xref: /dpdk/drivers/net/bnxt/bnxt_ethdev.c (revision 251baec367016412d55d6025ba1c1385cf48fa8b)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Broadcom
3  * All rights reserved.
4  */
5 
6 #include <inttypes.h>
7 #include <stdbool.h>
8 
9 #include <rte_dev.h>
10 #include <rte_ethdev_driver.h>
11 #include <rte_ethdev_pci.h>
12 #include <rte_malloc.h>
13 #include <rte_cycles.h>
14 #include <rte_alarm.h>
15 #include <rte_kvargs.h>
16 #include <rte_vect.h>
17 
18 #include "bnxt.h"
19 #include "bnxt_filter.h"
20 #include "bnxt_hwrm.h"
21 #include "bnxt_irq.h"
22 #include "bnxt_reps.h"
23 #include "bnxt_ring.h"
24 #include "bnxt_rxq.h"
25 #include "bnxt_rxr.h"
26 #include "bnxt_stats.h"
27 #include "bnxt_txq.h"
28 #include "bnxt_txr.h"
29 #include "bnxt_vnic.h"
30 #include "hsi_struct_def_dpdk.h"
31 #include "bnxt_nvm_defs.h"
32 #include "bnxt_tf_common.h"
33 #include "ulp_flow_db.h"
34 #include "rte_pmd_bnxt.h"
35 
36 #define DRV_MODULE_NAME		"bnxt"
37 static const char bnxt_version[] =
38 	"Broadcom NetXtreme driver " DRV_MODULE_NAME;
39 
40 /*
41  * The set of PCI devices this driver supports
42  */
43 static const struct rte_pci_id bnxt_pci_id_map[] = {
44 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
45 			 BROADCOM_DEV_ID_STRATUS_NIC_VF1) },
46 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
47 			 BROADCOM_DEV_ID_STRATUS_NIC_VF2) },
48 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_STRATUS_NIC) },
49 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_VF) },
50 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57301) },
51 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57302) },
52 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_PF) },
53 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_VF) },
54 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_NS2) },
55 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402) },
56 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404) },
57 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_PF) },
58 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_VF) },
59 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402_MF) },
60 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_RJ45) },
61 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404_MF) },
62 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_MF) },
63 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_SFP) },
64 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_MF) },
65 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5741X_VF) },
66 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5731X_VF) },
67 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57314) },
68 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_MF) },
69 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57311) },
70 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57312) },
71 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412) },
72 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414) },
73 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_RJ45) },
74 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_RJ45) },
75 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412_MF) },
76 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_RJ45) },
77 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_SFP) },
78 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_SFP) },
79 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_SFP) },
80 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_MF) },
81 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_MF) },
82 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58802) },
83 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58804) },
84 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58808) },
85 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58802_VF) },
86 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57508) },
87 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57504) },
88 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57502) },
89 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57500_VF1) },
90 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57500_VF2) },
91 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57508_MF1) },
92 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57504_MF1) },
93 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57502_MF1) },
94 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57508_MF2) },
95 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57504_MF2) },
96 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57502_MF2) },
97 	{ .vendor_id = 0, /* sentinel */ },
98 };
99 
100 #define BNXT_DEVARG_TRUFLOW	"host-based-truflow"
101 #define BNXT_DEVARG_FLOW_XSTAT	"flow-xstat"
102 #define BNXT_DEVARG_MAX_NUM_KFLOWS  "max-num-kflows"
103 #define BNXT_DEVARG_REPRESENTOR	"representor"
104 #define BNXT_DEVARG_REP_BASED_PF  "rep-based-pf"
105 #define BNXT_DEVARG_REP_IS_PF  "rep-is-pf"
106 #define BNXT_DEVARG_REP_Q_R2F  "rep-q-r2f"
107 #define BNXT_DEVARG_REP_Q_F2R  "rep-q-f2r"
108 #define BNXT_DEVARG_REP_FC_R2F  "rep-fc-r2f"
109 #define BNXT_DEVARG_REP_FC_F2R  "rep-fc-f2r"
110 
111 static const char *const bnxt_dev_args[] = {
112 	BNXT_DEVARG_REPRESENTOR,
113 	BNXT_DEVARG_TRUFLOW,
114 	BNXT_DEVARG_FLOW_XSTAT,
115 	BNXT_DEVARG_MAX_NUM_KFLOWS,
116 	BNXT_DEVARG_REP_BASED_PF,
117 	BNXT_DEVARG_REP_IS_PF,
118 	BNXT_DEVARG_REP_Q_R2F,
119 	BNXT_DEVARG_REP_Q_F2R,
120 	BNXT_DEVARG_REP_FC_R2F,
121 	BNXT_DEVARG_REP_FC_F2R,
122 	NULL
123 };
124 
125 /*
126  * truflow == false to disable the feature
127  * truflow == true to enable the feature
128  */
129 #define	BNXT_DEVARG_TRUFLOW_INVALID(truflow)	((truflow) > 1)
130 
131 /*
132  * flow_xstat == false to disable the feature
133  * flow_xstat == true to enable the feature
134  */
135 #define	BNXT_DEVARG_FLOW_XSTAT_INVALID(flow_xstat)	((flow_xstat) > 1)
136 
137 /*
138  * rep_is_pf == false to indicate VF representor
139  * rep_is_pf == true to indicate PF representor
140  */
141 #define	BNXT_DEVARG_REP_IS_PF_INVALID(rep_is_pf)	((rep_is_pf) > 1)
142 
143 /*
144  * rep_based_pf == Physical index of the PF
145  */
146 #define	BNXT_DEVARG_REP_BASED_PF_INVALID(rep_based_pf)	((rep_based_pf) > 15)
147 /*
148  * rep_q_r2f == Logical COS Queue index for the rep to endpoint direction
149  */
150 #define	BNXT_DEVARG_REP_Q_R2F_INVALID(rep_q_r2f)	((rep_q_r2f) > 3)
151 
152 /*
153  * rep_q_f2r == Logical COS Queue index for the endpoint to rep direction
154  */
155 #define	BNXT_DEVARG_REP_Q_F2R_INVALID(rep_q_f2r)	((rep_q_f2r) > 3)
156 
157 /*
158  * rep_fc_r2f == Flow control for the representor to endpoint direction
159  */
160 #define BNXT_DEVARG_REP_FC_R2F_INVALID(rep_fc_r2f)	((rep_fc_r2f) > 1)
161 
162 /*
163  * rep_fc_f2r == Flow control for the endpoint to representor direction
164  */
165 #define BNXT_DEVARG_REP_FC_F2R_INVALID(rep_fc_f2r)	((rep_fc_f2r) > 1)
166 
167 int bnxt_cfa_code_dynfield_offset = -1;
168 
169 /*
170  * max_num_kflows must be >= 32
171  * and must be a power-of-2 supported value
172  * return: 1 -> invalid
173  *         0 -> valid
174  */
175 static int bnxt_devarg_max_num_kflow_invalid(uint16_t max_num_kflows)
176 {
177 	if (max_num_kflows < 32 || !rte_is_power_of_2(max_num_kflows))
178 		return 1;
179 	return 0;
180 }
181 
182 static int bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask);
183 static int bnxt_dev_uninit(struct rte_eth_dev *eth_dev);
184 static int bnxt_init_resources(struct bnxt *bp, bool reconfig_dev);
185 static int bnxt_uninit_resources(struct bnxt *bp, bool reconfig_dev);
186 static void bnxt_cancel_fw_health_check(struct bnxt *bp);
187 static int bnxt_restore_vlan_filters(struct bnxt *bp);
188 static void bnxt_dev_recover(void *arg);
189 static void bnxt_free_error_recovery_info(struct bnxt *bp);
190 static void bnxt_free_rep_info(struct bnxt *bp);
191 
192 int is_bnxt_in_error(struct bnxt *bp)
193 {
194 	if (bp->flags & BNXT_FLAG_FATAL_ERROR)
195 		return -EIO;
196 	if (bp->flags & BNXT_FLAG_FW_RESET)
197 		return -EBUSY;
198 
199 	return 0;
200 }
201 
202 /***********************/
203 
204 /*
205  * High level utility functions
206  */
207 
208 static uint16_t bnxt_rss_ctxts(const struct bnxt *bp)
209 {
210 	if (!BNXT_CHIP_THOR(bp))
211 		return 1;
212 
213 	return RTE_ALIGN_MUL_CEIL(bp->rx_nr_rings,
214 				  BNXT_RSS_ENTRIES_PER_CTX_THOR) /
215 				    BNXT_RSS_ENTRIES_PER_CTX_THOR;
216 }
217 
218 uint16_t bnxt_rss_hash_tbl_size(const struct bnxt *bp)
219 {
220 	if (!BNXT_CHIP_THOR(bp))
221 		return HW_HASH_INDEX_SIZE;
222 
223 	return bnxt_rss_ctxts(bp) * BNXT_RSS_ENTRIES_PER_CTX_THOR;
224 }
225 
226 static void bnxt_free_parent_info(struct bnxt *bp)
227 {
228 	rte_free(bp->parent);
229 }
230 
231 static void bnxt_free_pf_info(struct bnxt *bp)
232 {
233 	rte_free(bp->pf);
234 }
235 
236 static void bnxt_free_link_info(struct bnxt *bp)
237 {
238 	rte_free(bp->link_info);
239 }
240 
241 static void bnxt_free_leds_info(struct bnxt *bp)
242 {
243 	if (BNXT_VF(bp))
244 		return;
245 
246 	rte_free(bp->leds);
247 	bp->leds = NULL;
248 }
249 
250 static void bnxt_free_flow_stats_info(struct bnxt *bp)
251 {
252 	rte_free(bp->flow_stat);
253 	bp->flow_stat = NULL;
254 }
255 
256 static void bnxt_free_cos_queues(struct bnxt *bp)
257 {
258 	rte_free(bp->rx_cos_queue);
259 	rte_free(bp->tx_cos_queue);
260 }
261 
262 static void bnxt_free_mem(struct bnxt *bp, bool reconfig)
263 {
264 	bnxt_free_filter_mem(bp);
265 	bnxt_free_vnic_attributes(bp);
266 	bnxt_free_vnic_mem(bp);
267 
268 	/* tx/rx rings are configured as part of *_queue_setup callbacks.
269 	 * If the number of rings change across fw update,
270 	 * we don't have much choice except to warn the user.
271 	 */
272 	if (!reconfig) {
273 		bnxt_free_stats(bp);
274 		bnxt_free_tx_rings(bp);
275 		bnxt_free_rx_rings(bp);
276 	}
277 	bnxt_free_async_cp_ring(bp);
278 	bnxt_free_rxtx_nq_ring(bp);
279 
280 	rte_free(bp->grp_info);
281 	bp->grp_info = NULL;
282 }
283 
284 static int bnxt_alloc_parent_info(struct bnxt *bp)
285 {
286 	bp->parent = rte_zmalloc("bnxt_parent_info",
287 				 sizeof(struct bnxt_parent_info), 0);
288 	if (bp->parent == NULL)
289 		return -ENOMEM;
290 
291 	return 0;
292 }
293 
294 static int bnxt_alloc_pf_info(struct bnxt *bp)
295 {
296 	bp->pf = rte_zmalloc("bnxt_pf_info", sizeof(struct bnxt_pf_info), 0);
297 	if (bp->pf == NULL)
298 		return -ENOMEM;
299 
300 	return 0;
301 }
302 
303 static int bnxt_alloc_link_info(struct bnxt *bp)
304 {
305 	bp->link_info =
306 		rte_zmalloc("bnxt_link_info", sizeof(struct bnxt_link_info), 0);
307 	if (bp->link_info == NULL)
308 		return -ENOMEM;
309 
310 	return 0;
311 }
312 
313 static int bnxt_alloc_leds_info(struct bnxt *bp)
314 {
315 	if (BNXT_VF(bp))
316 		return 0;
317 
318 	bp->leds = rte_zmalloc("bnxt_leds",
319 			       BNXT_MAX_LED * sizeof(struct bnxt_led_info),
320 			       0);
321 	if (bp->leds == NULL)
322 		return -ENOMEM;
323 
324 	return 0;
325 }
326 
327 static int bnxt_alloc_cos_queues(struct bnxt *bp)
328 {
329 	bp->rx_cos_queue =
330 		rte_zmalloc("bnxt_rx_cosq",
331 			    BNXT_COS_QUEUE_COUNT *
332 			    sizeof(struct bnxt_cos_queue_info),
333 			    0);
334 	if (bp->rx_cos_queue == NULL)
335 		return -ENOMEM;
336 
337 	bp->tx_cos_queue =
338 		rte_zmalloc("bnxt_tx_cosq",
339 			    BNXT_COS_QUEUE_COUNT *
340 			    sizeof(struct bnxt_cos_queue_info),
341 			    0);
342 	if (bp->tx_cos_queue == NULL)
343 		return -ENOMEM;
344 
345 	return 0;
346 }
347 
348 static int bnxt_alloc_flow_stats_info(struct bnxt *bp)
349 {
350 	bp->flow_stat = rte_zmalloc("bnxt_flow_xstat",
351 				    sizeof(struct bnxt_flow_stat_info), 0);
352 	if (bp->flow_stat == NULL)
353 		return -ENOMEM;
354 
355 	return 0;
356 }
357 
358 static int bnxt_alloc_mem(struct bnxt *bp, bool reconfig)
359 {
360 	int rc;
361 
362 	rc = bnxt_alloc_ring_grps(bp);
363 	if (rc)
364 		goto alloc_mem_err;
365 
366 	rc = bnxt_alloc_async_ring_struct(bp);
367 	if (rc)
368 		goto alloc_mem_err;
369 
370 	rc = bnxt_alloc_vnic_mem(bp);
371 	if (rc)
372 		goto alloc_mem_err;
373 
374 	rc = bnxt_alloc_vnic_attributes(bp);
375 	if (rc)
376 		goto alloc_mem_err;
377 
378 	rc = bnxt_alloc_filter_mem(bp);
379 	if (rc)
380 		goto alloc_mem_err;
381 
382 	rc = bnxt_alloc_async_cp_ring(bp);
383 	if (rc)
384 		goto alloc_mem_err;
385 
386 	rc = bnxt_alloc_rxtx_nq_ring(bp);
387 	if (rc)
388 		goto alloc_mem_err;
389 
390 	if (BNXT_FLOW_XSTATS_EN(bp)) {
391 		rc = bnxt_alloc_flow_stats_info(bp);
392 		if (rc)
393 			goto alloc_mem_err;
394 	}
395 
396 	return 0;
397 
398 alloc_mem_err:
399 	bnxt_free_mem(bp, reconfig);
400 	return rc;
401 }
402 
403 static int bnxt_setup_one_vnic(struct bnxt *bp, uint16_t vnic_id)
404 {
405 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
406 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
407 	uint64_t rx_offloads = dev_conf->rxmode.offloads;
408 	struct bnxt_rx_queue *rxq;
409 	unsigned int j;
410 	int rc;
411 
412 	rc = bnxt_vnic_grp_alloc(bp, vnic);
413 	if (rc)
414 		goto err_out;
415 
416 	PMD_DRV_LOG(DEBUG, "vnic[%d] = %p vnic->fw_grp_ids = %p\n",
417 		    vnic_id, vnic, vnic->fw_grp_ids);
418 
419 	rc = bnxt_hwrm_vnic_alloc(bp, vnic);
420 	if (rc)
421 		goto err_out;
422 
423 	/* Alloc RSS context only if RSS mode is enabled */
424 	if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS) {
425 		int j, nr_ctxs = bnxt_rss_ctxts(bp);
426 
427 		rc = 0;
428 		for (j = 0; j < nr_ctxs; j++) {
429 			rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, j);
430 			if (rc)
431 				break;
432 		}
433 		if (rc) {
434 			PMD_DRV_LOG(ERR,
435 				    "HWRM vnic %d ctx %d alloc failure rc: %x\n",
436 				    vnic_id, j, rc);
437 			goto err_out;
438 		}
439 		vnic->num_lb_ctxts = nr_ctxs;
440 	}
441 
442 	/*
443 	 * Firmware sets pf pair in default vnic cfg. If the VLAN strip
444 	 * setting is not available at this time, it will not be
445 	 * configured correctly in the CFA.
446 	 */
447 	if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
448 		vnic->vlan_strip = true;
449 	else
450 		vnic->vlan_strip = false;
451 
452 	rc = bnxt_hwrm_vnic_cfg(bp, vnic);
453 	if (rc)
454 		goto err_out;
455 
456 	rc = bnxt_set_hwrm_vnic_filters(bp, vnic);
457 	if (rc)
458 		goto err_out;
459 
460 	for (j = 0; j < bp->rx_num_qs_per_vnic; j++) {
461 		rxq = bp->eth_dev->data->rx_queues[j];
462 
463 		PMD_DRV_LOG(DEBUG,
464 			    "rxq[%d]->vnic=%p vnic->fw_grp_ids=%p\n",
465 			    j, rxq->vnic, rxq->vnic->fw_grp_ids);
466 
467 		if (BNXT_HAS_RING_GRPS(bp) && rxq->rx_deferred_start)
468 			rxq->vnic->fw_grp_ids[j] = INVALID_HW_RING_ID;
469 		else
470 			vnic->rx_queue_cnt++;
471 	}
472 
473 	PMD_DRV_LOG(DEBUG, "vnic->rx_queue_cnt = %d\n", vnic->rx_queue_cnt);
474 
475 	rc = bnxt_vnic_rss_configure(bp, vnic);
476 	if (rc)
477 		goto err_out;
478 
479 	bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
480 
481 	if (rx_offloads & DEV_RX_OFFLOAD_TCP_LRO)
482 		bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 1);
483 	else
484 		bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 0);
485 
486 	return 0;
487 err_out:
488 	PMD_DRV_LOG(ERR, "HWRM vnic %d cfg failure rc: %x\n",
489 		    vnic_id, rc);
490 	return rc;
491 }
492 
493 static int bnxt_register_fc_ctx_mem(struct bnxt *bp)
494 {
495 	int rc = 0;
496 
497 	rc = bnxt_hwrm_ctx_rgtr(bp, bp->flow_stat->rx_fc_in_tbl.dma,
498 				&bp->flow_stat->rx_fc_in_tbl.ctx_id);
499 	if (rc)
500 		return rc;
501 
502 	PMD_DRV_LOG(DEBUG,
503 		    "rx_fc_in_tbl.va = %p rx_fc_in_tbl.dma = %p"
504 		    " rx_fc_in_tbl.ctx_id = %d\n",
505 		    bp->flow_stat->rx_fc_in_tbl.va,
506 		    (void *)((uintptr_t)bp->flow_stat->rx_fc_in_tbl.dma),
507 		    bp->flow_stat->rx_fc_in_tbl.ctx_id);
508 
509 	rc = bnxt_hwrm_ctx_rgtr(bp, bp->flow_stat->rx_fc_out_tbl.dma,
510 				&bp->flow_stat->rx_fc_out_tbl.ctx_id);
511 	if (rc)
512 		return rc;
513 
514 	PMD_DRV_LOG(DEBUG,
515 		    "rx_fc_out_tbl.va = %p rx_fc_out_tbl.dma = %p"
516 		    " rx_fc_out_tbl.ctx_id = %d\n",
517 		    bp->flow_stat->rx_fc_out_tbl.va,
518 		    (void *)((uintptr_t)bp->flow_stat->rx_fc_out_tbl.dma),
519 		    bp->flow_stat->rx_fc_out_tbl.ctx_id);
520 
521 	rc = bnxt_hwrm_ctx_rgtr(bp, bp->flow_stat->tx_fc_in_tbl.dma,
522 				&bp->flow_stat->tx_fc_in_tbl.ctx_id);
523 	if (rc)
524 		return rc;
525 
526 	PMD_DRV_LOG(DEBUG,
527 		    "tx_fc_in_tbl.va = %p tx_fc_in_tbl.dma = %p"
528 		    " tx_fc_in_tbl.ctx_id = %d\n",
529 		    bp->flow_stat->tx_fc_in_tbl.va,
530 		    (void *)((uintptr_t)bp->flow_stat->tx_fc_in_tbl.dma),
531 		    bp->flow_stat->tx_fc_in_tbl.ctx_id);
532 
533 	rc = bnxt_hwrm_ctx_rgtr(bp, bp->flow_stat->tx_fc_out_tbl.dma,
534 				&bp->flow_stat->tx_fc_out_tbl.ctx_id);
535 	if (rc)
536 		return rc;
537 
538 	PMD_DRV_LOG(DEBUG,
539 		    "tx_fc_out_tbl.va = %p tx_fc_out_tbl.dma = %p"
540 		    " tx_fc_out_tbl.ctx_id = %d\n",
541 		    bp->flow_stat->tx_fc_out_tbl.va,
542 		    (void *)((uintptr_t)bp->flow_stat->tx_fc_out_tbl.dma),
543 		    bp->flow_stat->tx_fc_out_tbl.ctx_id);
544 
545 	memset(bp->flow_stat->rx_fc_out_tbl.va,
546 	       0,
547 	       bp->flow_stat->rx_fc_out_tbl.size);
548 	rc = bnxt_hwrm_cfa_counter_cfg(bp, BNXT_DIR_RX,
549 				       CFA_COUNTER_CFG_IN_COUNTER_TYPE_FC,
550 				       bp->flow_stat->rx_fc_out_tbl.ctx_id,
551 				       bp->flow_stat->max_fc,
552 				       true);
553 	if (rc)
554 		return rc;
555 
556 	memset(bp->flow_stat->tx_fc_out_tbl.va,
557 	       0,
558 	       bp->flow_stat->tx_fc_out_tbl.size);
559 	rc = bnxt_hwrm_cfa_counter_cfg(bp, BNXT_DIR_TX,
560 				       CFA_COUNTER_CFG_IN_COUNTER_TYPE_FC,
561 				       bp->flow_stat->tx_fc_out_tbl.ctx_id,
562 				       bp->flow_stat->max_fc,
563 				       true);
564 
565 	return rc;
566 }
567 
568 static int bnxt_alloc_ctx_mem_buf(char *type, size_t size,
569 				  struct bnxt_ctx_mem_buf_info *ctx)
570 {
571 	if (!ctx)
572 		return -EINVAL;
573 
574 	ctx->va = rte_zmalloc(type, size, 0);
575 	if (ctx->va == NULL)
576 		return -ENOMEM;
577 	rte_mem_lock_page(ctx->va);
578 	ctx->size = size;
579 	ctx->dma = rte_mem_virt2iova(ctx->va);
580 	if (ctx->dma == RTE_BAD_IOVA)
581 		return -ENOMEM;
582 
583 	return 0;
584 }
585 
586 static int bnxt_init_fc_ctx_mem(struct bnxt *bp)
587 {
588 	struct rte_pci_device *pdev = bp->pdev;
589 	char type[RTE_MEMZONE_NAMESIZE];
590 	uint16_t max_fc;
591 	int rc = 0;
592 
593 	max_fc = bp->flow_stat->max_fc;
594 
595 	sprintf(type, "bnxt_rx_fc_in_" PCI_PRI_FMT, pdev->addr.domain,
596 		pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
597 	/* 4 bytes for each counter-id */
598 	rc = bnxt_alloc_ctx_mem_buf(type,
599 				    max_fc * 4,
600 				    &bp->flow_stat->rx_fc_in_tbl);
601 	if (rc)
602 		return rc;
603 
604 	sprintf(type, "bnxt_rx_fc_out_" PCI_PRI_FMT, pdev->addr.domain,
605 		pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
606 	/* 16 bytes for each counter - 8 bytes pkt_count, 8 bytes byte_count */
607 	rc = bnxt_alloc_ctx_mem_buf(type,
608 				    max_fc * 16,
609 				    &bp->flow_stat->rx_fc_out_tbl);
610 	if (rc)
611 		return rc;
612 
613 	sprintf(type, "bnxt_tx_fc_in_" PCI_PRI_FMT, pdev->addr.domain,
614 		pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
615 	/* 4 bytes for each counter-id */
616 	rc = bnxt_alloc_ctx_mem_buf(type,
617 				    max_fc * 4,
618 				    &bp->flow_stat->tx_fc_in_tbl);
619 	if (rc)
620 		return rc;
621 
622 	sprintf(type, "bnxt_tx_fc_out_" PCI_PRI_FMT, pdev->addr.domain,
623 		pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
624 	/* 16 bytes for each counter - 8 bytes pkt_count, 8 bytes byte_count */
625 	rc = bnxt_alloc_ctx_mem_buf(type,
626 				    max_fc * 16,
627 				    &bp->flow_stat->tx_fc_out_tbl);
628 	if (rc)
629 		return rc;
630 
631 	rc = bnxt_register_fc_ctx_mem(bp);
632 
633 	return rc;
634 }
635 
636 static int bnxt_init_ctx_mem(struct bnxt *bp)
637 {
638 	int rc = 0;
639 
640 	if (!(bp->fw_cap & BNXT_FW_CAP_ADV_FLOW_COUNTERS) ||
641 	    !(BNXT_PF(bp) || BNXT_VF_IS_TRUSTED(bp)) ||
642 	    !BNXT_FLOW_XSTATS_EN(bp))
643 		return 0;
644 
645 	rc = bnxt_hwrm_cfa_counter_qcaps(bp, &bp->flow_stat->max_fc);
646 	if (rc)
647 		return rc;
648 
649 	rc = bnxt_init_fc_ctx_mem(bp);
650 
651 	return rc;
652 }
653 
654 static int bnxt_update_phy_setting(struct bnxt *bp)
655 {
656 	struct rte_eth_link new;
657 	int rc;
658 
659 	rc = bnxt_get_hwrm_link_config(bp, &new);
660 	if (rc) {
661 		PMD_DRV_LOG(ERR, "Failed to get link settings\n");
662 		return rc;
663 	}
664 
665 	/*
666 	 * On BCM957508-N2100 adapters, FW will not allow any user other
667 	 * than BMC to shutdown the port. bnxt_get_hwrm_link_config() call
668 	 * always returns link up. Force phy update always in that case.
669 	 */
670 	if (!new.link_status || IS_BNXT_DEV_957508_N2100(bp)) {
671 		rc = bnxt_set_hwrm_link_config(bp, true);
672 		if (rc) {
673 			PMD_DRV_LOG(ERR, "Failed to update PHY settings\n");
674 			return rc;
675 		}
676 	}
677 
678 	return rc;
679 }
680 
681 static int bnxt_init_chip(struct bnxt *bp)
682 {
683 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(bp->eth_dev);
684 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
685 	uint32_t intr_vector = 0;
686 	uint32_t queue_id, base = BNXT_MISC_VEC_ID;
687 	uint32_t vec = BNXT_MISC_VEC_ID;
688 	unsigned int i, j;
689 	int rc;
690 
691 	if (bp->eth_dev->data->mtu > RTE_ETHER_MTU) {
692 		bp->eth_dev->data->dev_conf.rxmode.offloads |=
693 			DEV_RX_OFFLOAD_JUMBO_FRAME;
694 		bp->flags |= BNXT_FLAG_JUMBO;
695 	} else {
696 		bp->eth_dev->data->dev_conf.rxmode.offloads &=
697 			~DEV_RX_OFFLOAD_JUMBO_FRAME;
698 		bp->flags &= ~BNXT_FLAG_JUMBO;
699 	}
700 
701 	/* THOR does not support ring groups.
702 	 * But we will use the array to save RSS context IDs.
703 	 */
704 	if (BNXT_CHIP_THOR(bp))
705 		bp->max_ring_grps = BNXT_MAX_RSS_CTXTS_THOR;
706 
707 	rc = bnxt_alloc_all_hwrm_stat_ctxs(bp);
708 	if (rc) {
709 		PMD_DRV_LOG(ERR, "HWRM stat ctx alloc failure rc: %x\n", rc);
710 		goto err_out;
711 	}
712 
713 	rc = bnxt_alloc_hwrm_rings(bp);
714 	if (rc) {
715 		PMD_DRV_LOG(ERR, "HWRM ring alloc failure rc: %x\n", rc);
716 		goto err_out;
717 	}
718 
719 	rc = bnxt_alloc_all_hwrm_ring_grps(bp);
720 	if (rc) {
721 		PMD_DRV_LOG(ERR, "HWRM ring grp alloc failure: %x\n", rc);
722 		goto err_out;
723 	}
724 
725 	if (!(bp->vnic_cap_flags & BNXT_VNIC_CAP_COS_CLASSIFY))
726 		goto skip_cosq_cfg;
727 
728 	for (j = 0, i = 0; i < BNXT_COS_QUEUE_COUNT; i++) {
729 		if (bp->rx_cos_queue[i].id != 0xff) {
730 			struct bnxt_vnic_info *vnic = &bp->vnic_info[j++];
731 
732 			if (!vnic) {
733 				PMD_DRV_LOG(ERR,
734 					    "Num pools more than FW profile\n");
735 				rc = -EINVAL;
736 				goto err_out;
737 			}
738 			vnic->cos_queue_id = bp->rx_cos_queue[i].id;
739 			bp->rx_cosq_cnt++;
740 		}
741 	}
742 
743 skip_cosq_cfg:
744 	rc = bnxt_mq_rx_configure(bp);
745 	if (rc) {
746 		PMD_DRV_LOG(ERR, "MQ mode configure failure rc: %x\n", rc);
747 		goto err_out;
748 	}
749 
750 	/* VNIC configuration */
751 	for (i = 0; i < bp->nr_vnics; i++) {
752 		rc = bnxt_setup_one_vnic(bp, i);
753 		if (rc)
754 			goto err_out;
755 	}
756 
757 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, &bp->vnic_info[0], 0, NULL);
758 	if (rc) {
759 		PMD_DRV_LOG(ERR,
760 			"HWRM cfa l2 rx mask failure rc: %x\n", rc);
761 		goto err_out;
762 	}
763 
764 	/* check and configure queue intr-vector mapping */
765 	if ((rte_intr_cap_multiple(intr_handle) ||
766 	     !RTE_ETH_DEV_SRIOV(bp->eth_dev).active) &&
767 	    bp->eth_dev->data->dev_conf.intr_conf.rxq != 0) {
768 		intr_vector = bp->eth_dev->data->nb_rx_queues;
769 		PMD_DRV_LOG(DEBUG, "intr_vector = %d\n", intr_vector);
770 		if (intr_vector > bp->rx_cp_nr_rings) {
771 			PMD_DRV_LOG(ERR, "At most %d intr queues supported",
772 					bp->rx_cp_nr_rings);
773 			return -ENOTSUP;
774 		}
775 		rc = rte_intr_efd_enable(intr_handle, intr_vector);
776 		if (rc)
777 			return rc;
778 	}
779 
780 	if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
781 		intr_handle->intr_vec =
782 			rte_zmalloc("intr_vec",
783 				    bp->eth_dev->data->nb_rx_queues *
784 				    sizeof(int), 0);
785 		if (intr_handle->intr_vec == NULL) {
786 			PMD_DRV_LOG(ERR, "Failed to allocate %d rx_queues"
787 				" intr_vec", bp->eth_dev->data->nb_rx_queues);
788 			rc = -ENOMEM;
789 			goto err_disable;
790 		}
791 		PMD_DRV_LOG(DEBUG, "intr_handle->intr_vec = %p "
792 			"intr_handle->nb_efd = %d intr_handle->max_intr = %d\n",
793 			 intr_handle->intr_vec, intr_handle->nb_efd,
794 			intr_handle->max_intr);
795 		for (queue_id = 0; queue_id < bp->eth_dev->data->nb_rx_queues;
796 		     queue_id++) {
797 			intr_handle->intr_vec[queue_id] =
798 							vec + BNXT_RX_VEC_START;
799 			if (vec < base + intr_handle->nb_efd - 1)
800 				vec++;
801 		}
802 	}
803 
804 	/* enable uio/vfio intr/eventfd mapping */
805 	rc = rte_intr_enable(intr_handle);
806 #ifndef RTE_EXEC_ENV_FREEBSD
807 	/* In FreeBSD OS, nic_uio driver does not support interrupts */
808 	if (rc)
809 		goto err_free;
810 #endif
811 
812 	rc = bnxt_update_phy_setting(bp);
813 	if (rc)
814 		goto err_free;
815 
816 	bp->mark_table = rte_zmalloc("bnxt_mark_table", BNXT_MARK_TABLE_SZ, 0);
817 	if (!bp->mark_table)
818 		PMD_DRV_LOG(ERR, "Allocation of mark table failed\n");
819 
820 	return 0;
821 
822 err_free:
823 	rte_free(intr_handle->intr_vec);
824 err_disable:
825 	rte_intr_efd_disable(intr_handle);
826 err_out:
827 	/* Some of the error status returned by FW may not be from errno.h */
828 	if (rc > 0)
829 		rc = -EIO;
830 
831 	return rc;
832 }
833 
834 static int bnxt_shutdown_nic(struct bnxt *bp)
835 {
836 	bnxt_free_all_hwrm_resources(bp);
837 	bnxt_free_all_filters(bp);
838 	bnxt_free_all_vnics(bp);
839 	return 0;
840 }
841 
842 /*
843  * Device configuration and status function
844  */
845 
846 uint32_t bnxt_get_speed_capabilities(struct bnxt *bp)
847 {
848 	uint32_t link_speed = bp->link_info->support_speeds;
849 	uint32_t speed_capa = 0;
850 
851 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_100MB)
852 		speed_capa |= ETH_LINK_SPEED_100M;
853 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_100MBHD)
854 		speed_capa |= ETH_LINK_SPEED_100M_HD;
855 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_1GB)
856 		speed_capa |= ETH_LINK_SPEED_1G;
857 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_2_5GB)
858 		speed_capa |= ETH_LINK_SPEED_2_5G;
859 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_10GB)
860 		speed_capa |= ETH_LINK_SPEED_10G;
861 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_20GB)
862 		speed_capa |= ETH_LINK_SPEED_20G;
863 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_25GB)
864 		speed_capa |= ETH_LINK_SPEED_25G;
865 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_40GB)
866 		speed_capa |= ETH_LINK_SPEED_40G;
867 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_50GB)
868 		speed_capa |= ETH_LINK_SPEED_50G;
869 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_SPEEDS_100GB)
870 		speed_capa |= ETH_LINK_SPEED_100G;
871 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_PAM4_SPEEDS_50G)
872 		speed_capa |= ETH_LINK_SPEED_50G;
873 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_PAM4_SPEEDS_100G)
874 		speed_capa |= ETH_LINK_SPEED_100G;
875 	if (link_speed & HWRM_PORT_PHY_QCFG_OUTPUT_SUPPORT_PAM4_SPEEDS_200G)
876 		speed_capa |= ETH_LINK_SPEED_200G;
877 
878 	if (bp->link_info->auto_mode ==
879 	    HWRM_PORT_PHY_QCFG_OUTPUT_AUTO_MODE_NONE)
880 		speed_capa |= ETH_LINK_SPEED_FIXED;
881 	else
882 		speed_capa |= ETH_LINK_SPEED_AUTONEG;
883 
884 	return speed_capa;
885 }
886 
887 static int bnxt_dev_info_get_op(struct rte_eth_dev *eth_dev,
888 				struct rte_eth_dev_info *dev_info)
889 {
890 	struct rte_pci_device *pdev = RTE_DEV_TO_PCI(eth_dev->device);
891 	struct bnxt *bp = eth_dev->data->dev_private;
892 	uint16_t max_vnics, i, j, vpool, vrxq;
893 	unsigned int max_rx_rings;
894 	int rc;
895 
896 	rc = is_bnxt_in_error(bp);
897 	if (rc)
898 		return rc;
899 
900 	/* MAC Specifics */
901 	dev_info->max_mac_addrs = bp->max_l2_ctx;
902 	dev_info->max_hash_mac_addrs = 0;
903 
904 	/* PF/VF specifics */
905 	if (BNXT_PF(bp))
906 		dev_info->max_vfs = pdev->max_vfs;
907 
908 	max_rx_rings = BNXT_MAX_RINGS(bp);
909 	/* For the sake of symmetry, max_rx_queues = max_tx_queues */
910 	dev_info->max_rx_queues = max_rx_rings;
911 	dev_info->max_tx_queues = max_rx_rings;
912 	dev_info->reta_size = bnxt_rss_hash_tbl_size(bp);
913 	dev_info->hash_key_size = 40;
914 	max_vnics = bp->max_vnics;
915 
916 	/* MTU specifics */
917 	dev_info->min_mtu = RTE_ETHER_MIN_MTU;
918 	dev_info->max_mtu = BNXT_MAX_MTU;
919 
920 	/* Fast path specifics */
921 	dev_info->min_rx_bufsize = 1;
922 	dev_info->max_rx_pktlen = BNXT_MAX_PKT_LEN;
923 
924 	dev_info->rx_offload_capa = BNXT_DEV_RX_OFFLOAD_SUPPORT;
925 	if (bp->flags & BNXT_FLAG_PTP_SUPPORTED)
926 		dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_TIMESTAMP;
927 	dev_info->tx_queue_offload_capa = DEV_TX_OFFLOAD_MBUF_FAST_FREE;
928 	dev_info->tx_offload_capa = BNXT_DEV_TX_OFFLOAD_SUPPORT |
929 				    dev_info->tx_queue_offload_capa;
930 	dev_info->flow_type_rss_offloads = BNXT_ETH_RSS_SUPPORT;
931 
932 	dev_info->speed_capa = bnxt_get_speed_capabilities(bp);
933 
934 	/* *INDENT-OFF* */
935 	dev_info->default_rxconf = (struct rte_eth_rxconf) {
936 		.rx_thresh = {
937 			.pthresh = 8,
938 			.hthresh = 8,
939 			.wthresh = 0,
940 		},
941 		.rx_free_thresh = 32,
942 		.rx_drop_en = BNXT_DEFAULT_RX_DROP_EN,
943 	};
944 
945 	dev_info->default_txconf = (struct rte_eth_txconf) {
946 		.tx_thresh = {
947 			.pthresh = 32,
948 			.hthresh = 0,
949 			.wthresh = 0,
950 		},
951 		.tx_free_thresh = 32,
952 		.tx_rs_thresh = 32,
953 	};
954 	eth_dev->data->dev_conf.intr_conf.lsc = 1;
955 
956 	eth_dev->data->dev_conf.intr_conf.rxq = 1;
957 	dev_info->rx_desc_lim.nb_min = BNXT_MIN_RING_DESC;
958 	dev_info->rx_desc_lim.nb_max = BNXT_MAX_RX_RING_DESC;
959 	dev_info->tx_desc_lim.nb_min = BNXT_MIN_RING_DESC;
960 	dev_info->tx_desc_lim.nb_max = BNXT_MAX_TX_RING_DESC;
961 
962 	if (BNXT_PF(bp) || BNXT_VF_IS_TRUSTED(bp)) {
963 		dev_info->switch_info.name = eth_dev->device->name;
964 		dev_info->switch_info.domain_id = bp->switch_domain_id;
965 		dev_info->switch_info.port_id =
966 				BNXT_PF(bp) ? BNXT_SWITCH_PORT_ID_PF :
967 				    BNXT_SWITCH_PORT_ID_TRUSTED_VF;
968 	}
969 
970 	/* *INDENT-ON* */
971 
972 	/*
973 	 * TODO: default_rxconf, default_txconf, rx_desc_lim, and tx_desc_lim
974 	 *       need further investigation.
975 	 */
976 
977 	/* VMDq resources */
978 	vpool = 64; /* ETH_64_POOLS */
979 	vrxq = 128; /* ETH_VMDQ_DCB_NUM_QUEUES */
980 	for (i = 0; i < 4; vpool >>= 1, i++) {
981 		if (max_vnics > vpool) {
982 			for (j = 0; j < 5; vrxq >>= 1, j++) {
983 				if (dev_info->max_rx_queues > vrxq) {
984 					if (vpool > vrxq)
985 						vpool = vrxq;
986 					goto found;
987 				}
988 			}
989 			/* Not enough resources to support VMDq */
990 			break;
991 		}
992 	}
993 	/* Not enough resources to support VMDq */
994 	vpool = 0;
995 	vrxq = 0;
996 found:
997 	dev_info->max_vmdq_pools = vpool;
998 	dev_info->vmdq_queue_num = vrxq;
999 
1000 	dev_info->vmdq_pool_base = 0;
1001 	dev_info->vmdq_queue_base = 0;
1002 
1003 	return 0;
1004 }
1005 
1006 /* Configure the device based on the configuration provided */
1007 static int bnxt_dev_configure_op(struct rte_eth_dev *eth_dev)
1008 {
1009 	struct bnxt *bp = eth_dev->data->dev_private;
1010 	uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads;
1011 	int rc;
1012 
1013 	bp->rx_queues = (void *)eth_dev->data->rx_queues;
1014 	bp->tx_queues = (void *)eth_dev->data->tx_queues;
1015 	bp->tx_nr_rings = eth_dev->data->nb_tx_queues;
1016 	bp->rx_nr_rings = eth_dev->data->nb_rx_queues;
1017 
1018 	rc = is_bnxt_in_error(bp);
1019 	if (rc)
1020 		return rc;
1021 
1022 	if (BNXT_VF(bp) && (bp->flags & BNXT_FLAG_NEW_RM)) {
1023 		rc = bnxt_hwrm_check_vf_rings(bp);
1024 		if (rc) {
1025 			PMD_DRV_LOG(ERR, "HWRM insufficient resources\n");
1026 			return -ENOSPC;
1027 		}
1028 
1029 		/* If a resource has already been allocated - in this case
1030 		 * it is the async completion ring, free it. Reallocate it after
1031 		 * resource reservation. This will ensure the resource counts
1032 		 * are calculated correctly.
1033 		 */
1034 
1035 		pthread_mutex_lock(&bp->def_cp_lock);
1036 
1037 		if (!BNXT_HAS_NQ(bp) && bp->async_cp_ring) {
1038 			bnxt_disable_int(bp);
1039 			bnxt_free_cp_ring(bp, bp->async_cp_ring);
1040 		}
1041 
1042 		rc = bnxt_hwrm_func_reserve_vf_resc(bp, false);
1043 		if (rc) {
1044 			PMD_DRV_LOG(ERR, "HWRM resource alloc fail:%x\n", rc);
1045 			pthread_mutex_unlock(&bp->def_cp_lock);
1046 			return -ENOSPC;
1047 		}
1048 
1049 		if (!BNXT_HAS_NQ(bp) && bp->async_cp_ring) {
1050 			rc = bnxt_alloc_async_cp_ring(bp);
1051 			if (rc) {
1052 				pthread_mutex_unlock(&bp->def_cp_lock);
1053 				return rc;
1054 			}
1055 			bnxt_enable_int(bp);
1056 		}
1057 
1058 		pthread_mutex_unlock(&bp->def_cp_lock);
1059 	} else {
1060 		/* legacy driver needs to get updated values */
1061 		rc = bnxt_hwrm_func_qcaps(bp);
1062 		if (rc) {
1063 			PMD_DRV_LOG(ERR, "hwrm func qcaps fail:%d\n", rc);
1064 			return rc;
1065 		}
1066 	}
1067 
1068 	/* Inherit new configurations */
1069 	if (eth_dev->data->nb_rx_queues > bp->max_rx_rings ||
1070 	    eth_dev->data->nb_tx_queues > bp->max_tx_rings ||
1071 	    eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues
1072 		+ BNXT_NUM_ASYNC_CPR(bp) > bp->max_cp_rings ||
1073 	    eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues >
1074 	    bp->max_stat_ctx)
1075 		goto resource_error;
1076 
1077 	if (BNXT_HAS_RING_GRPS(bp) &&
1078 	    (uint32_t)(eth_dev->data->nb_rx_queues) > bp->max_ring_grps)
1079 		goto resource_error;
1080 
1081 	if (!(eth_dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS) &&
1082 	    bp->max_vnics < eth_dev->data->nb_rx_queues)
1083 		goto resource_error;
1084 
1085 	bp->rx_cp_nr_rings = bp->rx_nr_rings;
1086 	bp->tx_cp_nr_rings = bp->tx_nr_rings;
1087 
1088 	if (eth_dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
1089 		rx_offloads |= DEV_RX_OFFLOAD_RSS_HASH;
1090 	eth_dev->data->dev_conf.rxmode.offloads = rx_offloads;
1091 
1092 	if (rx_offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
1093 		eth_dev->data->mtu =
1094 			eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
1095 			RTE_ETHER_HDR_LEN - RTE_ETHER_CRC_LEN - VLAN_TAG_SIZE *
1096 			BNXT_NUM_VLANS;
1097 		bnxt_mtu_set_op(eth_dev, eth_dev->data->mtu);
1098 	}
1099 	return 0;
1100 
1101 resource_error:
1102 	PMD_DRV_LOG(ERR,
1103 		    "Insufficient resources to support requested config\n");
1104 	PMD_DRV_LOG(ERR,
1105 		    "Num Queues Requested: Tx %d, Rx %d\n",
1106 		    eth_dev->data->nb_tx_queues,
1107 		    eth_dev->data->nb_rx_queues);
1108 	PMD_DRV_LOG(ERR,
1109 		    "MAX: TxQ %d, RxQ %d, CQ %d Stat %d, Grp %d, Vnic %d\n",
1110 		    bp->max_tx_rings, bp->max_rx_rings, bp->max_cp_rings,
1111 		    bp->max_stat_ctx, bp->max_ring_grps, bp->max_vnics);
1112 	return -ENOSPC;
1113 }
1114 
1115 void bnxt_print_link_info(struct rte_eth_dev *eth_dev)
1116 {
1117 	struct rte_eth_link *link = &eth_dev->data->dev_link;
1118 
1119 	if (link->link_status)
1120 		PMD_DRV_LOG(INFO, "Port %d Link Up - speed %u Mbps - %s\n",
1121 			eth_dev->data->port_id,
1122 			(uint32_t)link->link_speed,
1123 			(link->link_duplex == ETH_LINK_FULL_DUPLEX) ?
1124 			("full-duplex") : ("half-duplex\n"));
1125 	else
1126 		PMD_DRV_LOG(INFO, "Port %d Link Down\n",
1127 			eth_dev->data->port_id);
1128 }
1129 
1130 /*
1131  * Determine whether the current configuration requires support for scattered
1132  * receive; return 1 if scattered receive is required and 0 if not.
1133  */
1134 static int bnxt_scattered_rx(struct rte_eth_dev *eth_dev)
1135 {
1136 	uint16_t buf_size;
1137 	int i;
1138 
1139 	if (eth_dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER)
1140 		return 1;
1141 
1142 	for (i = 0; i < eth_dev->data->nb_rx_queues; i++) {
1143 		struct bnxt_rx_queue *rxq = eth_dev->data->rx_queues[i];
1144 
1145 		buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
1146 				      RTE_PKTMBUF_HEADROOM);
1147 		if (eth_dev->data->dev_conf.rxmode.max_rx_pkt_len > buf_size)
1148 			return 1;
1149 	}
1150 	return 0;
1151 }
1152 
1153 static eth_rx_burst_t
1154 bnxt_receive_function(struct rte_eth_dev *eth_dev)
1155 {
1156 	struct bnxt *bp = eth_dev->data->dev_private;
1157 
1158 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
1159 #ifndef RTE_LIBRTE_IEEE1588
1160 	/*
1161 	 * Vector mode receive can be enabled only if scatter rx is not
1162 	 * in use and rx offloads are limited to VLAN stripping and
1163 	 * CRC stripping.
1164 	 */
1165 	if (!eth_dev->data->scattered_rx &&
1166 	    !(eth_dev->data->dev_conf.rxmode.offloads &
1167 	      ~(DEV_RX_OFFLOAD_VLAN_STRIP |
1168 		DEV_RX_OFFLOAD_KEEP_CRC |
1169 		DEV_RX_OFFLOAD_JUMBO_FRAME |
1170 		DEV_RX_OFFLOAD_IPV4_CKSUM |
1171 		DEV_RX_OFFLOAD_UDP_CKSUM |
1172 		DEV_RX_OFFLOAD_TCP_CKSUM |
1173 		DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
1174 		DEV_RX_OFFLOAD_RSS_HASH |
1175 		DEV_RX_OFFLOAD_VLAN_FILTER)) &&
1176 	    !BNXT_TRUFLOW_EN(bp) && BNXT_NUM_ASYNC_CPR(bp) &&
1177 	    rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
1178 		PMD_DRV_LOG(INFO, "Using vector mode receive for port %d\n",
1179 			    eth_dev->data->port_id);
1180 		bp->flags |= BNXT_FLAG_RX_VECTOR_PKT_MODE;
1181 		return bnxt_recv_pkts_vec;
1182 	}
1183 	PMD_DRV_LOG(INFO, "Vector mode receive disabled for port %d\n",
1184 		    eth_dev->data->port_id);
1185 	PMD_DRV_LOG(INFO,
1186 		    "Port %d scatter: %d rx offload: %" PRIX64 "\n",
1187 		    eth_dev->data->port_id,
1188 		    eth_dev->data->scattered_rx,
1189 		    eth_dev->data->dev_conf.rxmode.offloads);
1190 #endif
1191 #endif
1192 	bp->flags &= ~BNXT_FLAG_RX_VECTOR_PKT_MODE;
1193 	return bnxt_recv_pkts;
1194 }
1195 
1196 static eth_tx_burst_t
1197 bnxt_transmit_function(__rte_unused struct rte_eth_dev *eth_dev)
1198 {
1199 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
1200 #ifndef RTE_LIBRTE_IEEE1588
1201 	uint64_t offloads = eth_dev->data->dev_conf.txmode.offloads;
1202 	struct bnxt *bp = eth_dev->data->dev_private;
1203 
1204 	/*
1205 	 * Vector mode transmit can be enabled only if not using scatter rx
1206 	 * or tx offloads.
1207 	 */
1208 	if (!eth_dev->data->scattered_rx &&
1209 	    !(offloads & ~DEV_TX_OFFLOAD_MBUF_FAST_FREE) &&
1210 	    !BNXT_TRUFLOW_EN(bp) &&
1211 	    rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
1212 		PMD_DRV_LOG(INFO, "Using vector mode transmit for port %d\n",
1213 			    eth_dev->data->port_id);
1214 		return bnxt_xmit_pkts_vec;
1215 	}
1216 	PMD_DRV_LOG(INFO, "Vector mode transmit disabled for port %d\n",
1217 		    eth_dev->data->port_id);
1218 	PMD_DRV_LOG(INFO,
1219 		    "Port %d scatter: %d tx offload: %" PRIX64 "\n",
1220 		    eth_dev->data->port_id,
1221 		    eth_dev->data->scattered_rx,
1222 		    offloads);
1223 #endif
1224 #endif
1225 	return bnxt_xmit_pkts;
1226 }
1227 
1228 static int bnxt_handle_if_change_status(struct bnxt *bp)
1229 {
1230 	int rc;
1231 
1232 	/* Since fw has undergone a reset and lost all contexts,
1233 	 * set fatal flag to not issue hwrm during cleanup
1234 	 */
1235 	bp->flags |= BNXT_FLAG_FATAL_ERROR;
1236 	bnxt_uninit_resources(bp, true);
1237 
1238 	/* clear fatal flag so that re-init happens */
1239 	bp->flags &= ~BNXT_FLAG_FATAL_ERROR;
1240 	rc = bnxt_init_resources(bp, true);
1241 
1242 	bp->flags &= ~BNXT_FLAG_IF_CHANGE_HOT_FW_RESET_DONE;
1243 
1244 	return rc;
1245 }
1246 
1247 static int bnxt_dev_start_op(struct rte_eth_dev *eth_dev)
1248 {
1249 	struct bnxt *bp = eth_dev->data->dev_private;
1250 	uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads;
1251 	int vlan_mask = 0;
1252 	int rc, retry_cnt = BNXT_IF_CHANGE_RETRY_COUNT;
1253 
1254 	if (!eth_dev->data->nb_tx_queues || !eth_dev->data->nb_rx_queues) {
1255 		PMD_DRV_LOG(ERR, "Queues are not configured yet!\n");
1256 		return -EINVAL;
1257 	}
1258 
1259 	if (bp->rx_cp_nr_rings > RTE_ETHDEV_QUEUE_STAT_CNTRS) {
1260 		PMD_DRV_LOG(ERR,
1261 			"RxQ cnt %d > RTE_ETHDEV_QUEUE_STAT_CNTRS %d\n",
1262 			bp->rx_cp_nr_rings, RTE_ETHDEV_QUEUE_STAT_CNTRS);
1263 	}
1264 
1265 	do {
1266 		rc = bnxt_hwrm_if_change(bp, true);
1267 		if (rc == 0 || rc != -EAGAIN)
1268 			break;
1269 
1270 		rte_delay_ms(BNXT_IF_CHANGE_RETRY_INTERVAL);
1271 	} while (retry_cnt--);
1272 
1273 	if (rc)
1274 		return rc;
1275 
1276 	if (bp->flags & BNXT_FLAG_IF_CHANGE_HOT_FW_RESET_DONE) {
1277 		rc = bnxt_handle_if_change_status(bp);
1278 		if (rc)
1279 			return rc;
1280 	}
1281 
1282 	bnxt_enable_int(bp);
1283 
1284 	rc = bnxt_init_chip(bp);
1285 	if (rc)
1286 		goto error;
1287 
1288 	eth_dev->data->scattered_rx = bnxt_scattered_rx(eth_dev);
1289 	eth_dev->data->dev_started = 1;
1290 
1291 	bnxt_link_update_op(eth_dev, 1);
1292 
1293 	if (rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
1294 		vlan_mask |= ETH_VLAN_FILTER_MASK;
1295 	if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1296 		vlan_mask |= ETH_VLAN_STRIP_MASK;
1297 	rc = bnxt_vlan_offload_set_op(eth_dev, vlan_mask);
1298 	if (rc)
1299 		goto error;
1300 
1301 	/* Initialize bnxt ULP port details */
1302 	rc = bnxt_ulp_port_init(bp);
1303 	if (rc)
1304 		goto error;
1305 
1306 	eth_dev->rx_pkt_burst = bnxt_receive_function(eth_dev);
1307 	eth_dev->tx_pkt_burst = bnxt_transmit_function(eth_dev);
1308 
1309 	bnxt_schedule_fw_health_check(bp);
1310 
1311 	return 0;
1312 
1313 error:
1314 	bnxt_shutdown_nic(bp);
1315 	bnxt_free_tx_mbufs(bp);
1316 	bnxt_free_rx_mbufs(bp);
1317 	bnxt_hwrm_if_change(bp, false);
1318 	eth_dev->data->dev_started = 0;
1319 	return rc;
1320 }
1321 
1322 static int bnxt_dev_set_link_up_op(struct rte_eth_dev *eth_dev)
1323 {
1324 	struct bnxt *bp = eth_dev->data->dev_private;
1325 	int rc = 0;
1326 
1327 	if (!bp->link_info->link_up)
1328 		rc = bnxt_set_hwrm_link_config(bp, true);
1329 	if (!rc)
1330 		eth_dev->data->dev_link.link_status = 1;
1331 
1332 	bnxt_print_link_info(eth_dev);
1333 	return rc;
1334 }
1335 
1336 static int bnxt_dev_set_link_down_op(struct rte_eth_dev *eth_dev)
1337 {
1338 	struct bnxt *bp = eth_dev->data->dev_private;
1339 
1340 	eth_dev->data->dev_link.link_status = 0;
1341 	bnxt_set_hwrm_link_config(bp, false);
1342 	bp->link_info->link_up = 0;
1343 
1344 	return 0;
1345 }
1346 
1347 static void bnxt_free_switch_domain(struct bnxt *bp)
1348 {
1349 	if (bp->switch_domain_id)
1350 		rte_eth_switch_domain_free(bp->switch_domain_id);
1351 }
1352 
1353 /* Unload the driver, release resources */
1354 static int bnxt_dev_stop_op(struct rte_eth_dev *eth_dev)
1355 {
1356 	struct bnxt *bp = eth_dev->data->dev_private;
1357 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1358 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1359 	struct rte_eth_link link;
1360 	int ret;
1361 
1362 	eth_dev->data->dev_started = 0;
1363 	eth_dev->data->scattered_rx = 0;
1364 
1365 	/* Prevent crashes when queues are still in use */
1366 	eth_dev->rx_pkt_burst = &bnxt_dummy_recv_pkts;
1367 	eth_dev->tx_pkt_burst = &bnxt_dummy_xmit_pkts;
1368 
1369 	bnxt_disable_int(bp);
1370 
1371 	/* disable uio/vfio intr/eventfd mapping */
1372 	rte_intr_disable(intr_handle);
1373 
1374 	/* Stop the child representors for this device */
1375 	ret = bnxt_rep_stop_all(bp);
1376 	if (ret != 0)
1377 		return ret;
1378 
1379 	/* delete the bnxt ULP port details */
1380 	bnxt_ulp_port_deinit(bp);
1381 
1382 	bnxt_cancel_fw_health_check(bp);
1383 
1384 	/* Do not bring link down during reset recovery */
1385 	if (!is_bnxt_in_error(bp)) {
1386 		bnxt_dev_set_link_down_op(eth_dev);
1387 		/* Wait for link to be reset */
1388 		if (BNXT_SINGLE_PF(bp))
1389 			rte_delay_ms(500);
1390 		/* clear the recorded link status */
1391 		memset(&link, 0, sizeof(link));
1392 		rte_eth_linkstatus_set(eth_dev, &link);
1393 	}
1394 
1395 	/* Clean queue intr-vector mapping */
1396 	rte_intr_efd_disable(intr_handle);
1397 	if (intr_handle->intr_vec != NULL) {
1398 		rte_free(intr_handle->intr_vec);
1399 		intr_handle->intr_vec = NULL;
1400 	}
1401 
1402 	bnxt_hwrm_port_clr_stats(bp);
1403 	bnxt_free_tx_mbufs(bp);
1404 	bnxt_free_rx_mbufs(bp);
1405 	/* Process any remaining notifications in default completion queue */
1406 	bnxt_int_handler(eth_dev);
1407 	bnxt_shutdown_nic(bp);
1408 	bnxt_hwrm_if_change(bp, false);
1409 
1410 	rte_free(bp->mark_table);
1411 	bp->mark_table = NULL;
1412 
1413 	bp->flags &= ~BNXT_FLAG_RX_VECTOR_PKT_MODE;
1414 	bp->rx_cosq_cnt = 0;
1415 	/* All filters are deleted on a port stop. */
1416 	if (BNXT_FLOW_XSTATS_EN(bp))
1417 		bp->flow_stat->flow_count = 0;
1418 
1419 	return 0;
1420 }
1421 
1422 static int bnxt_dev_close_op(struct rte_eth_dev *eth_dev)
1423 {
1424 	struct bnxt *bp = eth_dev->data->dev_private;
1425 	int ret = 0;
1426 
1427 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1428 		return 0;
1429 
1430 	/* cancel the recovery handler before remove dev */
1431 	rte_eal_alarm_cancel(bnxt_dev_reset_and_resume, (void *)bp);
1432 	rte_eal_alarm_cancel(bnxt_dev_recover, (void *)bp);
1433 	bnxt_cancel_fc_thread(bp);
1434 
1435 	if (eth_dev->data->dev_started)
1436 		ret = bnxt_dev_stop_op(eth_dev);
1437 
1438 	bnxt_free_switch_domain(bp);
1439 
1440 	bnxt_uninit_resources(bp, false);
1441 
1442 	bnxt_free_leds_info(bp);
1443 	bnxt_free_cos_queues(bp);
1444 	bnxt_free_link_info(bp);
1445 	bnxt_free_pf_info(bp);
1446 	bnxt_free_parent_info(bp);
1447 
1448 	rte_memzone_free((const struct rte_memzone *)bp->tx_mem_zone);
1449 	bp->tx_mem_zone = NULL;
1450 	rte_memzone_free((const struct rte_memzone *)bp->rx_mem_zone);
1451 	bp->rx_mem_zone = NULL;
1452 
1453 	bnxt_hwrm_free_vf_info(bp);
1454 
1455 	rte_free(bp->grp_info);
1456 	bp->grp_info = NULL;
1457 
1458 	return ret;
1459 }
1460 
1461 static void bnxt_mac_addr_remove_op(struct rte_eth_dev *eth_dev,
1462 				    uint32_t index)
1463 {
1464 	struct bnxt *bp = eth_dev->data->dev_private;
1465 	uint64_t pool_mask = eth_dev->data->mac_pool_sel[index];
1466 	struct bnxt_vnic_info *vnic;
1467 	struct bnxt_filter_info *filter, *temp_filter;
1468 	uint32_t i;
1469 
1470 	if (is_bnxt_in_error(bp))
1471 		return;
1472 
1473 	/*
1474 	 * Loop through all VNICs from the specified filter flow pools to
1475 	 * remove the corresponding MAC addr filter
1476 	 */
1477 	for (i = 0; i < bp->nr_vnics; i++) {
1478 		if (!(pool_mask & (1ULL << i)))
1479 			continue;
1480 
1481 		vnic = &bp->vnic_info[i];
1482 		filter = STAILQ_FIRST(&vnic->filter);
1483 		while (filter) {
1484 			temp_filter = STAILQ_NEXT(filter, next);
1485 			if (filter->mac_index == index) {
1486 				STAILQ_REMOVE(&vnic->filter, filter,
1487 						bnxt_filter_info, next);
1488 				bnxt_hwrm_clear_l2_filter(bp, filter);
1489 				bnxt_free_filter(bp, filter);
1490 			}
1491 			filter = temp_filter;
1492 		}
1493 	}
1494 }
1495 
1496 static int bnxt_add_mac_filter(struct bnxt *bp, struct bnxt_vnic_info *vnic,
1497 			       struct rte_ether_addr *mac_addr, uint32_t index,
1498 			       uint32_t pool)
1499 {
1500 	struct bnxt_filter_info *filter;
1501 	int rc = 0;
1502 
1503 	/* Attach requested MAC address to the new l2_filter */
1504 	STAILQ_FOREACH(filter, &vnic->filter, next) {
1505 		if (filter->mac_index == index) {
1506 			PMD_DRV_LOG(DEBUG,
1507 				    "MAC addr already existed for pool %d\n",
1508 				    pool);
1509 			return 0;
1510 		}
1511 	}
1512 
1513 	filter = bnxt_alloc_filter(bp);
1514 	if (!filter) {
1515 		PMD_DRV_LOG(ERR, "L2 filter alloc failed\n");
1516 		return -ENODEV;
1517 	}
1518 
1519 	/* bnxt_alloc_filter copies default MAC to filter->l2_addr. So,
1520 	 * if the MAC that's been programmed now is a different one, then,
1521 	 * copy that addr to filter->l2_addr
1522 	 */
1523 	if (mac_addr)
1524 		memcpy(filter->l2_addr, mac_addr, RTE_ETHER_ADDR_LEN);
1525 	filter->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_OUTERMOST;
1526 
1527 	rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
1528 	if (!rc) {
1529 		filter->mac_index = index;
1530 		if (filter->mac_index == 0)
1531 			STAILQ_INSERT_HEAD(&vnic->filter, filter, next);
1532 		else
1533 			STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
1534 	} else {
1535 		bnxt_free_filter(bp, filter);
1536 	}
1537 
1538 	return rc;
1539 }
1540 
1541 static int bnxt_mac_addr_add_op(struct rte_eth_dev *eth_dev,
1542 				struct rte_ether_addr *mac_addr,
1543 				uint32_t index, uint32_t pool)
1544 {
1545 	struct bnxt *bp = eth_dev->data->dev_private;
1546 	struct bnxt_vnic_info *vnic = &bp->vnic_info[pool];
1547 	int rc = 0;
1548 
1549 	rc = is_bnxt_in_error(bp);
1550 	if (rc)
1551 		return rc;
1552 
1553 	if (BNXT_VF(bp) && !BNXT_VF_IS_TRUSTED(bp)) {
1554 		PMD_DRV_LOG(ERR, "Cannot add MAC address to a VF interface\n");
1555 		return -ENOTSUP;
1556 	}
1557 
1558 	if (!vnic) {
1559 		PMD_DRV_LOG(ERR, "VNIC not found for pool %d!\n", pool);
1560 		return -EINVAL;
1561 	}
1562 
1563 	/* Filter settings will get applied when port is started */
1564 	if (!eth_dev->data->dev_started)
1565 		return 0;
1566 
1567 	rc = bnxt_add_mac_filter(bp, vnic, mac_addr, index, pool);
1568 
1569 	return rc;
1570 }
1571 
1572 int bnxt_link_update_op(struct rte_eth_dev *eth_dev, int wait_to_complete)
1573 {
1574 	int rc = 0;
1575 	struct bnxt *bp = eth_dev->data->dev_private;
1576 	struct rte_eth_link new;
1577 	int cnt = wait_to_complete ? BNXT_MAX_LINK_WAIT_CNT :
1578 			BNXT_MIN_LINK_WAIT_CNT;
1579 
1580 	rc = is_bnxt_in_error(bp);
1581 	if (rc)
1582 		return rc;
1583 
1584 	memset(&new, 0, sizeof(new));
1585 	do {
1586 		/* Retrieve link info from hardware */
1587 		rc = bnxt_get_hwrm_link_config(bp, &new);
1588 		if (rc) {
1589 			new.link_speed = ETH_LINK_SPEED_100M;
1590 			new.link_duplex = ETH_LINK_FULL_DUPLEX;
1591 			PMD_DRV_LOG(ERR,
1592 				"Failed to retrieve link rc = 0x%x!\n", rc);
1593 			goto out;
1594 		}
1595 
1596 		if (!wait_to_complete || new.link_status)
1597 			break;
1598 
1599 		rte_delay_ms(BNXT_LINK_WAIT_INTERVAL);
1600 	} while (cnt--);
1601 
1602 	/* Only single function PF can bring phy down.
1603 	 * When port is stopped, report link down for VF/MH/NPAR functions.
1604 	 */
1605 	if (!BNXT_SINGLE_PF(bp) && !eth_dev->data->dev_started)
1606 		memset(&new, 0, sizeof(new));
1607 
1608 out:
1609 	/* Timed out or success */
1610 	if (new.link_status != eth_dev->data->dev_link.link_status ||
1611 	new.link_speed != eth_dev->data->dev_link.link_speed) {
1612 		rte_eth_linkstatus_set(eth_dev, &new);
1613 
1614 		rte_eth_dev_callback_process(eth_dev,
1615 					     RTE_ETH_EVENT_INTR_LSC,
1616 					     NULL);
1617 
1618 		bnxt_print_link_info(eth_dev);
1619 	}
1620 
1621 	return rc;
1622 }
1623 
1624 static int bnxt_promiscuous_enable_op(struct rte_eth_dev *eth_dev)
1625 {
1626 	struct bnxt *bp = eth_dev->data->dev_private;
1627 	struct bnxt_vnic_info *vnic;
1628 	uint32_t old_flags;
1629 	int rc;
1630 
1631 	rc = is_bnxt_in_error(bp);
1632 	if (rc)
1633 		return rc;
1634 
1635 	/* Filter settings will get applied when port is started */
1636 	if (!eth_dev->data->dev_started)
1637 		return 0;
1638 
1639 	if (bp->vnic_info == NULL)
1640 		return 0;
1641 
1642 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
1643 
1644 	old_flags = vnic->flags;
1645 	vnic->flags |= BNXT_VNIC_INFO_PROMISC;
1646 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1647 	if (rc != 0)
1648 		vnic->flags = old_flags;
1649 
1650 	return rc;
1651 }
1652 
1653 static int bnxt_promiscuous_disable_op(struct rte_eth_dev *eth_dev)
1654 {
1655 	struct bnxt *bp = eth_dev->data->dev_private;
1656 	struct bnxt_vnic_info *vnic;
1657 	uint32_t old_flags;
1658 	int rc;
1659 
1660 	rc = is_bnxt_in_error(bp);
1661 	if (rc)
1662 		return rc;
1663 
1664 	/* Filter settings will get applied when port is started */
1665 	if (!eth_dev->data->dev_started)
1666 		return 0;
1667 
1668 	if (bp->vnic_info == NULL)
1669 		return 0;
1670 
1671 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
1672 
1673 	old_flags = vnic->flags;
1674 	vnic->flags &= ~BNXT_VNIC_INFO_PROMISC;
1675 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1676 	if (rc != 0)
1677 		vnic->flags = old_flags;
1678 
1679 	return rc;
1680 }
1681 
1682 static int bnxt_allmulticast_enable_op(struct rte_eth_dev *eth_dev)
1683 {
1684 	struct bnxt *bp = eth_dev->data->dev_private;
1685 	struct bnxt_vnic_info *vnic;
1686 	uint32_t old_flags;
1687 	int rc;
1688 
1689 	rc = is_bnxt_in_error(bp);
1690 	if (rc)
1691 		return rc;
1692 
1693 	/* Filter settings will get applied when port is started */
1694 	if (!eth_dev->data->dev_started)
1695 		return 0;
1696 
1697 	if (bp->vnic_info == NULL)
1698 		return 0;
1699 
1700 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
1701 
1702 	old_flags = vnic->flags;
1703 	vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
1704 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1705 	if (rc != 0)
1706 		vnic->flags = old_flags;
1707 
1708 	return rc;
1709 }
1710 
1711 static int bnxt_allmulticast_disable_op(struct rte_eth_dev *eth_dev)
1712 {
1713 	struct bnxt *bp = eth_dev->data->dev_private;
1714 	struct bnxt_vnic_info *vnic;
1715 	uint32_t old_flags;
1716 	int rc;
1717 
1718 	rc = is_bnxt_in_error(bp);
1719 	if (rc)
1720 		return rc;
1721 
1722 	/* Filter settings will get applied when port is started */
1723 	if (!eth_dev->data->dev_started)
1724 		return 0;
1725 
1726 	if (bp->vnic_info == NULL)
1727 		return 0;
1728 
1729 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
1730 
1731 	old_flags = vnic->flags;
1732 	vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
1733 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1734 	if (rc != 0)
1735 		vnic->flags = old_flags;
1736 
1737 	return rc;
1738 }
1739 
1740 /* Return bnxt_rx_queue pointer corresponding to a given rxq. */
1741 static struct bnxt_rx_queue *bnxt_qid_to_rxq(struct bnxt *bp, uint16_t qid)
1742 {
1743 	if (qid >= bp->rx_nr_rings)
1744 		return NULL;
1745 
1746 	return bp->eth_dev->data->rx_queues[qid];
1747 }
1748 
1749 /* Return rxq corresponding to a given rss table ring/group ID. */
1750 static uint16_t bnxt_rss_to_qid(struct bnxt *bp, uint16_t fwr)
1751 {
1752 	struct bnxt_rx_queue *rxq;
1753 	unsigned int i;
1754 
1755 	if (!BNXT_HAS_RING_GRPS(bp)) {
1756 		for (i = 0; i < bp->rx_nr_rings; i++) {
1757 			rxq = bp->eth_dev->data->rx_queues[i];
1758 			if (rxq->rx_ring->rx_ring_struct->fw_ring_id == fwr)
1759 				return rxq->index;
1760 		}
1761 	} else {
1762 		for (i = 0; i < bp->rx_nr_rings; i++) {
1763 			if (bp->grp_info[i].fw_grp_id == fwr)
1764 				return i;
1765 		}
1766 	}
1767 
1768 	return INVALID_HW_RING_ID;
1769 }
1770 
1771 static int bnxt_reta_update_op(struct rte_eth_dev *eth_dev,
1772 			    struct rte_eth_rss_reta_entry64 *reta_conf,
1773 			    uint16_t reta_size)
1774 {
1775 	struct bnxt *bp = eth_dev->data->dev_private;
1776 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
1777 	struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp);
1778 	uint16_t tbl_size = bnxt_rss_hash_tbl_size(bp);
1779 	uint16_t idx, sft;
1780 	int i, rc;
1781 
1782 	rc = is_bnxt_in_error(bp);
1783 	if (rc)
1784 		return rc;
1785 
1786 	if (!vnic->rss_table)
1787 		return -EINVAL;
1788 
1789 	if (!(dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
1790 		return -EINVAL;
1791 
1792 	if (reta_size != tbl_size) {
1793 		PMD_DRV_LOG(ERR, "The configured hash table lookup size "
1794 			"(%d) must equal the size supported by the hardware "
1795 			"(%d)\n", reta_size, tbl_size);
1796 		return -EINVAL;
1797 	}
1798 
1799 	for (i = 0; i < reta_size; i++) {
1800 		struct bnxt_rx_queue *rxq;
1801 
1802 		idx = i / RTE_RETA_GROUP_SIZE;
1803 		sft = i % RTE_RETA_GROUP_SIZE;
1804 
1805 		if (!(reta_conf[idx].mask & (1ULL << sft)))
1806 			continue;
1807 
1808 		rxq = bnxt_qid_to_rxq(bp, reta_conf[idx].reta[sft]);
1809 		if (!rxq) {
1810 			PMD_DRV_LOG(ERR, "Invalid ring in reta_conf.\n");
1811 			return -EINVAL;
1812 		}
1813 
1814 		if (BNXT_CHIP_THOR(bp)) {
1815 			vnic->rss_table[i * 2] =
1816 				rxq->rx_ring->rx_ring_struct->fw_ring_id;
1817 			vnic->rss_table[i * 2 + 1] =
1818 				rxq->cp_ring->cp_ring_struct->fw_ring_id;
1819 		} else {
1820 			vnic->rss_table[i] =
1821 			    vnic->fw_grp_ids[reta_conf[idx].reta[sft]];
1822 		}
1823 	}
1824 
1825 	bnxt_hwrm_vnic_rss_cfg(bp, vnic);
1826 	return 0;
1827 }
1828 
1829 static int bnxt_reta_query_op(struct rte_eth_dev *eth_dev,
1830 			      struct rte_eth_rss_reta_entry64 *reta_conf,
1831 			      uint16_t reta_size)
1832 {
1833 	struct bnxt *bp = eth_dev->data->dev_private;
1834 	struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp);
1835 	uint16_t tbl_size = bnxt_rss_hash_tbl_size(bp);
1836 	uint16_t idx, sft, i;
1837 	int rc;
1838 
1839 	rc = is_bnxt_in_error(bp);
1840 	if (rc)
1841 		return rc;
1842 
1843 	/* Retrieve from the default VNIC */
1844 	if (!vnic)
1845 		return -EINVAL;
1846 	if (!vnic->rss_table)
1847 		return -EINVAL;
1848 
1849 	if (reta_size != tbl_size) {
1850 		PMD_DRV_LOG(ERR, "The configured hash table lookup size "
1851 			"(%d) must equal the size supported by the hardware "
1852 			"(%d)\n", reta_size, tbl_size);
1853 		return -EINVAL;
1854 	}
1855 
1856 	for (idx = 0, i = 0; i < reta_size; i++) {
1857 		idx = i / RTE_RETA_GROUP_SIZE;
1858 		sft = i % RTE_RETA_GROUP_SIZE;
1859 
1860 		if (reta_conf[idx].mask & (1ULL << sft)) {
1861 			uint16_t qid;
1862 
1863 			if (BNXT_CHIP_THOR(bp))
1864 				qid = bnxt_rss_to_qid(bp,
1865 						      vnic->rss_table[i * 2]);
1866 			else
1867 				qid = bnxt_rss_to_qid(bp, vnic->rss_table[i]);
1868 
1869 			if (qid == INVALID_HW_RING_ID) {
1870 				PMD_DRV_LOG(ERR, "Inv. entry in rss table.\n");
1871 				return -EINVAL;
1872 			}
1873 			reta_conf[idx].reta[sft] = qid;
1874 		}
1875 	}
1876 
1877 	return 0;
1878 }
1879 
1880 static int bnxt_rss_hash_update_op(struct rte_eth_dev *eth_dev,
1881 				   struct rte_eth_rss_conf *rss_conf)
1882 {
1883 	struct bnxt *bp = eth_dev->data->dev_private;
1884 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
1885 	struct bnxt_vnic_info *vnic;
1886 	int rc;
1887 
1888 	rc = is_bnxt_in_error(bp);
1889 	if (rc)
1890 		return rc;
1891 
1892 	/*
1893 	 * If RSS enablement were different than dev_configure,
1894 	 * then return -EINVAL
1895 	 */
1896 	if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) {
1897 		if (!rss_conf->rss_hf)
1898 			PMD_DRV_LOG(ERR, "Hash type NONE\n");
1899 	} else {
1900 		if (rss_conf->rss_hf & BNXT_ETH_RSS_SUPPORT)
1901 			return -EINVAL;
1902 	}
1903 
1904 	bp->flags |= BNXT_FLAG_UPDATE_HASH;
1905 	memcpy(&eth_dev->data->dev_conf.rx_adv_conf.rss_conf,
1906 	       rss_conf,
1907 	       sizeof(*rss_conf));
1908 
1909 	/* Update the default RSS VNIC(s) */
1910 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
1911 	vnic->hash_type = bnxt_rte_to_hwrm_hash_types(rss_conf->rss_hf);
1912 	vnic->hash_mode =
1913 		bnxt_rte_to_hwrm_hash_level(bp, rss_conf->rss_hf,
1914 					    ETH_RSS_LEVEL(rss_conf->rss_hf));
1915 
1916 	/*
1917 	 * If hashkey is not specified, use the previously configured
1918 	 * hashkey
1919 	 */
1920 	if (!rss_conf->rss_key)
1921 		goto rss_config;
1922 
1923 	if (rss_conf->rss_key_len != HW_HASH_KEY_SIZE) {
1924 		PMD_DRV_LOG(ERR,
1925 			    "Invalid hashkey length, should be 16 bytes\n");
1926 		return -EINVAL;
1927 	}
1928 	memcpy(vnic->rss_hash_key, rss_conf->rss_key, rss_conf->rss_key_len);
1929 
1930 rss_config:
1931 	bnxt_hwrm_vnic_rss_cfg(bp, vnic);
1932 	return 0;
1933 }
1934 
1935 static int bnxt_rss_hash_conf_get_op(struct rte_eth_dev *eth_dev,
1936 				     struct rte_eth_rss_conf *rss_conf)
1937 {
1938 	struct bnxt *bp = eth_dev->data->dev_private;
1939 	struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp);
1940 	int len, rc;
1941 	uint32_t hash_types;
1942 
1943 	rc = is_bnxt_in_error(bp);
1944 	if (rc)
1945 		return rc;
1946 
1947 	/* RSS configuration is the same for all VNICs */
1948 	if (vnic && vnic->rss_hash_key) {
1949 		if (rss_conf->rss_key) {
1950 			len = rss_conf->rss_key_len <= HW_HASH_KEY_SIZE ?
1951 			      rss_conf->rss_key_len : HW_HASH_KEY_SIZE;
1952 			memcpy(rss_conf->rss_key, vnic->rss_hash_key, len);
1953 		}
1954 
1955 		hash_types = vnic->hash_type;
1956 		rss_conf->rss_hf = 0;
1957 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4) {
1958 			rss_conf->rss_hf |= ETH_RSS_IPV4;
1959 			hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
1960 		}
1961 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4) {
1962 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
1963 			hash_types &=
1964 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
1965 		}
1966 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4) {
1967 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
1968 			hash_types &=
1969 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
1970 		}
1971 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6) {
1972 			rss_conf->rss_hf |= ETH_RSS_IPV6;
1973 			hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
1974 		}
1975 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6) {
1976 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
1977 			hash_types &=
1978 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
1979 		}
1980 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6) {
1981 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
1982 			hash_types &=
1983 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
1984 		}
1985 
1986 		rss_conf->rss_hf |=
1987 			bnxt_hwrm_to_rte_rss_level(bp, vnic->hash_mode);
1988 
1989 		if (hash_types) {
1990 			PMD_DRV_LOG(ERR,
1991 				"Unknown RSS config from firmware (%08x), RSS disabled",
1992 				vnic->hash_type);
1993 			return -ENOTSUP;
1994 		}
1995 	} else {
1996 		rss_conf->rss_hf = 0;
1997 	}
1998 	return 0;
1999 }
2000 
2001 static int bnxt_flow_ctrl_get_op(struct rte_eth_dev *dev,
2002 			       struct rte_eth_fc_conf *fc_conf)
2003 {
2004 	struct bnxt *bp = dev->data->dev_private;
2005 	struct rte_eth_link link_info;
2006 	int rc;
2007 
2008 	rc = is_bnxt_in_error(bp);
2009 	if (rc)
2010 		return rc;
2011 
2012 	rc = bnxt_get_hwrm_link_config(bp, &link_info);
2013 	if (rc)
2014 		return rc;
2015 
2016 	memset(fc_conf, 0, sizeof(*fc_conf));
2017 	if (bp->link_info->auto_pause)
2018 		fc_conf->autoneg = 1;
2019 	switch (bp->link_info->pause) {
2020 	case 0:
2021 		fc_conf->mode = RTE_FC_NONE;
2022 		break;
2023 	case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX:
2024 		fc_conf->mode = RTE_FC_TX_PAUSE;
2025 		break;
2026 	case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX:
2027 		fc_conf->mode = RTE_FC_RX_PAUSE;
2028 		break;
2029 	case (HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX |
2030 			HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX):
2031 		fc_conf->mode = RTE_FC_FULL;
2032 		break;
2033 	}
2034 	return 0;
2035 }
2036 
2037 static int bnxt_flow_ctrl_set_op(struct rte_eth_dev *dev,
2038 			       struct rte_eth_fc_conf *fc_conf)
2039 {
2040 	struct bnxt *bp = dev->data->dev_private;
2041 	int rc;
2042 
2043 	rc = is_bnxt_in_error(bp);
2044 	if (rc)
2045 		return rc;
2046 
2047 	if (!BNXT_SINGLE_PF(bp) || BNXT_VF(bp)) {
2048 		PMD_DRV_LOG(ERR, "Flow Control Settings cannot be modified\n");
2049 		return -ENOTSUP;
2050 	}
2051 
2052 	switch (fc_conf->mode) {
2053 	case RTE_FC_NONE:
2054 		bp->link_info->auto_pause = 0;
2055 		bp->link_info->force_pause = 0;
2056 		break;
2057 	case RTE_FC_RX_PAUSE:
2058 		if (fc_conf->autoneg) {
2059 			bp->link_info->auto_pause =
2060 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
2061 			bp->link_info->force_pause = 0;
2062 		} else {
2063 			bp->link_info->auto_pause = 0;
2064 			bp->link_info->force_pause =
2065 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
2066 		}
2067 		break;
2068 	case RTE_FC_TX_PAUSE:
2069 		if (fc_conf->autoneg) {
2070 			bp->link_info->auto_pause =
2071 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX;
2072 			bp->link_info->force_pause = 0;
2073 		} else {
2074 			bp->link_info->auto_pause = 0;
2075 			bp->link_info->force_pause =
2076 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX;
2077 		}
2078 		break;
2079 	case RTE_FC_FULL:
2080 		if (fc_conf->autoneg) {
2081 			bp->link_info->auto_pause =
2082 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX |
2083 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
2084 			bp->link_info->force_pause = 0;
2085 		} else {
2086 			bp->link_info->auto_pause = 0;
2087 			bp->link_info->force_pause =
2088 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX |
2089 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
2090 		}
2091 		break;
2092 	}
2093 	return bnxt_set_hwrm_link_config(bp, true);
2094 }
2095 
2096 /* Add UDP tunneling port */
2097 static int
2098 bnxt_udp_tunnel_port_add_op(struct rte_eth_dev *eth_dev,
2099 			 struct rte_eth_udp_tunnel *udp_tunnel)
2100 {
2101 	struct bnxt *bp = eth_dev->data->dev_private;
2102 	uint16_t tunnel_type = 0;
2103 	int rc = 0;
2104 
2105 	rc = is_bnxt_in_error(bp);
2106 	if (rc)
2107 		return rc;
2108 
2109 	switch (udp_tunnel->prot_type) {
2110 	case RTE_TUNNEL_TYPE_VXLAN:
2111 		if (bp->vxlan_port_cnt) {
2112 			PMD_DRV_LOG(ERR, "Tunnel Port %d already programmed\n",
2113 				udp_tunnel->udp_port);
2114 			if (bp->vxlan_port != udp_tunnel->udp_port) {
2115 				PMD_DRV_LOG(ERR, "Only one port allowed\n");
2116 				return -ENOSPC;
2117 			}
2118 			bp->vxlan_port_cnt++;
2119 			return 0;
2120 		}
2121 		tunnel_type =
2122 			HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_VXLAN;
2123 		bp->vxlan_port_cnt++;
2124 		break;
2125 	case RTE_TUNNEL_TYPE_GENEVE:
2126 		if (bp->geneve_port_cnt) {
2127 			PMD_DRV_LOG(ERR, "Tunnel Port %d already programmed\n",
2128 				udp_tunnel->udp_port);
2129 			if (bp->geneve_port != udp_tunnel->udp_port) {
2130 				PMD_DRV_LOG(ERR, "Only one port allowed\n");
2131 				return -ENOSPC;
2132 			}
2133 			bp->geneve_port_cnt++;
2134 			return 0;
2135 		}
2136 		tunnel_type =
2137 			HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_GENEVE;
2138 		bp->geneve_port_cnt++;
2139 		break;
2140 	default:
2141 		PMD_DRV_LOG(ERR, "Tunnel type is not supported\n");
2142 		return -ENOTSUP;
2143 	}
2144 	rc = bnxt_hwrm_tunnel_dst_port_alloc(bp, udp_tunnel->udp_port,
2145 					     tunnel_type);
2146 	return rc;
2147 }
2148 
2149 static int
2150 bnxt_udp_tunnel_port_del_op(struct rte_eth_dev *eth_dev,
2151 			 struct rte_eth_udp_tunnel *udp_tunnel)
2152 {
2153 	struct bnxt *bp = eth_dev->data->dev_private;
2154 	uint16_t tunnel_type = 0;
2155 	uint16_t port = 0;
2156 	int rc = 0;
2157 
2158 	rc = is_bnxt_in_error(bp);
2159 	if (rc)
2160 		return rc;
2161 
2162 	switch (udp_tunnel->prot_type) {
2163 	case RTE_TUNNEL_TYPE_VXLAN:
2164 		if (!bp->vxlan_port_cnt) {
2165 			PMD_DRV_LOG(ERR, "No Tunnel port configured yet\n");
2166 			return -EINVAL;
2167 		}
2168 		if (bp->vxlan_port != udp_tunnel->udp_port) {
2169 			PMD_DRV_LOG(ERR, "Req Port: %d. Configured port: %d\n",
2170 				udp_tunnel->udp_port, bp->vxlan_port);
2171 			return -EINVAL;
2172 		}
2173 		if (--bp->vxlan_port_cnt)
2174 			return 0;
2175 
2176 		tunnel_type =
2177 			HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN;
2178 		port = bp->vxlan_fw_dst_port_id;
2179 		break;
2180 	case RTE_TUNNEL_TYPE_GENEVE:
2181 		if (!bp->geneve_port_cnt) {
2182 			PMD_DRV_LOG(ERR, "No Tunnel port configured yet\n");
2183 			return -EINVAL;
2184 		}
2185 		if (bp->geneve_port != udp_tunnel->udp_port) {
2186 			PMD_DRV_LOG(ERR, "Req Port: %d. Configured port: %d\n",
2187 				udp_tunnel->udp_port, bp->geneve_port);
2188 			return -EINVAL;
2189 		}
2190 		if (--bp->geneve_port_cnt)
2191 			return 0;
2192 
2193 		tunnel_type =
2194 			HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE;
2195 		port = bp->geneve_fw_dst_port_id;
2196 		break;
2197 	default:
2198 		PMD_DRV_LOG(ERR, "Tunnel type is not supported\n");
2199 		return -ENOTSUP;
2200 	}
2201 
2202 	rc = bnxt_hwrm_tunnel_dst_port_free(bp, port, tunnel_type);
2203 	return rc;
2204 }
2205 
2206 static int bnxt_del_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
2207 {
2208 	struct bnxt_filter_info *filter;
2209 	struct bnxt_vnic_info *vnic;
2210 	int rc = 0;
2211 	uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN;
2212 
2213 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
2214 	filter = STAILQ_FIRST(&vnic->filter);
2215 	while (filter) {
2216 		/* Search for this matching MAC+VLAN filter */
2217 		if (bnxt_vlan_filter_exists(bp, filter, chk, vlan_id)) {
2218 			/* Delete the filter */
2219 			rc = bnxt_hwrm_clear_l2_filter(bp, filter);
2220 			if (rc)
2221 				return rc;
2222 			STAILQ_REMOVE(&vnic->filter, filter,
2223 				      bnxt_filter_info, next);
2224 			bnxt_free_filter(bp, filter);
2225 			PMD_DRV_LOG(INFO,
2226 				    "Deleted vlan filter for %d\n",
2227 				    vlan_id);
2228 			return 0;
2229 		}
2230 		filter = STAILQ_NEXT(filter, next);
2231 	}
2232 	return -ENOENT;
2233 }
2234 
2235 static int bnxt_add_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
2236 {
2237 	struct bnxt_filter_info *filter;
2238 	struct bnxt_vnic_info *vnic;
2239 	int rc = 0;
2240 	uint32_t en = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN |
2241 		HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN_MASK;
2242 	uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN;
2243 
2244 	/* Implementation notes on the use of VNIC in this command:
2245 	 *
2246 	 * By default, these filters belong to default vnic for the function.
2247 	 * Once these filters are set up, only destination VNIC can be modified.
2248 	 * If the destination VNIC is not specified in this command,
2249 	 * then the HWRM shall only create an l2 context id.
2250 	 */
2251 
2252 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
2253 	filter = STAILQ_FIRST(&vnic->filter);
2254 	/* Check if the VLAN has already been added */
2255 	while (filter) {
2256 		if (bnxt_vlan_filter_exists(bp, filter, chk, vlan_id))
2257 			return -EEXIST;
2258 
2259 		filter = STAILQ_NEXT(filter, next);
2260 	}
2261 
2262 	/* No match found. Alloc a fresh filter and issue the L2_FILTER_ALLOC
2263 	 * command to create MAC+VLAN filter with the right flags, enables set.
2264 	 */
2265 	filter = bnxt_alloc_filter(bp);
2266 	if (!filter) {
2267 		PMD_DRV_LOG(ERR,
2268 			    "MAC/VLAN filter alloc failed\n");
2269 		return -ENOMEM;
2270 	}
2271 	/* MAC + VLAN ID filter */
2272 	/* If l2_ivlan == 0 and l2_ivlan_mask != 0, only
2273 	 * untagged packets are received
2274 	 *
2275 	 * If l2_ivlan != 0 and l2_ivlan_mask != 0, untagged
2276 	 * packets and only the programmed vlan's packets are received
2277 	 */
2278 	filter->l2_ivlan = vlan_id;
2279 	filter->l2_ivlan_mask = 0x0FFF;
2280 	filter->enables |= en;
2281 	filter->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_OUTERMOST;
2282 
2283 	rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
2284 	if (rc) {
2285 		/* Free the newly allocated filter as we were
2286 		 * not able to create the filter in hardware.
2287 		 */
2288 		bnxt_free_filter(bp, filter);
2289 		return rc;
2290 	}
2291 
2292 	filter->mac_index = 0;
2293 	/* Add this new filter to the list */
2294 	if (vlan_id == 0)
2295 		STAILQ_INSERT_HEAD(&vnic->filter, filter, next);
2296 	else
2297 		STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
2298 
2299 	PMD_DRV_LOG(INFO,
2300 		    "Added Vlan filter for %d\n", vlan_id);
2301 	return rc;
2302 }
2303 
2304 static int bnxt_vlan_filter_set_op(struct rte_eth_dev *eth_dev,
2305 		uint16_t vlan_id, int on)
2306 {
2307 	struct bnxt *bp = eth_dev->data->dev_private;
2308 	int rc;
2309 
2310 	rc = is_bnxt_in_error(bp);
2311 	if (rc)
2312 		return rc;
2313 
2314 	if (!eth_dev->data->dev_started) {
2315 		PMD_DRV_LOG(ERR, "port must be started before setting vlan\n");
2316 		return -EINVAL;
2317 	}
2318 
2319 	/* These operations apply to ALL existing MAC/VLAN filters */
2320 	if (on)
2321 		return bnxt_add_vlan_filter(bp, vlan_id);
2322 	else
2323 		return bnxt_del_vlan_filter(bp, vlan_id);
2324 }
2325 
2326 static int bnxt_del_dflt_mac_filter(struct bnxt *bp,
2327 				    struct bnxt_vnic_info *vnic)
2328 {
2329 	struct bnxt_filter_info *filter;
2330 	int rc;
2331 
2332 	filter = STAILQ_FIRST(&vnic->filter);
2333 	while (filter) {
2334 		if (filter->mac_index == 0 &&
2335 		    !memcmp(filter->l2_addr, bp->mac_addr,
2336 			    RTE_ETHER_ADDR_LEN)) {
2337 			rc = bnxt_hwrm_clear_l2_filter(bp, filter);
2338 			if (!rc) {
2339 				STAILQ_REMOVE(&vnic->filter, filter,
2340 					      bnxt_filter_info, next);
2341 				bnxt_free_filter(bp, filter);
2342 			}
2343 			return rc;
2344 		}
2345 		filter = STAILQ_NEXT(filter, next);
2346 	}
2347 	return 0;
2348 }
2349 
2350 static int
2351 bnxt_config_vlan_hw_filter(struct bnxt *bp, uint64_t rx_offloads)
2352 {
2353 	struct bnxt_vnic_info *vnic;
2354 	unsigned int i;
2355 	int rc;
2356 
2357 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
2358 	if (!(rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER)) {
2359 		/* Remove any VLAN filters programmed */
2360 		for (i = 0; i < RTE_ETHER_MAX_VLAN_ID; i++)
2361 			bnxt_del_vlan_filter(bp, i);
2362 
2363 		rc = bnxt_add_mac_filter(bp, vnic, NULL, 0, 0);
2364 		if (rc)
2365 			return rc;
2366 	} else {
2367 		/* Default filter will allow packets that match the
2368 		 * dest mac. So, it has to be deleted, otherwise, we
2369 		 * will endup receiving vlan packets for which the
2370 		 * filter is not programmed, when hw-vlan-filter
2371 		 * configuration is ON
2372 		 */
2373 		bnxt_del_dflt_mac_filter(bp, vnic);
2374 		/* This filter will allow only untagged packets */
2375 		bnxt_add_vlan_filter(bp, 0);
2376 	}
2377 	PMD_DRV_LOG(DEBUG, "VLAN Filtering: %d\n",
2378 		    !!(rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER));
2379 
2380 	return 0;
2381 }
2382 
2383 static int bnxt_free_one_vnic(struct bnxt *bp, uint16_t vnic_id)
2384 {
2385 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2386 	unsigned int i;
2387 	int rc;
2388 
2389 	/* Destroy vnic filters and vnic */
2390 	if (bp->eth_dev->data->dev_conf.rxmode.offloads &
2391 	    DEV_RX_OFFLOAD_VLAN_FILTER) {
2392 		for (i = 0; i < RTE_ETHER_MAX_VLAN_ID; i++)
2393 			bnxt_del_vlan_filter(bp, i);
2394 	}
2395 	bnxt_del_dflt_mac_filter(bp, vnic);
2396 
2397 	rc = bnxt_hwrm_vnic_free(bp, vnic);
2398 	if (rc)
2399 		return rc;
2400 
2401 	rte_free(vnic->fw_grp_ids);
2402 	vnic->fw_grp_ids = NULL;
2403 
2404 	vnic->rx_queue_cnt = 0;
2405 
2406 	return 0;
2407 }
2408 
2409 static int
2410 bnxt_config_vlan_hw_stripping(struct bnxt *bp, uint64_t rx_offloads)
2411 {
2412 	struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp);
2413 	int rc;
2414 
2415 	/* Destroy, recreate and reconfigure the default vnic */
2416 	rc = bnxt_free_one_vnic(bp, 0);
2417 	if (rc)
2418 		return rc;
2419 
2420 	/* default vnic 0 */
2421 	rc = bnxt_setup_one_vnic(bp, 0);
2422 	if (rc)
2423 		return rc;
2424 
2425 	if (bp->eth_dev->data->dev_conf.rxmode.offloads &
2426 	    DEV_RX_OFFLOAD_VLAN_FILTER) {
2427 		rc = bnxt_add_vlan_filter(bp, 0);
2428 		if (rc)
2429 			return rc;
2430 		rc = bnxt_restore_vlan_filters(bp);
2431 		if (rc)
2432 			return rc;
2433 	} else {
2434 		rc = bnxt_add_mac_filter(bp, vnic, NULL, 0, 0);
2435 		if (rc)
2436 			return rc;
2437 	}
2438 
2439 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
2440 	if (rc)
2441 		return rc;
2442 
2443 	PMD_DRV_LOG(DEBUG, "VLAN Strip Offload: %d\n",
2444 		    !!(rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP));
2445 
2446 	return rc;
2447 }
2448 
2449 static int
2450 bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask)
2451 {
2452 	uint64_t rx_offloads = dev->data->dev_conf.rxmode.offloads;
2453 	struct bnxt *bp = dev->data->dev_private;
2454 	int rc;
2455 
2456 	rc = is_bnxt_in_error(bp);
2457 	if (rc)
2458 		return rc;
2459 
2460 	/* Filter settings will get applied when port is started */
2461 	if (!dev->data->dev_started)
2462 		return 0;
2463 
2464 	if (mask & ETH_VLAN_FILTER_MASK) {
2465 		/* Enable or disable VLAN filtering */
2466 		rc = bnxt_config_vlan_hw_filter(bp, rx_offloads);
2467 		if (rc)
2468 			return rc;
2469 	}
2470 
2471 	if (mask & ETH_VLAN_STRIP_MASK) {
2472 		/* Enable or disable VLAN stripping */
2473 		rc = bnxt_config_vlan_hw_stripping(bp, rx_offloads);
2474 		if (rc)
2475 			return rc;
2476 	}
2477 
2478 	if (mask & ETH_VLAN_EXTEND_MASK) {
2479 		if (rx_offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
2480 			PMD_DRV_LOG(DEBUG, "Extend VLAN supported\n");
2481 		else
2482 			PMD_DRV_LOG(INFO, "Extend VLAN unsupported\n");
2483 	}
2484 
2485 	return 0;
2486 }
2487 
2488 static int
2489 bnxt_vlan_tpid_set_op(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
2490 		      uint16_t tpid)
2491 {
2492 	struct bnxt *bp = dev->data->dev_private;
2493 	int qinq = dev->data->dev_conf.rxmode.offloads &
2494 		   DEV_RX_OFFLOAD_VLAN_EXTEND;
2495 
2496 	if (vlan_type != ETH_VLAN_TYPE_INNER &&
2497 	    vlan_type != ETH_VLAN_TYPE_OUTER) {
2498 		PMD_DRV_LOG(ERR,
2499 			    "Unsupported vlan type.");
2500 		return -EINVAL;
2501 	}
2502 	if (!qinq) {
2503 		PMD_DRV_LOG(ERR,
2504 			    "QinQ not enabled. Needs to be ON as we can "
2505 			    "accelerate only outer vlan\n");
2506 		return -EINVAL;
2507 	}
2508 
2509 	if (vlan_type == ETH_VLAN_TYPE_OUTER) {
2510 		switch (tpid) {
2511 		case RTE_ETHER_TYPE_QINQ:
2512 			bp->outer_tpid_bd =
2513 				TX_BD_LONG_CFA_META_VLAN_TPID_TPID88A8;
2514 				break;
2515 		case RTE_ETHER_TYPE_VLAN:
2516 			bp->outer_tpid_bd =
2517 				TX_BD_LONG_CFA_META_VLAN_TPID_TPID8100;
2518 				break;
2519 		case RTE_ETHER_TYPE_QINQ1:
2520 			bp->outer_tpid_bd =
2521 				TX_BD_LONG_CFA_META_VLAN_TPID_TPID9100;
2522 				break;
2523 		case RTE_ETHER_TYPE_QINQ2:
2524 			bp->outer_tpid_bd =
2525 				TX_BD_LONG_CFA_META_VLAN_TPID_TPID9200;
2526 				break;
2527 		case RTE_ETHER_TYPE_QINQ3:
2528 			bp->outer_tpid_bd =
2529 				 TX_BD_LONG_CFA_META_VLAN_TPID_TPID9300;
2530 				break;
2531 		default:
2532 			PMD_DRV_LOG(ERR, "Invalid TPID: %x\n", tpid);
2533 			return -EINVAL;
2534 		}
2535 		bp->outer_tpid_bd |= tpid;
2536 		PMD_DRV_LOG(INFO, "outer_tpid_bd = %x\n", bp->outer_tpid_bd);
2537 	} else if (vlan_type == ETH_VLAN_TYPE_INNER) {
2538 		PMD_DRV_LOG(ERR,
2539 			    "Can accelerate only outer vlan in QinQ\n");
2540 		return -EINVAL;
2541 	}
2542 
2543 	return 0;
2544 }
2545 
2546 static int
2547 bnxt_set_default_mac_addr_op(struct rte_eth_dev *dev,
2548 			     struct rte_ether_addr *addr)
2549 {
2550 	struct bnxt *bp = dev->data->dev_private;
2551 	/* Default Filter is tied to VNIC 0 */
2552 	struct bnxt_vnic_info *vnic = BNXT_GET_DEFAULT_VNIC(bp);
2553 	int rc;
2554 
2555 	rc = is_bnxt_in_error(bp);
2556 	if (rc)
2557 		return rc;
2558 
2559 	if (BNXT_VF(bp) && !BNXT_VF_IS_TRUSTED(bp))
2560 		return -EPERM;
2561 
2562 	if (rte_is_zero_ether_addr(addr))
2563 		return -EINVAL;
2564 
2565 	/* Filter settings will get applied when port is started */
2566 	if (!dev->data->dev_started)
2567 		return 0;
2568 
2569 	/* Check if the requested MAC is already added */
2570 	if (memcmp(addr, bp->mac_addr, RTE_ETHER_ADDR_LEN) == 0)
2571 		return 0;
2572 
2573 	/* Destroy filter and re-create it */
2574 	bnxt_del_dflt_mac_filter(bp, vnic);
2575 
2576 	memcpy(bp->mac_addr, addr, RTE_ETHER_ADDR_LEN);
2577 	if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
2578 		/* This filter will allow only untagged packets */
2579 		rc = bnxt_add_vlan_filter(bp, 0);
2580 	} else {
2581 		rc = bnxt_add_mac_filter(bp, vnic, addr, 0, 0);
2582 	}
2583 
2584 	PMD_DRV_LOG(DEBUG, "Set MAC addr\n");
2585 	return rc;
2586 }
2587 
2588 static int
2589 bnxt_dev_set_mc_addr_list_op(struct rte_eth_dev *eth_dev,
2590 			  struct rte_ether_addr *mc_addr_set,
2591 			  uint32_t nb_mc_addr)
2592 {
2593 	struct bnxt *bp = eth_dev->data->dev_private;
2594 	char *mc_addr_list = (char *)mc_addr_set;
2595 	struct bnxt_vnic_info *vnic;
2596 	uint32_t off = 0, i = 0;
2597 	int rc;
2598 
2599 	rc = is_bnxt_in_error(bp);
2600 	if (rc)
2601 		return rc;
2602 
2603 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
2604 
2605 	if (nb_mc_addr > BNXT_MAX_MC_ADDRS) {
2606 		vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
2607 		goto allmulti;
2608 	}
2609 
2610 	/* TODO Check for Duplicate mcast addresses */
2611 	vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
2612 	for (i = 0; i < nb_mc_addr; i++) {
2613 		memcpy(vnic->mc_list + off, &mc_addr_list[i],
2614 			RTE_ETHER_ADDR_LEN);
2615 		off += RTE_ETHER_ADDR_LEN;
2616 	}
2617 
2618 	vnic->mc_addr_cnt = i;
2619 	if (vnic->mc_addr_cnt)
2620 		vnic->flags |= BNXT_VNIC_INFO_MCAST;
2621 	else
2622 		vnic->flags &= ~BNXT_VNIC_INFO_MCAST;
2623 
2624 allmulti:
2625 	return bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
2626 }
2627 
2628 static int
2629 bnxt_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
2630 {
2631 	struct bnxt *bp = dev->data->dev_private;
2632 	uint8_t fw_major = (bp->fw_ver >> 24) & 0xff;
2633 	uint8_t fw_minor = (bp->fw_ver >> 16) & 0xff;
2634 	uint8_t fw_updt = (bp->fw_ver >> 8) & 0xff;
2635 	uint8_t fw_rsvd = bp->fw_ver & 0xff;
2636 	int ret;
2637 
2638 	ret = snprintf(fw_version, fw_size, "%d.%d.%d.%d",
2639 			fw_major, fw_minor, fw_updt, fw_rsvd);
2640 
2641 	ret += 1; /* add the size of '\0' */
2642 	if (fw_size < (uint32_t)ret)
2643 		return ret;
2644 	else
2645 		return 0;
2646 }
2647 
2648 static void
2649 bnxt_rxq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
2650 	struct rte_eth_rxq_info *qinfo)
2651 {
2652 	struct bnxt *bp = dev->data->dev_private;
2653 	struct bnxt_rx_queue *rxq;
2654 
2655 	if (is_bnxt_in_error(bp))
2656 		return;
2657 
2658 	rxq = dev->data->rx_queues[queue_id];
2659 
2660 	qinfo->mp = rxq->mb_pool;
2661 	qinfo->scattered_rx = dev->data->scattered_rx;
2662 	qinfo->nb_desc = rxq->nb_rx_desc;
2663 
2664 	qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2665 	qinfo->conf.rx_drop_en = rxq->drop_en;
2666 	qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
2667 	qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
2668 }
2669 
2670 static void
2671 bnxt_txq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
2672 	struct rte_eth_txq_info *qinfo)
2673 {
2674 	struct bnxt *bp = dev->data->dev_private;
2675 	struct bnxt_tx_queue *txq;
2676 
2677 	if (is_bnxt_in_error(bp))
2678 		return;
2679 
2680 	txq = dev->data->tx_queues[queue_id];
2681 
2682 	qinfo->nb_desc = txq->nb_tx_desc;
2683 
2684 	qinfo->conf.tx_thresh.pthresh = txq->pthresh;
2685 	qinfo->conf.tx_thresh.hthresh = txq->hthresh;
2686 	qinfo->conf.tx_thresh.wthresh = txq->wthresh;
2687 
2688 	qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
2689 	qinfo->conf.tx_rs_thresh = 0;
2690 	qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
2691 	qinfo->conf.offloads = txq->offloads;
2692 }
2693 
2694 static const struct {
2695 	eth_rx_burst_t pkt_burst;
2696 	const char *info;
2697 } bnxt_rx_burst_info[] = {
2698 	{bnxt_recv_pkts,	"Scalar"},
2699 #if defined(RTE_ARCH_X86)
2700 	{bnxt_recv_pkts_vec,	"Vector SSE"},
2701 #elif defined(RTE_ARCH_ARM64)
2702 	{bnxt_recv_pkts_vec,	"Vector Neon"},
2703 #endif
2704 };
2705 
2706 static int
2707 bnxt_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
2708 		       struct rte_eth_burst_mode *mode)
2709 {
2710 	eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
2711 	size_t i;
2712 
2713 	for (i = 0; i < RTE_DIM(bnxt_rx_burst_info); i++) {
2714 		if (pkt_burst == bnxt_rx_burst_info[i].pkt_burst) {
2715 			snprintf(mode->info, sizeof(mode->info), "%s",
2716 				 bnxt_rx_burst_info[i].info);
2717 			return 0;
2718 		}
2719 	}
2720 
2721 	return -EINVAL;
2722 }
2723 
2724 static const struct {
2725 	eth_tx_burst_t pkt_burst;
2726 	const char *info;
2727 } bnxt_tx_burst_info[] = {
2728 	{bnxt_xmit_pkts,	"Scalar"},
2729 #if defined(RTE_ARCH_X86)
2730 	{bnxt_xmit_pkts_vec,	"Vector SSE"},
2731 #elif defined(RTE_ARCH_ARM64)
2732 	{bnxt_xmit_pkts_vec,	"Vector Neon"},
2733 #endif
2734 };
2735 
2736 static int
2737 bnxt_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
2738 		       struct rte_eth_burst_mode *mode)
2739 {
2740 	eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
2741 	size_t i;
2742 
2743 	for (i = 0; i < RTE_DIM(bnxt_tx_burst_info); i++) {
2744 		if (pkt_burst == bnxt_tx_burst_info[i].pkt_burst) {
2745 			snprintf(mode->info, sizeof(mode->info), "%s",
2746 				 bnxt_tx_burst_info[i].info);
2747 			return 0;
2748 		}
2749 	}
2750 
2751 	return -EINVAL;
2752 }
2753 
2754 int bnxt_mtu_set_op(struct rte_eth_dev *eth_dev, uint16_t new_mtu)
2755 {
2756 	struct bnxt *bp = eth_dev->data->dev_private;
2757 	uint32_t new_pkt_size;
2758 	uint32_t rc = 0;
2759 	uint32_t i;
2760 
2761 	rc = is_bnxt_in_error(bp);
2762 	if (rc)
2763 		return rc;
2764 
2765 	/* Exit if receive queues are not configured yet */
2766 	if (!eth_dev->data->nb_rx_queues)
2767 		return rc;
2768 
2769 	new_pkt_size = new_mtu + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN +
2770 		       VLAN_TAG_SIZE * BNXT_NUM_VLANS;
2771 
2772 	/*
2773 	 * Disallow any MTU change that would require scattered receive support
2774 	 * if it is not already enabled.
2775 	 */
2776 	if (eth_dev->data->dev_started &&
2777 	    !eth_dev->data->scattered_rx &&
2778 	    (new_pkt_size >
2779 	     eth_dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)) {
2780 		PMD_DRV_LOG(ERR,
2781 			    "MTU change would require scattered rx support. ");
2782 		PMD_DRV_LOG(ERR, "Stop port before changing MTU.\n");
2783 		return -EINVAL;
2784 	}
2785 
2786 	if (new_mtu > RTE_ETHER_MTU) {
2787 		bp->flags |= BNXT_FLAG_JUMBO;
2788 		bp->eth_dev->data->dev_conf.rxmode.offloads |=
2789 			DEV_RX_OFFLOAD_JUMBO_FRAME;
2790 	} else {
2791 		bp->eth_dev->data->dev_conf.rxmode.offloads &=
2792 			~DEV_RX_OFFLOAD_JUMBO_FRAME;
2793 		bp->flags &= ~BNXT_FLAG_JUMBO;
2794 	}
2795 
2796 	/* Is there a change in mtu setting? */
2797 	if (eth_dev->data->dev_conf.rxmode.max_rx_pkt_len == new_pkt_size)
2798 		return rc;
2799 
2800 	for (i = 0; i < bp->nr_vnics; i++) {
2801 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2802 		uint16_t size = 0;
2803 
2804 		vnic->mru = BNXT_VNIC_MRU(new_mtu);
2805 		rc = bnxt_hwrm_vnic_cfg(bp, vnic);
2806 		if (rc)
2807 			break;
2808 
2809 		size = rte_pktmbuf_data_room_size(bp->rx_queues[0]->mb_pool);
2810 		size -= RTE_PKTMBUF_HEADROOM;
2811 
2812 		if (size < new_mtu) {
2813 			rc = bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
2814 			if (rc)
2815 				return rc;
2816 		}
2817 	}
2818 
2819 	if (!rc)
2820 		eth_dev->data->dev_conf.rxmode.max_rx_pkt_len = new_pkt_size;
2821 
2822 	PMD_DRV_LOG(INFO, "New MTU is %d\n", new_mtu);
2823 
2824 	return rc;
2825 }
2826 
2827 static int
2828 bnxt_vlan_pvid_set_op(struct rte_eth_dev *dev, uint16_t pvid, int on)
2829 {
2830 	struct bnxt *bp = dev->data->dev_private;
2831 	uint16_t vlan = bp->vlan;
2832 	int rc;
2833 
2834 	rc = is_bnxt_in_error(bp);
2835 	if (rc)
2836 		return rc;
2837 
2838 	if (!BNXT_SINGLE_PF(bp) || BNXT_VF(bp)) {
2839 		PMD_DRV_LOG(ERR,
2840 			"PVID cannot be modified for this function\n");
2841 		return -ENOTSUP;
2842 	}
2843 	bp->vlan = on ? pvid : 0;
2844 
2845 	rc = bnxt_hwrm_set_default_vlan(bp, 0, 0);
2846 	if (rc)
2847 		bp->vlan = vlan;
2848 	return rc;
2849 }
2850 
2851 static int
2852 bnxt_dev_led_on_op(struct rte_eth_dev *dev)
2853 {
2854 	struct bnxt *bp = dev->data->dev_private;
2855 	int rc;
2856 
2857 	rc = is_bnxt_in_error(bp);
2858 	if (rc)
2859 		return rc;
2860 
2861 	return bnxt_hwrm_port_led_cfg(bp, true);
2862 }
2863 
2864 static int
2865 bnxt_dev_led_off_op(struct rte_eth_dev *dev)
2866 {
2867 	struct bnxt *bp = dev->data->dev_private;
2868 	int rc;
2869 
2870 	rc = is_bnxt_in_error(bp);
2871 	if (rc)
2872 		return rc;
2873 
2874 	return bnxt_hwrm_port_led_cfg(bp, false);
2875 }
2876 
2877 static uint32_t
2878 bnxt_rx_queue_count_op(struct rte_eth_dev *dev, uint16_t rx_queue_id)
2879 {
2880 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2881 	uint32_t desc = 0, raw_cons = 0, cons;
2882 	struct bnxt_cp_ring_info *cpr;
2883 	struct bnxt_rx_queue *rxq;
2884 	struct rx_pkt_cmpl *rxcmp;
2885 	int rc;
2886 
2887 	rc = is_bnxt_in_error(bp);
2888 	if (rc)
2889 		return rc;
2890 
2891 	rxq = dev->data->rx_queues[rx_queue_id];
2892 	cpr = rxq->cp_ring;
2893 	raw_cons = cpr->cp_raw_cons;
2894 
2895 	while (1) {
2896 		cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
2897 		rte_prefetch0(&cpr->cp_desc_ring[cons]);
2898 		rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
2899 
2900 		if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct)) {
2901 			break;
2902 		} else {
2903 			raw_cons++;
2904 			desc++;
2905 		}
2906 	}
2907 
2908 	return desc;
2909 }
2910 
2911 static int
2912 bnxt_rx_descriptor_status_op(void *rx_queue, uint16_t offset)
2913 {
2914 	struct bnxt_rx_queue *rxq = (struct bnxt_rx_queue *)rx_queue;
2915 	struct bnxt_rx_ring_info *rxr;
2916 	struct bnxt_cp_ring_info *cpr;
2917 	struct rte_mbuf *rx_buf;
2918 	struct rx_pkt_cmpl *rxcmp;
2919 	uint32_t cons, cp_cons;
2920 	int rc;
2921 
2922 	if (!rxq)
2923 		return -EINVAL;
2924 
2925 	rc = is_bnxt_in_error(rxq->bp);
2926 	if (rc)
2927 		return rc;
2928 
2929 	cpr = rxq->cp_ring;
2930 	rxr = rxq->rx_ring;
2931 
2932 	if (offset >= rxq->nb_rx_desc)
2933 		return -EINVAL;
2934 
2935 	cons = RING_CMP(cpr->cp_ring_struct, offset);
2936 	cp_cons = cpr->cp_raw_cons;
2937 	rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
2938 
2939 	if (cons > cp_cons) {
2940 		if (CMPL_VALID(rxcmp, cpr->valid))
2941 			return RTE_ETH_RX_DESC_DONE;
2942 	} else {
2943 		if (CMPL_VALID(rxcmp, !cpr->valid))
2944 			return RTE_ETH_RX_DESC_DONE;
2945 	}
2946 	rx_buf = rxr->rx_buf_ring[cons];
2947 	if (rx_buf == NULL || rx_buf == &rxq->fake_mbuf)
2948 		return RTE_ETH_RX_DESC_UNAVAIL;
2949 
2950 
2951 	return RTE_ETH_RX_DESC_AVAIL;
2952 }
2953 
2954 static int
2955 bnxt_tx_descriptor_status_op(void *tx_queue, uint16_t offset)
2956 {
2957 	struct bnxt_tx_queue *txq = (struct bnxt_tx_queue *)tx_queue;
2958 	struct bnxt_tx_ring_info *txr;
2959 	struct bnxt_cp_ring_info *cpr;
2960 	struct bnxt_sw_tx_bd *tx_buf;
2961 	struct tx_pkt_cmpl *txcmp;
2962 	uint32_t cons, cp_cons;
2963 	int rc;
2964 
2965 	if (!txq)
2966 		return -EINVAL;
2967 
2968 	rc = is_bnxt_in_error(txq->bp);
2969 	if (rc)
2970 		return rc;
2971 
2972 	cpr = txq->cp_ring;
2973 	txr = txq->tx_ring;
2974 
2975 	if (offset >= txq->nb_tx_desc)
2976 		return -EINVAL;
2977 
2978 	cons = RING_CMP(cpr->cp_ring_struct, offset);
2979 	txcmp = (struct tx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
2980 	cp_cons = cpr->cp_raw_cons;
2981 
2982 	if (cons > cp_cons) {
2983 		if (CMPL_VALID(txcmp, cpr->valid))
2984 			return RTE_ETH_TX_DESC_UNAVAIL;
2985 	} else {
2986 		if (CMPL_VALID(txcmp, !cpr->valid))
2987 			return RTE_ETH_TX_DESC_UNAVAIL;
2988 	}
2989 	tx_buf = &txr->tx_buf_ring[cons];
2990 	if (tx_buf->mbuf == NULL)
2991 		return RTE_ETH_TX_DESC_DONE;
2992 
2993 	return RTE_ETH_TX_DESC_FULL;
2994 }
2995 
2996 static int
2997 bnxt_parse_fdir_filter(struct bnxt *bp,
2998 		       struct rte_eth_fdir_filter *fdir,
2999 		       struct bnxt_filter_info *filter)
3000 {
3001 	enum rte_fdir_mode fdir_mode =
3002 		bp->eth_dev->data->dev_conf.fdir_conf.mode;
3003 	struct bnxt_vnic_info *vnic0, *vnic;
3004 	struct bnxt_filter_info *filter1;
3005 	uint32_t en = 0;
3006 	int i;
3007 
3008 	if (fdir_mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
3009 		return -EINVAL;
3010 
3011 	filter->l2_ovlan = fdir->input.flow_ext.vlan_tci;
3012 	en |= EM_FLOW_ALLOC_INPUT_EN_OVLAN_VID;
3013 
3014 	switch (fdir->input.flow_type) {
3015 	case RTE_ETH_FLOW_IPV4:
3016 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
3017 		/* FALLTHROUGH */
3018 		filter->src_ipaddr[0] = fdir->input.flow.ip4_flow.src_ip;
3019 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
3020 		filter->dst_ipaddr[0] = fdir->input.flow.ip4_flow.dst_ip;
3021 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
3022 		filter->ip_protocol = fdir->input.flow.ip4_flow.proto;
3023 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
3024 		filter->ip_addr_type =
3025 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
3026 		filter->src_ipaddr_mask[0] = 0xffffffff;
3027 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
3028 		filter->dst_ipaddr_mask[0] = 0xffffffff;
3029 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
3030 		filter->ethertype = 0x800;
3031 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
3032 		break;
3033 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
3034 		filter->src_port = fdir->input.flow.tcp4_flow.src_port;
3035 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
3036 		filter->dst_port = fdir->input.flow.tcp4_flow.dst_port;
3037 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
3038 		filter->dst_port_mask = 0xffff;
3039 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
3040 		filter->src_port_mask = 0xffff;
3041 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
3042 		filter->src_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.src_ip;
3043 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
3044 		filter->dst_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.dst_ip;
3045 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
3046 		filter->ip_protocol = 6;
3047 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
3048 		filter->ip_addr_type =
3049 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
3050 		filter->src_ipaddr_mask[0] = 0xffffffff;
3051 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
3052 		filter->dst_ipaddr_mask[0] = 0xffffffff;
3053 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
3054 		filter->ethertype = 0x800;
3055 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
3056 		break;
3057 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
3058 		filter->src_port = fdir->input.flow.udp4_flow.src_port;
3059 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
3060 		filter->dst_port = fdir->input.flow.udp4_flow.dst_port;
3061 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
3062 		filter->dst_port_mask = 0xffff;
3063 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
3064 		filter->src_port_mask = 0xffff;
3065 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
3066 		filter->src_ipaddr[0] = fdir->input.flow.udp4_flow.ip.src_ip;
3067 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
3068 		filter->dst_ipaddr[0] = fdir->input.flow.udp4_flow.ip.dst_ip;
3069 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
3070 		filter->ip_protocol = 17;
3071 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
3072 		filter->ip_addr_type =
3073 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
3074 		filter->src_ipaddr_mask[0] = 0xffffffff;
3075 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
3076 		filter->dst_ipaddr_mask[0] = 0xffffffff;
3077 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
3078 		filter->ethertype = 0x800;
3079 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
3080 		break;
3081 	case RTE_ETH_FLOW_IPV6:
3082 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
3083 		/* FALLTHROUGH */
3084 		filter->ip_addr_type =
3085 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
3086 		filter->ip_protocol = fdir->input.flow.ipv6_flow.proto;
3087 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
3088 		rte_memcpy(filter->src_ipaddr,
3089 			   fdir->input.flow.ipv6_flow.src_ip, 16);
3090 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
3091 		rte_memcpy(filter->dst_ipaddr,
3092 			   fdir->input.flow.ipv6_flow.dst_ip, 16);
3093 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
3094 		memset(filter->dst_ipaddr_mask, 0xff, 16);
3095 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
3096 		memset(filter->src_ipaddr_mask, 0xff, 16);
3097 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
3098 		filter->ethertype = 0x86dd;
3099 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
3100 		break;
3101 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
3102 		filter->src_port = fdir->input.flow.tcp6_flow.src_port;
3103 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
3104 		filter->dst_port = fdir->input.flow.tcp6_flow.dst_port;
3105 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
3106 		filter->dst_port_mask = 0xffff;
3107 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
3108 		filter->src_port_mask = 0xffff;
3109 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
3110 		filter->ip_addr_type =
3111 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
3112 		filter->ip_protocol = fdir->input.flow.tcp6_flow.ip.proto;
3113 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
3114 		rte_memcpy(filter->src_ipaddr,
3115 			   fdir->input.flow.tcp6_flow.ip.src_ip, 16);
3116 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
3117 		rte_memcpy(filter->dst_ipaddr,
3118 			   fdir->input.flow.tcp6_flow.ip.dst_ip, 16);
3119 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
3120 		memset(filter->dst_ipaddr_mask, 0xff, 16);
3121 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
3122 		memset(filter->src_ipaddr_mask, 0xff, 16);
3123 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
3124 		filter->ethertype = 0x86dd;
3125 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
3126 		break;
3127 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
3128 		filter->src_port = fdir->input.flow.udp6_flow.src_port;
3129 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
3130 		filter->dst_port = fdir->input.flow.udp6_flow.dst_port;
3131 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
3132 		filter->dst_port_mask = 0xffff;
3133 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
3134 		filter->src_port_mask = 0xffff;
3135 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
3136 		filter->ip_addr_type =
3137 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
3138 		filter->ip_protocol = fdir->input.flow.udp6_flow.ip.proto;
3139 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
3140 		rte_memcpy(filter->src_ipaddr,
3141 			   fdir->input.flow.udp6_flow.ip.src_ip, 16);
3142 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
3143 		rte_memcpy(filter->dst_ipaddr,
3144 			   fdir->input.flow.udp6_flow.ip.dst_ip, 16);
3145 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
3146 		memset(filter->dst_ipaddr_mask, 0xff, 16);
3147 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
3148 		memset(filter->src_ipaddr_mask, 0xff, 16);
3149 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
3150 		filter->ethertype = 0x86dd;
3151 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
3152 		break;
3153 	case RTE_ETH_FLOW_L2_PAYLOAD:
3154 		filter->ethertype = fdir->input.flow.l2_flow.ether_type;
3155 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
3156 		break;
3157 	case RTE_ETH_FLOW_VXLAN:
3158 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
3159 			return -EINVAL;
3160 		filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
3161 		filter->tunnel_type =
3162 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
3163 		en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
3164 		break;
3165 	case RTE_ETH_FLOW_NVGRE:
3166 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
3167 			return -EINVAL;
3168 		filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
3169 		filter->tunnel_type =
3170 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_NVGRE;
3171 		en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
3172 		break;
3173 	case RTE_ETH_FLOW_UNKNOWN:
3174 	case RTE_ETH_FLOW_RAW:
3175 	case RTE_ETH_FLOW_FRAG_IPV4:
3176 	case RTE_ETH_FLOW_NONFRAG_IPV4_SCTP:
3177 	case RTE_ETH_FLOW_FRAG_IPV6:
3178 	case RTE_ETH_FLOW_NONFRAG_IPV6_SCTP:
3179 	case RTE_ETH_FLOW_IPV6_EX:
3180 	case RTE_ETH_FLOW_IPV6_TCP_EX:
3181 	case RTE_ETH_FLOW_IPV6_UDP_EX:
3182 	case RTE_ETH_FLOW_GENEVE:
3183 		/* FALLTHROUGH */
3184 	default:
3185 		return -EINVAL;
3186 	}
3187 
3188 	vnic0 = BNXT_GET_DEFAULT_VNIC(bp);
3189 	vnic = &bp->vnic_info[fdir->action.rx_queue];
3190 	if (vnic == NULL) {
3191 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", fdir->action.rx_queue);
3192 		return -EINVAL;
3193 	}
3194 
3195 	if (fdir_mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
3196 		rte_memcpy(filter->dst_macaddr,
3197 			fdir->input.flow.mac_vlan_flow.mac_addr.addr_bytes, 6);
3198 			en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
3199 	}
3200 
3201 	if (fdir->action.behavior == RTE_ETH_FDIR_REJECT) {
3202 		filter->flags = HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
3203 		filter1 = STAILQ_FIRST(&vnic0->filter);
3204 		//filter1 = bnxt_get_l2_filter(bp, filter, vnic0);
3205 	} else {
3206 		filter->dst_id = vnic->fw_vnic_id;
3207 		for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
3208 			if (filter->dst_macaddr[i] == 0x00)
3209 				filter1 = STAILQ_FIRST(&vnic0->filter);
3210 			else
3211 				filter1 = bnxt_get_l2_filter(bp, filter, vnic);
3212 	}
3213 
3214 	if (filter1 == NULL)
3215 		return -EINVAL;
3216 
3217 	en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
3218 	filter->fw_l2_filter_id = filter1->fw_l2_filter_id;
3219 
3220 	filter->enables = en;
3221 
3222 	return 0;
3223 }
3224 
3225 static struct bnxt_filter_info *
3226 bnxt_match_fdir(struct bnxt *bp, struct bnxt_filter_info *nf,
3227 		struct bnxt_vnic_info **mvnic)
3228 {
3229 	struct bnxt_filter_info *mf = NULL;
3230 	int i;
3231 
3232 	for (i = bp->nr_vnics - 1; i >= 0; i--) {
3233 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3234 
3235 		STAILQ_FOREACH(mf, &vnic->filter, next) {
3236 			if (mf->filter_type == nf->filter_type &&
3237 			    mf->flags == nf->flags &&
3238 			    mf->src_port == nf->src_port &&
3239 			    mf->src_port_mask == nf->src_port_mask &&
3240 			    mf->dst_port == nf->dst_port &&
3241 			    mf->dst_port_mask == nf->dst_port_mask &&
3242 			    mf->ip_protocol == nf->ip_protocol &&
3243 			    mf->ip_addr_type == nf->ip_addr_type &&
3244 			    mf->ethertype == nf->ethertype &&
3245 			    mf->vni == nf->vni &&
3246 			    mf->tunnel_type == nf->tunnel_type &&
3247 			    mf->l2_ovlan == nf->l2_ovlan &&
3248 			    mf->l2_ovlan_mask == nf->l2_ovlan_mask &&
3249 			    mf->l2_ivlan == nf->l2_ivlan &&
3250 			    mf->l2_ivlan_mask == nf->l2_ivlan_mask &&
3251 			    !memcmp(mf->l2_addr, nf->l2_addr,
3252 				    RTE_ETHER_ADDR_LEN) &&
3253 			    !memcmp(mf->l2_addr_mask, nf->l2_addr_mask,
3254 				    RTE_ETHER_ADDR_LEN) &&
3255 			    !memcmp(mf->src_macaddr, nf->src_macaddr,
3256 				    RTE_ETHER_ADDR_LEN) &&
3257 			    !memcmp(mf->dst_macaddr, nf->dst_macaddr,
3258 				    RTE_ETHER_ADDR_LEN) &&
3259 			    !memcmp(mf->src_ipaddr, nf->src_ipaddr,
3260 				    sizeof(nf->src_ipaddr)) &&
3261 			    !memcmp(mf->src_ipaddr_mask, nf->src_ipaddr_mask,
3262 				    sizeof(nf->src_ipaddr_mask)) &&
3263 			    !memcmp(mf->dst_ipaddr, nf->dst_ipaddr,
3264 				    sizeof(nf->dst_ipaddr)) &&
3265 			    !memcmp(mf->dst_ipaddr_mask, nf->dst_ipaddr_mask,
3266 				    sizeof(nf->dst_ipaddr_mask))) {
3267 				if (mvnic)
3268 					*mvnic = vnic;
3269 				return mf;
3270 			}
3271 		}
3272 	}
3273 	return NULL;
3274 }
3275 
3276 static int
3277 bnxt_fdir_filter(struct rte_eth_dev *dev,
3278 		 enum rte_filter_op filter_op,
3279 		 void *arg)
3280 {
3281 	struct bnxt *bp = dev->data->dev_private;
3282 	struct rte_eth_fdir_filter *fdir  = (struct rte_eth_fdir_filter *)arg;
3283 	struct bnxt_filter_info *filter, *match;
3284 	struct bnxt_vnic_info *vnic, *mvnic;
3285 	int ret = 0, i;
3286 
3287 	if (filter_op == RTE_ETH_FILTER_NOP)
3288 		return 0;
3289 
3290 	if (arg == NULL && filter_op != RTE_ETH_FILTER_FLUSH)
3291 		return -EINVAL;
3292 
3293 	switch (filter_op) {
3294 	case RTE_ETH_FILTER_ADD:
3295 	case RTE_ETH_FILTER_DELETE:
3296 		/* FALLTHROUGH */
3297 		filter = bnxt_get_unused_filter(bp);
3298 		if (filter == NULL) {
3299 			PMD_DRV_LOG(ERR,
3300 				"Not enough resources for a new flow.\n");
3301 			return -ENOMEM;
3302 		}
3303 
3304 		ret = bnxt_parse_fdir_filter(bp, fdir, filter);
3305 		if (ret != 0)
3306 			goto free_filter;
3307 		filter->filter_type = HWRM_CFA_NTUPLE_FILTER;
3308 
3309 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
3310 			vnic = &bp->vnic_info[0];
3311 		else
3312 			vnic = &bp->vnic_info[fdir->action.rx_queue];
3313 
3314 		match = bnxt_match_fdir(bp, filter, &mvnic);
3315 		if (match != NULL && filter_op == RTE_ETH_FILTER_ADD) {
3316 			if (match->dst_id == vnic->fw_vnic_id) {
3317 				PMD_DRV_LOG(ERR, "Flow already exists.\n");
3318 				ret = -EEXIST;
3319 				goto free_filter;
3320 			} else {
3321 				match->dst_id = vnic->fw_vnic_id;
3322 				ret = bnxt_hwrm_set_ntuple_filter(bp,
3323 								  match->dst_id,
3324 								  match);
3325 				STAILQ_REMOVE(&mvnic->filter, match,
3326 					      bnxt_filter_info, next);
3327 				STAILQ_INSERT_TAIL(&vnic->filter, match, next);
3328 				PMD_DRV_LOG(ERR,
3329 					"Filter with matching pattern exist\n");
3330 				PMD_DRV_LOG(ERR,
3331 					"Updated it to new destination q\n");
3332 				goto free_filter;
3333 			}
3334 		}
3335 		if (match == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
3336 			PMD_DRV_LOG(ERR, "Flow does not exist.\n");
3337 			ret = -ENOENT;
3338 			goto free_filter;
3339 		}
3340 
3341 		if (filter_op == RTE_ETH_FILTER_ADD) {
3342 			ret = bnxt_hwrm_set_ntuple_filter(bp,
3343 							  filter->dst_id,
3344 							  filter);
3345 			if (ret)
3346 				goto free_filter;
3347 			STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
3348 		} else {
3349 			ret = bnxt_hwrm_clear_ntuple_filter(bp, match);
3350 			STAILQ_REMOVE(&vnic->filter, match,
3351 				      bnxt_filter_info, next);
3352 			bnxt_free_filter(bp, match);
3353 			bnxt_free_filter(bp, filter);
3354 		}
3355 		break;
3356 	case RTE_ETH_FILTER_FLUSH:
3357 		for (i = bp->nr_vnics - 1; i >= 0; i--) {
3358 			struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3359 
3360 			STAILQ_FOREACH(filter, &vnic->filter, next) {
3361 				if (filter->filter_type ==
3362 				    HWRM_CFA_NTUPLE_FILTER) {
3363 					ret =
3364 					bnxt_hwrm_clear_ntuple_filter(bp,
3365 								      filter);
3366 					STAILQ_REMOVE(&vnic->filter, filter,
3367 						      bnxt_filter_info, next);
3368 				}
3369 			}
3370 		}
3371 		return ret;
3372 	case RTE_ETH_FILTER_UPDATE:
3373 	case RTE_ETH_FILTER_STATS:
3374 	case RTE_ETH_FILTER_INFO:
3375 		PMD_DRV_LOG(ERR, "operation %u not implemented", filter_op);
3376 		break;
3377 	default:
3378 		PMD_DRV_LOG(ERR, "unknown operation %u", filter_op);
3379 		ret = -EINVAL;
3380 		break;
3381 	}
3382 	return ret;
3383 
3384 free_filter:
3385 	bnxt_free_filter(bp, filter);
3386 	return ret;
3387 }
3388 
3389 int
3390 bnxt_filter_ctrl_op(struct rte_eth_dev *dev,
3391 		    enum rte_filter_type filter_type,
3392 		    enum rte_filter_op filter_op, void *arg)
3393 {
3394 	struct bnxt *bp = dev->data->dev_private;
3395 	int ret = 0;
3396 
3397 	if (!bp)
3398 		return -EIO;
3399 
3400 	if (BNXT_ETH_DEV_IS_REPRESENTOR(dev)) {
3401 		struct bnxt_representor *vfr = dev->data->dev_private;
3402 		bp = vfr->parent_dev->data->dev_private;
3403 		/* parent is deleted while children are still valid */
3404 		if (!bp) {
3405 			PMD_DRV_LOG(DEBUG, "BNXT Port:%d VFR Error %d:%d\n",
3406 				    dev->data->port_id,
3407 				    filter_type,
3408 				    filter_op);
3409 			return -EIO;
3410 		}
3411 	}
3412 
3413 	ret = is_bnxt_in_error(bp);
3414 	if (ret)
3415 		return ret;
3416 
3417 	switch (filter_type) {
3418 	case RTE_ETH_FILTER_FDIR:
3419 		ret = bnxt_fdir_filter(dev, filter_op, arg);
3420 		break;
3421 	case RTE_ETH_FILTER_GENERIC:
3422 		if (filter_op != RTE_ETH_FILTER_GET)
3423 			return -EINVAL;
3424 
3425 		/* PMD supports thread-safe flow operations.  rte_flow API
3426 		 * functions can avoid mutex for multi-thread safety.
3427 		 */
3428 		dev->data->dev_flags |= RTE_ETH_DEV_FLOW_OPS_THREAD_SAFE;
3429 
3430 		if (BNXT_TRUFLOW_EN(bp))
3431 			*(const void **)arg = &bnxt_ulp_rte_flow_ops;
3432 		else
3433 			*(const void **)arg = &bnxt_flow_ops;
3434 		break;
3435 	default:
3436 		PMD_DRV_LOG(ERR,
3437 			"Filter type (%d) not supported", filter_type);
3438 		ret = -EINVAL;
3439 		break;
3440 	}
3441 	return ret;
3442 }
3443 
3444 static const uint32_t *
3445 bnxt_dev_supported_ptypes_get_op(struct rte_eth_dev *dev)
3446 {
3447 	static const uint32_t ptypes[] = {
3448 		RTE_PTYPE_L2_ETHER_VLAN,
3449 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
3450 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
3451 		RTE_PTYPE_L4_ICMP,
3452 		RTE_PTYPE_L4_TCP,
3453 		RTE_PTYPE_L4_UDP,
3454 		RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
3455 		RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
3456 		RTE_PTYPE_INNER_L4_ICMP,
3457 		RTE_PTYPE_INNER_L4_TCP,
3458 		RTE_PTYPE_INNER_L4_UDP,
3459 		RTE_PTYPE_UNKNOWN
3460 	};
3461 
3462 	if (!dev->rx_pkt_burst)
3463 		return NULL;
3464 
3465 	return ptypes;
3466 }
3467 
3468 static int bnxt_map_regs(struct bnxt *bp, uint32_t *reg_arr, int count,
3469 			 int reg_win)
3470 {
3471 	uint32_t reg_base = *reg_arr & 0xfffff000;
3472 	uint32_t win_off;
3473 	int i;
3474 
3475 	for (i = 0; i < count; i++) {
3476 		if ((reg_arr[i] & 0xfffff000) != reg_base)
3477 			return -ERANGE;
3478 	}
3479 	win_off = BNXT_GRCPF_REG_WINDOW_BASE_OUT + (reg_win - 1) * 4;
3480 	rte_write32(reg_base, (uint8_t *)bp->bar0 + win_off);
3481 	return 0;
3482 }
3483 
3484 static int bnxt_map_ptp_regs(struct bnxt *bp)
3485 {
3486 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3487 	uint32_t *reg_arr;
3488 	int rc, i;
3489 
3490 	reg_arr = ptp->rx_regs;
3491 	rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_RX_REGS, 5);
3492 	if (rc)
3493 		return rc;
3494 
3495 	reg_arr = ptp->tx_regs;
3496 	rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_TX_REGS, 6);
3497 	if (rc)
3498 		return rc;
3499 
3500 	for (i = 0; i < BNXT_PTP_RX_REGS; i++)
3501 		ptp->rx_mapped_regs[i] = 0x5000 + (ptp->rx_regs[i] & 0xfff);
3502 
3503 	for (i = 0; i < BNXT_PTP_TX_REGS; i++)
3504 		ptp->tx_mapped_regs[i] = 0x6000 + (ptp->tx_regs[i] & 0xfff);
3505 
3506 	return 0;
3507 }
3508 
3509 static void bnxt_unmap_ptp_regs(struct bnxt *bp)
3510 {
3511 	rte_write32(0, (uint8_t *)bp->bar0 +
3512 			 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 16);
3513 	rte_write32(0, (uint8_t *)bp->bar0 +
3514 			 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 20);
3515 }
3516 
3517 static uint64_t bnxt_cc_read(struct bnxt *bp)
3518 {
3519 	uint64_t ns;
3520 
3521 	ns = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3522 			      BNXT_GRCPF_REG_SYNC_TIME));
3523 	ns |= (uint64_t)(rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3524 					  BNXT_GRCPF_REG_SYNC_TIME + 4))) << 32;
3525 	return ns;
3526 }
3527 
3528 static int bnxt_get_tx_ts(struct bnxt *bp, uint64_t *ts)
3529 {
3530 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3531 	uint32_t fifo;
3532 
3533 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3534 				ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
3535 	if (fifo & BNXT_PTP_TX_FIFO_EMPTY)
3536 		return -EAGAIN;
3537 
3538 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3539 				ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
3540 	*ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3541 				ptp->tx_mapped_regs[BNXT_PTP_TX_TS_L]));
3542 	*ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3543 				ptp->tx_mapped_regs[BNXT_PTP_TX_TS_H])) << 32;
3544 
3545 	return 0;
3546 }
3547 
3548 static int bnxt_get_rx_ts(struct bnxt *bp, uint64_t *ts)
3549 {
3550 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3551 	struct bnxt_pf_info *pf = bp->pf;
3552 	uint16_t port_id;
3553 	uint32_t fifo;
3554 
3555 	if (!ptp)
3556 		return -ENODEV;
3557 
3558 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3559 				ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
3560 	if (!(fifo & BNXT_PTP_RX_FIFO_PENDING))
3561 		return -EAGAIN;
3562 
3563 	port_id = pf->port_id;
3564 	rte_write32(1 << port_id, (uint8_t *)bp->bar0 +
3565 	       ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO_ADV]);
3566 
3567 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3568 				   ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
3569 	if (fifo & BNXT_PTP_RX_FIFO_PENDING) {
3570 /*		bnxt_clr_rx_ts(bp);	  TBD  */
3571 		return -EBUSY;
3572 	}
3573 
3574 	*ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3575 				ptp->rx_mapped_regs[BNXT_PTP_RX_TS_L]));
3576 	*ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3577 				ptp->rx_mapped_regs[BNXT_PTP_RX_TS_H])) << 32;
3578 
3579 	return 0;
3580 }
3581 
3582 static int
3583 bnxt_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
3584 {
3585 	uint64_t ns;
3586 	struct bnxt *bp = dev->data->dev_private;
3587 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3588 
3589 	if (!ptp)
3590 		return 0;
3591 
3592 	ns = rte_timespec_to_ns(ts);
3593 	/* Set the timecounters to a new value. */
3594 	ptp->tc.nsec = ns;
3595 
3596 	return 0;
3597 }
3598 
3599 static int
3600 bnxt_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
3601 {
3602 	struct bnxt *bp = dev->data->dev_private;
3603 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3604 	uint64_t ns, systime_cycles = 0;
3605 	int rc = 0;
3606 
3607 	if (!ptp)
3608 		return 0;
3609 
3610 	if (BNXT_CHIP_THOR(bp))
3611 		rc = bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME,
3612 					     &systime_cycles);
3613 	else
3614 		systime_cycles = bnxt_cc_read(bp);
3615 
3616 	ns = rte_timecounter_update(&ptp->tc, systime_cycles);
3617 	*ts = rte_ns_to_timespec(ns);
3618 
3619 	return rc;
3620 }
3621 static int
3622 bnxt_timesync_enable(struct rte_eth_dev *dev)
3623 {
3624 	struct bnxt *bp = dev->data->dev_private;
3625 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3626 	uint32_t shift = 0;
3627 	int rc;
3628 
3629 	if (!ptp)
3630 		return 0;
3631 
3632 	ptp->rx_filter = 1;
3633 	ptp->tx_tstamp_en = 1;
3634 	ptp->rxctl = BNXT_PTP_MSG_EVENTS;
3635 
3636 	rc = bnxt_hwrm_ptp_cfg(bp);
3637 	if (rc)
3638 		return rc;
3639 
3640 	memset(&ptp->tc, 0, sizeof(struct rte_timecounter));
3641 	memset(&ptp->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
3642 	memset(&ptp->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
3643 
3644 	ptp->tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
3645 	ptp->tc.cc_shift = shift;
3646 	ptp->tc.nsec_mask = (1ULL << shift) - 1;
3647 
3648 	ptp->rx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
3649 	ptp->rx_tstamp_tc.cc_shift = shift;
3650 	ptp->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
3651 
3652 	ptp->tx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
3653 	ptp->tx_tstamp_tc.cc_shift = shift;
3654 	ptp->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
3655 
3656 	if (!BNXT_CHIP_THOR(bp))
3657 		bnxt_map_ptp_regs(bp);
3658 
3659 	return 0;
3660 }
3661 
3662 static int
3663 bnxt_timesync_disable(struct rte_eth_dev *dev)
3664 {
3665 	struct bnxt *bp = dev->data->dev_private;
3666 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3667 
3668 	if (!ptp)
3669 		return 0;
3670 
3671 	ptp->rx_filter = 0;
3672 	ptp->tx_tstamp_en = 0;
3673 	ptp->rxctl = 0;
3674 
3675 	bnxt_hwrm_ptp_cfg(bp);
3676 
3677 	if (!BNXT_CHIP_THOR(bp))
3678 		bnxt_unmap_ptp_regs(bp);
3679 
3680 	return 0;
3681 }
3682 
3683 static int
3684 bnxt_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
3685 				 struct timespec *timestamp,
3686 				 uint32_t flags __rte_unused)
3687 {
3688 	struct bnxt *bp = dev->data->dev_private;
3689 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3690 	uint64_t rx_tstamp_cycles = 0;
3691 	uint64_t ns;
3692 
3693 	if (!ptp)
3694 		return 0;
3695 
3696 	if (BNXT_CHIP_THOR(bp))
3697 		rx_tstamp_cycles = ptp->rx_timestamp;
3698 	else
3699 		bnxt_get_rx_ts(bp, &rx_tstamp_cycles);
3700 
3701 	ns = rte_timecounter_update(&ptp->rx_tstamp_tc, rx_tstamp_cycles);
3702 	*timestamp = rte_ns_to_timespec(ns);
3703 	return  0;
3704 }
3705 
3706 static int
3707 bnxt_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
3708 				 struct timespec *timestamp)
3709 {
3710 	struct bnxt *bp = dev->data->dev_private;
3711 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3712 	uint64_t tx_tstamp_cycles = 0;
3713 	uint64_t ns;
3714 	int rc = 0;
3715 
3716 	if (!ptp)
3717 		return 0;
3718 
3719 	if (BNXT_CHIP_THOR(bp))
3720 		rc = bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_PATH_TX,
3721 					     &tx_tstamp_cycles);
3722 	else
3723 		rc = bnxt_get_tx_ts(bp, &tx_tstamp_cycles);
3724 
3725 	ns = rte_timecounter_update(&ptp->tx_tstamp_tc, tx_tstamp_cycles);
3726 	*timestamp = rte_ns_to_timespec(ns);
3727 
3728 	return rc;
3729 }
3730 
3731 static int
3732 bnxt_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
3733 {
3734 	struct bnxt *bp = dev->data->dev_private;
3735 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3736 
3737 	if (!ptp)
3738 		return 0;
3739 
3740 	ptp->tc.nsec += delta;
3741 
3742 	return 0;
3743 }
3744 
3745 static int
3746 bnxt_get_eeprom_length_op(struct rte_eth_dev *dev)
3747 {
3748 	struct bnxt *bp = dev->data->dev_private;
3749 	int rc;
3750 	uint32_t dir_entries;
3751 	uint32_t entry_length;
3752 
3753 	rc = is_bnxt_in_error(bp);
3754 	if (rc)
3755 		return rc;
3756 
3757 	PMD_DRV_LOG(INFO, PCI_PRI_FMT "\n",
3758 		    bp->pdev->addr.domain, bp->pdev->addr.bus,
3759 		    bp->pdev->addr.devid, bp->pdev->addr.function);
3760 
3761 	rc = bnxt_hwrm_nvm_get_dir_info(bp, &dir_entries, &entry_length);
3762 	if (rc != 0)
3763 		return rc;
3764 
3765 	return dir_entries * entry_length;
3766 }
3767 
3768 static int
3769 bnxt_get_eeprom_op(struct rte_eth_dev *dev,
3770 		struct rte_dev_eeprom_info *in_eeprom)
3771 {
3772 	struct bnxt *bp = dev->data->dev_private;
3773 	uint32_t index;
3774 	uint32_t offset;
3775 	int rc;
3776 
3777 	rc = is_bnxt_in_error(bp);
3778 	if (rc)
3779 		return rc;
3780 
3781 	PMD_DRV_LOG(INFO, PCI_PRI_FMT " in_eeprom->offset = %d len = %d\n",
3782 		    bp->pdev->addr.domain, bp->pdev->addr.bus,
3783 		    bp->pdev->addr.devid, bp->pdev->addr.function,
3784 		    in_eeprom->offset, in_eeprom->length);
3785 
3786 	if (in_eeprom->offset == 0) /* special offset value to get directory */
3787 		return bnxt_get_nvram_directory(bp, in_eeprom->length,
3788 						in_eeprom->data);
3789 
3790 	index = in_eeprom->offset >> 24;
3791 	offset = in_eeprom->offset & 0xffffff;
3792 
3793 	if (index != 0)
3794 		return bnxt_hwrm_get_nvram_item(bp, index - 1, offset,
3795 					   in_eeprom->length, in_eeprom->data);
3796 
3797 	return 0;
3798 }
3799 
3800 static bool bnxt_dir_type_is_ape_bin_format(uint16_t dir_type)
3801 {
3802 	switch (dir_type) {
3803 	case BNX_DIR_TYPE_CHIMP_PATCH:
3804 	case BNX_DIR_TYPE_BOOTCODE:
3805 	case BNX_DIR_TYPE_BOOTCODE_2:
3806 	case BNX_DIR_TYPE_APE_FW:
3807 	case BNX_DIR_TYPE_APE_PATCH:
3808 	case BNX_DIR_TYPE_KONG_FW:
3809 	case BNX_DIR_TYPE_KONG_PATCH:
3810 	case BNX_DIR_TYPE_BONO_FW:
3811 	case BNX_DIR_TYPE_BONO_PATCH:
3812 		/* FALLTHROUGH */
3813 		return true;
3814 	}
3815 
3816 	return false;
3817 }
3818 
3819 static bool bnxt_dir_type_is_other_exec_format(uint16_t dir_type)
3820 {
3821 	switch (dir_type) {
3822 	case BNX_DIR_TYPE_AVS:
3823 	case BNX_DIR_TYPE_EXP_ROM_MBA:
3824 	case BNX_DIR_TYPE_PCIE:
3825 	case BNX_DIR_TYPE_TSCF_UCODE:
3826 	case BNX_DIR_TYPE_EXT_PHY:
3827 	case BNX_DIR_TYPE_CCM:
3828 	case BNX_DIR_TYPE_ISCSI_BOOT:
3829 	case BNX_DIR_TYPE_ISCSI_BOOT_IPV6:
3830 	case BNX_DIR_TYPE_ISCSI_BOOT_IPV4N6:
3831 		/* FALLTHROUGH */
3832 		return true;
3833 	}
3834 
3835 	return false;
3836 }
3837 
3838 static bool bnxt_dir_type_is_executable(uint16_t dir_type)
3839 {
3840 	return bnxt_dir_type_is_ape_bin_format(dir_type) ||
3841 		bnxt_dir_type_is_other_exec_format(dir_type);
3842 }
3843 
3844 static int
3845 bnxt_set_eeprom_op(struct rte_eth_dev *dev,
3846 		struct rte_dev_eeprom_info *in_eeprom)
3847 {
3848 	struct bnxt *bp = dev->data->dev_private;
3849 	uint8_t index, dir_op;
3850 	uint16_t type, ext, ordinal, attr;
3851 	int rc;
3852 
3853 	rc = is_bnxt_in_error(bp);
3854 	if (rc)
3855 		return rc;
3856 
3857 	PMD_DRV_LOG(INFO, PCI_PRI_FMT " in_eeprom->offset = %d len = %d\n",
3858 		    bp->pdev->addr.domain, bp->pdev->addr.bus,
3859 		    bp->pdev->addr.devid, bp->pdev->addr.function,
3860 		    in_eeprom->offset, in_eeprom->length);
3861 
3862 	if (!BNXT_PF(bp)) {
3863 		PMD_DRV_LOG(ERR, "NVM write not supported from a VF\n");
3864 		return -EINVAL;
3865 	}
3866 
3867 	type = in_eeprom->magic >> 16;
3868 
3869 	if (type == 0xffff) { /* special value for directory operations */
3870 		index = in_eeprom->magic & 0xff;
3871 		dir_op = in_eeprom->magic >> 8;
3872 		if (index == 0)
3873 			return -EINVAL;
3874 		switch (dir_op) {
3875 		case 0x0e: /* erase */
3876 			if (in_eeprom->offset != ~in_eeprom->magic)
3877 				return -EINVAL;
3878 			return bnxt_hwrm_erase_nvram_directory(bp, index - 1);
3879 		default:
3880 			return -EINVAL;
3881 		}
3882 	}
3883 
3884 	/* Create or re-write an NVM item: */
3885 	if (bnxt_dir_type_is_executable(type) == true)
3886 		return -EOPNOTSUPP;
3887 	ext = in_eeprom->magic & 0xffff;
3888 	ordinal = in_eeprom->offset >> 16;
3889 	attr = in_eeprom->offset & 0xffff;
3890 
3891 	return bnxt_hwrm_flash_nvram(bp, type, ordinal, ext, attr,
3892 				     in_eeprom->data, in_eeprom->length);
3893 }
3894 
3895 /*
3896  * Initialization
3897  */
3898 
3899 static const struct eth_dev_ops bnxt_dev_ops = {
3900 	.dev_infos_get = bnxt_dev_info_get_op,
3901 	.dev_close = bnxt_dev_close_op,
3902 	.dev_configure = bnxt_dev_configure_op,
3903 	.dev_start = bnxt_dev_start_op,
3904 	.dev_stop = bnxt_dev_stop_op,
3905 	.dev_set_link_up = bnxt_dev_set_link_up_op,
3906 	.dev_set_link_down = bnxt_dev_set_link_down_op,
3907 	.stats_get = bnxt_stats_get_op,
3908 	.stats_reset = bnxt_stats_reset_op,
3909 	.rx_queue_setup = bnxt_rx_queue_setup_op,
3910 	.rx_queue_release = bnxt_rx_queue_release_op,
3911 	.tx_queue_setup = bnxt_tx_queue_setup_op,
3912 	.tx_queue_release = bnxt_tx_queue_release_op,
3913 	.rx_queue_intr_enable = bnxt_rx_queue_intr_enable_op,
3914 	.rx_queue_intr_disable = bnxt_rx_queue_intr_disable_op,
3915 	.reta_update = bnxt_reta_update_op,
3916 	.reta_query = bnxt_reta_query_op,
3917 	.rss_hash_update = bnxt_rss_hash_update_op,
3918 	.rss_hash_conf_get = bnxt_rss_hash_conf_get_op,
3919 	.link_update = bnxt_link_update_op,
3920 	.promiscuous_enable = bnxt_promiscuous_enable_op,
3921 	.promiscuous_disable = bnxt_promiscuous_disable_op,
3922 	.allmulticast_enable = bnxt_allmulticast_enable_op,
3923 	.allmulticast_disable = bnxt_allmulticast_disable_op,
3924 	.mac_addr_add = bnxt_mac_addr_add_op,
3925 	.mac_addr_remove = bnxt_mac_addr_remove_op,
3926 	.flow_ctrl_get = bnxt_flow_ctrl_get_op,
3927 	.flow_ctrl_set = bnxt_flow_ctrl_set_op,
3928 	.udp_tunnel_port_add  = bnxt_udp_tunnel_port_add_op,
3929 	.udp_tunnel_port_del  = bnxt_udp_tunnel_port_del_op,
3930 	.vlan_filter_set = bnxt_vlan_filter_set_op,
3931 	.vlan_offload_set = bnxt_vlan_offload_set_op,
3932 	.vlan_tpid_set = bnxt_vlan_tpid_set_op,
3933 	.vlan_pvid_set = bnxt_vlan_pvid_set_op,
3934 	.mtu_set = bnxt_mtu_set_op,
3935 	.mac_addr_set = bnxt_set_default_mac_addr_op,
3936 	.xstats_get = bnxt_dev_xstats_get_op,
3937 	.xstats_get_names = bnxt_dev_xstats_get_names_op,
3938 	.xstats_reset = bnxt_dev_xstats_reset_op,
3939 	.fw_version_get = bnxt_fw_version_get,
3940 	.set_mc_addr_list = bnxt_dev_set_mc_addr_list_op,
3941 	.rxq_info_get = bnxt_rxq_info_get_op,
3942 	.txq_info_get = bnxt_txq_info_get_op,
3943 	.rx_burst_mode_get = bnxt_rx_burst_mode_get,
3944 	.tx_burst_mode_get = bnxt_tx_burst_mode_get,
3945 	.dev_led_on = bnxt_dev_led_on_op,
3946 	.dev_led_off = bnxt_dev_led_off_op,
3947 	.rx_queue_start = bnxt_rx_queue_start,
3948 	.rx_queue_stop = bnxt_rx_queue_stop,
3949 	.tx_queue_start = bnxt_tx_queue_start,
3950 	.tx_queue_stop = bnxt_tx_queue_stop,
3951 	.filter_ctrl = bnxt_filter_ctrl_op,
3952 	.dev_supported_ptypes_get = bnxt_dev_supported_ptypes_get_op,
3953 	.get_eeprom_length    = bnxt_get_eeprom_length_op,
3954 	.get_eeprom           = bnxt_get_eeprom_op,
3955 	.set_eeprom           = bnxt_set_eeprom_op,
3956 	.timesync_enable      = bnxt_timesync_enable,
3957 	.timesync_disable     = bnxt_timesync_disable,
3958 	.timesync_read_time   = bnxt_timesync_read_time,
3959 	.timesync_write_time   = bnxt_timesync_write_time,
3960 	.timesync_adjust_time = bnxt_timesync_adjust_time,
3961 	.timesync_read_rx_timestamp = bnxt_timesync_read_rx_timestamp,
3962 	.timesync_read_tx_timestamp = bnxt_timesync_read_tx_timestamp,
3963 };
3964 
3965 static uint32_t bnxt_map_reset_regs(struct bnxt *bp, uint32_t reg)
3966 {
3967 	uint32_t offset;
3968 
3969 	/* Only pre-map the reset GRC registers using window 3 */
3970 	rte_write32(reg & 0xfffff000, (uint8_t *)bp->bar0 +
3971 		    BNXT_GRCPF_REG_WINDOW_BASE_OUT + 8);
3972 
3973 	offset = BNXT_GRCP_WINDOW_3_BASE + (reg & 0xffc);
3974 
3975 	return offset;
3976 }
3977 
3978 int bnxt_map_fw_health_status_regs(struct bnxt *bp)
3979 {
3980 	struct bnxt_error_recovery_info *info = bp->recovery_info;
3981 	uint32_t reg_base = 0xffffffff;
3982 	int i;
3983 
3984 	/* Only pre-map the monitoring GRC registers using window 2 */
3985 	for (i = 0; i < BNXT_FW_STATUS_REG_CNT; i++) {
3986 		uint32_t reg = info->status_regs[i];
3987 
3988 		if (BNXT_FW_STATUS_REG_TYPE(reg) != BNXT_FW_STATUS_REG_TYPE_GRC)
3989 			continue;
3990 
3991 		if (reg_base == 0xffffffff)
3992 			reg_base = reg & 0xfffff000;
3993 		if ((reg & 0xfffff000) != reg_base)
3994 			return -ERANGE;
3995 
3996 		/* Use mask 0xffc as the Lower 2 bits indicates
3997 		 * address space location
3998 		 */
3999 		info->mapped_status_regs[i] = BNXT_GRCP_WINDOW_2_BASE +
4000 						(reg & 0xffc);
4001 	}
4002 
4003 	if (reg_base == 0xffffffff)
4004 		return 0;
4005 
4006 	rte_write32(reg_base, (uint8_t *)bp->bar0 +
4007 		    BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
4008 
4009 	return 0;
4010 }
4011 
4012 static void bnxt_write_fw_reset_reg(struct bnxt *bp, uint32_t index)
4013 {
4014 	struct bnxt_error_recovery_info *info = bp->recovery_info;
4015 	uint32_t delay = info->delay_after_reset[index];
4016 	uint32_t val = info->reset_reg_val[index];
4017 	uint32_t reg = info->reset_reg[index];
4018 	uint32_t type, offset;
4019 
4020 	type = BNXT_FW_STATUS_REG_TYPE(reg);
4021 	offset = BNXT_FW_STATUS_REG_OFF(reg);
4022 
4023 	switch (type) {
4024 	case BNXT_FW_STATUS_REG_TYPE_CFG:
4025 		rte_pci_write_config(bp->pdev, &val, sizeof(val), offset);
4026 		break;
4027 	case BNXT_FW_STATUS_REG_TYPE_GRC:
4028 		offset = bnxt_map_reset_regs(bp, offset);
4029 		rte_write32(val, (uint8_t *)bp->bar0 + offset);
4030 		break;
4031 	case BNXT_FW_STATUS_REG_TYPE_BAR0:
4032 		rte_write32(val, (uint8_t *)bp->bar0 + offset);
4033 		break;
4034 	}
4035 	/* wait on a specific interval of time until core reset is complete */
4036 	if (delay)
4037 		rte_delay_ms(delay);
4038 }
4039 
4040 static void bnxt_dev_cleanup(struct bnxt *bp)
4041 {
4042 	bp->eth_dev->data->dev_link.link_status = 0;
4043 	bp->link_info->link_up = 0;
4044 	if (bp->eth_dev->data->dev_started)
4045 		bnxt_dev_stop_op(bp->eth_dev);
4046 
4047 	bnxt_uninit_resources(bp, true);
4048 }
4049 
4050 static int bnxt_restore_vlan_filters(struct bnxt *bp)
4051 {
4052 	struct rte_eth_dev *dev = bp->eth_dev;
4053 	struct rte_vlan_filter_conf *vfc;
4054 	int vidx, vbit, rc;
4055 	uint16_t vlan_id;
4056 
4057 	for (vlan_id = 1; vlan_id <= RTE_ETHER_MAX_VLAN_ID; vlan_id++) {
4058 		vfc = &dev->data->vlan_filter_conf;
4059 		vidx = vlan_id / 64;
4060 		vbit = vlan_id % 64;
4061 
4062 		/* Each bit corresponds to a VLAN id */
4063 		if (vfc->ids[vidx] & (UINT64_C(1) << vbit)) {
4064 			rc = bnxt_add_vlan_filter(bp, vlan_id);
4065 			if (rc)
4066 				return rc;
4067 		}
4068 	}
4069 
4070 	return 0;
4071 }
4072 
4073 static int bnxt_restore_mac_filters(struct bnxt *bp)
4074 {
4075 	struct rte_eth_dev *dev = bp->eth_dev;
4076 	struct rte_eth_dev_info dev_info;
4077 	struct rte_ether_addr *addr;
4078 	uint64_t pool_mask;
4079 	uint32_t pool = 0;
4080 	uint16_t i;
4081 	int rc;
4082 
4083 	if (BNXT_VF(bp) && !BNXT_VF_IS_TRUSTED(bp))
4084 		return 0;
4085 
4086 	rc = bnxt_dev_info_get_op(dev, &dev_info);
4087 	if (rc)
4088 		return rc;
4089 
4090 	/* replay MAC address configuration */
4091 	for (i = 1; i < dev_info.max_mac_addrs; i++) {
4092 		addr = &dev->data->mac_addrs[i];
4093 
4094 		/* skip zero address */
4095 		if (rte_is_zero_ether_addr(addr))
4096 			continue;
4097 
4098 		pool = 0;
4099 		pool_mask = dev->data->mac_pool_sel[i];
4100 
4101 		do {
4102 			if (pool_mask & 1ULL) {
4103 				rc = bnxt_mac_addr_add_op(dev, addr, i, pool);
4104 				if (rc)
4105 					return rc;
4106 			}
4107 			pool_mask >>= 1;
4108 			pool++;
4109 		} while (pool_mask);
4110 	}
4111 
4112 	return 0;
4113 }
4114 
4115 static int bnxt_restore_filters(struct bnxt *bp)
4116 {
4117 	struct rte_eth_dev *dev = bp->eth_dev;
4118 	int ret = 0;
4119 
4120 	if (dev->data->all_multicast) {
4121 		ret = bnxt_allmulticast_enable_op(dev);
4122 		if (ret)
4123 			return ret;
4124 	}
4125 	if (dev->data->promiscuous) {
4126 		ret = bnxt_promiscuous_enable_op(dev);
4127 		if (ret)
4128 			return ret;
4129 	}
4130 
4131 	ret = bnxt_restore_mac_filters(bp);
4132 	if (ret)
4133 		return ret;
4134 
4135 	ret = bnxt_restore_vlan_filters(bp);
4136 	/* TODO restore other filters as well */
4137 	return ret;
4138 }
4139 
4140 static void bnxt_dev_recover(void *arg)
4141 {
4142 	struct bnxt *bp = arg;
4143 	int timeout = bp->fw_reset_max_msecs;
4144 	int rc = 0;
4145 
4146 	/* Clear Error flag so that device re-init should happen */
4147 	bp->flags &= ~BNXT_FLAG_FATAL_ERROR;
4148 
4149 	do {
4150 		rc = bnxt_hwrm_ver_get(bp, SHORT_HWRM_CMD_TIMEOUT);
4151 		if (rc == 0)
4152 			break;
4153 		rte_delay_ms(BNXT_FW_READY_WAIT_INTERVAL);
4154 		timeout -= BNXT_FW_READY_WAIT_INTERVAL;
4155 	} while (rc && timeout);
4156 
4157 	if (rc) {
4158 		PMD_DRV_LOG(ERR, "FW is not Ready after reset\n");
4159 		goto err;
4160 	}
4161 
4162 	rc = bnxt_init_resources(bp, true);
4163 	if (rc) {
4164 		PMD_DRV_LOG(ERR,
4165 			    "Failed to initialize resources after reset\n");
4166 		goto err;
4167 	}
4168 	/* clear reset flag as the device is initialized now */
4169 	bp->flags &= ~BNXT_FLAG_FW_RESET;
4170 
4171 	rc = bnxt_dev_start_op(bp->eth_dev);
4172 	if (rc) {
4173 		PMD_DRV_LOG(ERR, "Failed to start port after reset\n");
4174 		goto err_start;
4175 	}
4176 
4177 	rc = bnxt_restore_filters(bp);
4178 	if (rc)
4179 		goto err_start;
4180 
4181 	PMD_DRV_LOG(INFO, "Recovered from FW reset\n");
4182 	return;
4183 err_start:
4184 	bnxt_dev_stop_op(bp->eth_dev);
4185 err:
4186 	bp->flags |= BNXT_FLAG_FATAL_ERROR;
4187 	bnxt_uninit_resources(bp, false);
4188 	PMD_DRV_LOG(ERR, "Failed to recover from FW reset\n");
4189 }
4190 
4191 void bnxt_dev_reset_and_resume(void *arg)
4192 {
4193 	struct bnxt *bp = arg;
4194 	int rc;
4195 
4196 	bnxt_dev_cleanup(bp);
4197 
4198 	bnxt_wait_for_device_shutdown(bp);
4199 
4200 	rc = rte_eal_alarm_set(US_PER_MS * bp->fw_reset_min_msecs,
4201 			       bnxt_dev_recover, (void *)bp);
4202 	if (rc)
4203 		PMD_DRV_LOG(ERR, "Error setting recovery alarm");
4204 }
4205 
4206 uint32_t bnxt_read_fw_status_reg(struct bnxt *bp, uint32_t index)
4207 {
4208 	struct bnxt_error_recovery_info *info = bp->recovery_info;
4209 	uint32_t reg = info->status_regs[index];
4210 	uint32_t type, offset, val = 0;
4211 
4212 	type = BNXT_FW_STATUS_REG_TYPE(reg);
4213 	offset = BNXT_FW_STATUS_REG_OFF(reg);
4214 
4215 	switch (type) {
4216 	case BNXT_FW_STATUS_REG_TYPE_CFG:
4217 		rte_pci_read_config(bp->pdev, &val, sizeof(val), offset);
4218 		break;
4219 	case BNXT_FW_STATUS_REG_TYPE_GRC:
4220 		offset = info->mapped_status_regs[index];
4221 		/* FALLTHROUGH */
4222 	case BNXT_FW_STATUS_REG_TYPE_BAR0:
4223 		val = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
4224 				       offset));
4225 		break;
4226 	}
4227 
4228 	return val;
4229 }
4230 
4231 static int bnxt_fw_reset_all(struct bnxt *bp)
4232 {
4233 	struct bnxt_error_recovery_info *info = bp->recovery_info;
4234 	uint32_t i;
4235 	int rc = 0;
4236 
4237 	if (info->flags & BNXT_FLAG_ERROR_RECOVERY_HOST) {
4238 		/* Reset through master function driver */
4239 		for (i = 0; i < info->reg_array_cnt; i++)
4240 			bnxt_write_fw_reset_reg(bp, i);
4241 		/* Wait for time specified by FW after triggering reset */
4242 		rte_delay_ms(info->master_func_wait_period_after_reset);
4243 	} else if (info->flags & BNXT_FLAG_ERROR_RECOVERY_CO_CPU) {
4244 		/* Reset with the help of Kong processor */
4245 		rc = bnxt_hwrm_fw_reset(bp);
4246 		if (rc)
4247 			PMD_DRV_LOG(ERR, "Failed to reset FW\n");
4248 	}
4249 
4250 	return rc;
4251 }
4252 
4253 static void bnxt_fw_reset_cb(void *arg)
4254 {
4255 	struct bnxt *bp = arg;
4256 	struct bnxt_error_recovery_info *info = bp->recovery_info;
4257 	int rc = 0;
4258 
4259 	/* Only Master function can do FW reset */
4260 	if (bnxt_is_master_func(bp) &&
4261 	    bnxt_is_recovery_enabled(bp)) {
4262 		rc = bnxt_fw_reset_all(bp);
4263 		if (rc) {
4264 			PMD_DRV_LOG(ERR, "Adapter recovery failed\n");
4265 			return;
4266 		}
4267 	}
4268 
4269 	/* if recovery method is ERROR_RECOVERY_CO_CPU, KONG will send
4270 	 * EXCEPTION_FATAL_ASYNC event to all the functions
4271 	 * (including MASTER FUNC). After receiving this Async, all the active
4272 	 * drivers should treat this case as FW initiated recovery
4273 	 */
4274 	if (info->flags & BNXT_FLAG_ERROR_RECOVERY_HOST) {
4275 		bp->fw_reset_min_msecs = BNXT_MIN_FW_READY_TIMEOUT;
4276 		bp->fw_reset_max_msecs = BNXT_MAX_FW_RESET_TIMEOUT;
4277 
4278 		/* To recover from error */
4279 		rte_eal_alarm_set(US_PER_MS, bnxt_dev_reset_and_resume,
4280 				  (void *)bp);
4281 	}
4282 }
4283 
4284 /* Driver should poll FW heartbeat, reset_counter with the frequency
4285  * advertised by FW in HWRM_ERROR_RECOVERY_QCFG.
4286  * When the driver detects heartbeat stop or change in reset_counter,
4287  * it has to trigger a reset to recover from the error condition.
4288  * A “master PF” is the function who will have the privilege to
4289  * initiate the chimp reset. The master PF will be elected by the
4290  * firmware and will be notified through async message.
4291  */
4292 static void bnxt_check_fw_health(void *arg)
4293 {
4294 	struct bnxt *bp = arg;
4295 	struct bnxt_error_recovery_info *info = bp->recovery_info;
4296 	uint32_t val = 0, wait_msec;
4297 
4298 	if (!info || !bnxt_is_recovery_enabled(bp) ||
4299 	    is_bnxt_in_error(bp))
4300 		return;
4301 
4302 	val = bnxt_read_fw_status_reg(bp, BNXT_FW_HEARTBEAT_CNT_REG);
4303 	if (val == info->last_heart_beat)
4304 		goto reset;
4305 
4306 	info->last_heart_beat = val;
4307 
4308 	val = bnxt_read_fw_status_reg(bp, BNXT_FW_RECOVERY_CNT_REG);
4309 	if (val != info->last_reset_counter)
4310 		goto reset;
4311 
4312 	info->last_reset_counter = val;
4313 
4314 	rte_eal_alarm_set(US_PER_MS * info->driver_polling_freq,
4315 			  bnxt_check_fw_health, (void *)bp);
4316 
4317 	return;
4318 reset:
4319 	/* Stop DMA to/from device */
4320 	bp->flags |= BNXT_FLAG_FATAL_ERROR;
4321 	bp->flags |= BNXT_FLAG_FW_RESET;
4322 
4323 	PMD_DRV_LOG(ERR, "Detected FW dead condition\n");
4324 
4325 	if (bnxt_is_master_func(bp))
4326 		wait_msec = info->master_func_wait_period;
4327 	else
4328 		wait_msec = info->normal_func_wait_period;
4329 
4330 	rte_eal_alarm_set(US_PER_MS * wait_msec,
4331 			  bnxt_fw_reset_cb, (void *)bp);
4332 }
4333 
4334 void bnxt_schedule_fw_health_check(struct bnxt *bp)
4335 {
4336 	uint32_t polling_freq;
4337 
4338 	pthread_mutex_lock(&bp->health_check_lock);
4339 
4340 	if (!bnxt_is_recovery_enabled(bp))
4341 		goto done;
4342 
4343 	if (bp->flags & BNXT_FLAG_FW_HEALTH_CHECK_SCHEDULED)
4344 		goto done;
4345 
4346 	polling_freq = bp->recovery_info->driver_polling_freq;
4347 
4348 	rte_eal_alarm_set(US_PER_MS * polling_freq,
4349 			  bnxt_check_fw_health, (void *)bp);
4350 	bp->flags |= BNXT_FLAG_FW_HEALTH_CHECK_SCHEDULED;
4351 
4352 done:
4353 	pthread_mutex_unlock(&bp->health_check_lock);
4354 }
4355 
4356 static void bnxt_cancel_fw_health_check(struct bnxt *bp)
4357 {
4358 	if (!bnxt_is_recovery_enabled(bp))
4359 		return;
4360 
4361 	rte_eal_alarm_cancel(bnxt_check_fw_health, (void *)bp);
4362 	bp->flags &= ~BNXT_FLAG_FW_HEALTH_CHECK_SCHEDULED;
4363 }
4364 
4365 static bool bnxt_vf_pciid(uint16_t device_id)
4366 {
4367 	switch (device_id) {
4368 	case BROADCOM_DEV_ID_57304_VF:
4369 	case BROADCOM_DEV_ID_57406_VF:
4370 	case BROADCOM_DEV_ID_5731X_VF:
4371 	case BROADCOM_DEV_ID_5741X_VF:
4372 	case BROADCOM_DEV_ID_57414_VF:
4373 	case BROADCOM_DEV_ID_STRATUS_NIC_VF1:
4374 	case BROADCOM_DEV_ID_STRATUS_NIC_VF2:
4375 	case BROADCOM_DEV_ID_58802_VF:
4376 	case BROADCOM_DEV_ID_57500_VF1:
4377 	case BROADCOM_DEV_ID_57500_VF2:
4378 		/* FALLTHROUGH */
4379 		return true;
4380 	default:
4381 		return false;
4382 	}
4383 }
4384 
4385 static bool bnxt_thor_device(uint16_t device_id)
4386 {
4387 	switch (device_id) {
4388 	case BROADCOM_DEV_ID_57508:
4389 	case BROADCOM_DEV_ID_57504:
4390 	case BROADCOM_DEV_ID_57502:
4391 	case BROADCOM_DEV_ID_57508_MF1:
4392 	case BROADCOM_DEV_ID_57504_MF1:
4393 	case BROADCOM_DEV_ID_57502_MF1:
4394 	case BROADCOM_DEV_ID_57508_MF2:
4395 	case BROADCOM_DEV_ID_57504_MF2:
4396 	case BROADCOM_DEV_ID_57502_MF2:
4397 	case BROADCOM_DEV_ID_57500_VF1:
4398 	case BROADCOM_DEV_ID_57500_VF2:
4399 		/* FALLTHROUGH */
4400 		return true;
4401 	default:
4402 		return false;
4403 	}
4404 }
4405 
4406 bool bnxt_stratus_device(struct bnxt *bp)
4407 {
4408 	uint16_t device_id = bp->pdev->id.device_id;
4409 
4410 	switch (device_id) {
4411 	case BROADCOM_DEV_ID_STRATUS_NIC:
4412 	case BROADCOM_DEV_ID_STRATUS_NIC_VF1:
4413 	case BROADCOM_DEV_ID_STRATUS_NIC_VF2:
4414 		/* FALLTHROUGH */
4415 		return true;
4416 	default:
4417 		return false;
4418 	}
4419 }
4420 
4421 static int bnxt_init_board(struct rte_eth_dev *eth_dev)
4422 {
4423 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
4424 	struct bnxt *bp = eth_dev->data->dev_private;
4425 
4426 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
4427 	bp->bar0 = (void *)pci_dev->mem_resource[0].addr;
4428 	bp->doorbell_base = (void *)pci_dev->mem_resource[2].addr;
4429 	if (!bp->bar0 || !bp->doorbell_base) {
4430 		PMD_DRV_LOG(ERR, "Unable to access Hardware\n");
4431 		return -ENODEV;
4432 	}
4433 
4434 	bp->eth_dev = eth_dev;
4435 	bp->pdev = pci_dev;
4436 
4437 	return 0;
4438 }
4439 
4440 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
4441 				  struct bnxt_ctx_pg_info *ctx_pg,
4442 				  uint32_t mem_size,
4443 				  const char *suffix,
4444 				  uint16_t idx)
4445 {
4446 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
4447 	const struct rte_memzone *mz = NULL;
4448 	char mz_name[RTE_MEMZONE_NAMESIZE];
4449 	rte_iova_t mz_phys_addr;
4450 	uint64_t valid_bits = 0;
4451 	uint32_t sz;
4452 	int i;
4453 
4454 	if (!mem_size)
4455 		return 0;
4456 
4457 	rmem->nr_pages = RTE_ALIGN_MUL_CEIL(mem_size, BNXT_PAGE_SIZE) /
4458 			 BNXT_PAGE_SIZE;
4459 	rmem->page_size = BNXT_PAGE_SIZE;
4460 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
4461 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
4462 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
4463 
4464 	valid_bits = PTU_PTE_VALID;
4465 
4466 	if (rmem->nr_pages > 1) {
4467 		snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
4468 			 "bnxt_ctx_pg_tbl%s_%x_%d",
4469 			 suffix, idx, bp->eth_dev->data->port_id);
4470 		mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
4471 		mz = rte_memzone_lookup(mz_name);
4472 		if (!mz) {
4473 			mz = rte_memzone_reserve_aligned(mz_name,
4474 						rmem->nr_pages * 8,
4475 						SOCKET_ID_ANY,
4476 						RTE_MEMZONE_2MB |
4477 						RTE_MEMZONE_SIZE_HINT_ONLY |
4478 						RTE_MEMZONE_IOVA_CONTIG,
4479 						BNXT_PAGE_SIZE);
4480 			if (mz == NULL)
4481 				return -ENOMEM;
4482 		}
4483 
4484 		memset(mz->addr, 0, mz->len);
4485 		mz_phys_addr = mz->iova;
4486 
4487 		rmem->pg_tbl = mz->addr;
4488 		rmem->pg_tbl_map = mz_phys_addr;
4489 		rmem->pg_tbl_mz = mz;
4490 	}
4491 
4492 	snprintf(mz_name, RTE_MEMZONE_NAMESIZE, "bnxt_ctx_%s_%x_%d",
4493 		 suffix, idx, bp->eth_dev->data->port_id);
4494 	mz = rte_memzone_lookup(mz_name);
4495 	if (!mz) {
4496 		mz = rte_memzone_reserve_aligned(mz_name,
4497 						 mem_size,
4498 						 SOCKET_ID_ANY,
4499 						 RTE_MEMZONE_1GB |
4500 						 RTE_MEMZONE_SIZE_HINT_ONLY |
4501 						 RTE_MEMZONE_IOVA_CONTIG,
4502 						 BNXT_PAGE_SIZE);
4503 		if (mz == NULL)
4504 			return -ENOMEM;
4505 	}
4506 
4507 	memset(mz->addr, 0, mz->len);
4508 	mz_phys_addr = mz->iova;
4509 
4510 	for (sz = 0, i = 0; sz < mem_size; sz += BNXT_PAGE_SIZE, i++) {
4511 		rmem->pg_arr[i] = ((char *)mz->addr) + sz;
4512 		rmem->dma_arr[i] = mz_phys_addr + sz;
4513 
4514 		if (rmem->nr_pages > 1) {
4515 			if (i == rmem->nr_pages - 2 &&
4516 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
4517 				valid_bits |= PTU_PTE_NEXT_TO_LAST;
4518 			else if (i == rmem->nr_pages - 1 &&
4519 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
4520 				valid_bits |= PTU_PTE_LAST;
4521 
4522 			rmem->pg_tbl[i] = rte_cpu_to_le_64(rmem->dma_arr[i] |
4523 							   valid_bits);
4524 		}
4525 	}
4526 
4527 	rmem->mz = mz;
4528 	if (rmem->vmem_size)
4529 		rmem->vmem = (void **)mz->addr;
4530 	rmem->dma_arr[0] = mz_phys_addr;
4531 	return 0;
4532 }
4533 
4534 static void bnxt_free_ctx_mem(struct bnxt *bp)
4535 {
4536 	int i;
4537 
4538 	if (!bp->ctx || !(bp->ctx->flags & BNXT_CTX_FLAG_INITED))
4539 		return;
4540 
4541 	bp->ctx->flags &= ~BNXT_CTX_FLAG_INITED;
4542 	rte_memzone_free(bp->ctx->qp_mem.ring_mem.mz);
4543 	rte_memzone_free(bp->ctx->srq_mem.ring_mem.mz);
4544 	rte_memzone_free(bp->ctx->cq_mem.ring_mem.mz);
4545 	rte_memzone_free(bp->ctx->vnic_mem.ring_mem.mz);
4546 	rte_memzone_free(bp->ctx->stat_mem.ring_mem.mz);
4547 	rte_memzone_free(bp->ctx->qp_mem.ring_mem.pg_tbl_mz);
4548 	rte_memzone_free(bp->ctx->srq_mem.ring_mem.pg_tbl_mz);
4549 	rte_memzone_free(bp->ctx->cq_mem.ring_mem.pg_tbl_mz);
4550 	rte_memzone_free(bp->ctx->vnic_mem.ring_mem.pg_tbl_mz);
4551 	rte_memzone_free(bp->ctx->stat_mem.ring_mem.pg_tbl_mz);
4552 
4553 	for (i = 0; i < bp->ctx->tqm_fp_rings_count + 1; i++) {
4554 		if (bp->ctx->tqm_mem[i])
4555 			rte_memzone_free(bp->ctx->tqm_mem[i]->ring_mem.mz);
4556 	}
4557 
4558 	rte_free(bp->ctx);
4559 	bp->ctx = NULL;
4560 }
4561 
4562 #define bnxt_roundup(x, y)   ((((x) + ((y) - 1)) / (y)) * (y))
4563 
4564 #define min_t(type, x, y) ({                    \
4565 	type __min1 = (x);                      \
4566 	type __min2 = (y);                      \
4567 	__min1 < __min2 ? __min1 : __min2; })
4568 
4569 #define max_t(type, x, y) ({                    \
4570 	type __max1 = (x);                      \
4571 	type __max2 = (y);                      \
4572 	__max1 > __max2 ? __max1 : __max2; })
4573 
4574 #define clamp_t(type, _x, min, max)     min_t(type, max_t(type, _x, min), max)
4575 
4576 int bnxt_alloc_ctx_mem(struct bnxt *bp)
4577 {
4578 	struct bnxt_ctx_pg_info *ctx_pg;
4579 	struct bnxt_ctx_mem_info *ctx;
4580 	uint32_t mem_size, ena, entries;
4581 	uint32_t entries_sp, min;
4582 	int i, rc;
4583 
4584 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
4585 	if (rc) {
4586 		PMD_DRV_LOG(ERR, "Query context mem capability failed\n");
4587 		return rc;
4588 	}
4589 	ctx = bp->ctx;
4590 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
4591 		return 0;
4592 
4593 	ctx_pg = &ctx->qp_mem;
4594 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries;
4595 	mem_size = ctx->qp_entry_size * ctx_pg->entries;
4596 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "qp_mem", 0);
4597 	if (rc)
4598 		return rc;
4599 
4600 	ctx_pg = &ctx->srq_mem;
4601 	ctx_pg->entries = ctx->srq_max_l2_entries;
4602 	mem_size = ctx->srq_entry_size * ctx_pg->entries;
4603 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "srq_mem", 0);
4604 	if (rc)
4605 		return rc;
4606 
4607 	ctx_pg = &ctx->cq_mem;
4608 	ctx_pg->entries = ctx->cq_max_l2_entries;
4609 	mem_size = ctx->cq_entry_size * ctx_pg->entries;
4610 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "cq_mem", 0);
4611 	if (rc)
4612 		return rc;
4613 
4614 	ctx_pg = &ctx->vnic_mem;
4615 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
4616 		ctx->vnic_max_ring_table_entries;
4617 	mem_size = ctx->vnic_entry_size * ctx_pg->entries;
4618 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "vnic_mem", 0);
4619 	if (rc)
4620 		return rc;
4621 
4622 	ctx_pg = &ctx->stat_mem;
4623 	ctx_pg->entries = ctx->stat_max_entries;
4624 	mem_size = ctx->stat_entry_size * ctx_pg->entries;
4625 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "stat_mem", 0);
4626 	if (rc)
4627 		return rc;
4628 
4629 	min = ctx->tqm_min_entries_per_ring;
4630 
4631 	entries_sp = ctx->qp_max_l2_entries +
4632 		     ctx->vnic_max_vnic_entries +
4633 		     2 * ctx->qp_min_qp1_entries + min;
4634 	entries_sp = bnxt_roundup(entries_sp, ctx->tqm_entries_multiple);
4635 
4636 	entries = ctx->qp_max_l2_entries + ctx->qp_min_qp1_entries;
4637 	entries = bnxt_roundup(entries, ctx->tqm_entries_multiple);
4638 	entries = clamp_t(uint32_t, entries, min,
4639 			  ctx->tqm_max_entries_per_ring);
4640 	for (i = 0, ena = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
4641 		ctx_pg = ctx->tqm_mem[i];
4642 		ctx_pg->entries = i ? entries : entries_sp;
4643 		mem_size = ctx->tqm_entry_size * ctx_pg->entries;
4644 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "tqm_mem", i);
4645 		if (rc)
4646 			return rc;
4647 		ena |= HWRM_FUNC_BACKING_STORE_CFG_INPUT_ENABLES_TQM_SP << i;
4648 	}
4649 
4650 	ena |= FUNC_BACKING_STORE_CFG_INPUT_DFLT_ENABLES;
4651 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
4652 	if (rc)
4653 		PMD_DRV_LOG(ERR,
4654 			    "Failed to configure context mem: rc = %d\n", rc);
4655 	else
4656 		ctx->flags |= BNXT_CTX_FLAG_INITED;
4657 
4658 	return rc;
4659 }
4660 
4661 static int bnxt_alloc_stats_mem(struct bnxt *bp)
4662 {
4663 	struct rte_pci_device *pci_dev = bp->pdev;
4664 	char mz_name[RTE_MEMZONE_NAMESIZE];
4665 	const struct rte_memzone *mz = NULL;
4666 	uint32_t total_alloc_len;
4667 	rte_iova_t mz_phys_addr;
4668 
4669 	if (pci_dev->id.device_id == BROADCOM_DEV_ID_NS2)
4670 		return 0;
4671 
4672 	snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
4673 		 "bnxt_" PCI_PRI_FMT "-%s", pci_dev->addr.domain,
4674 		 pci_dev->addr.bus, pci_dev->addr.devid,
4675 		 pci_dev->addr.function, "rx_port_stats");
4676 	mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
4677 	mz = rte_memzone_lookup(mz_name);
4678 	total_alloc_len =
4679 		RTE_CACHE_LINE_ROUNDUP(sizeof(struct rx_port_stats) +
4680 				       sizeof(struct rx_port_stats_ext) + 512);
4681 	if (!mz) {
4682 		mz = rte_memzone_reserve(mz_name, total_alloc_len,
4683 					 SOCKET_ID_ANY,
4684 					 RTE_MEMZONE_2MB |
4685 					 RTE_MEMZONE_SIZE_HINT_ONLY |
4686 					 RTE_MEMZONE_IOVA_CONTIG);
4687 		if (mz == NULL)
4688 			return -ENOMEM;
4689 	}
4690 	memset(mz->addr, 0, mz->len);
4691 	mz_phys_addr = mz->iova;
4692 
4693 	bp->rx_mem_zone = (const void *)mz;
4694 	bp->hw_rx_port_stats = mz->addr;
4695 	bp->hw_rx_port_stats_map = mz_phys_addr;
4696 
4697 	snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
4698 		 "bnxt_" PCI_PRI_FMT "-%s", pci_dev->addr.domain,
4699 		 pci_dev->addr.bus, pci_dev->addr.devid,
4700 		 pci_dev->addr.function, "tx_port_stats");
4701 	mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
4702 	mz = rte_memzone_lookup(mz_name);
4703 	total_alloc_len =
4704 		RTE_CACHE_LINE_ROUNDUP(sizeof(struct tx_port_stats) +
4705 				       sizeof(struct tx_port_stats_ext) + 512);
4706 	if (!mz) {
4707 		mz = rte_memzone_reserve(mz_name,
4708 					 total_alloc_len,
4709 					 SOCKET_ID_ANY,
4710 					 RTE_MEMZONE_2MB |
4711 					 RTE_MEMZONE_SIZE_HINT_ONLY |
4712 					 RTE_MEMZONE_IOVA_CONTIG);
4713 		if (mz == NULL)
4714 			return -ENOMEM;
4715 	}
4716 	memset(mz->addr, 0, mz->len);
4717 	mz_phys_addr = mz->iova;
4718 
4719 	bp->tx_mem_zone = (const void *)mz;
4720 	bp->hw_tx_port_stats = mz->addr;
4721 	bp->hw_tx_port_stats_map = mz_phys_addr;
4722 	bp->flags |= BNXT_FLAG_PORT_STATS;
4723 
4724 	/* Display extended statistics if FW supports it */
4725 	if (bp->hwrm_spec_code < HWRM_SPEC_CODE_1_8_4 ||
4726 	    bp->hwrm_spec_code == HWRM_SPEC_CODE_1_9_0 ||
4727 	    !(bp->flags & BNXT_FLAG_EXT_STATS_SUPPORTED))
4728 		return 0;
4729 
4730 	bp->hw_rx_port_stats_ext = (void *)
4731 		((uint8_t *)bp->hw_rx_port_stats +
4732 		 sizeof(struct rx_port_stats));
4733 	bp->hw_rx_port_stats_ext_map = bp->hw_rx_port_stats_map +
4734 		sizeof(struct rx_port_stats);
4735 	bp->flags |= BNXT_FLAG_EXT_RX_PORT_STATS;
4736 
4737 	if (bp->hwrm_spec_code < HWRM_SPEC_CODE_1_9_2 ||
4738 	    bp->flags & BNXT_FLAG_EXT_STATS_SUPPORTED) {
4739 		bp->hw_tx_port_stats_ext = (void *)
4740 			((uint8_t *)bp->hw_tx_port_stats +
4741 			 sizeof(struct tx_port_stats));
4742 		bp->hw_tx_port_stats_ext_map =
4743 			bp->hw_tx_port_stats_map +
4744 			sizeof(struct tx_port_stats);
4745 		bp->flags |= BNXT_FLAG_EXT_TX_PORT_STATS;
4746 	}
4747 
4748 	return 0;
4749 }
4750 
4751 static int bnxt_setup_mac_addr(struct rte_eth_dev *eth_dev)
4752 {
4753 	struct bnxt *bp = eth_dev->data->dev_private;
4754 	int rc = 0;
4755 
4756 	eth_dev->data->mac_addrs = rte_zmalloc("bnxt_mac_addr_tbl",
4757 					       RTE_ETHER_ADDR_LEN *
4758 					       bp->max_l2_ctx,
4759 					       0);
4760 	if (eth_dev->data->mac_addrs == NULL) {
4761 		PMD_DRV_LOG(ERR, "Failed to alloc MAC addr tbl\n");
4762 		return -ENOMEM;
4763 	}
4764 
4765 	if (!BNXT_HAS_DFLT_MAC_SET(bp)) {
4766 		if (BNXT_PF(bp))
4767 			return -EINVAL;
4768 
4769 		/* Generate a random MAC address, if none was assigned by PF */
4770 		PMD_DRV_LOG(INFO, "VF MAC address not assigned by Host PF\n");
4771 		bnxt_eth_hw_addr_random(bp->mac_addr);
4772 		PMD_DRV_LOG(INFO,
4773 			    "Assign random MAC:%02X:%02X:%02X:%02X:%02X:%02X\n",
4774 			    bp->mac_addr[0], bp->mac_addr[1], bp->mac_addr[2],
4775 			    bp->mac_addr[3], bp->mac_addr[4], bp->mac_addr[5]);
4776 
4777 		rc = bnxt_hwrm_set_mac(bp);
4778 		if (rc)
4779 			return rc;
4780 	}
4781 
4782 	/* Copy the permanent MAC from the FUNC_QCAPS response */
4783 	memcpy(&eth_dev->data->mac_addrs[0], bp->mac_addr, RTE_ETHER_ADDR_LEN);
4784 
4785 	return rc;
4786 }
4787 
4788 static int bnxt_restore_dflt_mac(struct bnxt *bp)
4789 {
4790 	int rc = 0;
4791 
4792 	/* MAC is already configured in FW */
4793 	if (BNXT_HAS_DFLT_MAC_SET(bp))
4794 		return 0;
4795 
4796 	/* Restore the old MAC configured */
4797 	rc = bnxt_hwrm_set_mac(bp);
4798 	if (rc)
4799 		PMD_DRV_LOG(ERR, "Failed to restore MAC address\n");
4800 
4801 	return rc;
4802 }
4803 
4804 static void bnxt_config_vf_req_fwd(struct bnxt *bp)
4805 {
4806 	if (!BNXT_PF(bp))
4807 		return;
4808 
4809 	memset(bp->pf->vf_req_fwd, 0, sizeof(bp->pf->vf_req_fwd));
4810 
4811 	if (!(bp->fw_cap & BNXT_FW_CAP_LINK_ADMIN))
4812 		BNXT_HWRM_CMD_TO_FORWARD(HWRM_PORT_PHY_QCFG);
4813 	BNXT_HWRM_CMD_TO_FORWARD(HWRM_FUNC_CFG);
4814 	BNXT_HWRM_CMD_TO_FORWARD(HWRM_FUNC_VF_CFG);
4815 	BNXT_HWRM_CMD_TO_FORWARD(HWRM_CFA_L2_FILTER_ALLOC);
4816 	BNXT_HWRM_CMD_TO_FORWARD(HWRM_OEM_CMD);
4817 }
4818 
4819 uint16_t
4820 bnxt_get_svif(uint16_t port_id, bool func_svif,
4821 	      enum bnxt_ulp_intf_type type)
4822 {
4823 	struct rte_eth_dev *eth_dev;
4824 	struct bnxt *bp;
4825 
4826 	eth_dev = &rte_eth_devices[port_id];
4827 	if (BNXT_ETH_DEV_IS_REPRESENTOR(eth_dev)) {
4828 		struct bnxt_representor *vfr = eth_dev->data->dev_private;
4829 		if (!vfr)
4830 			return 0;
4831 
4832 		if (type == BNXT_ULP_INTF_TYPE_VF_REP)
4833 			return vfr->svif;
4834 
4835 		eth_dev = vfr->parent_dev;
4836 	}
4837 
4838 	bp = eth_dev->data->dev_private;
4839 
4840 	return func_svif ? bp->func_svif : bp->port_svif;
4841 }
4842 
4843 uint16_t
4844 bnxt_get_vnic_id(uint16_t port, enum bnxt_ulp_intf_type type)
4845 {
4846 	struct rte_eth_dev *eth_dev;
4847 	struct bnxt_vnic_info *vnic;
4848 	struct bnxt *bp;
4849 
4850 	eth_dev = &rte_eth_devices[port];
4851 	if (BNXT_ETH_DEV_IS_REPRESENTOR(eth_dev)) {
4852 		struct bnxt_representor *vfr = eth_dev->data->dev_private;
4853 		if (!vfr)
4854 			return 0;
4855 
4856 		if (type == BNXT_ULP_INTF_TYPE_VF_REP)
4857 			return vfr->dflt_vnic_id;
4858 
4859 		eth_dev = vfr->parent_dev;
4860 	}
4861 
4862 	bp = eth_dev->data->dev_private;
4863 
4864 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
4865 
4866 	return vnic->fw_vnic_id;
4867 }
4868 
4869 uint16_t
4870 bnxt_get_fw_func_id(uint16_t port, enum bnxt_ulp_intf_type type)
4871 {
4872 	struct rte_eth_dev *eth_dev;
4873 	struct bnxt *bp;
4874 
4875 	eth_dev = &rte_eth_devices[port];
4876 	if (BNXT_ETH_DEV_IS_REPRESENTOR(eth_dev)) {
4877 		struct bnxt_representor *vfr = eth_dev->data->dev_private;
4878 		if (!vfr)
4879 			return 0;
4880 
4881 		if (type == BNXT_ULP_INTF_TYPE_VF_REP)
4882 			return vfr->fw_fid;
4883 
4884 		eth_dev = vfr->parent_dev;
4885 	}
4886 
4887 	bp = eth_dev->data->dev_private;
4888 
4889 	return bp->fw_fid;
4890 }
4891 
4892 enum bnxt_ulp_intf_type
4893 bnxt_get_interface_type(uint16_t port)
4894 {
4895 	struct rte_eth_dev *eth_dev;
4896 	struct bnxt *bp;
4897 
4898 	eth_dev = &rte_eth_devices[port];
4899 	if (BNXT_ETH_DEV_IS_REPRESENTOR(eth_dev))
4900 		return BNXT_ULP_INTF_TYPE_VF_REP;
4901 
4902 	bp = eth_dev->data->dev_private;
4903 	if (BNXT_PF(bp))
4904 		return BNXT_ULP_INTF_TYPE_PF;
4905 	else if (BNXT_VF_IS_TRUSTED(bp))
4906 		return BNXT_ULP_INTF_TYPE_TRUSTED_VF;
4907 	else if (BNXT_VF(bp))
4908 		return BNXT_ULP_INTF_TYPE_VF;
4909 
4910 	return BNXT_ULP_INTF_TYPE_INVALID;
4911 }
4912 
4913 uint16_t
4914 bnxt_get_phy_port_id(uint16_t port_id)
4915 {
4916 	struct bnxt_representor *vfr;
4917 	struct rte_eth_dev *eth_dev;
4918 	struct bnxt *bp;
4919 
4920 	eth_dev = &rte_eth_devices[port_id];
4921 	if (BNXT_ETH_DEV_IS_REPRESENTOR(eth_dev)) {
4922 		vfr = eth_dev->data->dev_private;
4923 		if (!vfr)
4924 			return 0;
4925 
4926 		eth_dev = vfr->parent_dev;
4927 	}
4928 
4929 	bp = eth_dev->data->dev_private;
4930 
4931 	return BNXT_PF(bp) ? bp->pf->port_id : bp->parent->port_id;
4932 }
4933 
4934 uint16_t
4935 bnxt_get_parif(uint16_t port_id, enum bnxt_ulp_intf_type type)
4936 {
4937 	struct rte_eth_dev *eth_dev;
4938 	struct bnxt *bp;
4939 
4940 	eth_dev = &rte_eth_devices[port_id];
4941 	if (BNXT_ETH_DEV_IS_REPRESENTOR(eth_dev)) {
4942 		struct bnxt_representor *vfr = eth_dev->data->dev_private;
4943 		if (!vfr)
4944 			return 0;
4945 
4946 		if (type == BNXT_ULP_INTF_TYPE_VF_REP)
4947 			return vfr->fw_fid - 1;
4948 
4949 		eth_dev = vfr->parent_dev;
4950 	}
4951 
4952 	bp = eth_dev->data->dev_private;
4953 
4954 	return BNXT_PF(bp) ? bp->fw_fid - 1 : bp->parent->fid - 1;
4955 }
4956 
4957 uint16_t
4958 bnxt_get_vport(uint16_t port_id)
4959 {
4960 	return (1 << bnxt_get_phy_port_id(port_id));
4961 }
4962 
4963 static void bnxt_alloc_error_recovery_info(struct bnxt *bp)
4964 {
4965 	struct bnxt_error_recovery_info *info = bp->recovery_info;
4966 
4967 	if (info) {
4968 		if (!(bp->fw_cap & BNXT_FW_CAP_HCOMM_FW_STATUS))
4969 			memset(info, 0, sizeof(*info));
4970 		return;
4971 	}
4972 
4973 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
4974 		return;
4975 
4976 	info = rte_zmalloc("bnxt_hwrm_error_recovery_qcfg",
4977 			   sizeof(*info), 0);
4978 	if (!info)
4979 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
4980 
4981 	bp->recovery_info = info;
4982 }
4983 
4984 static void bnxt_check_fw_status(struct bnxt *bp)
4985 {
4986 	uint32_t fw_status;
4987 
4988 	if (!(bp->recovery_info &&
4989 	      (bp->fw_cap & BNXT_FW_CAP_HCOMM_FW_STATUS)))
4990 		return;
4991 
4992 	fw_status = bnxt_read_fw_status_reg(bp, BNXT_FW_STATUS_REG);
4993 	if (fw_status != BNXT_FW_STATUS_HEALTHY)
4994 		PMD_DRV_LOG(ERR, "Firmware not responding, status: %#x\n",
4995 			    fw_status);
4996 }
4997 
4998 static int bnxt_map_hcomm_fw_status_reg(struct bnxt *bp)
4999 {
5000 	struct bnxt_error_recovery_info *info = bp->recovery_info;
5001 	uint32_t status_loc;
5002 	uint32_t sig_ver;
5003 
5004 	rte_write32(HCOMM_STATUS_STRUCT_LOC, (uint8_t *)bp->bar0 +
5005 		    BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
5006 	sig_ver = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
5007 				   BNXT_GRCP_WINDOW_2_BASE +
5008 				   offsetof(struct hcomm_status,
5009 					    sig_ver)));
5010 	/* If the signature is absent, then FW does not support this feature */
5011 	if ((sig_ver & HCOMM_STATUS_SIGNATURE_MASK) !=
5012 	    HCOMM_STATUS_SIGNATURE_VAL)
5013 		return 0;
5014 
5015 	if (!info) {
5016 		info = rte_zmalloc("bnxt_hwrm_error_recovery_qcfg",
5017 				   sizeof(*info), 0);
5018 		if (!info)
5019 			return -ENOMEM;
5020 		bp->recovery_info = info;
5021 	} else {
5022 		memset(info, 0, sizeof(*info));
5023 	}
5024 
5025 	status_loc = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
5026 				      BNXT_GRCP_WINDOW_2_BASE +
5027 				      offsetof(struct hcomm_status,
5028 					       fw_status_loc)));
5029 
5030 	/* Only pre-map the FW health status GRC register */
5031 	if (BNXT_FW_STATUS_REG_TYPE(status_loc) != BNXT_FW_STATUS_REG_TYPE_GRC)
5032 		return 0;
5033 
5034 	info->status_regs[BNXT_FW_STATUS_REG] = status_loc;
5035 	info->mapped_status_regs[BNXT_FW_STATUS_REG] =
5036 		BNXT_GRCP_WINDOW_2_BASE + (status_loc & BNXT_GRCP_OFFSET_MASK);
5037 
5038 	rte_write32((status_loc & BNXT_GRCP_BASE_MASK), (uint8_t *)bp->bar0 +
5039 		    BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
5040 
5041 	bp->fw_cap |= BNXT_FW_CAP_HCOMM_FW_STATUS;
5042 
5043 	return 0;
5044 }
5045 
5046 static int bnxt_init_fw(struct bnxt *bp)
5047 {
5048 	uint16_t mtu;
5049 	int rc = 0;
5050 
5051 	bp->fw_cap = 0;
5052 
5053 	rc = bnxt_map_hcomm_fw_status_reg(bp);
5054 	if (rc)
5055 		return rc;
5056 
5057 	rc = bnxt_hwrm_ver_get(bp, DFLT_HWRM_CMD_TIMEOUT);
5058 	if (rc) {
5059 		bnxt_check_fw_status(bp);
5060 		return rc;
5061 	}
5062 
5063 	rc = bnxt_hwrm_func_reset(bp);
5064 	if (rc)
5065 		return -EIO;
5066 
5067 	rc = bnxt_hwrm_vnic_qcaps(bp);
5068 	if (rc)
5069 		return rc;
5070 
5071 	rc = bnxt_hwrm_queue_qportcfg(bp);
5072 	if (rc)
5073 		return rc;
5074 
5075 	/* Get the MAX capabilities for this function.
5076 	 * This function also allocates context memory for TQM rings and
5077 	 * informs the firmware about this allocated backing store memory.
5078 	 */
5079 	rc = bnxt_hwrm_func_qcaps(bp);
5080 	if (rc)
5081 		return rc;
5082 
5083 	rc = bnxt_hwrm_func_qcfg(bp, &mtu);
5084 	if (rc)
5085 		return rc;
5086 
5087 	bnxt_hwrm_port_mac_qcfg(bp);
5088 
5089 	bnxt_hwrm_parent_pf_qcfg(bp);
5090 
5091 	bnxt_hwrm_port_phy_qcaps(bp);
5092 
5093 	bnxt_alloc_error_recovery_info(bp);
5094 	/* Get the adapter error recovery support info */
5095 	rc = bnxt_hwrm_error_recovery_qcfg(bp);
5096 	if (rc)
5097 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
5098 
5099 	bnxt_hwrm_port_led_qcaps(bp);
5100 
5101 	return 0;
5102 }
5103 
5104 static int
5105 bnxt_init_locks(struct bnxt *bp)
5106 {
5107 	int err;
5108 
5109 	err = pthread_mutex_init(&bp->flow_lock, NULL);
5110 	if (err) {
5111 		PMD_DRV_LOG(ERR, "Unable to initialize flow_lock\n");
5112 		return err;
5113 	}
5114 
5115 	err = pthread_mutex_init(&bp->def_cp_lock, NULL);
5116 	if (err)
5117 		PMD_DRV_LOG(ERR, "Unable to initialize def_cp_lock\n");
5118 
5119 	err = pthread_mutex_init(&bp->health_check_lock, NULL);
5120 	if (err)
5121 		PMD_DRV_LOG(ERR, "Unable to initialize health_check_lock\n");
5122 	return err;
5123 }
5124 
5125 static int bnxt_init_resources(struct bnxt *bp, bool reconfig_dev)
5126 {
5127 	int rc = 0;
5128 
5129 	rc = bnxt_init_fw(bp);
5130 	if (rc)
5131 		return rc;
5132 
5133 	if (!reconfig_dev) {
5134 		rc = bnxt_setup_mac_addr(bp->eth_dev);
5135 		if (rc)
5136 			return rc;
5137 	} else {
5138 		rc = bnxt_restore_dflt_mac(bp);
5139 		if (rc)
5140 			return rc;
5141 	}
5142 
5143 	bnxt_config_vf_req_fwd(bp);
5144 
5145 	rc = bnxt_hwrm_func_driver_register(bp);
5146 	if (rc) {
5147 		PMD_DRV_LOG(ERR, "Failed to register driver");
5148 		return -EBUSY;
5149 	}
5150 
5151 	if (BNXT_PF(bp)) {
5152 		if (bp->pdev->max_vfs) {
5153 			rc = bnxt_hwrm_allocate_vfs(bp, bp->pdev->max_vfs);
5154 			if (rc) {
5155 				PMD_DRV_LOG(ERR, "Failed to allocate VFs\n");
5156 				return rc;
5157 			}
5158 		} else {
5159 			rc = bnxt_hwrm_allocate_pf_only(bp);
5160 			if (rc) {
5161 				PMD_DRV_LOG(ERR,
5162 					    "Failed to allocate PF resources");
5163 				return rc;
5164 			}
5165 		}
5166 	}
5167 
5168 	rc = bnxt_alloc_mem(bp, reconfig_dev);
5169 	if (rc)
5170 		return rc;
5171 
5172 	rc = bnxt_setup_int(bp);
5173 	if (rc)
5174 		return rc;
5175 
5176 	rc = bnxt_request_int(bp);
5177 	if (rc)
5178 		return rc;
5179 
5180 	rc = bnxt_init_ctx_mem(bp);
5181 	if (rc) {
5182 		PMD_DRV_LOG(ERR, "Failed to init adv_flow_counters\n");
5183 		return rc;
5184 	}
5185 
5186 	rc = bnxt_init_locks(bp);
5187 	if (rc)
5188 		return rc;
5189 
5190 	return 0;
5191 }
5192 
5193 static int
5194 bnxt_parse_devarg_truflow(__rte_unused const char *key,
5195 			  const char *value, void *opaque_arg)
5196 {
5197 	struct bnxt *bp = opaque_arg;
5198 	unsigned long truflow;
5199 	char *end = NULL;
5200 
5201 	if (!value || !opaque_arg) {
5202 		PMD_DRV_LOG(ERR,
5203 			    "Invalid parameter passed to truflow devargs.\n");
5204 		return -EINVAL;
5205 	}
5206 
5207 	truflow = strtoul(value, &end, 10);
5208 	if (end == NULL || *end != '\0' ||
5209 	    (truflow == ULONG_MAX && errno == ERANGE)) {
5210 		PMD_DRV_LOG(ERR,
5211 			    "Invalid parameter passed to truflow devargs.\n");
5212 		return -EINVAL;
5213 	}
5214 
5215 	if (BNXT_DEVARG_TRUFLOW_INVALID(truflow)) {
5216 		PMD_DRV_LOG(ERR,
5217 			    "Invalid value passed to truflow devargs.\n");
5218 		return -EINVAL;
5219 	}
5220 
5221 	if (truflow) {
5222 		bp->flags |= BNXT_FLAG_TRUFLOW_EN;
5223 		PMD_DRV_LOG(INFO, "Host-based truflow feature enabled.\n");
5224 	} else {
5225 		bp->flags &= ~BNXT_FLAG_TRUFLOW_EN;
5226 		PMD_DRV_LOG(INFO, "Host-based truflow feature disabled.\n");
5227 	}
5228 
5229 	return 0;
5230 }
5231 
5232 static int
5233 bnxt_parse_devarg_flow_xstat(__rte_unused const char *key,
5234 			     const char *value, void *opaque_arg)
5235 {
5236 	struct bnxt *bp = opaque_arg;
5237 	unsigned long flow_xstat;
5238 	char *end = NULL;
5239 
5240 	if (!value || !opaque_arg) {
5241 		PMD_DRV_LOG(ERR,
5242 			    "Invalid parameter passed to flow_xstat devarg.\n");
5243 		return -EINVAL;
5244 	}
5245 
5246 	flow_xstat = strtoul(value, &end, 10);
5247 	if (end == NULL || *end != '\0' ||
5248 	    (flow_xstat == ULONG_MAX && errno == ERANGE)) {
5249 		PMD_DRV_LOG(ERR,
5250 			    "Invalid parameter passed to flow_xstat devarg.\n");
5251 		return -EINVAL;
5252 	}
5253 
5254 	if (BNXT_DEVARG_FLOW_XSTAT_INVALID(flow_xstat)) {
5255 		PMD_DRV_LOG(ERR,
5256 			    "Invalid value passed to flow_xstat devarg.\n");
5257 		return -EINVAL;
5258 	}
5259 
5260 	bp->flags |= BNXT_FLAG_FLOW_XSTATS_EN;
5261 	if (BNXT_FLOW_XSTATS_EN(bp))
5262 		PMD_DRV_LOG(INFO, "flow_xstat feature enabled.\n");
5263 
5264 	return 0;
5265 }
5266 
5267 static int
5268 bnxt_parse_devarg_max_num_kflows(__rte_unused const char *key,
5269 					const char *value, void *opaque_arg)
5270 {
5271 	struct bnxt *bp = opaque_arg;
5272 	unsigned long max_num_kflows;
5273 	char *end = NULL;
5274 
5275 	if (!value || !opaque_arg) {
5276 		PMD_DRV_LOG(ERR,
5277 			"Invalid parameter passed to max_num_kflows devarg.\n");
5278 		return -EINVAL;
5279 	}
5280 
5281 	max_num_kflows = strtoul(value, &end, 10);
5282 	if (end == NULL || *end != '\0' ||
5283 		(max_num_kflows == ULONG_MAX && errno == ERANGE)) {
5284 		PMD_DRV_LOG(ERR,
5285 			"Invalid parameter passed to max_num_kflows devarg.\n");
5286 		return -EINVAL;
5287 	}
5288 
5289 	if (bnxt_devarg_max_num_kflow_invalid(max_num_kflows)) {
5290 		PMD_DRV_LOG(ERR,
5291 			"Invalid value passed to max_num_kflows devarg.\n");
5292 		return -EINVAL;
5293 	}
5294 
5295 	bp->max_num_kflows = max_num_kflows;
5296 	if (bp->max_num_kflows)
5297 		PMD_DRV_LOG(INFO, "max_num_kflows set as %ldK.\n",
5298 				max_num_kflows);
5299 
5300 	return 0;
5301 }
5302 
5303 static int
5304 bnxt_parse_devarg_rep_is_pf(__rte_unused const char *key,
5305 			    const char *value, void *opaque_arg)
5306 {
5307 	struct bnxt_representor *vfr_bp = opaque_arg;
5308 	unsigned long rep_is_pf;
5309 	char *end = NULL;
5310 
5311 	if (!value || !opaque_arg) {
5312 		PMD_DRV_LOG(ERR,
5313 			    "Invalid parameter passed to rep_is_pf devargs.\n");
5314 		return -EINVAL;
5315 	}
5316 
5317 	rep_is_pf = strtoul(value, &end, 10);
5318 	if (end == NULL || *end != '\0' ||
5319 	    (rep_is_pf == ULONG_MAX && errno == ERANGE)) {
5320 		PMD_DRV_LOG(ERR,
5321 			    "Invalid parameter passed to rep_is_pf devargs.\n");
5322 		return -EINVAL;
5323 	}
5324 
5325 	if (BNXT_DEVARG_REP_IS_PF_INVALID(rep_is_pf)) {
5326 		PMD_DRV_LOG(ERR,
5327 			    "Invalid value passed to rep_is_pf devargs.\n");
5328 		return -EINVAL;
5329 	}
5330 
5331 	vfr_bp->flags |= rep_is_pf;
5332 	if (BNXT_REP_PF(vfr_bp))
5333 		PMD_DRV_LOG(INFO, "PF representor\n");
5334 	else
5335 		PMD_DRV_LOG(INFO, "VF representor\n");
5336 
5337 	return 0;
5338 }
5339 
5340 static int
5341 bnxt_parse_devarg_rep_based_pf(__rte_unused const char *key,
5342 			       const char *value, void *opaque_arg)
5343 {
5344 	struct bnxt_representor *vfr_bp = opaque_arg;
5345 	unsigned long rep_based_pf;
5346 	char *end = NULL;
5347 
5348 	if (!value || !opaque_arg) {
5349 		PMD_DRV_LOG(ERR,
5350 			    "Invalid parameter passed to rep_based_pf "
5351 			    "devargs.\n");
5352 		return -EINVAL;
5353 	}
5354 
5355 	rep_based_pf = strtoul(value, &end, 10);
5356 	if (end == NULL || *end != '\0' ||
5357 	    (rep_based_pf == ULONG_MAX && errno == ERANGE)) {
5358 		PMD_DRV_LOG(ERR,
5359 			    "Invalid parameter passed to rep_based_pf "
5360 			    "devargs.\n");
5361 		return -EINVAL;
5362 	}
5363 
5364 	if (BNXT_DEVARG_REP_BASED_PF_INVALID(rep_based_pf)) {
5365 		PMD_DRV_LOG(ERR,
5366 			    "Invalid value passed to rep_based_pf devargs.\n");
5367 		return -EINVAL;
5368 	}
5369 
5370 	vfr_bp->rep_based_pf = rep_based_pf;
5371 	vfr_bp->flags |= BNXT_REP_BASED_PF_VALID;
5372 
5373 	PMD_DRV_LOG(INFO, "rep-based-pf = %d\n", vfr_bp->rep_based_pf);
5374 
5375 	return 0;
5376 }
5377 
5378 static int
5379 bnxt_parse_devarg_rep_q_r2f(__rte_unused const char *key,
5380 			    const char *value, void *opaque_arg)
5381 {
5382 	struct bnxt_representor *vfr_bp = opaque_arg;
5383 	unsigned long rep_q_r2f;
5384 	char *end = NULL;
5385 
5386 	if (!value || !opaque_arg) {
5387 		PMD_DRV_LOG(ERR,
5388 			    "Invalid parameter passed to rep_q_r2f "
5389 			    "devargs.\n");
5390 		return -EINVAL;
5391 	}
5392 
5393 	rep_q_r2f = strtoul(value, &end, 10);
5394 	if (end == NULL || *end != '\0' ||
5395 	    (rep_q_r2f == ULONG_MAX && errno == ERANGE)) {
5396 		PMD_DRV_LOG(ERR,
5397 			    "Invalid parameter passed to rep_q_r2f "
5398 			    "devargs.\n");
5399 		return -EINVAL;
5400 	}
5401 
5402 	if (BNXT_DEVARG_REP_Q_R2F_INVALID(rep_q_r2f)) {
5403 		PMD_DRV_LOG(ERR,
5404 			    "Invalid value passed to rep_q_r2f devargs.\n");
5405 		return -EINVAL;
5406 	}
5407 
5408 	vfr_bp->rep_q_r2f = rep_q_r2f;
5409 	vfr_bp->flags |= BNXT_REP_Q_R2F_VALID;
5410 	PMD_DRV_LOG(INFO, "rep-q-r2f = %d\n", vfr_bp->rep_q_r2f);
5411 
5412 	return 0;
5413 }
5414 
5415 static int
5416 bnxt_parse_devarg_rep_q_f2r(__rte_unused const char *key,
5417 			    const char *value, void *opaque_arg)
5418 {
5419 	struct bnxt_representor *vfr_bp = opaque_arg;
5420 	unsigned long rep_q_f2r;
5421 	char *end = NULL;
5422 
5423 	if (!value || !opaque_arg) {
5424 		PMD_DRV_LOG(ERR,
5425 			    "Invalid parameter passed to rep_q_f2r "
5426 			    "devargs.\n");
5427 		return -EINVAL;
5428 	}
5429 
5430 	rep_q_f2r = strtoul(value, &end, 10);
5431 	if (end == NULL || *end != '\0' ||
5432 	    (rep_q_f2r == ULONG_MAX && errno == ERANGE)) {
5433 		PMD_DRV_LOG(ERR,
5434 			    "Invalid parameter passed to rep_q_f2r "
5435 			    "devargs.\n");
5436 		return -EINVAL;
5437 	}
5438 
5439 	if (BNXT_DEVARG_REP_Q_F2R_INVALID(rep_q_f2r)) {
5440 		PMD_DRV_LOG(ERR,
5441 			    "Invalid value passed to rep_q_f2r devargs.\n");
5442 		return -EINVAL;
5443 	}
5444 
5445 	vfr_bp->rep_q_f2r = rep_q_f2r;
5446 	vfr_bp->flags |= BNXT_REP_Q_F2R_VALID;
5447 	PMD_DRV_LOG(INFO, "rep-q-f2r = %d\n", vfr_bp->rep_q_f2r);
5448 
5449 	return 0;
5450 }
5451 
5452 static int
5453 bnxt_parse_devarg_rep_fc_r2f(__rte_unused const char *key,
5454 			     const char *value, void *opaque_arg)
5455 {
5456 	struct bnxt_representor *vfr_bp = opaque_arg;
5457 	unsigned long rep_fc_r2f;
5458 	char *end = NULL;
5459 
5460 	if (!value || !opaque_arg) {
5461 		PMD_DRV_LOG(ERR,
5462 			    "Invalid parameter passed to rep_fc_r2f "
5463 			    "devargs.\n");
5464 		return -EINVAL;
5465 	}
5466 
5467 	rep_fc_r2f = strtoul(value, &end, 10);
5468 	if (end == NULL || *end != '\0' ||
5469 	    (rep_fc_r2f == ULONG_MAX && errno == ERANGE)) {
5470 		PMD_DRV_LOG(ERR,
5471 			    "Invalid parameter passed to rep_fc_r2f "
5472 			    "devargs.\n");
5473 		return -EINVAL;
5474 	}
5475 
5476 	if (BNXT_DEVARG_REP_FC_R2F_INVALID(rep_fc_r2f)) {
5477 		PMD_DRV_LOG(ERR,
5478 			    "Invalid value passed to rep_fc_r2f devargs.\n");
5479 		return -EINVAL;
5480 	}
5481 
5482 	vfr_bp->flags |= BNXT_REP_FC_R2F_VALID;
5483 	vfr_bp->rep_fc_r2f = rep_fc_r2f;
5484 	PMD_DRV_LOG(INFO, "rep-fc-r2f = %lu\n", rep_fc_r2f);
5485 
5486 	return 0;
5487 }
5488 
5489 static int
5490 bnxt_parse_devarg_rep_fc_f2r(__rte_unused const char *key,
5491 			     const char *value, void *opaque_arg)
5492 {
5493 	struct bnxt_representor *vfr_bp = opaque_arg;
5494 	unsigned long rep_fc_f2r;
5495 	char *end = NULL;
5496 
5497 	if (!value || !opaque_arg) {
5498 		PMD_DRV_LOG(ERR,
5499 			    "Invalid parameter passed to rep_fc_f2r "
5500 			    "devargs.\n");
5501 		return -EINVAL;
5502 	}
5503 
5504 	rep_fc_f2r = strtoul(value, &end, 10);
5505 	if (end == NULL || *end != '\0' ||
5506 	    (rep_fc_f2r == ULONG_MAX && errno == ERANGE)) {
5507 		PMD_DRV_LOG(ERR,
5508 			    "Invalid parameter passed to rep_fc_f2r "
5509 			    "devargs.\n");
5510 		return -EINVAL;
5511 	}
5512 
5513 	if (BNXT_DEVARG_REP_FC_F2R_INVALID(rep_fc_f2r)) {
5514 		PMD_DRV_LOG(ERR,
5515 			    "Invalid value passed to rep_fc_f2r devargs.\n");
5516 		return -EINVAL;
5517 	}
5518 
5519 	vfr_bp->flags |= BNXT_REP_FC_F2R_VALID;
5520 	vfr_bp->rep_fc_f2r = rep_fc_f2r;
5521 	PMD_DRV_LOG(INFO, "rep-fc-f2r = %lu\n", rep_fc_f2r);
5522 
5523 	return 0;
5524 }
5525 
5526 static void
5527 bnxt_parse_dev_args(struct bnxt *bp, struct rte_devargs *devargs)
5528 {
5529 	struct rte_kvargs *kvlist;
5530 
5531 	if (devargs == NULL)
5532 		return;
5533 
5534 	kvlist = rte_kvargs_parse(devargs->args, bnxt_dev_args);
5535 	if (kvlist == NULL)
5536 		return;
5537 
5538 	/*
5539 	 * Handler for "truflow" devarg.
5540 	 * Invoked as for ex: "-w 0000:00:0d.0,host-based-truflow=1"
5541 	 */
5542 	rte_kvargs_process(kvlist, BNXT_DEVARG_TRUFLOW,
5543 			   bnxt_parse_devarg_truflow, bp);
5544 
5545 	/*
5546 	 * Handler for "flow_xstat" devarg.
5547 	 * Invoked as for ex: "-w 0000:00:0d.0,flow_xstat=1"
5548 	 */
5549 	rte_kvargs_process(kvlist, BNXT_DEVARG_FLOW_XSTAT,
5550 			   bnxt_parse_devarg_flow_xstat, bp);
5551 
5552 	/*
5553 	 * Handler for "max_num_kflows" devarg.
5554 	 * Invoked as for ex: "-w 000:00:0d.0,max_num_kflows=32"
5555 	 */
5556 	rte_kvargs_process(kvlist, BNXT_DEVARG_MAX_NUM_KFLOWS,
5557 			   bnxt_parse_devarg_max_num_kflows, bp);
5558 
5559 	rte_kvargs_free(kvlist);
5560 }
5561 
5562 static int bnxt_alloc_switch_domain(struct bnxt *bp)
5563 {
5564 	int rc = 0;
5565 
5566 	if (BNXT_PF(bp) || BNXT_VF_IS_TRUSTED(bp)) {
5567 		rc = rte_eth_switch_domain_alloc(&bp->switch_domain_id);
5568 		if (rc)
5569 			PMD_DRV_LOG(ERR,
5570 				    "Failed to alloc switch domain: %d\n", rc);
5571 		else
5572 			PMD_DRV_LOG(INFO,
5573 				    "Switch domain allocated %d\n",
5574 				    bp->switch_domain_id);
5575 	}
5576 
5577 	return rc;
5578 }
5579 
5580 static int
5581 bnxt_dev_init(struct rte_eth_dev *eth_dev, void *params __rte_unused)
5582 {
5583 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
5584 	static int version_printed;
5585 	struct bnxt *bp;
5586 	int rc;
5587 
5588 	if (version_printed++ == 0)
5589 		PMD_DRV_LOG(INFO, "%s\n", bnxt_version);
5590 
5591 	eth_dev->dev_ops = &bnxt_dev_ops;
5592 	eth_dev->rx_queue_count = bnxt_rx_queue_count_op;
5593 	eth_dev->rx_descriptor_status = bnxt_rx_descriptor_status_op;
5594 	eth_dev->tx_descriptor_status = bnxt_tx_descriptor_status_op;
5595 	eth_dev->rx_pkt_burst = &bnxt_recv_pkts;
5596 	eth_dev->tx_pkt_burst = &bnxt_xmit_pkts;
5597 
5598 	/*
5599 	 * For secondary processes, we don't initialise any further
5600 	 * as primary has already done this work.
5601 	 */
5602 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
5603 		return 0;
5604 
5605 	rte_eth_copy_pci_info(eth_dev, pci_dev);
5606 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
5607 
5608 	bp = eth_dev->data->dev_private;
5609 
5610 	/* Parse dev arguments passed on when starting the DPDK application. */
5611 	bnxt_parse_dev_args(bp, pci_dev->device.devargs);
5612 
5613 	bp->flags &= ~BNXT_FLAG_RX_VECTOR_PKT_MODE;
5614 
5615 	if (bnxt_vf_pciid(pci_dev->id.device_id))
5616 		bp->flags |= BNXT_FLAG_VF;
5617 
5618 	if (bnxt_thor_device(pci_dev->id.device_id))
5619 		bp->flags |= BNXT_FLAG_THOR_CHIP;
5620 
5621 	if (pci_dev->id.device_id == BROADCOM_DEV_ID_58802 ||
5622 	    pci_dev->id.device_id == BROADCOM_DEV_ID_58804 ||
5623 	    pci_dev->id.device_id == BROADCOM_DEV_ID_58808 ||
5624 	    pci_dev->id.device_id == BROADCOM_DEV_ID_58802_VF)
5625 		bp->flags |= BNXT_FLAG_STINGRAY;
5626 
5627 	if (BNXT_TRUFLOW_EN(bp)) {
5628 		/* extra mbuf field is required to store CFA code from mark */
5629 		static const struct rte_mbuf_dynfield bnxt_cfa_code_dynfield_desc = {
5630 			.name = RTE_PMD_BNXT_CFA_CODE_DYNFIELD_NAME,
5631 			.size = sizeof(bnxt_cfa_code_dynfield_t),
5632 			.align = __alignof__(bnxt_cfa_code_dynfield_t),
5633 		};
5634 		bnxt_cfa_code_dynfield_offset =
5635 			rte_mbuf_dynfield_register(&bnxt_cfa_code_dynfield_desc);
5636 		if (bnxt_cfa_code_dynfield_offset < 0) {
5637 			PMD_DRV_LOG(ERR,
5638 			    "Failed to register mbuf field for TruFlow mark\n");
5639 			return -rte_errno;
5640 		}
5641 	}
5642 
5643 	rc = bnxt_init_board(eth_dev);
5644 	if (rc) {
5645 		PMD_DRV_LOG(ERR,
5646 			    "Failed to initialize board rc: %x\n", rc);
5647 		return rc;
5648 	}
5649 
5650 	rc = bnxt_alloc_pf_info(bp);
5651 	if (rc)
5652 		goto error_free;
5653 
5654 	rc = bnxt_alloc_link_info(bp);
5655 	if (rc)
5656 		goto error_free;
5657 
5658 	rc = bnxt_alloc_parent_info(bp);
5659 	if (rc)
5660 		goto error_free;
5661 
5662 	rc = bnxt_alloc_hwrm_resources(bp);
5663 	if (rc) {
5664 		PMD_DRV_LOG(ERR,
5665 			    "Failed to allocate hwrm resource rc: %x\n", rc);
5666 		goto error_free;
5667 	}
5668 	rc = bnxt_alloc_leds_info(bp);
5669 	if (rc)
5670 		goto error_free;
5671 
5672 	rc = bnxt_alloc_cos_queues(bp);
5673 	if (rc)
5674 		goto error_free;
5675 
5676 	rc = bnxt_init_resources(bp, false);
5677 	if (rc)
5678 		goto error_free;
5679 
5680 	rc = bnxt_alloc_stats_mem(bp);
5681 	if (rc)
5682 		goto error_free;
5683 
5684 	bnxt_alloc_switch_domain(bp);
5685 
5686 	PMD_DRV_LOG(INFO,
5687 		    DRV_MODULE_NAME "found at mem %" PRIX64 ", node addr %pM\n",
5688 		    pci_dev->mem_resource[0].phys_addr,
5689 		    pci_dev->mem_resource[0].addr);
5690 
5691 	return 0;
5692 
5693 error_free:
5694 	bnxt_dev_uninit(eth_dev);
5695 	return rc;
5696 }
5697 
5698 
5699 static void bnxt_free_ctx_mem_buf(struct bnxt_ctx_mem_buf_info *ctx)
5700 {
5701 	if (!ctx)
5702 		return;
5703 
5704 	if (ctx->va)
5705 		rte_free(ctx->va);
5706 
5707 	ctx->va = NULL;
5708 	ctx->dma = RTE_BAD_IOVA;
5709 	ctx->ctx_id = BNXT_CTX_VAL_INVAL;
5710 }
5711 
5712 static void bnxt_unregister_fc_ctx_mem(struct bnxt *bp)
5713 {
5714 	bnxt_hwrm_cfa_counter_cfg(bp, BNXT_DIR_RX,
5715 				  CFA_COUNTER_CFG_IN_COUNTER_TYPE_FC,
5716 				  bp->flow_stat->rx_fc_out_tbl.ctx_id,
5717 				  bp->flow_stat->max_fc,
5718 				  false);
5719 
5720 	bnxt_hwrm_cfa_counter_cfg(bp, BNXT_DIR_TX,
5721 				  CFA_COUNTER_CFG_IN_COUNTER_TYPE_FC,
5722 				  bp->flow_stat->tx_fc_out_tbl.ctx_id,
5723 				  bp->flow_stat->max_fc,
5724 				  false);
5725 
5726 	if (bp->flow_stat->rx_fc_in_tbl.ctx_id != BNXT_CTX_VAL_INVAL)
5727 		bnxt_hwrm_ctx_unrgtr(bp, bp->flow_stat->rx_fc_in_tbl.ctx_id);
5728 	bp->flow_stat->rx_fc_in_tbl.ctx_id = BNXT_CTX_VAL_INVAL;
5729 
5730 	if (bp->flow_stat->rx_fc_out_tbl.ctx_id != BNXT_CTX_VAL_INVAL)
5731 		bnxt_hwrm_ctx_unrgtr(bp, bp->flow_stat->rx_fc_out_tbl.ctx_id);
5732 	bp->flow_stat->rx_fc_out_tbl.ctx_id = BNXT_CTX_VAL_INVAL;
5733 
5734 	if (bp->flow_stat->tx_fc_in_tbl.ctx_id != BNXT_CTX_VAL_INVAL)
5735 		bnxt_hwrm_ctx_unrgtr(bp, bp->flow_stat->tx_fc_in_tbl.ctx_id);
5736 	bp->flow_stat->tx_fc_in_tbl.ctx_id = BNXT_CTX_VAL_INVAL;
5737 
5738 	if (bp->flow_stat->tx_fc_out_tbl.ctx_id != BNXT_CTX_VAL_INVAL)
5739 		bnxt_hwrm_ctx_unrgtr(bp, bp->flow_stat->tx_fc_out_tbl.ctx_id);
5740 	bp->flow_stat->tx_fc_out_tbl.ctx_id = BNXT_CTX_VAL_INVAL;
5741 }
5742 
5743 static void bnxt_uninit_fc_ctx_mem(struct bnxt *bp)
5744 {
5745 	bnxt_unregister_fc_ctx_mem(bp);
5746 
5747 	bnxt_free_ctx_mem_buf(&bp->flow_stat->rx_fc_in_tbl);
5748 	bnxt_free_ctx_mem_buf(&bp->flow_stat->rx_fc_out_tbl);
5749 	bnxt_free_ctx_mem_buf(&bp->flow_stat->tx_fc_in_tbl);
5750 	bnxt_free_ctx_mem_buf(&bp->flow_stat->tx_fc_out_tbl);
5751 }
5752 
5753 static void bnxt_uninit_ctx_mem(struct bnxt *bp)
5754 {
5755 	if (BNXT_FLOW_XSTATS_EN(bp))
5756 		bnxt_uninit_fc_ctx_mem(bp);
5757 }
5758 
5759 static void
5760 bnxt_free_error_recovery_info(struct bnxt *bp)
5761 {
5762 	rte_free(bp->recovery_info);
5763 	bp->recovery_info = NULL;
5764 	bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
5765 }
5766 
5767 static void
5768 bnxt_uninit_locks(struct bnxt *bp)
5769 {
5770 	pthread_mutex_destroy(&bp->flow_lock);
5771 	pthread_mutex_destroy(&bp->def_cp_lock);
5772 	pthread_mutex_destroy(&bp->health_check_lock);
5773 	if (bp->rep_info) {
5774 		pthread_mutex_destroy(&bp->rep_info->vfr_lock);
5775 		pthread_mutex_destroy(&bp->rep_info->vfr_start_lock);
5776 	}
5777 }
5778 
5779 static int
5780 bnxt_uninit_resources(struct bnxt *bp, bool reconfig_dev)
5781 {
5782 	int rc;
5783 
5784 	bnxt_free_int(bp);
5785 	bnxt_free_mem(bp, reconfig_dev);
5786 
5787 	bnxt_hwrm_func_buf_unrgtr(bp);
5788 	rte_free(bp->pf->vf_req_buf);
5789 
5790 	rc = bnxt_hwrm_func_driver_unregister(bp, 0);
5791 	bp->flags &= ~BNXT_FLAG_REGISTERED;
5792 	bnxt_free_ctx_mem(bp);
5793 	if (!reconfig_dev) {
5794 		bnxt_free_hwrm_resources(bp);
5795 		bnxt_free_error_recovery_info(bp);
5796 	}
5797 
5798 	bnxt_uninit_ctx_mem(bp);
5799 
5800 	bnxt_uninit_locks(bp);
5801 	bnxt_free_flow_stats_info(bp);
5802 	bnxt_free_rep_info(bp);
5803 	rte_free(bp->ptp_cfg);
5804 	bp->ptp_cfg = NULL;
5805 	return rc;
5806 }
5807 
5808 static int
5809 bnxt_dev_uninit(struct rte_eth_dev *eth_dev)
5810 {
5811 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
5812 		return -EPERM;
5813 
5814 	PMD_DRV_LOG(DEBUG, "Calling Device uninit\n");
5815 
5816 	if (eth_dev->state != RTE_ETH_DEV_UNUSED)
5817 		bnxt_dev_close_op(eth_dev);
5818 
5819 	return 0;
5820 }
5821 
5822 static int bnxt_pci_remove_dev_with_reps(struct rte_eth_dev *eth_dev)
5823 {
5824 	struct bnxt *bp = eth_dev->data->dev_private;
5825 	struct rte_eth_dev *vf_rep_eth_dev;
5826 	int ret = 0, i;
5827 
5828 	if (!bp)
5829 		return -EINVAL;
5830 
5831 	for (i = 0; i < bp->num_reps; i++) {
5832 		vf_rep_eth_dev = bp->rep_info[i].vfr_eth_dev;
5833 		if (!vf_rep_eth_dev)
5834 			continue;
5835 		PMD_DRV_LOG(DEBUG, "BNXT Port:%d VFR pci remove\n",
5836 			    vf_rep_eth_dev->data->port_id);
5837 		rte_eth_dev_destroy(vf_rep_eth_dev, bnxt_representor_uninit);
5838 	}
5839 	PMD_DRV_LOG(DEBUG, "BNXT Port:%d pci remove\n",
5840 		    eth_dev->data->port_id);
5841 	ret = rte_eth_dev_destroy(eth_dev, bnxt_dev_uninit);
5842 
5843 	return ret;
5844 }
5845 
5846 static void bnxt_free_rep_info(struct bnxt *bp)
5847 {
5848 	rte_free(bp->rep_info);
5849 	bp->rep_info = NULL;
5850 	rte_free(bp->cfa_code_map);
5851 	bp->cfa_code_map = NULL;
5852 }
5853 
5854 static int bnxt_init_rep_info(struct bnxt *bp)
5855 {
5856 	int i = 0, rc;
5857 
5858 	if (bp->rep_info)
5859 		return 0;
5860 
5861 	bp->rep_info = rte_zmalloc("bnxt_rep_info",
5862 				   sizeof(bp->rep_info[0]) * BNXT_MAX_VF_REPS,
5863 				   0);
5864 	if (!bp->rep_info) {
5865 		PMD_DRV_LOG(ERR, "Failed to alloc memory for rep info\n");
5866 		return -ENOMEM;
5867 	}
5868 	bp->cfa_code_map = rte_zmalloc("bnxt_cfa_code_map",
5869 				       sizeof(*bp->cfa_code_map) *
5870 				       BNXT_MAX_CFA_CODE, 0);
5871 	if (!bp->cfa_code_map) {
5872 		PMD_DRV_LOG(ERR, "Failed to alloc memory for cfa_code_map\n");
5873 		bnxt_free_rep_info(bp);
5874 		return -ENOMEM;
5875 	}
5876 
5877 	for (i = 0; i < BNXT_MAX_CFA_CODE; i++)
5878 		bp->cfa_code_map[i] = BNXT_VF_IDX_INVALID;
5879 
5880 	rc = pthread_mutex_init(&bp->rep_info->vfr_lock, NULL);
5881 	if (rc) {
5882 		PMD_DRV_LOG(ERR, "Unable to initialize vfr_lock\n");
5883 		bnxt_free_rep_info(bp);
5884 		return rc;
5885 	}
5886 
5887 	rc = pthread_mutex_init(&bp->rep_info->vfr_start_lock, NULL);
5888 	if (rc) {
5889 		PMD_DRV_LOG(ERR, "Unable to initialize vfr_start_lock\n");
5890 		bnxt_free_rep_info(bp);
5891 		return rc;
5892 	}
5893 
5894 	return rc;
5895 }
5896 
5897 static int bnxt_rep_port_probe(struct rte_pci_device *pci_dev,
5898 			       struct rte_eth_devargs eth_da,
5899 			       struct rte_eth_dev *backing_eth_dev,
5900 			       const char *dev_args)
5901 {
5902 	struct rte_eth_dev *vf_rep_eth_dev;
5903 	char name[RTE_ETH_NAME_MAX_LEN];
5904 	struct bnxt *backing_bp;
5905 	uint16_t num_rep;
5906 	int i, ret = 0;
5907 	struct rte_kvargs *kvlist = NULL;
5908 
5909 	num_rep = eth_da.nb_representor_ports;
5910 	if (num_rep > BNXT_MAX_VF_REPS) {
5911 		PMD_DRV_LOG(ERR, "nb_representor_ports = %d > %d MAX VF REPS\n",
5912 			    num_rep, BNXT_MAX_VF_REPS);
5913 		return -EINVAL;
5914 	}
5915 
5916 	if (num_rep >= RTE_MAX_ETHPORTS) {
5917 		PMD_DRV_LOG(ERR,
5918 			    "nb_representor_ports = %d > %d MAX ETHPORTS\n",
5919 			    num_rep, RTE_MAX_ETHPORTS);
5920 		return -EINVAL;
5921 	}
5922 
5923 	backing_bp = backing_eth_dev->data->dev_private;
5924 
5925 	if (!(BNXT_PF(backing_bp) || BNXT_VF_IS_TRUSTED(backing_bp))) {
5926 		PMD_DRV_LOG(ERR,
5927 			    "Not a PF or trusted VF. No Representor support\n");
5928 		/* Returning an error is not an option.
5929 		 * Applications are not handling this correctly
5930 		 */
5931 		return 0;
5932 	}
5933 
5934 	if (bnxt_init_rep_info(backing_bp))
5935 		return 0;
5936 
5937 	for (i = 0; i < num_rep; i++) {
5938 		struct bnxt_representor representor = {
5939 			.vf_id = eth_da.representor_ports[i],
5940 			.switch_domain_id = backing_bp->switch_domain_id,
5941 			.parent_dev = backing_eth_dev
5942 		};
5943 
5944 		if (representor.vf_id >= BNXT_MAX_VF_REPS) {
5945 			PMD_DRV_LOG(ERR, "VF-Rep id %d >= %d MAX VF ID\n",
5946 				    representor.vf_id, BNXT_MAX_VF_REPS);
5947 			continue;
5948 		}
5949 
5950 		/* representor port net_bdf_port */
5951 		snprintf(name, sizeof(name), "net_%s_representor_%d",
5952 			 pci_dev->device.name, eth_da.representor_ports[i]);
5953 
5954 		kvlist = rte_kvargs_parse(dev_args, bnxt_dev_args);
5955 		if (kvlist) {
5956 			/*
5957 			 * Handler for "rep_is_pf" devarg.
5958 			 * Invoked as for ex: "-w 000:00:0d.0,
5959 			 * rep-based-pf=<pf index> rep-is-pf=<VF=0 or PF=1>"
5960 			 */
5961 			ret = rte_kvargs_process(kvlist, BNXT_DEVARG_REP_IS_PF,
5962 						 bnxt_parse_devarg_rep_is_pf,
5963 						 (void *)&representor);
5964 			if (ret) {
5965 				ret = -EINVAL;
5966 				goto err;
5967 			}
5968 			/*
5969 			 * Handler for "rep_based_pf" devarg.
5970 			 * Invoked as for ex: "-w 000:00:0d.0,
5971 			 * rep-based-pf=<pf index> rep-is-pf=<VF=0 or PF=1>"
5972 			 */
5973 			ret = rte_kvargs_process(kvlist,
5974 						 BNXT_DEVARG_REP_BASED_PF,
5975 						 bnxt_parse_devarg_rep_based_pf,
5976 						 (void *)&representor);
5977 			if (ret) {
5978 				ret = -EINVAL;
5979 				goto err;
5980 			}
5981 			/*
5982 			 * Handler for "rep_based_pf" devarg.
5983 			 * Invoked as for ex: "-w 000:00:0d.0,
5984 			 * rep-based-pf=<pf index> rep-is-pf=<VF=0 or PF=1>"
5985 			 */
5986 			ret = rte_kvargs_process(kvlist, BNXT_DEVARG_REP_Q_R2F,
5987 						 bnxt_parse_devarg_rep_q_r2f,
5988 						 (void *)&representor);
5989 			if (ret) {
5990 				ret = -EINVAL;
5991 				goto err;
5992 			}
5993 			/*
5994 			 * Handler for "rep_based_pf" devarg.
5995 			 * Invoked as for ex: "-w 000:00:0d.0,
5996 			 * rep-based-pf=<pf index> rep-is-pf=<VF=0 or PF=1>"
5997 			 */
5998 			ret = rte_kvargs_process(kvlist, BNXT_DEVARG_REP_Q_F2R,
5999 						 bnxt_parse_devarg_rep_q_f2r,
6000 						 (void *)&representor);
6001 			if (ret) {
6002 				ret = -EINVAL;
6003 				goto err;
6004 			}
6005 			/*
6006 			 * Handler for "rep_based_pf" devarg.
6007 			 * Invoked as for ex: "-w 000:00:0d.0,
6008 			 * rep-based-pf=<pf index> rep-is-pf=<VF=0 or PF=1>"
6009 			 */
6010 			ret = rte_kvargs_process(kvlist, BNXT_DEVARG_REP_FC_R2F,
6011 						 bnxt_parse_devarg_rep_fc_r2f,
6012 						 (void *)&representor);
6013 			if (ret) {
6014 				ret = -EINVAL;
6015 				goto err;
6016 			}
6017 			/*
6018 			 * Handler for "rep_based_pf" devarg.
6019 			 * Invoked as for ex: "-w 000:00:0d.0,
6020 			 * rep-based-pf=<pf index> rep-is-pf=<VF=0 or PF=1>"
6021 			 */
6022 			ret = rte_kvargs_process(kvlist, BNXT_DEVARG_REP_FC_F2R,
6023 						 bnxt_parse_devarg_rep_fc_f2r,
6024 						 (void *)&representor);
6025 			if (ret) {
6026 				ret = -EINVAL;
6027 				goto err;
6028 			}
6029 		}
6030 
6031 		ret = rte_eth_dev_create(&pci_dev->device, name,
6032 					 sizeof(struct bnxt_representor),
6033 					 NULL, NULL,
6034 					 bnxt_representor_init,
6035 					 &representor);
6036 		if (ret) {
6037 			PMD_DRV_LOG(ERR, "failed to create bnxt vf "
6038 				    "representor %s.", name);
6039 			goto err;
6040 		}
6041 
6042 		vf_rep_eth_dev = rte_eth_dev_allocated(name);
6043 		if (!vf_rep_eth_dev) {
6044 			PMD_DRV_LOG(ERR, "Failed to find the eth_dev"
6045 				    " for VF-Rep: %s.", name);
6046 			ret = -ENODEV;
6047 			goto err;
6048 		}
6049 
6050 		PMD_DRV_LOG(DEBUG, "BNXT Port:%d VFR pci probe\n",
6051 			    backing_eth_dev->data->port_id);
6052 		backing_bp->rep_info[representor.vf_id].vfr_eth_dev =
6053 							 vf_rep_eth_dev;
6054 		backing_bp->num_reps++;
6055 
6056 	}
6057 
6058 	rte_kvargs_free(kvlist);
6059 	return 0;
6060 
6061 err:
6062 	/* If num_rep > 1, then rollback already created
6063 	 * ports, since we'll be failing the probe anyway
6064 	 */
6065 	if (num_rep > 1)
6066 		bnxt_pci_remove_dev_with_reps(backing_eth_dev);
6067 	rte_errno = -ret;
6068 	rte_kvargs_free(kvlist);
6069 
6070 	return ret;
6071 }
6072 
6073 static int bnxt_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
6074 			  struct rte_pci_device *pci_dev)
6075 {
6076 	struct rte_eth_devargs eth_da = { .nb_representor_ports = 0 };
6077 	struct rte_eth_dev *backing_eth_dev;
6078 	uint16_t num_rep;
6079 	int ret = 0;
6080 
6081 	if (pci_dev->device.devargs) {
6082 		ret = rte_eth_devargs_parse(pci_dev->device.devargs->args,
6083 					    &eth_da);
6084 		if (ret)
6085 			return ret;
6086 	}
6087 
6088 	num_rep = eth_da.nb_representor_ports;
6089 	PMD_DRV_LOG(DEBUG, "nb_representor_ports = %d\n",
6090 		    num_rep);
6091 
6092 	/* We could come here after first level of probe is already invoked
6093 	 * as part of an application bringup(OVS-DPDK vswitchd), so first check
6094 	 * for already allocated eth_dev for the backing device (PF/Trusted VF)
6095 	 */
6096 	backing_eth_dev = rte_eth_dev_allocated(pci_dev->device.name);
6097 	if (backing_eth_dev == NULL) {
6098 		ret = rte_eth_dev_create(&pci_dev->device, pci_dev->device.name,
6099 					 sizeof(struct bnxt),
6100 					 eth_dev_pci_specific_init, pci_dev,
6101 					 bnxt_dev_init, NULL);
6102 
6103 		if (ret || !num_rep)
6104 			return ret;
6105 
6106 		backing_eth_dev = rte_eth_dev_allocated(pci_dev->device.name);
6107 	}
6108 	PMD_DRV_LOG(DEBUG, "BNXT Port:%d pci probe\n",
6109 		    backing_eth_dev->data->port_id);
6110 
6111 	if (!num_rep)
6112 		return ret;
6113 
6114 	/* probe representor ports now */
6115 	ret = bnxt_rep_port_probe(pci_dev, eth_da, backing_eth_dev,
6116 				  pci_dev->device.devargs->args);
6117 
6118 	return ret;
6119 }
6120 
6121 static int bnxt_pci_remove(struct rte_pci_device *pci_dev)
6122 {
6123 	struct rte_eth_dev *eth_dev;
6124 
6125 	eth_dev = rte_eth_dev_allocated(pci_dev->device.name);
6126 	if (!eth_dev)
6127 		return 0; /* Invoked typically only by OVS-DPDK, by the
6128 			   * time it comes here the eth_dev is already
6129 			   * deleted by rte_eth_dev_close(), so returning
6130 			   * +ve value will at least help in proper cleanup
6131 			   */
6132 
6133 	PMD_DRV_LOG(DEBUG, "BNXT Port:%d pci remove\n", eth_dev->data->port_id);
6134 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
6135 		if (eth_dev->data->dev_flags & RTE_ETH_DEV_REPRESENTOR)
6136 			return rte_eth_dev_destroy(eth_dev,
6137 						   bnxt_representor_uninit);
6138 		else
6139 			return rte_eth_dev_destroy(eth_dev,
6140 						   bnxt_dev_uninit);
6141 	} else {
6142 		return rte_eth_dev_pci_generic_remove(pci_dev, NULL);
6143 	}
6144 }
6145 
6146 static struct rte_pci_driver bnxt_rte_pmd = {
6147 	.id_table = bnxt_pci_id_map,
6148 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
6149 			RTE_PCI_DRV_PROBE_AGAIN, /* Needed in case of VF-REPs
6150 						  * and OVS-DPDK
6151 						  */
6152 	.probe = bnxt_pci_probe,
6153 	.remove = bnxt_pci_remove,
6154 };
6155 
6156 static bool
6157 is_device_supported(struct rte_eth_dev *dev, struct rte_pci_driver *drv)
6158 {
6159 	if (strcmp(dev->device->driver->name, drv->driver.name))
6160 		return false;
6161 
6162 	return true;
6163 }
6164 
6165 bool is_bnxt_supported(struct rte_eth_dev *dev)
6166 {
6167 	return is_device_supported(dev, &bnxt_rte_pmd);
6168 }
6169 
6170 RTE_LOG_REGISTER(bnxt_logtype_driver, pmd.net.bnxt.driver, NOTICE);
6171 RTE_PMD_REGISTER_PCI(net_bnxt, bnxt_rte_pmd);
6172 RTE_PMD_REGISTER_PCI_TABLE(net_bnxt, bnxt_pci_id_map);
6173 RTE_PMD_REGISTER_KMOD_DEP(net_bnxt, "* igb_uio | uio_pci_generic | vfio-pci");
6174