xref: /dpdk/drivers/net/bnxt/bnxt_ethdev.c (revision 3153ec8bd1eedbc6d34671b0e2b51bf97896caa3)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Broadcom
3  * All rights reserved.
4  */
5 
6 #include <inttypes.h>
7 #include <stdbool.h>
8 
9 #include <rte_dev.h>
10 #include <rte_ethdev_driver.h>
11 #include <rte_ethdev_pci.h>
12 #include <rte_malloc.h>
13 #include <rte_cycles.h>
14 
15 #include "bnxt.h"
16 #include "bnxt_cpr.h"
17 #include "bnxt_filter.h"
18 #include "bnxt_hwrm.h"
19 #include "bnxt_irq.h"
20 #include "bnxt_ring.h"
21 #include "bnxt_rxq.h"
22 #include "bnxt_rxr.h"
23 #include "bnxt_stats.h"
24 #include "bnxt_txq.h"
25 #include "bnxt_txr.h"
26 #include "bnxt_vnic.h"
27 #include "hsi_struct_def_dpdk.h"
28 #include "bnxt_nvm_defs.h"
29 #include "bnxt_util.h"
30 
31 #define DRV_MODULE_NAME		"bnxt"
32 static const char bnxt_version[] =
33 	"Broadcom NetXtreme driver " DRV_MODULE_NAME "\n";
34 int bnxt_logtype_driver;
35 
36 #define PCI_VENDOR_ID_BROADCOM 0x14E4
37 
38 #define BROADCOM_DEV_ID_STRATUS_NIC_VF1 0x1606
39 #define BROADCOM_DEV_ID_STRATUS_NIC_VF2 0x1609
40 #define BROADCOM_DEV_ID_STRATUS_NIC 0x1614
41 #define BROADCOM_DEV_ID_57414_VF 0x16c1
42 #define BROADCOM_DEV_ID_57301 0x16c8
43 #define BROADCOM_DEV_ID_57302 0x16c9
44 #define BROADCOM_DEV_ID_57304_PF 0x16ca
45 #define BROADCOM_DEV_ID_57304_VF 0x16cb
46 #define BROADCOM_DEV_ID_57417_MF 0x16cc
47 #define BROADCOM_DEV_ID_NS2 0x16cd
48 #define BROADCOM_DEV_ID_57311 0x16ce
49 #define BROADCOM_DEV_ID_57312 0x16cf
50 #define BROADCOM_DEV_ID_57402 0x16d0
51 #define BROADCOM_DEV_ID_57404 0x16d1
52 #define BROADCOM_DEV_ID_57406_PF 0x16d2
53 #define BROADCOM_DEV_ID_57406_VF 0x16d3
54 #define BROADCOM_DEV_ID_57402_MF 0x16d4
55 #define BROADCOM_DEV_ID_57407_RJ45 0x16d5
56 #define BROADCOM_DEV_ID_57412 0x16d6
57 #define BROADCOM_DEV_ID_57414 0x16d7
58 #define BROADCOM_DEV_ID_57416_RJ45 0x16d8
59 #define BROADCOM_DEV_ID_57417_RJ45 0x16d9
60 #define BROADCOM_DEV_ID_5741X_VF 0x16dc
61 #define BROADCOM_DEV_ID_57412_MF 0x16de
62 #define BROADCOM_DEV_ID_57314 0x16df
63 #define BROADCOM_DEV_ID_57317_RJ45 0x16e0
64 #define BROADCOM_DEV_ID_5731X_VF 0x16e1
65 #define BROADCOM_DEV_ID_57417_SFP 0x16e2
66 #define BROADCOM_DEV_ID_57416_SFP 0x16e3
67 #define BROADCOM_DEV_ID_57317_SFP 0x16e4
68 #define BROADCOM_DEV_ID_57404_MF 0x16e7
69 #define BROADCOM_DEV_ID_57406_MF 0x16e8
70 #define BROADCOM_DEV_ID_57407_SFP 0x16e9
71 #define BROADCOM_DEV_ID_57407_MF 0x16ea
72 #define BROADCOM_DEV_ID_57414_MF 0x16ec
73 #define BROADCOM_DEV_ID_57416_MF 0x16ee
74 #define BROADCOM_DEV_ID_58802 0xd802
75 #define BROADCOM_DEV_ID_58804 0xd804
76 #define BROADCOM_DEV_ID_58808 0x16f0
77 #define BROADCOM_DEV_ID_58802_VF 0xd800
78 
79 static const struct rte_pci_id bnxt_pci_id_map[] = {
80 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
81 			 BROADCOM_DEV_ID_STRATUS_NIC_VF1) },
82 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
83 			 BROADCOM_DEV_ID_STRATUS_NIC_VF2) },
84 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_STRATUS_NIC) },
85 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_VF) },
86 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57301) },
87 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57302) },
88 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_PF) },
89 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_VF) },
90 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_NS2) },
91 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402) },
92 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404) },
93 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_PF) },
94 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_VF) },
95 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402_MF) },
96 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_RJ45) },
97 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404_MF) },
98 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_MF) },
99 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_SFP) },
100 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_MF) },
101 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5741X_VF) },
102 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5731X_VF) },
103 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57314) },
104 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_MF) },
105 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57311) },
106 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57312) },
107 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412) },
108 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414) },
109 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_RJ45) },
110 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_RJ45) },
111 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412_MF) },
112 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_RJ45) },
113 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_SFP) },
114 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_SFP) },
115 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_SFP) },
116 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_MF) },
117 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_MF) },
118 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58802) },
119 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58804) },
120 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58808) },
121 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58802_VF) },
122 	{ .vendor_id = 0, /* sentinel */ },
123 };
124 
125 #define BNXT_ETH_RSS_SUPPORT (	\
126 	ETH_RSS_IPV4 |		\
127 	ETH_RSS_NONFRAG_IPV4_TCP |	\
128 	ETH_RSS_NONFRAG_IPV4_UDP |	\
129 	ETH_RSS_IPV6 |		\
130 	ETH_RSS_NONFRAG_IPV6_TCP |	\
131 	ETH_RSS_NONFRAG_IPV6_UDP)
132 
133 #define BNXT_DEV_TX_OFFLOAD_SUPPORT (DEV_TX_OFFLOAD_VLAN_INSERT | \
134 				     DEV_TX_OFFLOAD_IPV4_CKSUM | \
135 				     DEV_TX_OFFLOAD_TCP_CKSUM | \
136 				     DEV_TX_OFFLOAD_UDP_CKSUM | \
137 				     DEV_TX_OFFLOAD_TCP_TSO | \
138 				     DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM | \
139 				     DEV_TX_OFFLOAD_VXLAN_TNL_TSO | \
140 				     DEV_TX_OFFLOAD_GRE_TNL_TSO | \
141 				     DEV_TX_OFFLOAD_IPIP_TNL_TSO | \
142 				     DEV_TX_OFFLOAD_GENEVE_TNL_TSO | \
143 				     DEV_TX_OFFLOAD_MULTI_SEGS)
144 
145 #define BNXT_DEV_RX_OFFLOAD_SUPPORT (DEV_RX_OFFLOAD_VLAN_FILTER | \
146 				     DEV_RX_OFFLOAD_VLAN_STRIP | \
147 				     DEV_RX_OFFLOAD_IPV4_CKSUM | \
148 				     DEV_RX_OFFLOAD_UDP_CKSUM | \
149 				     DEV_RX_OFFLOAD_TCP_CKSUM | \
150 				     DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM | \
151 				     DEV_RX_OFFLOAD_JUMBO_FRAME | \
152 				     DEV_RX_OFFLOAD_KEEP_CRC | \
153 				     DEV_RX_OFFLOAD_TCP_LRO)
154 
155 static int bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask);
156 static void bnxt_print_link_info(struct rte_eth_dev *eth_dev);
157 static int bnxt_mtu_set_op(struct rte_eth_dev *eth_dev, uint16_t new_mtu);
158 static int bnxt_dev_uninit(struct rte_eth_dev *eth_dev);
159 
160 /***********************/
161 
162 /*
163  * High level utility functions
164  */
165 
166 static void bnxt_free_mem(struct bnxt *bp)
167 {
168 	bnxt_free_filter_mem(bp);
169 	bnxt_free_vnic_attributes(bp);
170 	bnxt_free_vnic_mem(bp);
171 
172 	bnxt_free_stats(bp);
173 	bnxt_free_tx_rings(bp);
174 	bnxt_free_rx_rings(bp);
175 }
176 
177 static int bnxt_alloc_mem(struct bnxt *bp)
178 {
179 	int rc;
180 
181 	rc = bnxt_alloc_vnic_mem(bp);
182 	if (rc)
183 		goto alloc_mem_err;
184 
185 	rc = bnxt_alloc_vnic_attributes(bp);
186 	if (rc)
187 		goto alloc_mem_err;
188 
189 	rc = bnxt_alloc_filter_mem(bp);
190 	if (rc)
191 		goto alloc_mem_err;
192 
193 	return 0;
194 
195 alloc_mem_err:
196 	bnxt_free_mem(bp);
197 	return rc;
198 }
199 
200 static int bnxt_init_chip(struct bnxt *bp)
201 {
202 	struct bnxt_rx_queue *rxq;
203 	struct rte_eth_link new;
204 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(bp->eth_dev);
205 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
206 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
207 	uint64_t rx_offloads = dev_conf->rxmode.offloads;
208 	uint32_t intr_vector = 0;
209 	uint32_t queue_id, base = BNXT_MISC_VEC_ID;
210 	uint32_t vec = BNXT_MISC_VEC_ID;
211 	unsigned int i, j;
212 	int rc;
213 
214 	/* disable uio/vfio intr/eventfd mapping */
215 	rte_intr_disable(intr_handle);
216 
217 	if (bp->eth_dev->data->mtu > ETHER_MTU) {
218 		bp->eth_dev->data->dev_conf.rxmode.offloads |=
219 			DEV_RX_OFFLOAD_JUMBO_FRAME;
220 		bp->flags |= BNXT_FLAG_JUMBO;
221 	} else {
222 		bp->eth_dev->data->dev_conf.rxmode.offloads &=
223 			~DEV_RX_OFFLOAD_JUMBO_FRAME;
224 		bp->flags &= ~BNXT_FLAG_JUMBO;
225 	}
226 
227 	rc = bnxt_alloc_all_hwrm_stat_ctxs(bp);
228 	if (rc) {
229 		PMD_DRV_LOG(ERR, "HWRM stat ctx alloc failure rc: %x\n", rc);
230 		goto err_out;
231 	}
232 
233 	rc = bnxt_alloc_hwrm_rings(bp);
234 	if (rc) {
235 		PMD_DRV_LOG(ERR, "HWRM ring alloc failure rc: %x\n", rc);
236 		goto err_out;
237 	}
238 
239 	rc = bnxt_alloc_all_hwrm_ring_grps(bp);
240 	if (rc) {
241 		PMD_DRV_LOG(ERR, "HWRM ring grp alloc failure: %x\n", rc);
242 		goto err_out;
243 	}
244 
245 	rc = bnxt_mq_rx_configure(bp);
246 	if (rc) {
247 		PMD_DRV_LOG(ERR, "MQ mode configure failure rc: %x\n", rc);
248 		goto err_out;
249 	}
250 
251 	/* VNIC configuration */
252 	for (i = 0; i < bp->nr_vnics; i++) {
253 		struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
254 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
255 		uint32_t size = sizeof(*vnic->fw_grp_ids) * bp->max_ring_grps;
256 
257 		vnic->fw_grp_ids = rte_zmalloc("vnic_fw_grp_ids", size, 0);
258 		if (!vnic->fw_grp_ids) {
259 			PMD_DRV_LOG(ERR,
260 				    "Failed to alloc %d bytes for group ids\n",
261 				    size);
262 			rc = -ENOMEM;
263 			goto err_out;
264 		}
265 		memset(vnic->fw_grp_ids, -1, size);
266 
267 		PMD_DRV_LOG(DEBUG, "vnic[%d] = %p vnic->fw_grp_ids = %p\n",
268 			    i, vnic, vnic->fw_grp_ids);
269 
270 		rc = bnxt_hwrm_vnic_alloc(bp, vnic);
271 		if (rc) {
272 			PMD_DRV_LOG(ERR, "HWRM vnic %d alloc failure rc: %x\n",
273 				i, rc);
274 			goto err_out;
275 		}
276 
277 		/* Alloc RSS context only if RSS mode is enabled */
278 		if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS) {
279 			rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic);
280 			if (rc) {
281 				PMD_DRV_LOG(ERR,
282 					"HWRM vnic %d ctx alloc failure rc: %x\n",
283 					i, rc);
284 				goto err_out;
285 			}
286 		}
287 
288 		/*
289 		 * Firmware sets pf pair in default vnic cfg. If the VLAN strip
290 		 * setting is not available at this time, it will not be
291 		 * configured correctly in the CFA.
292 		 */
293 		if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
294 			vnic->vlan_strip = true;
295 		else
296 			vnic->vlan_strip = false;
297 
298 		rc = bnxt_hwrm_vnic_cfg(bp, vnic);
299 		if (rc) {
300 			PMD_DRV_LOG(ERR, "HWRM vnic %d cfg failure rc: %x\n",
301 				i, rc);
302 			goto err_out;
303 		}
304 
305 		rc = bnxt_set_hwrm_vnic_filters(bp, vnic);
306 		if (rc) {
307 			PMD_DRV_LOG(ERR,
308 				"HWRM vnic %d filter failure rc: %x\n",
309 				i, rc);
310 			goto err_out;
311 		}
312 
313 		for (j = 0; j < bp->rx_nr_rings; j++) {
314 			rxq = bp->eth_dev->data->rx_queues[j];
315 
316 			PMD_DRV_LOG(DEBUG,
317 				    "rxq[%d]->vnic=%p vnic->fw_grp_ids=%p\n",
318 				    j, rxq->vnic, rxq->vnic->fw_grp_ids);
319 
320 			if (rxq->rx_deferred_start)
321 				rxq->vnic->fw_grp_ids[j] = INVALID_HW_RING_ID;
322 		}
323 
324 		rc = bnxt_vnic_rss_configure(bp, vnic);
325 		if (rc) {
326 			PMD_DRV_LOG(ERR,
327 				    "HWRM vnic set RSS failure rc: %x\n", rc);
328 			goto err_out;
329 		}
330 
331 		bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
332 
333 		if (bp->eth_dev->data->dev_conf.rxmode.offloads &
334 		    DEV_RX_OFFLOAD_TCP_LRO)
335 			bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 1);
336 		else
337 			bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 0);
338 	}
339 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, &bp->vnic_info[0], 0, NULL);
340 	if (rc) {
341 		PMD_DRV_LOG(ERR,
342 			"HWRM cfa l2 rx mask failure rc: %x\n", rc);
343 		goto err_out;
344 	}
345 
346 	/* check and configure queue intr-vector mapping */
347 	if ((rte_intr_cap_multiple(intr_handle) ||
348 	     !RTE_ETH_DEV_SRIOV(bp->eth_dev).active) &&
349 	    bp->eth_dev->data->dev_conf.intr_conf.rxq != 0) {
350 		intr_vector = bp->eth_dev->data->nb_rx_queues;
351 		PMD_DRV_LOG(DEBUG, "intr_vector = %d\n", intr_vector);
352 		if (intr_vector > bp->rx_cp_nr_rings) {
353 			PMD_DRV_LOG(ERR, "At most %d intr queues supported",
354 					bp->rx_cp_nr_rings);
355 			return -ENOTSUP;
356 		}
357 		if (rte_intr_efd_enable(intr_handle, intr_vector))
358 			return -1;
359 	}
360 
361 	if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
362 		intr_handle->intr_vec =
363 			rte_zmalloc("intr_vec",
364 				    bp->eth_dev->data->nb_rx_queues *
365 				    sizeof(int), 0);
366 		if (intr_handle->intr_vec == NULL) {
367 			PMD_DRV_LOG(ERR, "Failed to allocate %d rx_queues"
368 				" intr_vec", bp->eth_dev->data->nb_rx_queues);
369 			return -ENOMEM;
370 		}
371 		PMD_DRV_LOG(DEBUG, "intr_handle->intr_vec = %p "
372 			"intr_handle->nb_efd = %d intr_handle->max_intr = %d\n",
373 			 intr_handle->intr_vec, intr_handle->nb_efd,
374 			intr_handle->max_intr);
375 	}
376 
377 	for (queue_id = 0; queue_id < bp->eth_dev->data->nb_rx_queues;
378 	     queue_id++) {
379 		intr_handle->intr_vec[queue_id] = vec;
380 		if (vec < base + intr_handle->nb_efd - 1)
381 			vec++;
382 	}
383 
384 	/* enable uio/vfio intr/eventfd mapping */
385 	rte_intr_enable(intr_handle);
386 
387 	rc = bnxt_get_hwrm_link_config(bp, &new);
388 	if (rc) {
389 		PMD_DRV_LOG(ERR, "HWRM Get link config failure rc: %x\n", rc);
390 		goto err_out;
391 	}
392 
393 	if (!bp->link_info.link_up) {
394 		rc = bnxt_set_hwrm_link_config(bp, true);
395 		if (rc) {
396 			PMD_DRV_LOG(ERR,
397 				"HWRM link config failure rc: %x\n", rc);
398 			goto err_out;
399 		}
400 	}
401 	bnxt_print_link_info(bp->eth_dev);
402 
403 	return 0;
404 
405 err_out:
406 	bnxt_free_all_hwrm_resources(bp);
407 
408 	/* Some of the error status returned by FW may not be from errno.h */
409 	if (rc > 0)
410 		rc = -EIO;
411 
412 	return rc;
413 }
414 
415 static int bnxt_shutdown_nic(struct bnxt *bp)
416 {
417 	bnxt_free_all_hwrm_resources(bp);
418 	bnxt_free_all_filters(bp);
419 	bnxt_free_all_vnics(bp);
420 	return 0;
421 }
422 
423 static int bnxt_init_nic(struct bnxt *bp)
424 {
425 	int rc;
426 
427 	rc = bnxt_init_ring_grps(bp);
428 	if (rc)
429 		return rc;
430 
431 	bnxt_init_vnics(bp);
432 	bnxt_init_filters(bp);
433 
434 	return 0;
435 }
436 
437 /*
438  * Device configuration and status function
439  */
440 
441 static void bnxt_dev_info_get_op(struct rte_eth_dev *eth_dev,
442 				  struct rte_eth_dev_info *dev_info)
443 {
444 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
445 	uint16_t max_vnics, i, j, vpool, vrxq;
446 	unsigned int max_rx_rings;
447 
448 	/* MAC Specifics */
449 	dev_info->max_mac_addrs = bp->max_l2_ctx;
450 	dev_info->max_hash_mac_addrs = 0;
451 
452 	/* PF/VF specifics */
453 	if (BNXT_PF(bp))
454 		dev_info->max_vfs = bp->pdev->max_vfs;
455 	max_rx_rings = RTE_MIN(bp->max_vnics, bp->max_stat_ctx);
456 	/* For the sake of symmetry, max_rx_queues = max_tx_queues */
457 	dev_info->max_rx_queues = max_rx_rings;
458 	dev_info->max_tx_queues = max_rx_rings;
459 	dev_info->reta_size = HW_HASH_INDEX_SIZE;
460 	dev_info->hash_key_size = 40;
461 	max_vnics = bp->max_vnics;
462 
463 	/* Fast path specifics */
464 	dev_info->min_rx_bufsize = 1;
465 	dev_info->max_rx_pktlen = BNXT_MAX_MTU + ETHER_HDR_LEN + ETHER_CRC_LEN
466 				  + VLAN_TAG_SIZE * 2;
467 
468 	dev_info->rx_offload_capa = BNXT_DEV_RX_OFFLOAD_SUPPORT;
469 	if (bp->flags & BNXT_FLAG_PTP_SUPPORTED)
470 		dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_TIMESTAMP;
471 	dev_info->tx_offload_capa = BNXT_DEV_TX_OFFLOAD_SUPPORT;
472 	dev_info->flow_type_rss_offloads = BNXT_ETH_RSS_SUPPORT;
473 
474 	/* *INDENT-OFF* */
475 	dev_info->default_rxconf = (struct rte_eth_rxconf) {
476 		.rx_thresh = {
477 			.pthresh = 8,
478 			.hthresh = 8,
479 			.wthresh = 0,
480 		},
481 		.rx_free_thresh = 32,
482 		/* If no descriptors available, pkts are dropped by default */
483 		.rx_drop_en = 1,
484 	};
485 
486 	dev_info->default_txconf = (struct rte_eth_txconf) {
487 		.tx_thresh = {
488 			.pthresh = 32,
489 			.hthresh = 0,
490 			.wthresh = 0,
491 		},
492 		.tx_free_thresh = 32,
493 		.tx_rs_thresh = 32,
494 	};
495 	eth_dev->data->dev_conf.intr_conf.lsc = 1;
496 
497 	eth_dev->data->dev_conf.intr_conf.rxq = 1;
498 	dev_info->rx_desc_lim.nb_min = BNXT_MIN_RING_DESC;
499 	dev_info->rx_desc_lim.nb_max = BNXT_MAX_RX_RING_DESC;
500 	dev_info->tx_desc_lim.nb_min = BNXT_MIN_RING_DESC;
501 	dev_info->tx_desc_lim.nb_max = BNXT_MAX_TX_RING_DESC;
502 
503 	/* *INDENT-ON* */
504 
505 	/*
506 	 * TODO: default_rxconf, default_txconf, rx_desc_lim, and tx_desc_lim
507 	 *       need further investigation.
508 	 */
509 
510 	/* VMDq resources */
511 	vpool = 64; /* ETH_64_POOLS */
512 	vrxq = 128; /* ETH_VMDQ_DCB_NUM_QUEUES */
513 	for (i = 0; i < 4; vpool >>= 1, i++) {
514 		if (max_vnics > vpool) {
515 			for (j = 0; j < 5; vrxq >>= 1, j++) {
516 				if (dev_info->max_rx_queues > vrxq) {
517 					if (vpool > vrxq)
518 						vpool = vrxq;
519 					goto found;
520 				}
521 			}
522 			/* Not enough resources to support VMDq */
523 			break;
524 		}
525 	}
526 	/* Not enough resources to support VMDq */
527 	vpool = 0;
528 	vrxq = 0;
529 found:
530 	dev_info->max_vmdq_pools = vpool;
531 	dev_info->vmdq_queue_num = vrxq;
532 
533 	dev_info->vmdq_pool_base = 0;
534 	dev_info->vmdq_queue_base = 0;
535 }
536 
537 /* Configure the device based on the configuration provided */
538 static int bnxt_dev_configure_op(struct rte_eth_dev *eth_dev)
539 {
540 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
541 	uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads;
542 	int rc;
543 
544 	bp->rx_queues = (void *)eth_dev->data->rx_queues;
545 	bp->tx_queues = (void *)eth_dev->data->tx_queues;
546 	bp->tx_nr_rings = eth_dev->data->nb_tx_queues;
547 	bp->rx_nr_rings = eth_dev->data->nb_rx_queues;
548 
549 	if (BNXT_VF(bp) && (bp->flags & BNXT_FLAG_NEW_RM)) {
550 		rc = bnxt_hwrm_check_vf_rings(bp);
551 		if (rc) {
552 			PMD_DRV_LOG(ERR, "HWRM insufficient resources\n");
553 			return -ENOSPC;
554 		}
555 
556 		rc = bnxt_hwrm_func_reserve_vf_resc(bp, false);
557 		if (rc) {
558 			PMD_DRV_LOG(ERR, "HWRM resource alloc fail:%x\n", rc);
559 			return -ENOSPC;
560 		}
561 	} else {
562 		/* legacy driver needs to get updated values */
563 		rc = bnxt_hwrm_func_qcaps(bp);
564 		if (rc) {
565 			PMD_DRV_LOG(ERR, "hwrm func qcaps fail:%d\n", rc);
566 			return rc;
567 		}
568 	}
569 
570 	/* Inherit new configurations */
571 	if (eth_dev->data->nb_rx_queues > bp->max_rx_rings ||
572 	    eth_dev->data->nb_tx_queues > bp->max_tx_rings ||
573 	    eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues >
574 	    bp->max_cp_rings ||
575 	    eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues >
576 	    bp->max_stat_ctx ||
577 	    (uint32_t)(eth_dev->data->nb_rx_queues) > bp->max_ring_grps ||
578 	    (!(eth_dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS) &&
579 	     bp->max_vnics < eth_dev->data->nb_rx_queues)) {
580 		PMD_DRV_LOG(ERR,
581 			"Insufficient resources to support requested config\n");
582 		PMD_DRV_LOG(ERR,
583 			"Num Queues Requested: Tx %d, Rx %d\n",
584 			eth_dev->data->nb_tx_queues,
585 			eth_dev->data->nb_rx_queues);
586 		PMD_DRV_LOG(ERR,
587 			"MAX: TxQ %d, RxQ %d, CQ %d Stat %d, Grp %d, Vnic %d\n",
588 			bp->max_tx_rings, bp->max_rx_rings, bp->max_cp_rings,
589 			bp->max_stat_ctx, bp->max_ring_grps, bp->max_vnics);
590 		return -ENOSPC;
591 	}
592 
593 	bp->rx_cp_nr_rings = bp->rx_nr_rings;
594 	bp->tx_cp_nr_rings = bp->tx_nr_rings;
595 
596 	if (rx_offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
597 		eth_dev->data->mtu =
598 				eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
599 				ETHER_HDR_LEN - ETHER_CRC_LEN - VLAN_TAG_SIZE *
600 				BNXT_NUM_VLANS;
601 		bnxt_mtu_set_op(eth_dev, eth_dev->data->mtu);
602 	}
603 	return 0;
604 }
605 
606 static void bnxt_print_link_info(struct rte_eth_dev *eth_dev)
607 {
608 	struct rte_eth_link *link = &eth_dev->data->dev_link;
609 
610 	if (link->link_status)
611 		PMD_DRV_LOG(INFO, "Port %d Link Up - speed %u Mbps - %s\n",
612 			eth_dev->data->port_id,
613 			(uint32_t)link->link_speed,
614 			(link->link_duplex == ETH_LINK_FULL_DUPLEX) ?
615 			("full-duplex") : ("half-duplex\n"));
616 	else
617 		PMD_DRV_LOG(INFO, "Port %d Link Down\n",
618 			eth_dev->data->port_id);
619 }
620 
621 static int bnxt_dev_lsc_intr_setup(struct rte_eth_dev *eth_dev)
622 {
623 	bnxt_print_link_info(eth_dev);
624 	return 0;
625 }
626 
627 static int bnxt_dev_start_op(struct rte_eth_dev *eth_dev)
628 {
629 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
630 	uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads;
631 	int vlan_mask = 0;
632 	int rc;
633 
634 	if (bp->rx_cp_nr_rings > RTE_ETHDEV_QUEUE_STAT_CNTRS) {
635 		PMD_DRV_LOG(ERR,
636 			"RxQ cnt %d > CONFIG_RTE_ETHDEV_QUEUE_STAT_CNTRS %d\n",
637 			bp->rx_cp_nr_rings, RTE_ETHDEV_QUEUE_STAT_CNTRS);
638 	}
639 	bp->dev_stopped = 0;
640 
641 	rc = bnxt_init_chip(bp);
642 	if (rc)
643 		goto error;
644 
645 	bnxt_link_update_op(eth_dev, 1);
646 
647 	if (rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
648 		vlan_mask |= ETH_VLAN_FILTER_MASK;
649 	if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
650 		vlan_mask |= ETH_VLAN_STRIP_MASK;
651 	rc = bnxt_vlan_offload_set_op(eth_dev, vlan_mask);
652 	if (rc)
653 		goto error;
654 
655 	bp->flags |= BNXT_FLAG_INIT_DONE;
656 	return 0;
657 
658 error:
659 	bnxt_shutdown_nic(bp);
660 	bnxt_free_tx_mbufs(bp);
661 	bnxt_free_rx_mbufs(bp);
662 	return rc;
663 }
664 
665 static int bnxt_dev_set_link_up_op(struct rte_eth_dev *eth_dev)
666 {
667 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
668 	int rc = 0;
669 
670 	if (!bp->link_info.link_up)
671 		rc = bnxt_set_hwrm_link_config(bp, true);
672 	if (!rc)
673 		eth_dev->data->dev_link.link_status = 1;
674 
675 	bnxt_print_link_info(eth_dev);
676 	return 0;
677 }
678 
679 static int bnxt_dev_set_link_down_op(struct rte_eth_dev *eth_dev)
680 {
681 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
682 
683 	eth_dev->data->dev_link.link_status = 0;
684 	bnxt_set_hwrm_link_config(bp, false);
685 	bp->link_info.link_up = 0;
686 
687 	return 0;
688 }
689 
690 /* Unload the driver, release resources */
691 static void bnxt_dev_stop_op(struct rte_eth_dev *eth_dev)
692 {
693 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
694 
695 	bp->flags &= ~BNXT_FLAG_INIT_DONE;
696 	if (bp->eth_dev->data->dev_started) {
697 		/* TBD: STOP HW queues DMA */
698 		eth_dev->data->dev_link.link_status = 0;
699 	}
700 	bnxt_set_hwrm_link_config(bp, false);
701 	bnxt_hwrm_port_clr_stats(bp);
702 	bnxt_free_tx_mbufs(bp);
703 	bnxt_free_rx_mbufs(bp);
704 	bnxt_shutdown_nic(bp);
705 	bp->dev_stopped = 1;
706 }
707 
708 static void bnxt_dev_close_op(struct rte_eth_dev *eth_dev)
709 {
710 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
711 
712 	if (bp->dev_stopped == 0)
713 		bnxt_dev_stop_op(eth_dev);
714 
715 	if (eth_dev->data->mac_addrs != NULL) {
716 		rte_free(eth_dev->data->mac_addrs);
717 		eth_dev->data->mac_addrs = NULL;
718 	}
719 	if (bp->grp_info != NULL) {
720 		rte_free(bp->grp_info);
721 		bp->grp_info = NULL;
722 	}
723 
724 	bnxt_dev_uninit(eth_dev);
725 }
726 
727 static void bnxt_mac_addr_remove_op(struct rte_eth_dev *eth_dev,
728 				    uint32_t index)
729 {
730 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
731 	uint64_t pool_mask = eth_dev->data->mac_pool_sel[index];
732 	struct bnxt_vnic_info *vnic;
733 	struct bnxt_filter_info *filter, *temp_filter;
734 	uint32_t i;
735 
736 	/*
737 	 * Loop through all VNICs from the specified filter flow pools to
738 	 * remove the corresponding MAC addr filter
739 	 */
740 	for (i = 0; i < bp->nr_vnics; i++) {
741 		if (!(pool_mask & (1ULL << i)))
742 			continue;
743 
744 		vnic = &bp->vnic_info[i];
745 		filter = STAILQ_FIRST(&vnic->filter);
746 		while (filter) {
747 			temp_filter = STAILQ_NEXT(filter, next);
748 			if (filter->mac_index == index) {
749 				STAILQ_REMOVE(&vnic->filter, filter,
750 						bnxt_filter_info, next);
751 				bnxt_hwrm_clear_l2_filter(bp, filter);
752 				filter->mac_index = INVALID_MAC_INDEX;
753 				memset(&filter->l2_addr, 0, ETHER_ADDR_LEN);
754 				STAILQ_INSERT_TAIL(&bp->free_filter_list,
755 						   filter, next);
756 			}
757 			filter = temp_filter;
758 		}
759 	}
760 }
761 
762 static int bnxt_mac_addr_add_op(struct rte_eth_dev *eth_dev,
763 				struct ether_addr *mac_addr,
764 				uint32_t index, uint32_t pool)
765 {
766 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
767 	struct bnxt_vnic_info *vnic = &bp->vnic_info[pool];
768 	struct bnxt_filter_info *filter;
769 
770 	if (BNXT_VF(bp) & !BNXT_VF_IS_TRUSTED(bp)) {
771 		PMD_DRV_LOG(ERR, "Cannot add MAC address to a VF interface\n");
772 		return -ENOTSUP;
773 	}
774 
775 	if (!vnic) {
776 		PMD_DRV_LOG(ERR, "VNIC not found for pool %d!\n", pool);
777 		return -EINVAL;
778 	}
779 	/* Attach requested MAC address to the new l2_filter */
780 	STAILQ_FOREACH(filter, &vnic->filter, next) {
781 		if (filter->mac_index == index) {
782 			PMD_DRV_LOG(ERR,
783 				"MAC addr already existed for pool %d\n", pool);
784 			return 0;
785 		}
786 	}
787 	filter = bnxt_alloc_filter(bp);
788 	if (!filter) {
789 		PMD_DRV_LOG(ERR, "L2 filter alloc failed\n");
790 		return -ENODEV;
791 	}
792 	STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
793 	filter->mac_index = index;
794 	memcpy(filter->l2_addr, mac_addr, ETHER_ADDR_LEN);
795 	return bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
796 }
797 
798 int bnxt_link_update_op(struct rte_eth_dev *eth_dev, int wait_to_complete)
799 {
800 	int rc = 0;
801 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
802 	struct rte_eth_link new;
803 	unsigned int cnt = BNXT_LINK_WAIT_CNT;
804 
805 	memset(&new, 0, sizeof(new));
806 	do {
807 		/* Retrieve link info from hardware */
808 		rc = bnxt_get_hwrm_link_config(bp, &new);
809 		if (rc) {
810 			new.link_speed = ETH_LINK_SPEED_100M;
811 			new.link_duplex = ETH_LINK_FULL_DUPLEX;
812 			PMD_DRV_LOG(ERR,
813 				"Failed to retrieve link rc = 0x%x!\n", rc);
814 			goto out;
815 		}
816 		rte_delay_ms(BNXT_LINK_WAIT_INTERVAL);
817 
818 		if (!wait_to_complete)
819 			break;
820 	} while (!new.link_status && cnt--);
821 
822 out:
823 	/* Timed out or success */
824 	if (new.link_status != eth_dev->data->dev_link.link_status ||
825 	new.link_speed != eth_dev->data->dev_link.link_speed) {
826 		memcpy(&eth_dev->data->dev_link, &new,
827 			sizeof(struct rte_eth_link));
828 
829 		_rte_eth_dev_callback_process(eth_dev,
830 					      RTE_ETH_EVENT_INTR_LSC,
831 					      NULL);
832 
833 		bnxt_print_link_info(eth_dev);
834 	}
835 
836 	return rc;
837 }
838 
839 static void bnxt_promiscuous_enable_op(struct rte_eth_dev *eth_dev)
840 {
841 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
842 	struct bnxt_vnic_info *vnic;
843 
844 	if (bp->vnic_info == NULL)
845 		return;
846 
847 	vnic = &bp->vnic_info[0];
848 
849 	vnic->flags |= BNXT_VNIC_INFO_PROMISC;
850 	bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
851 }
852 
853 static void bnxt_promiscuous_disable_op(struct rte_eth_dev *eth_dev)
854 {
855 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
856 	struct bnxt_vnic_info *vnic;
857 
858 	if (bp->vnic_info == NULL)
859 		return;
860 
861 	vnic = &bp->vnic_info[0];
862 
863 	vnic->flags &= ~BNXT_VNIC_INFO_PROMISC;
864 	bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
865 }
866 
867 static void bnxt_allmulticast_enable_op(struct rte_eth_dev *eth_dev)
868 {
869 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
870 	struct bnxt_vnic_info *vnic;
871 
872 	if (bp->vnic_info == NULL)
873 		return;
874 
875 	vnic = &bp->vnic_info[0];
876 
877 	vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
878 	bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
879 }
880 
881 static void bnxt_allmulticast_disable_op(struct rte_eth_dev *eth_dev)
882 {
883 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
884 	struct bnxt_vnic_info *vnic;
885 
886 	if (bp->vnic_info == NULL)
887 		return;
888 
889 	vnic = &bp->vnic_info[0];
890 
891 	vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
892 	bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
893 }
894 
895 static int bnxt_reta_update_op(struct rte_eth_dev *eth_dev,
896 			    struct rte_eth_rss_reta_entry64 *reta_conf,
897 			    uint16_t reta_size)
898 {
899 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
900 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
901 	struct bnxt_vnic_info *vnic;
902 	int i;
903 
904 	if (!(dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
905 		return -EINVAL;
906 
907 	if (reta_size != HW_HASH_INDEX_SIZE) {
908 		PMD_DRV_LOG(ERR, "The configured hash table lookup size "
909 			"(%d) must equal the size supported by the hardware "
910 			"(%d)\n", reta_size, HW_HASH_INDEX_SIZE);
911 		return -EINVAL;
912 	}
913 	/* Update the RSS VNIC(s) */
914 	for (i = 0; i < bp->max_vnics; i++) {
915 		vnic = &bp->vnic_info[i];
916 		memcpy(vnic->rss_table, reta_conf, reta_size);
917 		bnxt_hwrm_vnic_rss_cfg(bp, vnic);
918 	}
919 	return 0;
920 }
921 
922 static int bnxt_reta_query_op(struct rte_eth_dev *eth_dev,
923 			      struct rte_eth_rss_reta_entry64 *reta_conf,
924 			      uint16_t reta_size)
925 {
926 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
927 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
928 	struct rte_intr_handle *intr_handle
929 		= &bp->pdev->intr_handle;
930 
931 	/* Retrieve from the default VNIC */
932 	if (!vnic)
933 		return -EINVAL;
934 	if (!vnic->rss_table)
935 		return -EINVAL;
936 
937 	if (reta_size != HW_HASH_INDEX_SIZE) {
938 		PMD_DRV_LOG(ERR, "The configured hash table lookup size "
939 			"(%d) must equal the size supported by the hardware "
940 			"(%d)\n", reta_size, HW_HASH_INDEX_SIZE);
941 		return -EINVAL;
942 	}
943 	/* EW - need to revisit here copying from uint64_t to uint16_t */
944 	memcpy(reta_conf, vnic->rss_table, reta_size);
945 
946 	if (rte_intr_allow_others(intr_handle)) {
947 		if (eth_dev->data->dev_conf.intr_conf.lsc != 0)
948 			bnxt_dev_lsc_intr_setup(eth_dev);
949 	}
950 
951 	return 0;
952 }
953 
954 static int bnxt_rss_hash_update_op(struct rte_eth_dev *eth_dev,
955 				   struct rte_eth_rss_conf *rss_conf)
956 {
957 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
958 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
959 	struct bnxt_vnic_info *vnic;
960 	uint16_t hash_type = 0;
961 	unsigned int i;
962 
963 	/*
964 	 * If RSS enablement were different than dev_configure,
965 	 * then return -EINVAL
966 	 */
967 	if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) {
968 		if (!rss_conf->rss_hf)
969 			PMD_DRV_LOG(ERR, "Hash type NONE\n");
970 	} else {
971 		if (rss_conf->rss_hf & BNXT_ETH_RSS_SUPPORT)
972 			return -EINVAL;
973 	}
974 
975 	bp->flags |= BNXT_FLAG_UPDATE_HASH;
976 	memcpy(&bp->rss_conf, rss_conf, sizeof(*rss_conf));
977 
978 	if (rss_conf->rss_hf & ETH_RSS_IPV4)
979 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
980 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
981 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
982 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
983 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
984 	if (rss_conf->rss_hf & ETH_RSS_IPV6)
985 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
986 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
987 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
988 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
989 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
990 
991 	/* Update the RSS VNIC(s) */
992 	for (i = 0; i < bp->nr_vnics; i++) {
993 		vnic = &bp->vnic_info[i];
994 		vnic->hash_type = hash_type;
995 
996 		/*
997 		 * Use the supplied key if the key length is
998 		 * acceptable and the rss_key is not NULL
999 		 */
1000 		if (rss_conf->rss_key &&
1001 		    rss_conf->rss_key_len <= HW_HASH_KEY_SIZE)
1002 			memcpy(vnic->rss_hash_key, rss_conf->rss_key,
1003 			       rss_conf->rss_key_len);
1004 
1005 		bnxt_hwrm_vnic_rss_cfg(bp, vnic);
1006 	}
1007 	return 0;
1008 }
1009 
1010 static int bnxt_rss_hash_conf_get_op(struct rte_eth_dev *eth_dev,
1011 				     struct rte_eth_rss_conf *rss_conf)
1012 {
1013 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1014 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
1015 	int len;
1016 	uint32_t hash_types;
1017 
1018 	/* RSS configuration is the same for all VNICs */
1019 	if (vnic && vnic->rss_hash_key) {
1020 		if (rss_conf->rss_key) {
1021 			len = rss_conf->rss_key_len <= HW_HASH_KEY_SIZE ?
1022 			      rss_conf->rss_key_len : HW_HASH_KEY_SIZE;
1023 			memcpy(rss_conf->rss_key, vnic->rss_hash_key, len);
1024 		}
1025 
1026 		hash_types = vnic->hash_type;
1027 		rss_conf->rss_hf = 0;
1028 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4) {
1029 			rss_conf->rss_hf |= ETH_RSS_IPV4;
1030 			hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
1031 		}
1032 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4) {
1033 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
1034 			hash_types &=
1035 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
1036 		}
1037 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4) {
1038 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
1039 			hash_types &=
1040 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
1041 		}
1042 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6) {
1043 			rss_conf->rss_hf |= ETH_RSS_IPV6;
1044 			hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
1045 		}
1046 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6) {
1047 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
1048 			hash_types &=
1049 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
1050 		}
1051 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6) {
1052 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
1053 			hash_types &=
1054 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
1055 		}
1056 		if (hash_types) {
1057 			PMD_DRV_LOG(ERR,
1058 				"Unknwon RSS config from firmware (%08x), RSS disabled",
1059 				vnic->hash_type);
1060 			return -ENOTSUP;
1061 		}
1062 	} else {
1063 		rss_conf->rss_hf = 0;
1064 	}
1065 	return 0;
1066 }
1067 
1068 static int bnxt_flow_ctrl_get_op(struct rte_eth_dev *dev,
1069 			       struct rte_eth_fc_conf *fc_conf)
1070 {
1071 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1072 	struct rte_eth_link link_info;
1073 	int rc;
1074 
1075 	rc = bnxt_get_hwrm_link_config(bp, &link_info);
1076 	if (rc)
1077 		return rc;
1078 
1079 	memset(fc_conf, 0, sizeof(*fc_conf));
1080 	if (bp->link_info.auto_pause)
1081 		fc_conf->autoneg = 1;
1082 	switch (bp->link_info.pause) {
1083 	case 0:
1084 		fc_conf->mode = RTE_FC_NONE;
1085 		break;
1086 	case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX:
1087 		fc_conf->mode = RTE_FC_TX_PAUSE;
1088 		break;
1089 	case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX:
1090 		fc_conf->mode = RTE_FC_RX_PAUSE;
1091 		break;
1092 	case (HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX |
1093 			HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX):
1094 		fc_conf->mode = RTE_FC_FULL;
1095 		break;
1096 	}
1097 	return 0;
1098 }
1099 
1100 static int bnxt_flow_ctrl_set_op(struct rte_eth_dev *dev,
1101 			       struct rte_eth_fc_conf *fc_conf)
1102 {
1103 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1104 
1105 	if (!BNXT_SINGLE_PF(bp) || BNXT_VF(bp)) {
1106 		PMD_DRV_LOG(ERR, "Flow Control Settings cannot be modified\n");
1107 		return -ENOTSUP;
1108 	}
1109 
1110 	switch (fc_conf->mode) {
1111 	case RTE_FC_NONE:
1112 		bp->link_info.auto_pause = 0;
1113 		bp->link_info.force_pause = 0;
1114 		break;
1115 	case RTE_FC_RX_PAUSE:
1116 		if (fc_conf->autoneg) {
1117 			bp->link_info.auto_pause =
1118 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
1119 			bp->link_info.force_pause = 0;
1120 		} else {
1121 			bp->link_info.auto_pause = 0;
1122 			bp->link_info.force_pause =
1123 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
1124 		}
1125 		break;
1126 	case RTE_FC_TX_PAUSE:
1127 		if (fc_conf->autoneg) {
1128 			bp->link_info.auto_pause =
1129 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX;
1130 			bp->link_info.force_pause = 0;
1131 		} else {
1132 			bp->link_info.auto_pause = 0;
1133 			bp->link_info.force_pause =
1134 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX;
1135 		}
1136 		break;
1137 	case RTE_FC_FULL:
1138 		if (fc_conf->autoneg) {
1139 			bp->link_info.auto_pause =
1140 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX |
1141 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
1142 			bp->link_info.force_pause = 0;
1143 		} else {
1144 			bp->link_info.auto_pause = 0;
1145 			bp->link_info.force_pause =
1146 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX |
1147 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
1148 		}
1149 		break;
1150 	}
1151 	return bnxt_set_hwrm_link_config(bp, true);
1152 }
1153 
1154 /* Add UDP tunneling port */
1155 static int
1156 bnxt_udp_tunnel_port_add_op(struct rte_eth_dev *eth_dev,
1157 			 struct rte_eth_udp_tunnel *udp_tunnel)
1158 {
1159 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1160 	uint16_t tunnel_type = 0;
1161 	int rc = 0;
1162 
1163 	switch (udp_tunnel->prot_type) {
1164 	case RTE_TUNNEL_TYPE_VXLAN:
1165 		if (bp->vxlan_port_cnt) {
1166 			PMD_DRV_LOG(ERR, "Tunnel Port %d already programmed\n",
1167 				udp_tunnel->udp_port);
1168 			if (bp->vxlan_port != udp_tunnel->udp_port) {
1169 				PMD_DRV_LOG(ERR, "Only one port allowed\n");
1170 				return -ENOSPC;
1171 			}
1172 			bp->vxlan_port_cnt++;
1173 			return 0;
1174 		}
1175 		tunnel_type =
1176 			HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_VXLAN;
1177 		bp->vxlan_port_cnt++;
1178 		break;
1179 	case RTE_TUNNEL_TYPE_GENEVE:
1180 		if (bp->geneve_port_cnt) {
1181 			PMD_DRV_LOG(ERR, "Tunnel Port %d already programmed\n",
1182 				udp_tunnel->udp_port);
1183 			if (bp->geneve_port != udp_tunnel->udp_port) {
1184 				PMD_DRV_LOG(ERR, "Only one port allowed\n");
1185 				return -ENOSPC;
1186 			}
1187 			bp->geneve_port_cnt++;
1188 			return 0;
1189 		}
1190 		tunnel_type =
1191 			HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_GENEVE;
1192 		bp->geneve_port_cnt++;
1193 		break;
1194 	default:
1195 		PMD_DRV_LOG(ERR, "Tunnel type is not supported\n");
1196 		return -ENOTSUP;
1197 	}
1198 	rc = bnxt_hwrm_tunnel_dst_port_alloc(bp, udp_tunnel->udp_port,
1199 					     tunnel_type);
1200 	return rc;
1201 }
1202 
1203 static int
1204 bnxt_udp_tunnel_port_del_op(struct rte_eth_dev *eth_dev,
1205 			 struct rte_eth_udp_tunnel *udp_tunnel)
1206 {
1207 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1208 	uint16_t tunnel_type = 0;
1209 	uint16_t port = 0;
1210 	int rc = 0;
1211 
1212 	switch (udp_tunnel->prot_type) {
1213 	case RTE_TUNNEL_TYPE_VXLAN:
1214 		if (!bp->vxlan_port_cnt) {
1215 			PMD_DRV_LOG(ERR, "No Tunnel port configured yet\n");
1216 			return -EINVAL;
1217 		}
1218 		if (bp->vxlan_port != udp_tunnel->udp_port) {
1219 			PMD_DRV_LOG(ERR, "Req Port: %d. Configured port: %d\n",
1220 				udp_tunnel->udp_port, bp->vxlan_port);
1221 			return -EINVAL;
1222 		}
1223 		if (--bp->vxlan_port_cnt)
1224 			return 0;
1225 
1226 		tunnel_type =
1227 			HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN;
1228 		port = bp->vxlan_fw_dst_port_id;
1229 		break;
1230 	case RTE_TUNNEL_TYPE_GENEVE:
1231 		if (!bp->geneve_port_cnt) {
1232 			PMD_DRV_LOG(ERR, "No Tunnel port configured yet\n");
1233 			return -EINVAL;
1234 		}
1235 		if (bp->geneve_port != udp_tunnel->udp_port) {
1236 			PMD_DRV_LOG(ERR, "Req Port: %d. Configured port: %d\n",
1237 				udp_tunnel->udp_port, bp->geneve_port);
1238 			return -EINVAL;
1239 		}
1240 		if (--bp->geneve_port_cnt)
1241 			return 0;
1242 
1243 		tunnel_type =
1244 			HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE;
1245 		port = bp->geneve_fw_dst_port_id;
1246 		break;
1247 	default:
1248 		PMD_DRV_LOG(ERR, "Tunnel type is not supported\n");
1249 		return -ENOTSUP;
1250 	}
1251 
1252 	rc = bnxt_hwrm_tunnel_dst_port_free(bp, port, tunnel_type);
1253 	if (!rc) {
1254 		if (tunnel_type ==
1255 		    HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN)
1256 			bp->vxlan_port = 0;
1257 		if (tunnel_type ==
1258 		    HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE)
1259 			bp->geneve_port = 0;
1260 	}
1261 	return rc;
1262 }
1263 
1264 static int bnxt_del_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
1265 {
1266 	struct bnxt_filter_info *filter, *temp_filter, *new_filter;
1267 	struct bnxt_vnic_info *vnic;
1268 	unsigned int i;
1269 	int rc = 0;
1270 	uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN;
1271 
1272 	/* Cycle through all VNICs */
1273 	for (i = 0; i < bp->nr_vnics; i++) {
1274 		/*
1275 		 * For each VNIC and each associated filter(s)
1276 		 * if VLAN exists && VLAN matches vlan_id
1277 		 *      remove the MAC+VLAN filter
1278 		 *      add a new MAC only filter
1279 		 * else
1280 		 *      VLAN filter doesn't exist, just skip and continue
1281 		 */
1282 		vnic = &bp->vnic_info[i];
1283 		filter = STAILQ_FIRST(&vnic->filter);
1284 		while (filter) {
1285 			temp_filter = STAILQ_NEXT(filter, next);
1286 
1287 			if (filter->enables & chk &&
1288 			    filter->l2_ovlan == vlan_id) {
1289 				/* Must delete the filter */
1290 				STAILQ_REMOVE(&vnic->filter, filter,
1291 					      bnxt_filter_info, next);
1292 				bnxt_hwrm_clear_l2_filter(bp, filter);
1293 				STAILQ_INSERT_TAIL(&bp->free_filter_list,
1294 						   filter, next);
1295 
1296 				/*
1297 				 * Need to examine to see if the MAC
1298 				 * filter already existed or not before
1299 				 * allocating a new one
1300 				 */
1301 
1302 				new_filter = bnxt_alloc_filter(bp);
1303 				if (!new_filter) {
1304 					PMD_DRV_LOG(ERR,
1305 							"MAC/VLAN filter alloc failed\n");
1306 					rc = -ENOMEM;
1307 					goto exit;
1308 				}
1309 				STAILQ_INSERT_TAIL(&vnic->filter,
1310 						new_filter, next);
1311 				/* Inherit MAC from previous filter */
1312 				new_filter->mac_index =
1313 					filter->mac_index;
1314 				memcpy(new_filter->l2_addr, filter->l2_addr,
1315 				       ETHER_ADDR_LEN);
1316 				/* MAC only filter */
1317 				rc = bnxt_hwrm_set_l2_filter(bp,
1318 							     vnic->fw_vnic_id,
1319 							     new_filter);
1320 				if (rc)
1321 					goto exit;
1322 				PMD_DRV_LOG(INFO,
1323 					    "Del Vlan filter for %d\n",
1324 					    vlan_id);
1325 			}
1326 			filter = temp_filter;
1327 		}
1328 	}
1329 exit:
1330 	return rc;
1331 }
1332 
1333 static int bnxt_add_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
1334 {
1335 	struct bnxt_filter_info *filter, *temp_filter, *new_filter;
1336 	struct bnxt_vnic_info *vnic;
1337 	unsigned int i;
1338 	int rc = 0;
1339 	uint32_t en = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN |
1340 		HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN_MASK;
1341 	uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN;
1342 
1343 	/* Cycle through all VNICs */
1344 	for (i = 0; i < bp->nr_vnics; i++) {
1345 		/*
1346 		 * For each VNIC and each associated filter(s)
1347 		 * if VLAN exists:
1348 		 *   if VLAN matches vlan_id
1349 		 *      VLAN filter already exists, just skip and continue
1350 		 *   else
1351 		 *      add a new MAC+VLAN filter
1352 		 * else
1353 		 *   Remove the old MAC only filter
1354 		 *    Add a new MAC+VLAN filter
1355 		 */
1356 		vnic = &bp->vnic_info[i];
1357 		filter = STAILQ_FIRST(&vnic->filter);
1358 		while (filter) {
1359 			temp_filter = STAILQ_NEXT(filter, next);
1360 
1361 			if (filter->enables & chk) {
1362 				if (filter->l2_ivlan == vlan_id)
1363 					goto cont;
1364 			} else {
1365 				/* Must delete the MAC filter */
1366 				STAILQ_REMOVE(&vnic->filter, filter,
1367 						bnxt_filter_info, next);
1368 				bnxt_hwrm_clear_l2_filter(bp, filter);
1369 				filter->l2_ovlan = 0;
1370 				STAILQ_INSERT_TAIL(&bp->free_filter_list,
1371 						   filter, next);
1372 			}
1373 			new_filter = bnxt_alloc_filter(bp);
1374 			if (!new_filter) {
1375 				PMD_DRV_LOG(ERR,
1376 						"MAC/VLAN filter alloc failed\n");
1377 				rc = -ENOMEM;
1378 				goto exit;
1379 			}
1380 			STAILQ_INSERT_TAIL(&vnic->filter, new_filter, next);
1381 			/* Inherit MAC from the previous filter */
1382 			new_filter->mac_index = filter->mac_index;
1383 			memcpy(new_filter->l2_addr, filter->l2_addr,
1384 			       ETHER_ADDR_LEN);
1385 			/* MAC + VLAN ID filter */
1386 			new_filter->l2_ivlan = vlan_id;
1387 			new_filter->l2_ivlan_mask = 0xF000;
1388 			new_filter->enables |= en;
1389 			rc = bnxt_hwrm_set_l2_filter(bp,
1390 					vnic->fw_vnic_id,
1391 					new_filter);
1392 			if (rc)
1393 				goto exit;
1394 			PMD_DRV_LOG(INFO,
1395 				    "Added Vlan filter for %d\n", vlan_id);
1396 cont:
1397 			filter = temp_filter;
1398 		}
1399 	}
1400 exit:
1401 	return rc;
1402 }
1403 
1404 static int bnxt_vlan_filter_set_op(struct rte_eth_dev *eth_dev,
1405 		uint16_t vlan_id, int on)
1406 {
1407 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1408 
1409 	/* These operations apply to ALL existing MAC/VLAN filters */
1410 	if (on)
1411 		return bnxt_add_vlan_filter(bp, vlan_id);
1412 	else
1413 		return bnxt_del_vlan_filter(bp, vlan_id);
1414 }
1415 
1416 static int
1417 bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask)
1418 {
1419 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1420 	uint64_t rx_offloads = dev->data->dev_conf.rxmode.offloads;
1421 	unsigned int i;
1422 
1423 	if (mask & ETH_VLAN_FILTER_MASK) {
1424 		if (!(rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER)) {
1425 			/* Remove any VLAN filters programmed */
1426 			for (i = 0; i < 4095; i++)
1427 				bnxt_del_vlan_filter(bp, i);
1428 		}
1429 		PMD_DRV_LOG(DEBUG, "VLAN Filtering: %d\n",
1430 			!!(rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER));
1431 	}
1432 
1433 	if (mask & ETH_VLAN_STRIP_MASK) {
1434 		/* Enable or disable VLAN stripping */
1435 		for (i = 0; i < bp->nr_vnics; i++) {
1436 			struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
1437 			if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1438 				vnic->vlan_strip = true;
1439 			else
1440 				vnic->vlan_strip = false;
1441 			bnxt_hwrm_vnic_cfg(bp, vnic);
1442 		}
1443 		PMD_DRV_LOG(DEBUG, "VLAN Strip Offload: %d\n",
1444 			!!(rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP));
1445 	}
1446 
1447 	if (mask & ETH_VLAN_EXTEND_MASK)
1448 		PMD_DRV_LOG(ERR, "Extend VLAN Not supported\n");
1449 
1450 	return 0;
1451 }
1452 
1453 static int
1454 bnxt_set_default_mac_addr_op(struct rte_eth_dev *dev, struct ether_addr *addr)
1455 {
1456 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1457 	/* Default Filter is tied to VNIC 0 */
1458 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
1459 	struct bnxt_filter_info *filter;
1460 	int rc;
1461 
1462 	if (BNXT_VF(bp) && !BNXT_VF_IS_TRUSTED(bp))
1463 		return -EPERM;
1464 
1465 	memcpy(bp->mac_addr, addr, sizeof(bp->mac_addr));
1466 
1467 	STAILQ_FOREACH(filter, &vnic->filter, next) {
1468 		/* Default Filter is at Index 0 */
1469 		if (filter->mac_index != 0)
1470 			continue;
1471 		rc = bnxt_hwrm_clear_l2_filter(bp, filter);
1472 		if (rc)
1473 			return rc;
1474 		memcpy(filter->l2_addr, bp->mac_addr, ETHER_ADDR_LEN);
1475 		memset(filter->l2_addr_mask, 0xff, ETHER_ADDR_LEN);
1476 		filter->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_PATH_RX;
1477 		filter->enables |=
1478 			HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR |
1479 			HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR_MASK;
1480 		rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
1481 		if (rc)
1482 			return rc;
1483 		filter->mac_index = 0;
1484 		PMD_DRV_LOG(DEBUG, "Set MAC addr\n");
1485 	}
1486 
1487 	return 0;
1488 }
1489 
1490 static int
1491 bnxt_dev_set_mc_addr_list_op(struct rte_eth_dev *eth_dev,
1492 			  struct ether_addr *mc_addr_set,
1493 			  uint32_t nb_mc_addr)
1494 {
1495 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1496 	char *mc_addr_list = (char *)mc_addr_set;
1497 	struct bnxt_vnic_info *vnic;
1498 	uint32_t off = 0, i = 0;
1499 
1500 	vnic = &bp->vnic_info[0];
1501 
1502 	if (nb_mc_addr > BNXT_MAX_MC_ADDRS) {
1503 		vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
1504 		goto allmulti;
1505 	}
1506 
1507 	/* TODO Check for Duplicate mcast addresses */
1508 	vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
1509 	for (i = 0; i < nb_mc_addr; i++) {
1510 		memcpy(vnic->mc_list + off, &mc_addr_list[i], ETHER_ADDR_LEN);
1511 		off += ETHER_ADDR_LEN;
1512 	}
1513 
1514 	vnic->mc_addr_cnt = i;
1515 
1516 allmulti:
1517 	return bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1518 }
1519 
1520 static int
1521 bnxt_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
1522 {
1523 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1524 	uint8_t fw_major = (bp->fw_ver >> 24) & 0xff;
1525 	uint8_t fw_minor = (bp->fw_ver >> 16) & 0xff;
1526 	uint8_t fw_updt = (bp->fw_ver >> 8) & 0xff;
1527 	int ret;
1528 
1529 	ret = snprintf(fw_version, fw_size, "%d.%d.%d",
1530 			fw_major, fw_minor, fw_updt);
1531 
1532 	ret += 1; /* add the size of '\0' */
1533 	if (fw_size < (uint32_t)ret)
1534 		return ret;
1535 	else
1536 		return 0;
1537 }
1538 
1539 static void
1540 bnxt_rxq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
1541 	struct rte_eth_rxq_info *qinfo)
1542 {
1543 	struct bnxt_rx_queue *rxq;
1544 
1545 	rxq = dev->data->rx_queues[queue_id];
1546 
1547 	qinfo->mp = rxq->mb_pool;
1548 	qinfo->scattered_rx = dev->data->scattered_rx;
1549 	qinfo->nb_desc = rxq->nb_rx_desc;
1550 
1551 	qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
1552 	qinfo->conf.rx_drop_en = 0;
1553 	qinfo->conf.rx_deferred_start = 0;
1554 }
1555 
1556 static void
1557 bnxt_txq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
1558 	struct rte_eth_txq_info *qinfo)
1559 {
1560 	struct bnxt_tx_queue *txq;
1561 
1562 	txq = dev->data->tx_queues[queue_id];
1563 
1564 	qinfo->nb_desc = txq->nb_tx_desc;
1565 
1566 	qinfo->conf.tx_thresh.pthresh = txq->pthresh;
1567 	qinfo->conf.tx_thresh.hthresh = txq->hthresh;
1568 	qinfo->conf.tx_thresh.wthresh = txq->wthresh;
1569 
1570 	qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
1571 	qinfo->conf.tx_rs_thresh = 0;
1572 	qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
1573 }
1574 
1575 static int bnxt_mtu_set_op(struct rte_eth_dev *eth_dev, uint16_t new_mtu)
1576 {
1577 	struct bnxt *bp = eth_dev->data->dev_private;
1578 	struct rte_eth_dev_info dev_info;
1579 	uint32_t rc = 0;
1580 	uint32_t i;
1581 
1582 	bnxt_dev_info_get_op(eth_dev, &dev_info);
1583 
1584 	if (new_mtu < ETHER_MIN_MTU || new_mtu > BNXT_MAX_MTU) {
1585 		PMD_DRV_LOG(ERR, "MTU requested must be within (%d, %d)\n",
1586 			ETHER_MIN_MTU, BNXT_MAX_MTU);
1587 		return -EINVAL;
1588 	}
1589 
1590 	if (new_mtu > ETHER_MTU) {
1591 		bp->flags |= BNXT_FLAG_JUMBO;
1592 		bp->eth_dev->data->dev_conf.rxmode.offloads |=
1593 			DEV_RX_OFFLOAD_JUMBO_FRAME;
1594 	} else {
1595 		bp->eth_dev->data->dev_conf.rxmode.offloads &=
1596 			~DEV_RX_OFFLOAD_JUMBO_FRAME;
1597 		bp->flags &= ~BNXT_FLAG_JUMBO;
1598 	}
1599 
1600 	eth_dev->data->dev_conf.rxmode.max_rx_pkt_len =
1601 		new_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE * 2;
1602 
1603 	eth_dev->data->mtu = new_mtu;
1604 	PMD_DRV_LOG(INFO, "New MTU is %d\n", eth_dev->data->mtu);
1605 
1606 	for (i = 0; i < bp->nr_vnics; i++) {
1607 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
1608 		uint16_t size = 0;
1609 
1610 		vnic->mru = bp->eth_dev->data->mtu + ETHER_HDR_LEN +
1611 					ETHER_CRC_LEN + VLAN_TAG_SIZE * 2;
1612 		rc = bnxt_hwrm_vnic_cfg(bp, vnic);
1613 		if (rc)
1614 			break;
1615 
1616 		size = rte_pktmbuf_data_room_size(bp->rx_queues[0]->mb_pool);
1617 		size -= RTE_PKTMBUF_HEADROOM;
1618 
1619 		if (size < new_mtu) {
1620 			rc = bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
1621 			if (rc)
1622 				return rc;
1623 		}
1624 	}
1625 
1626 	return rc;
1627 }
1628 
1629 static int
1630 bnxt_vlan_pvid_set_op(struct rte_eth_dev *dev, uint16_t pvid, int on)
1631 {
1632 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1633 	uint16_t vlan = bp->vlan;
1634 	int rc;
1635 
1636 	if (!BNXT_SINGLE_PF(bp) || BNXT_VF(bp)) {
1637 		PMD_DRV_LOG(ERR,
1638 			"PVID cannot be modified for this function\n");
1639 		return -ENOTSUP;
1640 	}
1641 	bp->vlan = on ? pvid : 0;
1642 
1643 	rc = bnxt_hwrm_set_default_vlan(bp, 0, 0);
1644 	if (rc)
1645 		bp->vlan = vlan;
1646 	return rc;
1647 }
1648 
1649 static int
1650 bnxt_dev_led_on_op(struct rte_eth_dev *dev)
1651 {
1652 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1653 
1654 	return bnxt_hwrm_port_led_cfg(bp, true);
1655 }
1656 
1657 static int
1658 bnxt_dev_led_off_op(struct rte_eth_dev *dev)
1659 {
1660 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1661 
1662 	return bnxt_hwrm_port_led_cfg(bp, false);
1663 }
1664 
1665 static uint32_t
1666 bnxt_rx_queue_count_op(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1667 {
1668 	uint32_t desc = 0, raw_cons = 0, cons;
1669 	struct bnxt_cp_ring_info *cpr;
1670 	struct bnxt_rx_queue *rxq;
1671 	struct rx_pkt_cmpl *rxcmp;
1672 	uint16_t cmp_type;
1673 	uint8_t cmp = 1;
1674 	bool valid;
1675 
1676 	rxq = dev->data->rx_queues[rx_queue_id];
1677 	cpr = rxq->cp_ring;
1678 	valid = cpr->valid;
1679 
1680 	while (raw_cons < rxq->nb_rx_desc) {
1681 		cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
1682 		rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1683 
1684 		if (!CMPL_VALID(rxcmp, valid))
1685 			goto nothing_to_do;
1686 		valid = FLIP_VALID(cons, cpr->cp_ring_struct->ring_mask, valid);
1687 		cmp_type = CMP_TYPE(rxcmp);
1688 		if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
1689 			cmp = (rte_le_to_cpu_32(
1690 					((struct rx_tpa_end_cmpl *)
1691 					 (rxcmp))->agg_bufs_v1) &
1692 			       RX_TPA_END_CMPL_AGG_BUFS_MASK) >>
1693 				RX_TPA_END_CMPL_AGG_BUFS_SFT;
1694 			desc++;
1695 		} else if (cmp_type == 0x11) {
1696 			desc++;
1697 			cmp = (rxcmp->agg_bufs_v1 &
1698 				   RX_PKT_CMPL_AGG_BUFS_MASK) >>
1699 				RX_PKT_CMPL_AGG_BUFS_SFT;
1700 		} else {
1701 			cmp = 1;
1702 		}
1703 nothing_to_do:
1704 		raw_cons += cmp ? cmp : 2;
1705 	}
1706 
1707 	return desc;
1708 }
1709 
1710 static int
1711 bnxt_rx_descriptor_status_op(void *rx_queue, uint16_t offset)
1712 {
1713 	struct bnxt_rx_queue *rxq = (struct bnxt_rx_queue *)rx_queue;
1714 	struct bnxt_rx_ring_info *rxr;
1715 	struct bnxt_cp_ring_info *cpr;
1716 	struct bnxt_sw_rx_bd *rx_buf;
1717 	struct rx_pkt_cmpl *rxcmp;
1718 	uint32_t cons, cp_cons;
1719 
1720 	if (!rxq)
1721 		return -EINVAL;
1722 
1723 	cpr = rxq->cp_ring;
1724 	rxr = rxq->rx_ring;
1725 
1726 	if (offset >= rxq->nb_rx_desc)
1727 		return -EINVAL;
1728 
1729 	cons = RING_CMP(cpr->cp_ring_struct, offset);
1730 	cp_cons = cpr->cp_raw_cons;
1731 	rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1732 
1733 	if (cons > cp_cons) {
1734 		if (CMPL_VALID(rxcmp, cpr->valid))
1735 			return RTE_ETH_RX_DESC_DONE;
1736 	} else {
1737 		if (CMPL_VALID(rxcmp, !cpr->valid))
1738 			return RTE_ETH_RX_DESC_DONE;
1739 	}
1740 	rx_buf = &rxr->rx_buf_ring[cons];
1741 	if (rx_buf->mbuf == NULL)
1742 		return RTE_ETH_RX_DESC_UNAVAIL;
1743 
1744 
1745 	return RTE_ETH_RX_DESC_AVAIL;
1746 }
1747 
1748 static int
1749 bnxt_tx_descriptor_status_op(void *tx_queue, uint16_t offset)
1750 {
1751 	struct bnxt_tx_queue *txq = (struct bnxt_tx_queue *)tx_queue;
1752 	struct bnxt_tx_ring_info *txr;
1753 	struct bnxt_cp_ring_info *cpr;
1754 	struct bnxt_sw_tx_bd *tx_buf;
1755 	struct tx_pkt_cmpl *txcmp;
1756 	uint32_t cons, cp_cons;
1757 
1758 	if (!txq)
1759 		return -EINVAL;
1760 
1761 	cpr = txq->cp_ring;
1762 	txr = txq->tx_ring;
1763 
1764 	if (offset >= txq->nb_tx_desc)
1765 		return -EINVAL;
1766 
1767 	cons = RING_CMP(cpr->cp_ring_struct, offset);
1768 	txcmp = (struct tx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1769 	cp_cons = cpr->cp_raw_cons;
1770 
1771 	if (cons > cp_cons) {
1772 		if (CMPL_VALID(txcmp, cpr->valid))
1773 			return RTE_ETH_TX_DESC_UNAVAIL;
1774 	} else {
1775 		if (CMPL_VALID(txcmp, !cpr->valid))
1776 			return RTE_ETH_TX_DESC_UNAVAIL;
1777 	}
1778 	tx_buf = &txr->tx_buf_ring[cons];
1779 	if (tx_buf->mbuf == NULL)
1780 		return RTE_ETH_TX_DESC_DONE;
1781 
1782 	return RTE_ETH_TX_DESC_FULL;
1783 }
1784 
1785 static struct bnxt_filter_info *
1786 bnxt_match_and_validate_ether_filter(struct bnxt *bp,
1787 				struct rte_eth_ethertype_filter *efilter,
1788 				struct bnxt_vnic_info *vnic0,
1789 				struct bnxt_vnic_info *vnic,
1790 				int *ret)
1791 {
1792 	struct bnxt_filter_info *mfilter = NULL;
1793 	int match = 0;
1794 	*ret = 0;
1795 
1796 	if (efilter->ether_type == ETHER_TYPE_IPv4 ||
1797 		efilter->ether_type == ETHER_TYPE_IPv6) {
1798 		PMD_DRV_LOG(ERR, "invalid ether_type(0x%04x) in"
1799 			" ethertype filter.", efilter->ether_type);
1800 		*ret = -EINVAL;
1801 		goto exit;
1802 	}
1803 	if (efilter->queue >= bp->rx_nr_rings) {
1804 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", efilter->queue);
1805 		*ret = -EINVAL;
1806 		goto exit;
1807 	}
1808 
1809 	vnic0 = &bp->vnic_info[0];
1810 	vnic = &bp->vnic_info[efilter->queue];
1811 	if (vnic == NULL) {
1812 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", efilter->queue);
1813 		*ret = -EINVAL;
1814 		goto exit;
1815 	}
1816 
1817 	if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
1818 		STAILQ_FOREACH(mfilter, &vnic0->filter, next) {
1819 			if ((!memcmp(efilter->mac_addr.addr_bytes,
1820 				     mfilter->l2_addr, ETHER_ADDR_LEN) &&
1821 			     mfilter->flags ==
1822 			     HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP &&
1823 			     mfilter->ethertype == efilter->ether_type)) {
1824 				match = 1;
1825 				break;
1826 			}
1827 		}
1828 	} else {
1829 		STAILQ_FOREACH(mfilter, &vnic->filter, next)
1830 			if ((!memcmp(efilter->mac_addr.addr_bytes,
1831 				     mfilter->l2_addr, ETHER_ADDR_LEN) &&
1832 			     mfilter->ethertype == efilter->ether_type &&
1833 			     mfilter->flags ==
1834 			     HWRM_CFA_L2_FILTER_CFG_INPUT_FLAGS_PATH_RX)) {
1835 				match = 1;
1836 				break;
1837 			}
1838 	}
1839 
1840 	if (match)
1841 		*ret = -EEXIST;
1842 
1843 exit:
1844 	return mfilter;
1845 }
1846 
1847 static int
1848 bnxt_ethertype_filter(struct rte_eth_dev *dev,
1849 			enum rte_filter_op filter_op,
1850 			void *arg)
1851 {
1852 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1853 	struct rte_eth_ethertype_filter *efilter =
1854 			(struct rte_eth_ethertype_filter *)arg;
1855 	struct bnxt_filter_info *bfilter, *filter1;
1856 	struct bnxt_vnic_info *vnic, *vnic0;
1857 	int ret;
1858 
1859 	if (filter_op == RTE_ETH_FILTER_NOP)
1860 		return 0;
1861 
1862 	if (arg == NULL) {
1863 		PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
1864 			    filter_op);
1865 		return -EINVAL;
1866 	}
1867 
1868 	vnic0 = &bp->vnic_info[0];
1869 	vnic = &bp->vnic_info[efilter->queue];
1870 
1871 	switch (filter_op) {
1872 	case RTE_ETH_FILTER_ADD:
1873 		bnxt_match_and_validate_ether_filter(bp, efilter,
1874 							vnic0, vnic, &ret);
1875 		if (ret < 0)
1876 			return ret;
1877 
1878 		bfilter = bnxt_get_unused_filter(bp);
1879 		if (bfilter == NULL) {
1880 			PMD_DRV_LOG(ERR,
1881 				"Not enough resources for a new filter.\n");
1882 			return -ENOMEM;
1883 		}
1884 		bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
1885 		memcpy(bfilter->l2_addr, efilter->mac_addr.addr_bytes,
1886 		       ETHER_ADDR_LEN);
1887 		memcpy(bfilter->dst_macaddr, efilter->mac_addr.addr_bytes,
1888 		       ETHER_ADDR_LEN);
1889 		bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
1890 		bfilter->ethertype = efilter->ether_type;
1891 		bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
1892 
1893 		filter1 = bnxt_get_l2_filter(bp, bfilter, vnic0);
1894 		if (filter1 == NULL) {
1895 			ret = -1;
1896 			goto cleanup;
1897 		}
1898 		bfilter->enables |=
1899 			HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
1900 		bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
1901 
1902 		bfilter->dst_id = vnic->fw_vnic_id;
1903 
1904 		if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
1905 			bfilter->flags =
1906 				HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
1907 		}
1908 
1909 		ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
1910 		if (ret)
1911 			goto cleanup;
1912 		STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
1913 		break;
1914 	case RTE_ETH_FILTER_DELETE:
1915 		filter1 = bnxt_match_and_validate_ether_filter(bp, efilter,
1916 							vnic0, vnic, &ret);
1917 		if (ret == -EEXIST) {
1918 			ret = bnxt_hwrm_clear_ntuple_filter(bp, filter1);
1919 
1920 			STAILQ_REMOVE(&vnic->filter, filter1, bnxt_filter_info,
1921 				      next);
1922 			bnxt_free_filter(bp, filter1);
1923 		} else if (ret == 0) {
1924 			PMD_DRV_LOG(ERR, "No matching filter found\n");
1925 		}
1926 		break;
1927 	default:
1928 		PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
1929 		ret = -EINVAL;
1930 		goto error;
1931 	}
1932 	return ret;
1933 cleanup:
1934 	bnxt_free_filter(bp, bfilter);
1935 error:
1936 	return ret;
1937 }
1938 
1939 static inline int
1940 parse_ntuple_filter(struct bnxt *bp,
1941 		    struct rte_eth_ntuple_filter *nfilter,
1942 		    struct bnxt_filter_info *bfilter)
1943 {
1944 	uint32_t en = 0;
1945 
1946 	if (nfilter->queue >= bp->rx_nr_rings) {
1947 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", nfilter->queue);
1948 		return -EINVAL;
1949 	}
1950 
1951 	switch (nfilter->dst_port_mask) {
1952 	case UINT16_MAX:
1953 		bfilter->dst_port_mask = -1;
1954 		bfilter->dst_port = nfilter->dst_port;
1955 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT |
1956 			NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
1957 		break;
1958 	default:
1959 		PMD_DRV_LOG(ERR, "invalid dst_port mask.");
1960 		return -EINVAL;
1961 	}
1962 
1963 	bfilter->ip_addr_type = NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
1964 	en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
1965 
1966 	switch (nfilter->proto_mask) {
1967 	case UINT8_MAX:
1968 		if (nfilter->proto == 17) /* IPPROTO_UDP */
1969 			bfilter->ip_protocol = 17;
1970 		else if (nfilter->proto == 6) /* IPPROTO_TCP */
1971 			bfilter->ip_protocol = 6;
1972 		else
1973 			return -EINVAL;
1974 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
1975 		break;
1976 	default:
1977 		PMD_DRV_LOG(ERR, "invalid protocol mask.");
1978 		return -EINVAL;
1979 	}
1980 
1981 	switch (nfilter->dst_ip_mask) {
1982 	case UINT32_MAX:
1983 		bfilter->dst_ipaddr_mask[0] = -1;
1984 		bfilter->dst_ipaddr[0] = nfilter->dst_ip;
1985 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR |
1986 			NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
1987 		break;
1988 	default:
1989 		PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
1990 		return -EINVAL;
1991 	}
1992 
1993 	switch (nfilter->src_ip_mask) {
1994 	case UINT32_MAX:
1995 		bfilter->src_ipaddr_mask[0] = -1;
1996 		bfilter->src_ipaddr[0] = nfilter->src_ip;
1997 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR |
1998 			NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
1999 		break;
2000 	default:
2001 		PMD_DRV_LOG(ERR, "invalid src_ip mask.");
2002 		return -EINVAL;
2003 	}
2004 
2005 	switch (nfilter->src_port_mask) {
2006 	case UINT16_MAX:
2007 		bfilter->src_port_mask = -1;
2008 		bfilter->src_port = nfilter->src_port;
2009 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT |
2010 			NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2011 		break;
2012 	default:
2013 		PMD_DRV_LOG(ERR, "invalid src_port mask.");
2014 		return -EINVAL;
2015 	}
2016 
2017 	//TODO Priority
2018 	//nfilter->priority = (uint8_t)filter->priority;
2019 
2020 	bfilter->enables = en;
2021 	return 0;
2022 }
2023 
2024 static struct bnxt_filter_info*
2025 bnxt_match_ntuple_filter(struct bnxt *bp,
2026 			 struct bnxt_filter_info *bfilter,
2027 			 struct bnxt_vnic_info **mvnic)
2028 {
2029 	struct bnxt_filter_info *mfilter = NULL;
2030 	int i;
2031 
2032 	for (i = bp->nr_vnics - 1; i >= 0; i--) {
2033 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2034 		STAILQ_FOREACH(mfilter, &vnic->filter, next) {
2035 			if (bfilter->src_ipaddr[0] == mfilter->src_ipaddr[0] &&
2036 			    bfilter->src_ipaddr_mask[0] ==
2037 			    mfilter->src_ipaddr_mask[0] &&
2038 			    bfilter->src_port == mfilter->src_port &&
2039 			    bfilter->src_port_mask == mfilter->src_port_mask &&
2040 			    bfilter->dst_ipaddr[0] == mfilter->dst_ipaddr[0] &&
2041 			    bfilter->dst_ipaddr_mask[0] ==
2042 			    mfilter->dst_ipaddr_mask[0] &&
2043 			    bfilter->dst_port == mfilter->dst_port &&
2044 			    bfilter->dst_port_mask == mfilter->dst_port_mask &&
2045 			    bfilter->flags == mfilter->flags &&
2046 			    bfilter->enables == mfilter->enables) {
2047 				if (mvnic)
2048 					*mvnic = vnic;
2049 				return mfilter;
2050 			}
2051 		}
2052 	}
2053 	return NULL;
2054 }
2055 
2056 static int
2057 bnxt_cfg_ntuple_filter(struct bnxt *bp,
2058 		       struct rte_eth_ntuple_filter *nfilter,
2059 		       enum rte_filter_op filter_op)
2060 {
2061 	struct bnxt_filter_info *bfilter, *mfilter, *filter1;
2062 	struct bnxt_vnic_info *vnic, *vnic0, *mvnic;
2063 	int ret;
2064 
2065 	if (nfilter->flags != RTE_5TUPLE_FLAGS) {
2066 		PMD_DRV_LOG(ERR, "only 5tuple is supported.");
2067 		return -EINVAL;
2068 	}
2069 
2070 	if (nfilter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG) {
2071 		PMD_DRV_LOG(ERR, "Ntuple filter: TCP flags not supported\n");
2072 		return -EINVAL;
2073 	}
2074 
2075 	bfilter = bnxt_get_unused_filter(bp);
2076 	if (bfilter == NULL) {
2077 		PMD_DRV_LOG(ERR,
2078 			"Not enough resources for a new filter.\n");
2079 		return -ENOMEM;
2080 	}
2081 	ret = parse_ntuple_filter(bp, nfilter, bfilter);
2082 	if (ret < 0)
2083 		goto free_filter;
2084 
2085 	vnic = &bp->vnic_info[nfilter->queue];
2086 	vnic0 = &bp->vnic_info[0];
2087 	filter1 = STAILQ_FIRST(&vnic0->filter);
2088 	if (filter1 == NULL) {
2089 		ret = -1;
2090 		goto free_filter;
2091 	}
2092 
2093 	bfilter->dst_id = vnic->fw_vnic_id;
2094 	bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
2095 	bfilter->enables |=
2096 		HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
2097 	bfilter->ethertype = 0x800;
2098 	bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2099 
2100 	mfilter = bnxt_match_ntuple_filter(bp, bfilter, &mvnic);
2101 
2102 	if (mfilter != NULL && filter_op == RTE_ETH_FILTER_ADD &&
2103 	    bfilter->dst_id == mfilter->dst_id) {
2104 		PMD_DRV_LOG(ERR, "filter exists.\n");
2105 		ret = -EEXIST;
2106 		goto free_filter;
2107 	} else if (mfilter != NULL && filter_op == RTE_ETH_FILTER_ADD &&
2108 		   bfilter->dst_id != mfilter->dst_id) {
2109 		mfilter->dst_id = vnic->fw_vnic_id;
2110 		ret = bnxt_hwrm_set_ntuple_filter(bp, mfilter->dst_id, mfilter);
2111 		STAILQ_REMOVE(&mvnic->filter, mfilter, bnxt_filter_info, next);
2112 		STAILQ_INSERT_TAIL(&vnic->filter, mfilter, next);
2113 		PMD_DRV_LOG(ERR, "filter with matching pattern exists.\n");
2114 		PMD_DRV_LOG(ERR, " Updated it to the new destination queue\n");
2115 		goto free_filter;
2116 	}
2117 	if (mfilter == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
2118 		PMD_DRV_LOG(ERR, "filter doesn't exist.");
2119 		ret = -ENOENT;
2120 		goto free_filter;
2121 	}
2122 
2123 	if (filter_op == RTE_ETH_FILTER_ADD) {
2124 		bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
2125 		ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
2126 		if (ret)
2127 			goto free_filter;
2128 		STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
2129 	} else {
2130 		if (mfilter == NULL) {
2131 			/* This should not happen. But for Coverity! */
2132 			ret = -ENOENT;
2133 			goto free_filter;
2134 		}
2135 		ret = bnxt_hwrm_clear_ntuple_filter(bp, mfilter);
2136 
2137 		STAILQ_REMOVE(&vnic->filter, mfilter, bnxt_filter_info, next);
2138 		bnxt_free_filter(bp, mfilter);
2139 		mfilter->fw_l2_filter_id = -1;
2140 		bnxt_free_filter(bp, bfilter);
2141 		bfilter->fw_l2_filter_id = -1;
2142 	}
2143 
2144 	return 0;
2145 free_filter:
2146 	bfilter->fw_l2_filter_id = -1;
2147 	bnxt_free_filter(bp, bfilter);
2148 	return ret;
2149 }
2150 
2151 static int
2152 bnxt_ntuple_filter(struct rte_eth_dev *dev,
2153 			enum rte_filter_op filter_op,
2154 			void *arg)
2155 {
2156 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2157 	int ret;
2158 
2159 	if (filter_op == RTE_ETH_FILTER_NOP)
2160 		return 0;
2161 
2162 	if (arg == NULL) {
2163 		PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
2164 			    filter_op);
2165 		return -EINVAL;
2166 	}
2167 
2168 	switch (filter_op) {
2169 	case RTE_ETH_FILTER_ADD:
2170 		ret = bnxt_cfg_ntuple_filter(bp,
2171 			(struct rte_eth_ntuple_filter *)arg,
2172 			filter_op);
2173 		break;
2174 	case RTE_ETH_FILTER_DELETE:
2175 		ret = bnxt_cfg_ntuple_filter(bp,
2176 			(struct rte_eth_ntuple_filter *)arg,
2177 			filter_op);
2178 		break;
2179 	default:
2180 		PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
2181 		ret = -EINVAL;
2182 		break;
2183 	}
2184 	return ret;
2185 }
2186 
2187 static int
2188 bnxt_parse_fdir_filter(struct bnxt *bp,
2189 		       struct rte_eth_fdir_filter *fdir,
2190 		       struct bnxt_filter_info *filter)
2191 {
2192 	enum rte_fdir_mode fdir_mode =
2193 		bp->eth_dev->data->dev_conf.fdir_conf.mode;
2194 	struct bnxt_vnic_info *vnic0, *vnic;
2195 	struct bnxt_filter_info *filter1;
2196 	uint32_t en = 0;
2197 	int i;
2198 
2199 	if (fdir_mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2200 		return -EINVAL;
2201 
2202 	filter->l2_ovlan = fdir->input.flow_ext.vlan_tci;
2203 	en |= EM_FLOW_ALLOC_INPUT_EN_OVLAN_VID;
2204 
2205 	switch (fdir->input.flow_type) {
2206 	case RTE_ETH_FLOW_IPV4:
2207 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2208 		/* FALLTHROUGH */
2209 		filter->src_ipaddr[0] = fdir->input.flow.ip4_flow.src_ip;
2210 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2211 		filter->dst_ipaddr[0] = fdir->input.flow.ip4_flow.dst_ip;
2212 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2213 		filter->ip_protocol = fdir->input.flow.ip4_flow.proto;
2214 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2215 		filter->ip_addr_type =
2216 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2217 		filter->src_ipaddr_mask[0] = 0xffffffff;
2218 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2219 		filter->dst_ipaddr_mask[0] = 0xffffffff;
2220 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2221 		filter->ethertype = 0x800;
2222 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2223 		break;
2224 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2225 		filter->src_port = fdir->input.flow.tcp4_flow.src_port;
2226 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2227 		filter->dst_port = fdir->input.flow.tcp4_flow.dst_port;
2228 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2229 		filter->dst_port_mask = 0xffff;
2230 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2231 		filter->src_port_mask = 0xffff;
2232 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2233 		filter->src_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.src_ip;
2234 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2235 		filter->dst_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.dst_ip;
2236 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2237 		filter->ip_protocol = 6;
2238 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2239 		filter->ip_addr_type =
2240 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2241 		filter->src_ipaddr_mask[0] = 0xffffffff;
2242 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2243 		filter->dst_ipaddr_mask[0] = 0xffffffff;
2244 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2245 		filter->ethertype = 0x800;
2246 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2247 		break;
2248 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2249 		filter->src_port = fdir->input.flow.udp4_flow.src_port;
2250 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2251 		filter->dst_port = fdir->input.flow.udp4_flow.dst_port;
2252 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2253 		filter->dst_port_mask = 0xffff;
2254 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2255 		filter->src_port_mask = 0xffff;
2256 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2257 		filter->src_ipaddr[0] = fdir->input.flow.udp4_flow.ip.src_ip;
2258 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2259 		filter->dst_ipaddr[0] = fdir->input.flow.udp4_flow.ip.dst_ip;
2260 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2261 		filter->ip_protocol = 17;
2262 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2263 		filter->ip_addr_type =
2264 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2265 		filter->src_ipaddr_mask[0] = 0xffffffff;
2266 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2267 		filter->dst_ipaddr_mask[0] = 0xffffffff;
2268 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2269 		filter->ethertype = 0x800;
2270 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2271 		break;
2272 	case RTE_ETH_FLOW_IPV6:
2273 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2274 		/* FALLTHROUGH */
2275 		filter->ip_addr_type =
2276 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2277 		filter->ip_protocol = fdir->input.flow.ipv6_flow.proto;
2278 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2279 		rte_memcpy(filter->src_ipaddr,
2280 			   fdir->input.flow.ipv6_flow.src_ip, 16);
2281 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2282 		rte_memcpy(filter->dst_ipaddr,
2283 			   fdir->input.flow.ipv6_flow.dst_ip, 16);
2284 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2285 		memset(filter->dst_ipaddr_mask, 0xff, 16);
2286 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2287 		memset(filter->src_ipaddr_mask, 0xff, 16);
2288 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2289 		filter->ethertype = 0x86dd;
2290 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2291 		break;
2292 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2293 		filter->src_port = fdir->input.flow.tcp6_flow.src_port;
2294 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2295 		filter->dst_port = fdir->input.flow.tcp6_flow.dst_port;
2296 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2297 		filter->dst_port_mask = 0xffff;
2298 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2299 		filter->src_port_mask = 0xffff;
2300 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2301 		filter->ip_addr_type =
2302 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2303 		filter->ip_protocol = fdir->input.flow.tcp6_flow.ip.proto;
2304 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2305 		rte_memcpy(filter->src_ipaddr,
2306 			   fdir->input.flow.tcp6_flow.ip.src_ip, 16);
2307 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2308 		rte_memcpy(filter->dst_ipaddr,
2309 			   fdir->input.flow.tcp6_flow.ip.dst_ip, 16);
2310 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2311 		memset(filter->dst_ipaddr_mask, 0xff, 16);
2312 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2313 		memset(filter->src_ipaddr_mask, 0xff, 16);
2314 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2315 		filter->ethertype = 0x86dd;
2316 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2317 		break;
2318 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2319 		filter->src_port = fdir->input.flow.udp6_flow.src_port;
2320 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2321 		filter->dst_port = fdir->input.flow.udp6_flow.dst_port;
2322 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2323 		filter->dst_port_mask = 0xffff;
2324 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2325 		filter->src_port_mask = 0xffff;
2326 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2327 		filter->ip_addr_type =
2328 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2329 		filter->ip_protocol = fdir->input.flow.udp6_flow.ip.proto;
2330 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2331 		rte_memcpy(filter->src_ipaddr,
2332 			   fdir->input.flow.udp6_flow.ip.src_ip, 16);
2333 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2334 		rte_memcpy(filter->dst_ipaddr,
2335 			   fdir->input.flow.udp6_flow.ip.dst_ip, 16);
2336 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2337 		memset(filter->dst_ipaddr_mask, 0xff, 16);
2338 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2339 		memset(filter->src_ipaddr_mask, 0xff, 16);
2340 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2341 		filter->ethertype = 0x86dd;
2342 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2343 		break;
2344 	case RTE_ETH_FLOW_L2_PAYLOAD:
2345 		filter->ethertype = fdir->input.flow.l2_flow.ether_type;
2346 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2347 		break;
2348 	case RTE_ETH_FLOW_VXLAN:
2349 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2350 			return -EINVAL;
2351 		filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
2352 		filter->tunnel_type =
2353 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
2354 		en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
2355 		break;
2356 	case RTE_ETH_FLOW_NVGRE:
2357 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2358 			return -EINVAL;
2359 		filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
2360 		filter->tunnel_type =
2361 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_NVGRE;
2362 		en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
2363 		break;
2364 	case RTE_ETH_FLOW_UNKNOWN:
2365 	case RTE_ETH_FLOW_RAW:
2366 	case RTE_ETH_FLOW_FRAG_IPV4:
2367 	case RTE_ETH_FLOW_NONFRAG_IPV4_SCTP:
2368 	case RTE_ETH_FLOW_FRAG_IPV6:
2369 	case RTE_ETH_FLOW_NONFRAG_IPV6_SCTP:
2370 	case RTE_ETH_FLOW_IPV6_EX:
2371 	case RTE_ETH_FLOW_IPV6_TCP_EX:
2372 	case RTE_ETH_FLOW_IPV6_UDP_EX:
2373 	case RTE_ETH_FLOW_GENEVE:
2374 		/* FALLTHROUGH */
2375 	default:
2376 		return -EINVAL;
2377 	}
2378 
2379 	vnic0 = &bp->vnic_info[0];
2380 	vnic = &bp->vnic_info[fdir->action.rx_queue];
2381 	if (vnic == NULL) {
2382 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", fdir->action.rx_queue);
2383 		return -EINVAL;
2384 	}
2385 
2386 
2387 	if (fdir_mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2388 		rte_memcpy(filter->dst_macaddr,
2389 			fdir->input.flow.mac_vlan_flow.mac_addr.addr_bytes, 6);
2390 			en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
2391 	}
2392 
2393 	if (fdir->action.behavior == RTE_ETH_FDIR_REJECT) {
2394 		filter->flags = HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
2395 		filter1 = STAILQ_FIRST(&vnic0->filter);
2396 		//filter1 = bnxt_get_l2_filter(bp, filter, vnic0);
2397 	} else {
2398 		filter->dst_id = vnic->fw_vnic_id;
2399 		for (i = 0; i < ETHER_ADDR_LEN; i++)
2400 			if (filter->dst_macaddr[i] == 0x00)
2401 				filter1 = STAILQ_FIRST(&vnic0->filter);
2402 			else
2403 				filter1 = bnxt_get_l2_filter(bp, filter, vnic);
2404 	}
2405 
2406 	if (filter1 == NULL)
2407 		return -EINVAL;
2408 
2409 	en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
2410 	filter->fw_l2_filter_id = filter1->fw_l2_filter_id;
2411 
2412 	filter->enables = en;
2413 
2414 	return 0;
2415 }
2416 
2417 static struct bnxt_filter_info *
2418 bnxt_match_fdir(struct bnxt *bp, struct bnxt_filter_info *nf,
2419 		struct bnxt_vnic_info **mvnic)
2420 {
2421 	struct bnxt_filter_info *mf = NULL;
2422 	int i;
2423 
2424 	for (i = bp->nr_vnics - 1; i >= 0; i--) {
2425 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2426 
2427 		STAILQ_FOREACH(mf, &vnic->filter, next) {
2428 			if (mf->filter_type == nf->filter_type &&
2429 			    mf->flags == nf->flags &&
2430 			    mf->src_port == nf->src_port &&
2431 			    mf->src_port_mask == nf->src_port_mask &&
2432 			    mf->dst_port == nf->dst_port &&
2433 			    mf->dst_port_mask == nf->dst_port_mask &&
2434 			    mf->ip_protocol == nf->ip_protocol &&
2435 			    mf->ip_addr_type == nf->ip_addr_type &&
2436 			    mf->ethertype == nf->ethertype &&
2437 			    mf->vni == nf->vni &&
2438 			    mf->tunnel_type == nf->tunnel_type &&
2439 			    mf->l2_ovlan == nf->l2_ovlan &&
2440 			    mf->l2_ovlan_mask == nf->l2_ovlan_mask &&
2441 			    mf->l2_ivlan == nf->l2_ivlan &&
2442 			    mf->l2_ivlan_mask == nf->l2_ivlan_mask &&
2443 			    !memcmp(mf->l2_addr, nf->l2_addr, ETHER_ADDR_LEN) &&
2444 			    !memcmp(mf->l2_addr_mask, nf->l2_addr_mask,
2445 				    ETHER_ADDR_LEN) &&
2446 			    !memcmp(mf->src_macaddr, nf->src_macaddr,
2447 				    ETHER_ADDR_LEN) &&
2448 			    !memcmp(mf->dst_macaddr, nf->dst_macaddr,
2449 				    ETHER_ADDR_LEN) &&
2450 			    !memcmp(mf->src_ipaddr, nf->src_ipaddr,
2451 				    sizeof(nf->src_ipaddr)) &&
2452 			    !memcmp(mf->src_ipaddr_mask, nf->src_ipaddr_mask,
2453 				    sizeof(nf->src_ipaddr_mask)) &&
2454 			    !memcmp(mf->dst_ipaddr, nf->dst_ipaddr,
2455 				    sizeof(nf->dst_ipaddr)) &&
2456 			    !memcmp(mf->dst_ipaddr_mask, nf->dst_ipaddr_mask,
2457 				    sizeof(nf->dst_ipaddr_mask))) {
2458 				if (mvnic)
2459 					*mvnic = vnic;
2460 				return mf;
2461 			}
2462 		}
2463 	}
2464 	return NULL;
2465 }
2466 
2467 static int
2468 bnxt_fdir_filter(struct rte_eth_dev *dev,
2469 		 enum rte_filter_op filter_op,
2470 		 void *arg)
2471 {
2472 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2473 	struct rte_eth_fdir_filter *fdir  = (struct rte_eth_fdir_filter *)arg;
2474 	struct bnxt_filter_info *filter, *match;
2475 	struct bnxt_vnic_info *vnic, *mvnic;
2476 	int ret = 0, i;
2477 
2478 	if (filter_op == RTE_ETH_FILTER_NOP)
2479 		return 0;
2480 
2481 	if (arg == NULL && filter_op != RTE_ETH_FILTER_FLUSH)
2482 		return -EINVAL;
2483 
2484 	switch (filter_op) {
2485 	case RTE_ETH_FILTER_ADD:
2486 	case RTE_ETH_FILTER_DELETE:
2487 		/* FALLTHROUGH */
2488 		filter = bnxt_get_unused_filter(bp);
2489 		if (filter == NULL) {
2490 			PMD_DRV_LOG(ERR,
2491 				"Not enough resources for a new flow.\n");
2492 			return -ENOMEM;
2493 		}
2494 
2495 		ret = bnxt_parse_fdir_filter(bp, fdir, filter);
2496 		if (ret != 0)
2497 			goto free_filter;
2498 		filter->filter_type = HWRM_CFA_NTUPLE_FILTER;
2499 
2500 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2501 			vnic = &bp->vnic_info[0];
2502 		else
2503 			vnic = &bp->vnic_info[fdir->action.rx_queue];
2504 
2505 		match = bnxt_match_fdir(bp, filter, &mvnic);
2506 		if (match != NULL && filter_op == RTE_ETH_FILTER_ADD) {
2507 			if (match->dst_id == vnic->fw_vnic_id) {
2508 				PMD_DRV_LOG(ERR, "Flow already exists.\n");
2509 				ret = -EEXIST;
2510 				goto free_filter;
2511 			} else {
2512 				match->dst_id = vnic->fw_vnic_id;
2513 				ret = bnxt_hwrm_set_ntuple_filter(bp,
2514 								  match->dst_id,
2515 								  match);
2516 				STAILQ_REMOVE(&mvnic->filter, match,
2517 					      bnxt_filter_info, next);
2518 				STAILQ_INSERT_TAIL(&vnic->filter, match, next);
2519 				PMD_DRV_LOG(ERR,
2520 					"Filter with matching pattern exist\n");
2521 				PMD_DRV_LOG(ERR,
2522 					"Updated it to new destination q\n");
2523 				goto free_filter;
2524 			}
2525 		}
2526 		if (match == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
2527 			PMD_DRV_LOG(ERR, "Flow does not exist.\n");
2528 			ret = -ENOENT;
2529 			goto free_filter;
2530 		}
2531 
2532 		if (filter_op == RTE_ETH_FILTER_ADD) {
2533 			ret = bnxt_hwrm_set_ntuple_filter(bp,
2534 							  filter->dst_id,
2535 							  filter);
2536 			if (ret)
2537 				goto free_filter;
2538 			STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
2539 		} else {
2540 			ret = bnxt_hwrm_clear_ntuple_filter(bp, match);
2541 			STAILQ_REMOVE(&vnic->filter, match,
2542 				      bnxt_filter_info, next);
2543 			bnxt_free_filter(bp, match);
2544 			filter->fw_l2_filter_id = -1;
2545 			bnxt_free_filter(bp, filter);
2546 		}
2547 		break;
2548 	case RTE_ETH_FILTER_FLUSH:
2549 		for (i = bp->nr_vnics - 1; i >= 0; i--) {
2550 			struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2551 
2552 			STAILQ_FOREACH(filter, &vnic->filter, next) {
2553 				if (filter->filter_type ==
2554 				    HWRM_CFA_NTUPLE_FILTER) {
2555 					ret =
2556 					bnxt_hwrm_clear_ntuple_filter(bp,
2557 								      filter);
2558 					STAILQ_REMOVE(&vnic->filter, filter,
2559 						      bnxt_filter_info, next);
2560 				}
2561 			}
2562 		}
2563 		return ret;
2564 	case RTE_ETH_FILTER_UPDATE:
2565 	case RTE_ETH_FILTER_STATS:
2566 	case RTE_ETH_FILTER_INFO:
2567 		PMD_DRV_LOG(ERR, "operation %u not implemented", filter_op);
2568 		break;
2569 	default:
2570 		PMD_DRV_LOG(ERR, "unknown operation %u", filter_op);
2571 		ret = -EINVAL;
2572 		break;
2573 	}
2574 	return ret;
2575 
2576 free_filter:
2577 	filter->fw_l2_filter_id = -1;
2578 	bnxt_free_filter(bp, filter);
2579 	return ret;
2580 }
2581 
2582 static int
2583 bnxt_filter_ctrl_op(struct rte_eth_dev *dev __rte_unused,
2584 		    enum rte_filter_type filter_type,
2585 		    enum rte_filter_op filter_op, void *arg)
2586 {
2587 	int ret = 0;
2588 
2589 	switch (filter_type) {
2590 	case RTE_ETH_FILTER_TUNNEL:
2591 		PMD_DRV_LOG(ERR,
2592 			"filter type: %d: To be implemented\n", filter_type);
2593 		break;
2594 	case RTE_ETH_FILTER_FDIR:
2595 		ret = bnxt_fdir_filter(dev, filter_op, arg);
2596 		break;
2597 	case RTE_ETH_FILTER_NTUPLE:
2598 		ret = bnxt_ntuple_filter(dev, filter_op, arg);
2599 		break;
2600 	case RTE_ETH_FILTER_ETHERTYPE:
2601 		ret = bnxt_ethertype_filter(dev, filter_op, arg);
2602 		break;
2603 	case RTE_ETH_FILTER_GENERIC:
2604 		if (filter_op != RTE_ETH_FILTER_GET)
2605 			return -EINVAL;
2606 		*(const void **)arg = &bnxt_flow_ops;
2607 		break;
2608 	default:
2609 		PMD_DRV_LOG(ERR,
2610 			"Filter type (%d) not supported", filter_type);
2611 		ret = -EINVAL;
2612 		break;
2613 	}
2614 	return ret;
2615 }
2616 
2617 static const uint32_t *
2618 bnxt_dev_supported_ptypes_get_op(struct rte_eth_dev *dev)
2619 {
2620 	static const uint32_t ptypes[] = {
2621 		RTE_PTYPE_L2_ETHER_VLAN,
2622 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
2623 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
2624 		RTE_PTYPE_L4_ICMP,
2625 		RTE_PTYPE_L4_TCP,
2626 		RTE_PTYPE_L4_UDP,
2627 		RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
2628 		RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
2629 		RTE_PTYPE_INNER_L4_ICMP,
2630 		RTE_PTYPE_INNER_L4_TCP,
2631 		RTE_PTYPE_INNER_L4_UDP,
2632 		RTE_PTYPE_UNKNOWN
2633 	};
2634 
2635 	if (dev->rx_pkt_burst == bnxt_recv_pkts)
2636 		return ptypes;
2637 	return NULL;
2638 }
2639 
2640 static int bnxt_map_regs(struct bnxt *bp, uint32_t *reg_arr, int count,
2641 			 int reg_win)
2642 {
2643 	uint32_t reg_base = *reg_arr & 0xfffff000;
2644 	uint32_t win_off;
2645 	int i;
2646 
2647 	for (i = 0; i < count; i++) {
2648 		if ((reg_arr[i] & 0xfffff000) != reg_base)
2649 			return -ERANGE;
2650 	}
2651 	win_off = BNXT_GRCPF_REG_WINDOW_BASE_OUT + (reg_win - 1) * 4;
2652 	rte_cpu_to_le_32(rte_write32(reg_base, (uint8_t *)bp->bar0 + win_off));
2653 	return 0;
2654 }
2655 
2656 static int bnxt_map_ptp_regs(struct bnxt *bp)
2657 {
2658 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2659 	uint32_t *reg_arr;
2660 	int rc, i;
2661 
2662 	reg_arr = ptp->rx_regs;
2663 	rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_RX_REGS, 5);
2664 	if (rc)
2665 		return rc;
2666 
2667 	reg_arr = ptp->tx_regs;
2668 	rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_TX_REGS, 6);
2669 	if (rc)
2670 		return rc;
2671 
2672 	for (i = 0; i < BNXT_PTP_RX_REGS; i++)
2673 		ptp->rx_mapped_regs[i] = 0x5000 + (ptp->rx_regs[i] & 0xfff);
2674 
2675 	for (i = 0; i < BNXT_PTP_TX_REGS; i++)
2676 		ptp->tx_mapped_regs[i] = 0x6000 + (ptp->tx_regs[i] & 0xfff);
2677 
2678 	return 0;
2679 }
2680 
2681 static void bnxt_unmap_ptp_regs(struct bnxt *bp)
2682 {
2683 	rte_cpu_to_le_32(rte_write32(0, (uint8_t *)bp->bar0 +
2684 			 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 16));
2685 	rte_cpu_to_le_32(rte_write32(0, (uint8_t *)bp->bar0 +
2686 			 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 20));
2687 }
2688 
2689 static uint64_t bnxt_cc_read(struct bnxt *bp)
2690 {
2691 	uint64_t ns;
2692 
2693 	ns = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2694 			      BNXT_GRCPF_REG_SYNC_TIME));
2695 	ns |= (uint64_t)(rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2696 					  BNXT_GRCPF_REG_SYNC_TIME + 4))) << 32;
2697 	return ns;
2698 }
2699 
2700 static int bnxt_get_tx_ts(struct bnxt *bp, uint64_t *ts)
2701 {
2702 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2703 	uint32_t fifo;
2704 
2705 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2706 				ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
2707 	if (fifo & BNXT_PTP_TX_FIFO_EMPTY)
2708 		return -EAGAIN;
2709 
2710 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2711 				ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
2712 	*ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2713 				ptp->tx_mapped_regs[BNXT_PTP_TX_TS_L]));
2714 	*ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2715 				ptp->tx_mapped_regs[BNXT_PTP_TX_TS_H])) << 32;
2716 
2717 	return 0;
2718 }
2719 
2720 static int bnxt_get_rx_ts(struct bnxt *bp, uint64_t *ts)
2721 {
2722 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2723 	struct bnxt_pf_info *pf = &bp->pf;
2724 	uint16_t port_id;
2725 	uint32_t fifo;
2726 
2727 	if (!ptp)
2728 		return -ENODEV;
2729 
2730 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2731 				ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
2732 	if (!(fifo & BNXT_PTP_RX_FIFO_PENDING))
2733 		return -EAGAIN;
2734 
2735 	port_id = pf->port_id;
2736 	rte_cpu_to_le_32(rte_write32(1 << port_id, (uint8_t *)bp->bar0 +
2737 	       ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO_ADV]));
2738 
2739 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2740 				   ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
2741 	if (fifo & BNXT_PTP_RX_FIFO_PENDING) {
2742 /*		bnxt_clr_rx_ts(bp);	  TBD  */
2743 		return -EBUSY;
2744 	}
2745 
2746 	*ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2747 				ptp->rx_mapped_regs[BNXT_PTP_RX_TS_L]));
2748 	*ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2749 				ptp->rx_mapped_regs[BNXT_PTP_RX_TS_H])) << 32;
2750 
2751 	return 0;
2752 }
2753 
2754 static int
2755 bnxt_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
2756 {
2757 	uint64_t ns;
2758 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2759 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2760 
2761 	if (!ptp)
2762 		return 0;
2763 
2764 	ns = rte_timespec_to_ns(ts);
2765 	/* Set the timecounters to a new value. */
2766 	ptp->tc.nsec = ns;
2767 
2768 	return 0;
2769 }
2770 
2771 static int
2772 bnxt_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
2773 {
2774 	uint64_t ns, systime_cycles;
2775 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2776 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2777 
2778 	if (!ptp)
2779 		return 0;
2780 
2781 	systime_cycles = bnxt_cc_read(bp);
2782 	ns = rte_timecounter_update(&ptp->tc, systime_cycles);
2783 	*ts = rte_ns_to_timespec(ns);
2784 
2785 	return 0;
2786 }
2787 static int
2788 bnxt_timesync_enable(struct rte_eth_dev *dev)
2789 {
2790 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2791 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2792 	uint32_t shift = 0;
2793 
2794 	if (!ptp)
2795 		return 0;
2796 
2797 	ptp->rx_filter = 1;
2798 	ptp->tx_tstamp_en = 1;
2799 	ptp->rxctl = BNXT_PTP_MSG_EVENTS;
2800 
2801 	if (!bnxt_hwrm_ptp_cfg(bp))
2802 		bnxt_map_ptp_regs(bp);
2803 
2804 	memset(&ptp->tc, 0, sizeof(struct rte_timecounter));
2805 	memset(&ptp->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
2806 	memset(&ptp->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
2807 
2808 	ptp->tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
2809 	ptp->tc.cc_shift = shift;
2810 	ptp->tc.nsec_mask = (1ULL << shift) - 1;
2811 
2812 	ptp->rx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
2813 	ptp->rx_tstamp_tc.cc_shift = shift;
2814 	ptp->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
2815 
2816 	ptp->tx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
2817 	ptp->tx_tstamp_tc.cc_shift = shift;
2818 	ptp->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
2819 
2820 	return 0;
2821 }
2822 
2823 static int
2824 bnxt_timesync_disable(struct rte_eth_dev *dev)
2825 {
2826 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2827 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2828 
2829 	if (!ptp)
2830 		return 0;
2831 
2832 	ptp->rx_filter = 0;
2833 	ptp->tx_tstamp_en = 0;
2834 	ptp->rxctl = 0;
2835 
2836 	bnxt_hwrm_ptp_cfg(bp);
2837 
2838 	bnxt_unmap_ptp_regs(bp);
2839 
2840 	return 0;
2841 }
2842 
2843 static int
2844 bnxt_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
2845 				 struct timespec *timestamp,
2846 				 uint32_t flags __rte_unused)
2847 {
2848 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2849 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2850 	uint64_t rx_tstamp_cycles = 0;
2851 	uint64_t ns;
2852 
2853 	if (!ptp)
2854 		return 0;
2855 
2856 	bnxt_get_rx_ts(bp, &rx_tstamp_cycles);
2857 	ns = rte_timecounter_update(&ptp->rx_tstamp_tc, rx_tstamp_cycles);
2858 	*timestamp = rte_ns_to_timespec(ns);
2859 	return  0;
2860 }
2861 
2862 static int
2863 bnxt_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
2864 				 struct timespec *timestamp)
2865 {
2866 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2867 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2868 	uint64_t tx_tstamp_cycles = 0;
2869 	uint64_t ns;
2870 
2871 	if (!ptp)
2872 		return 0;
2873 
2874 	bnxt_get_tx_ts(bp, &tx_tstamp_cycles);
2875 	ns = rte_timecounter_update(&ptp->tx_tstamp_tc, tx_tstamp_cycles);
2876 	*timestamp = rte_ns_to_timespec(ns);
2877 
2878 	return 0;
2879 }
2880 
2881 static int
2882 bnxt_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
2883 {
2884 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2885 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2886 
2887 	if (!ptp)
2888 		return 0;
2889 
2890 	ptp->tc.nsec += delta;
2891 
2892 	return 0;
2893 }
2894 
2895 static int
2896 bnxt_get_eeprom_length_op(struct rte_eth_dev *dev)
2897 {
2898 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2899 	int rc;
2900 	uint32_t dir_entries;
2901 	uint32_t entry_length;
2902 
2903 	PMD_DRV_LOG(INFO, "%04x:%02x:%02x:%02x\n",
2904 		bp->pdev->addr.domain, bp->pdev->addr.bus,
2905 		bp->pdev->addr.devid, bp->pdev->addr.function);
2906 
2907 	rc = bnxt_hwrm_nvm_get_dir_info(bp, &dir_entries, &entry_length);
2908 	if (rc != 0)
2909 		return rc;
2910 
2911 	return dir_entries * entry_length;
2912 }
2913 
2914 static int
2915 bnxt_get_eeprom_op(struct rte_eth_dev *dev,
2916 		struct rte_dev_eeprom_info *in_eeprom)
2917 {
2918 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2919 	uint32_t index;
2920 	uint32_t offset;
2921 
2922 	PMD_DRV_LOG(INFO, "%04x:%02x:%02x:%02x in_eeprom->offset = %d "
2923 		"len = %d\n", bp->pdev->addr.domain,
2924 		bp->pdev->addr.bus, bp->pdev->addr.devid,
2925 		bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length);
2926 
2927 	if (in_eeprom->offset == 0) /* special offset value to get directory */
2928 		return bnxt_get_nvram_directory(bp, in_eeprom->length,
2929 						in_eeprom->data);
2930 
2931 	index = in_eeprom->offset >> 24;
2932 	offset = in_eeprom->offset & 0xffffff;
2933 
2934 	if (index != 0)
2935 		return bnxt_hwrm_get_nvram_item(bp, index - 1, offset,
2936 					   in_eeprom->length, in_eeprom->data);
2937 
2938 	return 0;
2939 }
2940 
2941 static bool bnxt_dir_type_is_ape_bin_format(uint16_t dir_type)
2942 {
2943 	switch (dir_type) {
2944 	case BNX_DIR_TYPE_CHIMP_PATCH:
2945 	case BNX_DIR_TYPE_BOOTCODE:
2946 	case BNX_DIR_TYPE_BOOTCODE_2:
2947 	case BNX_DIR_TYPE_APE_FW:
2948 	case BNX_DIR_TYPE_APE_PATCH:
2949 	case BNX_DIR_TYPE_KONG_FW:
2950 	case BNX_DIR_TYPE_KONG_PATCH:
2951 	case BNX_DIR_TYPE_BONO_FW:
2952 	case BNX_DIR_TYPE_BONO_PATCH:
2953 		/* FALLTHROUGH */
2954 		return true;
2955 	}
2956 
2957 	return false;
2958 }
2959 
2960 static bool bnxt_dir_type_is_other_exec_format(uint16_t dir_type)
2961 {
2962 	switch (dir_type) {
2963 	case BNX_DIR_TYPE_AVS:
2964 	case BNX_DIR_TYPE_EXP_ROM_MBA:
2965 	case BNX_DIR_TYPE_PCIE:
2966 	case BNX_DIR_TYPE_TSCF_UCODE:
2967 	case BNX_DIR_TYPE_EXT_PHY:
2968 	case BNX_DIR_TYPE_CCM:
2969 	case BNX_DIR_TYPE_ISCSI_BOOT:
2970 	case BNX_DIR_TYPE_ISCSI_BOOT_IPV6:
2971 	case BNX_DIR_TYPE_ISCSI_BOOT_IPV4N6:
2972 		/* FALLTHROUGH */
2973 		return true;
2974 	}
2975 
2976 	return false;
2977 }
2978 
2979 static bool bnxt_dir_type_is_executable(uint16_t dir_type)
2980 {
2981 	return bnxt_dir_type_is_ape_bin_format(dir_type) ||
2982 		bnxt_dir_type_is_other_exec_format(dir_type);
2983 }
2984 
2985 static int
2986 bnxt_set_eeprom_op(struct rte_eth_dev *dev,
2987 		struct rte_dev_eeprom_info *in_eeprom)
2988 {
2989 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2990 	uint8_t index, dir_op;
2991 	uint16_t type, ext, ordinal, attr;
2992 
2993 	PMD_DRV_LOG(INFO, "%04x:%02x:%02x:%02x in_eeprom->offset = %d "
2994 		"len = %d\n", bp->pdev->addr.domain,
2995 		bp->pdev->addr.bus, bp->pdev->addr.devid,
2996 		bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length);
2997 
2998 	if (!BNXT_PF(bp)) {
2999 		PMD_DRV_LOG(ERR, "NVM write not supported from a VF\n");
3000 		return -EINVAL;
3001 	}
3002 
3003 	type = in_eeprom->magic >> 16;
3004 
3005 	if (type == 0xffff) { /* special value for directory operations */
3006 		index = in_eeprom->magic & 0xff;
3007 		dir_op = in_eeprom->magic >> 8;
3008 		if (index == 0)
3009 			return -EINVAL;
3010 		switch (dir_op) {
3011 		case 0x0e: /* erase */
3012 			if (in_eeprom->offset != ~in_eeprom->magic)
3013 				return -EINVAL;
3014 			return bnxt_hwrm_erase_nvram_directory(bp, index - 1);
3015 		default:
3016 			return -EINVAL;
3017 		}
3018 	}
3019 
3020 	/* Create or re-write an NVM item: */
3021 	if (bnxt_dir_type_is_executable(type) == true)
3022 		return -EOPNOTSUPP;
3023 	ext = in_eeprom->magic & 0xffff;
3024 	ordinal = in_eeprom->offset >> 16;
3025 	attr = in_eeprom->offset & 0xffff;
3026 
3027 	return bnxt_hwrm_flash_nvram(bp, type, ordinal, ext, attr,
3028 				     in_eeprom->data, in_eeprom->length);
3029 	return 0;
3030 }
3031 
3032 /*
3033  * Initialization
3034  */
3035 
3036 static const struct eth_dev_ops bnxt_dev_ops = {
3037 	.dev_infos_get = bnxt_dev_info_get_op,
3038 	.dev_close = bnxt_dev_close_op,
3039 	.dev_configure = bnxt_dev_configure_op,
3040 	.dev_start = bnxt_dev_start_op,
3041 	.dev_stop = bnxt_dev_stop_op,
3042 	.dev_set_link_up = bnxt_dev_set_link_up_op,
3043 	.dev_set_link_down = bnxt_dev_set_link_down_op,
3044 	.stats_get = bnxt_stats_get_op,
3045 	.stats_reset = bnxt_stats_reset_op,
3046 	.rx_queue_setup = bnxt_rx_queue_setup_op,
3047 	.rx_queue_release = bnxt_rx_queue_release_op,
3048 	.tx_queue_setup = bnxt_tx_queue_setup_op,
3049 	.tx_queue_release = bnxt_tx_queue_release_op,
3050 	.rx_queue_intr_enable = bnxt_rx_queue_intr_enable_op,
3051 	.rx_queue_intr_disable = bnxt_rx_queue_intr_disable_op,
3052 	.reta_update = bnxt_reta_update_op,
3053 	.reta_query = bnxt_reta_query_op,
3054 	.rss_hash_update = bnxt_rss_hash_update_op,
3055 	.rss_hash_conf_get = bnxt_rss_hash_conf_get_op,
3056 	.link_update = bnxt_link_update_op,
3057 	.promiscuous_enable = bnxt_promiscuous_enable_op,
3058 	.promiscuous_disable = bnxt_promiscuous_disable_op,
3059 	.allmulticast_enable = bnxt_allmulticast_enable_op,
3060 	.allmulticast_disable = bnxt_allmulticast_disable_op,
3061 	.mac_addr_add = bnxt_mac_addr_add_op,
3062 	.mac_addr_remove = bnxt_mac_addr_remove_op,
3063 	.flow_ctrl_get = bnxt_flow_ctrl_get_op,
3064 	.flow_ctrl_set = bnxt_flow_ctrl_set_op,
3065 	.udp_tunnel_port_add  = bnxt_udp_tunnel_port_add_op,
3066 	.udp_tunnel_port_del  = bnxt_udp_tunnel_port_del_op,
3067 	.vlan_filter_set = bnxt_vlan_filter_set_op,
3068 	.vlan_offload_set = bnxt_vlan_offload_set_op,
3069 	.vlan_pvid_set = bnxt_vlan_pvid_set_op,
3070 	.mtu_set = bnxt_mtu_set_op,
3071 	.mac_addr_set = bnxt_set_default_mac_addr_op,
3072 	.xstats_get = bnxt_dev_xstats_get_op,
3073 	.xstats_get_names = bnxt_dev_xstats_get_names_op,
3074 	.xstats_reset = bnxt_dev_xstats_reset_op,
3075 	.fw_version_get = bnxt_fw_version_get,
3076 	.set_mc_addr_list = bnxt_dev_set_mc_addr_list_op,
3077 	.rxq_info_get = bnxt_rxq_info_get_op,
3078 	.txq_info_get = bnxt_txq_info_get_op,
3079 	.dev_led_on = bnxt_dev_led_on_op,
3080 	.dev_led_off = bnxt_dev_led_off_op,
3081 	.xstats_get_by_id = bnxt_dev_xstats_get_by_id_op,
3082 	.xstats_get_names_by_id = bnxt_dev_xstats_get_names_by_id_op,
3083 	.rx_queue_count = bnxt_rx_queue_count_op,
3084 	.rx_descriptor_status = bnxt_rx_descriptor_status_op,
3085 	.tx_descriptor_status = bnxt_tx_descriptor_status_op,
3086 	.rx_queue_start = bnxt_rx_queue_start,
3087 	.rx_queue_stop = bnxt_rx_queue_stop,
3088 	.tx_queue_start = bnxt_tx_queue_start,
3089 	.tx_queue_stop = bnxt_tx_queue_stop,
3090 	.filter_ctrl = bnxt_filter_ctrl_op,
3091 	.dev_supported_ptypes_get = bnxt_dev_supported_ptypes_get_op,
3092 	.get_eeprom_length    = bnxt_get_eeprom_length_op,
3093 	.get_eeprom           = bnxt_get_eeprom_op,
3094 	.set_eeprom           = bnxt_set_eeprom_op,
3095 	.timesync_enable      = bnxt_timesync_enable,
3096 	.timesync_disable     = bnxt_timesync_disable,
3097 	.timesync_read_time   = bnxt_timesync_read_time,
3098 	.timesync_write_time   = bnxt_timesync_write_time,
3099 	.timesync_adjust_time = bnxt_timesync_adjust_time,
3100 	.timesync_read_rx_timestamp = bnxt_timesync_read_rx_timestamp,
3101 	.timesync_read_tx_timestamp = bnxt_timesync_read_tx_timestamp,
3102 };
3103 
3104 static bool bnxt_vf_pciid(uint16_t id)
3105 {
3106 	if (id == BROADCOM_DEV_ID_57304_VF ||
3107 	    id == BROADCOM_DEV_ID_57406_VF ||
3108 	    id == BROADCOM_DEV_ID_5731X_VF ||
3109 	    id == BROADCOM_DEV_ID_5741X_VF ||
3110 	    id == BROADCOM_DEV_ID_57414_VF ||
3111 	    id == BROADCOM_DEV_ID_STRATUS_NIC_VF1 ||
3112 	    id == BROADCOM_DEV_ID_STRATUS_NIC_VF2 ||
3113 	    id == BROADCOM_DEV_ID_58802_VF)
3114 		return true;
3115 	return false;
3116 }
3117 
3118 bool bnxt_stratus_device(struct bnxt *bp)
3119 {
3120 	uint16_t id = bp->pdev->id.device_id;
3121 
3122 	if (id == BROADCOM_DEV_ID_STRATUS_NIC ||
3123 	    id == BROADCOM_DEV_ID_STRATUS_NIC_VF1 ||
3124 	    id == BROADCOM_DEV_ID_STRATUS_NIC_VF2)
3125 		return true;
3126 	return false;
3127 }
3128 
3129 static int bnxt_init_board(struct rte_eth_dev *eth_dev)
3130 {
3131 	struct bnxt *bp = eth_dev->data->dev_private;
3132 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3133 	int rc;
3134 
3135 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
3136 	if (!pci_dev->mem_resource[0].addr) {
3137 		PMD_DRV_LOG(ERR,
3138 			"Cannot find PCI device base address, aborting\n");
3139 		rc = -ENODEV;
3140 		goto init_err_disable;
3141 	}
3142 
3143 	bp->eth_dev = eth_dev;
3144 	bp->pdev = pci_dev;
3145 
3146 	bp->bar0 = (void *)pci_dev->mem_resource[0].addr;
3147 	if (!bp->bar0) {
3148 		PMD_DRV_LOG(ERR, "Cannot map device registers, aborting\n");
3149 		rc = -ENOMEM;
3150 		goto init_err_release;
3151 	}
3152 
3153 	if (!pci_dev->mem_resource[2].addr) {
3154 		PMD_DRV_LOG(ERR,
3155 			    "Cannot find PCI device BAR 2 address, aborting\n");
3156 		rc = -ENODEV;
3157 		goto init_err_release;
3158 	} else {
3159 		bp->doorbell_base = (void *)pci_dev->mem_resource[2].addr;
3160 	}
3161 
3162 	return 0;
3163 
3164 init_err_release:
3165 	if (bp->bar0)
3166 		bp->bar0 = NULL;
3167 	if (bp->doorbell_base)
3168 		bp->doorbell_base = NULL;
3169 
3170 init_err_disable:
3171 
3172 	return rc;
3173 }
3174 
3175 
3176 #define ALLOW_FUNC(x)	\
3177 	{ \
3178 		typeof(x) arg = (x); \
3179 		bp->pf.vf_req_fwd[((arg) >> 5)] &= \
3180 		~rte_cpu_to_le_32(1 << ((arg) & 0x1f)); \
3181 	}
3182 static int
3183 bnxt_dev_init(struct rte_eth_dev *eth_dev)
3184 {
3185 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3186 	char mz_name[RTE_MEMZONE_NAMESIZE];
3187 	const struct rte_memzone *mz = NULL;
3188 	static int version_printed;
3189 	uint32_t total_alloc_len;
3190 	rte_iova_t mz_phys_addr;
3191 	struct bnxt *bp;
3192 	int rc;
3193 
3194 	if (version_printed++ == 0)
3195 		PMD_DRV_LOG(INFO, "%s\n", bnxt_version);
3196 
3197 	rte_eth_copy_pci_info(eth_dev, pci_dev);
3198 
3199 	bp = eth_dev->data->dev_private;
3200 
3201 	bp->dev_stopped = 1;
3202 
3203 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3204 		goto skip_init;
3205 
3206 	if (bnxt_vf_pciid(pci_dev->id.device_id))
3207 		bp->flags |= BNXT_FLAG_VF;
3208 
3209 	rc = bnxt_init_board(eth_dev);
3210 	if (rc) {
3211 		PMD_DRV_LOG(ERR,
3212 			"Board initialization failed rc: %x\n", rc);
3213 		goto error;
3214 	}
3215 skip_init:
3216 	eth_dev->dev_ops = &bnxt_dev_ops;
3217 	eth_dev->rx_pkt_burst = &bnxt_recv_pkts;
3218 	eth_dev->tx_pkt_burst = &bnxt_xmit_pkts;
3219 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3220 		return 0;
3221 
3222 	if (pci_dev->id.device_id != BROADCOM_DEV_ID_NS2) {
3223 		snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
3224 			 "bnxt_%04x:%02x:%02x:%02x-%s", pci_dev->addr.domain,
3225 			 pci_dev->addr.bus, pci_dev->addr.devid,
3226 			 pci_dev->addr.function, "rx_port_stats");
3227 		mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
3228 		mz = rte_memzone_lookup(mz_name);
3229 		total_alloc_len = RTE_CACHE_LINE_ROUNDUP(
3230 					sizeof(struct rx_port_stats) +
3231 					sizeof(struct rx_port_stats_ext) +
3232 					512);
3233 		if (!mz) {
3234 			mz = rte_memzone_reserve(mz_name, total_alloc_len,
3235 					SOCKET_ID_ANY,
3236 					RTE_MEMZONE_2MB |
3237 					RTE_MEMZONE_SIZE_HINT_ONLY |
3238 					RTE_MEMZONE_IOVA_CONTIG);
3239 			if (mz == NULL)
3240 				return -ENOMEM;
3241 		}
3242 		memset(mz->addr, 0, mz->len);
3243 		mz_phys_addr = mz->iova;
3244 		if ((unsigned long)mz->addr == mz_phys_addr) {
3245 			PMD_DRV_LOG(WARNING,
3246 				"Memzone physical address same as virtual.\n");
3247 			PMD_DRV_LOG(WARNING,
3248 				"Using rte_mem_virt2iova()\n");
3249 			mz_phys_addr = rte_mem_virt2iova(mz->addr);
3250 			if (mz_phys_addr == 0) {
3251 				PMD_DRV_LOG(ERR,
3252 				"unable to map address to physical memory\n");
3253 				return -ENOMEM;
3254 			}
3255 		}
3256 
3257 		bp->rx_mem_zone = (const void *)mz;
3258 		bp->hw_rx_port_stats = mz->addr;
3259 		bp->hw_rx_port_stats_map = mz_phys_addr;
3260 
3261 		snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
3262 			 "bnxt_%04x:%02x:%02x:%02x-%s", pci_dev->addr.domain,
3263 			 pci_dev->addr.bus, pci_dev->addr.devid,
3264 			 pci_dev->addr.function, "tx_port_stats");
3265 		mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
3266 		mz = rte_memzone_lookup(mz_name);
3267 		total_alloc_len = RTE_CACHE_LINE_ROUNDUP(
3268 					sizeof(struct tx_port_stats) +
3269 					sizeof(struct tx_port_stats_ext) +
3270 					512);
3271 		if (!mz) {
3272 			mz = rte_memzone_reserve(mz_name,
3273 					total_alloc_len,
3274 					SOCKET_ID_ANY,
3275 					RTE_MEMZONE_2MB |
3276 					RTE_MEMZONE_SIZE_HINT_ONLY |
3277 					RTE_MEMZONE_IOVA_CONTIG);
3278 			if (mz == NULL)
3279 				return -ENOMEM;
3280 		}
3281 		memset(mz->addr, 0, mz->len);
3282 		mz_phys_addr = mz->iova;
3283 		if ((unsigned long)mz->addr == mz_phys_addr) {
3284 			PMD_DRV_LOG(WARNING,
3285 				"Memzone physical address same as virtual.\n");
3286 			PMD_DRV_LOG(WARNING,
3287 				"Using rte_mem_virt2iova()\n");
3288 			mz_phys_addr = rte_mem_virt2iova(mz->addr);
3289 			if (mz_phys_addr == 0) {
3290 				PMD_DRV_LOG(ERR,
3291 				"unable to map address to physical memory\n");
3292 				return -ENOMEM;
3293 			}
3294 		}
3295 
3296 		bp->tx_mem_zone = (const void *)mz;
3297 		bp->hw_tx_port_stats = mz->addr;
3298 		bp->hw_tx_port_stats_map = mz_phys_addr;
3299 
3300 		bp->flags |= BNXT_FLAG_PORT_STATS;
3301 
3302 		/* Display extended statistics if FW supports it */
3303 		if (bp->hwrm_spec_code < HWRM_SPEC_CODE_1_8_4 ||
3304 		    bp->hwrm_spec_code == HWRM_SPEC_CODE_1_9_0)
3305 			goto skip_ext_stats;
3306 
3307 		bp->hw_rx_port_stats_ext = (void *)
3308 			(bp->hw_rx_port_stats + sizeof(struct rx_port_stats));
3309 		bp->hw_rx_port_stats_ext_map = bp->hw_rx_port_stats_map +
3310 			sizeof(struct rx_port_stats);
3311 		bp->flags |= BNXT_FLAG_EXT_RX_PORT_STATS;
3312 
3313 
3314 		if (bp->hwrm_spec_code < HWRM_SPEC_CODE_1_9_2) {
3315 			bp->hw_tx_port_stats_ext = (void *)
3316 			(bp->hw_tx_port_stats + sizeof(struct tx_port_stats));
3317 			bp->hw_tx_port_stats_ext_map =
3318 				bp->hw_tx_port_stats_map +
3319 				sizeof(struct tx_port_stats);
3320 			bp->flags |= BNXT_FLAG_EXT_TX_PORT_STATS;
3321 		}
3322 	}
3323 
3324 skip_ext_stats:
3325 	rc = bnxt_alloc_hwrm_resources(bp);
3326 	if (rc) {
3327 		PMD_DRV_LOG(ERR,
3328 			"hwrm resource allocation failure rc: %x\n", rc);
3329 		goto error_free;
3330 	}
3331 	rc = bnxt_hwrm_ver_get(bp);
3332 	if (rc)
3333 		goto error_free;
3334 	rc = bnxt_hwrm_queue_qportcfg(bp);
3335 	if (rc) {
3336 		PMD_DRV_LOG(ERR, "hwrm queue qportcfg failed\n");
3337 		goto error_free;
3338 	}
3339 
3340 	rc = bnxt_hwrm_func_qcfg(bp);
3341 	if (rc) {
3342 		PMD_DRV_LOG(ERR, "hwrm func qcfg failed\n");
3343 		goto error_free;
3344 	}
3345 
3346 	/* Get the MAX capabilities for this function */
3347 	rc = bnxt_hwrm_func_qcaps(bp);
3348 	if (rc) {
3349 		PMD_DRV_LOG(ERR, "hwrm query capability failure rc: %x\n", rc);
3350 		goto error_free;
3351 	}
3352 	if (bp->max_tx_rings == 0) {
3353 		PMD_DRV_LOG(ERR, "No TX rings available!\n");
3354 		rc = -EBUSY;
3355 		goto error_free;
3356 	}
3357 	eth_dev->data->mac_addrs = rte_zmalloc("bnxt_mac_addr_tbl",
3358 					ETHER_ADDR_LEN * bp->max_l2_ctx, 0);
3359 	if (eth_dev->data->mac_addrs == NULL) {
3360 		PMD_DRV_LOG(ERR,
3361 			"Failed to alloc %u bytes needed to store MAC addr tbl",
3362 			ETHER_ADDR_LEN * bp->max_l2_ctx);
3363 		rc = -ENOMEM;
3364 		goto error_free;
3365 	}
3366 
3367 	if (bnxt_check_zero_bytes(bp->dflt_mac_addr, ETHER_ADDR_LEN)) {
3368 		PMD_DRV_LOG(ERR,
3369 			    "Invalid MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n",
3370 			    bp->dflt_mac_addr[0], bp->dflt_mac_addr[1],
3371 			    bp->dflt_mac_addr[2], bp->dflt_mac_addr[3],
3372 			    bp->dflt_mac_addr[4], bp->dflt_mac_addr[5]);
3373 		rc = -EINVAL;
3374 		goto error_free;
3375 	}
3376 	/* Copy the permanent MAC from the qcap response address now. */
3377 	memcpy(bp->mac_addr, bp->dflt_mac_addr, sizeof(bp->mac_addr));
3378 	memcpy(&eth_dev->data->mac_addrs[0], bp->mac_addr, ETHER_ADDR_LEN);
3379 
3380 	if (bp->max_ring_grps < bp->rx_cp_nr_rings) {
3381 		/* 1 ring is for default completion ring */
3382 		PMD_DRV_LOG(ERR, "Insufficient resource: Ring Group\n");
3383 		rc = -ENOSPC;
3384 		goto error_free;
3385 	}
3386 
3387 	bp->grp_info = rte_zmalloc("bnxt_grp_info",
3388 				sizeof(*bp->grp_info) * bp->max_ring_grps, 0);
3389 	if (!bp->grp_info) {
3390 		PMD_DRV_LOG(ERR,
3391 			"Failed to alloc %zu bytes to store group info table\n",
3392 			sizeof(*bp->grp_info) * bp->max_ring_grps);
3393 		rc = -ENOMEM;
3394 		goto error_free;
3395 	}
3396 
3397 	/* Forward all requests if firmware is new enough */
3398 	if (((bp->fw_ver >= ((20 << 24) | (6 << 16) | (100 << 8))) &&
3399 	    (bp->fw_ver < ((20 << 24) | (7 << 16)))) ||
3400 	    ((bp->fw_ver >= ((20 << 24) | (8 << 16))))) {
3401 		memset(bp->pf.vf_req_fwd, 0xff, sizeof(bp->pf.vf_req_fwd));
3402 	} else {
3403 		PMD_DRV_LOG(WARNING,
3404 			"Firmware too old for VF mailbox functionality\n");
3405 		memset(bp->pf.vf_req_fwd, 0, sizeof(bp->pf.vf_req_fwd));
3406 	}
3407 
3408 	/*
3409 	 * The following are used for driver cleanup.  If we disallow these,
3410 	 * VF drivers can't clean up cleanly.
3411 	 */
3412 	ALLOW_FUNC(HWRM_FUNC_DRV_UNRGTR);
3413 	ALLOW_FUNC(HWRM_VNIC_FREE);
3414 	ALLOW_FUNC(HWRM_RING_FREE);
3415 	ALLOW_FUNC(HWRM_RING_GRP_FREE);
3416 	ALLOW_FUNC(HWRM_VNIC_RSS_COS_LB_CTX_FREE);
3417 	ALLOW_FUNC(HWRM_CFA_L2_FILTER_FREE);
3418 	ALLOW_FUNC(HWRM_STAT_CTX_FREE);
3419 	ALLOW_FUNC(HWRM_PORT_PHY_QCFG);
3420 	ALLOW_FUNC(HWRM_VNIC_TPA_CFG);
3421 	rc = bnxt_hwrm_func_driver_register(bp);
3422 	if (rc) {
3423 		PMD_DRV_LOG(ERR,
3424 			"Failed to register driver");
3425 		rc = -EBUSY;
3426 		goto error_free;
3427 	}
3428 
3429 	PMD_DRV_LOG(INFO,
3430 		DRV_MODULE_NAME " found at mem %" PRIx64 ", node addr %pM\n",
3431 		pci_dev->mem_resource[0].phys_addr,
3432 		pci_dev->mem_resource[0].addr);
3433 
3434 	rc = bnxt_hwrm_func_reset(bp);
3435 	if (rc) {
3436 		PMD_DRV_LOG(ERR, "hwrm chip reset failure rc: %x\n", rc);
3437 		rc = -EIO;
3438 		goto error_free;
3439 	}
3440 
3441 	if (BNXT_PF(bp)) {
3442 		//if (bp->pf.active_vfs) {
3443 			// TODO: Deallocate VF resources?
3444 		//}
3445 		if (bp->pdev->max_vfs) {
3446 			rc = bnxt_hwrm_allocate_vfs(bp, bp->pdev->max_vfs);
3447 			if (rc) {
3448 				PMD_DRV_LOG(ERR, "Failed to allocate VFs\n");
3449 				goto error_free;
3450 			}
3451 		} else {
3452 			rc = bnxt_hwrm_allocate_pf_only(bp);
3453 			if (rc) {
3454 				PMD_DRV_LOG(ERR,
3455 					"Failed to allocate PF resources\n");
3456 				goto error_free;
3457 			}
3458 		}
3459 	}
3460 
3461 	bnxt_hwrm_port_led_qcaps(bp);
3462 
3463 	rc = bnxt_setup_int(bp);
3464 	if (rc)
3465 		goto error_free;
3466 
3467 	rc = bnxt_alloc_mem(bp);
3468 	if (rc)
3469 		goto error_free_int;
3470 
3471 	rc = bnxt_request_int(bp);
3472 	if (rc)
3473 		goto error_free_int;
3474 
3475 	bnxt_enable_int(bp);
3476 	bnxt_init_nic(bp);
3477 
3478 	return 0;
3479 
3480 error_free_int:
3481 	bnxt_disable_int(bp);
3482 	bnxt_hwrm_func_buf_unrgtr(bp);
3483 	bnxt_free_int(bp);
3484 	bnxt_free_mem(bp);
3485 error_free:
3486 	bnxt_dev_uninit(eth_dev);
3487 error:
3488 	return rc;
3489 }
3490 
3491 static int
3492 bnxt_dev_uninit(struct rte_eth_dev *eth_dev)
3493 {
3494 	struct bnxt *bp = eth_dev->data->dev_private;
3495 	int rc;
3496 
3497 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3498 		return -EPERM;
3499 
3500 	PMD_DRV_LOG(DEBUG, "Calling Device uninit\n");
3501 	bnxt_disable_int(bp);
3502 	bnxt_free_int(bp);
3503 	bnxt_free_mem(bp);
3504 	if (eth_dev->data->mac_addrs != NULL) {
3505 		rte_free(eth_dev->data->mac_addrs);
3506 		eth_dev->data->mac_addrs = NULL;
3507 	}
3508 	if (bp->grp_info != NULL) {
3509 		rte_free(bp->grp_info);
3510 		bp->grp_info = NULL;
3511 	}
3512 	rc = bnxt_hwrm_func_driver_unregister(bp, 0);
3513 	bnxt_free_hwrm_resources(bp);
3514 
3515 	if (bp->tx_mem_zone) {
3516 		rte_memzone_free((const struct rte_memzone *)bp->tx_mem_zone);
3517 		bp->tx_mem_zone = NULL;
3518 	}
3519 
3520 	if (bp->rx_mem_zone) {
3521 		rte_memzone_free((const struct rte_memzone *)bp->rx_mem_zone);
3522 		bp->rx_mem_zone = NULL;
3523 	}
3524 
3525 	if (bp->dev_stopped == 0)
3526 		bnxt_dev_close_op(eth_dev);
3527 	if (bp->pf.vf_info)
3528 		rte_free(bp->pf.vf_info);
3529 	eth_dev->dev_ops = NULL;
3530 	eth_dev->rx_pkt_burst = NULL;
3531 	eth_dev->tx_pkt_burst = NULL;
3532 
3533 	return rc;
3534 }
3535 
3536 static int bnxt_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3537 	struct rte_pci_device *pci_dev)
3538 {
3539 	return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct bnxt),
3540 		bnxt_dev_init);
3541 }
3542 
3543 static int bnxt_pci_remove(struct rte_pci_device *pci_dev)
3544 {
3545 	return rte_eth_dev_pci_generic_remove(pci_dev, bnxt_dev_uninit);
3546 }
3547 
3548 static struct rte_pci_driver bnxt_rte_pmd = {
3549 	.id_table = bnxt_pci_id_map,
3550 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING |
3551 		RTE_PCI_DRV_INTR_LSC,
3552 	.probe = bnxt_pci_probe,
3553 	.remove = bnxt_pci_remove,
3554 };
3555 
3556 static bool
3557 is_device_supported(struct rte_eth_dev *dev, struct rte_pci_driver *drv)
3558 {
3559 	if (strcmp(dev->device->driver->name, drv->driver.name))
3560 		return false;
3561 
3562 	return true;
3563 }
3564 
3565 bool is_bnxt_supported(struct rte_eth_dev *dev)
3566 {
3567 	return is_device_supported(dev, &bnxt_rte_pmd);
3568 }
3569 
3570 RTE_INIT(bnxt_init_log)
3571 {
3572 	bnxt_logtype_driver = rte_log_register("pmd.bnxt.driver");
3573 	if (bnxt_logtype_driver >= 0)
3574 		rte_log_set_level(bnxt_logtype_driver, RTE_LOG_INFO);
3575 }
3576 
3577 RTE_PMD_REGISTER_PCI(net_bnxt, bnxt_rte_pmd);
3578 RTE_PMD_REGISTER_PCI_TABLE(net_bnxt, bnxt_pci_id_map);
3579 RTE_PMD_REGISTER_KMOD_DEP(net_bnxt, "* igb_uio | uio_pci_generic | vfio-pci");
3580