 	return false;
3420 }
3421 
3422 static bool bnxt_dir_type_is_other_exec_format(uint16_t dir_type)
3423 {
3424 	switch (dir_type) {
3425 	case BNX_DIR_TYPE_AVS:
3426 	case BNX_DIR_TYPE_EXP_ROM_MBA:
3427 	case BNX_DIR_TYPE_PCIE:
3428 	case BNX_DIR_TYPE_TSCF_UCODE:
3429 	case BNX_DIR_TYPE_EXT_PHY:
3430 	case BNX_DIR_TYPE_CCM:
3431 	case BNX_DIR_TYPE_ISCSI_BOOT:
3432 	case BNX_DIR_TYPE_ISCSI_BOOT_IPV6:
3433 	case BNX_DIR_TYPE_ISCSI_BOOT_IPV4N6:
3434 		/* FALLTHROUGH */
3435 		return true;
3436 	}
3437 
3438 	return false;
3439 }
3440 
3441 static bool bnxt_dir_type_is_executable(uint16_t dir_type)
3442 {
3443 	return bnxt_dir_type_is_ape_bin_format(dir_type) ||
3444 		bnxt_dir_type_is_other_exec_format(dir_type);
3445 }
3446 
3447 static int
3448 bnxt_set_eeprom_op(struct rte_eth_dev *dev,
3449 		struct rte_dev_eeprom_info *in_eeprom)
3450 {
3451 	struct bnxt *bp = dev->data->dev_private;
3452 	uint8_t index, dir_op;
3453 	uint16_t type, ext, ordinal, attr;
3454 	int rc;
3455 
3456 	rc = is_bnxt_in_error(bp);
3457 	if (rc)
3458 		return rc;
3459 
3460 	PMD_DRV_LOG(INFO, "%04x:%02x:%02x:%02x in_eeprom->offset = %d "
3461 		"len = %d\n", bp->pdev->addr.domain,
3462 		bp->pdev->addr.bus, bp->pdev->addr.devid,
3463 		bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length);
3464 
3465 	if (!BNXT_PF(bp)) {
3466 		PMD_DRV_LOG(ERR, "NVM write not supported from a VF\n");
3467 		return -EINVAL;
3468 	}
3469 
3470 	type = in_eeprom->magic >> 16;
3471 
3472 	if (type == 0xffff) { /* special value for directory operations */
3473 		index = in_eeprom->magic & 0xff;
3474 		dir_op = in_eeprom->magic >> 8;
3475 		if (index == 0)
3476 			return -EINVAL;
3477 		switch (dir_op) {
3478 		case 0x0e: /* erase */
3479 			if (in_eeprom->offset != ~in_eeprom->magic)
3480 				return -EINVAL;
3481 			return bnxt_hwrm_erase_nvram_directory(bp, index - 1);
3482 		default:
3483 			return -EINVAL;
3484 		}
3485 	}
3486 
3487 	/* Create or re-write an NVM item: */
3488 	if (bnxt_dir_type_is_executable(type) == true)
3489 		return -EOPNOTSUPP;
3490 	ext = in_eeprom->magic & 0xffff;
3491 	ordinal = in_eeprom->offset >> 16;
3492 	attr = in_eeprom->offset & 0xffff;
3493 
3494 	return bnxt_hwrm_flash_nvram(bp, type, ordinal, ext, attr,
3495 				     in_eeprom->data, in_eeprom->length);
3496 }
3497 
3498 /*
3499  * Initialization
3500  */
3501 
3502 static const struct eth_dev_ops bnxt_dev_ops = {
3503 	.dev_infos_get = bnxt_dev_info_get_op,
3504 	.dev_close = bnxt_dev_close_op,
3505 	.dev_configure = bnxt_dev_configure_op,
3506 	.dev_start = bnxt_dev_start_op,
3507 	.dev_stop = bnxt_dev_stop_op,
3508 	.dev_set_link_up = bnxt_dev_set_link_up_op,
3509 	.dev_set_link_down = bnxt_dev_set_link_down_op,
3510 	.stats_get = bnxt_stats_get_op,
3511 	.stats_reset = bnxt_stats_reset_op,
3512 	.rx_queue_setup = bnxt_rx_queue_setup_op,
3513 	.rx_queue_release = bnxt_rx_queue_release_op,
3514 	.tx_queue_setup = bnxt_tx_queue_setup_op,
3515 	.tx_queue_release = bnxt_tx_queue_release_op,
3516 	.rx_queue_intr_enable = bnxt_rx_queue_intr_enable_op,
3517 	.rx_queue_intr_disable = bnxt_rx_queue_intr_disable_op,
3518 	.reta_update = bnxt_reta_update_op,
3519 	.reta_query = bnxt_reta_query_op,
3520 	.rss_hash_update = bnxt_rss_hash_update_op,
3521 	.rss_hash_conf_get = bnxt_rss_hash_conf_get_op,
3522 	.link_update = bnxt_link_update_op,
3523 	.promiscuous_enable = bnxt_promiscuous_enable_op,
3524 	.promiscuous_disable = bnxt_promiscuous_disable_op,
3525 	.allmulticast_enable = bnxt_allmulticast_enable_op,
3526 	.allmulticast_disable = bnxt_allmulticast_disable_op,
3527 	.mac_addr_add = bnxt_mac_addr_add_op,
3528 	.mac_addr_remove = bnxt_mac_addr_remove_op,
3529 	.flow_ctrl_get = bnxt_flow_ctrl_get_op,
3530 	.flow_ctrl_set = bnxt_flow_ctrl_set_op,
3531 	.udp_tunnel_port_add  = bnxt_udp_tunnel_port_add_op,
3532 	.udp_tunnel_port_del  = bnxt_udp_tunnel_port_del_op,
3533 	.vlan_filter_set = bnxt_vlan_filter_set_op,
3534 	.vlan_offload_set = bnxt_vlan_offload_set_op,
3535 	.vlan_pvid_set = bnxt_vlan_pvid_set_op,
3536 	.mtu_set = bnxt_mtu_set_op,
3537 	.mac_addr_set = bnxt_set_default_mac_addr_op,
3538 	.xstats_get = bnxt_dev_xstats_get_op,
3539 	.xstats_get_names = bnxt_dev_xstats_get_names_op,
3540 	.xstats_reset = bnxt_dev_xstats_reset_op,
3541 	.fw_version_get = bnxt_fw_version_get,
3542 	.set_mc_addr_list = bnxt_dev_set_mc_addr_list_op,
3543 	.rxq_info_get = bnxt_rxq_info_get_op,
3544 	.txq_info_get = bnxt_txq_info_get_op,
3545 	.dev_led_on = bnxt_dev_led_on_op,
3546 	.dev_led_off = bnxt_dev_led_off_op,
3547 	.xstats_get_by_id = bnxt_dev_xstats_get_by_id_op,
3548 	.xstats_get_names_by_id = bnxt_dev_xstats_get_names_by_id_op,
3549 	.rx_queue_count = bnxt_rx_queue_count_op,
3550 	.rx_descriptor_status = bnxt_rx_descriptor_status_op,
3551 	.tx_descriptor_status = bnxt_tx_descriptor_status_op,
3552 	.rx_queue_start = bnxt_rx_queue_start,
3553 	.rx_queue_stop = bnxt_rx_queue_stop,
3554 	.tx_queue_start = bnxt_tx_queue_start,
3555 	.tx_queue_stop = bnxt_tx_queue_stop,
3556 	.filter_ctrl = bnxt_filter_ctrl_op,
3557 	.dev_supported_ptypes_get = bnxt_dev_supported_ptypes_get_op,
3558 	.get_eeprom_length    = bnxt_get_eeprom_length_op,
3559 	.get_eeprom           = bnxt_get_eeprom_op,
3560 	.set_eeprom           = bnxt_set_eeprom_op,
3561 	.timesync_enable      = bnxt_timesync_enable,
3562 	.timesync_disable     = bnxt_timesync_disable,
3563 	.timesync_read_time   = bnxt_timesync_read_time,
3564 	.timesync_write_time   = bnxt_timesync_write_time,
3565 	.timesync_adjust_time = bnxt_timesync_adjust_time,
3566 	.timesync_read_rx_timestamp = bnxt_timesync_read_rx_timestamp,
3567 	.timesync_read_tx_timestamp = bnxt_timesync_read_tx_timestamp,
3568 };
3569 
3570 static uint32_t bnxt_map_reset_regs(struct bnxt *bp, uint32_t reg)
3571 {
3572 	uint32_t offset;
3573 
3574 	/* Only pre-map the reset GRC registers using window 3 */
3575 	rte_write32(reg & 0xfffff000, (uint8_t *)bp->bar0 +
3576 		    BNXT_GRCPF_REG_WINDOW_BASE_OUT + 8);
3577 
3578 	offset = BNXT_GRCP_WINDOW_3_BASE + (reg & 0xffc);
3579 
3580 	return offset;
3581 }
3582 
3583 int bnxt_map_fw_health_status_regs(struct bnxt *bp)
3584 {
3585 	struct bnxt_error_recovery_info *info = bp->recovery_info;
3586 	uint32_t reg_base = 0xffffffff;
3587 	int i;
3588 
3589 	/* Only pre-map the monitoring GRC registers using window 2 */
3590 	for (i = 0; i < BNXT_FW_STATUS_REG_CNT; i++) {
3591 		uint32_t reg = info->status_regs[i];
3592 
3593 		if (BNXT_FW_STATUS_REG_TYPE(reg) != BNXT_FW_STATUS_REG_TYPE_GRC)
3594 			continue;
3595 
3596 		if (reg_base == 0xffffffff)
3597 			reg_base = reg & 0xfffff000;
3598 		if ((reg & 0xfffff000) != reg_base)
3599 			return -ERANGE;
3600 
3601 		/* Use mask 0xffc as the Lower 2 bits indicates
3602 		 * address space location
3603 		 */
3604 		info->mapped_status_regs[i] = BNXT_GRCP_WINDOW_2_BASE +
3605 						(reg & 0xffc);
3606 	}
3607 
3608 	if (reg_base == 0xffffffff)
3609 		return 0;
3610 
3611 	rte_write32(reg_base, (uint8_t *)bp->bar0 +
3612 		    BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
3613 
3614 	return 0;
3615 }
3616 
3617 static void bnxt_write_fw_reset_reg(struct bnxt *bp, uint32_t index)
3618 {
3619 	struct bnxt_error_recovery_info *info = bp->recovery_info;
3620 	uint32_t delay = info->delay_after_reset[index];
3621 	uint32_t val = info->reset_reg_val[index];
3622 	uint32_t reg = info->reset_reg[index];
3623 	uint32_t type, offset;
3624 
3625 	type = BNXT_FW_STATUS_REG_TYPE(reg);
3626 	offset = BNXT_FW_STATUS_REG_OFF(reg);
3627 
3628 	switch (type) {
3629 	case BNXT_FW_STATUS_REG_TYPE_CFG:
3630 		rte_pci_write_config(bp->pdev, &val, sizeof(val), offset);
3631 		break;
3632 	case BNXT_FW_STATUS_REG_TYPE_GRC:
3633 		offset = bnxt_map_reset_regs(bp, offset);
3634 		rte_write32(val, (uint8_t *)bp->bar0 + offset);
3635 		break;
3636 	case BNXT_FW_STATUS_REG_TYPE_BAR0:
3637 		rte_write32(val, (uint8_t *)bp->bar0 + offset);
3638 		break;
3639 	}
3640 	/* wait on a specific interval of time until core reset is complete */
3641 	if (delay)
3642 		rte_delay_ms(delay);
3643 }
3644 
3645 static void bnxt_dev_cleanup(struct bnxt *bp)
3646 {
3647 	bnxt_set_hwrm_link_config(bp, false);
3648 	bp->link_info.link_up = 0;
3649 	if (bp->dev_stopped == 0)
3650 		bnxt_dev_stop_op(bp->eth_dev);
3651 
3652 	bnxt_uninit_resources(bp, true);
3653 }
3654 
3655 static int bnxt_restore_filters(struct bnxt *bp)
3656 {
3657 	struct rte_eth_dev *dev = bp->eth_dev;
3658 	int ret = 0;
3659 
3660 	if (dev->data->all_multicast)
3661 		ret = bnxt_allmulticast_enable_op(dev);
3662 	if (dev->data->promiscuous)
3663 		ret = bnxt_promiscuous_enable_op(dev);
3664 
3665 	/* TODO restore other filters as well */
3666 	return ret;
3667 }
3668 
3669 static void bnxt_dev_recover(void *arg)
3670 {
3671 	struct bnxt *bp = arg;
3672 	int timeout = bp->fw_reset_max_msecs;
3673 	int rc = 0;
3674 
3675 	/* Clear Error flag so that device re-init should happen */
3676 	bp->flags &= ~BNXT_FLAG_FATAL_ERROR;
3677 
3678 	do {
3679 		rc = bnxt_hwrm_ver_get(bp);
3680 		if (rc == 0)
3681 			break;
3682 		rte_delay_ms(BNXT_FW_READY_WAIT_INTERVAL);
3683 		timeout -= BNXT_FW_READY_WAIT_INTERVAL;
3684 	} while (rc && timeout);
3685 
3686 	if (rc) {
3687 		PMD_DRV_LOG(ERR, "FW is not Ready after reset\n");
3688 		goto err;
3689 	}
3690 
3691 	rc = bnxt_init_resources(bp, true);
3692 	if (rc) {
3693 		PMD_DRV_LOG(ERR,
3694 			    "Failed to initialize resources after reset\n");
3695 		goto err;
3696 	}
3697 	/* clear reset flag as the device is initialized now */
3698 	bp->flags &= ~BNXT_FLAG_FW_RESET;
3699 
3700 	rc = bnxt_dev_start_op(bp->eth_dev);
3701 	if (rc) {
3702 		PMD_DRV_LOG(ERR, "Failed to start port after reset\n");
3703 		goto err;
3704 	}
3705 
3706 	rc = bnxt_restore_filters(bp);
3707 	if (rc)
3708 		goto err;
3709 
3710 	PMD_DRV_LOG(INFO, "Recovered from FW reset\n");
3711 	return;
3712 err:
3713 	bp->flags |= BNXT_FLAG_FATAL_ERROR;
3714 	bnxt_uninit_resources(bp, false);
3715 	PMD_DRV_LOG(ERR, "Failed to recover from FW reset\n");
3716 }
3717 
3718 void bnxt_dev_reset_and_resume(void *arg)
3719 {
3720 	struct bnxt *bp = arg;
3721 	int rc;
3722 
3723 	bnxt_dev_cleanup(bp);
3724 
3725 	bnxt_wait_for_device_shutdown(bp);
3726 
3727 	rc = rte_eal_alarm_set(US_PER_MS * bp->fw_reset_min_msecs,
3728 			       bnxt_dev_recover, (void *)bp);
3729 	if (rc)
3730 		PMD_DRV_LOG(ERR, "Error setting recovery alarm");
3731 }
3732 
3733 uint32_t bnxt_read_fw_status_reg(struct bnxt *bp, uint32_t index)
3734 {
3735 	struct bnxt_error_recovery_info *info = bp->recovery_info;
3736 	uint32_t reg = info->status_regs[index];
3737 	uint32_t type, offset, val = 0;
3738 
3739 	type = BNXT_FW_STATUS_REG_TYPE(reg);
3740 	offset = BNXT_FW_STATUS_REG_OFF(reg);
3741 
3742 	switch (type) {
3743 	case BNXT_FW_STATUS_REG_TYPE_CFG:
3744 		rte_pci_read_config(bp->pdev, &val, sizeof(val), offset);
3745 		break;
3746 	case BNXT_FW_STATUS_REG_TYPE_GRC:
3747 		offset = info->mapped_status_regs[index];
3748 		/* FALLTHROUGH */
3749 	case BNXT_FW_STATUS_REG_TYPE_BAR0:
3750 		val = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3751 				       offset));
3752 		break;
3753 	}
3754 
3755 	return val;
3756 }
3757 
3758 static int bnxt_fw_reset_all(struct bnxt *bp)
3759 {
3760 	struct bnxt_error_recovery_info *info = bp->recovery_info;
3761 	uint32_t i;
3762 	int rc = 0;
3763 
3764 	if (info->flags & BNXT_FLAG_ERROR_RECOVERY_HOST) {
3765 		/* Reset through master function driver */
3766 		for (i = 0; i < info->reg_array_cnt; i++)
3767 			bnxt_write_fw_reset_reg(bp, i);
3768 		/* Wait for time specified by FW after triggering reset */
3769 		rte_delay_ms(info->master_func_wait_period_after_reset);
3770 	} else if (info->flags & BNXT_FLAG_ERROR_RECOVERY_CO_CPU) {
3771 		/* Reset with the help of Kong processor */
3772 		rc = bnxt_hwrm_fw_reset(bp);
3773 		if (rc)
3774 			PMD_DRV_LOG(ERR, "Failed to reset FW\n");
3775 	}
3776 
3777 	return rc;
3778 }
3779 
3780 static void bnxt_fw_reset_cb(void *arg)
3781 {
3782 	struct bnxt *bp = arg;
3783 	struct bnxt_error_recovery_info *info = bp->recovery_info;
3784 	int rc = 0;
3785 
3786 	/* Only Master function can do FW reset */
3787 	if (bnxt_is_master_func(bp) &&
3788 	    bnxt_is_recovery_enabled(bp)) {
3789 		rc = bnxt_fw_reset_all(bp);
3790 		if (rc) {
3791 			PMD_DRV_LOG(ERR, "Adapter recovery failed\n");
3792 			return;
3793 		}
3794 	}
3795 
3796 	/* if recovery method is ERROR_RECOVERY_CO_CPU, KONG will send
3797 	 * EXCEPTION_FATAL_ASYNC event to all the functions
3798 	 * (including MASTER FUNC). After receiving this Async, all the active
3799 	 * drivers should treat this case as FW initiated recovery
3800 	 */
3801 	if (info->flags & BNXT_FLAG_ERROR_RECOVERY_HOST) {
3802 		bp->fw_reset_min_msecs = BNXT_MIN_FW_READY_TIMEOUT;
3803 		bp->fw_reset_max_msecs = BNXT_MAX_FW_RESET_TIMEOUT;
3804 
3805 		/* To recover from error */
3806 		rte_eal_alarm_set(US_PER_MS, bnxt_dev_reset_and_resume,
3807 				  (void *)bp);
3808 	}
3809 }
3810 
3811 /* Driver should poll FW heartbeat, reset_counter with the frequency
3812  * advertised by FW in HWRM_ERROR_RECOVERY_QCFG.
3813  * When the driver detects heartbeat stop or change in reset_counter,
3814  * it has to trigger a reset to recover from the error condition.
3815  * A “master PF” is the function who will have the privilege to
3816  * initiate the chimp reset. The master PF will be elected by the
3817  * firmware and will be notified through async message.
3818  */
3819 static void bnxt_check_fw_health(void *arg)
3820 {
3821 	struct bnxt *bp = arg;
3822 	struct bnxt_error_recovery_info *info = bp->recovery_info;
3823 	uint32_t val = 0, wait_msec;
3824 
3825 	if (!info || !bnxt_is_recovery_enabled(bp) ||
3826 	    is_bnxt_in_error(bp))
3827 		return;
3828 
3829 	val = bnxt_read_fw_status_reg(bp, BNXT_FW_HEARTBEAT_CNT_REG);
3830 	if (val == info->last_heart_beat)
3831 		goto reset;
3832 
3833 	info->last_heart_beat = val;
3834 
3835 	val = bnxt_read_fw_status_reg(bp, BNXT_FW_RECOVERY_CNT_REG);
3836 	if (val != info->last_reset_counter)
3837 		goto reset;
3838 
3839 	info->last_reset_counter = val;
3840 
3841 	rte_eal_alarm_set(US_PER_MS * info->driver_polling_freq,
3842 			  bnxt_check_fw_health, (void *)bp);
3843 
3844 	return;
3845 reset:
3846 	/* Stop DMA to/from device */
3847 	bp->flags |= BNXT_FLAG_FATAL_ERROR;
3848 	bp->flags |= BNXT_FLAG_FW_RESET;
3849 
3850 	PMD_DRV_LOG(ERR, "Detected FW dead condition\n");
3851 
3852 	if (bnxt_is_master_func(bp))
3853 		wait_msec = info->master_func_wait_period;
3854 	else
3855 		wait_msec = info->normal_func_wait_period;
3856 
3857 	rte_eal_alarm_set(US_PER_MS * wait_msec,
3858 			  bnxt_fw_reset_cb, (void *)bp);
3859 }
3860 
3861 void bnxt_schedule_fw_health_check(struct bnxt *bp)
3862 {
3863 	uint32_t polling_freq;
3864 
3865 	if (!bnxt_is_recovery_enabled(bp))
3866 		return;
3867 
3868 	if (bp->flags & BNXT_FLAG_FW_HEALTH_CHECK_SCHEDULED)
3869 		return;
3870 
3871 	polling_freq = bp->recovery_info->driver_polling_freq;
3872 
3873 	rte_eal_alarm_set(US_PER_MS * polling_freq,
3874 			  bnxt_check_fw_health, (void *)bp);
3875 	bp->flags |= BNXT_FLAG_FW_HEALTH_CHECK_SCHEDULED;
3876 }
3877 
3878 static void bnxt_cancel_fw_health_check(struct bnxt *bp)
3879 {
3880 	if (!bnxt_is_recovery_enabled(bp))
3881 		return;
3882 
3883 	rte_eal_alarm_cancel(bnxt_check_fw_health, (void *)bp);
3884 	bp->flags &= ~BNXT_FLAG_FW_HEALTH_CHECK_SCHEDULED;
3885 }
3886 
3887 static bool bnxt_vf_pciid(uint16_t id)
3888 {
3889 	if (id == BROADCOM_DEV_ID_57304_VF ||
3890 	    id == BROADCOM_DEV_ID_57406_VF ||
3891 	    id == BROADCOM_DEV_ID_5731X_VF ||
3892 	    id == BROADCOM_DEV_ID_5741X_VF ||
3893 	    id == BROADCOM_DEV_ID_57414_VF ||
3894 	    id == BROADCOM_DEV_ID_STRATUS_NIC_VF1 ||
3895 	    id == BROADCOM_DEV_ID_STRATUS_NIC_VF2 ||
3896 	    id == BROADCOM_DEV_ID_58802_VF ||
3897 	    id == BROADCOM_DEV_ID_57500_VF1 ||
3898 	    id == BROADCOM_DEV_ID_57500_VF2)
3899 		return true;
3900 	return false;
3901 }
3902 
3903 bool bnxt_stratus_device(struct bnxt *bp)
3904 {
3905 	uint16_t id = bp->pdev->id.device_id;
3906 
3907 	if (id == BROADCOM_DEV_ID_STRATUS_NIC ||
3908 	    id == BROADCOM_DEV_ID_STRATUS_NIC_VF1 ||
3909 	    id == BROADCOM_DEV_ID_STRATUS_NIC_VF2)
3910 		return true;
3911 	return false;
3912 }
3913 
3914 static int bnxt_init_board(struct rte_eth_dev *eth_dev)
3915 {
3916 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3917 	struct bnxt *bp = eth_dev->data->dev_private;
3918 
3919 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
3920 	bp->bar0 = (void *)pci_dev->mem_resource[0].addr;
3921 	bp->doorbell_base = (void *)pci_dev->mem_resource[2].addr;
3922 	if (!bp->bar0 || !bp->doorbell_base) {
3923 		PMD_DRV_LOG(ERR, "Unable to access Hardware\n");
3924 		return -ENODEV;
3925 	}
3926 
3927 	bp->eth_dev = eth_dev;
3928 	bp->pdev = pci_dev;
3929 
3930 	return 0;
3931 }
3932 
3933 static int bnxt_alloc_ctx_mem_blk(__rte_unused struct bnxt *bp,
3934 				  struct bnxt_ctx_pg_info *ctx_pg,
3935 				  uint32_t mem_size,
3936 				  const char *suffix,
3937 				  uint16_t idx)
3938 {
3939 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
3940 	const struct rte_memzone *mz = NULL;
3941 	char mz_name[RTE_MEMZONE_NAMESIZE];
3942 	rte_iova_t mz_phys_addr;
3943 	uint64_t valid_bits = 0;
3944 	uint32_t sz;
3945 	int i;
3946 
3947 	if (!mem_size)
3948 		return 0;
3949 
3950 	rmem->nr_pages = RTE_ALIGN_MUL_CEIL(mem_size, BNXT_PAGE_SIZE) /
3951 			 BNXT_PAGE_SIZE;
3952 	rmem->page_size = BNXT_PAGE_SIZE;
3953 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
3954 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
3955 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
3956 
3957 	valid_bits = PTU_PTE_VALID;
3958 
3959 	if (rmem->nr_pages > 1) {
3960 		snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
3961 			 "bnxt_ctx_pg_tbl%s_%x_%d",
3962 			 suffix, idx, bp->eth_dev->data->port_id);
3963 		mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
3964 		mz = rte_memzone_lookup(mz_name);
3965 		if (!mz) {
3966 			mz = rte_memzone_reserve_aligned(mz_name,
3967 						rmem->nr_pages * 8,
3968 						SOCKET_ID_ANY,
3969 						RTE_MEMZONE_2MB |
3970 						RTE_MEMZONE_SIZE_HINT_ONLY |
3971 						RTE_MEMZONE_IOVA_CONTIG,
3972 						BNXT_PAGE_SIZE);
3973 			if (mz == NULL)
3974 				return -ENOMEM;
3975 		}
3976 
3977 		memset(mz->addr, 0, mz->len);
3978 		mz_phys_addr = mz->iova;
3979 		if ((unsigned long)mz->addr == mz_phys_addr) {
3980 			PMD_DRV_LOG(DEBUG,
3981 				    "physical address same as virtual\n");
3982 			PMD_DRV_LOG(DEBUG, "Using rte_mem_virt2iova()\n");
3983 			mz_phys_addr = rte_mem_virt2iova(mz->addr);
3984 			if (mz_phys_addr == RTE_BAD_IOVA) {
3985 				PMD_DRV_LOG(ERR,
3986 					"unable to map addr to phys memory\n");
3987 				return -ENOMEM;
3988 			}
3989 		}
3990 		rte_mem_lock_page(((char *)mz->addr));
3991 
3992 		rmem->pg_tbl = mz->addr;
3993 		rmem->pg_tbl_map = mz_phys_addr;
3994 		rmem->pg_tbl_mz = mz;
3995 	}
3996 
3997 	snprintf(mz_name, RTE_MEMZONE_NAMESIZE, "bnxt_ctx_%s_%x_%d",
3998 		 suffix, idx, bp->eth_dev->data->port_id);
3999 	mz = rte_memzone_lookup(mz_name);
4000 	if (!mz) {
4001 		mz = rte_memzone_reserve_aligned(mz_name,
4002 						 mem_size,
4003 						 SOCKET_ID_ANY,
4004 						 RTE_MEMZONE_1GB |
4005 						 RTE_MEMZONE_SIZE_HINT_ONLY |
4006 						 RTE_MEMZONE_IOVA_CONTIG,
4007 						 BNXT_PAGE_SIZE);
4008 		if (mz == NULL)
4009 			return -ENOMEM;
4010 	}
4011 
4012 	memset(mz->addr, 0, mz->len);
4013 	mz_phys_addr = mz->iova;
4014 	if ((unsigned long)mz->addr == mz_phys_addr) {
4015 		PMD_DRV_LOG(DEBUG,
4016 			    "Memzone physical address same as virtual.\n");
4017 		PMD_DRV_LOG(DEBUG, "Using rte_mem_virt2iova()\n");
4018 		for (sz = 0; sz < mem_size; sz += BNXT_PAGE_SIZE)
4019 			rte_mem_lock_page(((char *)mz->addr) + sz);
4020 		mz_phys_addr = rte_mem_virt2iova(mz->addr);
4021 		if (mz_phys_addr == RTE_BAD_IOVA) {
4022 			PMD_DRV_LOG(ERR,
4023 				    "unable to map addr to phys memory\n");
4024 			return -ENOMEM;
4025 		}
4026 	}
4027 
4028 	for (sz = 0, i = 0; sz < mem_size; sz += BNXT_PAGE_SIZE, i++) {
4029 		rte_mem_lock_page(((char *)mz->addr) + sz);
4030 		rmem->pg_arr[i] = ((char *)mz->addr) + sz;
4031 		rmem->dma_arr[i] = mz_phys_addr + sz;
4032 
4033 		if (rmem->nr_pages > 1) {
4034 			if (i == rmem->nr_pages - 2 &&
4035 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
4036 				valid_bits |= PTU_PTE_NEXT_TO_LAST;
4037 			else if (i == rmem->nr_pages - 1 &&
4038 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
4039 				valid_bits |= PTU_PTE_LAST;
4040 
4041 			rmem->pg_tbl[i] = rte_cpu_to_le_64(rmem->dma_arr[i] |
4042 							   valid_bits);
4043 		}
4044 	}
4045 
4046 	rmem->mz = mz;
4047 	if (rmem->vmem_size)
4048 		rmem->vmem = (void **)mz->addr;
4049 	rmem->dma_arr[0] = mz_phys_addr;
4050 	return 0;
4051 }
4052 
4053 static void bnxt_free_ctx_mem(struct bnxt *bp)
4054 {
4055 	int i;
4056 
4057 	if (!bp->ctx || !(bp->ctx->flags & BNXT_CTX_FLAG_INITED))
4058 		return;
4059 
4060 	bp->ctx->flags &= ~BNXT_CTX_FLAG_INITED;
4061 	rte_memzone_free(bp->ctx->qp_mem.ring_mem.mz);
4062 	rte_memzone_free(bp->ctx->srq_mem.ring_mem.mz);
4063 	rte_memzone_free(bp->ctx->cq_mem.ring_mem.mz);
4064 	rte_memzone_free(bp->ctx->vnic_mem.ring_mem.mz);
4065 	rte_memzone_free(bp->ctx->stat_mem.ring_mem.mz);
4066 	rte_memzone_free(bp->ctx->qp_mem.ring_mem.pg_tbl_mz);
4067 	rte_memzone_free(bp->ctx->srq_mem.ring_mem.pg_tbl_mz);
4068 	rte_memzone_free(bp->ctx->cq_mem.ring_mem.pg_tbl_mz);
4069 	rte_memzone_free(bp->ctx->vnic_mem.ring_mem.pg_tbl_mz);
4070 	rte_memzone_free(bp->ctx->stat_mem.ring_mem.pg_tbl_mz);
4071 
4072 	for (i = 0; i < BNXT_MAX_Q; i++) {
4073 		if (bp->ctx->tqm_mem[i])
4074 			rte_memzone_free(bp->ctx->tqm_mem[i]->ring_mem.mz);
4075 	}
4076 
4077 	rte_free(bp->ctx);
4078 	bp->ctx = NULL;
4079 }
4080 
4081 #define bnxt_roundup(x, y)   ((((x) + ((y) - 1)) / (y)) * (y))
4082 
4083 #define min_t(type, x, y) ({                    \
4084 	type __min1 = (x);                      \
4085 	type __min2 = (y);                      \
4086 	__min1 < __min2 ? __min1 : __min2; })
4087 
4088 #define max_t(type, x, y) ({                    \
4089 	type __max1 = (x);                      \
4090 	type __max2 = (y);                      \
4091 	__max1 > __max2 ? __max1 : __max2; })
4092 
4093 #define clamp_t(type, _x, min, max)     min_t(type, max_t(type, _x, min), max)
4094 
4095 int bnxt_alloc_ctx_mem(struct bnxt *bp)
4096 {
4097 	struct bnxt_ctx_pg_info *ctx_pg;
4098 	struct bnxt_ctx_mem_info *ctx;
4099 	uint32_t mem_size, ena, entries;
4100 	int i, rc;
4101 
4102 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
4103 	if (rc) {
4104 		PMD_DRV_LOG(ERR, "Query context mem capability failed\n");
4105 		return rc;
4106 	}
4107 	ctx = bp->ctx;
4108 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
4109 		return 0;
4110 
4111 	ctx_pg = &ctx->qp_mem;
4112 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries;
4113 	mem_size = ctx->qp_entry_size * ctx_pg->entries;
4114 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "qp_mem", 0);
4115 	if (rc)
4116 		return rc;
4117 
4118 	ctx_pg = &ctx->srq_mem;
4119 	ctx_pg->entries = ctx->srq_max_l2_entries;
4120 	mem_size = ctx->srq_entry_size * ctx_pg->entries;
4121 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "srq_mem", 0);
4122 	if (rc)
4123 		return rc;
4124 
4125 	ctx_pg = &ctx->cq_mem;
4126 	ctx_pg->entries = ctx->cq_max_l2_entries;
4127 	mem_size = ctx->cq_entry_size * ctx_pg->entries;
4128 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "cq_mem", 0);
4129 	if (rc)
4130 		return rc;
4131 
4132 	ctx_pg = &ctx->vnic_mem;
4133 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
4134 		ctx->vnic_max_ring_table_entries;
4135 	mem_size = ctx->vnic_entry_size * ctx_pg->entries;
4136 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "vnic_mem", 0);
4137 	if (rc)
4138 		return rc;
4139 
4140 	ctx_pg = &ctx->stat_mem;
4141 	ctx_pg->entries = ctx->stat_max_entries;
4142 	mem_size = ctx->stat_entry_size * ctx_pg->entries;
4143 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "stat_mem", 0);
4144 	if (rc)
4145 		return rc;
4146 
4147 	entries = ctx->qp_max_l2_entries;
4148 	entries = bnxt_roundup(entries, ctx->tqm_entries_multiple);
4149 	entries = clamp_t(uint32_t, entries, ctx->tqm_min_entries_per_ring,
4150 			  ctx->tqm_max_entries_per_ring);
4151 	for (i = 0, ena = 0; i < BNXT_MAX_Q; i++) {
4152 		ctx_pg = ctx->tqm_mem[i];
4153 		/* use min tqm entries for now. */
4154 		ctx_pg->entries = entries;
4155 		mem_size = ctx->tqm_entry_size * ctx_pg->entries;
4156 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "tqm_mem", i);
4157 		if (rc)
4158 			return rc;
4159 		ena |= HWRM_FUNC_BACKING_STORE_CFG_INPUT_ENABLES_TQM_SP << i;
4160 	}
4161 
4162 	ena |= FUNC_BACKING_STORE_CFG_INPUT_DFLT_ENABLES;
4163 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
4164 	if (rc)
4165 		PMD_DRV_LOG(ERR,
4166 			    "Failed to configure context mem: rc = %d\n", rc);
4167 	else
4168 		ctx->flags |= BNXT_CTX_FLAG_INITED;
4169 
4170 	return rc;
4171 }
4172 
4173 static int bnxt_alloc_stats_mem(struct bnxt *bp)
4174 {
4175 	struct rte_pci_device *pci_dev = bp->pdev;
4176 	char mz_name[RTE_MEMZONE_NAMESIZE];
4177 	const struct rte_memzone *mz = NULL;
4178 	uint32_t total_alloc_len;
4179 	rte_iova_t mz_phys_addr;
4180 
4181 	if (pci_dev->id.device_id == BROADCOM_DEV_ID_NS2)
4182 		return 0;
4183 
4184 	snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
4185 		 "bnxt_" PCI_PRI_FMT "-%s", pci_dev->addr.domain,
4186 		 pci_dev->addr.bus, pci_dev->addr.devid,
4187 		 pci_dev->addr.function, "rx_port_stats");
4188 	mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
4189 	mz = rte_memzone_lookup(mz_name);
4190 	total_alloc_len =
4191 		RTE_CACHE_LINE_ROUNDUP(sizeof(struct rx_port_stats) +
4192 				       sizeof(struct rx_port_stats_ext) + 512);
4193 	if (!mz) {
4194 		mz = rte_memzone_reserve(mz_name, total_alloc_len,
4195 					 SOCKET_ID_ANY,
4196 					 RTE_MEMZONE_2MB |
4197 					 RTE_MEMZONE_SIZE_HINT_ONLY |
4198 					 RTE_MEMZONE_IOVA_CONTIG);
4199 		if (mz == NULL)
4200 			return -ENOMEM;
4201 	}
4202 	memset(mz->addr, 0, mz->len);
4203 	mz_phys_addr = mz->iova;
4204 	if ((unsigned long)mz->addr == mz_phys_addr) {
4205 		PMD_DRV_LOG(DEBUG,
4206 			    "Memzone physical address same as virtual.\n");
4207 		PMD_DRV_LOG(DEBUG,
4208 			    "Using rte_mem_virt2iova()\n");
4209 		mz_phys_addr = rte_mem_virt2iova(mz->addr);
4210 		if (mz_phys_addr == RTE_BAD_IOVA) {
4211 			PMD_DRV_LOG(ERR,
4212 				    "Can't map address to physical memory\n");
4213 			return -ENOMEM;
4214 		}
4215 	}
4216 
4217 	bp->rx_mem_zone = (const void *)mz;
4218 	bp->hw_rx_port_stats = mz->addr;
4219 	bp->hw_rx_port_stats_map = mz_phys_addr;
4220 
4221 	snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
4222 		 "bnxt_" PCI_PRI_FMT "-%s", pci_dev->addr.domain,
4223 		 pci_dev->addr.bus, pci_dev->addr.devid,
4224 		 pci_dev->addr.function, "tx_port_stats");
4225 	mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
4226 	mz = rte_memzone_lookup(mz_name);
4227 	total_alloc_len =
4228 		RTE_CACHE_LINE_ROUNDUP(sizeof(struct tx_port_stats) +
4229 				       sizeof(struct tx_port_stats_ext) + 512);
4230 	if (!mz) {
4231 		mz = rte_memzone_reserve(mz_name,
4232 					 total_alloc_len,
4233 					 SOCKET_ID_ANY,
4234 					 RTE_MEMZONE_2MB |
4235 					 RTE_MEMZONE_SIZE_HINT_ONLY |
4236 					 RTE_MEMZONE_IOVA_CONTIG);
4237 		if (mz == NULL)
4238 			return -ENOMEM;
4239 	}
4240 	memset(mz->addr, 0, mz->len);
4241 	mz_phys_addr = mz->iova;
4242 	if ((unsigned long)mz->addr == mz_phys_addr) {
4243 		PMD_DRV_LOG(DEBUG,
4244 			    "Memzone physical address same as virtual\n");
4245 		PMD_DRV_LOG(DEBUG, "Using rte_mem_virt2iova()\n");
4246 		mz_phys_addr = rte_mem_virt2iova(mz->addr);
4247 		if (mz_phys_addr == RTE_BAD_IOVA) {
4248 			PMD_DRV_LOG(ERR,
4249 				    "Can't map address to physical memory\n");
4250 			return -ENOMEM;
4251 		}
4252 	}
4253 
4254 	bp->tx_mem_zone = (const void *)mz;
4255 	bp->hw_tx_port_stats = mz->addr;
4256 	bp->hw_tx_port_stats_map = mz_phys_addr;
4257 	bp->flags |= BNXT_FLAG_PORT_STATS;
4258 
4259 	/* Display extended statistics if FW supports it */
4260 	if (bp->hwrm_spec_code < HWRM_SPEC_CODE_1_8_4 ||
4261 	    bp->hwrm_spec_code == HWRM_SPEC_CODE_1_9_0 ||
4262 	    !(bp->flags & BNXT_FLAG_EXT_STATS_SUPPORTED))
4263 		return 0;
4264 
4265 	bp->hw_rx_port_stats_ext = (void *)
4266 		((uint8_t *)bp->hw_rx_port_stats +
4267 		 sizeof(struct rx_port_stats));
4268 	bp->hw_rx_port_stats_ext_map = bp->hw_rx_port_stats_map +
4269 		sizeof(struct rx_port_stats);
4270 	bp->flags |= BNXT_FLAG_EXT_RX_PORT_STATS;
4271 
4272 	if (bp->hwrm_spec_code < HWRM_SPEC_CODE_1_9_2 ||
4273 	    bp->flags & BNXT_FLAG_EXT_STATS_SUPPORTED) {
4274 		bp->hw_tx_port_stats_ext = (void *)
4275 			((uint8_t *)bp->hw_tx_port_stats +
4276 			 sizeof(struct tx_port_stats));
4277 		bp->hw_tx_port_stats_ext_map =
4278 			bp->hw_tx_port_stats_map +
4279 			sizeof(struct tx_port_stats);
4280 		bp->flags |= BNXT_FLAG_EXT_TX_PORT_STATS;
4281 	}
4282 
4283 	return 0;
4284 }
4285 
4286 static int bnxt_setup_mac_addr(struct rte_eth_dev *eth_dev)
4287 {
4288 	struct bnxt *bp = eth_dev->data->dev_private;
4289 	int rc = 0;
4290 
4291 	eth_dev->data->mac_addrs = rte_zmalloc("bnxt_mac_addr_tbl",
4292 					       RTE_ETHER_ADDR_LEN *
4293 					       bp->max_l2_ctx,
4294 					       0);
4295 	if (eth_dev->data->mac_addrs == NULL) {
4296 		PMD_DRV_LOG(ERR, "Failed to alloc MAC addr tbl\n");
4297 		return -ENOMEM;
4298 	}
4299 
4300 	if (bnxt_check_zero_bytes(bp->dflt_mac_addr, RTE_ETHER_ADDR_LEN)) {
4301 		if (BNXT_PF(bp))
4302 			return -EINVAL;
4303 
4304 		/* Generate a random MAC address, if none was assigned by PF */
4305 		PMD_DRV_LOG(INFO, "VF MAC address not assigned by Host PF\n");
4306 		bnxt_eth_hw_addr_random(bp->mac_addr);
4307 		PMD_DRV_LOG(INFO,
4308 			    "Assign random MAC:%02X:%02X:%02X:%02X:%02X:%02X\n",
4309 			    bp->mac_addr[0], bp->mac_addr[1], bp->mac_addr[2],
4310 			    bp->mac_addr[3], bp->mac_addr[4], bp->mac_addr[5]);
4311 
4312 		rc = bnxt_hwrm_set_mac(bp);
4313 		if (!rc)
4314 			memcpy(&bp->eth_dev->data->mac_addrs[0], bp->mac_addr,
4315 			       RTE_ETHER_ADDR_LEN);
4316 		return rc;
4317 	}
4318 
4319 	/* Copy the permanent MAC from the FUNC_QCAPS response */
4320 	memcpy(bp->mac_addr, bp->dflt_mac_addr, RTE_ETHER_ADDR_LEN);
4321 	memcpy(&eth_dev->data->mac_addrs[0], bp->mac_addr, RTE_ETHER_ADDR_LEN);
4322 
4323 	return rc;
4324 }
4325 
4326 static int bnxt_restore_dflt_mac(struct bnxt *bp)
4327 {
4328 	int rc = 0;
4329 
4330 	/* MAC is already configured in FW */
4331 	if (!bnxt_check_zero_bytes(bp->dflt_mac_addr, RTE_ETHER_ADDR_LEN))
4332 		return 0;
4333 
4334 	/* Restore the old MAC configured */
4335 	rc = bnxt_hwrm_set_mac(bp);
4336 	if (rc)
4337 		PMD_DRV_LOG(ERR, "Failed to restore MAC address\n");
4338 
4339 	return rc;
4340 }
4341 
4342 static void bnxt_config_vf_req_fwd(struct bnxt *bp)
4343 {
4344 	if (!BNXT_PF(bp))
4345 		return;
4346 
4347 #define ALLOW_FUNC(x)	\
4348 	{ \
4349 		uint32_t arg = (x); \
4350 		bp->pf.vf_req_fwd[((arg) >> 5)] &= \
4351 		~rte_cpu_to_le_32(1 << ((arg) & 0x1f)); \
4352 	}
4353 
4354 	/* Forward all requests if firmware is new enough */
4355 	if (((bp->fw_ver >= ((20 << 24) | (6 << 16) | (100 << 8))) &&
4356 	     (bp->fw_ver < ((20 << 24) | (7 << 16)))) ||
4357 	    ((bp->fw_ver >= ((20 << 24) | (8 << 16))))) {
4358 		memset(bp->pf.vf_req_fwd, 0xff, sizeof(bp->pf.vf_req_fwd));
4359 	} else {
4360 		PMD_DRV_LOG(WARNING,
4361 			    "Firmware too old for VF mailbox functionality\n");
4362 		memset(bp->pf.vf_req_fwd, 0, sizeof(bp->pf.vf_req_fwd));
4363 	}
4364 
4365 	/*
4366 	 * The following are used for driver cleanup. If we disallow these,
4367 	 * VF drivers can't clean up cleanly.
4368 	 */
4369 	ALLOW_FUNC(HWRM_FUNC_DRV_UNRGTR);
4370 	ALLOW_FUNC(HWRM_VNIC_FREE);
4371 	ALLOW_FUNC(HWRM_RING_FREE);
4372 	ALLOW_FUNC(HWRM_RING_GRP_FREE);
4373 	ALLOW_FUNC(HWRM_VNIC_RSS_COS_LB_CTX_FREE);
4374 	ALLOW_FUNC(HWRM_CFA_L2_FILTER_FREE);
4375 	ALLOW_FUNC(HWRM_STAT_CTX_FREE);
4376 	ALLOW_FUNC(HWRM_PORT_PHY_QCFG);
4377 	ALLOW_FUNC(HWRM_VNIC_TPA_CFG);
4378 }
4379 
4380 static int bnxt_init_fw(struct bnxt *bp)
4381 {
4382 	uint16_t mtu;
4383 	int rc = 0;
4384 
4385 	rc = bnxt_hwrm_ver_get(bp);
4386 	if (rc)
4387 		return rc;
4388 
4389 	rc = bnxt_hwrm_func_reset(bp);
4390 	if (rc)
4391 		return -EIO;
4392 
4393 	rc = bnxt_hwrm_queue_qportcfg(bp);
4394 	if (rc)
4395 		return rc;
4396 
4397 	/* Get the MAX capabilities for this function */
4398 	rc = bnxt_hwrm_func_qcaps(bp);
4399 	if (rc)
4400 		return rc;
4401 
4402 	rc = bnxt_hwrm_func_qcfg(bp, &mtu);
4403 	if (rc)
4404 		return rc;
4405 
4406 	/* Get the adapter error recovery support info */
4407 	rc = bnxt_hwrm_error_recovery_qcfg(bp);
4408 	if (rc)
4409 		bp->flags &= ~BNXT_FLAG_FW_CAP_ERROR_RECOVERY;
4410 
4411 	if (mtu >= RTE_ETHER_MIN_MTU && mtu <= BNXT_MAX_MTU &&
4412 	    mtu != bp->eth_dev->data->mtu)
4413 		bp->eth_dev->data->mtu = mtu;
4414 
4415 	bnxt_hwrm_port_led_qcaps(bp);
4416 
4417 	return 0;
4418 }
4419 
4420 static int bnxt_init_resources(struct bnxt *bp, bool reconfig_dev)
4421 {
4422 	int rc;
4423 
4424 	rc = bnxt_init_fw(bp);
4425 	if (rc)
4426 		return rc;
4427 
4428 	if (!reconfig_dev) {
4429 		rc = bnxt_setup_mac_addr(bp->eth_dev);
4430 		if (rc)
4431 			return rc;
4432 	} else {
4433 		rc = bnxt_restore_dflt_mac(bp);
4434 		if (rc)
4435 			return rc;
4436 	}
4437 
4438 	bnxt_config_vf_req_fwd(bp);
4439 
4440 	rc = bnxt_hwrm_func_driver_register(bp);
4441 	if (rc) {
4442 		PMD_DRV_LOG(ERR, "Failed to register driver");
4443 		return -EBUSY;
4444 	}
4445 
4446 	if (BNXT_PF(bp)) {
4447 		if (bp->pdev->max_vfs) {
4448 			rc = bnxt_hwrm_allocate_vfs(bp, bp->pdev->max_vfs);
4449 			if (rc) {
4450 				PMD_DRV_LOG(ERR, "Failed to allocate VFs\n");
4451 				return rc;
4452 			}
4453 		} else {
4454 			rc = bnxt_hwrm_allocate_pf_only(bp);
4455 			if (rc) {
4456 				PMD_DRV_LOG(ERR,
4457 					    "Failed to allocate PF resources");
4458 				return rc;
4459 			}
4460 		}
4461 	}
4462 
4463 	rc = bnxt_alloc_mem(bp, reconfig_dev);
4464 	if (rc)
4465 		return rc;
4466 
4467 	rc = bnxt_setup_int(bp);
4468 	if (rc)
4469 		return rc;
4470 
4471 	bnxt_init_nic(bp);
4472 
4473 	rc = bnxt_request_int(bp);
4474 	if (rc)
4475 		return rc;
4476 
4477 	return 0;
4478 }
4479 
4480 static int
4481 bnxt_dev_init(struct rte_eth_dev *eth_dev)
4482 {
4483 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
4484 	static int version_printed;
4485 	struct bnxt *bp;
4486 	int rc;
4487 
4488 	if (version_printed++ == 0)
4489 		PMD_DRV_LOG(INFO, "%s\n", bnxt_version);
4490 
4491 	rte_eth_copy_pci_info(eth_dev, pci_dev);
4492 
4493 	bp = eth_dev->data->dev_private;
4494 
4495 	bp->dev_stopped = 1;
4496 
4497 	eth_dev->dev_ops = &bnxt_dev_ops;
4498 	eth_dev->rx_pkt_burst = &bnxt_recv_pkts;
4499 	eth_dev->tx_pkt_burst = &bnxt_xmit_pkts;
4500 
4501 	/*
4502 	 * For secondary processes, we don't initialise any further
4503 	 * as primary has already done this work.
4504 	 */
4505 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
4506 		return 0;
4507 
4508 	if (bnxt_vf_pciid(pci_dev->id.device_id))
4509 		bp->flags |= BNXT_FLAG_VF;
4510 
4511 	if (pci_dev->id.device_id == BROADCOM_DEV_ID_57508 ||
4512 	    pci_dev->id.device_id == BROADCOM_DEV_ID_57504 ||
4513 	    pci_dev->id.device_id == BROADCOM_DEV_ID_57502 ||
4514 	    pci_dev->id.device_id == BROADCOM_DEV_ID_57500_VF1 ||
4515 	    pci_dev->id.device_id == BROADCOM_DEV_ID_57500_VF2)
4516 		bp->flags |= BNXT_FLAG_THOR_CHIP;
4517 
4518 	if (pci_dev->id.device_id == BROADCOM_DEV_ID_58802 ||
4519 	    pci_dev->id.device_id == BROADCOM_DEV_ID_58804 ||
4520 	    pci_dev->id.device_id == BROADCOM_DEV_ID_58808 ||
4521 	    pci_dev->id.device_id == BROADCOM_DEV_ID_58802_VF)
4522 		bp->flags |= BNXT_FLAG_STINGRAY;
4523 
4524 	rc = bnxt_init_board(eth_dev);
4525 	if (rc) {
4526 		PMD_DRV_LOG(ERR,
4527 			    "Failed to initialize board rc: %x\n", rc);
4528 		return rc;
4529 	}
4530 
4531 	rc = bnxt_alloc_hwrm_resources(bp);
4532 	if (rc) {
4533 		PMD_DRV_LOG(ERR,
4534 			    "Failed to allocate hwrm resource rc: %x\n", rc);
4535 		goto error_free;
4536 	}
4537 	rc = bnxt_init_resources(bp, false);
4538 	if (rc)
4539 		goto error_free;
4540 
4541 	rc = bnxt_alloc_stats_mem(bp);
4542 	if (rc)
4543 		goto error_free;
4544 
4545 	PMD_DRV_LOG(INFO,
4546 		    DRV_MODULE_NAME "found at mem %" PRIX64 ", node addr %pM\n",
4547 		    pci_dev->mem_resource[0].phys_addr,
4548 		    pci_dev->mem_resource[0].addr);
4549 
4550 	return 0;
4551 
4552 error_free:
4553 	bnxt_dev_uninit(eth_dev);
4554 	return rc;
4555 }
4556 
4557 static int
4558 bnxt_uninit_resources(struct bnxt *bp, bool reconfig_dev)
4559 {
4560 	int rc;
4561 
4562 	bnxt_free_int(bp);
4563 	bnxt_free_mem(bp, reconfig_dev);
4564 	bnxt_hwrm_func_buf_unrgtr(bp);
4565 	rc = bnxt_hwrm_func_driver_unregister(bp, 0);
4566 	bp->flags &= ~BNXT_FLAG_REGISTERED;
4567 	bnxt_free_ctx_mem(bp);
4568 	if (!reconfig_dev) {
4569 		bnxt_free_hwrm_resources(bp);
4570 
4571 		if (bp->recovery_info != NULL) {
4572 			rte_free(bp->recovery_info);
4573 			bp->recovery_info = NULL;
4574 		}
4575 	}
4576 
4577 	rte_free(bp->ptp_cfg);
4578 	bp->ptp_cfg = NULL;
4579 	return rc;
4580 }
4581 
4582 static int
4583 bnxt_dev_uninit(struct rte_eth_dev *eth_dev)
4584 {
4585 	struct bnxt *bp = eth_dev->data->dev_private;
4586 	int rc;
4587 
4588 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
4589 		return -EPERM;
4590 
4591 	PMD_DRV_LOG(DEBUG, "Calling Device uninit\n");
4592 
4593 	rc = bnxt_uninit_resources(bp, false);
4594 
4595 	if (bp->grp_info != NULL) {
4596 		rte_free(bp->grp_info);
4597 		bp->grp_info = NULL;
4598 	}
4599 
4600 	if (bp->tx_mem_zone) {
4601 		rte_memzone_free((const struct rte_memzone *)bp->tx_mem_zone);
4602 		bp->tx_mem_zone = NULL;
4603 	}
4604 
4605 	if (bp->rx_mem_zone) {
4606 		rte_memzone_free((const struct rte_memzone *)bp->rx_mem_zone);
4607 		bp->rx_mem_zone = NULL;
4608 	}
4609 
4610 	if (bp->dev_stopped == 0)
4611 		bnxt_dev_close_op(eth_dev);
4612 	if (bp->pf.vf_info)
4613 		rte_free(bp->pf.vf_info);
4614 	eth_dev->dev_ops = NULL;
4615 	eth_dev->rx_pkt_burst = NULL;
4616 	eth_dev->tx_pkt_burst = NULL;
4617 
4618 	return rc;
4619 }
4620 
4621 static int bnxt_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
4622 	struct rte_pci_device *pci_dev)
4623 {
4624 	return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct bnxt),
4625 		bnxt_dev_init);
4626 }
4627 
4628 static int bnxt_pci_remove(struct rte_pci_device *pci_dev)
4629 {
4630 	if (rte_eal_process_type() == RTE_PROC_PRIMARY)
4631 		return rte_eth_dev_pci_generic_remove(pci_dev,
4632 				bnxt_dev_uninit);
4633 	else
4634 		return rte_eth_dev_pci_generic_remove(pci_dev, NULL);
4635 }
4636 
4637 static struct rte_pci_driver bnxt_rte_pmd = {
4638 	.id_table = bnxt_pci_id_map,
4639 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
4640 	.probe = bnxt_pci_probe,
4641 	.remove = bnxt_pci_remove,
4642 };
4643 
4644 static bool
4645 is_device_supported(struct rte_eth_dev *dev, struct rte_pci_driver *drv)
4646 {
4647 	if (strcmp(dev->device->driver->name, drv->driver.name))
4648 		return false;
4649 
4650 	return true;
4651 }
4652 
4653 bool is_bnxt_supported(struct rte_eth_dev *dev)
4654 {
4655 	return is_device_supported(dev, &bnxt_rte_pmd);
4656 }
4657 
4658 RTE_INIT(bnxt_init_log)
4659 {
4660 	bnxt_logtype_driver = rte_log_register("pmd.net.bnxt.driver");
4661 	if (bnxt_logtype_driver >= 0)
4662 		rte_log_set_level(bnxt_logtype_driver, RTE_LOG_NOTICE);
4663 }
4664 
4665 RTE_PMD_REGISTER_PCI(net_bnxt, bnxt_rte_pmd);
4666 RTE_PMD_REGISTER_PCI_TABLE(net_bnxt, bnxt_pci_id_map);
4667 RTE_PMD_REGISTER_KMOD_DEP(net_bnxt, "* igb_uio | uio_pci_generic | vfio-pci");
4668