xref: /dpdk/drivers/net/bnxt/bnxt_ethdev.c (revision 200bc52e5aa0d72e70464c9cd22b55cf536ed13c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Broadcom
3  * All rights reserved.
4  */
5 
6 #include <inttypes.h>
7 #include <stdbool.h>
8 
9 #include <rte_dev.h>
10 #include <rte_ethdev_driver.h>
11 #include <rte_ethdev_pci.h>
12 #include <rte_malloc.h>
13 #include <rte_cycles.h>
14 
15 #include "bnxt.h"
16 #include "bnxt_cpr.h"
17 #include "bnxt_filter.h"
18 #include "bnxt_hwrm.h"
19 #include "bnxt_irq.h"
20 #include "bnxt_ring.h"
21 #include "bnxt_rxq.h"
22 #include "bnxt_rxr.h"
23 #include "bnxt_stats.h"
24 #include "bnxt_txq.h"
25 #include "bnxt_txr.h"
26 #include "bnxt_vnic.h"
27 #include "hsi_struct_def_dpdk.h"
28 #include "bnxt_nvm_defs.h"
29 #include "bnxt_util.h"
30 
31 #define DRV_MODULE_NAME		"bnxt"
32 static const char bnxt_version[] =
33 	"Broadcom NetXtreme driver " DRV_MODULE_NAME;
34 int bnxt_logtype_driver;
35 
36 #define PCI_VENDOR_ID_BROADCOM 0x14E4
37 
38 #define BROADCOM_DEV_ID_STRATUS_NIC_VF1 0x1606
39 #define BROADCOM_DEV_ID_STRATUS_NIC_VF2 0x1609
40 #define BROADCOM_DEV_ID_STRATUS_NIC 0x1614
41 #define BROADCOM_DEV_ID_57414_VF 0x16c1
42 #define BROADCOM_DEV_ID_57301 0x16c8
43 #define BROADCOM_DEV_ID_57302 0x16c9
44 #define BROADCOM_DEV_ID_57304_PF 0x16ca
45 #define BROADCOM_DEV_ID_57304_VF 0x16cb
46 #define BROADCOM_DEV_ID_57417_MF 0x16cc
47 #define BROADCOM_DEV_ID_NS2 0x16cd
48 #define BROADCOM_DEV_ID_57311 0x16ce
49 #define BROADCOM_DEV_ID_57312 0x16cf
50 #define BROADCOM_DEV_ID_57402 0x16d0
51 #define BROADCOM_DEV_ID_57404 0x16d1
52 #define BROADCOM_DEV_ID_57406_PF 0x16d2
53 #define BROADCOM_DEV_ID_57406_VF 0x16d3
54 #define BROADCOM_DEV_ID_57402_MF 0x16d4
55 #define BROADCOM_DEV_ID_57407_RJ45 0x16d5
56 #define BROADCOM_DEV_ID_57412 0x16d6
57 #define BROADCOM_DEV_ID_57414 0x16d7
58 #define BROADCOM_DEV_ID_57416_RJ45 0x16d8
59 #define BROADCOM_DEV_ID_57417_RJ45 0x16d9
60 #define BROADCOM_DEV_ID_5741X_VF 0x16dc
61 #define BROADCOM_DEV_ID_57412_MF 0x16de
62 #define BROADCOM_DEV_ID_57314 0x16df
63 #define BROADCOM_DEV_ID_57317_RJ45 0x16e0
64 #define BROADCOM_DEV_ID_5731X_VF 0x16e1
65 #define BROADCOM_DEV_ID_57417_SFP 0x16e2
66 #define BROADCOM_DEV_ID_57416_SFP 0x16e3
67 #define BROADCOM_DEV_ID_57317_SFP 0x16e4
68 #define BROADCOM_DEV_ID_57404_MF 0x16e7
69 #define BROADCOM_DEV_ID_57406_MF 0x16e8
70 #define BROADCOM_DEV_ID_57407_SFP 0x16e9
71 #define BROADCOM_DEV_ID_57407_MF 0x16ea
72 #define BROADCOM_DEV_ID_57414_MF 0x16ec
73 #define BROADCOM_DEV_ID_57416_MF 0x16ee
74 #define BROADCOM_DEV_ID_58802 0xd802
75 #define BROADCOM_DEV_ID_58804 0xd804
76 #define BROADCOM_DEV_ID_58808 0x16f0
77 #define BROADCOM_DEV_ID_58802_VF 0xd800
78 
79 static const struct rte_pci_id bnxt_pci_id_map[] = {
80 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
81 			 BROADCOM_DEV_ID_STRATUS_NIC_VF1) },
82 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
83 			 BROADCOM_DEV_ID_STRATUS_NIC_VF2) },
84 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_STRATUS_NIC) },
85 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_VF) },
86 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57301) },
87 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57302) },
88 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_PF) },
89 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_VF) },
90 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_NS2) },
91 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402) },
92 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404) },
93 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_PF) },
94 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_VF) },
95 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402_MF) },
96 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_RJ45) },
97 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404_MF) },
98 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_MF) },
99 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_SFP) },
100 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_MF) },
101 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5741X_VF) },
102 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5731X_VF) },
103 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57314) },
104 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_MF) },
105 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57311) },
106 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57312) },
107 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412) },
108 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414) },
109 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_RJ45) },
110 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_RJ45) },
111 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412_MF) },
112 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_RJ45) },
113 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_SFP) },
114 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_SFP) },
115 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_SFP) },
116 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_MF) },
117 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_MF) },
118 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58802) },
119 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58804) },
120 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58808) },
121 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58802_VF) },
122 	{ .vendor_id = 0, /* sentinel */ },
123 };
124 
125 #define BNXT_ETH_RSS_SUPPORT (	\
126 	ETH_RSS_IPV4 |		\
127 	ETH_RSS_NONFRAG_IPV4_TCP |	\
128 	ETH_RSS_NONFRAG_IPV4_UDP |	\
129 	ETH_RSS_IPV6 |		\
130 	ETH_RSS_NONFRAG_IPV6_TCP |	\
131 	ETH_RSS_NONFRAG_IPV6_UDP)
132 
133 #define BNXT_DEV_TX_OFFLOAD_SUPPORT (DEV_TX_OFFLOAD_VLAN_INSERT | \
134 				     DEV_TX_OFFLOAD_IPV4_CKSUM | \
135 				     DEV_TX_OFFLOAD_TCP_CKSUM | \
136 				     DEV_TX_OFFLOAD_UDP_CKSUM | \
137 				     DEV_TX_OFFLOAD_TCP_TSO | \
138 				     DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM | \
139 				     DEV_TX_OFFLOAD_VXLAN_TNL_TSO | \
140 				     DEV_TX_OFFLOAD_GRE_TNL_TSO | \
141 				     DEV_TX_OFFLOAD_IPIP_TNL_TSO | \
142 				     DEV_TX_OFFLOAD_GENEVE_TNL_TSO | \
143 				     DEV_TX_OFFLOAD_MULTI_SEGS)
144 
145 #define BNXT_DEV_RX_OFFLOAD_SUPPORT (DEV_RX_OFFLOAD_VLAN_FILTER | \
146 				     DEV_RX_OFFLOAD_VLAN_STRIP | \
147 				     DEV_RX_OFFLOAD_IPV4_CKSUM | \
148 				     DEV_RX_OFFLOAD_UDP_CKSUM | \
149 				     DEV_RX_OFFLOAD_TCP_CKSUM | \
150 				     DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM | \
151 				     DEV_RX_OFFLOAD_JUMBO_FRAME | \
152 				     DEV_RX_OFFLOAD_KEEP_CRC | \
153 				     DEV_RX_OFFLOAD_TCP_LRO)
154 
155 static int bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask);
156 static void bnxt_print_link_info(struct rte_eth_dev *eth_dev);
157 static int bnxt_mtu_set_op(struct rte_eth_dev *eth_dev, uint16_t new_mtu);
158 static int bnxt_dev_uninit(struct rte_eth_dev *eth_dev);
159 
160 /***********************/
161 
162 /*
163  * High level utility functions
164  */
165 
166 static void bnxt_free_mem(struct bnxt *bp)
167 {
168 	bnxt_free_filter_mem(bp);
169 	bnxt_free_vnic_attributes(bp);
170 	bnxt_free_vnic_mem(bp);
171 
172 	bnxt_free_stats(bp);
173 	bnxt_free_tx_rings(bp);
174 	bnxt_free_rx_rings(bp);
175 }
176 
177 static int bnxt_alloc_mem(struct bnxt *bp)
178 {
179 	int rc;
180 
181 	rc = bnxt_alloc_vnic_mem(bp);
182 	if (rc)
183 		goto alloc_mem_err;
184 
185 	rc = bnxt_alloc_vnic_attributes(bp);
186 	if (rc)
187 		goto alloc_mem_err;
188 
189 	rc = bnxt_alloc_filter_mem(bp);
190 	if (rc)
191 		goto alloc_mem_err;
192 
193 	return 0;
194 
195 alloc_mem_err:
196 	bnxt_free_mem(bp);
197 	return rc;
198 }
199 
200 static int bnxt_init_chip(struct bnxt *bp)
201 {
202 	struct bnxt_rx_queue *rxq;
203 	struct rte_eth_link new;
204 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(bp->eth_dev);
205 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
206 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
207 	uint64_t rx_offloads = dev_conf->rxmode.offloads;
208 	uint32_t intr_vector = 0;
209 	uint32_t queue_id, base = BNXT_MISC_VEC_ID;
210 	uint32_t vec = BNXT_MISC_VEC_ID;
211 	unsigned int i, j;
212 	int rc;
213 
214 	/* disable uio/vfio intr/eventfd mapping */
215 	rte_intr_disable(intr_handle);
216 
217 	if (bp->eth_dev->data->mtu > RTE_ETHER_MTU) {
218 		bp->eth_dev->data->dev_conf.rxmode.offloads |=
219 			DEV_RX_OFFLOAD_JUMBO_FRAME;
220 		bp->flags |= BNXT_FLAG_JUMBO;
221 	} else {
222 		bp->eth_dev->data->dev_conf.rxmode.offloads &=
223 			~DEV_RX_OFFLOAD_JUMBO_FRAME;
224 		bp->flags &= ~BNXT_FLAG_JUMBO;
225 	}
226 
227 	rc = bnxt_alloc_all_hwrm_stat_ctxs(bp);
228 	if (rc) {
229 		PMD_DRV_LOG(ERR, "HWRM stat ctx alloc failure rc: %x\n", rc);
230 		goto err_out;
231 	}
232 
233 	rc = bnxt_alloc_hwrm_rings(bp);
234 	if (rc) {
235 		PMD_DRV_LOG(ERR, "HWRM ring alloc failure rc: %x\n", rc);
236 		goto err_out;
237 	}
238 
239 	rc = bnxt_alloc_all_hwrm_ring_grps(bp);
240 	if (rc) {
241 		PMD_DRV_LOG(ERR, "HWRM ring grp alloc failure: %x\n", rc);
242 		goto err_out;
243 	}
244 
245 	rc = bnxt_mq_rx_configure(bp);
246 	if (rc) {
247 		PMD_DRV_LOG(ERR, "MQ mode configure failure rc: %x\n", rc);
248 		goto err_out;
249 	}
250 
251 	/* VNIC configuration */
252 	for (i = 0; i < bp->nr_vnics; i++) {
253 		struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
254 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
255 		uint32_t size = sizeof(*vnic->fw_grp_ids) * bp->max_ring_grps;
256 
257 		vnic->fw_grp_ids = rte_zmalloc("vnic_fw_grp_ids", size, 0);
258 		if (!vnic->fw_grp_ids) {
259 			PMD_DRV_LOG(ERR,
260 				    "Failed to alloc %d bytes for group ids\n",
261 				    size);
262 			rc = -ENOMEM;
263 			goto err_out;
264 		}
265 		memset(vnic->fw_grp_ids, -1, size);
266 
267 		PMD_DRV_LOG(DEBUG, "vnic[%d] = %p vnic->fw_grp_ids = %p\n",
268 			    i, vnic, vnic->fw_grp_ids);
269 
270 		rc = bnxt_hwrm_vnic_alloc(bp, vnic);
271 		if (rc) {
272 			PMD_DRV_LOG(ERR, "HWRM vnic %d alloc failure rc: %x\n",
273 				i, rc);
274 			goto err_out;
275 		}
276 
277 		/* Alloc RSS context only if RSS mode is enabled */
278 		if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS) {
279 			rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic);
280 			if (rc) {
281 				PMD_DRV_LOG(ERR,
282 					"HWRM vnic %d ctx alloc failure rc: %x\n",
283 					i, rc);
284 				goto err_out;
285 			}
286 		}
287 
288 		/*
289 		 * Firmware sets pf pair in default vnic cfg. If the VLAN strip
290 		 * setting is not available at this time, it will not be
291 		 * configured correctly in the CFA.
292 		 */
293 		if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
294 			vnic->vlan_strip = true;
295 		else
296 			vnic->vlan_strip = false;
297 
298 		rc = bnxt_hwrm_vnic_cfg(bp, vnic);
299 		if (rc) {
300 			PMD_DRV_LOG(ERR, "HWRM vnic %d cfg failure rc: %x\n",
301 				i, rc);
302 			goto err_out;
303 		}
304 
305 		rc = bnxt_set_hwrm_vnic_filters(bp, vnic);
306 		if (rc) {
307 			PMD_DRV_LOG(ERR,
308 				"HWRM vnic %d filter failure rc: %x\n",
309 				i, rc);
310 			goto err_out;
311 		}
312 
313 		for (j = 0; j < bp->rx_nr_rings; j++) {
314 			rxq = bp->eth_dev->data->rx_queues[j];
315 
316 			PMD_DRV_LOG(DEBUG,
317 				    "rxq[%d]->vnic=%p vnic->fw_grp_ids=%p\n",
318 				    j, rxq->vnic, rxq->vnic->fw_grp_ids);
319 
320 			if (rxq->rx_deferred_start)
321 				rxq->vnic->fw_grp_ids[j] = INVALID_HW_RING_ID;
322 		}
323 
324 		rc = bnxt_vnic_rss_configure(bp, vnic);
325 		if (rc) {
326 			PMD_DRV_LOG(ERR,
327 				    "HWRM vnic set RSS failure rc: %x\n", rc);
328 			goto err_out;
329 		}
330 
331 		bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
332 
333 		if (bp->eth_dev->data->dev_conf.rxmode.offloads &
334 		    DEV_RX_OFFLOAD_TCP_LRO)
335 			bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 1);
336 		else
337 			bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 0);
338 	}
339 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, &bp->vnic_info[0], 0, NULL);
340 	if (rc) {
341 		PMD_DRV_LOG(ERR,
342 			"HWRM cfa l2 rx mask failure rc: %x\n", rc);
343 		goto err_out;
344 	}
345 
346 	/* check and configure queue intr-vector mapping */
347 	if ((rte_intr_cap_multiple(intr_handle) ||
348 	     !RTE_ETH_DEV_SRIOV(bp->eth_dev).active) &&
349 	    bp->eth_dev->data->dev_conf.intr_conf.rxq != 0) {
350 		intr_vector = bp->eth_dev->data->nb_rx_queues;
351 		PMD_DRV_LOG(DEBUG, "intr_vector = %d\n", intr_vector);
352 		if (intr_vector > bp->rx_cp_nr_rings) {
353 			PMD_DRV_LOG(ERR, "At most %d intr queues supported",
354 					bp->rx_cp_nr_rings);
355 			return -ENOTSUP;
356 		}
357 		if (rte_intr_efd_enable(intr_handle, intr_vector))
358 			return -1;
359 	}
360 
361 	if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
362 		intr_handle->intr_vec =
363 			rte_zmalloc("intr_vec",
364 				    bp->eth_dev->data->nb_rx_queues *
365 				    sizeof(int), 0);
366 		if (intr_handle->intr_vec == NULL) {
367 			PMD_DRV_LOG(ERR, "Failed to allocate %d rx_queues"
368 				" intr_vec", bp->eth_dev->data->nb_rx_queues);
369 			return -ENOMEM;
370 		}
371 		PMD_DRV_LOG(DEBUG, "intr_handle->intr_vec = %p "
372 			"intr_handle->nb_efd = %d intr_handle->max_intr = %d\n",
373 			 intr_handle->intr_vec, intr_handle->nb_efd,
374 			intr_handle->max_intr);
375 	}
376 
377 	for (queue_id = 0; queue_id < bp->eth_dev->data->nb_rx_queues;
378 	     queue_id++) {
379 		intr_handle->intr_vec[queue_id] = vec;
380 		if (vec < base + intr_handle->nb_efd - 1)
381 			vec++;
382 	}
383 
384 	/* enable uio/vfio intr/eventfd mapping */
385 	rte_intr_enable(intr_handle);
386 
387 	rc = bnxt_get_hwrm_link_config(bp, &new);
388 	if (rc) {
389 		PMD_DRV_LOG(ERR, "HWRM Get link config failure rc: %x\n", rc);
390 		goto err_out;
391 	}
392 
393 	if (!bp->link_info.link_up) {
394 		rc = bnxt_set_hwrm_link_config(bp, true);
395 		if (rc) {
396 			PMD_DRV_LOG(ERR,
397 				"HWRM link config failure rc: %x\n", rc);
398 			goto err_out;
399 		}
400 	}
401 	bnxt_print_link_info(bp->eth_dev);
402 
403 	return 0;
404 
405 err_out:
406 	bnxt_free_all_hwrm_resources(bp);
407 
408 	/* Some of the error status returned by FW may not be from errno.h */
409 	if (rc > 0)
410 		rc = -EIO;
411 
412 	return rc;
413 }
414 
415 static int bnxt_shutdown_nic(struct bnxt *bp)
416 {
417 	bnxt_free_all_hwrm_resources(bp);
418 	bnxt_free_all_filters(bp);
419 	bnxt_free_all_vnics(bp);
420 	return 0;
421 }
422 
423 static int bnxt_init_nic(struct bnxt *bp)
424 {
425 	int rc;
426 
427 	rc = bnxt_init_ring_grps(bp);
428 	if (rc)
429 		return rc;
430 
431 	bnxt_init_vnics(bp);
432 	bnxt_init_filters(bp);
433 
434 	return 0;
435 }
436 
437 /*
438  * Device configuration and status function
439  */
440 
441 static void bnxt_dev_info_get_op(struct rte_eth_dev *eth_dev,
442 				  struct rte_eth_dev_info *dev_info)
443 {
444 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
445 	uint16_t max_vnics, i, j, vpool, vrxq;
446 	unsigned int max_rx_rings;
447 
448 	/* MAC Specifics */
449 	dev_info->max_mac_addrs = bp->max_l2_ctx;
450 	dev_info->max_hash_mac_addrs = 0;
451 
452 	/* PF/VF specifics */
453 	if (BNXT_PF(bp))
454 		dev_info->max_vfs = bp->pdev->max_vfs;
455 	max_rx_rings = RTE_MIN(bp->max_vnics, bp->max_stat_ctx);
456 	/* For the sake of symmetry, max_rx_queues = max_tx_queues */
457 	dev_info->max_rx_queues = max_rx_rings;
458 	dev_info->max_tx_queues = max_rx_rings;
459 	dev_info->reta_size = HW_HASH_INDEX_SIZE;
460 	dev_info->hash_key_size = 40;
461 	max_vnics = bp->max_vnics;
462 
463 	/* Fast path specifics */
464 	dev_info->min_rx_bufsize = 1;
465 	dev_info->max_rx_pktlen = BNXT_MAX_MTU + RTE_ETHER_HDR_LEN +
466 		RTE_ETHER_CRC_LEN + VLAN_TAG_SIZE * 2;
467 
468 	dev_info->rx_offload_capa = BNXT_DEV_RX_OFFLOAD_SUPPORT;
469 	if (bp->flags & BNXT_FLAG_PTP_SUPPORTED)
470 		dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_TIMESTAMP;
471 	dev_info->tx_offload_capa = BNXT_DEV_TX_OFFLOAD_SUPPORT;
472 	dev_info->flow_type_rss_offloads = BNXT_ETH_RSS_SUPPORT;
473 
474 	/* *INDENT-OFF* */
475 	dev_info->default_rxconf = (struct rte_eth_rxconf) {
476 		.rx_thresh = {
477 			.pthresh = 8,
478 			.hthresh = 8,
479 			.wthresh = 0,
480 		},
481 		.rx_free_thresh = 32,
482 		/* If no descriptors available, pkts are dropped by default */
483 		.rx_drop_en = 1,
484 	};
485 
486 	dev_info->default_txconf = (struct rte_eth_txconf) {
487 		.tx_thresh = {
488 			.pthresh = 32,
489 			.hthresh = 0,
490 			.wthresh = 0,
491 		},
492 		.tx_free_thresh = 32,
493 		.tx_rs_thresh = 32,
494 	};
495 	eth_dev->data->dev_conf.intr_conf.lsc = 1;
496 
497 	eth_dev->data->dev_conf.intr_conf.rxq = 1;
498 	dev_info->rx_desc_lim.nb_min = BNXT_MIN_RING_DESC;
499 	dev_info->rx_desc_lim.nb_max = BNXT_MAX_RX_RING_DESC;
500 	dev_info->tx_desc_lim.nb_min = BNXT_MIN_RING_DESC;
501 	dev_info->tx_desc_lim.nb_max = BNXT_MAX_TX_RING_DESC;
502 
503 	/* *INDENT-ON* */
504 
505 	/*
506 	 * TODO: default_rxconf, default_txconf, rx_desc_lim, and tx_desc_lim
507 	 *       need further investigation.
508 	 */
509 
510 	/* VMDq resources */
511 	vpool = 64; /* ETH_64_POOLS */
512 	vrxq = 128; /* ETH_VMDQ_DCB_NUM_QUEUES */
513 	for (i = 0; i < 4; vpool >>= 1, i++) {
514 		if (max_vnics > vpool) {
515 			for (j = 0; j < 5; vrxq >>= 1, j++) {
516 				if (dev_info->max_rx_queues > vrxq) {
517 					if (vpool > vrxq)
518 						vpool = vrxq;
519 					goto found;
520 				}
521 			}
522 			/* Not enough resources to support VMDq */
523 			break;
524 		}
525 	}
526 	/* Not enough resources to support VMDq */
527 	vpool = 0;
528 	vrxq = 0;
529 found:
530 	dev_info->max_vmdq_pools = vpool;
531 	dev_info->vmdq_queue_num = vrxq;
532 
533 	dev_info->vmdq_pool_base = 0;
534 	dev_info->vmdq_queue_base = 0;
535 }
536 
537 /* Configure the device based on the configuration provided */
538 static int bnxt_dev_configure_op(struct rte_eth_dev *eth_dev)
539 {
540 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
541 	uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads;
542 	int rc;
543 
544 	bp->rx_queues = (void *)eth_dev->data->rx_queues;
545 	bp->tx_queues = (void *)eth_dev->data->tx_queues;
546 	bp->tx_nr_rings = eth_dev->data->nb_tx_queues;
547 	bp->rx_nr_rings = eth_dev->data->nb_rx_queues;
548 
549 	if (BNXT_VF(bp) && (bp->flags & BNXT_FLAG_NEW_RM)) {
550 		rc = bnxt_hwrm_check_vf_rings(bp);
551 		if (rc) {
552 			PMD_DRV_LOG(ERR, "HWRM insufficient resources\n");
553 			return -ENOSPC;
554 		}
555 
556 		rc = bnxt_hwrm_func_reserve_vf_resc(bp, false);
557 		if (rc) {
558 			PMD_DRV_LOG(ERR, "HWRM resource alloc fail:%x\n", rc);
559 			return -ENOSPC;
560 		}
561 	} else {
562 		/* legacy driver needs to get updated values */
563 		rc = bnxt_hwrm_func_qcaps(bp);
564 		if (rc) {
565 			PMD_DRV_LOG(ERR, "hwrm func qcaps fail:%d\n", rc);
566 			return rc;
567 		}
568 	}
569 
570 	/* Inherit new configurations */
571 	if (eth_dev->data->nb_rx_queues > bp->max_rx_rings ||
572 	    eth_dev->data->nb_tx_queues > bp->max_tx_rings ||
573 	    eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues >
574 	    bp->max_cp_rings ||
575 	    eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues >
576 	    bp->max_stat_ctx ||
577 	    (uint32_t)(eth_dev->data->nb_rx_queues) > bp->max_ring_grps ||
578 	    (!(eth_dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS) &&
579 	     bp->max_vnics < eth_dev->data->nb_rx_queues)) {
580 		PMD_DRV_LOG(ERR,
581 			"Insufficient resources to support requested config\n");
582 		PMD_DRV_LOG(ERR,
583 			"Num Queues Requested: Tx %d, Rx %d\n",
584 			eth_dev->data->nb_tx_queues,
585 			eth_dev->data->nb_rx_queues);
586 		PMD_DRV_LOG(ERR,
587 			"MAX: TxQ %d, RxQ %d, CQ %d Stat %d, Grp %d, Vnic %d\n",
588 			bp->max_tx_rings, bp->max_rx_rings, bp->max_cp_rings,
589 			bp->max_stat_ctx, bp->max_ring_grps, bp->max_vnics);
590 		return -ENOSPC;
591 	}
592 
593 	bp->rx_cp_nr_rings = bp->rx_nr_rings;
594 	bp->tx_cp_nr_rings = bp->tx_nr_rings;
595 
596 	if (rx_offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
597 		eth_dev->data->mtu =
598 			eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
599 			RTE_ETHER_HDR_LEN - RTE_ETHER_CRC_LEN - VLAN_TAG_SIZE *
600 			BNXT_NUM_VLANS;
601 		bnxt_mtu_set_op(eth_dev, eth_dev->data->mtu);
602 	}
603 	return 0;
604 }
605 
606 static void bnxt_print_link_info(struct rte_eth_dev *eth_dev)
607 {
608 	struct rte_eth_link *link = &eth_dev->data->dev_link;
609 
610 	if (link->link_status)
611 		PMD_DRV_LOG(INFO, "Port %d Link Up - speed %u Mbps - %s\n",
612 			eth_dev->data->port_id,
613 			(uint32_t)link->link_speed,
614 			(link->link_duplex == ETH_LINK_FULL_DUPLEX) ?
615 			("full-duplex") : ("half-duplex\n"));
616 	else
617 		PMD_DRV_LOG(INFO, "Port %d Link Down\n",
618 			eth_dev->data->port_id);
619 }
620 
621 static int bnxt_dev_lsc_intr_setup(struct rte_eth_dev *eth_dev)
622 {
623 	bnxt_print_link_info(eth_dev);
624 	return 0;
625 }
626 
627 static int bnxt_dev_start_op(struct rte_eth_dev *eth_dev)
628 {
629 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
630 	uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads;
631 	int vlan_mask = 0;
632 	int rc;
633 
634 	if (bp->rx_cp_nr_rings > RTE_ETHDEV_QUEUE_STAT_CNTRS) {
635 		PMD_DRV_LOG(ERR,
636 			"RxQ cnt %d > CONFIG_RTE_ETHDEV_QUEUE_STAT_CNTRS %d\n",
637 			bp->rx_cp_nr_rings, RTE_ETHDEV_QUEUE_STAT_CNTRS);
638 	}
639 	bp->dev_stopped = 0;
640 
641 	rc = bnxt_init_chip(bp);
642 	if (rc)
643 		goto error;
644 
645 	bnxt_link_update_op(eth_dev, 1);
646 
647 	if (rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
648 		vlan_mask |= ETH_VLAN_FILTER_MASK;
649 	if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
650 		vlan_mask |= ETH_VLAN_STRIP_MASK;
651 	rc = bnxt_vlan_offload_set_op(eth_dev, vlan_mask);
652 	if (rc)
653 		goto error;
654 
655 	bp->flags |= BNXT_FLAG_INIT_DONE;
656 	return 0;
657 
658 error:
659 	bnxt_shutdown_nic(bp);
660 	bnxt_free_tx_mbufs(bp);
661 	bnxt_free_rx_mbufs(bp);
662 	return rc;
663 }
664 
665 static int bnxt_dev_set_link_up_op(struct rte_eth_dev *eth_dev)
666 {
667 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
668 	int rc = 0;
669 
670 	if (!bp->link_info.link_up)
671 		rc = bnxt_set_hwrm_link_config(bp, true);
672 	if (!rc)
673 		eth_dev->data->dev_link.link_status = 1;
674 
675 	bnxt_print_link_info(eth_dev);
676 	return 0;
677 }
678 
679 static int bnxt_dev_set_link_down_op(struct rte_eth_dev *eth_dev)
680 {
681 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
682 
683 	eth_dev->data->dev_link.link_status = 0;
684 	bnxt_set_hwrm_link_config(bp, false);
685 	bp->link_info.link_up = 0;
686 
687 	return 0;
688 }
689 
690 /* Unload the driver, release resources */
691 static void bnxt_dev_stop_op(struct rte_eth_dev *eth_dev)
692 {
693 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
694 
695 	bp->flags &= ~BNXT_FLAG_INIT_DONE;
696 	if (bp->eth_dev->data->dev_started) {
697 		/* TBD: STOP HW queues DMA */
698 		eth_dev->data->dev_link.link_status = 0;
699 	}
700 	bnxt_set_hwrm_link_config(bp, false);
701 	bnxt_hwrm_port_clr_stats(bp);
702 	bnxt_free_tx_mbufs(bp);
703 	bnxt_free_rx_mbufs(bp);
704 	bnxt_shutdown_nic(bp);
705 	bp->dev_stopped = 1;
706 }
707 
708 static void bnxt_dev_close_op(struct rte_eth_dev *eth_dev)
709 {
710 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
711 
712 	if (bp->dev_stopped == 0)
713 		bnxt_dev_stop_op(eth_dev);
714 
715 	if (eth_dev->data->mac_addrs != NULL) {
716 		rte_free(eth_dev->data->mac_addrs);
717 		eth_dev->data->mac_addrs = NULL;
718 	}
719 	if (bp->grp_info != NULL) {
720 		rte_free(bp->grp_info);
721 		bp->grp_info = NULL;
722 	}
723 
724 	bnxt_dev_uninit(eth_dev);
725 }
726 
727 static void bnxt_mac_addr_remove_op(struct rte_eth_dev *eth_dev,
728 				    uint32_t index)
729 {
730 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
731 	uint64_t pool_mask = eth_dev->data->mac_pool_sel[index];
732 	struct bnxt_vnic_info *vnic;
733 	struct bnxt_filter_info *filter, *temp_filter;
734 	uint32_t i;
735 
736 	/*
737 	 * Loop through all VNICs from the specified filter flow pools to
738 	 * remove the corresponding MAC addr filter
739 	 */
740 	for (i = 0; i < bp->nr_vnics; i++) {
741 		if (!(pool_mask & (1ULL << i)))
742 			continue;
743 
744 		vnic = &bp->vnic_info[i];
745 		filter = STAILQ_FIRST(&vnic->filter);
746 		while (filter) {
747 			temp_filter = STAILQ_NEXT(filter, next);
748 			if (filter->mac_index == index) {
749 				STAILQ_REMOVE(&vnic->filter, filter,
750 						bnxt_filter_info, next);
751 				bnxt_hwrm_clear_l2_filter(bp, filter);
752 				filter->mac_index = INVALID_MAC_INDEX;
753 				memset(&filter->l2_addr, 0, RTE_ETHER_ADDR_LEN);
754 				STAILQ_INSERT_TAIL(&bp->free_filter_list,
755 						   filter, next);
756 			}
757 			filter = temp_filter;
758 		}
759 	}
760 }
761 
762 static int bnxt_mac_addr_add_op(struct rte_eth_dev *eth_dev,
763 				struct rte_ether_addr *mac_addr,
764 				uint32_t index, uint32_t pool)
765 {
766 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
767 	struct bnxt_vnic_info *vnic = &bp->vnic_info[pool];
768 	struct bnxt_filter_info *filter;
769 
770 	if (BNXT_VF(bp) & !BNXT_VF_IS_TRUSTED(bp)) {
771 		PMD_DRV_LOG(ERR, "Cannot add MAC address to a VF interface\n");
772 		return -ENOTSUP;
773 	}
774 
775 	if (!vnic) {
776 		PMD_DRV_LOG(ERR, "VNIC not found for pool %d!\n", pool);
777 		return -EINVAL;
778 	}
779 	/* Attach requested MAC address to the new l2_filter */
780 	STAILQ_FOREACH(filter, &vnic->filter, next) {
781 		if (filter->mac_index == index) {
782 			PMD_DRV_LOG(ERR,
783 				"MAC addr already existed for pool %d\n", pool);
784 			return 0;
785 		}
786 	}
787 	filter = bnxt_alloc_filter(bp);
788 	if (!filter) {
789 		PMD_DRV_LOG(ERR, "L2 filter alloc failed\n");
790 		return -ENODEV;
791 	}
792 	STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
793 	filter->mac_index = index;
794 	memcpy(filter->l2_addr, mac_addr, RTE_ETHER_ADDR_LEN);
795 	return bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
796 }
797 
798 int bnxt_link_update_op(struct rte_eth_dev *eth_dev, int wait_to_complete)
799 {
800 	int rc = 0;
801 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
802 	struct rte_eth_link new;
803 	unsigned int cnt = BNXT_LINK_WAIT_CNT;
804 
805 	memset(&new, 0, sizeof(new));
806 	do {
807 		/* Retrieve link info from hardware */
808 		rc = bnxt_get_hwrm_link_config(bp, &new);
809 		if (rc) {
810 			new.link_speed = ETH_LINK_SPEED_100M;
811 			new.link_duplex = ETH_LINK_FULL_DUPLEX;
812 			PMD_DRV_LOG(ERR,
813 				"Failed to retrieve link rc = 0x%x!\n", rc);
814 			goto out;
815 		}
816 		rte_delay_ms(BNXT_LINK_WAIT_INTERVAL);
817 
818 		if (!wait_to_complete)
819 			break;
820 	} while (!new.link_status && cnt--);
821 
822 out:
823 	/* Timed out or success */
824 	if (new.link_status != eth_dev->data->dev_link.link_status ||
825 	new.link_speed != eth_dev->data->dev_link.link_speed) {
826 		memcpy(&eth_dev->data->dev_link, &new,
827 			sizeof(struct rte_eth_link));
828 
829 		_rte_eth_dev_callback_process(eth_dev,
830 					      RTE_ETH_EVENT_INTR_LSC,
831 					      NULL);
832 
833 		bnxt_print_link_info(eth_dev);
834 	}
835 
836 	return rc;
837 }
838 
839 static void bnxt_promiscuous_enable_op(struct rte_eth_dev *eth_dev)
840 {
841 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
842 	struct bnxt_vnic_info *vnic;
843 
844 	if (bp->vnic_info == NULL)
845 		return;
846 
847 	vnic = &bp->vnic_info[0];
848 
849 	vnic->flags |= BNXT_VNIC_INFO_PROMISC;
850 	bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
851 }
852 
853 static void bnxt_promiscuous_disable_op(struct rte_eth_dev *eth_dev)
854 {
855 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
856 	struct bnxt_vnic_info *vnic;
857 
858 	if (bp->vnic_info == NULL)
859 		return;
860 
861 	vnic = &bp->vnic_info[0];
862 
863 	vnic->flags &= ~BNXT_VNIC_INFO_PROMISC;
864 	bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
865 }
866 
867 static void bnxt_allmulticast_enable_op(struct rte_eth_dev *eth_dev)
868 {
869 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
870 	struct bnxt_vnic_info *vnic;
871 
872 	if (bp->vnic_info == NULL)
873 		return;
874 
875 	vnic = &bp->vnic_info[0];
876 
877 	vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
878 	bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
879 }
880 
881 static void bnxt_allmulticast_disable_op(struct rte_eth_dev *eth_dev)
882 {
883 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
884 	struct bnxt_vnic_info *vnic;
885 
886 	if (bp->vnic_info == NULL)
887 		return;
888 
889 	vnic = &bp->vnic_info[0];
890 
891 	vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
892 	bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
893 }
894 
895 static int bnxt_reta_update_op(struct rte_eth_dev *eth_dev,
896 			    struct rte_eth_rss_reta_entry64 *reta_conf,
897 			    uint16_t reta_size)
898 {
899 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
900 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
901 	struct bnxt_vnic_info *vnic;
902 	int i;
903 
904 	if (!(dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
905 		return -EINVAL;
906 
907 	if (reta_size != HW_HASH_INDEX_SIZE) {
908 		PMD_DRV_LOG(ERR, "The configured hash table lookup size "
909 			"(%d) must equal the size supported by the hardware "
910 			"(%d)\n", reta_size, HW_HASH_INDEX_SIZE);
911 		return -EINVAL;
912 	}
913 	/* Update the RSS VNIC(s) */
914 	for (i = 0; i < bp->max_vnics; i++) {
915 		vnic = &bp->vnic_info[i];
916 		memcpy(vnic->rss_table, reta_conf, reta_size);
917 		bnxt_hwrm_vnic_rss_cfg(bp, vnic);
918 	}
919 	return 0;
920 }
921 
922 static int bnxt_reta_query_op(struct rte_eth_dev *eth_dev,
923 			      struct rte_eth_rss_reta_entry64 *reta_conf,
924 			      uint16_t reta_size)
925 {
926 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
927 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
928 	struct rte_intr_handle *intr_handle
929 		= &bp->pdev->intr_handle;
930 
931 	/* Retrieve from the default VNIC */
932 	if (!vnic)
933 		return -EINVAL;
934 	if (!vnic->rss_table)
935 		return -EINVAL;
936 
937 	if (reta_size != HW_HASH_INDEX_SIZE) {
938 		PMD_DRV_LOG(ERR, "The configured hash table lookup size "
939 			"(%d) must equal the size supported by the hardware "
940 			"(%d)\n", reta_size, HW_HASH_INDEX_SIZE);
941 		return -EINVAL;
942 	}
943 	/* EW - need to revisit here copying from uint64_t to uint16_t */
944 	memcpy(reta_conf, vnic->rss_table, reta_size);
945 
946 	if (rte_intr_allow_others(intr_handle)) {
947 		if (eth_dev->data->dev_conf.intr_conf.lsc != 0)
948 			bnxt_dev_lsc_intr_setup(eth_dev);
949 	}
950 
951 	return 0;
952 }
953 
954 static int bnxt_rss_hash_update_op(struct rte_eth_dev *eth_dev,
955 				   struct rte_eth_rss_conf *rss_conf)
956 {
957 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
958 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
959 	struct bnxt_vnic_info *vnic;
960 	uint16_t hash_type = 0;
961 	unsigned int i;
962 
963 	/*
964 	 * If RSS enablement were different than dev_configure,
965 	 * then return -EINVAL
966 	 */
967 	if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) {
968 		if (!rss_conf->rss_hf)
969 			PMD_DRV_LOG(ERR, "Hash type NONE\n");
970 	} else {
971 		if (rss_conf->rss_hf & BNXT_ETH_RSS_SUPPORT)
972 			return -EINVAL;
973 	}
974 
975 	bp->flags |= BNXT_FLAG_UPDATE_HASH;
976 	memcpy(&bp->rss_conf, rss_conf, sizeof(*rss_conf));
977 
978 	if (rss_conf->rss_hf & ETH_RSS_IPV4)
979 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
980 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
981 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
982 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
983 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
984 	if (rss_conf->rss_hf & ETH_RSS_IPV6)
985 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
986 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
987 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
988 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
989 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
990 
991 	/* Update the RSS VNIC(s) */
992 	for (i = 0; i < bp->nr_vnics; i++) {
993 		vnic = &bp->vnic_info[i];
994 		vnic->hash_type = hash_type;
995 
996 		/*
997 		 * Use the supplied key if the key length is
998 		 * acceptable and the rss_key is not NULL
999 		 */
1000 		if (rss_conf->rss_key &&
1001 		    rss_conf->rss_key_len <= HW_HASH_KEY_SIZE)
1002 			memcpy(vnic->rss_hash_key, rss_conf->rss_key,
1003 			       rss_conf->rss_key_len);
1004 
1005 		bnxt_hwrm_vnic_rss_cfg(bp, vnic);
1006 	}
1007 	return 0;
1008 }
1009 
1010 static int bnxt_rss_hash_conf_get_op(struct rte_eth_dev *eth_dev,
1011 				     struct rte_eth_rss_conf *rss_conf)
1012 {
1013 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1014 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
1015 	int len;
1016 	uint32_t hash_types;
1017 
1018 	/* RSS configuration is the same for all VNICs */
1019 	if (vnic && vnic->rss_hash_key) {
1020 		if (rss_conf->rss_key) {
1021 			len = rss_conf->rss_key_len <= HW_HASH_KEY_SIZE ?
1022 			      rss_conf->rss_key_len : HW_HASH_KEY_SIZE;
1023 			memcpy(rss_conf->rss_key, vnic->rss_hash_key, len);
1024 		}
1025 
1026 		hash_types = vnic->hash_type;
1027 		rss_conf->rss_hf = 0;
1028 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4) {
1029 			rss_conf->rss_hf |= ETH_RSS_IPV4;
1030 			hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
1031 		}
1032 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4) {
1033 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
1034 			hash_types &=
1035 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
1036 		}
1037 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4) {
1038 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
1039 			hash_types &=
1040 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
1041 		}
1042 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6) {
1043 			rss_conf->rss_hf |= ETH_RSS_IPV6;
1044 			hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
1045 		}
1046 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6) {
1047 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
1048 			hash_types &=
1049 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
1050 		}
1051 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6) {
1052 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
1053 			hash_types &=
1054 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
1055 		}
1056 		if (hash_types) {
1057 			PMD_DRV_LOG(ERR,
1058 				"Unknwon RSS config from firmware (%08x), RSS disabled",
1059 				vnic->hash_type);
1060 			return -ENOTSUP;
1061 		}
1062 	} else {
1063 		rss_conf->rss_hf = 0;
1064 	}
1065 	return 0;
1066 }
1067 
1068 static int bnxt_flow_ctrl_get_op(struct rte_eth_dev *dev,
1069 			       struct rte_eth_fc_conf *fc_conf)
1070 {
1071 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1072 	struct rte_eth_link link_info;
1073 	int rc;
1074 
1075 	rc = bnxt_get_hwrm_link_config(bp, &link_info);
1076 	if (rc)
1077 		return rc;
1078 
1079 	memset(fc_conf, 0, sizeof(*fc_conf));
1080 	if (bp->link_info.auto_pause)
1081 		fc_conf->autoneg = 1;
1082 	switch (bp->link_info.pause) {
1083 	case 0:
1084 		fc_conf->mode = RTE_FC_NONE;
1085 		break;
1086 	case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX:
1087 		fc_conf->mode = RTE_FC_TX_PAUSE;
1088 		break;
1089 	case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX:
1090 		fc_conf->mode = RTE_FC_RX_PAUSE;
1091 		break;
1092 	case (HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX |
1093 			HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX):
1094 		fc_conf->mode = RTE_FC_FULL;
1095 		break;
1096 	}
1097 	return 0;
1098 }
1099 
1100 static int bnxt_flow_ctrl_set_op(struct rte_eth_dev *dev,
1101 			       struct rte_eth_fc_conf *fc_conf)
1102 {
1103 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1104 
1105 	if (!BNXT_SINGLE_PF(bp) || BNXT_VF(bp)) {
1106 		PMD_DRV_LOG(ERR, "Flow Control Settings cannot be modified\n");
1107 		return -ENOTSUP;
1108 	}
1109 
1110 	switch (fc_conf->mode) {
1111 	case RTE_FC_NONE:
1112 		bp->link_info.auto_pause = 0;
1113 		bp->link_info.force_pause = 0;
1114 		break;
1115 	case RTE_FC_RX_PAUSE:
1116 		if (fc_conf->autoneg) {
1117 			bp->link_info.auto_pause =
1118 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
1119 			bp->link_info.force_pause = 0;
1120 		} else {
1121 			bp->link_info.auto_pause = 0;
1122 			bp->link_info.force_pause =
1123 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
1124 		}
1125 		break;
1126 	case RTE_FC_TX_PAUSE:
1127 		if (fc_conf->autoneg) {
1128 			bp->link_info.auto_pause =
1129 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX;
1130 			bp->link_info.force_pause = 0;
1131 		} else {
1132 			bp->link_info.auto_pause = 0;
1133 			bp->link_info.force_pause =
1134 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX;
1135 		}
1136 		break;
1137 	case RTE_FC_FULL:
1138 		if (fc_conf->autoneg) {
1139 			bp->link_info.auto_pause =
1140 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX |
1141 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
1142 			bp->link_info.force_pause = 0;
1143 		} else {
1144 			bp->link_info.auto_pause = 0;
1145 			bp->link_info.force_pause =
1146 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX |
1147 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
1148 		}
1149 		break;
1150 	}
1151 	return bnxt_set_hwrm_link_config(bp, true);
1152 }
1153 
1154 /* Add UDP tunneling port */
1155 static int
1156 bnxt_udp_tunnel_port_add_op(struct rte_eth_dev *eth_dev,
1157 			 struct rte_eth_udp_tunnel *udp_tunnel)
1158 {
1159 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1160 	uint16_t tunnel_type = 0;
1161 	int rc = 0;
1162 
1163 	switch (udp_tunnel->prot_type) {
1164 	case RTE_TUNNEL_TYPE_VXLAN:
1165 		if (bp->vxlan_port_cnt) {
1166 			PMD_DRV_LOG(ERR, "Tunnel Port %d already programmed\n",
1167 				udp_tunnel->udp_port);
1168 			if (bp->vxlan_port != udp_tunnel->udp_port) {
1169 				PMD_DRV_LOG(ERR, "Only one port allowed\n");
1170 				return -ENOSPC;
1171 			}
1172 			bp->vxlan_port_cnt++;
1173 			return 0;
1174 		}
1175 		tunnel_type =
1176 			HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_VXLAN;
1177 		bp->vxlan_port_cnt++;
1178 		break;
1179 	case RTE_TUNNEL_TYPE_GENEVE:
1180 		if (bp->geneve_port_cnt) {
1181 			PMD_DRV_LOG(ERR, "Tunnel Port %d already programmed\n",
1182 				udp_tunnel->udp_port);
1183 			if (bp->geneve_port != udp_tunnel->udp_port) {
1184 				PMD_DRV_LOG(ERR, "Only one port allowed\n");
1185 				return -ENOSPC;
1186 			}
1187 			bp->geneve_port_cnt++;
1188 			return 0;
1189 		}
1190 		tunnel_type =
1191 			HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_GENEVE;
1192 		bp->geneve_port_cnt++;
1193 		break;
1194 	default:
1195 		PMD_DRV_LOG(ERR, "Tunnel type is not supported\n");
1196 		return -ENOTSUP;
1197 	}
1198 	rc = bnxt_hwrm_tunnel_dst_port_alloc(bp, udp_tunnel->udp_port,
1199 					     tunnel_type);
1200 	return rc;
1201 }
1202 
1203 static int
1204 bnxt_udp_tunnel_port_del_op(struct rte_eth_dev *eth_dev,
1205 			 struct rte_eth_udp_tunnel *udp_tunnel)
1206 {
1207 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1208 	uint16_t tunnel_type = 0;
1209 	uint16_t port = 0;
1210 	int rc = 0;
1211 
1212 	switch (udp_tunnel->prot_type) {
1213 	case RTE_TUNNEL_TYPE_VXLAN:
1214 		if (!bp->vxlan_port_cnt) {
1215 			PMD_DRV_LOG(ERR, "No Tunnel port configured yet\n");
1216 			return -EINVAL;
1217 		}
1218 		if (bp->vxlan_port != udp_tunnel->udp_port) {
1219 			PMD_DRV_LOG(ERR, "Req Port: %d. Configured port: %d\n",
1220 				udp_tunnel->udp_port, bp->vxlan_port);
1221 			return -EINVAL;
1222 		}
1223 		if (--bp->vxlan_port_cnt)
1224 			return 0;
1225 
1226 		tunnel_type =
1227 			HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN;
1228 		port = bp->vxlan_fw_dst_port_id;
1229 		break;
1230 	case RTE_TUNNEL_TYPE_GENEVE:
1231 		if (!bp->geneve_port_cnt) {
1232 			PMD_DRV_LOG(ERR, "No Tunnel port configured yet\n");
1233 			return -EINVAL;
1234 		}
1235 		if (bp->geneve_port != udp_tunnel->udp_port) {
1236 			PMD_DRV_LOG(ERR, "Req Port: %d. Configured port: %d\n",
1237 				udp_tunnel->udp_port, bp->geneve_port);
1238 			return -EINVAL;
1239 		}
1240 		if (--bp->geneve_port_cnt)
1241 			return 0;
1242 
1243 		tunnel_type =
1244 			HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE;
1245 		port = bp->geneve_fw_dst_port_id;
1246 		break;
1247 	default:
1248 		PMD_DRV_LOG(ERR, "Tunnel type is not supported\n");
1249 		return -ENOTSUP;
1250 	}
1251 
1252 	rc = bnxt_hwrm_tunnel_dst_port_free(bp, port, tunnel_type);
1253 	if (!rc) {
1254 		if (tunnel_type ==
1255 		    HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN)
1256 			bp->vxlan_port = 0;
1257 		if (tunnel_type ==
1258 		    HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE)
1259 			bp->geneve_port = 0;
1260 	}
1261 	return rc;
1262 }
1263 
1264 static int bnxt_del_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
1265 {
1266 	struct bnxt_filter_info *filter, *temp_filter, *new_filter;
1267 	struct bnxt_vnic_info *vnic;
1268 	unsigned int i;
1269 	int rc = 0;
1270 	uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN;
1271 
1272 	/* Cycle through all VNICs */
1273 	for (i = 0; i < bp->nr_vnics; i++) {
1274 		/*
1275 		 * For each VNIC and each associated filter(s)
1276 		 * if VLAN exists && VLAN matches vlan_id
1277 		 *      remove the MAC+VLAN filter
1278 		 *      add a new MAC only filter
1279 		 * else
1280 		 *      VLAN filter doesn't exist, just skip and continue
1281 		 */
1282 		vnic = &bp->vnic_info[i];
1283 		filter = STAILQ_FIRST(&vnic->filter);
1284 		while (filter) {
1285 			temp_filter = STAILQ_NEXT(filter, next);
1286 
1287 			if (filter->enables & chk &&
1288 			    filter->l2_ovlan == vlan_id) {
1289 				/* Must delete the filter */
1290 				STAILQ_REMOVE(&vnic->filter, filter,
1291 					      bnxt_filter_info, next);
1292 				bnxt_hwrm_clear_l2_filter(bp, filter);
1293 				STAILQ_INSERT_TAIL(&bp->free_filter_list,
1294 						   filter, next);
1295 
1296 				/*
1297 				 * Need to examine to see if the MAC
1298 				 * filter already existed or not before
1299 				 * allocating a new one
1300 				 */
1301 
1302 				new_filter = bnxt_alloc_filter(bp);
1303 				if (!new_filter) {
1304 					PMD_DRV_LOG(ERR,
1305 							"MAC/VLAN filter alloc failed\n");
1306 					rc = -ENOMEM;
1307 					goto exit;
1308 				}
1309 				STAILQ_INSERT_TAIL(&vnic->filter,
1310 						new_filter, next);
1311 				/* Inherit MAC from previous filter */
1312 				new_filter->mac_index =
1313 					filter->mac_index;
1314 				memcpy(new_filter->l2_addr, filter->l2_addr,
1315 				       RTE_ETHER_ADDR_LEN);
1316 				/* MAC only filter */
1317 				rc = bnxt_hwrm_set_l2_filter(bp,
1318 							     vnic->fw_vnic_id,
1319 							     new_filter);
1320 				if (rc)
1321 					goto exit;
1322 				PMD_DRV_LOG(INFO,
1323 					    "Del Vlan filter for %d\n",
1324 					    vlan_id);
1325 			}
1326 			filter = temp_filter;
1327 		}
1328 	}
1329 exit:
1330 	return rc;
1331 }
1332 
1333 static int bnxt_add_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
1334 {
1335 	struct bnxt_filter_info *filter, *temp_filter, *new_filter;
1336 	struct bnxt_vnic_info *vnic;
1337 	unsigned int i;
1338 	int rc = 0;
1339 	uint32_t en = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN |
1340 		HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN_MASK;
1341 	uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN;
1342 
1343 	/* Cycle through all VNICs */
1344 	for (i = 0; i < bp->nr_vnics; i++) {
1345 		/*
1346 		 * For each VNIC and each associated filter(s)
1347 		 * if VLAN exists:
1348 		 *   if VLAN matches vlan_id
1349 		 *      VLAN filter already exists, just skip and continue
1350 		 *   else
1351 		 *      add a new MAC+VLAN filter
1352 		 * else
1353 		 *   Remove the old MAC only filter
1354 		 *    Add a new MAC+VLAN filter
1355 		 */
1356 		vnic = &bp->vnic_info[i];
1357 		filter = STAILQ_FIRST(&vnic->filter);
1358 		while (filter) {
1359 			temp_filter = STAILQ_NEXT(filter, next);
1360 
1361 			if (filter->enables & chk) {
1362 				if (filter->l2_ivlan == vlan_id)
1363 					goto cont;
1364 			} else {
1365 				/* Must delete the MAC filter */
1366 				STAILQ_REMOVE(&vnic->filter, filter,
1367 						bnxt_filter_info, next);
1368 				bnxt_hwrm_clear_l2_filter(bp, filter);
1369 				filter->l2_ovlan = 0;
1370 				STAILQ_INSERT_TAIL(&bp->free_filter_list,
1371 						   filter, next);
1372 			}
1373 			new_filter = bnxt_alloc_filter(bp);
1374 			if (!new_filter) {
1375 				PMD_DRV_LOG(ERR,
1376 						"MAC/VLAN filter alloc failed\n");
1377 				rc = -ENOMEM;
1378 				goto exit;
1379 			}
1380 			STAILQ_INSERT_TAIL(&vnic->filter, new_filter, next);
1381 			/* Inherit MAC from the previous filter */
1382 			new_filter->mac_index = filter->mac_index;
1383 			memcpy(new_filter->l2_addr, filter->l2_addr,
1384 			       RTE_ETHER_ADDR_LEN);
1385 			/* MAC + VLAN ID filter */
1386 			new_filter->l2_ivlan = vlan_id;
1387 			new_filter->l2_ivlan_mask = 0xF000;
1388 			new_filter->enables |= en;
1389 			rc = bnxt_hwrm_set_l2_filter(bp,
1390 					vnic->fw_vnic_id,
1391 					new_filter);
1392 			if (rc)
1393 				goto exit;
1394 			PMD_DRV_LOG(INFO,
1395 				    "Added Vlan filter for %d\n", vlan_id);
1396 cont:
1397 			filter = temp_filter;
1398 		}
1399 	}
1400 exit:
1401 	return rc;
1402 }
1403 
1404 static int bnxt_vlan_filter_set_op(struct rte_eth_dev *eth_dev,
1405 		uint16_t vlan_id, int on)
1406 {
1407 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1408 
1409 	/* These operations apply to ALL existing MAC/VLAN filters */
1410 	if (on)
1411 		return bnxt_add_vlan_filter(bp, vlan_id);
1412 	else
1413 		return bnxt_del_vlan_filter(bp, vlan_id);
1414 }
1415 
1416 static int
1417 bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask)
1418 {
1419 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1420 	uint64_t rx_offloads = dev->data->dev_conf.rxmode.offloads;
1421 	unsigned int i;
1422 
1423 	if (mask & ETH_VLAN_FILTER_MASK) {
1424 		if (!(rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER)) {
1425 			/* Remove any VLAN filters programmed */
1426 			for (i = 0; i < 4095; i++)
1427 				bnxt_del_vlan_filter(bp, i);
1428 		}
1429 		PMD_DRV_LOG(DEBUG, "VLAN Filtering: %d\n",
1430 			!!(rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER));
1431 	}
1432 
1433 	if (mask & ETH_VLAN_STRIP_MASK) {
1434 		/* Enable or disable VLAN stripping */
1435 		for (i = 0; i < bp->nr_vnics; i++) {
1436 			struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
1437 			if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1438 				vnic->vlan_strip = true;
1439 			else
1440 				vnic->vlan_strip = false;
1441 			bnxt_hwrm_vnic_cfg(bp, vnic);
1442 		}
1443 		PMD_DRV_LOG(DEBUG, "VLAN Strip Offload: %d\n",
1444 			!!(rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP));
1445 	}
1446 
1447 	if (mask & ETH_VLAN_EXTEND_MASK)
1448 		PMD_DRV_LOG(ERR, "Extend VLAN Not supported\n");
1449 
1450 	return 0;
1451 }
1452 
1453 static int
1454 bnxt_set_default_mac_addr_op(struct rte_eth_dev *dev,
1455 			struct rte_ether_addr *addr)
1456 {
1457 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1458 	/* Default Filter is tied to VNIC 0 */
1459 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
1460 	struct bnxt_filter_info *filter;
1461 	int rc;
1462 
1463 	if (BNXT_VF(bp) && !BNXT_VF_IS_TRUSTED(bp))
1464 		return -EPERM;
1465 
1466 	memcpy(bp->mac_addr, addr, sizeof(bp->mac_addr));
1467 
1468 	STAILQ_FOREACH(filter, &vnic->filter, next) {
1469 		/* Default Filter is at Index 0 */
1470 		if (filter->mac_index != 0)
1471 			continue;
1472 		rc = bnxt_hwrm_clear_l2_filter(bp, filter);
1473 		if (rc)
1474 			return rc;
1475 		memcpy(filter->l2_addr, bp->mac_addr, RTE_ETHER_ADDR_LEN);
1476 		memset(filter->l2_addr_mask, 0xff, RTE_ETHER_ADDR_LEN);
1477 		filter->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_PATH_RX;
1478 		filter->enables |=
1479 			HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR |
1480 			HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR_MASK;
1481 		rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
1482 		if (rc)
1483 			return rc;
1484 		filter->mac_index = 0;
1485 		PMD_DRV_LOG(DEBUG, "Set MAC addr\n");
1486 	}
1487 
1488 	return 0;
1489 }
1490 
1491 static int
1492 bnxt_dev_set_mc_addr_list_op(struct rte_eth_dev *eth_dev,
1493 			  struct rte_ether_addr *mc_addr_set,
1494 			  uint32_t nb_mc_addr)
1495 {
1496 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1497 	char *mc_addr_list = (char *)mc_addr_set;
1498 	struct bnxt_vnic_info *vnic;
1499 	uint32_t off = 0, i = 0;
1500 
1501 	vnic = &bp->vnic_info[0];
1502 
1503 	if (nb_mc_addr > BNXT_MAX_MC_ADDRS) {
1504 		vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
1505 		goto allmulti;
1506 	}
1507 
1508 	/* TODO Check for Duplicate mcast addresses */
1509 	vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
1510 	for (i = 0; i < nb_mc_addr; i++) {
1511 		memcpy(vnic->mc_list + off, &mc_addr_list[i],
1512 			RTE_ETHER_ADDR_LEN);
1513 		off += RTE_ETHER_ADDR_LEN;
1514 	}
1515 
1516 	vnic->mc_addr_cnt = i;
1517 
1518 allmulti:
1519 	return bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1520 }
1521 
1522 static int
1523 bnxt_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
1524 {
1525 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1526 	uint8_t fw_major = (bp->fw_ver >> 24) & 0xff;
1527 	uint8_t fw_minor = (bp->fw_ver >> 16) & 0xff;
1528 	uint8_t fw_updt = (bp->fw_ver >> 8) & 0xff;
1529 	int ret;
1530 
1531 	ret = snprintf(fw_version, fw_size, "%d.%d.%d",
1532 			fw_major, fw_minor, fw_updt);
1533 
1534 	ret += 1; /* add the size of '\0' */
1535 	if (fw_size < (uint32_t)ret)
1536 		return ret;
1537 	else
1538 		return 0;
1539 }
1540 
1541 static void
1542 bnxt_rxq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
1543 	struct rte_eth_rxq_info *qinfo)
1544 {
1545 	struct bnxt_rx_queue *rxq;
1546 
1547 	rxq = dev->data->rx_queues[queue_id];
1548 
1549 	qinfo->mp = rxq->mb_pool;
1550 	qinfo->scattered_rx = dev->data->scattered_rx;
1551 	qinfo->nb_desc = rxq->nb_rx_desc;
1552 
1553 	qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
1554 	qinfo->conf.rx_drop_en = 0;
1555 	qinfo->conf.rx_deferred_start = 0;
1556 }
1557 
1558 static void
1559 bnxt_txq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
1560 	struct rte_eth_txq_info *qinfo)
1561 {
1562 	struct bnxt_tx_queue *txq;
1563 
1564 	txq = dev->data->tx_queues[queue_id];
1565 
1566 	qinfo->nb_desc = txq->nb_tx_desc;
1567 
1568 	qinfo->conf.tx_thresh.pthresh = txq->pthresh;
1569 	qinfo->conf.tx_thresh.hthresh = txq->hthresh;
1570 	qinfo->conf.tx_thresh.wthresh = txq->wthresh;
1571 
1572 	qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
1573 	qinfo->conf.tx_rs_thresh = 0;
1574 	qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
1575 }
1576 
1577 static int bnxt_mtu_set_op(struct rte_eth_dev *eth_dev, uint16_t new_mtu)
1578 {
1579 	struct bnxt *bp = eth_dev->data->dev_private;
1580 	struct rte_eth_dev_info dev_info;
1581 	uint32_t rc = 0;
1582 	uint32_t i;
1583 
1584 	bnxt_dev_info_get_op(eth_dev, &dev_info);
1585 
1586 	if (new_mtu < RTE_ETHER_MIN_MTU || new_mtu > BNXT_MAX_MTU) {
1587 		PMD_DRV_LOG(ERR, "MTU requested must be within (%d, %d)\n",
1588 			RTE_ETHER_MIN_MTU, BNXT_MAX_MTU);
1589 		return -EINVAL;
1590 	}
1591 
1592 	if (new_mtu > RTE_ETHER_MTU) {
1593 		bp->flags |= BNXT_FLAG_JUMBO;
1594 		bp->eth_dev->data->dev_conf.rxmode.offloads |=
1595 			DEV_RX_OFFLOAD_JUMBO_FRAME;
1596 	} else {
1597 		bp->eth_dev->data->dev_conf.rxmode.offloads &=
1598 			~DEV_RX_OFFLOAD_JUMBO_FRAME;
1599 		bp->flags &= ~BNXT_FLAG_JUMBO;
1600 	}
1601 
1602 	eth_dev->data->dev_conf.rxmode.max_rx_pkt_len =
1603 		new_mtu + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN +
1604 		VLAN_TAG_SIZE * 2;
1605 
1606 	eth_dev->data->mtu = new_mtu;
1607 	PMD_DRV_LOG(INFO, "New MTU is %d\n", eth_dev->data->mtu);
1608 
1609 	for (i = 0; i < bp->nr_vnics; i++) {
1610 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
1611 		uint16_t size = 0;
1612 
1613 		vnic->mru = bp->eth_dev->data->mtu + RTE_ETHER_HDR_LEN +
1614 					RTE_ETHER_CRC_LEN + VLAN_TAG_SIZE * 2;
1615 		rc = bnxt_hwrm_vnic_cfg(bp, vnic);
1616 		if (rc)
1617 			break;
1618 
1619 		size = rte_pktmbuf_data_room_size(bp->rx_queues[0]->mb_pool);
1620 		size -= RTE_PKTMBUF_HEADROOM;
1621 
1622 		if (size < new_mtu) {
1623 			rc = bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
1624 			if (rc)
1625 				return rc;
1626 		}
1627 	}
1628 
1629 	return rc;
1630 }
1631 
1632 static int
1633 bnxt_vlan_pvid_set_op(struct rte_eth_dev *dev, uint16_t pvid, int on)
1634 {
1635 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1636 	uint16_t vlan = bp->vlan;
1637 	int rc;
1638 
1639 	if (!BNXT_SINGLE_PF(bp) || BNXT_VF(bp)) {
1640 		PMD_DRV_LOG(ERR,
1641 			"PVID cannot be modified for this function\n");
1642 		return -ENOTSUP;
1643 	}
1644 	bp->vlan = on ? pvid : 0;
1645 
1646 	rc = bnxt_hwrm_set_default_vlan(bp, 0, 0);
1647 	if (rc)
1648 		bp->vlan = vlan;
1649 	return rc;
1650 }
1651 
1652 static int
1653 bnxt_dev_led_on_op(struct rte_eth_dev *dev)
1654 {
1655 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1656 
1657 	return bnxt_hwrm_port_led_cfg(bp, true);
1658 }
1659 
1660 static int
1661 bnxt_dev_led_off_op(struct rte_eth_dev *dev)
1662 {
1663 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1664 
1665 	return bnxt_hwrm_port_led_cfg(bp, false);
1666 }
1667 
1668 static uint32_t
1669 bnxt_rx_queue_count_op(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1670 {
1671 	uint32_t desc = 0, raw_cons = 0, cons;
1672 	struct bnxt_cp_ring_info *cpr;
1673 	struct bnxt_rx_queue *rxq;
1674 	struct rx_pkt_cmpl *rxcmp;
1675 	uint16_t cmp_type;
1676 	uint8_t cmp = 1;
1677 	bool valid;
1678 
1679 	rxq = dev->data->rx_queues[rx_queue_id];
1680 	cpr = rxq->cp_ring;
1681 	valid = cpr->valid;
1682 
1683 	while (raw_cons < rxq->nb_rx_desc) {
1684 		cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
1685 		rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1686 
1687 		if (!CMPL_VALID(rxcmp, valid))
1688 			goto nothing_to_do;
1689 		valid = FLIP_VALID(cons, cpr->cp_ring_struct->ring_mask, valid);
1690 		cmp_type = CMP_TYPE(rxcmp);
1691 		if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
1692 			cmp = (rte_le_to_cpu_32(
1693 					((struct rx_tpa_end_cmpl *)
1694 					 (rxcmp))->agg_bufs_v1) &
1695 			       RX_TPA_END_CMPL_AGG_BUFS_MASK) >>
1696 				RX_TPA_END_CMPL_AGG_BUFS_SFT;
1697 			desc++;
1698 		} else if (cmp_type == 0x11) {
1699 			desc++;
1700 			cmp = (rxcmp->agg_bufs_v1 &
1701 				   RX_PKT_CMPL_AGG_BUFS_MASK) >>
1702 				RX_PKT_CMPL_AGG_BUFS_SFT;
1703 		} else {
1704 			cmp = 1;
1705 		}
1706 nothing_to_do:
1707 		raw_cons += cmp ? cmp : 2;
1708 	}
1709 
1710 	return desc;
1711 }
1712 
1713 static int
1714 bnxt_rx_descriptor_status_op(void *rx_queue, uint16_t offset)
1715 {
1716 	struct bnxt_rx_queue *rxq = (struct bnxt_rx_queue *)rx_queue;
1717 	struct bnxt_rx_ring_info *rxr;
1718 	struct bnxt_cp_ring_info *cpr;
1719 	struct bnxt_sw_rx_bd *rx_buf;
1720 	struct rx_pkt_cmpl *rxcmp;
1721 	uint32_t cons, cp_cons;
1722 
1723 	if (!rxq)
1724 		return -EINVAL;
1725 
1726 	cpr = rxq->cp_ring;
1727 	rxr = rxq->rx_ring;
1728 
1729 	if (offset >= rxq->nb_rx_desc)
1730 		return -EINVAL;
1731 
1732 	cons = RING_CMP(cpr->cp_ring_struct, offset);
1733 	cp_cons = cpr->cp_raw_cons;
1734 	rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1735 
1736 	if (cons > cp_cons) {
1737 		if (CMPL_VALID(rxcmp, cpr->valid))
1738 			return RTE_ETH_RX_DESC_DONE;
1739 	} else {
1740 		if (CMPL_VALID(rxcmp, !cpr->valid))
1741 			return RTE_ETH_RX_DESC_DONE;
1742 	}
1743 	rx_buf = &rxr->rx_buf_ring[cons];
1744 	if (rx_buf->mbuf == NULL)
1745 		return RTE_ETH_RX_DESC_UNAVAIL;
1746 
1747 
1748 	return RTE_ETH_RX_DESC_AVAIL;
1749 }
1750 
1751 static int
1752 bnxt_tx_descriptor_status_op(void *tx_queue, uint16_t offset)
1753 {
1754 	struct bnxt_tx_queue *txq = (struct bnxt_tx_queue *)tx_queue;
1755 	struct bnxt_tx_ring_info *txr;
1756 	struct bnxt_cp_ring_info *cpr;
1757 	struct bnxt_sw_tx_bd *tx_buf;
1758 	struct tx_pkt_cmpl *txcmp;
1759 	uint32_t cons, cp_cons;
1760 
1761 	if (!txq)
1762 		return -EINVAL;
1763 
1764 	cpr = txq->cp_ring;
1765 	txr = txq->tx_ring;
1766 
1767 	if (offset >= txq->nb_tx_desc)
1768 		return -EINVAL;
1769 
1770 	cons = RING_CMP(cpr->cp_ring_struct, offset);
1771 	txcmp = (struct tx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1772 	cp_cons = cpr->cp_raw_cons;
1773 
1774 	if (cons > cp_cons) {
1775 		if (CMPL_VALID(txcmp, cpr->valid))
1776 			return RTE_ETH_TX_DESC_UNAVAIL;
1777 	} else {
1778 		if (CMPL_VALID(txcmp, !cpr->valid))
1779 			return RTE_ETH_TX_DESC_UNAVAIL;
1780 	}
1781 	tx_buf = &txr->tx_buf_ring[cons];
1782 	if (tx_buf->mbuf == NULL)
1783 		return RTE_ETH_TX_DESC_DONE;
1784 
1785 	return RTE_ETH_TX_DESC_FULL;
1786 }
1787 
1788 static struct bnxt_filter_info *
1789 bnxt_match_and_validate_ether_filter(struct bnxt *bp,
1790 				struct rte_eth_ethertype_filter *efilter,
1791 				struct bnxt_vnic_info *vnic0,
1792 				struct bnxt_vnic_info *vnic,
1793 				int *ret)
1794 {
1795 	struct bnxt_filter_info *mfilter = NULL;
1796 	int match = 0;
1797 	*ret = 0;
1798 
1799 	if (efilter->ether_type == RTE_ETHER_TYPE_IPv4 ||
1800 		efilter->ether_type == RTE_ETHER_TYPE_IPv6) {
1801 		PMD_DRV_LOG(ERR, "invalid ether_type(0x%04x) in"
1802 			" ethertype filter.", efilter->ether_type);
1803 		*ret = -EINVAL;
1804 		goto exit;
1805 	}
1806 	if (efilter->queue >= bp->rx_nr_rings) {
1807 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", efilter->queue);
1808 		*ret = -EINVAL;
1809 		goto exit;
1810 	}
1811 
1812 	vnic0 = &bp->vnic_info[0];
1813 	vnic = &bp->vnic_info[efilter->queue];
1814 	if (vnic == NULL) {
1815 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", efilter->queue);
1816 		*ret = -EINVAL;
1817 		goto exit;
1818 	}
1819 
1820 	if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
1821 		STAILQ_FOREACH(mfilter, &vnic0->filter, next) {
1822 			if ((!memcmp(efilter->mac_addr.addr_bytes,
1823 				     mfilter->l2_addr, RTE_ETHER_ADDR_LEN) &&
1824 			     mfilter->flags ==
1825 			     HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP &&
1826 			     mfilter->ethertype == efilter->ether_type)) {
1827 				match = 1;
1828 				break;
1829 			}
1830 		}
1831 	} else {
1832 		STAILQ_FOREACH(mfilter, &vnic->filter, next)
1833 			if ((!memcmp(efilter->mac_addr.addr_bytes,
1834 				     mfilter->l2_addr, RTE_ETHER_ADDR_LEN) &&
1835 			     mfilter->ethertype == efilter->ether_type &&
1836 			     mfilter->flags ==
1837 			     HWRM_CFA_L2_FILTER_CFG_INPUT_FLAGS_PATH_RX)) {
1838 				match = 1;
1839 				break;
1840 			}
1841 	}
1842 
1843 	if (match)
1844 		*ret = -EEXIST;
1845 
1846 exit:
1847 	return mfilter;
1848 }
1849 
1850 static int
1851 bnxt_ethertype_filter(struct rte_eth_dev *dev,
1852 			enum rte_filter_op filter_op,
1853 			void *arg)
1854 {
1855 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1856 	struct rte_eth_ethertype_filter *efilter =
1857 			(struct rte_eth_ethertype_filter *)arg;
1858 	struct bnxt_filter_info *bfilter, *filter1;
1859 	struct bnxt_vnic_info *vnic, *vnic0;
1860 	int ret;
1861 
1862 	if (filter_op == RTE_ETH_FILTER_NOP)
1863 		return 0;
1864 
1865 	if (arg == NULL) {
1866 		PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
1867 			    filter_op);
1868 		return -EINVAL;
1869 	}
1870 
1871 	vnic0 = &bp->vnic_info[0];
1872 	vnic = &bp->vnic_info[efilter->queue];
1873 
1874 	switch (filter_op) {
1875 	case RTE_ETH_FILTER_ADD:
1876 		bnxt_match_and_validate_ether_filter(bp, efilter,
1877 							vnic0, vnic, &ret);
1878 		if (ret < 0)
1879 			return ret;
1880 
1881 		bfilter = bnxt_get_unused_filter(bp);
1882 		if (bfilter == NULL) {
1883 			PMD_DRV_LOG(ERR,
1884 				"Not enough resources for a new filter.\n");
1885 			return -ENOMEM;
1886 		}
1887 		bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
1888 		memcpy(bfilter->l2_addr, efilter->mac_addr.addr_bytes,
1889 		       RTE_ETHER_ADDR_LEN);
1890 		memcpy(bfilter->dst_macaddr, efilter->mac_addr.addr_bytes,
1891 		       RTE_ETHER_ADDR_LEN);
1892 		bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
1893 		bfilter->ethertype = efilter->ether_type;
1894 		bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
1895 
1896 		filter1 = bnxt_get_l2_filter(bp, bfilter, vnic0);
1897 		if (filter1 == NULL) {
1898 			ret = -1;
1899 			goto cleanup;
1900 		}
1901 		bfilter->enables |=
1902 			HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
1903 		bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
1904 
1905 		bfilter->dst_id = vnic->fw_vnic_id;
1906 
1907 		if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
1908 			bfilter->flags =
1909 				HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
1910 		}
1911 
1912 		ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
1913 		if (ret)
1914 			goto cleanup;
1915 		STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
1916 		break;
1917 	case RTE_ETH_FILTER_DELETE:
1918 		filter1 = bnxt_match_and_validate_ether_filter(bp, efilter,
1919 							vnic0, vnic, &ret);
1920 		if (ret == -EEXIST) {
1921 			ret = bnxt_hwrm_clear_ntuple_filter(bp, filter1);
1922 
1923 			STAILQ_REMOVE(&vnic->filter, filter1, bnxt_filter_info,
1924 				      next);
1925 			bnxt_free_filter(bp, filter1);
1926 		} else if (ret == 0) {
1927 			PMD_DRV_LOG(ERR, "No matching filter found\n");
1928 		}
1929 		break;
1930 	default:
1931 		PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
1932 		ret = -EINVAL;
1933 		goto error;
1934 	}
1935 	return ret;
1936 cleanup:
1937 	bnxt_free_filter(bp, bfilter);
1938 error:
1939 	return ret;
1940 }
1941 
1942 static inline int
1943 parse_ntuple_filter(struct bnxt *bp,
1944 		    struct rte_eth_ntuple_filter *nfilter,
1945 		    struct bnxt_filter_info *bfilter)
1946 {
1947 	uint32_t en = 0;
1948 
1949 	if (nfilter->queue >= bp->rx_nr_rings) {
1950 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", nfilter->queue);
1951 		return -EINVAL;
1952 	}
1953 
1954 	switch (nfilter->dst_port_mask) {
1955 	case UINT16_MAX:
1956 		bfilter->dst_port_mask = -1;
1957 		bfilter->dst_port = nfilter->dst_port;
1958 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT |
1959 			NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
1960 		break;
1961 	default:
1962 		PMD_DRV_LOG(ERR, "invalid dst_port mask.");
1963 		return -EINVAL;
1964 	}
1965 
1966 	bfilter->ip_addr_type = NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
1967 	en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
1968 
1969 	switch (nfilter->proto_mask) {
1970 	case UINT8_MAX:
1971 		if (nfilter->proto == 17) /* IPPROTO_UDP */
1972 			bfilter->ip_protocol = 17;
1973 		else if (nfilter->proto == 6) /* IPPROTO_TCP */
1974 			bfilter->ip_protocol = 6;
1975 		else
1976 			return -EINVAL;
1977 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
1978 		break;
1979 	default:
1980 		PMD_DRV_LOG(ERR, "invalid protocol mask.");
1981 		return -EINVAL;
1982 	}
1983 
1984 	switch (nfilter->dst_ip_mask) {
1985 	case UINT32_MAX:
1986 		bfilter->dst_ipaddr_mask[0] = -1;
1987 		bfilter->dst_ipaddr[0] = nfilter->dst_ip;
1988 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR |
1989 			NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
1990 		break;
1991 	default:
1992 		PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
1993 		return -EINVAL;
1994 	}
1995 
1996 	switch (nfilter->src_ip_mask) {
1997 	case UINT32_MAX:
1998 		bfilter->src_ipaddr_mask[0] = -1;
1999 		bfilter->src_ipaddr[0] = nfilter->src_ip;
2000 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR |
2001 			NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2002 		break;
2003 	default:
2004 		PMD_DRV_LOG(ERR, "invalid src_ip mask.");
2005 		return -EINVAL;
2006 	}
2007 
2008 	switch (nfilter->src_port_mask) {
2009 	case UINT16_MAX:
2010 		bfilter->src_port_mask = -1;
2011 		bfilter->src_port = nfilter->src_port;
2012 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT |
2013 			NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2014 		break;
2015 	default:
2016 		PMD_DRV_LOG(ERR, "invalid src_port mask.");
2017 		return -EINVAL;
2018 	}
2019 
2020 	//TODO Priority
2021 	//nfilter->priority = (uint8_t)filter->priority;
2022 
2023 	bfilter->enables = en;
2024 	return 0;
2025 }
2026 
2027 static struct bnxt_filter_info*
2028 bnxt_match_ntuple_filter(struct bnxt *bp,
2029 			 struct bnxt_filter_info *bfilter,
2030 			 struct bnxt_vnic_info **mvnic)
2031 {
2032 	struct bnxt_filter_info *mfilter = NULL;
2033 	int i;
2034 
2035 	for (i = bp->nr_vnics - 1; i >= 0; i--) {
2036 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2037 		STAILQ_FOREACH(mfilter, &vnic->filter, next) {
2038 			if (bfilter->src_ipaddr[0] == mfilter->src_ipaddr[0] &&
2039 			    bfilter->src_ipaddr_mask[0] ==
2040 			    mfilter->src_ipaddr_mask[0] &&
2041 			    bfilter->src_port == mfilter->src_port &&
2042 			    bfilter->src_port_mask == mfilter->src_port_mask &&
2043 			    bfilter->dst_ipaddr[0] == mfilter->dst_ipaddr[0] &&
2044 			    bfilter->dst_ipaddr_mask[0] ==
2045 			    mfilter->dst_ipaddr_mask[0] &&
2046 			    bfilter->dst_port == mfilter->dst_port &&
2047 			    bfilter->dst_port_mask == mfilter->dst_port_mask &&
2048 			    bfilter->flags == mfilter->flags &&
2049 			    bfilter->enables == mfilter->enables) {
2050 				if (mvnic)
2051 					*mvnic = vnic;
2052 				return mfilter;
2053 			}
2054 		}
2055 	}
2056 	return NULL;
2057 }
2058 
2059 static int
2060 bnxt_cfg_ntuple_filter(struct bnxt *bp,
2061 		       struct rte_eth_ntuple_filter *nfilter,
2062 		       enum rte_filter_op filter_op)
2063 {
2064 	struct bnxt_filter_info *bfilter, *mfilter, *filter1;
2065 	struct bnxt_vnic_info *vnic, *vnic0, *mvnic;
2066 	int ret;
2067 
2068 	if (nfilter->flags != RTE_5TUPLE_FLAGS) {
2069 		PMD_DRV_LOG(ERR, "only 5tuple is supported.");
2070 		return -EINVAL;
2071 	}
2072 
2073 	if (nfilter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG) {
2074 		PMD_DRV_LOG(ERR, "Ntuple filter: TCP flags not supported\n");
2075 		return -EINVAL;
2076 	}
2077 
2078 	bfilter = bnxt_get_unused_filter(bp);
2079 	if (bfilter == NULL) {
2080 		PMD_DRV_LOG(ERR,
2081 			"Not enough resources for a new filter.\n");
2082 		return -ENOMEM;
2083 	}
2084 	ret = parse_ntuple_filter(bp, nfilter, bfilter);
2085 	if (ret < 0)
2086 		goto free_filter;
2087 
2088 	vnic = &bp->vnic_info[nfilter->queue];
2089 	vnic0 = &bp->vnic_info[0];
2090 	filter1 = STAILQ_FIRST(&vnic0->filter);
2091 	if (filter1 == NULL) {
2092 		ret = -1;
2093 		goto free_filter;
2094 	}
2095 
2096 	bfilter->dst_id = vnic->fw_vnic_id;
2097 	bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
2098 	bfilter->enables |=
2099 		HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
2100 	bfilter->ethertype = 0x800;
2101 	bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2102 
2103 	mfilter = bnxt_match_ntuple_filter(bp, bfilter, &mvnic);
2104 
2105 	if (mfilter != NULL && filter_op == RTE_ETH_FILTER_ADD &&
2106 	    bfilter->dst_id == mfilter->dst_id) {
2107 		PMD_DRV_LOG(ERR, "filter exists.\n");
2108 		ret = -EEXIST;
2109 		goto free_filter;
2110 	} else if (mfilter != NULL && filter_op == RTE_ETH_FILTER_ADD &&
2111 		   bfilter->dst_id != mfilter->dst_id) {
2112 		mfilter->dst_id = vnic->fw_vnic_id;
2113 		ret = bnxt_hwrm_set_ntuple_filter(bp, mfilter->dst_id, mfilter);
2114 		STAILQ_REMOVE(&mvnic->filter, mfilter, bnxt_filter_info, next);
2115 		STAILQ_INSERT_TAIL(&vnic->filter, mfilter, next);
2116 		PMD_DRV_LOG(ERR, "filter with matching pattern exists.\n");
2117 		PMD_DRV_LOG(ERR, " Updated it to the new destination queue\n");
2118 		goto free_filter;
2119 	}
2120 	if (mfilter == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
2121 		PMD_DRV_LOG(ERR, "filter doesn't exist.");
2122 		ret = -ENOENT;
2123 		goto free_filter;
2124 	}
2125 
2126 	if (filter_op == RTE_ETH_FILTER_ADD) {
2127 		bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
2128 		ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
2129 		if (ret)
2130 			goto free_filter;
2131 		STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
2132 	} else {
2133 		if (mfilter == NULL) {
2134 			/* This should not happen. But for Coverity! */
2135 			ret = -ENOENT;
2136 			goto free_filter;
2137 		}
2138 		ret = bnxt_hwrm_clear_ntuple_filter(bp, mfilter);
2139 
2140 		STAILQ_REMOVE(&vnic->filter, mfilter, bnxt_filter_info, next);
2141 		bnxt_free_filter(bp, mfilter);
2142 		mfilter->fw_l2_filter_id = -1;
2143 		bnxt_free_filter(bp, bfilter);
2144 		bfilter->fw_l2_filter_id = -1;
2145 	}
2146 
2147 	return 0;
2148 free_filter:
2149 	bfilter->fw_l2_filter_id = -1;
2150 	bnxt_free_filter(bp, bfilter);
2151 	return ret;
2152 }
2153 
2154 static int
2155 bnxt_ntuple_filter(struct rte_eth_dev *dev,
2156 			enum rte_filter_op filter_op,
2157 			void *arg)
2158 {
2159 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2160 	int ret;
2161 
2162 	if (filter_op == RTE_ETH_FILTER_NOP)
2163 		return 0;
2164 
2165 	if (arg == NULL) {
2166 		PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
2167 			    filter_op);
2168 		return -EINVAL;
2169 	}
2170 
2171 	switch (filter_op) {
2172 	case RTE_ETH_FILTER_ADD:
2173 		ret = bnxt_cfg_ntuple_filter(bp,
2174 			(struct rte_eth_ntuple_filter *)arg,
2175 			filter_op);
2176 		break;
2177 	case RTE_ETH_FILTER_DELETE:
2178 		ret = bnxt_cfg_ntuple_filter(bp,
2179 			(struct rte_eth_ntuple_filter *)arg,
2180 			filter_op);
2181 		break;
2182 	default:
2183 		PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
2184 		ret = -EINVAL;
2185 		break;
2186 	}
2187 	return ret;
2188 }
2189 
2190 static int
2191 bnxt_parse_fdir_filter(struct bnxt *bp,
2192 		       struct rte_eth_fdir_filter *fdir,
2193 		       struct bnxt_filter_info *filter)
2194 {
2195 	enum rte_fdir_mode fdir_mode =
2196 		bp->eth_dev->data->dev_conf.fdir_conf.mode;
2197 	struct bnxt_vnic_info *vnic0, *vnic;
2198 	struct bnxt_filter_info *filter1;
2199 	uint32_t en = 0;
2200 	int i;
2201 
2202 	if (fdir_mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2203 		return -EINVAL;
2204 
2205 	filter->l2_ovlan = fdir->input.flow_ext.vlan_tci;
2206 	en |= EM_FLOW_ALLOC_INPUT_EN_OVLAN_VID;
2207 
2208 	switch (fdir->input.flow_type) {
2209 	case RTE_ETH_FLOW_IPV4:
2210 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2211 		/* FALLTHROUGH */
2212 		filter->src_ipaddr[0] = fdir->input.flow.ip4_flow.src_ip;
2213 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2214 		filter->dst_ipaddr[0] = fdir->input.flow.ip4_flow.dst_ip;
2215 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2216 		filter->ip_protocol = fdir->input.flow.ip4_flow.proto;
2217 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2218 		filter->ip_addr_type =
2219 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2220 		filter->src_ipaddr_mask[0] = 0xffffffff;
2221 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2222 		filter->dst_ipaddr_mask[0] = 0xffffffff;
2223 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2224 		filter->ethertype = 0x800;
2225 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2226 		break;
2227 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2228 		filter->src_port = fdir->input.flow.tcp4_flow.src_port;
2229 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2230 		filter->dst_port = fdir->input.flow.tcp4_flow.dst_port;
2231 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2232 		filter->dst_port_mask = 0xffff;
2233 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2234 		filter->src_port_mask = 0xffff;
2235 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2236 		filter->src_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.src_ip;
2237 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2238 		filter->dst_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.dst_ip;
2239 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2240 		filter->ip_protocol = 6;
2241 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2242 		filter->ip_addr_type =
2243 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2244 		filter->src_ipaddr_mask[0] = 0xffffffff;
2245 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2246 		filter->dst_ipaddr_mask[0] = 0xffffffff;
2247 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2248 		filter->ethertype = 0x800;
2249 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2250 		break;
2251 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2252 		filter->src_port = fdir->input.flow.udp4_flow.src_port;
2253 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2254 		filter->dst_port = fdir->input.flow.udp4_flow.dst_port;
2255 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2256 		filter->dst_port_mask = 0xffff;
2257 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2258 		filter->src_port_mask = 0xffff;
2259 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2260 		filter->src_ipaddr[0] = fdir->input.flow.udp4_flow.ip.src_ip;
2261 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2262 		filter->dst_ipaddr[0] = fdir->input.flow.udp4_flow.ip.dst_ip;
2263 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2264 		filter->ip_protocol = 17;
2265 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2266 		filter->ip_addr_type =
2267 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2268 		filter->src_ipaddr_mask[0] = 0xffffffff;
2269 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2270 		filter->dst_ipaddr_mask[0] = 0xffffffff;
2271 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2272 		filter->ethertype = 0x800;
2273 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2274 		break;
2275 	case RTE_ETH_FLOW_IPV6:
2276 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2277 		/* FALLTHROUGH */
2278 		filter->ip_addr_type =
2279 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2280 		filter->ip_protocol = fdir->input.flow.ipv6_flow.proto;
2281 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2282 		rte_memcpy(filter->src_ipaddr,
2283 			   fdir->input.flow.ipv6_flow.src_ip, 16);
2284 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2285 		rte_memcpy(filter->dst_ipaddr,
2286 			   fdir->input.flow.ipv6_flow.dst_ip, 16);
2287 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2288 		memset(filter->dst_ipaddr_mask, 0xff, 16);
2289 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2290 		memset(filter->src_ipaddr_mask, 0xff, 16);
2291 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2292 		filter->ethertype = 0x86dd;
2293 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2294 		break;
2295 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2296 		filter->src_port = fdir->input.flow.tcp6_flow.src_port;
2297 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2298 		filter->dst_port = fdir->input.flow.tcp6_flow.dst_port;
2299 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2300 		filter->dst_port_mask = 0xffff;
2301 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2302 		filter->src_port_mask = 0xffff;
2303 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2304 		filter->ip_addr_type =
2305 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2306 		filter->ip_protocol = fdir->input.flow.tcp6_flow.ip.proto;
2307 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2308 		rte_memcpy(filter->src_ipaddr,
2309 			   fdir->input.flow.tcp6_flow.ip.src_ip, 16);
2310 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2311 		rte_memcpy(filter->dst_ipaddr,
2312 			   fdir->input.flow.tcp6_flow.ip.dst_ip, 16);
2313 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2314 		memset(filter->dst_ipaddr_mask, 0xff, 16);
2315 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2316 		memset(filter->src_ipaddr_mask, 0xff, 16);
2317 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2318 		filter->ethertype = 0x86dd;
2319 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2320 		break;
2321 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2322 		filter->src_port = fdir->input.flow.udp6_flow.src_port;
2323 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2324 		filter->dst_port = fdir->input.flow.udp6_flow.dst_port;
2325 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2326 		filter->dst_port_mask = 0xffff;
2327 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2328 		filter->src_port_mask = 0xffff;
2329 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2330 		filter->ip_addr_type =
2331 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2332 		filter->ip_protocol = fdir->input.flow.udp6_flow.ip.proto;
2333 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2334 		rte_memcpy(filter->src_ipaddr,
2335 			   fdir->input.flow.udp6_flow.ip.src_ip, 16);
2336 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2337 		rte_memcpy(filter->dst_ipaddr,
2338 			   fdir->input.flow.udp6_flow.ip.dst_ip, 16);
2339 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2340 		memset(filter->dst_ipaddr_mask, 0xff, 16);
2341 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2342 		memset(filter->src_ipaddr_mask, 0xff, 16);
2343 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2344 		filter->ethertype = 0x86dd;
2345 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2346 		break;
2347 	case RTE_ETH_FLOW_L2_PAYLOAD:
2348 		filter->ethertype = fdir->input.flow.l2_flow.ether_type;
2349 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2350 		break;
2351 	case RTE_ETH_FLOW_VXLAN:
2352 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2353 			return -EINVAL;
2354 		filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
2355 		filter->tunnel_type =
2356 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
2357 		en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
2358 		break;
2359 	case RTE_ETH_FLOW_NVGRE:
2360 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2361 			return -EINVAL;
2362 		filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
2363 		filter->tunnel_type =
2364 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_NVGRE;
2365 		en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
2366 		break;
2367 	case RTE_ETH_FLOW_UNKNOWN:
2368 	case RTE_ETH_FLOW_RAW:
2369 	case RTE_ETH_FLOW_FRAG_IPV4:
2370 	case RTE_ETH_FLOW_NONFRAG_IPV4_SCTP:
2371 	case RTE_ETH_FLOW_FRAG_IPV6:
2372 	case RTE_ETH_FLOW_NONFRAG_IPV6_SCTP:
2373 	case RTE_ETH_FLOW_IPV6_EX:
2374 	case RTE_ETH_FLOW_IPV6_TCP_EX:
2375 	case RTE_ETH_FLOW_IPV6_UDP_EX:
2376 	case RTE_ETH_FLOW_GENEVE:
2377 		/* FALLTHROUGH */
2378 	default:
2379 		return -EINVAL;
2380 	}
2381 
2382 	vnic0 = &bp->vnic_info[0];
2383 	vnic = &bp->vnic_info[fdir->action.rx_queue];
2384 	if (vnic == NULL) {
2385 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", fdir->action.rx_queue);
2386 		return -EINVAL;
2387 	}
2388 
2389 
2390 	if (fdir_mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2391 		rte_memcpy(filter->dst_macaddr,
2392 			fdir->input.flow.mac_vlan_flow.mac_addr.addr_bytes, 6);
2393 			en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
2394 	}
2395 
2396 	if (fdir->action.behavior == RTE_ETH_FDIR_REJECT) {
2397 		filter->flags = HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
2398 		filter1 = STAILQ_FIRST(&vnic0->filter);
2399 		//filter1 = bnxt_get_l2_filter(bp, filter, vnic0);
2400 	} else {
2401 		filter->dst_id = vnic->fw_vnic_id;
2402 		for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
2403 			if (filter->dst_macaddr[i] == 0x00)
2404 				filter1 = STAILQ_FIRST(&vnic0->filter);
2405 			else
2406 				filter1 = bnxt_get_l2_filter(bp, filter, vnic);
2407 	}
2408 
2409 	if (filter1 == NULL)
2410 		return -EINVAL;
2411 
2412 	en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
2413 	filter->fw_l2_filter_id = filter1->fw_l2_filter_id;
2414 
2415 	filter->enables = en;
2416 
2417 	return 0;
2418 }
2419 
2420 static struct bnxt_filter_info *
2421 bnxt_match_fdir(struct bnxt *bp, struct bnxt_filter_info *nf,
2422 		struct bnxt_vnic_info **mvnic)
2423 {
2424 	struct bnxt_filter_info *mf = NULL;
2425 	int i;
2426 
2427 	for (i = bp->nr_vnics - 1; i >= 0; i--) {
2428 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2429 
2430 		STAILQ_FOREACH(mf, &vnic->filter, next) {
2431 			if (mf->filter_type == nf->filter_type &&
2432 			    mf->flags == nf->flags &&
2433 			    mf->src_port == nf->src_port &&
2434 			    mf->src_port_mask == nf->src_port_mask &&
2435 			    mf->dst_port == nf->dst_port &&
2436 			    mf->dst_port_mask == nf->dst_port_mask &&
2437 			    mf->ip_protocol == nf->ip_protocol &&
2438 			    mf->ip_addr_type == nf->ip_addr_type &&
2439 			    mf->ethertype == nf->ethertype &&
2440 			    mf->vni == nf->vni &&
2441 			    mf->tunnel_type == nf->tunnel_type &&
2442 			    mf->l2_ovlan == nf->l2_ovlan &&
2443 			    mf->l2_ovlan_mask == nf->l2_ovlan_mask &&
2444 			    mf->l2_ivlan == nf->l2_ivlan &&
2445 			    mf->l2_ivlan_mask == nf->l2_ivlan_mask &&
2446 			    !memcmp(mf->l2_addr, nf->l2_addr,
2447 				    RTE_ETHER_ADDR_LEN) &&
2448 			    !memcmp(mf->l2_addr_mask, nf->l2_addr_mask,
2449 				    RTE_ETHER_ADDR_LEN) &&
2450 			    !memcmp(mf->src_macaddr, nf->src_macaddr,
2451 				    RTE_ETHER_ADDR_LEN) &&
2452 			    !memcmp(mf->dst_macaddr, nf->dst_macaddr,
2453 				    RTE_ETHER_ADDR_LEN) &&
2454 			    !memcmp(mf->src_ipaddr, nf->src_ipaddr,
2455 				    sizeof(nf->src_ipaddr)) &&
2456 			    !memcmp(mf->src_ipaddr_mask, nf->src_ipaddr_mask,
2457 				    sizeof(nf->src_ipaddr_mask)) &&
2458 			    !memcmp(mf->dst_ipaddr, nf->dst_ipaddr,
2459 				    sizeof(nf->dst_ipaddr)) &&
2460 			    !memcmp(mf->dst_ipaddr_mask, nf->dst_ipaddr_mask,
2461 				    sizeof(nf->dst_ipaddr_mask))) {
2462 				if (mvnic)
2463 					*mvnic = vnic;
2464 				return mf;
2465 			}
2466 		}
2467 	}
2468 	return NULL;
2469 }
2470 
2471 static int
2472 bnxt_fdir_filter(struct rte_eth_dev *dev,
2473 		 enum rte_filter_op filter_op,
2474 		 void *arg)
2475 {
2476 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2477 	struct rte_eth_fdir_filter *fdir  = (struct rte_eth_fdir_filter *)arg;
2478 	struct bnxt_filter_info *filter, *match;
2479 	struct bnxt_vnic_info *vnic, *mvnic;
2480 	int ret = 0, i;
2481 
2482 	if (filter_op == RTE_ETH_FILTER_NOP)
2483 		return 0;
2484 
2485 	if (arg == NULL && filter_op != RTE_ETH_FILTER_FLUSH)
2486 		return -EINVAL;
2487 
2488 	switch (filter_op) {
2489 	case RTE_ETH_FILTER_ADD:
2490 	case RTE_ETH_FILTER_DELETE:
2491 		/* FALLTHROUGH */
2492 		filter = bnxt_get_unused_filter(bp);
2493 		if (filter == NULL) {
2494 			PMD_DRV_LOG(ERR,
2495 				"Not enough resources for a new flow.\n");
2496 			return -ENOMEM;
2497 		}
2498 
2499 		ret = bnxt_parse_fdir_filter(bp, fdir, filter);
2500 		if (ret != 0)
2501 			goto free_filter;
2502 		filter->filter_type = HWRM_CFA_NTUPLE_FILTER;
2503 
2504 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2505 			vnic = &bp->vnic_info[0];
2506 		else
2507 			vnic = &bp->vnic_info[fdir->action.rx_queue];
2508 
2509 		match = bnxt_match_fdir(bp, filter, &mvnic);
2510 		if (match != NULL && filter_op == RTE_ETH_FILTER_ADD) {
2511 			if (match->dst_id == vnic->fw_vnic_id) {
2512 				PMD_DRV_LOG(ERR, "Flow already exists.\n");
2513 				ret = -EEXIST;
2514 				goto free_filter;
2515 			} else {
2516 				match->dst_id = vnic->fw_vnic_id;
2517 				ret = bnxt_hwrm_set_ntuple_filter(bp,
2518 								  match->dst_id,
2519 								  match);
2520 				STAILQ_REMOVE(&mvnic->filter, match,
2521 					      bnxt_filter_info, next);
2522 				STAILQ_INSERT_TAIL(&vnic->filter, match, next);
2523 				PMD_DRV_LOG(ERR,
2524 					"Filter with matching pattern exist\n");
2525 				PMD_DRV_LOG(ERR,
2526 					"Updated it to new destination q\n");
2527 				goto free_filter;
2528 			}
2529 		}
2530 		if (match == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
2531 			PMD_DRV_LOG(ERR, "Flow does not exist.\n");
2532 			ret = -ENOENT;
2533 			goto free_filter;
2534 		}
2535 
2536 		if (filter_op == RTE_ETH_FILTER_ADD) {
2537 			ret = bnxt_hwrm_set_ntuple_filter(bp,
2538 							  filter->dst_id,
2539 							  filter);
2540 			if (ret)
2541 				goto free_filter;
2542 			STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
2543 		} else {
2544 			ret = bnxt_hwrm_clear_ntuple_filter(bp, match);
2545 			STAILQ_REMOVE(&vnic->filter, match,
2546 				      bnxt_filter_info, next);
2547 			bnxt_free_filter(bp, match);
2548 			filter->fw_l2_filter_id = -1;
2549 			bnxt_free_filter(bp, filter);
2550 		}
2551 		break;
2552 	case RTE_ETH_FILTER_FLUSH:
2553 		for (i = bp->nr_vnics - 1; i >= 0; i--) {
2554 			struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2555 
2556 			STAILQ_FOREACH(filter, &vnic->filter, next) {
2557 				if (filter->filter_type ==
2558 				    HWRM_CFA_NTUPLE_FILTER) {
2559 					ret =
2560 					bnxt_hwrm_clear_ntuple_filter(bp,
2561 								      filter);
2562 					STAILQ_REMOVE(&vnic->filter, filter,
2563 						      bnxt_filter_info, next);
2564 				}
2565 			}
2566 		}
2567 		return ret;
2568 	case RTE_ETH_FILTER_UPDATE:
2569 	case RTE_ETH_FILTER_STATS:
2570 	case RTE_ETH_FILTER_INFO:
2571 		PMD_DRV_LOG(ERR, "operation %u not implemented", filter_op);
2572 		break;
2573 	default:
2574 		PMD_DRV_LOG(ERR, "unknown operation %u", filter_op);
2575 		ret = -EINVAL;
2576 		break;
2577 	}
2578 	return ret;
2579 
2580 free_filter:
2581 	filter->fw_l2_filter_id = -1;
2582 	bnxt_free_filter(bp, filter);
2583 	return ret;
2584 }
2585 
2586 static int
2587 bnxt_filter_ctrl_op(struct rte_eth_dev *dev __rte_unused,
2588 		    enum rte_filter_type filter_type,
2589 		    enum rte_filter_op filter_op, void *arg)
2590 {
2591 	int ret = 0;
2592 
2593 	switch (filter_type) {
2594 	case RTE_ETH_FILTER_TUNNEL:
2595 		PMD_DRV_LOG(ERR,
2596 			"filter type: %d: To be implemented\n", filter_type);
2597 		break;
2598 	case RTE_ETH_FILTER_FDIR:
2599 		ret = bnxt_fdir_filter(dev, filter_op, arg);
2600 		break;
2601 	case RTE_ETH_FILTER_NTUPLE:
2602 		ret = bnxt_ntuple_filter(dev, filter_op, arg);
2603 		break;
2604 	case RTE_ETH_FILTER_ETHERTYPE:
2605 		ret = bnxt_ethertype_filter(dev, filter_op, arg);
2606 		break;
2607 	case RTE_ETH_FILTER_GENERIC:
2608 		if (filter_op != RTE_ETH_FILTER_GET)
2609 			return -EINVAL;
2610 		*(const void **)arg = &bnxt_flow_ops;
2611 		break;
2612 	default:
2613 		PMD_DRV_LOG(ERR,
2614 			"Filter type (%d) not supported", filter_type);
2615 		ret = -EINVAL;
2616 		break;
2617 	}
2618 	return ret;
2619 }
2620 
2621 static const uint32_t *
2622 bnxt_dev_supported_ptypes_get_op(struct rte_eth_dev *dev)
2623 {
2624 	static const uint32_t ptypes[] = {
2625 		RTE_PTYPE_L2_ETHER_VLAN,
2626 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
2627 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
2628 		RTE_PTYPE_L4_ICMP,
2629 		RTE_PTYPE_L4_TCP,
2630 		RTE_PTYPE_L4_UDP,
2631 		RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
2632 		RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
2633 		RTE_PTYPE_INNER_L4_ICMP,
2634 		RTE_PTYPE_INNER_L4_TCP,
2635 		RTE_PTYPE_INNER_L4_UDP,
2636 		RTE_PTYPE_UNKNOWN
2637 	};
2638 
2639 	if (dev->rx_pkt_burst == bnxt_recv_pkts)
2640 		return ptypes;
2641 	return NULL;
2642 }
2643 
2644 static int bnxt_map_regs(struct bnxt *bp, uint32_t *reg_arr, int count,
2645 			 int reg_win)
2646 {
2647 	uint32_t reg_base = *reg_arr & 0xfffff000;
2648 	uint32_t win_off;
2649 	int i;
2650 
2651 	for (i = 0; i < count; i++) {
2652 		if ((reg_arr[i] & 0xfffff000) != reg_base)
2653 			return -ERANGE;
2654 	}
2655 	win_off = BNXT_GRCPF_REG_WINDOW_BASE_OUT + (reg_win - 1) * 4;
2656 	rte_write32(reg_base, (uint8_t *)bp->bar0 + win_off);
2657 	return 0;
2658 }
2659 
2660 static int bnxt_map_ptp_regs(struct bnxt *bp)
2661 {
2662 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2663 	uint32_t *reg_arr;
2664 	int rc, i;
2665 
2666 	reg_arr = ptp->rx_regs;
2667 	rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_RX_REGS, 5);
2668 	if (rc)
2669 		return rc;
2670 
2671 	reg_arr = ptp->tx_regs;
2672 	rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_TX_REGS, 6);
2673 	if (rc)
2674 		return rc;
2675 
2676 	for (i = 0; i < BNXT_PTP_RX_REGS; i++)
2677 		ptp->rx_mapped_regs[i] = 0x5000 + (ptp->rx_regs[i] & 0xfff);
2678 
2679 	for (i = 0; i < BNXT_PTP_TX_REGS; i++)
2680 		ptp->tx_mapped_regs[i] = 0x6000 + (ptp->tx_regs[i] & 0xfff);
2681 
2682 	return 0;
2683 }
2684 
2685 static void bnxt_unmap_ptp_regs(struct bnxt *bp)
2686 {
2687 	rte_write32(0, (uint8_t *)bp->bar0 +
2688 			 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 16);
2689 	rte_write32(0, (uint8_t *)bp->bar0 +
2690 			 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 20);
2691 }
2692 
2693 static uint64_t bnxt_cc_read(struct bnxt *bp)
2694 {
2695 	uint64_t ns;
2696 
2697 	ns = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2698 			      BNXT_GRCPF_REG_SYNC_TIME));
2699 	ns |= (uint64_t)(rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2700 					  BNXT_GRCPF_REG_SYNC_TIME + 4))) << 32;
2701 	return ns;
2702 }
2703 
2704 static int bnxt_get_tx_ts(struct bnxt *bp, uint64_t *ts)
2705 {
2706 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2707 	uint32_t fifo;
2708 
2709 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2710 				ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
2711 	if (fifo & BNXT_PTP_TX_FIFO_EMPTY)
2712 		return -EAGAIN;
2713 
2714 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2715 				ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
2716 	*ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2717 				ptp->tx_mapped_regs[BNXT_PTP_TX_TS_L]));
2718 	*ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2719 				ptp->tx_mapped_regs[BNXT_PTP_TX_TS_H])) << 32;
2720 
2721 	return 0;
2722 }
2723 
2724 static int bnxt_get_rx_ts(struct bnxt *bp, uint64_t *ts)
2725 {
2726 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2727 	struct bnxt_pf_info *pf = &bp->pf;
2728 	uint16_t port_id;
2729 	uint32_t fifo;
2730 
2731 	if (!ptp)
2732 		return -ENODEV;
2733 
2734 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2735 				ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
2736 	if (!(fifo & BNXT_PTP_RX_FIFO_PENDING))
2737 		return -EAGAIN;
2738 
2739 	port_id = pf->port_id;
2740 	rte_write32(1 << port_id, (uint8_t *)bp->bar0 +
2741 	       ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO_ADV]);
2742 
2743 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2744 				   ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
2745 	if (fifo & BNXT_PTP_RX_FIFO_PENDING) {
2746 /*		bnxt_clr_rx_ts(bp);	  TBD  */
2747 		return -EBUSY;
2748 	}
2749 
2750 	*ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2751 				ptp->rx_mapped_regs[BNXT_PTP_RX_TS_L]));
2752 	*ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2753 				ptp->rx_mapped_regs[BNXT_PTP_RX_TS_H])) << 32;
2754 
2755 	return 0;
2756 }
2757 
2758 static int
2759 bnxt_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
2760 {
2761 	uint64_t ns;
2762 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2763 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2764 
2765 	if (!ptp)
2766 		return 0;
2767 
2768 	ns = rte_timespec_to_ns(ts);
2769 	/* Set the timecounters to a new value. */
2770 	ptp->tc.nsec = ns;
2771 
2772 	return 0;
2773 }
2774 
2775 static int
2776 bnxt_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
2777 {
2778 	uint64_t ns, systime_cycles;
2779 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2780 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2781 
2782 	if (!ptp)
2783 		return 0;
2784 
2785 	systime_cycles = bnxt_cc_read(bp);
2786 	ns = rte_timecounter_update(&ptp->tc, systime_cycles);
2787 	*ts = rte_ns_to_timespec(ns);
2788 
2789 	return 0;
2790 }
2791 static int
2792 bnxt_timesync_enable(struct rte_eth_dev *dev)
2793 {
2794 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2795 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2796 	uint32_t shift = 0;
2797 
2798 	if (!ptp)
2799 		return 0;
2800 
2801 	ptp->rx_filter = 1;
2802 	ptp->tx_tstamp_en = 1;
2803 	ptp->rxctl = BNXT_PTP_MSG_EVENTS;
2804 
2805 	if (!bnxt_hwrm_ptp_cfg(bp))
2806 		bnxt_map_ptp_regs(bp);
2807 
2808 	memset(&ptp->tc, 0, sizeof(struct rte_timecounter));
2809 	memset(&ptp->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
2810 	memset(&ptp->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
2811 
2812 	ptp->tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
2813 	ptp->tc.cc_shift = shift;
2814 	ptp->tc.nsec_mask = (1ULL << shift) - 1;
2815 
2816 	ptp->rx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
2817 	ptp->rx_tstamp_tc.cc_shift = shift;
2818 	ptp->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
2819 
2820 	ptp->tx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
2821 	ptp->tx_tstamp_tc.cc_shift = shift;
2822 	ptp->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
2823 
2824 	return 0;
2825 }
2826 
2827 static int
2828 bnxt_timesync_disable(struct rte_eth_dev *dev)
2829 {
2830 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2831 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2832 
2833 	if (!ptp)
2834 		return 0;
2835 
2836 	ptp->rx_filter = 0;
2837 	ptp->tx_tstamp_en = 0;
2838 	ptp->rxctl = 0;
2839 
2840 	bnxt_hwrm_ptp_cfg(bp);
2841 
2842 	bnxt_unmap_ptp_regs(bp);
2843 
2844 	return 0;
2845 }
2846 
2847 static int
2848 bnxt_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
2849 				 struct timespec *timestamp,
2850 				 uint32_t flags __rte_unused)
2851 {
2852 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2853 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2854 	uint64_t rx_tstamp_cycles = 0;
2855 	uint64_t ns;
2856 
2857 	if (!ptp)
2858 		return 0;
2859 
2860 	bnxt_get_rx_ts(bp, &rx_tstamp_cycles);
2861 	ns = rte_timecounter_update(&ptp->rx_tstamp_tc, rx_tstamp_cycles);
2862 	*timestamp = rte_ns_to_timespec(ns);
2863 	return  0;
2864 }
2865 
2866 static int
2867 bnxt_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
2868 				 struct timespec *timestamp)
2869 {
2870 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2871 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2872 	uint64_t tx_tstamp_cycles = 0;
2873 	uint64_t ns;
2874 
2875 	if (!ptp)
2876 		return 0;
2877 
2878 	bnxt_get_tx_ts(bp, &tx_tstamp_cycles);
2879 	ns = rte_timecounter_update(&ptp->tx_tstamp_tc, tx_tstamp_cycles);
2880 	*timestamp = rte_ns_to_timespec(ns);
2881 
2882 	return 0;
2883 }
2884 
2885 static int
2886 bnxt_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
2887 {
2888 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2889 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2890 
2891 	if (!ptp)
2892 		return 0;
2893 
2894 	ptp->tc.nsec += delta;
2895 
2896 	return 0;
2897 }
2898 
2899 static int
2900 bnxt_get_eeprom_length_op(struct rte_eth_dev *dev)
2901 {
2902 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2903 	int rc;
2904 	uint32_t dir_entries;
2905 	uint32_t entry_length;
2906 
2907 	PMD_DRV_LOG(INFO, "%04x:%02x:%02x:%02x\n",
2908 		bp->pdev->addr.domain, bp->pdev->addr.bus,
2909 		bp->pdev->addr.devid, bp->pdev->addr.function);
2910 
2911 	rc = bnxt_hwrm_nvm_get_dir_info(bp, &dir_entries, &entry_length);
2912 	if (rc != 0)
2913 		return rc;
2914 
2915 	return dir_entries * entry_length;
2916 }
2917 
2918 static int
2919 bnxt_get_eeprom_op(struct rte_eth_dev *dev,
2920 		struct rte_dev_eeprom_info *in_eeprom)
2921 {
2922 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2923 	uint32_t index;
2924 	uint32_t offset;
2925 
2926 	PMD_DRV_LOG(INFO, "%04x:%02x:%02x:%02x in_eeprom->offset = %d "
2927 		"len = %d\n", bp->pdev->addr.domain,
2928 		bp->pdev->addr.bus, bp->pdev->addr.devid,
2929 		bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length);
2930 
2931 	if (in_eeprom->offset == 0) /* special offset value to get directory */
2932 		return bnxt_get_nvram_directory(bp, in_eeprom->length,
2933 						in_eeprom->data);
2934 
2935 	index = in_eeprom->offset >> 24;
2936 	offset = in_eeprom->offset & 0xffffff;
2937 
2938 	if (index != 0)
2939 		return bnxt_hwrm_get_nvram_item(bp, index - 1, offset,
2940 					   in_eeprom->length, in_eeprom->data);
2941 
2942 	return 0;
2943 }
2944 
2945 static bool bnxt_dir_type_is_ape_bin_format(uint16_t dir_type)
2946 {
2947 	switch (dir_type) {
2948 	case BNX_DIR_TYPE_CHIMP_PATCH:
2949 	case BNX_DIR_TYPE_BOOTCODE:
2950 	case BNX_DIR_TYPE_BOOTCODE_2:
2951 	case BNX_DIR_TYPE_APE_FW:
2952 	case BNX_DIR_TYPE_APE_PATCH:
2953 	case BNX_DIR_TYPE_KONG_FW:
2954 	case BNX_DIR_TYPE_KONG_PATCH:
2955 	case BNX_DIR_TYPE_BONO_FW:
2956 	case BNX_DIR_TYPE_BONO_PATCH:
2957 		/* FALLTHROUGH */
2958 		return true;
2959 	}
2960 
2961 	return false;
2962 }
2963 
2964 static bool bnxt_dir_type_is_other_exec_format(uint16_t dir_type)
2965 {
2966 	switch (dir_type) {
2967 	case BNX_DIR_TYPE_AVS:
2968 	case BNX_DIR_TYPE_EXP_ROM_MBA:
2969 	case BNX_DIR_TYPE_PCIE:
2970 	case BNX_DIR_TYPE_TSCF_UCODE:
2971 	case BNX_DIR_TYPE_EXT_PHY:
2972 	case BNX_DIR_TYPE_CCM:
2973 	case BNX_DIR_TYPE_ISCSI_BOOT:
2974 	case BNX_DIR_TYPE_ISCSI_BOOT_IPV6:
2975 	case BNX_DIR_TYPE_ISCSI_BOOT_IPV4N6:
2976 		/* FALLTHROUGH */
2977 		return true;
2978 	}
2979 
2980 	return false;
2981 }
2982 
2983 static bool bnxt_dir_type_is_executable(uint16_t dir_type)
2984 {
2985 	return bnxt_dir_type_is_ape_bin_format(dir_type) ||
2986 		bnxt_dir_type_is_other_exec_format(dir_type);
2987 }
2988 
2989 static int
2990 bnxt_set_eeprom_op(struct rte_eth_dev *dev,
2991 		struct rte_dev_eeprom_info *in_eeprom)
2992 {
2993 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2994 	uint8_t index, dir_op;
2995 	uint16_t type, ext, ordinal, attr;
2996 
2997 	PMD_DRV_LOG(INFO, "%04x:%02x:%02x:%02x in_eeprom->offset = %d "
2998 		"len = %d\n", bp->pdev->addr.domain,
2999 		bp->pdev->addr.bus, bp->pdev->addr.devid,
3000 		bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length);
3001 
3002 	if (!BNXT_PF(bp)) {
3003 		PMD_DRV_LOG(ERR, "NVM write not supported from a VF\n");
3004 		return -EINVAL;
3005 	}
3006 
3007 	type = in_eeprom->magic >> 16;
3008 
3009 	if (type == 0xffff) { /* special value for directory operations */
3010 		index = in_eeprom->magic & 0xff;
3011 		dir_op = in_eeprom->magic >> 8;
3012 		if (index == 0)
3013 			return -EINVAL;
3014 		switch (dir_op) {
3015 		case 0x0e: /* erase */
3016 			if (in_eeprom->offset != ~in_eeprom->magic)
3017 				return -EINVAL;
3018 			return bnxt_hwrm_erase_nvram_directory(bp, index - 1);
3019 		default:
3020 			return -EINVAL;
3021 		}
3022 	}
3023 
3024 	/* Create or re-write an NVM item: */
3025 	if (bnxt_dir_type_is_executable(type) == true)
3026 		return -EOPNOTSUPP;
3027 	ext = in_eeprom->magic & 0xffff;
3028 	ordinal = in_eeprom->offset >> 16;
3029 	attr = in_eeprom->offset & 0xffff;
3030 
3031 	return bnxt_hwrm_flash_nvram(bp, type, ordinal, ext, attr,
3032 				     in_eeprom->data, in_eeprom->length);
3033 	return 0;
3034 }
3035 
3036 /*
3037  * Initialization
3038  */
3039 
3040 static const struct eth_dev_ops bnxt_dev_ops = {
3041 	.dev_infos_get = bnxt_dev_info_get_op,
3042 	.dev_close = bnxt_dev_close_op,
3043 	.dev_configure = bnxt_dev_configure_op,
3044 	.dev_start = bnxt_dev_start_op,
3045 	.dev_stop = bnxt_dev_stop_op,
3046 	.dev_set_link_up = bnxt_dev_set_link_up_op,
3047 	.dev_set_link_down = bnxt_dev_set_link_down_op,
3048 	.stats_get = bnxt_stats_get_op,
3049 	.stats_reset = bnxt_stats_reset_op,
3050 	.rx_queue_setup = bnxt_rx_queue_setup_op,
3051 	.rx_queue_release = bnxt_rx_queue_release_op,
3052 	.tx_queue_setup = bnxt_tx_queue_setup_op,
3053 	.tx_queue_release = bnxt_tx_queue_release_op,
3054 	.rx_queue_intr_enable = bnxt_rx_queue_intr_enable_op,
3055 	.rx_queue_intr_disable = bnxt_rx_queue_intr_disable_op,
3056 	.reta_update = bnxt_reta_update_op,
3057 	.reta_query = bnxt_reta_query_op,
3058 	.rss_hash_update = bnxt_rss_hash_update_op,
3059 	.rss_hash_conf_get = bnxt_rss_hash_conf_get_op,
3060 	.link_update = bnxt_link_update_op,
3061 	.promiscuous_enable = bnxt_promiscuous_enable_op,
3062 	.promiscuous_disable = bnxt_promiscuous_disable_op,
3063 	.allmulticast_enable = bnxt_allmulticast_enable_op,
3064 	.allmulticast_disable = bnxt_allmulticast_disable_op,
3065 	.mac_addr_add = bnxt_mac_addr_add_op,
3066 	.mac_addr_remove = bnxt_mac_addr_remove_op,
3067 	.flow_ctrl_get = bnxt_flow_ctrl_get_op,
3068 	.flow_ctrl_set = bnxt_flow_ctrl_set_op,
3069 	.udp_tunnel_port_add  = bnxt_udp_tunnel_port_add_op,
3070 	.udp_tunnel_port_del  = bnxt_udp_tunnel_port_del_op,
3071 	.vlan_filter_set = bnxt_vlan_filter_set_op,
3072 	.vlan_offload_set = bnxt_vlan_offload_set_op,
3073 	.vlan_pvid_set = bnxt_vlan_pvid_set_op,
3074 	.mtu_set = bnxt_mtu_set_op,
3075 	.mac_addr_set = bnxt_set_default_mac_addr_op,
3076 	.xstats_get = bnxt_dev_xstats_get_op,
3077 	.xstats_get_names = bnxt_dev_xstats_get_names_op,
3078 	.xstats_reset = bnxt_dev_xstats_reset_op,
3079 	.fw_version_get = bnxt_fw_version_get,
3080 	.set_mc_addr_list = bnxt_dev_set_mc_addr_list_op,
3081 	.rxq_info_get = bnxt_rxq_info_get_op,
3082 	.txq_info_get = bnxt_txq_info_get_op,
3083 	.dev_led_on = bnxt_dev_led_on_op,
3084 	.dev_led_off = bnxt_dev_led_off_op,
3085 	.xstats_get_by_id = bnxt_dev_xstats_get_by_id_op,
3086 	.xstats_get_names_by_id = bnxt_dev_xstats_get_names_by_id_op,
3087 	.rx_queue_count = bnxt_rx_queue_count_op,
3088 	.rx_descriptor_status = bnxt_rx_descriptor_status_op,
3089 	.tx_descriptor_status = bnxt_tx_descriptor_status_op,
3090 	.rx_queue_start = bnxt_rx_queue_start,
3091 	.rx_queue_stop = bnxt_rx_queue_stop,
3092 	.tx_queue_start = bnxt_tx_queue_start,
3093 	.tx_queue_stop = bnxt_tx_queue_stop,
3094 	.filter_ctrl = bnxt_filter_ctrl_op,
3095 	.dev_supported_ptypes_get = bnxt_dev_supported_ptypes_get_op,
3096 	.get_eeprom_length    = bnxt_get_eeprom_length_op,
3097 	.get_eeprom           = bnxt_get_eeprom_op,
3098 	.set_eeprom           = bnxt_set_eeprom_op,
3099 	.timesync_enable      = bnxt_timesync_enable,
3100 	.timesync_disable     = bnxt_timesync_disable,
3101 	.timesync_read_time   = bnxt_timesync_read_time,
3102 	.timesync_write_time   = bnxt_timesync_write_time,
3103 	.timesync_adjust_time = bnxt_timesync_adjust_time,
3104 	.timesync_read_rx_timestamp = bnxt_timesync_read_rx_timestamp,
3105 	.timesync_read_tx_timestamp = bnxt_timesync_read_tx_timestamp,
3106 };
3107 
3108 static bool bnxt_vf_pciid(uint16_t id)
3109 {
3110 	if (id == BROADCOM_DEV_ID_57304_VF ||
3111 	    id == BROADCOM_DEV_ID_57406_VF ||
3112 	    id == BROADCOM_DEV_ID_5731X_VF ||
3113 	    id == BROADCOM_DEV_ID_5741X_VF ||
3114 	    id == BROADCOM_DEV_ID_57414_VF ||
3115 	    id == BROADCOM_DEV_ID_STRATUS_NIC_VF1 ||
3116 	    id == BROADCOM_DEV_ID_STRATUS_NIC_VF2 ||
3117 	    id == BROADCOM_DEV_ID_58802_VF)
3118 		return true;
3119 	return false;
3120 }
3121 
3122 bool bnxt_stratus_device(struct bnxt *bp)
3123 {
3124 	uint16_t id = bp->pdev->id.device_id;
3125 
3126 	if (id == BROADCOM_DEV_ID_STRATUS_NIC ||
3127 	    id == BROADCOM_DEV_ID_STRATUS_NIC_VF1 ||
3128 	    id == BROADCOM_DEV_ID_STRATUS_NIC_VF2)
3129 		return true;
3130 	return false;
3131 }
3132 
3133 static int bnxt_init_board(struct rte_eth_dev *eth_dev)
3134 {
3135 	struct bnxt *bp = eth_dev->data->dev_private;
3136 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3137 	int rc;
3138 
3139 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
3140 	if (!pci_dev->mem_resource[0].addr) {
3141 		PMD_DRV_LOG(ERR,
3142 			"Cannot find PCI device base address, aborting\n");
3143 		rc = -ENODEV;
3144 		goto init_err_disable;
3145 	}
3146 
3147 	bp->eth_dev = eth_dev;
3148 	bp->pdev = pci_dev;
3149 
3150 	bp->bar0 = (void *)pci_dev->mem_resource[0].addr;
3151 	if (!bp->bar0) {
3152 		PMD_DRV_LOG(ERR, "Cannot map device registers, aborting\n");
3153 		rc = -ENOMEM;
3154 		goto init_err_release;
3155 	}
3156 
3157 	if (!pci_dev->mem_resource[2].addr) {
3158 		PMD_DRV_LOG(ERR,
3159 			    "Cannot find PCI device BAR 2 address, aborting\n");
3160 		rc = -ENODEV;
3161 		goto init_err_release;
3162 	} else {
3163 		bp->doorbell_base = (void *)pci_dev->mem_resource[2].addr;
3164 	}
3165 
3166 	return 0;
3167 
3168 init_err_release:
3169 	if (bp->bar0)
3170 		bp->bar0 = NULL;
3171 	if (bp->doorbell_base)
3172 		bp->doorbell_base = NULL;
3173 
3174 init_err_disable:
3175 
3176 	return rc;
3177 }
3178 
3179 
3180 #define ALLOW_FUNC(x)	\
3181 	{ \
3182 		typeof(x) arg = (x); \
3183 		bp->pf.vf_req_fwd[((arg) >> 5)] &= \
3184 		~rte_cpu_to_le_32(1 << ((arg) & 0x1f)); \
3185 	}
3186 static int
3187 bnxt_dev_init(struct rte_eth_dev *eth_dev)
3188 {
3189 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3190 	char mz_name[RTE_MEMZONE_NAMESIZE];
3191 	const struct rte_memzone *mz = NULL;
3192 	static int version_printed;
3193 	uint32_t total_alloc_len;
3194 	rte_iova_t mz_phys_addr;
3195 	struct bnxt *bp;
3196 	int rc;
3197 
3198 	if (version_printed++ == 0)
3199 		PMD_DRV_LOG(INFO, "%s\n", bnxt_version);
3200 
3201 	rte_eth_copy_pci_info(eth_dev, pci_dev);
3202 
3203 	bp = eth_dev->data->dev_private;
3204 
3205 	bp->dev_stopped = 1;
3206 
3207 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3208 		goto skip_init;
3209 
3210 	if (bnxt_vf_pciid(pci_dev->id.device_id))
3211 		bp->flags |= BNXT_FLAG_VF;
3212 
3213 	rc = bnxt_init_board(eth_dev);
3214 	if (rc) {
3215 		PMD_DRV_LOG(ERR,
3216 			"Board initialization failed rc: %x\n", rc);
3217 		goto error;
3218 	}
3219 skip_init:
3220 	eth_dev->dev_ops = &bnxt_dev_ops;
3221 	eth_dev->rx_pkt_burst = &bnxt_recv_pkts;
3222 	eth_dev->tx_pkt_burst = &bnxt_xmit_pkts;
3223 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3224 		return 0;
3225 
3226 	if (pci_dev->id.device_id != BROADCOM_DEV_ID_NS2) {
3227 		snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
3228 			 "bnxt_%04x:%02x:%02x:%02x-%s", pci_dev->addr.domain,
3229 			 pci_dev->addr.bus, pci_dev->addr.devid,
3230 			 pci_dev->addr.function, "rx_port_stats");
3231 		mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
3232 		mz = rte_memzone_lookup(mz_name);
3233 		total_alloc_len = RTE_CACHE_LINE_ROUNDUP(
3234 					sizeof(struct rx_port_stats) +
3235 					sizeof(struct rx_port_stats_ext) +
3236 					512);
3237 		if (!mz) {
3238 			mz = rte_memzone_reserve(mz_name, total_alloc_len,
3239 					SOCKET_ID_ANY,
3240 					RTE_MEMZONE_2MB |
3241 					RTE_MEMZONE_SIZE_HINT_ONLY |
3242 					RTE_MEMZONE_IOVA_CONTIG);
3243 			if (mz == NULL)
3244 				return -ENOMEM;
3245 		}
3246 		memset(mz->addr, 0, mz->len);
3247 		mz_phys_addr = mz->iova;
3248 		if ((unsigned long)mz->addr == mz_phys_addr) {
3249 			PMD_DRV_LOG(INFO,
3250 				"Memzone physical address same as virtual using rte_mem_virt2iova()\n");
3251 			mz_phys_addr = rte_mem_virt2iova(mz->addr);
3252 			if (mz_phys_addr == 0) {
3253 				PMD_DRV_LOG(ERR,
3254 				"unable to map address to physical memory\n");
3255 				return -ENOMEM;
3256 			}
3257 		}
3258 
3259 		bp->rx_mem_zone = (const void *)mz;
3260 		bp->hw_rx_port_stats = mz->addr;
3261 		bp->hw_rx_port_stats_map = mz_phys_addr;
3262 
3263 		snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
3264 			 "bnxt_%04x:%02x:%02x:%02x-%s", pci_dev->addr.domain,
3265 			 pci_dev->addr.bus, pci_dev->addr.devid,
3266 			 pci_dev->addr.function, "tx_port_stats");
3267 		mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
3268 		mz = rte_memzone_lookup(mz_name);
3269 		total_alloc_len = RTE_CACHE_LINE_ROUNDUP(
3270 					sizeof(struct tx_port_stats) +
3271 					sizeof(struct tx_port_stats_ext) +
3272 					512);
3273 		if (!mz) {
3274 			mz = rte_memzone_reserve(mz_name,
3275 					total_alloc_len,
3276 					SOCKET_ID_ANY,
3277 					RTE_MEMZONE_2MB |
3278 					RTE_MEMZONE_SIZE_HINT_ONLY |
3279 					RTE_MEMZONE_IOVA_CONTIG);
3280 			if (mz == NULL)
3281 				return -ENOMEM;
3282 		}
3283 		memset(mz->addr, 0, mz->len);
3284 		mz_phys_addr = mz->iova;
3285 		if ((unsigned long)mz->addr == mz_phys_addr) {
3286 			PMD_DRV_LOG(WARNING,
3287 				"Memzone physical address same as virtual.\n");
3288 			PMD_DRV_LOG(WARNING,
3289 				"Using rte_mem_virt2iova()\n");
3290 			mz_phys_addr = rte_mem_virt2iova(mz->addr);
3291 			if (mz_phys_addr == 0) {
3292 				PMD_DRV_LOG(ERR,
3293 				"unable to map address to physical memory\n");
3294 				return -ENOMEM;
3295 			}
3296 		}
3297 
3298 		bp->tx_mem_zone = (const void *)mz;
3299 		bp->hw_tx_port_stats = mz->addr;
3300 		bp->hw_tx_port_stats_map = mz_phys_addr;
3301 
3302 		bp->flags |= BNXT_FLAG_PORT_STATS;
3303 
3304 		/* Display extended statistics if FW supports it */
3305 		if (bp->hwrm_spec_code < HWRM_SPEC_CODE_1_8_4 ||
3306 		    bp->hwrm_spec_code == HWRM_SPEC_CODE_1_9_0)
3307 			goto skip_ext_stats;
3308 
3309 		bp->hw_rx_port_stats_ext = (void *)
3310 			(bp->hw_rx_port_stats + sizeof(struct rx_port_stats));
3311 		bp->hw_rx_port_stats_ext_map = bp->hw_rx_port_stats_map +
3312 			sizeof(struct rx_port_stats);
3313 		bp->flags |= BNXT_FLAG_EXT_RX_PORT_STATS;
3314 
3315 
3316 		if (bp->hwrm_spec_code < HWRM_SPEC_CODE_1_9_2) {
3317 			bp->hw_tx_port_stats_ext = (void *)
3318 			(bp->hw_tx_port_stats + sizeof(struct tx_port_stats));
3319 			bp->hw_tx_port_stats_ext_map =
3320 				bp->hw_tx_port_stats_map +
3321 				sizeof(struct tx_port_stats);
3322 			bp->flags |= BNXT_FLAG_EXT_TX_PORT_STATS;
3323 		}
3324 	}
3325 
3326 skip_ext_stats:
3327 	rc = bnxt_alloc_hwrm_resources(bp);
3328 	if (rc) {
3329 		PMD_DRV_LOG(ERR,
3330 			"hwrm resource allocation failure rc: %x\n", rc);
3331 		goto error_free;
3332 	}
3333 	rc = bnxt_hwrm_ver_get(bp);
3334 	if (rc)
3335 		goto error_free;
3336 	rc = bnxt_hwrm_queue_qportcfg(bp);
3337 	if (rc) {
3338 		PMD_DRV_LOG(ERR, "hwrm queue qportcfg failed\n");
3339 		goto error_free;
3340 	}
3341 
3342 	rc = bnxt_hwrm_func_qcfg(bp);
3343 	if (rc) {
3344 		PMD_DRV_LOG(ERR, "hwrm func qcfg failed\n");
3345 		goto error_free;
3346 	}
3347 
3348 	/* Get the MAX capabilities for this function */
3349 	rc = bnxt_hwrm_func_qcaps(bp);
3350 	if (rc) {
3351 		PMD_DRV_LOG(ERR, "hwrm query capability failure rc: %x\n", rc);
3352 		goto error_free;
3353 	}
3354 	if (bp->max_tx_rings == 0) {
3355 		PMD_DRV_LOG(ERR, "No TX rings available!\n");
3356 		rc = -EBUSY;
3357 		goto error_free;
3358 	}
3359 	eth_dev->data->mac_addrs = rte_zmalloc("bnxt_mac_addr_tbl",
3360 					RTE_ETHER_ADDR_LEN * bp->max_l2_ctx, 0);
3361 	if (eth_dev->data->mac_addrs == NULL) {
3362 		PMD_DRV_LOG(ERR,
3363 			"Failed to alloc %u bytes needed to store MAC addr tbl",
3364 			RTE_ETHER_ADDR_LEN * bp->max_l2_ctx);
3365 		rc = -ENOMEM;
3366 		goto error_free;
3367 	}
3368 
3369 	if (bnxt_check_zero_bytes(bp->dflt_mac_addr, RTE_ETHER_ADDR_LEN)) {
3370 		PMD_DRV_LOG(ERR,
3371 			    "Invalid MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n",
3372 			    bp->dflt_mac_addr[0], bp->dflt_mac_addr[1],
3373 			    bp->dflt_mac_addr[2], bp->dflt_mac_addr[3],
3374 			    bp->dflt_mac_addr[4], bp->dflt_mac_addr[5]);
3375 		rc = -EINVAL;
3376 		goto error_free;
3377 	}
3378 	/* Copy the permanent MAC from the qcap response address now. */
3379 	memcpy(bp->mac_addr, bp->dflt_mac_addr, sizeof(bp->mac_addr));
3380 	memcpy(&eth_dev->data->mac_addrs[0], bp->mac_addr, RTE_ETHER_ADDR_LEN);
3381 
3382 	if (bp->max_ring_grps < bp->rx_cp_nr_rings) {
3383 		/* 1 ring is for default completion ring */
3384 		PMD_DRV_LOG(ERR, "Insufficient resource: Ring Group\n");
3385 		rc = -ENOSPC;
3386 		goto error_free;
3387 	}
3388 
3389 	bp->grp_info = rte_zmalloc("bnxt_grp_info",
3390 				sizeof(*bp->grp_info) * bp->max_ring_grps, 0);
3391 	if (!bp->grp_info) {
3392 		PMD_DRV_LOG(ERR,
3393 			"Failed to alloc %zu bytes to store group info table\n",
3394 			sizeof(*bp->grp_info) * bp->max_ring_grps);
3395 		rc = -ENOMEM;
3396 		goto error_free;
3397 	}
3398 
3399 	/* Forward all requests if firmware is new enough */
3400 	if (((bp->fw_ver >= ((20 << 24) | (6 << 16) | (100 << 8))) &&
3401 	    (bp->fw_ver < ((20 << 24) | (7 << 16)))) ||
3402 	    ((bp->fw_ver >= ((20 << 24) | (8 << 16))))) {
3403 		memset(bp->pf.vf_req_fwd, 0xff, sizeof(bp->pf.vf_req_fwd));
3404 	} else {
3405 		PMD_DRV_LOG(WARNING,
3406 			"Firmware too old for VF mailbox functionality\n");
3407 		memset(bp->pf.vf_req_fwd, 0, sizeof(bp->pf.vf_req_fwd));
3408 	}
3409 
3410 	/*
3411 	 * The following are used for driver cleanup.  If we disallow these,
3412 	 * VF drivers can't clean up cleanly.
3413 	 */
3414 	ALLOW_FUNC(HWRM_FUNC_DRV_UNRGTR);
3415 	ALLOW_FUNC(HWRM_VNIC_FREE);
3416 	ALLOW_FUNC(HWRM_RING_FREE);
3417 	ALLOW_FUNC(HWRM_RING_GRP_FREE);
3418 	ALLOW_FUNC(HWRM_VNIC_RSS_COS_LB_CTX_FREE);
3419 	ALLOW_FUNC(HWRM_CFA_L2_FILTER_FREE);
3420 	ALLOW_FUNC(HWRM_STAT_CTX_FREE);
3421 	ALLOW_FUNC(HWRM_PORT_PHY_QCFG);
3422 	ALLOW_FUNC(HWRM_VNIC_TPA_CFG);
3423 	rc = bnxt_hwrm_func_driver_register(bp);
3424 	if (rc) {
3425 		PMD_DRV_LOG(ERR,
3426 			"Failed to register driver");
3427 		rc = -EBUSY;
3428 		goto error_free;
3429 	}
3430 
3431 	PMD_DRV_LOG(INFO,
3432 		DRV_MODULE_NAME " found at mem %" PRIx64 ", node addr %pM\n",
3433 		pci_dev->mem_resource[0].phys_addr,
3434 		pci_dev->mem_resource[0].addr);
3435 
3436 	rc = bnxt_hwrm_func_reset(bp);
3437 	if (rc) {
3438 		PMD_DRV_LOG(ERR, "hwrm chip reset failure rc: %x\n", rc);
3439 		rc = -EIO;
3440 		goto error_free;
3441 	}
3442 
3443 	if (BNXT_PF(bp)) {
3444 		//if (bp->pf.active_vfs) {
3445 			// TODO: Deallocate VF resources?
3446 		//}
3447 		if (bp->pdev->max_vfs) {
3448 			rc = bnxt_hwrm_allocate_vfs(bp, bp->pdev->max_vfs);
3449 			if (rc) {
3450 				PMD_DRV_LOG(ERR, "Failed to allocate VFs\n");
3451 				goto error_free;
3452 			}
3453 		} else {
3454 			rc = bnxt_hwrm_allocate_pf_only(bp);
3455 			if (rc) {
3456 				PMD_DRV_LOG(ERR,
3457 					"Failed to allocate PF resources\n");
3458 				goto error_free;
3459 			}
3460 		}
3461 	}
3462 
3463 	bnxt_hwrm_port_led_qcaps(bp);
3464 
3465 	rc = bnxt_setup_int(bp);
3466 	if (rc)
3467 		goto error_free;
3468 
3469 	rc = bnxt_alloc_mem(bp);
3470 	if (rc)
3471 		goto error_free_int;
3472 
3473 	rc = bnxt_request_int(bp);
3474 	if (rc)
3475 		goto error_free_int;
3476 
3477 	bnxt_enable_int(bp);
3478 	bnxt_init_nic(bp);
3479 
3480 	return 0;
3481 
3482 error_free_int:
3483 	bnxt_disable_int(bp);
3484 	bnxt_hwrm_func_buf_unrgtr(bp);
3485 	bnxt_free_int(bp);
3486 	bnxt_free_mem(bp);
3487 error_free:
3488 	bnxt_dev_uninit(eth_dev);
3489 error:
3490 	return rc;
3491 }
3492 
3493 static int
3494 bnxt_dev_uninit(struct rte_eth_dev *eth_dev)
3495 {
3496 	struct bnxt *bp = eth_dev->data->dev_private;
3497 	int rc;
3498 
3499 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3500 		return -EPERM;
3501 
3502 	PMD_DRV_LOG(DEBUG, "Calling Device uninit\n");
3503 	bnxt_disable_int(bp);
3504 	bnxt_free_int(bp);
3505 	bnxt_free_mem(bp);
3506 	if (bp->grp_info != NULL) {
3507 		rte_free(bp->grp_info);
3508 		bp->grp_info = NULL;
3509 	}
3510 	rc = bnxt_hwrm_func_driver_unregister(bp, 0);
3511 	bnxt_free_hwrm_resources(bp);
3512 
3513 	if (bp->tx_mem_zone) {
3514 		rte_memzone_free((const struct rte_memzone *)bp->tx_mem_zone);
3515 		bp->tx_mem_zone = NULL;
3516 	}
3517 
3518 	if (bp->rx_mem_zone) {
3519 		rte_memzone_free((const struct rte_memzone *)bp->rx_mem_zone);
3520 		bp->rx_mem_zone = NULL;
3521 	}
3522 
3523 	if (bp->dev_stopped == 0)
3524 		bnxt_dev_close_op(eth_dev);
3525 	if (bp->pf.vf_info)
3526 		rte_free(bp->pf.vf_info);
3527 	eth_dev->dev_ops = NULL;
3528 	eth_dev->rx_pkt_burst = NULL;
3529 	eth_dev->tx_pkt_burst = NULL;
3530 
3531 	return rc;
3532 }
3533 
3534 static int bnxt_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3535 	struct rte_pci_device *pci_dev)
3536 {
3537 	return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct bnxt),
3538 		bnxt_dev_init);
3539 }
3540 
3541 static int bnxt_pci_remove(struct rte_pci_device *pci_dev)
3542 {
3543 	if (rte_eal_process_type() == RTE_PROC_PRIMARY)
3544 		return rte_eth_dev_pci_generic_remove(pci_dev,
3545 				bnxt_dev_uninit);
3546 	else
3547 		return rte_eth_dev_pci_generic_remove(pci_dev, NULL);
3548 }
3549 
3550 static struct rte_pci_driver bnxt_rte_pmd = {
3551 	.id_table = bnxt_pci_id_map,
3552 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING |
3553 		RTE_PCI_DRV_INTR_LSC | RTE_PCI_DRV_IOVA_AS_VA,
3554 	.probe = bnxt_pci_probe,
3555 	.remove = bnxt_pci_remove,
3556 };
3557 
3558 static bool
3559 is_device_supported(struct rte_eth_dev *dev, struct rte_pci_driver *drv)
3560 {
3561 	if (strcmp(dev->device->driver->name, drv->driver.name))
3562 		return false;
3563 
3564 	return true;
3565 }
3566 
3567 bool is_bnxt_supported(struct rte_eth_dev *dev)
3568 {
3569 	return is_device_supported(dev, &bnxt_rte_pmd);
3570 }
3571 
3572 RTE_INIT(bnxt_init_log)
3573 {
3574 	bnxt_logtype_driver = rte_log_register("pmd.net.bnxt.driver");
3575 	if (bnxt_logtype_driver >= 0)
3576 		rte_log_set_level(bnxt_logtype_driver, RTE_LOG_NOTICE);
3577 }
3578 
3579 RTE_PMD_REGISTER_PCI(net_bnxt, bnxt_rte_pmd);
3580 RTE_PMD_REGISTER_PCI_TABLE(net_bnxt, bnxt_pci_id_map);
3581 RTE_PMD_REGISTER_KMOD_DEP(net_bnxt, "* igb_uio | uio_pci_generic | vfio-pci");
3582