xref: /dpdk/drivers/net/bnxt/bnxt_ethdev.c (revision 1cde1b9a9b4dbf31cb5e5ccdfc5da3cb079f43a2)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Broadcom
3  * All rights reserved.
4  */
5 
6 #include <inttypes.h>
7 #include <stdbool.h>
8 
9 #include <rte_dev.h>
10 #include <rte_ethdev_driver.h>
11 #include <rte_ethdev_pci.h>
12 #include <rte_malloc.h>
13 #include <rte_cycles.h>
14 
15 #include "bnxt.h"
16 #include "bnxt_cpr.h"
17 #include "bnxt_filter.h"
18 #include "bnxt_hwrm.h"
19 #include "bnxt_irq.h"
20 #include "bnxt_ring.h"
21 #include "bnxt_rxq.h"
22 #include "bnxt_rxr.h"
23 #include "bnxt_stats.h"
24 #include "bnxt_txq.h"
25 #include "bnxt_txr.h"
26 #include "bnxt_vnic.h"
27 #include "hsi_struct_def_dpdk.h"
28 #include "bnxt_nvm_defs.h"
29 #include "bnxt_util.h"
30 
31 #define DRV_MODULE_NAME		"bnxt"
32 static const char bnxt_version[] =
33 	"Broadcom NetXtreme driver " DRV_MODULE_NAME;
34 int bnxt_logtype_driver;
35 
36 #define PCI_VENDOR_ID_BROADCOM 0x14E4
37 
38 #define BROADCOM_DEV_ID_STRATUS_NIC_VF1 0x1606
39 #define BROADCOM_DEV_ID_STRATUS_NIC_VF2 0x1609
40 #define BROADCOM_DEV_ID_STRATUS_NIC 0x1614
41 #define BROADCOM_DEV_ID_57414_VF 0x16c1
42 #define BROADCOM_DEV_ID_57301 0x16c8
43 #define BROADCOM_DEV_ID_57302 0x16c9
44 #define BROADCOM_DEV_ID_57304_PF 0x16ca
45 #define BROADCOM_DEV_ID_57304_VF 0x16cb
46 #define BROADCOM_DEV_ID_57417_MF 0x16cc
47 #define BROADCOM_DEV_ID_NS2 0x16cd
48 #define BROADCOM_DEV_ID_57311 0x16ce
49 #define BROADCOM_DEV_ID_57312 0x16cf
50 #define BROADCOM_DEV_ID_57402 0x16d0
51 #define BROADCOM_DEV_ID_57404 0x16d1
52 #define BROADCOM_DEV_ID_57406_PF 0x16d2
53 #define BROADCOM_DEV_ID_57406_VF 0x16d3
54 #define BROADCOM_DEV_ID_57402_MF 0x16d4
55 #define BROADCOM_DEV_ID_57407_RJ45 0x16d5
56 #define BROADCOM_DEV_ID_57412 0x16d6
57 #define BROADCOM_DEV_ID_57414 0x16d7
58 #define BROADCOM_DEV_ID_57416_RJ45 0x16d8
59 #define BROADCOM_DEV_ID_57417_RJ45 0x16d9
60 #define BROADCOM_DEV_ID_5741X_VF 0x16dc
61 #define BROADCOM_DEV_ID_57412_MF 0x16de
62 #define BROADCOM_DEV_ID_57314 0x16df
63 #define BROADCOM_DEV_ID_57317_RJ45 0x16e0
64 #define BROADCOM_DEV_ID_5731X_VF 0x16e1
65 #define BROADCOM_DEV_ID_57417_SFP 0x16e2
66 #define BROADCOM_DEV_ID_57416_SFP 0x16e3
67 #define BROADCOM_DEV_ID_57317_SFP 0x16e4
68 #define BROADCOM_DEV_ID_57404_MF 0x16e7
69 #define BROADCOM_DEV_ID_57406_MF 0x16e8
70 #define BROADCOM_DEV_ID_57407_SFP 0x16e9
71 #define BROADCOM_DEV_ID_57407_MF 0x16ea
72 #define BROADCOM_DEV_ID_57414_MF 0x16ec
73 #define BROADCOM_DEV_ID_57416_MF 0x16ee
74 #define BROADCOM_DEV_ID_57508 0x1750
75 #define BROADCOM_DEV_ID_57504 0x1751
76 #define BROADCOM_DEV_ID_57502 0x1752
77 #define BROADCOM_DEV_ID_57500_VF1 0x1806
78 #define BROADCOM_DEV_ID_57500_VF2 0x1807
79 #define BROADCOM_DEV_ID_58802 0xd802
80 #define BROADCOM_DEV_ID_58804 0xd804
81 #define BROADCOM_DEV_ID_58808 0x16f0
82 #define BROADCOM_DEV_ID_58802_VF 0xd800
83 
84 static const struct rte_pci_id bnxt_pci_id_map[] = {
85 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
86 			 BROADCOM_DEV_ID_STRATUS_NIC_VF1) },
87 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
88 			 BROADCOM_DEV_ID_STRATUS_NIC_VF2) },
89 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_STRATUS_NIC) },
90 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_VF) },
91 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57301) },
92 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57302) },
93 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_PF) },
94 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_VF) },
95 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_NS2) },
96 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402) },
97 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404) },
98 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_PF) },
99 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_VF) },
100 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402_MF) },
101 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_RJ45) },
102 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404_MF) },
103 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_MF) },
104 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_SFP) },
105 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_MF) },
106 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5741X_VF) },
107 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5731X_VF) },
108 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57314) },
109 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_MF) },
110 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57311) },
111 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57312) },
112 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412) },
113 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414) },
114 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_RJ45) },
115 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_RJ45) },
116 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412_MF) },
117 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_RJ45) },
118 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_SFP) },
119 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_SFP) },
120 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_SFP) },
121 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_MF) },
122 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_MF) },
123 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58802) },
124 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58804) },
125 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58808) },
126 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_58802_VF) },
127 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57508) },
128 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57504) },
129 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57502) },
130 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57500_VF1) },
131 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57500_VF2) },
132 	{ .vendor_id = 0, /* sentinel */ },
133 };
134 
135 #define BNXT_ETH_RSS_SUPPORT (	\
136 	ETH_RSS_IPV4 |		\
137 	ETH_RSS_NONFRAG_IPV4_TCP |	\
138 	ETH_RSS_NONFRAG_IPV4_UDP |	\
139 	ETH_RSS_IPV6 |		\
140 	ETH_RSS_NONFRAG_IPV6_TCP |	\
141 	ETH_RSS_NONFRAG_IPV6_UDP)
142 
143 #define BNXT_DEV_TX_OFFLOAD_SUPPORT (DEV_TX_OFFLOAD_VLAN_INSERT | \
144 				     DEV_TX_OFFLOAD_IPV4_CKSUM | \
145 				     DEV_TX_OFFLOAD_TCP_CKSUM | \
146 				     DEV_TX_OFFLOAD_UDP_CKSUM | \
147 				     DEV_TX_OFFLOAD_TCP_TSO | \
148 				     DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM | \
149 				     DEV_TX_OFFLOAD_VXLAN_TNL_TSO | \
150 				     DEV_TX_OFFLOAD_GRE_TNL_TSO | \
151 				     DEV_TX_OFFLOAD_IPIP_TNL_TSO | \
152 				     DEV_TX_OFFLOAD_GENEVE_TNL_TSO | \
153 				     DEV_TX_OFFLOAD_MULTI_SEGS)
154 
155 #define BNXT_DEV_RX_OFFLOAD_SUPPORT (DEV_RX_OFFLOAD_VLAN_FILTER | \
156 				     DEV_RX_OFFLOAD_VLAN_STRIP | \
157 				     DEV_RX_OFFLOAD_IPV4_CKSUM | \
158 				     DEV_RX_OFFLOAD_UDP_CKSUM | \
159 				     DEV_RX_OFFLOAD_TCP_CKSUM | \
160 				     DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM | \
161 				     DEV_RX_OFFLOAD_JUMBO_FRAME | \
162 				     DEV_RX_OFFLOAD_KEEP_CRC | \
163 				     DEV_RX_OFFLOAD_TCP_LRO)
164 
165 static int bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask);
166 static void bnxt_print_link_info(struct rte_eth_dev *eth_dev);
167 static int bnxt_mtu_set_op(struct rte_eth_dev *eth_dev, uint16_t new_mtu);
168 static int bnxt_dev_uninit(struct rte_eth_dev *eth_dev);
169 
170 /***********************/
171 
172 /*
173  * High level utility functions
174  */
175 
176 static uint16_t bnxt_rss_ctxts(const struct bnxt *bp)
177 {
178 	if (!BNXT_CHIP_THOR(bp))
179 		return 1;
180 
181 	return RTE_ALIGN_MUL_CEIL(bp->rx_nr_rings,
182 				  BNXT_RSS_ENTRIES_PER_CTX_THOR) /
183 				    BNXT_RSS_ENTRIES_PER_CTX_THOR;
184 }
185 
186 static uint16_t  bnxt_rss_hash_tbl_size(const struct bnxt *bp)
187 {
188 	if (!BNXT_CHIP_THOR(bp))
189 		return HW_HASH_INDEX_SIZE;
190 
191 	return bnxt_rss_ctxts(bp) * BNXT_RSS_ENTRIES_PER_CTX_THOR;
192 }
193 
194 static void bnxt_free_mem(struct bnxt *bp)
195 {
196 	bnxt_free_filter_mem(bp);
197 	bnxt_free_vnic_attributes(bp);
198 	bnxt_free_vnic_mem(bp);
199 
200 	bnxt_free_stats(bp);
201 	bnxt_free_tx_rings(bp);
202 	bnxt_free_rx_rings(bp);
203 	bnxt_free_async_cp_ring(bp);
204 }
205 
206 static int bnxt_alloc_mem(struct bnxt *bp)
207 {
208 	int rc;
209 
210 	rc = bnxt_alloc_async_ring_struct(bp);
211 	if (rc)
212 		goto alloc_mem_err;
213 
214 	rc = bnxt_alloc_vnic_mem(bp);
215 	if (rc)
216 		goto alloc_mem_err;
217 
218 	rc = bnxt_alloc_vnic_attributes(bp);
219 	if (rc)
220 		goto alloc_mem_err;
221 
222 	rc = bnxt_alloc_filter_mem(bp);
223 	if (rc)
224 		goto alloc_mem_err;
225 
226 	rc = bnxt_alloc_async_cp_ring(bp);
227 	if (rc)
228 		goto alloc_mem_err;
229 
230 	return 0;
231 
232 alloc_mem_err:
233 	bnxt_free_mem(bp);
234 	return rc;
235 }
236 
237 static int bnxt_init_chip(struct bnxt *bp)
238 {
239 	struct bnxt_rx_queue *rxq;
240 	struct rte_eth_link new;
241 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(bp->eth_dev);
242 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
243 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
244 	uint64_t rx_offloads = dev_conf->rxmode.offloads;
245 	uint32_t intr_vector = 0;
246 	uint32_t queue_id, base = BNXT_MISC_VEC_ID;
247 	uint32_t vec = BNXT_MISC_VEC_ID;
248 	unsigned int i, j;
249 	int rc;
250 
251 	if (bp->eth_dev->data->mtu > RTE_ETHER_MTU) {
252 		bp->eth_dev->data->dev_conf.rxmode.offloads |=
253 			DEV_RX_OFFLOAD_JUMBO_FRAME;
254 		bp->flags |= BNXT_FLAG_JUMBO;
255 	} else {
256 		bp->eth_dev->data->dev_conf.rxmode.offloads &=
257 			~DEV_RX_OFFLOAD_JUMBO_FRAME;
258 		bp->flags &= ~BNXT_FLAG_JUMBO;
259 	}
260 
261 	/* THOR does not support ring groups.
262 	 * But we will use the array to save RSS context IDs.
263 	 */
264 	if (BNXT_CHIP_THOR(bp))
265 		bp->max_ring_grps = BNXT_MAX_RSS_CTXTS_THOR;
266 
267 	rc = bnxt_alloc_all_hwrm_stat_ctxs(bp);
268 	if (rc) {
269 		PMD_DRV_LOG(ERR, "HWRM stat ctx alloc failure rc: %x\n", rc);
270 		goto err_out;
271 	}
272 
273 	rc = bnxt_alloc_hwrm_rings(bp);
274 	if (rc) {
275 		PMD_DRV_LOG(ERR, "HWRM ring alloc failure rc: %x\n", rc);
276 		goto err_out;
277 	}
278 
279 	rc = bnxt_alloc_all_hwrm_ring_grps(bp);
280 	if (rc) {
281 		PMD_DRV_LOG(ERR, "HWRM ring grp alloc failure: %x\n", rc);
282 		goto err_out;
283 	}
284 
285 	rc = bnxt_mq_rx_configure(bp);
286 	if (rc) {
287 		PMD_DRV_LOG(ERR, "MQ mode configure failure rc: %x\n", rc);
288 		goto err_out;
289 	}
290 
291 	/* VNIC configuration */
292 	for (i = 0; i < bp->nr_vnics; i++) {
293 		struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
294 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
295 		uint32_t size = sizeof(*vnic->fw_grp_ids) * bp->max_ring_grps;
296 
297 		vnic->fw_grp_ids = rte_zmalloc("vnic_fw_grp_ids", size, 0);
298 		if (!vnic->fw_grp_ids) {
299 			PMD_DRV_LOG(ERR,
300 				    "Failed to alloc %d bytes for group ids\n",
301 				    size);
302 			rc = -ENOMEM;
303 			goto err_out;
304 		}
305 		memset(vnic->fw_grp_ids, -1, size);
306 
307 		PMD_DRV_LOG(DEBUG, "vnic[%d] = %p vnic->fw_grp_ids = %p\n",
308 			    i, vnic, vnic->fw_grp_ids);
309 
310 		rc = bnxt_hwrm_vnic_alloc(bp, vnic);
311 		if (rc) {
312 			PMD_DRV_LOG(ERR, "HWRM vnic %d alloc failure rc: %x\n",
313 				i, rc);
314 			goto err_out;
315 		}
316 
317 		/* Alloc RSS context only if RSS mode is enabled */
318 		if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS) {
319 			int j, nr_ctxs = bnxt_rss_ctxts(bp);
320 
321 			rc = 0;
322 			for (j = 0; j < nr_ctxs; j++) {
323 				rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, j);
324 				if (rc)
325 					break;
326 			}
327 			if (rc) {
328 				PMD_DRV_LOG(ERR,
329 				  "HWRM vnic %d ctx %d alloc failure rc: %x\n",
330 				  i, j, rc);
331 				goto err_out;
332 			}
333 			vnic->num_lb_ctxts = nr_ctxs;
334 		}
335 
336 		/*
337 		 * Firmware sets pf pair in default vnic cfg. If the VLAN strip
338 		 * setting is not available at this time, it will not be
339 		 * configured correctly in the CFA.
340 		 */
341 		if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
342 			vnic->vlan_strip = true;
343 		else
344 			vnic->vlan_strip = false;
345 
346 		rc = bnxt_hwrm_vnic_cfg(bp, vnic);
347 		if (rc) {
348 			PMD_DRV_LOG(ERR, "HWRM vnic %d cfg failure rc: %x\n",
349 				i, rc);
350 			goto err_out;
351 		}
352 
353 		rc = bnxt_set_hwrm_vnic_filters(bp, vnic);
354 		if (rc) {
355 			PMD_DRV_LOG(ERR,
356 				"HWRM vnic %d filter failure rc: %x\n",
357 				i, rc);
358 			goto err_out;
359 		}
360 
361 		for (j = 0; j < bp->rx_nr_rings; j++) {
362 			rxq = bp->eth_dev->data->rx_queues[j];
363 
364 			PMD_DRV_LOG(DEBUG,
365 				    "rxq[%d]->vnic=%p vnic->fw_grp_ids=%p\n",
366 				    j, rxq->vnic, rxq->vnic->fw_grp_ids);
367 
368 			if (BNXT_HAS_RING_GRPS(bp) && rxq->rx_deferred_start)
369 				rxq->vnic->fw_grp_ids[j] = INVALID_HW_RING_ID;
370 		}
371 
372 		rc = bnxt_vnic_rss_configure(bp, vnic);
373 		if (rc) {
374 			PMD_DRV_LOG(ERR,
375 				    "HWRM vnic set RSS failure rc: %x\n", rc);
376 			goto err_out;
377 		}
378 
379 		bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
380 
381 		if (bp->eth_dev->data->dev_conf.rxmode.offloads &
382 		    DEV_RX_OFFLOAD_TCP_LRO)
383 			bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 1);
384 		else
385 			bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 0);
386 	}
387 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, &bp->vnic_info[0], 0, NULL);
388 	if (rc) {
389 		PMD_DRV_LOG(ERR,
390 			"HWRM cfa l2 rx mask failure rc: %x\n", rc);
391 		goto err_out;
392 	}
393 
394 	/* check and configure queue intr-vector mapping */
395 	if ((rte_intr_cap_multiple(intr_handle) ||
396 	     !RTE_ETH_DEV_SRIOV(bp->eth_dev).active) &&
397 	    bp->eth_dev->data->dev_conf.intr_conf.rxq != 0) {
398 		intr_vector = bp->eth_dev->data->nb_rx_queues;
399 		PMD_DRV_LOG(DEBUG, "intr_vector = %d\n", intr_vector);
400 		if (intr_vector > bp->rx_cp_nr_rings) {
401 			PMD_DRV_LOG(ERR, "At most %d intr queues supported",
402 					bp->rx_cp_nr_rings);
403 			return -ENOTSUP;
404 		}
405 		rc = rte_intr_efd_enable(intr_handle, intr_vector);
406 		if (rc)
407 			return rc;
408 	}
409 
410 	if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
411 		intr_handle->intr_vec =
412 			rte_zmalloc("intr_vec",
413 				    bp->eth_dev->data->nb_rx_queues *
414 				    sizeof(int), 0);
415 		if (intr_handle->intr_vec == NULL) {
416 			PMD_DRV_LOG(ERR, "Failed to allocate %d rx_queues"
417 				" intr_vec", bp->eth_dev->data->nb_rx_queues);
418 			rc = -ENOMEM;
419 			goto err_disable;
420 		}
421 		PMD_DRV_LOG(DEBUG, "intr_handle->intr_vec = %p "
422 			"intr_handle->nb_efd = %d intr_handle->max_intr = %d\n",
423 			 intr_handle->intr_vec, intr_handle->nb_efd,
424 			intr_handle->max_intr);
425 		for (queue_id = 0; queue_id < bp->eth_dev->data->nb_rx_queues;
426 		     queue_id++) {
427 			intr_handle->intr_vec[queue_id] =
428 							vec + BNXT_RX_VEC_START;
429 			if (vec < base + intr_handle->nb_efd - 1)
430 				vec++;
431 		}
432 	}
433 
434 	/* enable uio/vfio intr/eventfd mapping */
435 	rc = rte_intr_enable(intr_handle);
436 	if (rc)
437 		goto err_free;
438 
439 	rc = bnxt_get_hwrm_link_config(bp, &new);
440 	if (rc) {
441 		PMD_DRV_LOG(ERR, "HWRM Get link config failure rc: %x\n", rc);
442 		goto err_free;
443 	}
444 
445 	if (!bp->link_info.link_up) {
446 		rc = bnxt_set_hwrm_link_config(bp, true);
447 		if (rc) {
448 			PMD_DRV_LOG(ERR,
449 				"HWRM link config failure rc: %x\n", rc);
450 			goto err_free;
451 		}
452 	}
453 	bnxt_print_link_info(bp->eth_dev);
454 
455 	return 0;
456 
457 err_free:
458 	rte_free(intr_handle->intr_vec);
459 err_disable:
460 	rte_intr_efd_disable(intr_handle);
461 err_out:
462 	/* Some of the error status returned by FW may not be from errno.h */
463 	if (rc > 0)
464 		rc = -EIO;
465 
466 	return rc;
467 }
468 
469 static int bnxt_shutdown_nic(struct bnxt *bp)
470 {
471 	bnxt_free_all_hwrm_resources(bp);
472 	bnxt_free_all_filters(bp);
473 	bnxt_free_all_vnics(bp);
474 	return 0;
475 }
476 
477 static int bnxt_init_nic(struct bnxt *bp)
478 {
479 	int rc;
480 
481 	if (BNXT_HAS_RING_GRPS(bp)) {
482 		rc = bnxt_init_ring_grps(bp);
483 		if (rc)
484 			return rc;
485 	}
486 
487 	bnxt_init_vnics(bp);
488 	bnxt_init_filters(bp);
489 
490 	return 0;
491 }
492 
493 /*
494  * Device configuration and status function
495  */
496 
497 static int bnxt_dev_info_get_op(struct rte_eth_dev *eth_dev,
498 				struct rte_eth_dev_info *dev_info)
499 {
500 	struct bnxt *bp = eth_dev->data->dev_private;
501 	uint16_t max_vnics, i, j, vpool, vrxq;
502 	unsigned int max_rx_rings;
503 
504 	/* MAC Specifics */
505 	dev_info->max_mac_addrs = bp->max_l2_ctx;
506 	dev_info->max_hash_mac_addrs = 0;
507 
508 	/* PF/VF specifics */
509 	if (BNXT_PF(bp))
510 		dev_info->max_vfs = bp->pdev->max_vfs;
511 	max_rx_rings = RTE_MIN(bp->max_rx_rings, bp->max_stat_ctx);
512 	/* For the sake of symmetry, max_rx_queues = max_tx_queues */
513 	dev_info->max_rx_queues = max_rx_rings;
514 	dev_info->max_tx_queues = max_rx_rings;
515 	dev_info->reta_size = bnxt_rss_hash_tbl_size(bp);
516 	dev_info->hash_key_size = 40;
517 	max_vnics = bp->max_vnics;
518 
519 	/* Fast path specifics */
520 	dev_info->min_rx_bufsize = 1;
521 	dev_info->max_rx_pktlen = BNXT_MAX_MTU + RTE_ETHER_HDR_LEN +
522 		RTE_ETHER_CRC_LEN + VLAN_TAG_SIZE * 2;
523 
524 	dev_info->rx_offload_capa = BNXT_DEV_RX_OFFLOAD_SUPPORT;
525 	if (bp->flags & BNXT_FLAG_PTP_SUPPORTED)
526 		dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_TIMESTAMP;
527 	dev_info->tx_offload_capa = BNXT_DEV_TX_OFFLOAD_SUPPORT;
528 	dev_info->flow_type_rss_offloads = BNXT_ETH_RSS_SUPPORT;
529 
530 	/* *INDENT-OFF* */
531 	dev_info->default_rxconf = (struct rte_eth_rxconf) {
532 		.rx_thresh = {
533 			.pthresh = 8,
534 			.hthresh = 8,
535 			.wthresh = 0,
536 		},
537 		.rx_free_thresh = 32,
538 		/* If no descriptors available, pkts are dropped by default */
539 		.rx_drop_en = 1,
540 	};
541 
542 	dev_info->default_txconf = (struct rte_eth_txconf) {
543 		.tx_thresh = {
544 			.pthresh = 32,
545 			.hthresh = 0,
546 			.wthresh = 0,
547 		},
548 		.tx_free_thresh = 32,
549 		.tx_rs_thresh = 32,
550 	};
551 	eth_dev->data->dev_conf.intr_conf.lsc = 1;
552 
553 	eth_dev->data->dev_conf.intr_conf.rxq = 1;
554 	dev_info->rx_desc_lim.nb_min = BNXT_MIN_RING_DESC;
555 	dev_info->rx_desc_lim.nb_max = BNXT_MAX_RX_RING_DESC;
556 	dev_info->tx_desc_lim.nb_min = BNXT_MIN_RING_DESC;
557 	dev_info->tx_desc_lim.nb_max = BNXT_MAX_TX_RING_DESC;
558 
559 	/* *INDENT-ON* */
560 
561 	/*
562 	 * TODO: default_rxconf, default_txconf, rx_desc_lim, and tx_desc_lim
563 	 *       need further investigation.
564 	 */
565 
566 	/* VMDq resources */
567 	vpool = 64; /* ETH_64_POOLS */
568 	vrxq = 128; /* ETH_VMDQ_DCB_NUM_QUEUES */
569 	for (i = 0; i < 4; vpool >>= 1, i++) {
570 		if (max_vnics > vpool) {
571 			for (j = 0; j < 5; vrxq >>= 1, j++) {
572 				if (dev_info->max_rx_queues > vrxq) {
573 					if (vpool > vrxq)
574 						vpool = vrxq;
575 					goto found;
576 				}
577 			}
578 			/* Not enough resources to support VMDq */
579 			break;
580 		}
581 	}
582 	/* Not enough resources to support VMDq */
583 	vpool = 0;
584 	vrxq = 0;
585 found:
586 	dev_info->max_vmdq_pools = vpool;
587 	dev_info->vmdq_queue_num = vrxq;
588 
589 	dev_info->vmdq_pool_base = 0;
590 	dev_info->vmdq_queue_base = 0;
591 
592 	return 0;
593 }
594 
595 /* Configure the device based on the configuration provided */
596 static int bnxt_dev_configure_op(struct rte_eth_dev *eth_dev)
597 {
598 	struct bnxt *bp = eth_dev->data->dev_private;
599 	uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads;
600 	int rc;
601 
602 	bp->rx_queues = (void *)eth_dev->data->rx_queues;
603 	bp->tx_queues = (void *)eth_dev->data->tx_queues;
604 	bp->tx_nr_rings = eth_dev->data->nb_tx_queues;
605 	bp->rx_nr_rings = eth_dev->data->nb_rx_queues;
606 
607 	if (BNXT_VF(bp) && (bp->flags & BNXT_FLAG_NEW_RM)) {
608 		rc = bnxt_hwrm_check_vf_rings(bp);
609 		if (rc) {
610 			PMD_DRV_LOG(ERR, "HWRM insufficient resources\n");
611 			return -ENOSPC;
612 		}
613 
614 		rc = bnxt_hwrm_func_reserve_vf_resc(bp, false);
615 		if (rc) {
616 			PMD_DRV_LOG(ERR, "HWRM resource alloc fail:%x\n", rc);
617 			return -ENOSPC;
618 		}
619 	} else {
620 		/* legacy driver needs to get updated values */
621 		rc = bnxt_hwrm_func_qcaps(bp);
622 		if (rc) {
623 			PMD_DRV_LOG(ERR, "hwrm func qcaps fail:%d\n", rc);
624 			return rc;
625 		}
626 	}
627 
628 	/* Inherit new configurations */
629 	if (eth_dev->data->nb_rx_queues > bp->max_rx_rings ||
630 	    eth_dev->data->nb_tx_queues > bp->max_tx_rings ||
631 	    eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues
632 		+ BNXT_NUM_ASYNC_CPR(bp) > bp->max_cp_rings ||
633 	    eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues >
634 	    bp->max_stat_ctx)
635 		goto resource_error;
636 
637 	if (BNXT_HAS_RING_GRPS(bp) &&
638 	    (uint32_t)(eth_dev->data->nb_rx_queues) > bp->max_ring_grps)
639 		goto resource_error;
640 
641 	if (!(eth_dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS) &&
642 	    bp->max_vnics < eth_dev->data->nb_rx_queues)
643 		goto resource_error;
644 
645 	bp->rx_cp_nr_rings = bp->rx_nr_rings;
646 	bp->tx_cp_nr_rings = bp->tx_nr_rings;
647 
648 	if (rx_offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
649 		eth_dev->data->mtu =
650 			eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
651 			RTE_ETHER_HDR_LEN - RTE_ETHER_CRC_LEN - VLAN_TAG_SIZE *
652 			BNXT_NUM_VLANS;
653 		bnxt_mtu_set_op(eth_dev, eth_dev->data->mtu);
654 	}
655 	return 0;
656 
657 resource_error:
658 	PMD_DRV_LOG(ERR,
659 		    "Insufficient resources to support requested config\n");
660 	PMD_DRV_LOG(ERR,
661 		    "Num Queues Requested: Tx %d, Rx %d\n",
662 		    eth_dev->data->nb_tx_queues,
663 		    eth_dev->data->nb_rx_queues);
664 	PMD_DRV_LOG(ERR,
665 		    "MAX: TxQ %d, RxQ %d, CQ %d Stat %d, Grp %d, Vnic %d\n",
666 		    bp->max_tx_rings, bp->max_rx_rings, bp->max_cp_rings,
667 		    bp->max_stat_ctx, bp->max_ring_grps, bp->max_vnics);
668 	return -ENOSPC;
669 }
670 
671 static void bnxt_print_link_info(struct rte_eth_dev *eth_dev)
672 {
673 	struct rte_eth_link *link = &eth_dev->data->dev_link;
674 
675 	if (link->link_status)
676 		PMD_DRV_LOG(INFO, "Port %d Link Up - speed %u Mbps - %s\n",
677 			eth_dev->data->port_id,
678 			(uint32_t)link->link_speed,
679 			(link->link_duplex == ETH_LINK_FULL_DUPLEX) ?
680 			("full-duplex") : ("half-duplex\n"));
681 	else
682 		PMD_DRV_LOG(INFO, "Port %d Link Down\n",
683 			eth_dev->data->port_id);
684 }
685 
686 /*
687  * Determine whether the current configuration requires support for scattered
688  * receive; return 1 if scattered receive is required and 0 if not.
689  */
690 static int bnxt_scattered_rx(struct rte_eth_dev *eth_dev)
691 {
692 	uint16_t buf_size;
693 	int i;
694 
695 	for (i = 0; i < eth_dev->data->nb_rx_queues; i++) {
696 		struct bnxt_rx_queue *rxq = eth_dev->data->rx_queues[i];
697 
698 		buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
699 				      RTE_PKTMBUF_HEADROOM);
700 		if (eth_dev->data->dev_conf.rxmode.max_rx_pkt_len > buf_size)
701 			return 1;
702 	}
703 	return 0;
704 }
705 
706 static eth_rx_burst_t
707 bnxt_receive_function(__rte_unused struct rte_eth_dev *eth_dev)
708 {
709 #ifdef RTE_ARCH_X86
710 	/*
711 	 * Vector mode receive can be enabled only if scatter rx is not
712 	 * in use and rx offloads are limited to VLAN stripping and
713 	 * CRC stripping.
714 	 */
715 	if (!eth_dev->data->scattered_rx &&
716 	    !(eth_dev->data->dev_conf.rxmode.offloads &
717 	      ~(DEV_RX_OFFLOAD_VLAN_STRIP |
718 		DEV_RX_OFFLOAD_KEEP_CRC |
719 		DEV_RX_OFFLOAD_JUMBO_FRAME |
720 		DEV_RX_OFFLOAD_IPV4_CKSUM |
721 		DEV_RX_OFFLOAD_UDP_CKSUM |
722 		DEV_RX_OFFLOAD_TCP_CKSUM |
723 		DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
724 		DEV_RX_OFFLOAD_VLAN_FILTER))) {
725 		PMD_DRV_LOG(INFO, "Using vector mode receive for port %d\n",
726 			    eth_dev->data->port_id);
727 		return bnxt_recv_pkts_vec;
728 	}
729 	PMD_DRV_LOG(INFO, "Vector mode receive disabled for port %d\n",
730 		    eth_dev->data->port_id);
731 	PMD_DRV_LOG(INFO,
732 		    "Port %d scatter: %d rx offload: %" PRIX64 "\n",
733 		    eth_dev->data->port_id,
734 		    eth_dev->data->scattered_rx,
735 		    eth_dev->data->dev_conf.rxmode.offloads);
736 #endif
737 	return bnxt_recv_pkts;
738 }
739 
740 static eth_tx_burst_t
741 bnxt_transmit_function(__rte_unused struct rte_eth_dev *eth_dev)
742 {
743 #ifdef RTE_ARCH_X86
744 	/*
745 	 * Vector mode transmit can be enabled only if not using scatter rx
746 	 * or tx offloads.
747 	 */
748 	if (!eth_dev->data->scattered_rx &&
749 	    !eth_dev->data->dev_conf.txmode.offloads) {
750 		PMD_DRV_LOG(INFO, "Using vector mode transmit for port %d\n",
751 			    eth_dev->data->port_id);
752 		return bnxt_xmit_pkts_vec;
753 	}
754 	PMD_DRV_LOG(INFO, "Vector mode transmit disabled for port %d\n",
755 		    eth_dev->data->port_id);
756 	PMD_DRV_LOG(INFO,
757 		    "Port %d scatter: %d tx offload: %" PRIX64 "\n",
758 		    eth_dev->data->port_id,
759 		    eth_dev->data->scattered_rx,
760 		    eth_dev->data->dev_conf.txmode.offloads);
761 #endif
762 	return bnxt_xmit_pkts;
763 }
764 
765 static int bnxt_dev_start_op(struct rte_eth_dev *eth_dev)
766 {
767 	struct bnxt *bp = eth_dev->data->dev_private;
768 	uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads;
769 	int vlan_mask = 0;
770 	int rc;
771 
772 	if (bp->rx_cp_nr_rings > RTE_ETHDEV_QUEUE_STAT_CNTRS) {
773 		PMD_DRV_LOG(ERR,
774 			"RxQ cnt %d > CONFIG_RTE_ETHDEV_QUEUE_STAT_CNTRS %d\n",
775 			bp->rx_cp_nr_rings, RTE_ETHDEV_QUEUE_STAT_CNTRS);
776 	}
777 
778 	rc = bnxt_init_chip(bp);
779 	if (rc)
780 		goto error;
781 
782 	eth_dev->data->scattered_rx = bnxt_scattered_rx(eth_dev);
783 
784 	bnxt_link_update_op(eth_dev, 1);
785 
786 	if (rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
787 		vlan_mask |= ETH_VLAN_FILTER_MASK;
788 	if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
789 		vlan_mask |= ETH_VLAN_STRIP_MASK;
790 	rc = bnxt_vlan_offload_set_op(eth_dev, vlan_mask);
791 	if (rc)
792 		goto error;
793 
794 	eth_dev->rx_pkt_burst = bnxt_receive_function(eth_dev);
795 	eth_dev->tx_pkt_burst = bnxt_transmit_function(eth_dev);
796 	bnxt_enable_int(bp);
797 	bp->flags |= BNXT_FLAG_INIT_DONE;
798 	bp->dev_stopped = 0;
799 	return 0;
800 
801 error:
802 	bnxt_shutdown_nic(bp);
803 	bnxt_free_tx_mbufs(bp);
804 	bnxt_free_rx_mbufs(bp);
805 	return rc;
806 }
807 
808 static int bnxt_dev_set_link_up_op(struct rte_eth_dev *eth_dev)
809 {
810 	struct bnxt *bp = eth_dev->data->dev_private;
811 	int rc = 0;
812 
813 	if (!bp->link_info.link_up)
814 		rc = bnxt_set_hwrm_link_config(bp, true);
815 	if (!rc)
816 		eth_dev->data->dev_link.link_status = 1;
817 
818 	bnxt_print_link_info(eth_dev);
819 	return 0;
820 }
821 
822 static int bnxt_dev_set_link_down_op(struct rte_eth_dev *eth_dev)
823 {
824 	struct bnxt *bp = eth_dev->data->dev_private;
825 
826 	eth_dev->data->dev_link.link_status = 0;
827 	bnxt_set_hwrm_link_config(bp, false);
828 	bp->link_info.link_up = 0;
829 
830 	return 0;
831 }
832 
833 /* Unload the driver, release resources */
834 static void bnxt_dev_stop_op(struct rte_eth_dev *eth_dev)
835 {
836 	struct bnxt *bp = eth_dev->data->dev_private;
837 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
838 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
839 
840 	bnxt_disable_int(bp);
841 
842 	/* disable uio/vfio intr/eventfd mapping */
843 	rte_intr_disable(intr_handle);
844 
845 	bp->flags &= ~BNXT_FLAG_INIT_DONE;
846 	if (bp->eth_dev->data->dev_started) {
847 		/* TBD: STOP HW queues DMA */
848 		eth_dev->data->dev_link.link_status = 0;
849 	}
850 	bnxt_set_hwrm_link_config(bp, false);
851 
852 	/* Clean queue intr-vector mapping */
853 	rte_intr_efd_disable(intr_handle);
854 	if (intr_handle->intr_vec != NULL) {
855 		rte_free(intr_handle->intr_vec);
856 		intr_handle->intr_vec = NULL;
857 	}
858 
859 	bnxt_hwrm_port_clr_stats(bp);
860 	bnxt_free_tx_mbufs(bp);
861 	bnxt_free_rx_mbufs(bp);
862 	bnxt_shutdown_nic(bp);
863 	bp->dev_stopped = 1;
864 }
865 
866 static void bnxt_dev_close_op(struct rte_eth_dev *eth_dev)
867 {
868 	struct bnxt *bp = eth_dev->data->dev_private;
869 
870 	if (bp->dev_stopped == 0)
871 		bnxt_dev_stop_op(eth_dev);
872 
873 	if (eth_dev->data->mac_addrs != NULL) {
874 		rte_free(eth_dev->data->mac_addrs);
875 		eth_dev->data->mac_addrs = NULL;
876 	}
877 	if (bp->grp_info != NULL) {
878 		rte_free(bp->grp_info);
879 		bp->grp_info = NULL;
880 	}
881 
882 	bnxt_dev_uninit(eth_dev);
883 }
884 
885 static void bnxt_mac_addr_remove_op(struct rte_eth_dev *eth_dev,
886 				    uint32_t index)
887 {
888 	struct bnxt *bp = eth_dev->data->dev_private;
889 	uint64_t pool_mask = eth_dev->data->mac_pool_sel[index];
890 	struct bnxt_vnic_info *vnic;
891 	struct bnxt_filter_info *filter, *temp_filter;
892 	uint32_t i;
893 
894 	/*
895 	 * Loop through all VNICs from the specified filter flow pools to
896 	 * remove the corresponding MAC addr filter
897 	 */
898 	for (i = 0; i < bp->nr_vnics; i++) {
899 		if (!(pool_mask & (1ULL << i)))
900 			continue;
901 
902 		vnic = &bp->vnic_info[i];
903 		filter = STAILQ_FIRST(&vnic->filter);
904 		while (filter) {
905 			temp_filter = STAILQ_NEXT(filter, next);
906 			if (filter->mac_index == index) {
907 				STAILQ_REMOVE(&vnic->filter, filter,
908 						bnxt_filter_info, next);
909 				bnxt_hwrm_clear_l2_filter(bp, filter);
910 				filter->mac_index = INVALID_MAC_INDEX;
911 				memset(&filter->l2_addr, 0, RTE_ETHER_ADDR_LEN);
912 				STAILQ_INSERT_TAIL(&bp->free_filter_list,
913 						   filter, next);
914 			}
915 			filter = temp_filter;
916 		}
917 	}
918 }
919 
920 static int bnxt_mac_addr_add_op(struct rte_eth_dev *eth_dev,
921 				struct rte_ether_addr *mac_addr,
922 				uint32_t index, uint32_t pool)
923 {
924 	struct bnxt *bp = eth_dev->data->dev_private;
925 	struct bnxt_vnic_info *vnic = &bp->vnic_info[pool];
926 	struct bnxt_filter_info *filter;
927 	int rc = 0;
928 
929 	if (BNXT_VF(bp) & !BNXT_VF_IS_TRUSTED(bp)) {
930 		PMD_DRV_LOG(ERR, "Cannot add MAC address to a VF interface\n");
931 		return -ENOTSUP;
932 	}
933 
934 	if (!vnic) {
935 		PMD_DRV_LOG(ERR, "VNIC not found for pool %d!\n", pool);
936 		return -EINVAL;
937 	}
938 	/* Attach requested MAC address to the new l2_filter */
939 	STAILQ_FOREACH(filter, &vnic->filter, next) {
940 		if (filter->mac_index == index) {
941 			PMD_DRV_LOG(ERR,
942 				"MAC addr already existed for pool %d\n", pool);
943 			return 0;
944 		}
945 	}
946 	filter = bnxt_alloc_filter(bp);
947 	if (!filter) {
948 		PMD_DRV_LOG(ERR, "L2 filter alloc failed\n");
949 		return -ENODEV;
950 	}
951 
952 	filter->mac_index = index;
953 	memcpy(filter->l2_addr, mac_addr, RTE_ETHER_ADDR_LEN);
954 
955 	rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
956 	if (!rc) {
957 		STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
958 	} else {
959 		filter->mac_index = INVALID_MAC_INDEX;
960 		memset(&filter->l2_addr, 0, RTE_ETHER_ADDR_LEN);
961 		bnxt_free_filter(bp, filter);
962 	}
963 
964 	return rc;
965 }
966 
967 int bnxt_link_update_op(struct rte_eth_dev *eth_dev, int wait_to_complete)
968 {
969 	int rc = 0;
970 	struct bnxt *bp = eth_dev->data->dev_private;
971 	struct rte_eth_link new;
972 	unsigned int cnt = BNXT_LINK_WAIT_CNT;
973 
974 	memset(&new, 0, sizeof(new));
975 	do {
976 		/* Retrieve link info from hardware */
977 		rc = bnxt_get_hwrm_link_config(bp, &new);
978 		if (rc) {
979 			new.link_speed = ETH_LINK_SPEED_100M;
980 			new.link_duplex = ETH_LINK_FULL_DUPLEX;
981 			PMD_DRV_LOG(ERR,
982 				"Failed to retrieve link rc = 0x%x!\n", rc);
983 			goto out;
984 		}
985 
986 		if (!wait_to_complete || new.link_status)
987 			break;
988 
989 		rte_delay_ms(BNXT_LINK_WAIT_INTERVAL);
990 	} while (cnt--);
991 
992 out:
993 	/* Timed out or success */
994 	if (new.link_status != eth_dev->data->dev_link.link_status ||
995 	new.link_speed != eth_dev->data->dev_link.link_speed) {
996 		memcpy(&eth_dev->data->dev_link, &new,
997 			sizeof(struct rte_eth_link));
998 
999 		_rte_eth_dev_callback_process(eth_dev,
1000 					      RTE_ETH_EVENT_INTR_LSC,
1001 					      NULL);
1002 
1003 		bnxt_print_link_info(eth_dev);
1004 	}
1005 
1006 	return rc;
1007 }
1008 
1009 static int bnxt_promiscuous_enable_op(struct rte_eth_dev *eth_dev)
1010 {
1011 	struct bnxt *bp = eth_dev->data->dev_private;
1012 	struct bnxt_vnic_info *vnic;
1013 	uint32_t old_flags;
1014 	int rc;
1015 
1016 	if (bp->vnic_info == NULL)
1017 		return 0;
1018 
1019 	vnic = &bp->vnic_info[0];
1020 
1021 	old_flags = vnic->flags;
1022 	vnic->flags |= BNXT_VNIC_INFO_PROMISC;
1023 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1024 	if (rc != 0)
1025 		vnic->flags = old_flags;
1026 
1027 	return rc;
1028 }
1029 
1030 static int bnxt_promiscuous_disable_op(struct rte_eth_dev *eth_dev)
1031 {
1032 	struct bnxt *bp = eth_dev->data->dev_private;
1033 	struct bnxt_vnic_info *vnic;
1034 	uint32_t old_flags;
1035 	int rc;
1036 
1037 	if (bp->vnic_info == NULL)
1038 		return 0;
1039 
1040 	vnic = &bp->vnic_info[0];
1041 
1042 	old_flags = vnic->flags;
1043 	vnic->flags &= ~BNXT_VNIC_INFO_PROMISC;
1044 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1045 	if (rc != 0)
1046 		vnic->flags = old_flags;
1047 
1048 	return rc;
1049 }
1050 
1051 static int bnxt_allmulticast_enable_op(struct rte_eth_dev *eth_dev)
1052 {
1053 	struct bnxt *bp = eth_dev->data->dev_private;
1054 	struct bnxt_vnic_info *vnic;
1055 	uint32_t old_flags;
1056 	int rc;
1057 
1058 	if (bp->vnic_info == NULL)
1059 		return 0;
1060 
1061 	vnic = &bp->vnic_info[0];
1062 
1063 	old_flags = vnic->flags;
1064 	vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
1065 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1066 	if (rc != 0)
1067 		vnic->flags = old_flags;
1068 
1069 	return rc;
1070 }
1071 
1072 static int bnxt_allmulticast_disable_op(struct rte_eth_dev *eth_dev)
1073 {
1074 	struct bnxt *bp = eth_dev->data->dev_private;
1075 	struct bnxt_vnic_info *vnic;
1076 	uint32_t old_flags;
1077 	int rc;
1078 
1079 	if (bp->vnic_info == NULL)
1080 		return 0;
1081 
1082 	vnic = &bp->vnic_info[0];
1083 
1084 	old_flags = vnic->flags;
1085 	vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
1086 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1087 	if (rc != 0)
1088 		vnic->flags = old_flags;
1089 
1090 	return rc;
1091 }
1092 
1093 /* Return bnxt_rx_queue pointer corresponding to a given rxq. */
1094 static struct bnxt_rx_queue *bnxt_qid_to_rxq(struct bnxt *bp, uint16_t qid)
1095 {
1096 	if (qid >= bp->rx_nr_rings)
1097 		return NULL;
1098 
1099 	return bp->eth_dev->data->rx_queues[qid];
1100 }
1101 
1102 /* Return rxq corresponding to a given rss table ring/group ID. */
1103 static uint16_t bnxt_rss_to_qid(struct bnxt *bp, uint16_t fwr)
1104 {
1105 	struct bnxt_rx_queue *rxq;
1106 	unsigned int i;
1107 
1108 	if (!BNXT_HAS_RING_GRPS(bp)) {
1109 		for (i = 0; i < bp->rx_nr_rings; i++) {
1110 			rxq = bp->eth_dev->data->rx_queues[i];
1111 			if (rxq->rx_ring->rx_ring_struct->fw_ring_id == fwr)
1112 				return rxq->index;
1113 		}
1114 	} else {
1115 		for (i = 0; i < bp->rx_nr_rings; i++) {
1116 			if (bp->grp_info[i].fw_grp_id == fwr)
1117 				return i;
1118 		}
1119 	}
1120 
1121 	return INVALID_HW_RING_ID;
1122 }
1123 
1124 static int bnxt_reta_update_op(struct rte_eth_dev *eth_dev,
1125 			    struct rte_eth_rss_reta_entry64 *reta_conf,
1126 			    uint16_t reta_size)
1127 {
1128 	struct bnxt *bp = eth_dev->data->dev_private;
1129 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
1130 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
1131 	uint16_t tbl_size = bnxt_rss_hash_tbl_size(bp);
1132 	uint16_t idx, sft;
1133 	int i;
1134 
1135 	if (!vnic->rss_table)
1136 		return -EINVAL;
1137 
1138 	if (!(dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
1139 		return -EINVAL;
1140 
1141 	if (reta_size != tbl_size) {
1142 		PMD_DRV_LOG(ERR, "The configured hash table lookup size "
1143 			"(%d) must equal the size supported by the hardware "
1144 			"(%d)\n", reta_size, tbl_size);
1145 		return -EINVAL;
1146 	}
1147 
1148 	for (i = 0; i < reta_size; i++) {
1149 		struct bnxt_rx_queue *rxq;
1150 
1151 		idx = i / RTE_RETA_GROUP_SIZE;
1152 		sft = i % RTE_RETA_GROUP_SIZE;
1153 
1154 		if (!(reta_conf[idx].mask & (1ULL << sft)))
1155 			continue;
1156 
1157 		rxq = bnxt_qid_to_rxq(bp, reta_conf[idx].reta[sft]);
1158 		if (!rxq) {
1159 			PMD_DRV_LOG(ERR, "Invalid ring in reta_conf.\n");
1160 			return -EINVAL;
1161 		}
1162 
1163 		if (BNXT_CHIP_THOR(bp)) {
1164 			vnic->rss_table[i * 2] =
1165 				rxq->rx_ring->rx_ring_struct->fw_ring_id;
1166 			vnic->rss_table[i * 2 + 1] =
1167 				rxq->cp_ring->cp_ring_struct->fw_ring_id;
1168 		} else {
1169 			vnic->rss_table[i] =
1170 			    vnic->fw_grp_ids[reta_conf[idx].reta[sft]];
1171 		}
1172 
1173 		vnic->rss_table[i] =
1174 		    vnic->fw_grp_ids[reta_conf[idx].reta[sft]];
1175 	}
1176 
1177 	bnxt_hwrm_vnic_rss_cfg(bp, vnic);
1178 	return 0;
1179 }
1180 
1181 static int bnxt_reta_query_op(struct rte_eth_dev *eth_dev,
1182 			      struct rte_eth_rss_reta_entry64 *reta_conf,
1183 			      uint16_t reta_size)
1184 {
1185 	struct bnxt *bp = eth_dev->data->dev_private;
1186 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
1187 	uint16_t tbl_size = bnxt_rss_hash_tbl_size(bp);
1188 	uint16_t idx, sft, i;
1189 
1190 	/* Retrieve from the default VNIC */
1191 	if (!vnic)
1192 		return -EINVAL;
1193 	if (!vnic->rss_table)
1194 		return -EINVAL;
1195 
1196 	if (reta_size != tbl_size) {
1197 		PMD_DRV_LOG(ERR, "The configured hash table lookup size "
1198 			"(%d) must equal the size supported by the hardware "
1199 			"(%d)\n", reta_size, tbl_size);
1200 		return -EINVAL;
1201 	}
1202 
1203 	for (idx = 0, i = 0; i < reta_size; i++) {
1204 		idx = i / RTE_RETA_GROUP_SIZE;
1205 		sft = i % RTE_RETA_GROUP_SIZE;
1206 
1207 		if (reta_conf[idx].mask & (1ULL << sft)) {
1208 			uint16_t qid;
1209 
1210 			if (BNXT_CHIP_THOR(bp))
1211 				qid = bnxt_rss_to_qid(bp,
1212 						      vnic->rss_table[i * 2]);
1213 			else
1214 				qid = bnxt_rss_to_qid(bp, vnic->rss_table[i]);
1215 
1216 			if (qid == INVALID_HW_RING_ID) {
1217 				PMD_DRV_LOG(ERR, "Inv. entry in rss table.\n");
1218 				return -EINVAL;
1219 			}
1220 			reta_conf[idx].reta[sft] = qid;
1221 		}
1222 	}
1223 
1224 	return 0;
1225 }
1226 
1227 static int bnxt_rss_hash_update_op(struct rte_eth_dev *eth_dev,
1228 				   struct rte_eth_rss_conf *rss_conf)
1229 {
1230 	struct bnxt *bp = eth_dev->data->dev_private;
1231 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
1232 	struct bnxt_vnic_info *vnic;
1233 	uint16_t hash_type = 0;
1234 	unsigned int i;
1235 
1236 	/*
1237 	 * If RSS enablement were different than dev_configure,
1238 	 * then return -EINVAL
1239 	 */
1240 	if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) {
1241 		if (!rss_conf->rss_hf)
1242 			PMD_DRV_LOG(ERR, "Hash type NONE\n");
1243 	} else {
1244 		if (rss_conf->rss_hf & BNXT_ETH_RSS_SUPPORT)
1245 			return -EINVAL;
1246 	}
1247 
1248 	bp->flags |= BNXT_FLAG_UPDATE_HASH;
1249 	memcpy(&bp->rss_conf, rss_conf, sizeof(*rss_conf));
1250 
1251 	if (rss_conf->rss_hf & ETH_RSS_IPV4)
1252 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
1253 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
1254 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
1255 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
1256 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
1257 	if (rss_conf->rss_hf & ETH_RSS_IPV6)
1258 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
1259 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
1260 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
1261 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
1262 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
1263 
1264 	/* Update the RSS VNIC(s) */
1265 	for (i = 0; i < bp->nr_vnics; i++) {
1266 		vnic = &bp->vnic_info[i];
1267 		vnic->hash_type = hash_type;
1268 
1269 		/*
1270 		 * Use the supplied key if the key length is
1271 		 * acceptable and the rss_key is not NULL
1272 		 */
1273 		if (rss_conf->rss_key &&
1274 		    rss_conf->rss_key_len <= HW_HASH_KEY_SIZE)
1275 			memcpy(vnic->rss_hash_key, rss_conf->rss_key,
1276 			       rss_conf->rss_key_len);
1277 
1278 		bnxt_hwrm_vnic_rss_cfg(bp, vnic);
1279 	}
1280 	return 0;
1281 }
1282 
1283 static int bnxt_rss_hash_conf_get_op(struct rte_eth_dev *eth_dev,
1284 				     struct rte_eth_rss_conf *rss_conf)
1285 {
1286 	struct bnxt *bp = eth_dev->data->dev_private;
1287 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
1288 	int len;
1289 	uint32_t hash_types;
1290 
1291 	/* RSS configuration is the same for all VNICs */
1292 	if (vnic && vnic->rss_hash_key) {
1293 		if (rss_conf->rss_key) {
1294 			len = rss_conf->rss_key_len <= HW_HASH_KEY_SIZE ?
1295 			      rss_conf->rss_key_len : HW_HASH_KEY_SIZE;
1296 			memcpy(rss_conf->rss_key, vnic->rss_hash_key, len);
1297 		}
1298 
1299 		hash_types = vnic->hash_type;
1300 		rss_conf->rss_hf = 0;
1301 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4) {
1302 			rss_conf->rss_hf |= ETH_RSS_IPV4;
1303 			hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
1304 		}
1305 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4) {
1306 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
1307 			hash_types &=
1308 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
1309 		}
1310 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4) {
1311 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
1312 			hash_types &=
1313 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
1314 		}
1315 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6) {
1316 			rss_conf->rss_hf |= ETH_RSS_IPV6;
1317 			hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
1318 		}
1319 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6) {
1320 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
1321 			hash_types &=
1322 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
1323 		}
1324 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6) {
1325 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
1326 			hash_types &=
1327 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
1328 		}
1329 		if (hash_types) {
1330 			PMD_DRV_LOG(ERR,
1331 				"Unknwon RSS config from firmware (%08x), RSS disabled",
1332 				vnic->hash_type);
1333 			return -ENOTSUP;
1334 		}
1335 	} else {
1336 		rss_conf->rss_hf = 0;
1337 	}
1338 	return 0;
1339 }
1340 
1341 static int bnxt_flow_ctrl_get_op(struct rte_eth_dev *dev,
1342 			       struct rte_eth_fc_conf *fc_conf)
1343 {
1344 	struct bnxt *bp = dev->data->dev_private;
1345 	struct rte_eth_link link_info;
1346 	int rc;
1347 
1348 	rc = bnxt_get_hwrm_link_config(bp, &link_info);
1349 	if (rc)
1350 		return rc;
1351 
1352 	memset(fc_conf, 0, sizeof(*fc_conf));
1353 	if (bp->link_info.auto_pause)
1354 		fc_conf->autoneg = 1;
1355 	switch (bp->link_info.pause) {
1356 	case 0:
1357 		fc_conf->mode = RTE_FC_NONE;
1358 		break;
1359 	case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX:
1360 		fc_conf->mode = RTE_FC_TX_PAUSE;
1361 		break;
1362 	case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX:
1363 		fc_conf->mode = RTE_FC_RX_PAUSE;
1364 		break;
1365 	case (HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX |
1366 			HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX):
1367 		fc_conf->mode = RTE_FC_FULL;
1368 		break;
1369 	}
1370 	return 0;
1371 }
1372 
1373 static int bnxt_flow_ctrl_set_op(struct rte_eth_dev *dev,
1374 			       struct rte_eth_fc_conf *fc_conf)
1375 {
1376 	struct bnxt *bp = dev->data->dev_private;
1377 
1378 	if (!BNXT_SINGLE_PF(bp) || BNXT_VF(bp)) {
1379 		PMD_DRV_LOG(ERR, "Flow Control Settings cannot be modified\n");
1380 		return -ENOTSUP;
1381 	}
1382 
1383 	switch (fc_conf->mode) {
1384 	case RTE_FC_NONE:
1385 		bp->link_info.auto_pause = 0;
1386 		bp->link_info.force_pause = 0;
1387 		break;
1388 	case RTE_FC_RX_PAUSE:
1389 		if (fc_conf->autoneg) {
1390 			bp->link_info.auto_pause =
1391 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
1392 			bp->link_info.force_pause = 0;
1393 		} else {
1394 			bp->link_info.auto_pause = 0;
1395 			bp->link_info.force_pause =
1396 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
1397 		}
1398 		break;
1399 	case RTE_FC_TX_PAUSE:
1400 		if (fc_conf->autoneg) {
1401 			bp->link_info.auto_pause =
1402 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX;
1403 			bp->link_info.force_pause = 0;
1404 		} else {
1405 			bp->link_info.auto_pause = 0;
1406 			bp->link_info.force_pause =
1407 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX;
1408 		}
1409 		break;
1410 	case RTE_FC_FULL:
1411 		if (fc_conf->autoneg) {
1412 			bp->link_info.auto_pause =
1413 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX |
1414 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
1415 			bp->link_info.force_pause = 0;
1416 		} else {
1417 			bp->link_info.auto_pause = 0;
1418 			bp->link_info.force_pause =
1419 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX |
1420 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
1421 		}
1422 		break;
1423 	}
1424 	return bnxt_set_hwrm_link_config(bp, true);
1425 }
1426 
1427 /* Add UDP tunneling port */
1428 static int
1429 bnxt_udp_tunnel_port_add_op(struct rte_eth_dev *eth_dev,
1430 			 struct rte_eth_udp_tunnel *udp_tunnel)
1431 {
1432 	struct bnxt *bp = eth_dev->data->dev_private;
1433 	uint16_t tunnel_type = 0;
1434 	int rc = 0;
1435 
1436 	switch (udp_tunnel->prot_type) {
1437 	case RTE_TUNNEL_TYPE_VXLAN:
1438 		if (bp->vxlan_port_cnt) {
1439 			PMD_DRV_LOG(ERR, "Tunnel Port %d already programmed\n",
1440 				udp_tunnel->udp_port);
1441 			if (bp->vxlan_port != udp_tunnel->udp_port) {
1442 				PMD_DRV_LOG(ERR, "Only one port allowed\n");
1443 				return -ENOSPC;
1444 			}
1445 			bp->vxlan_port_cnt++;
1446 			return 0;
1447 		}
1448 		tunnel_type =
1449 			HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_VXLAN;
1450 		bp->vxlan_port_cnt++;
1451 		break;
1452 	case RTE_TUNNEL_TYPE_GENEVE:
1453 		if (bp->geneve_port_cnt) {
1454 			PMD_DRV_LOG(ERR, "Tunnel Port %d already programmed\n",
1455 				udp_tunnel->udp_port);
1456 			if (bp->geneve_port != udp_tunnel->udp_port) {
1457 				PMD_DRV_LOG(ERR, "Only one port allowed\n");
1458 				return -ENOSPC;
1459 			}
1460 			bp->geneve_port_cnt++;
1461 			return 0;
1462 		}
1463 		tunnel_type =
1464 			HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_GENEVE;
1465 		bp->geneve_port_cnt++;
1466 		break;
1467 	default:
1468 		PMD_DRV_LOG(ERR, "Tunnel type is not supported\n");
1469 		return -ENOTSUP;
1470 	}
1471 	rc = bnxt_hwrm_tunnel_dst_port_alloc(bp, udp_tunnel->udp_port,
1472 					     tunnel_type);
1473 	return rc;
1474 }
1475 
1476 static int
1477 bnxt_udp_tunnel_port_del_op(struct rte_eth_dev *eth_dev,
1478 			 struct rte_eth_udp_tunnel *udp_tunnel)
1479 {
1480 	struct bnxt *bp = eth_dev->data->dev_private;
1481 	uint16_t tunnel_type = 0;
1482 	uint16_t port = 0;
1483 	int rc = 0;
1484 
1485 	switch (udp_tunnel->prot_type) {
1486 	case RTE_TUNNEL_TYPE_VXLAN:
1487 		if (!bp->vxlan_port_cnt) {
1488 			PMD_DRV_LOG(ERR, "No Tunnel port configured yet\n");
1489 			return -EINVAL;
1490 		}
1491 		if (bp->vxlan_port != udp_tunnel->udp_port) {
1492 			PMD_DRV_LOG(ERR, "Req Port: %d. Configured port: %d\n",
1493 				udp_tunnel->udp_port, bp->vxlan_port);
1494 			return -EINVAL;
1495 		}
1496 		if (--bp->vxlan_port_cnt)
1497 			return 0;
1498 
1499 		tunnel_type =
1500 			HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN;
1501 		port = bp->vxlan_fw_dst_port_id;
1502 		break;
1503 	case RTE_TUNNEL_TYPE_GENEVE:
1504 		if (!bp->geneve_port_cnt) {
1505 			PMD_DRV_LOG(ERR, "No Tunnel port configured yet\n");
1506 			return -EINVAL;
1507 		}
1508 		if (bp->geneve_port != udp_tunnel->udp_port) {
1509 			PMD_DRV_LOG(ERR, "Req Port: %d. Configured port: %d\n",
1510 				udp_tunnel->udp_port, bp->geneve_port);
1511 			return -EINVAL;
1512 		}
1513 		if (--bp->geneve_port_cnt)
1514 			return 0;
1515 
1516 		tunnel_type =
1517 			HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE;
1518 		port = bp->geneve_fw_dst_port_id;
1519 		break;
1520 	default:
1521 		PMD_DRV_LOG(ERR, "Tunnel type is not supported\n");
1522 		return -ENOTSUP;
1523 	}
1524 
1525 	rc = bnxt_hwrm_tunnel_dst_port_free(bp, port, tunnel_type);
1526 	if (!rc) {
1527 		if (tunnel_type ==
1528 		    HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN)
1529 			bp->vxlan_port = 0;
1530 		if (tunnel_type ==
1531 		    HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE)
1532 			bp->geneve_port = 0;
1533 	}
1534 	return rc;
1535 }
1536 
1537 static int bnxt_del_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
1538 {
1539 	struct bnxt_filter_info *filter;
1540 	struct bnxt_vnic_info *vnic;
1541 	int rc = 0;
1542 	uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN;
1543 
1544 	/* if VLAN exists && VLAN matches vlan_id
1545 	 *      remove the MAC+VLAN filter
1546 	 *      add a new MAC only filter
1547 	 * else
1548 	 *      VLAN filter doesn't exist, just skip and continue
1549 	 */
1550 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
1551 	filter = STAILQ_FIRST(&vnic->filter);
1552 	while (filter) {
1553 		/* Search for this matching MAC+VLAN filter */
1554 		if (filter->enables & chk && filter->l2_ivlan == vlan_id &&
1555 		    !memcmp(filter->l2_addr,
1556 			    bp->mac_addr,
1557 			    RTE_ETHER_ADDR_LEN)) {
1558 			/* Delete the filter */
1559 			rc = bnxt_hwrm_clear_l2_filter(bp, filter);
1560 			if (rc)
1561 				return rc;
1562 			STAILQ_REMOVE(&vnic->filter, filter,
1563 				      bnxt_filter_info, next);
1564 			STAILQ_INSERT_TAIL(&bp->free_filter_list, filter, next);
1565 
1566 			PMD_DRV_LOG(INFO,
1567 				    "Del Vlan filter for %d\n",
1568 				    vlan_id);
1569 			return rc;
1570 		}
1571 		filter = STAILQ_NEXT(filter, next);
1572 	}
1573 	return -ENOENT;
1574 }
1575 
1576 static int bnxt_add_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
1577 {
1578 	struct bnxt_filter_info *filter;
1579 	struct bnxt_vnic_info *vnic;
1580 	int rc = 0;
1581 	uint32_t en = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN |
1582 		HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN_MASK;
1583 	uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN;
1584 
1585 	/* Implementation notes on the use of VNIC in this command:
1586 	 *
1587 	 * By default, these filters belong to default vnic for the function.
1588 	 * Once these filters are set up, only destination VNIC can be modified.
1589 	 * If the destination VNIC is not specified in this command,
1590 	 * then the HWRM shall only create an l2 context id.
1591 	 */
1592 
1593 	vnic = BNXT_GET_DEFAULT_VNIC(bp);
1594 	filter = STAILQ_FIRST(&vnic->filter);
1595 	/* Check if the VLAN has already been added */
1596 	while (filter) {
1597 		if (filter->enables & chk && filter->l2_ivlan == vlan_id &&
1598 		    !memcmp(filter->l2_addr, bp->mac_addr, RTE_ETHER_ADDR_LEN))
1599 			return -EEXIST;
1600 
1601 		filter = STAILQ_NEXT(filter, next);
1602 	}
1603 
1604 	/* No match found. Alloc a fresh filter and issue the L2_FILTER_ALLOC
1605 	 * command to create MAC+VLAN filter with the right flags, enables set.
1606 	 */
1607 	filter = bnxt_alloc_filter(bp);
1608 	if (!filter) {
1609 		PMD_DRV_LOG(ERR,
1610 			    "MAC/VLAN filter alloc failed\n");
1611 		return -ENOMEM;
1612 	}
1613 	/* MAC + VLAN ID filter */
1614 	filter->l2_ivlan = vlan_id;
1615 	filter->l2_ivlan_mask = 0x0FFF;
1616 	filter->enables |= en;
1617 	rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
1618 	if (rc) {
1619 		/* Free the newly allocated filter as we were
1620 		 * not able to create the filter in hardware.
1621 		 */
1622 		filter->fw_l2_filter_id = UINT64_MAX;
1623 		STAILQ_INSERT_TAIL(&bp->free_filter_list, filter, next);
1624 		return rc;
1625 	}
1626 
1627 	/* Add this new filter to the list */
1628 	STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
1629 	PMD_DRV_LOG(INFO,
1630 		    "Added Vlan filter for %d\n", vlan_id);
1631 	return rc;
1632 }
1633 
1634 static int bnxt_vlan_filter_set_op(struct rte_eth_dev *eth_dev,
1635 		uint16_t vlan_id, int on)
1636 {
1637 	struct bnxt *bp = eth_dev->data->dev_private;
1638 
1639 	/* These operations apply to ALL existing MAC/VLAN filters */
1640 	if (on)
1641 		return bnxt_add_vlan_filter(bp, vlan_id);
1642 	else
1643 		return bnxt_del_vlan_filter(bp, vlan_id);
1644 }
1645 
1646 static int
1647 bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask)
1648 {
1649 	struct bnxt *bp = dev->data->dev_private;
1650 	uint64_t rx_offloads = dev->data->dev_conf.rxmode.offloads;
1651 	unsigned int i;
1652 
1653 	if (mask & ETH_VLAN_FILTER_MASK) {
1654 		if (!(rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER)) {
1655 			/* Remove any VLAN filters programmed */
1656 			for (i = 0; i < 4095; i++)
1657 				bnxt_del_vlan_filter(bp, i);
1658 		}
1659 		PMD_DRV_LOG(DEBUG, "VLAN Filtering: %d\n",
1660 			!!(rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER));
1661 	}
1662 
1663 	if (mask & ETH_VLAN_STRIP_MASK) {
1664 		/* Enable or disable VLAN stripping */
1665 		for (i = 0; i < bp->nr_vnics; i++) {
1666 			struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
1667 			if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1668 				vnic->vlan_strip = true;
1669 			else
1670 				vnic->vlan_strip = false;
1671 			bnxt_hwrm_vnic_cfg(bp, vnic);
1672 		}
1673 		PMD_DRV_LOG(DEBUG, "VLAN Strip Offload: %d\n",
1674 			!!(rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP));
1675 	}
1676 
1677 	if (mask & ETH_VLAN_EXTEND_MASK)
1678 		PMD_DRV_LOG(ERR, "Extend VLAN Not supported\n");
1679 
1680 	return 0;
1681 }
1682 
1683 static int
1684 bnxt_set_default_mac_addr_op(struct rte_eth_dev *dev,
1685 			struct rte_ether_addr *addr)
1686 {
1687 	struct bnxt *bp = dev->data->dev_private;
1688 	/* Default Filter is tied to VNIC 0 */
1689 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
1690 	struct bnxt_filter_info *filter;
1691 	int rc;
1692 
1693 	if (BNXT_VF(bp) && !BNXT_VF_IS_TRUSTED(bp))
1694 		return -EPERM;
1695 
1696 	if (rte_is_zero_ether_addr(addr))
1697 		return -EINVAL;
1698 
1699 	STAILQ_FOREACH(filter, &vnic->filter, next) {
1700 		/* Default Filter is at Index 0 */
1701 		if (filter->mac_index != 0)
1702 			continue;
1703 
1704 		memcpy(filter->l2_addr, bp->mac_addr, RTE_ETHER_ADDR_LEN);
1705 		memset(filter->l2_addr_mask, 0xff, RTE_ETHER_ADDR_LEN);
1706 		filter->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_PATH_RX;
1707 		filter->enables |=
1708 			HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR |
1709 			HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR_MASK;
1710 
1711 		rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
1712 		if (rc)
1713 			return rc;
1714 
1715 		memcpy(bp->mac_addr, addr, RTE_ETHER_ADDR_LEN);
1716 		PMD_DRV_LOG(DEBUG, "Set MAC addr\n");
1717 		return 0;
1718 	}
1719 
1720 	return 0;
1721 }
1722 
1723 static int
1724 bnxt_dev_set_mc_addr_list_op(struct rte_eth_dev *eth_dev,
1725 			  struct rte_ether_addr *mc_addr_set,
1726 			  uint32_t nb_mc_addr)
1727 {
1728 	struct bnxt *bp = eth_dev->data->dev_private;
1729 	char *mc_addr_list = (char *)mc_addr_set;
1730 	struct bnxt_vnic_info *vnic;
1731 	uint32_t off = 0, i = 0;
1732 
1733 	vnic = &bp->vnic_info[0];
1734 
1735 	if (nb_mc_addr > BNXT_MAX_MC_ADDRS) {
1736 		vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
1737 		goto allmulti;
1738 	}
1739 
1740 	/* TODO Check for Duplicate mcast addresses */
1741 	vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
1742 	for (i = 0; i < nb_mc_addr; i++) {
1743 		memcpy(vnic->mc_list + off, &mc_addr_list[i],
1744 			RTE_ETHER_ADDR_LEN);
1745 		off += RTE_ETHER_ADDR_LEN;
1746 	}
1747 
1748 	vnic->mc_addr_cnt = i;
1749 
1750 allmulti:
1751 	return bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1752 }
1753 
1754 static int
1755 bnxt_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
1756 {
1757 	struct bnxt *bp = dev->data->dev_private;
1758 	uint8_t fw_major = (bp->fw_ver >> 24) & 0xff;
1759 	uint8_t fw_minor = (bp->fw_ver >> 16) & 0xff;
1760 	uint8_t fw_updt = (bp->fw_ver >> 8) & 0xff;
1761 	int ret;
1762 
1763 	ret = snprintf(fw_version, fw_size, "%d.%d.%d",
1764 			fw_major, fw_minor, fw_updt);
1765 
1766 	ret += 1; /* add the size of '\0' */
1767 	if (fw_size < (uint32_t)ret)
1768 		return ret;
1769 	else
1770 		return 0;
1771 }
1772 
1773 static void
1774 bnxt_rxq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
1775 	struct rte_eth_rxq_info *qinfo)
1776 {
1777 	struct bnxt_rx_queue *rxq;
1778 
1779 	rxq = dev->data->rx_queues[queue_id];
1780 
1781 	qinfo->mp = rxq->mb_pool;
1782 	qinfo->scattered_rx = dev->data->scattered_rx;
1783 	qinfo->nb_desc = rxq->nb_rx_desc;
1784 
1785 	qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
1786 	qinfo->conf.rx_drop_en = 0;
1787 	qinfo->conf.rx_deferred_start = 0;
1788 }
1789 
1790 static void
1791 bnxt_txq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
1792 	struct rte_eth_txq_info *qinfo)
1793 {
1794 	struct bnxt_tx_queue *txq;
1795 
1796 	txq = dev->data->tx_queues[queue_id];
1797 
1798 	qinfo->nb_desc = txq->nb_tx_desc;
1799 
1800 	qinfo->conf.tx_thresh.pthresh = txq->pthresh;
1801 	qinfo->conf.tx_thresh.hthresh = txq->hthresh;
1802 	qinfo->conf.tx_thresh.wthresh = txq->wthresh;
1803 
1804 	qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
1805 	qinfo->conf.tx_rs_thresh = 0;
1806 	qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
1807 }
1808 
1809 static int bnxt_mtu_set_op(struct rte_eth_dev *eth_dev, uint16_t new_mtu)
1810 {
1811 	struct bnxt *bp = eth_dev->data->dev_private;
1812 	struct rte_eth_dev_info dev_info;
1813 	uint32_t new_pkt_size;
1814 	uint32_t rc = 0;
1815 	uint32_t i;
1816 
1817 	new_pkt_size = new_mtu + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN +
1818 		       VLAN_TAG_SIZE * BNXT_NUM_VLANS;
1819 
1820 	rc = bnxt_dev_info_get_op(eth_dev, &dev_info);
1821 	if (rc != 0) {
1822 		PMD_DRV_LOG(ERR, "Error during getting ethernet device info\n");
1823 		return rc;
1824 	}
1825 
1826 	if (new_mtu < RTE_ETHER_MIN_MTU || new_mtu > BNXT_MAX_MTU) {
1827 		PMD_DRV_LOG(ERR, "MTU requested must be within (%d, %d)\n",
1828 			RTE_ETHER_MIN_MTU, BNXT_MAX_MTU);
1829 		return -EINVAL;
1830 	}
1831 
1832 #ifdef RTE_ARCH_X86
1833 	/*
1834 	 * If vector-mode tx/rx is active, disallow any MTU change that would
1835 	 * require scattered receive support.
1836 	 */
1837 	if (eth_dev->data->dev_started &&
1838 	    (eth_dev->rx_pkt_burst == bnxt_recv_pkts_vec ||
1839 	     eth_dev->tx_pkt_burst == bnxt_xmit_pkts_vec) &&
1840 	    (new_pkt_size >
1841 	     eth_dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)) {
1842 		PMD_DRV_LOG(ERR,
1843 			    "MTU change would require scattered rx support. ");
1844 		PMD_DRV_LOG(ERR, "Stop port before changing MTU.\n");
1845 		return -EINVAL;
1846 	}
1847 #endif
1848 
1849 	if (new_mtu > RTE_ETHER_MTU) {
1850 		bp->flags |= BNXT_FLAG_JUMBO;
1851 		bp->eth_dev->data->dev_conf.rxmode.offloads |=
1852 			DEV_RX_OFFLOAD_JUMBO_FRAME;
1853 	} else {
1854 		bp->eth_dev->data->dev_conf.rxmode.offloads &=
1855 			~DEV_RX_OFFLOAD_JUMBO_FRAME;
1856 		bp->flags &= ~BNXT_FLAG_JUMBO;
1857 	}
1858 
1859 	eth_dev->data->dev_conf.rxmode.max_rx_pkt_len = new_pkt_size;
1860 
1861 	eth_dev->data->mtu = new_mtu;
1862 	PMD_DRV_LOG(INFO, "New MTU is %d\n", eth_dev->data->mtu);
1863 
1864 	for (i = 0; i < bp->nr_vnics; i++) {
1865 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
1866 		uint16_t size = 0;
1867 
1868 		vnic->mru = bp->eth_dev->data->mtu + RTE_ETHER_HDR_LEN +
1869 					RTE_ETHER_CRC_LEN + VLAN_TAG_SIZE * 2;
1870 		rc = bnxt_hwrm_vnic_cfg(bp, vnic);
1871 		if (rc)
1872 			break;
1873 
1874 		size = rte_pktmbuf_data_room_size(bp->rx_queues[0]->mb_pool);
1875 		size -= RTE_PKTMBUF_HEADROOM;
1876 
1877 		if (size < new_mtu) {
1878 			rc = bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
1879 			if (rc)
1880 				return rc;
1881 		}
1882 	}
1883 
1884 	return rc;
1885 }
1886 
1887 static int
1888 bnxt_vlan_pvid_set_op(struct rte_eth_dev *dev, uint16_t pvid, int on)
1889 {
1890 	struct bnxt *bp = dev->data->dev_private;
1891 	uint16_t vlan = bp->vlan;
1892 	int rc;
1893 
1894 	if (!BNXT_SINGLE_PF(bp) || BNXT_VF(bp)) {
1895 		PMD_DRV_LOG(ERR,
1896 			"PVID cannot be modified for this function\n");
1897 		return -ENOTSUP;
1898 	}
1899 	bp->vlan = on ? pvid : 0;
1900 
1901 	rc = bnxt_hwrm_set_default_vlan(bp, 0, 0);
1902 	if (rc)
1903 		bp->vlan = vlan;
1904 	return rc;
1905 }
1906 
1907 static int
1908 bnxt_dev_led_on_op(struct rte_eth_dev *dev)
1909 {
1910 	struct bnxt *bp = dev->data->dev_private;
1911 
1912 	return bnxt_hwrm_port_led_cfg(bp, true);
1913 }
1914 
1915 static int
1916 bnxt_dev_led_off_op(struct rte_eth_dev *dev)
1917 {
1918 	struct bnxt *bp = dev->data->dev_private;
1919 
1920 	return bnxt_hwrm_port_led_cfg(bp, false);
1921 }
1922 
1923 static uint32_t
1924 bnxt_rx_queue_count_op(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1925 {
1926 	uint32_t desc = 0, raw_cons = 0, cons;
1927 	struct bnxt_cp_ring_info *cpr;
1928 	struct bnxt_rx_queue *rxq;
1929 	struct rx_pkt_cmpl *rxcmp;
1930 	uint16_t cmp_type;
1931 	uint8_t cmp = 1;
1932 	bool valid;
1933 
1934 	rxq = dev->data->rx_queues[rx_queue_id];
1935 	cpr = rxq->cp_ring;
1936 	valid = cpr->valid;
1937 
1938 	while (raw_cons < rxq->nb_rx_desc) {
1939 		cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
1940 		rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1941 
1942 		if (!CMPL_VALID(rxcmp, valid))
1943 			goto nothing_to_do;
1944 		valid = FLIP_VALID(cons, cpr->cp_ring_struct->ring_mask, valid);
1945 		cmp_type = CMP_TYPE(rxcmp);
1946 		if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
1947 			cmp = (rte_le_to_cpu_32(
1948 					((struct rx_tpa_end_cmpl *)
1949 					 (rxcmp))->agg_bufs_v1) &
1950 			       RX_TPA_END_CMPL_AGG_BUFS_MASK) >>
1951 				RX_TPA_END_CMPL_AGG_BUFS_SFT;
1952 			desc++;
1953 		} else if (cmp_type == 0x11) {
1954 			desc++;
1955 			cmp = (rxcmp->agg_bufs_v1 &
1956 				   RX_PKT_CMPL_AGG_BUFS_MASK) >>
1957 				RX_PKT_CMPL_AGG_BUFS_SFT;
1958 		} else {
1959 			cmp = 1;
1960 		}
1961 nothing_to_do:
1962 		raw_cons += cmp ? cmp : 2;
1963 	}
1964 
1965 	return desc;
1966 }
1967 
1968 static int
1969 bnxt_rx_descriptor_status_op(void *rx_queue, uint16_t offset)
1970 {
1971 	struct bnxt_rx_queue *rxq = (struct bnxt_rx_queue *)rx_queue;
1972 	struct bnxt_rx_ring_info *rxr;
1973 	struct bnxt_cp_ring_info *cpr;
1974 	struct bnxt_sw_rx_bd *rx_buf;
1975 	struct rx_pkt_cmpl *rxcmp;
1976 	uint32_t cons, cp_cons;
1977 
1978 	if (!rxq)
1979 		return -EINVAL;
1980 
1981 	cpr = rxq->cp_ring;
1982 	rxr = rxq->rx_ring;
1983 
1984 	if (offset >= rxq->nb_rx_desc)
1985 		return -EINVAL;
1986 
1987 	cons = RING_CMP(cpr->cp_ring_struct, offset);
1988 	cp_cons = cpr->cp_raw_cons;
1989 	rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1990 
1991 	if (cons > cp_cons) {
1992 		if (CMPL_VALID(rxcmp, cpr->valid))
1993 			return RTE_ETH_RX_DESC_DONE;
1994 	} else {
1995 		if (CMPL_VALID(rxcmp, !cpr->valid))
1996 			return RTE_ETH_RX_DESC_DONE;
1997 	}
1998 	rx_buf = &rxr->rx_buf_ring[cons];
1999 	if (rx_buf->mbuf == NULL)
2000 		return RTE_ETH_RX_DESC_UNAVAIL;
2001 
2002 
2003 	return RTE_ETH_RX_DESC_AVAIL;
2004 }
2005 
2006 static int
2007 bnxt_tx_descriptor_status_op(void *tx_queue, uint16_t offset)
2008 {
2009 	struct bnxt_tx_queue *txq = (struct bnxt_tx_queue *)tx_queue;
2010 	struct bnxt_tx_ring_info *txr;
2011 	struct bnxt_cp_ring_info *cpr;
2012 	struct bnxt_sw_tx_bd *tx_buf;
2013 	struct tx_pkt_cmpl *txcmp;
2014 	uint32_t cons, cp_cons;
2015 
2016 	if (!txq)
2017 		return -EINVAL;
2018 
2019 	cpr = txq->cp_ring;
2020 	txr = txq->tx_ring;
2021 
2022 	if (offset >= txq->nb_tx_desc)
2023 		return -EINVAL;
2024 
2025 	cons = RING_CMP(cpr->cp_ring_struct, offset);
2026 	txcmp = (struct tx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
2027 	cp_cons = cpr->cp_raw_cons;
2028 
2029 	if (cons > cp_cons) {
2030 		if (CMPL_VALID(txcmp, cpr->valid))
2031 			return RTE_ETH_TX_DESC_UNAVAIL;
2032 	} else {
2033 		if (CMPL_VALID(txcmp, !cpr->valid))
2034 			return RTE_ETH_TX_DESC_UNAVAIL;
2035 	}
2036 	tx_buf = &txr->tx_buf_ring[cons];
2037 	if (tx_buf->mbuf == NULL)
2038 		return RTE_ETH_TX_DESC_DONE;
2039 
2040 	return RTE_ETH_TX_DESC_FULL;
2041 }
2042 
2043 static struct bnxt_filter_info *
2044 bnxt_match_and_validate_ether_filter(struct bnxt *bp,
2045 				struct rte_eth_ethertype_filter *efilter,
2046 				struct bnxt_vnic_info *vnic0,
2047 				struct bnxt_vnic_info *vnic,
2048 				int *ret)
2049 {
2050 	struct bnxt_filter_info *mfilter = NULL;
2051 	int match = 0;
2052 	*ret = 0;
2053 
2054 	if (efilter->ether_type == RTE_ETHER_TYPE_IPV4 ||
2055 		efilter->ether_type == RTE_ETHER_TYPE_IPV6) {
2056 		PMD_DRV_LOG(ERR, "invalid ether_type(0x%04x) in"
2057 			" ethertype filter.", efilter->ether_type);
2058 		*ret = -EINVAL;
2059 		goto exit;
2060 	}
2061 	if (efilter->queue >= bp->rx_nr_rings) {
2062 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", efilter->queue);
2063 		*ret = -EINVAL;
2064 		goto exit;
2065 	}
2066 
2067 	vnic0 = &bp->vnic_info[0];
2068 	vnic = &bp->vnic_info[efilter->queue];
2069 	if (vnic == NULL) {
2070 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", efilter->queue);
2071 		*ret = -EINVAL;
2072 		goto exit;
2073 	}
2074 
2075 	if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
2076 		STAILQ_FOREACH(mfilter, &vnic0->filter, next) {
2077 			if ((!memcmp(efilter->mac_addr.addr_bytes,
2078 				     mfilter->l2_addr, RTE_ETHER_ADDR_LEN) &&
2079 			     mfilter->flags ==
2080 			     HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP &&
2081 			     mfilter->ethertype == efilter->ether_type)) {
2082 				match = 1;
2083 				break;
2084 			}
2085 		}
2086 	} else {
2087 		STAILQ_FOREACH(mfilter, &vnic->filter, next)
2088 			if ((!memcmp(efilter->mac_addr.addr_bytes,
2089 				     mfilter->l2_addr, RTE_ETHER_ADDR_LEN) &&
2090 			     mfilter->ethertype == efilter->ether_type &&
2091 			     mfilter->flags ==
2092 			     HWRM_CFA_L2_FILTER_CFG_INPUT_FLAGS_PATH_RX)) {
2093 				match = 1;
2094 				break;
2095 			}
2096 	}
2097 
2098 	if (match)
2099 		*ret = -EEXIST;
2100 
2101 exit:
2102 	return mfilter;
2103 }
2104 
2105 static int
2106 bnxt_ethertype_filter(struct rte_eth_dev *dev,
2107 			enum rte_filter_op filter_op,
2108 			void *arg)
2109 {
2110 	struct bnxt *bp = dev->data->dev_private;
2111 	struct rte_eth_ethertype_filter *efilter =
2112 			(struct rte_eth_ethertype_filter *)arg;
2113 	struct bnxt_filter_info *bfilter, *filter1;
2114 	struct bnxt_vnic_info *vnic, *vnic0;
2115 	int ret;
2116 
2117 	if (filter_op == RTE_ETH_FILTER_NOP)
2118 		return 0;
2119 
2120 	if (arg == NULL) {
2121 		PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
2122 			    filter_op);
2123 		return -EINVAL;
2124 	}
2125 
2126 	vnic0 = &bp->vnic_info[0];
2127 	vnic = &bp->vnic_info[efilter->queue];
2128 
2129 	switch (filter_op) {
2130 	case RTE_ETH_FILTER_ADD:
2131 		bnxt_match_and_validate_ether_filter(bp, efilter,
2132 							vnic0, vnic, &ret);
2133 		if (ret < 0)
2134 			return ret;
2135 
2136 		bfilter = bnxt_get_unused_filter(bp);
2137 		if (bfilter == NULL) {
2138 			PMD_DRV_LOG(ERR,
2139 				"Not enough resources for a new filter.\n");
2140 			return -ENOMEM;
2141 		}
2142 		bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
2143 		memcpy(bfilter->l2_addr, efilter->mac_addr.addr_bytes,
2144 		       RTE_ETHER_ADDR_LEN);
2145 		memcpy(bfilter->dst_macaddr, efilter->mac_addr.addr_bytes,
2146 		       RTE_ETHER_ADDR_LEN);
2147 		bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
2148 		bfilter->ethertype = efilter->ether_type;
2149 		bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2150 
2151 		filter1 = bnxt_get_l2_filter(bp, bfilter, vnic0);
2152 		if (filter1 == NULL) {
2153 			ret = -EINVAL;
2154 			goto cleanup;
2155 		}
2156 		bfilter->enables |=
2157 			HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
2158 		bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
2159 
2160 		bfilter->dst_id = vnic->fw_vnic_id;
2161 
2162 		if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
2163 			bfilter->flags =
2164 				HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
2165 		}
2166 
2167 		ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
2168 		if (ret)
2169 			goto cleanup;
2170 		STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
2171 		break;
2172 	case RTE_ETH_FILTER_DELETE:
2173 		filter1 = bnxt_match_and_validate_ether_filter(bp, efilter,
2174 							vnic0, vnic, &ret);
2175 		if (ret == -EEXIST) {
2176 			ret = bnxt_hwrm_clear_ntuple_filter(bp, filter1);
2177 
2178 			STAILQ_REMOVE(&vnic->filter, filter1, bnxt_filter_info,
2179 				      next);
2180 			bnxt_free_filter(bp, filter1);
2181 		} else if (ret == 0) {
2182 			PMD_DRV_LOG(ERR, "No matching filter found\n");
2183 		}
2184 		break;
2185 	default:
2186 		PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
2187 		ret = -EINVAL;
2188 		goto error;
2189 	}
2190 	return ret;
2191 cleanup:
2192 	bnxt_free_filter(bp, bfilter);
2193 error:
2194 	return ret;
2195 }
2196 
2197 static inline int
2198 parse_ntuple_filter(struct bnxt *bp,
2199 		    struct rte_eth_ntuple_filter *nfilter,
2200 		    struct bnxt_filter_info *bfilter)
2201 {
2202 	uint32_t en = 0;
2203 
2204 	if (nfilter->queue >= bp->rx_nr_rings) {
2205 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", nfilter->queue);
2206 		return -EINVAL;
2207 	}
2208 
2209 	switch (nfilter->dst_port_mask) {
2210 	case UINT16_MAX:
2211 		bfilter->dst_port_mask = -1;
2212 		bfilter->dst_port = nfilter->dst_port;
2213 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT |
2214 			NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2215 		break;
2216 	default:
2217 		PMD_DRV_LOG(ERR, "invalid dst_port mask.");
2218 		return -EINVAL;
2219 	}
2220 
2221 	bfilter->ip_addr_type = NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2222 	en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2223 
2224 	switch (nfilter->proto_mask) {
2225 	case UINT8_MAX:
2226 		if (nfilter->proto == 17) /* IPPROTO_UDP */
2227 			bfilter->ip_protocol = 17;
2228 		else if (nfilter->proto == 6) /* IPPROTO_TCP */
2229 			bfilter->ip_protocol = 6;
2230 		else
2231 			return -EINVAL;
2232 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2233 		break;
2234 	default:
2235 		PMD_DRV_LOG(ERR, "invalid protocol mask.");
2236 		return -EINVAL;
2237 	}
2238 
2239 	switch (nfilter->dst_ip_mask) {
2240 	case UINT32_MAX:
2241 		bfilter->dst_ipaddr_mask[0] = -1;
2242 		bfilter->dst_ipaddr[0] = nfilter->dst_ip;
2243 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR |
2244 			NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2245 		break;
2246 	default:
2247 		PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
2248 		return -EINVAL;
2249 	}
2250 
2251 	switch (nfilter->src_ip_mask) {
2252 	case UINT32_MAX:
2253 		bfilter->src_ipaddr_mask[0] = -1;
2254 		bfilter->src_ipaddr[0] = nfilter->src_ip;
2255 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR |
2256 			NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2257 		break;
2258 	default:
2259 		PMD_DRV_LOG(ERR, "invalid src_ip mask.");
2260 		return -EINVAL;
2261 	}
2262 
2263 	switch (nfilter->src_port_mask) {
2264 	case UINT16_MAX:
2265 		bfilter->src_port_mask = -1;
2266 		bfilter->src_port = nfilter->src_port;
2267 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT |
2268 			NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2269 		break;
2270 	default:
2271 		PMD_DRV_LOG(ERR, "invalid src_port mask.");
2272 		return -EINVAL;
2273 	}
2274 
2275 	//TODO Priority
2276 	//nfilter->priority = (uint8_t)filter->priority;
2277 
2278 	bfilter->enables = en;
2279 	return 0;
2280 }
2281 
2282 static struct bnxt_filter_info*
2283 bnxt_match_ntuple_filter(struct bnxt *bp,
2284 			 struct bnxt_filter_info *bfilter,
2285 			 struct bnxt_vnic_info **mvnic)
2286 {
2287 	struct bnxt_filter_info *mfilter = NULL;
2288 	int i;
2289 
2290 	for (i = bp->nr_vnics - 1; i >= 0; i--) {
2291 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2292 		STAILQ_FOREACH(mfilter, &vnic->filter, next) {
2293 			if (bfilter->src_ipaddr[0] == mfilter->src_ipaddr[0] &&
2294 			    bfilter->src_ipaddr_mask[0] ==
2295 			    mfilter->src_ipaddr_mask[0] &&
2296 			    bfilter->src_port == mfilter->src_port &&
2297 			    bfilter->src_port_mask == mfilter->src_port_mask &&
2298 			    bfilter->dst_ipaddr[0] == mfilter->dst_ipaddr[0] &&
2299 			    bfilter->dst_ipaddr_mask[0] ==
2300 			    mfilter->dst_ipaddr_mask[0] &&
2301 			    bfilter->dst_port == mfilter->dst_port &&
2302 			    bfilter->dst_port_mask == mfilter->dst_port_mask &&
2303 			    bfilter->flags == mfilter->flags &&
2304 			    bfilter->enables == mfilter->enables) {
2305 				if (mvnic)
2306 					*mvnic = vnic;
2307 				return mfilter;
2308 			}
2309 		}
2310 	}
2311 	return NULL;
2312 }
2313 
2314 static int
2315 bnxt_cfg_ntuple_filter(struct bnxt *bp,
2316 		       struct rte_eth_ntuple_filter *nfilter,
2317 		       enum rte_filter_op filter_op)
2318 {
2319 	struct bnxt_filter_info *bfilter, *mfilter, *filter1;
2320 	struct bnxt_vnic_info *vnic, *vnic0, *mvnic;
2321 	int ret;
2322 
2323 	if (nfilter->flags != RTE_5TUPLE_FLAGS) {
2324 		PMD_DRV_LOG(ERR, "only 5tuple is supported.");
2325 		return -EINVAL;
2326 	}
2327 
2328 	if (nfilter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG) {
2329 		PMD_DRV_LOG(ERR, "Ntuple filter: TCP flags not supported\n");
2330 		return -EINVAL;
2331 	}
2332 
2333 	bfilter = bnxt_get_unused_filter(bp);
2334 	if (bfilter == NULL) {
2335 		PMD_DRV_LOG(ERR,
2336 			"Not enough resources for a new filter.\n");
2337 		return -ENOMEM;
2338 	}
2339 	ret = parse_ntuple_filter(bp, nfilter, bfilter);
2340 	if (ret < 0)
2341 		goto free_filter;
2342 
2343 	vnic = &bp->vnic_info[nfilter->queue];
2344 	vnic0 = &bp->vnic_info[0];
2345 	filter1 = STAILQ_FIRST(&vnic0->filter);
2346 	if (filter1 == NULL) {
2347 		ret = -EINVAL;
2348 		goto free_filter;
2349 	}
2350 
2351 	bfilter->dst_id = vnic->fw_vnic_id;
2352 	bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
2353 	bfilter->enables |=
2354 		HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
2355 	bfilter->ethertype = 0x800;
2356 	bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2357 
2358 	mfilter = bnxt_match_ntuple_filter(bp, bfilter, &mvnic);
2359 
2360 	if (mfilter != NULL && filter_op == RTE_ETH_FILTER_ADD &&
2361 	    bfilter->dst_id == mfilter->dst_id) {
2362 		PMD_DRV_LOG(ERR, "filter exists.\n");
2363 		ret = -EEXIST;
2364 		goto free_filter;
2365 	} else if (mfilter != NULL && filter_op == RTE_ETH_FILTER_ADD &&
2366 		   bfilter->dst_id != mfilter->dst_id) {
2367 		mfilter->dst_id = vnic->fw_vnic_id;
2368 		ret = bnxt_hwrm_set_ntuple_filter(bp, mfilter->dst_id, mfilter);
2369 		STAILQ_REMOVE(&mvnic->filter, mfilter, bnxt_filter_info, next);
2370 		STAILQ_INSERT_TAIL(&vnic->filter, mfilter, next);
2371 		PMD_DRV_LOG(ERR, "filter with matching pattern exists.\n");
2372 		PMD_DRV_LOG(ERR, " Updated it to the new destination queue\n");
2373 		goto free_filter;
2374 	}
2375 	if (mfilter == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
2376 		PMD_DRV_LOG(ERR, "filter doesn't exist.");
2377 		ret = -ENOENT;
2378 		goto free_filter;
2379 	}
2380 
2381 	if (filter_op == RTE_ETH_FILTER_ADD) {
2382 		bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
2383 		ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
2384 		if (ret)
2385 			goto free_filter;
2386 		STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
2387 	} else {
2388 		if (mfilter == NULL) {
2389 			/* This should not happen. But for Coverity! */
2390 			ret = -ENOENT;
2391 			goto free_filter;
2392 		}
2393 		ret = bnxt_hwrm_clear_ntuple_filter(bp, mfilter);
2394 
2395 		STAILQ_REMOVE(&vnic->filter, mfilter, bnxt_filter_info, next);
2396 		bnxt_free_filter(bp, mfilter);
2397 		mfilter->fw_l2_filter_id = -1;
2398 		bnxt_free_filter(bp, bfilter);
2399 		bfilter->fw_l2_filter_id = -1;
2400 	}
2401 
2402 	return 0;
2403 free_filter:
2404 	bfilter->fw_l2_filter_id = -1;
2405 	bnxt_free_filter(bp, bfilter);
2406 	return ret;
2407 }
2408 
2409 static int
2410 bnxt_ntuple_filter(struct rte_eth_dev *dev,
2411 			enum rte_filter_op filter_op,
2412 			void *arg)
2413 {
2414 	struct bnxt *bp = dev->data->dev_private;
2415 	int ret;
2416 
2417 	if (filter_op == RTE_ETH_FILTER_NOP)
2418 		return 0;
2419 
2420 	if (arg == NULL) {
2421 		PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
2422 			    filter_op);
2423 		return -EINVAL;
2424 	}
2425 
2426 	switch (filter_op) {
2427 	case RTE_ETH_FILTER_ADD:
2428 		ret = bnxt_cfg_ntuple_filter(bp,
2429 			(struct rte_eth_ntuple_filter *)arg,
2430 			filter_op);
2431 		break;
2432 	case RTE_ETH_FILTER_DELETE:
2433 		ret = bnxt_cfg_ntuple_filter(bp,
2434 			(struct rte_eth_ntuple_filter *)arg,
2435 			filter_op);
2436 		break;
2437 	default:
2438 		PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
2439 		ret = -EINVAL;
2440 		break;
2441 	}
2442 	return ret;
2443 }
2444 
2445 static int
2446 bnxt_parse_fdir_filter(struct bnxt *bp,
2447 		       struct rte_eth_fdir_filter *fdir,
2448 		       struct bnxt_filter_info *filter)
2449 {
2450 	enum rte_fdir_mode fdir_mode =
2451 		bp->eth_dev->data->dev_conf.fdir_conf.mode;
2452 	struct bnxt_vnic_info *vnic0, *vnic;
2453 	struct bnxt_filter_info *filter1;
2454 	uint32_t en = 0;
2455 	int i;
2456 
2457 	if (fdir_mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2458 		return -EINVAL;
2459 
2460 	filter->l2_ovlan = fdir->input.flow_ext.vlan_tci;
2461 	en |= EM_FLOW_ALLOC_INPUT_EN_OVLAN_VID;
2462 
2463 	switch (fdir->input.flow_type) {
2464 	case RTE_ETH_FLOW_IPV4:
2465 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2466 		/* FALLTHROUGH */
2467 		filter->src_ipaddr[0] = fdir->input.flow.ip4_flow.src_ip;
2468 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2469 		filter->dst_ipaddr[0] = fdir->input.flow.ip4_flow.dst_ip;
2470 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2471 		filter->ip_protocol = fdir->input.flow.ip4_flow.proto;
2472 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2473 		filter->ip_addr_type =
2474 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2475 		filter->src_ipaddr_mask[0] = 0xffffffff;
2476 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2477 		filter->dst_ipaddr_mask[0] = 0xffffffff;
2478 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2479 		filter->ethertype = 0x800;
2480 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2481 		break;
2482 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2483 		filter->src_port = fdir->input.flow.tcp4_flow.src_port;
2484 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2485 		filter->dst_port = fdir->input.flow.tcp4_flow.dst_port;
2486 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2487 		filter->dst_port_mask = 0xffff;
2488 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2489 		filter->src_port_mask = 0xffff;
2490 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2491 		filter->src_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.src_ip;
2492 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2493 		filter->dst_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.dst_ip;
2494 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2495 		filter->ip_protocol = 6;
2496 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2497 		filter->ip_addr_type =
2498 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2499 		filter->src_ipaddr_mask[0] = 0xffffffff;
2500 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2501 		filter->dst_ipaddr_mask[0] = 0xffffffff;
2502 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2503 		filter->ethertype = 0x800;
2504 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2505 		break;
2506 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2507 		filter->src_port = fdir->input.flow.udp4_flow.src_port;
2508 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2509 		filter->dst_port = fdir->input.flow.udp4_flow.dst_port;
2510 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2511 		filter->dst_port_mask = 0xffff;
2512 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2513 		filter->src_port_mask = 0xffff;
2514 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2515 		filter->src_ipaddr[0] = fdir->input.flow.udp4_flow.ip.src_ip;
2516 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2517 		filter->dst_ipaddr[0] = fdir->input.flow.udp4_flow.ip.dst_ip;
2518 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2519 		filter->ip_protocol = 17;
2520 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2521 		filter->ip_addr_type =
2522 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2523 		filter->src_ipaddr_mask[0] = 0xffffffff;
2524 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2525 		filter->dst_ipaddr_mask[0] = 0xffffffff;
2526 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2527 		filter->ethertype = 0x800;
2528 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2529 		break;
2530 	case RTE_ETH_FLOW_IPV6:
2531 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2532 		/* FALLTHROUGH */
2533 		filter->ip_addr_type =
2534 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2535 		filter->ip_protocol = fdir->input.flow.ipv6_flow.proto;
2536 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2537 		rte_memcpy(filter->src_ipaddr,
2538 			   fdir->input.flow.ipv6_flow.src_ip, 16);
2539 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2540 		rte_memcpy(filter->dst_ipaddr,
2541 			   fdir->input.flow.ipv6_flow.dst_ip, 16);
2542 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2543 		memset(filter->dst_ipaddr_mask, 0xff, 16);
2544 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2545 		memset(filter->src_ipaddr_mask, 0xff, 16);
2546 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2547 		filter->ethertype = 0x86dd;
2548 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2549 		break;
2550 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2551 		filter->src_port = fdir->input.flow.tcp6_flow.src_port;
2552 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2553 		filter->dst_port = fdir->input.flow.tcp6_flow.dst_port;
2554 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2555 		filter->dst_port_mask = 0xffff;
2556 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2557 		filter->src_port_mask = 0xffff;
2558 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2559 		filter->ip_addr_type =
2560 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2561 		filter->ip_protocol = fdir->input.flow.tcp6_flow.ip.proto;
2562 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2563 		rte_memcpy(filter->src_ipaddr,
2564 			   fdir->input.flow.tcp6_flow.ip.src_ip, 16);
2565 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2566 		rte_memcpy(filter->dst_ipaddr,
2567 			   fdir->input.flow.tcp6_flow.ip.dst_ip, 16);
2568 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2569 		memset(filter->dst_ipaddr_mask, 0xff, 16);
2570 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2571 		memset(filter->src_ipaddr_mask, 0xff, 16);
2572 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2573 		filter->ethertype = 0x86dd;
2574 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2575 		break;
2576 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2577 		filter->src_port = fdir->input.flow.udp6_flow.src_port;
2578 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2579 		filter->dst_port = fdir->input.flow.udp6_flow.dst_port;
2580 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2581 		filter->dst_port_mask = 0xffff;
2582 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2583 		filter->src_port_mask = 0xffff;
2584 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2585 		filter->ip_addr_type =
2586 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2587 		filter->ip_protocol = fdir->input.flow.udp6_flow.ip.proto;
2588 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2589 		rte_memcpy(filter->src_ipaddr,
2590 			   fdir->input.flow.udp6_flow.ip.src_ip, 16);
2591 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2592 		rte_memcpy(filter->dst_ipaddr,
2593 			   fdir->input.flow.udp6_flow.ip.dst_ip, 16);
2594 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2595 		memset(filter->dst_ipaddr_mask, 0xff, 16);
2596 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2597 		memset(filter->src_ipaddr_mask, 0xff, 16);
2598 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2599 		filter->ethertype = 0x86dd;
2600 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2601 		break;
2602 	case RTE_ETH_FLOW_L2_PAYLOAD:
2603 		filter->ethertype = fdir->input.flow.l2_flow.ether_type;
2604 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2605 		break;
2606 	case RTE_ETH_FLOW_VXLAN:
2607 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2608 			return -EINVAL;
2609 		filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
2610 		filter->tunnel_type =
2611 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
2612 		en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
2613 		break;
2614 	case RTE_ETH_FLOW_NVGRE:
2615 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2616 			return -EINVAL;
2617 		filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
2618 		filter->tunnel_type =
2619 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_NVGRE;
2620 		en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
2621 		break;
2622 	case RTE_ETH_FLOW_UNKNOWN:
2623 	case RTE_ETH_FLOW_RAW:
2624 	case RTE_ETH_FLOW_FRAG_IPV4:
2625 	case RTE_ETH_FLOW_NONFRAG_IPV4_SCTP:
2626 	case RTE_ETH_FLOW_FRAG_IPV6:
2627 	case RTE_ETH_FLOW_NONFRAG_IPV6_SCTP:
2628 	case RTE_ETH_FLOW_IPV6_EX:
2629 	case RTE_ETH_FLOW_IPV6_TCP_EX:
2630 	case RTE_ETH_FLOW_IPV6_UDP_EX:
2631 	case RTE_ETH_FLOW_GENEVE:
2632 		/* FALLTHROUGH */
2633 	default:
2634 		return -EINVAL;
2635 	}
2636 
2637 	vnic0 = &bp->vnic_info[0];
2638 	vnic = &bp->vnic_info[fdir->action.rx_queue];
2639 	if (vnic == NULL) {
2640 		PMD_DRV_LOG(ERR, "Invalid queue %d\n", fdir->action.rx_queue);
2641 		return -EINVAL;
2642 	}
2643 
2644 
2645 	if (fdir_mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2646 		rte_memcpy(filter->dst_macaddr,
2647 			fdir->input.flow.mac_vlan_flow.mac_addr.addr_bytes, 6);
2648 			en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
2649 	}
2650 
2651 	if (fdir->action.behavior == RTE_ETH_FDIR_REJECT) {
2652 		filter->flags = HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
2653 		filter1 = STAILQ_FIRST(&vnic0->filter);
2654 		//filter1 = bnxt_get_l2_filter(bp, filter, vnic0);
2655 	} else {
2656 		filter->dst_id = vnic->fw_vnic_id;
2657 		for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
2658 			if (filter->dst_macaddr[i] == 0x00)
2659 				filter1 = STAILQ_FIRST(&vnic0->filter);
2660 			else
2661 				filter1 = bnxt_get_l2_filter(bp, filter, vnic);
2662 	}
2663 
2664 	if (filter1 == NULL)
2665 		return -EINVAL;
2666 
2667 	en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
2668 	filter->fw_l2_filter_id = filter1->fw_l2_filter_id;
2669 
2670 	filter->enables = en;
2671 
2672 	return 0;
2673 }
2674 
2675 static struct bnxt_filter_info *
2676 bnxt_match_fdir(struct bnxt *bp, struct bnxt_filter_info *nf,
2677 		struct bnxt_vnic_info **mvnic)
2678 {
2679 	struct bnxt_filter_info *mf = NULL;
2680 	int i;
2681 
2682 	for (i = bp->nr_vnics - 1; i >= 0; i--) {
2683 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2684 
2685 		STAILQ_FOREACH(mf, &vnic->filter, next) {
2686 			if (mf->filter_type == nf->filter_type &&
2687 			    mf->flags == nf->flags &&
2688 			    mf->src_port == nf->src_port &&
2689 			    mf->src_port_mask == nf->src_port_mask &&
2690 			    mf->dst_port == nf->dst_port &&
2691 			    mf->dst_port_mask == nf->dst_port_mask &&
2692 			    mf->ip_protocol == nf->ip_protocol &&
2693 			    mf->ip_addr_type == nf->ip_addr_type &&
2694 			    mf->ethertype == nf->ethertype &&
2695 			    mf->vni == nf->vni &&
2696 			    mf->tunnel_type == nf->tunnel_type &&
2697 			    mf->l2_ovlan == nf->l2_ovlan &&
2698 			    mf->l2_ovlan_mask == nf->l2_ovlan_mask &&
2699 			    mf->l2_ivlan == nf->l2_ivlan &&
2700 			    mf->l2_ivlan_mask == nf->l2_ivlan_mask &&
2701 			    !memcmp(mf->l2_addr, nf->l2_addr,
2702 				    RTE_ETHER_ADDR_LEN) &&
2703 			    !memcmp(mf->l2_addr_mask, nf->l2_addr_mask,
2704 				    RTE_ETHER_ADDR_LEN) &&
2705 			    !memcmp(mf->src_macaddr, nf->src_macaddr,
2706 				    RTE_ETHER_ADDR_LEN) &&
2707 			    !memcmp(mf->dst_macaddr, nf->dst_macaddr,
2708 				    RTE_ETHER_ADDR_LEN) &&
2709 			    !memcmp(mf->src_ipaddr, nf->src_ipaddr,
2710 				    sizeof(nf->src_ipaddr)) &&
2711 			    !memcmp(mf->src_ipaddr_mask, nf->src_ipaddr_mask,
2712 				    sizeof(nf->src_ipaddr_mask)) &&
2713 			    !memcmp(mf->dst_ipaddr, nf->dst_ipaddr,
2714 				    sizeof(nf->dst_ipaddr)) &&
2715 			    !memcmp(mf->dst_ipaddr_mask, nf->dst_ipaddr_mask,
2716 				    sizeof(nf->dst_ipaddr_mask))) {
2717 				if (mvnic)
2718 					*mvnic = vnic;
2719 				return mf;
2720 			}
2721 		}
2722 	}
2723 	return NULL;
2724 }
2725 
2726 static int
2727 bnxt_fdir_filter(struct rte_eth_dev *dev,
2728 		 enum rte_filter_op filter_op,
2729 		 void *arg)
2730 {
2731 	struct bnxt *bp = dev->data->dev_private;
2732 	struct rte_eth_fdir_filter *fdir  = (struct rte_eth_fdir_filter *)arg;
2733 	struct bnxt_filter_info *filter, *match;
2734 	struct bnxt_vnic_info *vnic, *mvnic;
2735 	int ret = 0, i;
2736 
2737 	if (filter_op == RTE_ETH_FILTER_NOP)
2738 		return 0;
2739 
2740 	if (arg == NULL && filter_op != RTE_ETH_FILTER_FLUSH)
2741 		return -EINVAL;
2742 
2743 	switch (filter_op) {
2744 	case RTE_ETH_FILTER_ADD:
2745 	case RTE_ETH_FILTER_DELETE:
2746 		/* FALLTHROUGH */
2747 		filter = bnxt_get_unused_filter(bp);
2748 		if (filter == NULL) {
2749 			PMD_DRV_LOG(ERR,
2750 				"Not enough resources for a new flow.\n");
2751 			return -ENOMEM;
2752 		}
2753 
2754 		ret = bnxt_parse_fdir_filter(bp, fdir, filter);
2755 		if (ret != 0)
2756 			goto free_filter;
2757 		filter->filter_type = HWRM_CFA_NTUPLE_FILTER;
2758 
2759 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2760 			vnic = &bp->vnic_info[0];
2761 		else
2762 			vnic = &bp->vnic_info[fdir->action.rx_queue];
2763 
2764 		match = bnxt_match_fdir(bp, filter, &mvnic);
2765 		if (match != NULL && filter_op == RTE_ETH_FILTER_ADD) {
2766 			if (match->dst_id == vnic->fw_vnic_id) {
2767 				PMD_DRV_LOG(ERR, "Flow already exists.\n");
2768 				ret = -EEXIST;
2769 				goto free_filter;
2770 			} else {
2771 				match->dst_id = vnic->fw_vnic_id;
2772 				ret = bnxt_hwrm_set_ntuple_filter(bp,
2773 								  match->dst_id,
2774 								  match);
2775 				STAILQ_REMOVE(&mvnic->filter, match,
2776 					      bnxt_filter_info, next);
2777 				STAILQ_INSERT_TAIL(&vnic->filter, match, next);
2778 				PMD_DRV_LOG(ERR,
2779 					"Filter with matching pattern exist\n");
2780 				PMD_DRV_LOG(ERR,
2781 					"Updated it to new destination q\n");
2782 				goto free_filter;
2783 			}
2784 		}
2785 		if (match == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
2786 			PMD_DRV_LOG(ERR, "Flow does not exist.\n");
2787 			ret = -ENOENT;
2788 			goto free_filter;
2789 		}
2790 
2791 		if (filter_op == RTE_ETH_FILTER_ADD) {
2792 			ret = bnxt_hwrm_set_ntuple_filter(bp,
2793 							  filter->dst_id,
2794 							  filter);
2795 			if (ret)
2796 				goto free_filter;
2797 			STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
2798 		} else {
2799 			ret = bnxt_hwrm_clear_ntuple_filter(bp, match);
2800 			STAILQ_REMOVE(&vnic->filter, match,
2801 				      bnxt_filter_info, next);
2802 			bnxt_free_filter(bp, match);
2803 			filter->fw_l2_filter_id = -1;
2804 			bnxt_free_filter(bp, filter);
2805 		}
2806 		break;
2807 	case RTE_ETH_FILTER_FLUSH:
2808 		for (i = bp->nr_vnics - 1; i >= 0; i--) {
2809 			struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2810 
2811 			STAILQ_FOREACH(filter, &vnic->filter, next) {
2812 				if (filter->filter_type ==
2813 				    HWRM_CFA_NTUPLE_FILTER) {
2814 					ret =
2815 					bnxt_hwrm_clear_ntuple_filter(bp,
2816 								      filter);
2817 					STAILQ_REMOVE(&vnic->filter, filter,
2818 						      bnxt_filter_info, next);
2819 				}
2820 			}
2821 		}
2822 		return ret;
2823 	case RTE_ETH_FILTER_UPDATE:
2824 	case RTE_ETH_FILTER_STATS:
2825 	case RTE_ETH_FILTER_INFO:
2826 		PMD_DRV_LOG(ERR, "operation %u not implemented", filter_op);
2827 		break;
2828 	default:
2829 		PMD_DRV_LOG(ERR, "unknown operation %u", filter_op);
2830 		ret = -EINVAL;
2831 		break;
2832 	}
2833 	return ret;
2834 
2835 free_filter:
2836 	filter->fw_l2_filter_id = -1;
2837 	bnxt_free_filter(bp, filter);
2838 	return ret;
2839 }
2840 
2841 static int
2842 bnxt_filter_ctrl_op(struct rte_eth_dev *dev __rte_unused,
2843 		    enum rte_filter_type filter_type,
2844 		    enum rte_filter_op filter_op, void *arg)
2845 {
2846 	int ret = 0;
2847 
2848 	switch (filter_type) {
2849 	case RTE_ETH_FILTER_TUNNEL:
2850 		PMD_DRV_LOG(ERR,
2851 			"filter type: %d: To be implemented\n", filter_type);
2852 		break;
2853 	case RTE_ETH_FILTER_FDIR:
2854 		ret = bnxt_fdir_filter(dev, filter_op, arg);
2855 		break;
2856 	case RTE_ETH_FILTER_NTUPLE:
2857 		ret = bnxt_ntuple_filter(dev, filter_op, arg);
2858 		break;
2859 	case RTE_ETH_FILTER_ETHERTYPE:
2860 		ret = bnxt_ethertype_filter(dev, filter_op, arg);
2861 		break;
2862 	case RTE_ETH_FILTER_GENERIC:
2863 		if (filter_op != RTE_ETH_FILTER_GET)
2864 			return -EINVAL;
2865 		*(const void **)arg = &bnxt_flow_ops;
2866 		break;
2867 	default:
2868 		PMD_DRV_LOG(ERR,
2869 			"Filter type (%d) not supported", filter_type);
2870 		ret = -EINVAL;
2871 		break;
2872 	}
2873 	return ret;
2874 }
2875 
2876 static const uint32_t *
2877 bnxt_dev_supported_ptypes_get_op(struct rte_eth_dev *dev)
2878 {
2879 	static const uint32_t ptypes[] = {
2880 		RTE_PTYPE_L2_ETHER_VLAN,
2881 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
2882 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
2883 		RTE_PTYPE_L4_ICMP,
2884 		RTE_PTYPE_L4_TCP,
2885 		RTE_PTYPE_L4_UDP,
2886 		RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
2887 		RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
2888 		RTE_PTYPE_INNER_L4_ICMP,
2889 		RTE_PTYPE_INNER_L4_TCP,
2890 		RTE_PTYPE_INNER_L4_UDP,
2891 		RTE_PTYPE_UNKNOWN
2892 	};
2893 
2894 	if (!dev->rx_pkt_burst)
2895 		return NULL;
2896 
2897 	return ptypes;
2898 }
2899 
2900 static int bnxt_map_regs(struct bnxt *bp, uint32_t *reg_arr, int count,
2901 			 int reg_win)
2902 {
2903 	uint32_t reg_base = *reg_arr & 0xfffff000;
2904 	uint32_t win_off;
2905 	int i;
2906 
2907 	for (i = 0; i < count; i++) {
2908 		if ((reg_arr[i] & 0xfffff000) != reg_base)
2909 			return -ERANGE;
2910 	}
2911 	win_off = BNXT_GRCPF_REG_WINDOW_BASE_OUT + (reg_win - 1) * 4;
2912 	rte_write32(reg_base, (uint8_t *)bp->bar0 + win_off);
2913 	return 0;
2914 }
2915 
2916 static int bnxt_map_ptp_regs(struct bnxt *bp)
2917 {
2918 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2919 	uint32_t *reg_arr;
2920 	int rc, i;
2921 
2922 	reg_arr = ptp->rx_regs;
2923 	rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_RX_REGS, 5);
2924 	if (rc)
2925 		return rc;
2926 
2927 	reg_arr = ptp->tx_regs;
2928 	rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_TX_REGS, 6);
2929 	if (rc)
2930 		return rc;
2931 
2932 	for (i = 0; i < BNXT_PTP_RX_REGS; i++)
2933 		ptp->rx_mapped_regs[i] = 0x5000 + (ptp->rx_regs[i] & 0xfff);
2934 
2935 	for (i = 0; i < BNXT_PTP_TX_REGS; i++)
2936 		ptp->tx_mapped_regs[i] = 0x6000 + (ptp->tx_regs[i] & 0xfff);
2937 
2938 	return 0;
2939 }
2940 
2941 static void bnxt_unmap_ptp_regs(struct bnxt *bp)
2942 {
2943 	rte_write32(0, (uint8_t *)bp->bar0 +
2944 			 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 16);
2945 	rte_write32(0, (uint8_t *)bp->bar0 +
2946 			 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 20);
2947 }
2948 
2949 static uint64_t bnxt_cc_read(struct bnxt *bp)
2950 {
2951 	uint64_t ns;
2952 
2953 	ns = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2954 			      BNXT_GRCPF_REG_SYNC_TIME));
2955 	ns |= (uint64_t)(rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2956 					  BNXT_GRCPF_REG_SYNC_TIME + 4))) << 32;
2957 	return ns;
2958 }
2959 
2960 static int bnxt_get_tx_ts(struct bnxt *bp, uint64_t *ts)
2961 {
2962 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2963 	uint32_t fifo;
2964 
2965 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2966 				ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
2967 	if (fifo & BNXT_PTP_TX_FIFO_EMPTY)
2968 		return -EAGAIN;
2969 
2970 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2971 				ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
2972 	*ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2973 				ptp->tx_mapped_regs[BNXT_PTP_TX_TS_L]));
2974 	*ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2975 				ptp->tx_mapped_regs[BNXT_PTP_TX_TS_H])) << 32;
2976 
2977 	return 0;
2978 }
2979 
2980 static int bnxt_get_rx_ts(struct bnxt *bp, uint64_t *ts)
2981 {
2982 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2983 	struct bnxt_pf_info *pf = &bp->pf;
2984 	uint16_t port_id;
2985 	uint32_t fifo;
2986 
2987 	if (!ptp)
2988 		return -ENODEV;
2989 
2990 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2991 				ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
2992 	if (!(fifo & BNXT_PTP_RX_FIFO_PENDING))
2993 		return -EAGAIN;
2994 
2995 	port_id = pf->port_id;
2996 	rte_write32(1 << port_id, (uint8_t *)bp->bar0 +
2997 	       ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO_ADV]);
2998 
2999 	fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3000 				   ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
3001 	if (fifo & BNXT_PTP_RX_FIFO_PENDING) {
3002 /*		bnxt_clr_rx_ts(bp);	  TBD  */
3003 		return -EBUSY;
3004 	}
3005 
3006 	*ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3007 				ptp->rx_mapped_regs[BNXT_PTP_RX_TS_L]));
3008 	*ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
3009 				ptp->rx_mapped_regs[BNXT_PTP_RX_TS_H])) << 32;
3010 
3011 	return 0;
3012 }
3013 
3014 static int
3015 bnxt_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
3016 {
3017 	uint64_t ns;
3018 	struct bnxt *bp = dev->data->dev_private;
3019 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3020 
3021 	if (!ptp)
3022 		return 0;
3023 
3024 	ns = rte_timespec_to_ns(ts);
3025 	/* Set the timecounters to a new value. */
3026 	ptp->tc.nsec = ns;
3027 
3028 	return 0;
3029 }
3030 
3031 static int
3032 bnxt_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
3033 {
3034 	uint64_t ns, systime_cycles;
3035 	struct bnxt *bp = dev->data->dev_private;
3036 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3037 
3038 	if (!ptp)
3039 		return 0;
3040 
3041 	systime_cycles = bnxt_cc_read(bp);
3042 	ns = rte_timecounter_update(&ptp->tc, systime_cycles);
3043 	*ts = rte_ns_to_timespec(ns);
3044 
3045 	return 0;
3046 }
3047 static int
3048 bnxt_timesync_enable(struct rte_eth_dev *dev)
3049 {
3050 	struct bnxt *bp = dev->data->dev_private;
3051 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3052 	uint32_t shift = 0;
3053 
3054 	if (!ptp)
3055 		return 0;
3056 
3057 	ptp->rx_filter = 1;
3058 	ptp->tx_tstamp_en = 1;
3059 	ptp->rxctl = BNXT_PTP_MSG_EVENTS;
3060 
3061 	if (!bnxt_hwrm_ptp_cfg(bp))
3062 		bnxt_map_ptp_regs(bp);
3063 
3064 	memset(&ptp->tc, 0, sizeof(struct rte_timecounter));
3065 	memset(&ptp->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
3066 	memset(&ptp->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
3067 
3068 	ptp->tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
3069 	ptp->tc.cc_shift = shift;
3070 	ptp->tc.nsec_mask = (1ULL << shift) - 1;
3071 
3072 	ptp->rx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
3073 	ptp->rx_tstamp_tc.cc_shift = shift;
3074 	ptp->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
3075 
3076 	ptp->tx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
3077 	ptp->tx_tstamp_tc.cc_shift = shift;
3078 	ptp->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
3079 
3080 	return 0;
3081 }
3082 
3083 static int
3084 bnxt_timesync_disable(struct rte_eth_dev *dev)
3085 {
3086 	struct bnxt *bp = dev->data->dev_private;
3087 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3088 
3089 	if (!ptp)
3090 		return 0;
3091 
3092 	ptp->rx_filter = 0;
3093 	ptp->tx_tstamp_en = 0;
3094 	ptp->rxctl = 0;
3095 
3096 	bnxt_hwrm_ptp_cfg(bp);
3097 
3098 	bnxt_unmap_ptp_regs(bp);
3099 
3100 	return 0;
3101 }
3102 
3103 static int
3104 bnxt_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
3105 				 struct timespec *timestamp,
3106 				 uint32_t flags __rte_unused)
3107 {
3108 	struct bnxt *bp = dev->data->dev_private;
3109 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3110 	uint64_t rx_tstamp_cycles = 0;
3111 	uint64_t ns;
3112 
3113 	if (!ptp)
3114 		return 0;
3115 
3116 	bnxt_get_rx_ts(bp, &rx_tstamp_cycles);
3117 	ns = rte_timecounter_update(&ptp->rx_tstamp_tc, rx_tstamp_cycles);
3118 	*timestamp = rte_ns_to_timespec(ns);
3119 	return  0;
3120 }
3121 
3122 static int
3123 bnxt_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
3124 				 struct timespec *timestamp)
3125 {
3126 	struct bnxt *bp = dev->data->dev_private;
3127 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3128 	uint64_t tx_tstamp_cycles = 0;
3129 	uint64_t ns;
3130 
3131 	if (!ptp)
3132 		return 0;
3133 
3134 	bnxt_get_tx_ts(bp, &tx_tstamp_cycles);
3135 	ns = rte_timecounter_update(&ptp->tx_tstamp_tc, tx_tstamp_cycles);
3136 	*timestamp = rte_ns_to_timespec(ns);
3137 
3138 	return 0;
3139 }
3140 
3141 static int
3142 bnxt_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
3143 {
3144 	struct bnxt *bp = dev->data->dev_private;
3145 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
3146 
3147 	if (!ptp)
3148 		return 0;
3149 
3150 	ptp->tc.nsec += delta;
3151 
3152 	return 0;
3153 }
3154 
3155 static int
3156 bnxt_get_eeprom_length_op(struct rte_eth_dev *dev)
3157 {
3158 	struct bnxt *bp = dev->data->dev_private;
3159 	int rc;
3160 	uint32_t dir_entries;
3161 	uint32_t entry_length;
3162 
3163 	PMD_DRV_LOG(INFO, "%04x:%02x:%02x:%02x\n",
3164 		bp->pdev->addr.domain, bp->pdev->addr.bus,
3165 		bp->pdev->addr.devid, bp->pdev->addr.function);
3166 
3167 	rc = bnxt_hwrm_nvm_get_dir_info(bp, &dir_entries, &entry_length);
3168 	if (rc != 0)
3169 		return rc;
3170 
3171 	return dir_entries * entry_length;
3172 }
3173 
3174 static int
3175 bnxt_get_eeprom_op(struct rte_eth_dev *dev,
3176 		struct rte_dev_eeprom_info *in_eeprom)
3177 {
3178 	struct bnxt *bp = dev->data->dev_private;
3179 	uint32_t index;
3180 	uint32_t offset;
3181 
3182 	PMD_DRV_LOG(INFO, "%04x:%02x:%02x:%02x in_eeprom->offset = %d "
3183 		"len = %d\n", bp->pdev->addr.domain,
3184 		bp->pdev->addr.bus, bp->pdev->addr.devid,
3185 		bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length);
3186 
3187 	if (in_eeprom->offset == 0) /* special offset value to get directory */
3188 		return bnxt_get_nvram_directory(bp, in_eeprom->length,
3189 						in_eeprom->data);
3190 
3191 	index = in_eeprom->offset >> 24;
3192 	offset = in_eeprom->offset & 0xffffff;
3193 
3194 	if (index != 0)
3195 		return bnxt_hwrm_get_nvram_item(bp, index - 1, offset,
3196 					   in_eeprom->length, in_eeprom->data);
3197 
3198 	return 0;
3199 }
3200 
3201 static bool bnxt_dir_type_is_ape_bin_format(uint16_t dir_type)
3202 {
3203 	switch (dir_type) {
3204 	case BNX_DIR_TYPE_CHIMP_PATCH:
3205 	case BNX_DIR_TYPE_BOOTCODE:
3206 	case BNX_DIR_TYPE_BOOTCODE_2:
3207 	case BNX_DIR_TYPE_APE_FW:
3208 	case BNX_DIR_TYPE_APE_PATCH:
3209 	case BNX_DIR_TYPE_KONG_FW:
3210 	case BNX_DIR_TYPE_KONG_PATCH:
3211 	case BNX_DIR_TYPE_BONO_FW:
3212 	case BNX_DIR_TYPE_BONO_PATCH:
3213 		/* FALLTHROUGH */
3214 		return true;
3215 	}
3216 
3217 	return false;
3218 }
3219 
3220 static bool bnxt_dir_type_is_other_exec_format(uint16_t dir_type)
3221 {
3222 	switch (dir_type) {
3223 	case BNX_DIR_TYPE_AVS:
3224 	case BNX_DIR_TYPE_EXP_ROM_MBA:
3225 	case BNX_DIR_TYPE_PCIE:
3226 	case BNX_DIR_TYPE_TSCF_UCODE:
3227 	case BNX_DIR_TYPE_EXT_PHY:
3228 	case BNX_DIR_TYPE_CCM:
3229 	case BNX_DIR_TYPE_ISCSI_BOOT:
3230 	case BNX_DIR_TYPE_ISCSI_BOOT_IPV6:
3231 	case BNX_DIR_TYPE_ISCSI_BOOT_IPV4N6:
3232 		/* FALLTHROUGH */
3233 		return true;
3234 	}
3235 
3236 	return false;
3237 }
3238 
3239 static bool bnxt_dir_type_is_executable(uint16_t dir_type)
3240 {
3241 	return bnxt_dir_type_is_ape_bin_format(dir_type) ||
3242 		bnxt_dir_type_is_other_exec_format(dir_type);
3243 }
3244 
3245 static int
3246 bnxt_set_eeprom_op(struct rte_eth_dev *dev,
3247 		struct rte_dev_eeprom_info *in_eeprom)
3248 {
3249 	struct bnxt *bp = dev->data->dev_private;
3250 	uint8_t index, dir_op;
3251 	uint16_t type, ext, ordinal, attr;
3252 
3253 	PMD_DRV_LOG(INFO, "%04x:%02x:%02x:%02x in_eeprom->offset = %d "
3254 		"len = %d\n", bp->pdev->addr.domain,
3255 		bp->pdev->addr.bus, bp->pdev->addr.devid,
3256 		bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length);
3257 
3258 	if (!BNXT_PF(bp)) {
3259 		PMD_DRV_LOG(ERR, "NVM write not supported from a VF\n");
3260 		return -EINVAL;
3261 	}
3262 
3263 	type = in_eeprom->magic >> 16;
3264 
3265 	if (type == 0xffff) { /* special value for directory operations */
3266 		index = in_eeprom->magic & 0xff;
3267 		dir_op = in_eeprom->magic >> 8;
3268 		if (index == 0)
3269 			return -EINVAL;
3270 		switch (dir_op) {
3271 		case 0x0e: /* erase */
3272 			if (in_eeprom->offset != ~in_eeprom->magic)
3273 				return -EINVAL;
3274 			return bnxt_hwrm_erase_nvram_directory(bp, index - 1);
3275 		default:
3276 			return -EINVAL;
3277 		}
3278 	}
3279 
3280 	/* Create or re-write an NVM item: */
3281 	if (bnxt_dir_type_is_executable(type) == true)
3282 		return -EOPNOTSUPP;
3283 	ext = in_eeprom->magic & 0xffff;
3284 	ordinal = in_eeprom->offset >> 16;
3285 	attr = in_eeprom->offset & 0xffff;
3286 
3287 	return bnxt_hwrm_flash_nvram(bp, type, ordinal, ext, attr,
3288 				     in_eeprom->data, in_eeprom->length);
3289 }
3290 
3291 /*
3292  * Initialization
3293  */
3294 
3295 static const struct eth_dev_ops bnxt_dev_ops = {
3296 	.dev_infos_get = bnxt_dev_info_get_op,
3297 	.dev_close = bnxt_dev_close_op,
3298 	.dev_configure = bnxt_dev_configure_op,
3299 	.dev_start = bnxt_dev_start_op,
3300 	.dev_stop = bnxt_dev_stop_op,
3301 	.dev_set_link_up = bnxt_dev_set_link_up_op,
3302 	.dev_set_link_down = bnxt_dev_set_link_down_op,
3303 	.stats_get = bnxt_stats_get_op,
3304 	.stats_reset = bnxt_stats_reset_op,
3305 	.rx_queue_setup = bnxt_rx_queue_setup_op,
3306 	.rx_queue_release = bnxt_rx_queue_release_op,
3307 	.tx_queue_setup = bnxt_tx_queue_setup_op,
3308 	.tx_queue_release = bnxt_tx_queue_release_op,
3309 	.rx_queue_intr_enable = bnxt_rx_queue_intr_enable_op,
3310 	.rx_queue_intr_disable = bnxt_rx_queue_intr_disable_op,
3311 	.reta_update = bnxt_reta_update_op,
3312 	.reta_query = bnxt_reta_query_op,
3313 	.rss_hash_update = bnxt_rss_hash_update_op,
3314 	.rss_hash_conf_get = bnxt_rss_hash_conf_get_op,
3315 	.link_update = bnxt_link_update_op,
3316 	.promiscuous_enable = bnxt_promiscuous_enable_op,
3317 	.promiscuous_disable = bnxt_promiscuous_disable_op,
3318 	.allmulticast_enable = bnxt_allmulticast_enable_op,
3319 	.allmulticast_disable = bnxt_allmulticast_disable_op,
3320 	.mac_addr_add = bnxt_mac_addr_add_op,
3321 	.mac_addr_remove = bnxt_mac_addr_remove_op,
3322 	.flow_ctrl_get = bnxt_flow_ctrl_get_op,
3323 	.flow_ctrl_set = bnxt_flow_ctrl_set_op,
3324 	.udp_tunnel_port_add  = bnxt_udp_tunnel_port_add_op,
3325 	.udp_tunnel_port_del  = bnxt_udp_tunnel_port_del_op,
3326 	.vlan_filter_set = bnxt_vlan_filter_set_op,
3327 	.vlan_offload_set = bnxt_vlan_offload_set_op,
3328 	.vlan_pvid_set = bnxt_vlan_pvid_set_op,
3329 	.mtu_set = bnxt_mtu_set_op,
3330 	.mac_addr_set = bnxt_set_default_mac_addr_op,
3331 	.xstats_get = bnxt_dev_xstats_get_op,
3332 	.xstats_get_names = bnxt_dev_xstats_get_names_op,
3333 	.xstats_reset = bnxt_dev_xstats_reset_op,
3334 	.fw_version_get = bnxt_fw_version_get,
3335 	.set_mc_addr_list = bnxt_dev_set_mc_addr_list_op,
3336 	.rxq_info_get = bnxt_rxq_info_get_op,
3337 	.txq_info_get = bnxt_txq_info_get_op,
3338 	.dev_led_on = bnxt_dev_led_on_op,
3339 	.dev_led_off = bnxt_dev_led_off_op,
3340 	.xstats_get_by_id = bnxt_dev_xstats_get_by_id_op,
3341 	.xstats_get_names_by_id = bnxt_dev_xstats_get_names_by_id_op,
3342 	.rx_queue_count = bnxt_rx_queue_count_op,
3343 	.rx_descriptor_status = bnxt_rx_descriptor_status_op,
3344 	.tx_descriptor_status = bnxt_tx_descriptor_status_op,
3345 	.rx_queue_start = bnxt_rx_queue_start,
3346 	.rx_queue_stop = bnxt_rx_queue_stop,
3347 	.tx_queue_start = bnxt_tx_queue_start,
3348 	.tx_queue_stop = bnxt_tx_queue_stop,
3349 	.filter_ctrl = bnxt_filter_ctrl_op,
3350 	.dev_supported_ptypes_get = bnxt_dev_supported_ptypes_get_op,
3351 	.get_eeprom_length    = bnxt_get_eeprom_length_op,
3352 	.get_eeprom           = bnxt_get_eeprom_op,
3353 	.set_eeprom           = bnxt_set_eeprom_op,
3354 	.timesync_enable      = bnxt_timesync_enable,
3355 	.timesync_disable     = bnxt_timesync_disable,
3356 	.timesync_read_time   = bnxt_timesync_read_time,
3357 	.timesync_write_time   = bnxt_timesync_write_time,
3358 	.timesync_adjust_time = bnxt_timesync_adjust_time,
3359 	.timesync_read_rx_timestamp = bnxt_timesync_read_rx_timestamp,
3360 	.timesync_read_tx_timestamp = bnxt_timesync_read_tx_timestamp,
3361 };
3362 
3363 static bool bnxt_vf_pciid(uint16_t id)
3364 {
3365 	if (id == BROADCOM_DEV_ID_57304_VF ||
3366 	    id == BROADCOM_DEV_ID_57406_VF ||
3367 	    id == BROADCOM_DEV_ID_5731X_VF ||
3368 	    id == BROADCOM_DEV_ID_5741X_VF ||
3369 	    id == BROADCOM_DEV_ID_57414_VF ||
3370 	    id == BROADCOM_DEV_ID_STRATUS_NIC_VF1 ||
3371 	    id == BROADCOM_DEV_ID_STRATUS_NIC_VF2 ||
3372 	    id == BROADCOM_DEV_ID_58802_VF ||
3373 	    id == BROADCOM_DEV_ID_57500_VF1 ||
3374 	    id == BROADCOM_DEV_ID_57500_VF2)
3375 		return true;
3376 	return false;
3377 }
3378 
3379 bool bnxt_stratus_device(struct bnxt *bp)
3380 {
3381 	uint16_t id = bp->pdev->id.device_id;
3382 
3383 	if (id == BROADCOM_DEV_ID_STRATUS_NIC ||
3384 	    id == BROADCOM_DEV_ID_STRATUS_NIC_VF1 ||
3385 	    id == BROADCOM_DEV_ID_STRATUS_NIC_VF2)
3386 		return true;
3387 	return false;
3388 }
3389 
3390 static int bnxt_init_board(struct rte_eth_dev *eth_dev)
3391 {
3392 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3393 	struct bnxt *bp = eth_dev->data->dev_private;
3394 
3395 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
3396 	bp->bar0 = (void *)pci_dev->mem_resource[0].addr;
3397 	bp->doorbell_base = (void *)pci_dev->mem_resource[2].addr;
3398 	if (!bp->bar0 || !bp->doorbell_base) {
3399 		PMD_DRV_LOG(ERR, "Unable to access Hardware\n");
3400 		return -ENODEV;
3401 	}
3402 
3403 	bp->eth_dev = eth_dev;
3404 	bp->pdev = pci_dev;
3405 
3406 	return 0;
3407 }
3408 
3409 static int bnxt_alloc_ctx_mem_blk(__rte_unused struct bnxt *bp,
3410 				  struct bnxt_ctx_pg_info *ctx_pg,
3411 				  uint32_t mem_size,
3412 				  const char *suffix,
3413 				  uint16_t idx)
3414 {
3415 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
3416 	const struct rte_memzone *mz = NULL;
3417 	char mz_name[RTE_MEMZONE_NAMESIZE];
3418 	rte_iova_t mz_phys_addr;
3419 	uint64_t valid_bits = 0;
3420 	uint32_t sz;
3421 	int i;
3422 
3423 	if (!mem_size)
3424 		return 0;
3425 
3426 	rmem->nr_pages = RTE_ALIGN_MUL_CEIL(mem_size, BNXT_PAGE_SIZE) /
3427 			 BNXT_PAGE_SIZE;
3428 	rmem->page_size = BNXT_PAGE_SIZE;
3429 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
3430 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
3431 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
3432 
3433 	valid_bits = PTU_PTE_VALID;
3434 
3435 	if (rmem->nr_pages > 1) {
3436 		snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
3437 			 "bnxt_ctx_pg_tbl%s_%x_%d",
3438 			 suffix, idx, bp->eth_dev->data->port_id);
3439 		mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
3440 		mz = rte_memzone_lookup(mz_name);
3441 		if (!mz) {
3442 			mz = rte_memzone_reserve_aligned(mz_name,
3443 						rmem->nr_pages * 8,
3444 						SOCKET_ID_ANY,
3445 						RTE_MEMZONE_2MB |
3446 						RTE_MEMZONE_SIZE_HINT_ONLY |
3447 						RTE_MEMZONE_IOVA_CONTIG,
3448 						BNXT_PAGE_SIZE);
3449 			if (mz == NULL)
3450 				return -ENOMEM;
3451 		}
3452 
3453 		memset(mz->addr, 0, mz->len);
3454 		mz_phys_addr = mz->iova;
3455 		if ((unsigned long)mz->addr == mz_phys_addr) {
3456 			PMD_DRV_LOG(WARNING,
3457 				"Memzone physical address same as virtual.\n");
3458 			PMD_DRV_LOG(WARNING,
3459 				    "Using rte_mem_virt2iova()\n");
3460 			mz_phys_addr = rte_mem_virt2iova(mz->addr);
3461 			if (mz_phys_addr == RTE_BAD_IOVA) {
3462 				PMD_DRV_LOG(ERR,
3463 					"unable to map addr to phys memory\n");
3464 				return -ENOMEM;
3465 			}
3466 		}
3467 		rte_mem_lock_page(((char *)mz->addr));
3468 
3469 		rmem->pg_tbl = mz->addr;
3470 		rmem->pg_tbl_map = mz_phys_addr;
3471 		rmem->pg_tbl_mz = mz;
3472 	}
3473 
3474 	snprintf(mz_name, RTE_MEMZONE_NAMESIZE, "bnxt_ctx_%s_%x_%d",
3475 		 suffix, idx, bp->eth_dev->data->port_id);
3476 	mz = rte_memzone_lookup(mz_name);
3477 	if (!mz) {
3478 		mz = rte_memzone_reserve_aligned(mz_name,
3479 						 mem_size,
3480 						 SOCKET_ID_ANY,
3481 						 RTE_MEMZONE_1GB |
3482 						 RTE_MEMZONE_SIZE_HINT_ONLY |
3483 						 RTE_MEMZONE_IOVA_CONTIG,
3484 						 BNXT_PAGE_SIZE);
3485 		if (mz == NULL)
3486 			return -ENOMEM;
3487 	}
3488 
3489 	memset(mz->addr, 0, mz->len);
3490 	mz_phys_addr = mz->iova;
3491 	if ((unsigned long)mz->addr == mz_phys_addr) {
3492 		PMD_DRV_LOG(WARNING,
3493 			    "Memzone physical address same as virtual.\n");
3494 		PMD_DRV_LOG(WARNING,
3495 			    "Using rte_mem_virt2iova()\n");
3496 		for (sz = 0; sz < mem_size; sz += BNXT_PAGE_SIZE)
3497 			rte_mem_lock_page(((char *)mz->addr) + sz);
3498 		mz_phys_addr = rte_mem_virt2iova(mz->addr);
3499 		if (mz_phys_addr == RTE_BAD_IOVA) {
3500 			PMD_DRV_LOG(ERR,
3501 				    "unable to map addr to phys memory\n");
3502 			return -ENOMEM;
3503 		}
3504 	}
3505 
3506 	for (sz = 0, i = 0; sz < mem_size; sz += BNXT_PAGE_SIZE, i++) {
3507 		rte_mem_lock_page(((char *)mz->addr) + sz);
3508 		rmem->pg_arr[i] = ((char *)mz->addr) + sz;
3509 		rmem->dma_arr[i] = mz_phys_addr + sz;
3510 
3511 		if (rmem->nr_pages > 1) {
3512 			if (i == rmem->nr_pages - 2 &&
3513 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3514 				valid_bits |= PTU_PTE_NEXT_TO_LAST;
3515 			else if (i == rmem->nr_pages - 1 &&
3516 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
3517 				valid_bits |= PTU_PTE_LAST;
3518 
3519 			rmem->pg_tbl[i] = rte_cpu_to_le_64(rmem->dma_arr[i] |
3520 							   valid_bits);
3521 		}
3522 	}
3523 
3524 	rmem->mz = mz;
3525 	if (rmem->vmem_size)
3526 		rmem->vmem = (void **)mz->addr;
3527 	rmem->dma_arr[0] = mz_phys_addr;
3528 	return 0;
3529 }
3530 
3531 static void bnxt_free_ctx_mem(struct bnxt *bp)
3532 {
3533 	int i;
3534 
3535 	if (!bp->ctx || !(bp->ctx->flags & BNXT_CTX_FLAG_INITED))
3536 		return;
3537 
3538 	bp->ctx->flags &= ~BNXT_CTX_FLAG_INITED;
3539 	rte_memzone_free(bp->ctx->qp_mem.ring_mem.mz);
3540 	rte_memzone_free(bp->ctx->srq_mem.ring_mem.mz);
3541 	rte_memzone_free(bp->ctx->cq_mem.ring_mem.mz);
3542 	rte_memzone_free(bp->ctx->vnic_mem.ring_mem.mz);
3543 	rte_memzone_free(bp->ctx->stat_mem.ring_mem.mz);
3544 	rte_memzone_free(bp->ctx->qp_mem.ring_mem.pg_tbl_mz);
3545 	rte_memzone_free(bp->ctx->srq_mem.ring_mem.pg_tbl_mz);
3546 	rte_memzone_free(bp->ctx->cq_mem.ring_mem.pg_tbl_mz);
3547 	rte_memzone_free(bp->ctx->vnic_mem.ring_mem.pg_tbl_mz);
3548 	rte_memzone_free(bp->ctx->stat_mem.ring_mem.pg_tbl_mz);
3549 
3550 	for (i = 0; i < BNXT_MAX_Q; i++) {
3551 		if (bp->ctx->tqm_mem[i])
3552 			rte_memzone_free(bp->ctx->tqm_mem[i]->ring_mem.mz);
3553 	}
3554 
3555 	rte_free(bp->ctx);
3556 	bp->ctx = NULL;
3557 }
3558 
3559 #define bnxt_roundup(x, y)   ((((x) + ((y) - 1)) / (y)) * (y))
3560 
3561 #define min_t(type, x, y) ({                    \
3562 	type __min1 = (x);                      \
3563 	type __min2 = (y);                      \
3564 	__min1 < __min2 ? __min1 : __min2; })
3565 
3566 #define max_t(type, x, y) ({                    \
3567 	type __max1 = (x);                      \
3568 	type __max2 = (y);                      \
3569 	__max1 > __max2 ? __max1 : __max2; })
3570 
3571 #define clamp_t(type, _x, min, max)     min_t(type, max_t(type, _x, min), max)
3572 
3573 int bnxt_alloc_ctx_mem(struct bnxt *bp)
3574 {
3575 	struct bnxt_ctx_pg_info *ctx_pg;
3576 	struct bnxt_ctx_mem_info *ctx;
3577 	uint32_t mem_size, ena, entries;
3578 	int i, rc;
3579 
3580 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
3581 	if (rc) {
3582 		PMD_DRV_LOG(ERR, "Query context mem capability failed\n");
3583 		return rc;
3584 	}
3585 	ctx = bp->ctx;
3586 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
3587 		return 0;
3588 
3589 	ctx_pg = &ctx->qp_mem;
3590 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries;
3591 	mem_size = ctx->qp_entry_size * ctx_pg->entries;
3592 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "qp_mem", 0);
3593 	if (rc)
3594 		return rc;
3595 
3596 	ctx_pg = &ctx->srq_mem;
3597 	ctx_pg->entries = ctx->srq_max_l2_entries;
3598 	mem_size = ctx->srq_entry_size * ctx_pg->entries;
3599 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "srq_mem", 0);
3600 	if (rc)
3601 		return rc;
3602 
3603 	ctx_pg = &ctx->cq_mem;
3604 	ctx_pg->entries = ctx->cq_max_l2_entries;
3605 	mem_size = ctx->cq_entry_size * ctx_pg->entries;
3606 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "cq_mem", 0);
3607 	if (rc)
3608 		return rc;
3609 
3610 	ctx_pg = &ctx->vnic_mem;
3611 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
3612 		ctx->vnic_max_ring_table_entries;
3613 	mem_size = ctx->vnic_entry_size * ctx_pg->entries;
3614 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "vnic_mem", 0);
3615 	if (rc)
3616 		return rc;
3617 
3618 	ctx_pg = &ctx->stat_mem;
3619 	ctx_pg->entries = ctx->stat_max_entries;
3620 	mem_size = ctx->stat_entry_size * ctx_pg->entries;
3621 	rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "stat_mem", 0);
3622 	if (rc)
3623 		return rc;
3624 
3625 	entries = ctx->qp_max_l2_entries;
3626 	entries = bnxt_roundup(entries, ctx->tqm_entries_multiple);
3627 	entries = clamp_t(uint32_t, entries, ctx->tqm_min_entries_per_ring,
3628 			  ctx->tqm_max_entries_per_ring);
3629 	for (i = 0, ena = 0; i < BNXT_MAX_Q; i++) {
3630 		ctx_pg = ctx->tqm_mem[i];
3631 		/* use min tqm entries for now. */
3632 		ctx_pg->entries = entries;
3633 		mem_size = ctx->tqm_entry_size * ctx_pg->entries;
3634 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size, "tqm_mem", i);
3635 		if (rc)
3636 			return rc;
3637 		ena |= HWRM_FUNC_BACKING_STORE_CFG_INPUT_ENABLES_TQM_SP << i;
3638 	}
3639 
3640 	ena |= FUNC_BACKING_STORE_CFG_INPUT_DFLT_ENABLES;
3641 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
3642 	if (rc)
3643 		PMD_DRV_LOG(ERR,
3644 			    "Failed to configure context mem: rc = %d\n", rc);
3645 	else
3646 		ctx->flags |= BNXT_CTX_FLAG_INITED;
3647 
3648 	return rc;
3649 }
3650 
3651 static int bnxt_alloc_stats_mem(struct bnxt *bp)
3652 {
3653 	struct rte_pci_device *pci_dev = bp->pdev;
3654 	char mz_name[RTE_MEMZONE_NAMESIZE];
3655 	const struct rte_memzone *mz = NULL;
3656 	uint32_t total_alloc_len;
3657 	rte_iova_t mz_phys_addr;
3658 
3659 	if (pci_dev->id.device_id == BROADCOM_DEV_ID_NS2)
3660 		return 0;
3661 
3662 	snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
3663 		 "bnxt_" PCI_PRI_FMT "-%s", pci_dev->addr.domain,
3664 		 pci_dev->addr.bus, pci_dev->addr.devid,
3665 		 pci_dev->addr.function, "rx_port_stats");
3666 	mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
3667 	mz = rte_memzone_lookup(mz_name);
3668 	total_alloc_len =
3669 		RTE_CACHE_LINE_ROUNDUP(sizeof(struct rx_port_stats) +
3670 				       sizeof(struct rx_port_stats_ext) + 512);
3671 	if (!mz) {
3672 		mz = rte_memzone_reserve(mz_name, total_alloc_len,
3673 					 SOCKET_ID_ANY,
3674 					 RTE_MEMZONE_2MB |
3675 					 RTE_MEMZONE_SIZE_HINT_ONLY |
3676 					 RTE_MEMZONE_IOVA_CONTIG);
3677 		if (mz == NULL)
3678 			return -ENOMEM;
3679 	}
3680 	memset(mz->addr, 0, mz->len);
3681 	mz_phys_addr = mz->iova;
3682 	if ((unsigned long)mz->addr == mz_phys_addr) {
3683 		PMD_DRV_LOG(WARNING,
3684 			    "Memzone physical address same as virtual.\n");
3685 		PMD_DRV_LOG(WARNING,
3686 			    "Using rte_mem_virt2iova()\n");
3687 		mz_phys_addr = rte_mem_virt2iova(mz->addr);
3688 		if (mz_phys_addr == RTE_BAD_IOVA) {
3689 			PMD_DRV_LOG(ERR,
3690 				    "Can't map address to physical memory\n");
3691 			return -ENOMEM;
3692 		}
3693 	}
3694 
3695 	bp->rx_mem_zone = (const void *)mz;
3696 	bp->hw_rx_port_stats = mz->addr;
3697 	bp->hw_rx_port_stats_map = mz_phys_addr;
3698 
3699 	snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
3700 		 "bnxt_" PCI_PRI_FMT "-%s", pci_dev->addr.domain,
3701 		 pci_dev->addr.bus, pci_dev->addr.devid,
3702 		 pci_dev->addr.function, "tx_port_stats");
3703 	mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
3704 	mz = rte_memzone_lookup(mz_name);
3705 	total_alloc_len =
3706 		RTE_CACHE_LINE_ROUNDUP(sizeof(struct tx_port_stats) +
3707 				       sizeof(struct tx_port_stats_ext) + 512);
3708 	if (!mz) {
3709 		mz = rte_memzone_reserve(mz_name,
3710 					 total_alloc_len,
3711 					 SOCKET_ID_ANY,
3712 					 RTE_MEMZONE_2MB |
3713 					 RTE_MEMZONE_SIZE_HINT_ONLY |
3714 					 RTE_MEMZONE_IOVA_CONTIG);
3715 		if (mz == NULL)
3716 			return -ENOMEM;
3717 	}
3718 	memset(mz->addr, 0, mz->len);
3719 	mz_phys_addr = mz->iova;
3720 	if ((unsigned long)mz->addr == mz_phys_addr) {
3721 		PMD_DRV_LOG(WARNING,
3722 			    "Memzone physical address same as virtual\n");
3723 		PMD_DRV_LOG(WARNING,
3724 			    "Using rte_mem_virt2iova()\n");
3725 		mz_phys_addr = rte_mem_virt2iova(mz->addr);
3726 		if (mz_phys_addr == RTE_BAD_IOVA) {
3727 			PMD_DRV_LOG(ERR,
3728 				    "Can't map address to physical memory\n");
3729 			return -ENOMEM;
3730 		}
3731 	}
3732 
3733 	bp->tx_mem_zone = (const void *)mz;
3734 	bp->hw_tx_port_stats = mz->addr;
3735 	bp->hw_tx_port_stats_map = mz_phys_addr;
3736 	bp->flags |= BNXT_FLAG_PORT_STATS;
3737 
3738 	/* Display extended statistics if FW supports it */
3739 	if (bp->hwrm_spec_code < HWRM_SPEC_CODE_1_8_4 ||
3740 	    bp->hwrm_spec_code == HWRM_SPEC_CODE_1_9_0 ||
3741 	    !(bp->flags & BNXT_FLAG_EXT_STATS_SUPPORTED))
3742 		return 0;
3743 
3744 	bp->hw_rx_port_stats_ext = (void *)
3745 		((uint8_t *)bp->hw_rx_port_stats +
3746 		 sizeof(struct rx_port_stats));
3747 	bp->hw_rx_port_stats_ext_map = bp->hw_rx_port_stats_map +
3748 		sizeof(struct rx_port_stats);
3749 	bp->flags |= BNXT_FLAG_EXT_RX_PORT_STATS;
3750 
3751 	if (bp->hwrm_spec_code < HWRM_SPEC_CODE_1_9_2 ||
3752 	    bp->flags & BNXT_FLAG_EXT_STATS_SUPPORTED) {
3753 		bp->hw_tx_port_stats_ext = (void *)
3754 			((uint8_t *)bp->hw_tx_port_stats +
3755 			 sizeof(struct tx_port_stats));
3756 		bp->hw_tx_port_stats_ext_map =
3757 			bp->hw_tx_port_stats_map +
3758 			sizeof(struct tx_port_stats);
3759 		bp->flags |= BNXT_FLAG_EXT_TX_PORT_STATS;
3760 	}
3761 
3762 	return 0;
3763 }
3764 
3765 static int bnxt_setup_mac_addr(struct rte_eth_dev *eth_dev)
3766 {
3767 	struct bnxt *bp = eth_dev->data->dev_private;
3768 	int rc = 0;
3769 
3770 	eth_dev->data->mac_addrs = rte_zmalloc("bnxt_mac_addr_tbl",
3771 					       RTE_ETHER_ADDR_LEN *
3772 					       bp->max_l2_ctx,
3773 					       0);
3774 	if (eth_dev->data->mac_addrs == NULL) {
3775 		PMD_DRV_LOG(ERR, "Failed to alloc MAC addr tbl\n");
3776 		return -ENOMEM;
3777 	}
3778 
3779 	if (bnxt_check_zero_bytes(bp->dflt_mac_addr, RTE_ETHER_ADDR_LEN)) {
3780 		if (BNXT_PF(bp))
3781 			return -EINVAL;
3782 
3783 		/* Generate a random MAC address, if none was assigned by PF */
3784 		PMD_DRV_LOG(INFO, "VF MAC address not assigned by Host PF\n");
3785 		bnxt_eth_hw_addr_random(bp->mac_addr);
3786 		PMD_DRV_LOG(INFO,
3787 			    "Assign random MAC:%02X:%02X:%02X:%02X:%02X:%02X\n",
3788 			    bp->mac_addr[0], bp->mac_addr[1], bp->mac_addr[2],
3789 			    bp->mac_addr[3], bp->mac_addr[4], bp->mac_addr[5]);
3790 
3791 		rc = bnxt_hwrm_set_mac(bp);
3792 		if (!rc)
3793 			memcpy(&bp->eth_dev->data->mac_addrs[0], bp->mac_addr,
3794 			       RTE_ETHER_ADDR_LEN);
3795 		return rc;
3796 	}
3797 
3798 	/* Copy the permanent MAC from the FUNC_QCAPS response */
3799 	memcpy(bp->mac_addr, bp->dflt_mac_addr, RTE_ETHER_ADDR_LEN);
3800 	memcpy(&eth_dev->data->mac_addrs[0], bp->mac_addr, RTE_ETHER_ADDR_LEN);
3801 
3802 	return rc;
3803 }
3804 
3805 #define ALLOW_FUNC(x)	\
3806 	{ \
3807 		uint32_t arg = (x); \
3808 		bp->pf.vf_req_fwd[((arg) >> 5)] &= \
3809 		~rte_cpu_to_le_32(1 << ((arg) & 0x1f)); \
3810 	}
3811 static int
3812 bnxt_dev_init(struct rte_eth_dev *eth_dev)
3813 {
3814 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3815 	static int version_printed;
3816 	struct bnxt *bp;
3817 	uint16_t mtu;
3818 	int rc;
3819 
3820 	if (version_printed++ == 0)
3821 		PMD_DRV_LOG(INFO, "%s\n", bnxt_version);
3822 
3823 	rte_eth_copy_pci_info(eth_dev, pci_dev);
3824 
3825 	bp = eth_dev->data->dev_private;
3826 
3827 	bp->dev_stopped = 1;
3828 
3829 	eth_dev->dev_ops = &bnxt_dev_ops;
3830 	eth_dev->rx_pkt_burst = &bnxt_recv_pkts;
3831 	eth_dev->tx_pkt_burst = &bnxt_xmit_pkts;
3832 
3833 	/*
3834 	 * For secondary processes, we don't initialise any further
3835 	 * as primary has already done this work.
3836 	 */
3837 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3838 		return 0;
3839 
3840 	if (bnxt_vf_pciid(pci_dev->id.device_id))
3841 		bp->flags |= BNXT_FLAG_VF;
3842 
3843 	if (pci_dev->id.device_id == BROADCOM_DEV_ID_57508 ||
3844 	    pci_dev->id.device_id == BROADCOM_DEV_ID_57504 ||
3845 	    pci_dev->id.device_id == BROADCOM_DEV_ID_57502 ||
3846 	    pci_dev->id.device_id == BROADCOM_DEV_ID_57500_VF1 ||
3847 	    pci_dev->id.device_id == BROADCOM_DEV_ID_57500_VF2)
3848 		bp->flags |= BNXT_FLAG_THOR_CHIP;
3849 
3850 	if (pci_dev->id.device_id == BROADCOM_DEV_ID_58802 ||
3851 	    pci_dev->id.device_id == BROADCOM_DEV_ID_58804 ||
3852 	    pci_dev->id.device_id == BROADCOM_DEV_ID_58808 ||
3853 	    pci_dev->id.device_id == BROADCOM_DEV_ID_58802_VF)
3854 		bp->flags |= BNXT_FLAG_STINGRAY;
3855 
3856 	rc = bnxt_init_board(eth_dev);
3857 	if (rc) {
3858 		PMD_DRV_LOG(ERR,
3859 			"Board initialization failed rc: %x\n", rc);
3860 		goto error;
3861 	}
3862 
3863 	rc = bnxt_alloc_hwrm_resources(bp);
3864 	if (rc) {
3865 		PMD_DRV_LOG(ERR,
3866 			"hwrm resource allocation failure rc: %x\n", rc);
3867 		goto error_free;
3868 	}
3869 	rc = bnxt_hwrm_ver_get(bp);
3870 	if (rc)
3871 		goto error_free;
3872 
3873 	rc = bnxt_hwrm_func_reset(bp);
3874 	if (rc) {
3875 		PMD_DRV_LOG(ERR, "hwrm chip reset failure rc: %x\n", rc);
3876 		rc = -EIO;
3877 		goto error_free;
3878 	}
3879 
3880 	rc = bnxt_hwrm_queue_qportcfg(bp);
3881 	if (rc) {
3882 		PMD_DRV_LOG(ERR, "hwrm queue qportcfg failed\n");
3883 		goto error_free;
3884 	}
3885 	/* Get the MAX capabilities for this function */
3886 	rc = bnxt_hwrm_func_qcaps(bp);
3887 	if (rc) {
3888 		PMD_DRV_LOG(ERR, "hwrm query capability failure rc: %x\n", rc);
3889 		goto error_free;
3890 	}
3891 
3892 	rc = bnxt_alloc_stats_mem(bp);
3893 	if (rc)
3894 		goto error_free;
3895 
3896 	if (bp->max_tx_rings == 0) {
3897 		PMD_DRV_LOG(ERR, "No TX rings available!\n");
3898 		rc = -EBUSY;
3899 		goto error_free;
3900 	}
3901 
3902 	rc = bnxt_setup_mac_addr(eth_dev);
3903 	if (rc)
3904 		goto error_free;
3905 
3906 	/* THOR does not support ring groups.
3907 	 * But we will use the array to save RSS context IDs.
3908 	 */
3909 	if (BNXT_CHIP_THOR(bp)) {
3910 		bp->max_ring_grps = BNXT_MAX_RSS_CTXTS_THOR;
3911 	} else if (bp->max_ring_grps < bp->rx_cp_nr_rings) {
3912 		/* 1 ring is for default completion ring */
3913 		PMD_DRV_LOG(ERR, "Insufficient resource: Ring Group\n");
3914 		rc = -ENOSPC;
3915 		goto error_free;
3916 	}
3917 
3918 	if (BNXT_HAS_RING_GRPS(bp)) {
3919 		bp->grp_info = rte_zmalloc("bnxt_grp_info",
3920 					sizeof(*bp->grp_info) *
3921 						bp->max_ring_grps, 0);
3922 		if (!bp->grp_info) {
3923 			PMD_DRV_LOG(ERR,
3924 				"Failed to alloc %zu bytes for grp info tbl.\n",
3925 				sizeof(*bp->grp_info) * bp->max_ring_grps);
3926 			rc = -ENOMEM;
3927 			goto error_free;
3928 		}
3929 	}
3930 
3931 	/* Forward all requests if firmware is new enough */
3932 	if (((bp->fw_ver >= ((20 << 24) | (6 << 16) | (100 << 8))) &&
3933 	    (bp->fw_ver < ((20 << 24) | (7 << 16)))) ||
3934 	    ((bp->fw_ver >= ((20 << 24) | (8 << 16))))) {
3935 		memset(bp->pf.vf_req_fwd, 0xff, sizeof(bp->pf.vf_req_fwd));
3936 	} else {
3937 		PMD_DRV_LOG(WARNING,
3938 			"Firmware too old for VF mailbox functionality\n");
3939 		memset(bp->pf.vf_req_fwd, 0, sizeof(bp->pf.vf_req_fwd));
3940 	}
3941 
3942 	/*
3943 	 * The following are used for driver cleanup.  If we disallow these,
3944 	 * VF drivers can't clean up cleanly.
3945 	 */
3946 	ALLOW_FUNC(HWRM_FUNC_DRV_UNRGTR);
3947 	ALLOW_FUNC(HWRM_VNIC_FREE);
3948 	ALLOW_FUNC(HWRM_RING_FREE);
3949 	ALLOW_FUNC(HWRM_RING_GRP_FREE);
3950 	ALLOW_FUNC(HWRM_VNIC_RSS_COS_LB_CTX_FREE);
3951 	ALLOW_FUNC(HWRM_CFA_L2_FILTER_FREE);
3952 	ALLOW_FUNC(HWRM_STAT_CTX_FREE);
3953 	ALLOW_FUNC(HWRM_PORT_PHY_QCFG);
3954 	ALLOW_FUNC(HWRM_VNIC_TPA_CFG);
3955 	rc = bnxt_hwrm_func_driver_register(bp);
3956 	if (rc) {
3957 		PMD_DRV_LOG(ERR,
3958 			"Failed to register driver");
3959 		rc = -EBUSY;
3960 		goto error_free;
3961 	}
3962 
3963 	PMD_DRV_LOG(INFO,
3964 		DRV_MODULE_NAME " found at mem %" PRIx64 ", node addr %pM\n",
3965 		pci_dev->mem_resource[0].phys_addr,
3966 		pci_dev->mem_resource[0].addr);
3967 
3968 	rc = bnxt_hwrm_func_qcfg(bp, &mtu);
3969 	if (rc) {
3970 		PMD_DRV_LOG(ERR, "hwrm func qcfg failed\n");
3971 		goto error_free;
3972 	}
3973 
3974 	if (mtu >= RTE_ETHER_MIN_MTU && mtu <= BNXT_MAX_MTU &&
3975 	    mtu != eth_dev->data->mtu)
3976 		eth_dev->data->mtu = mtu;
3977 
3978 	if (BNXT_PF(bp)) {
3979 		//if (bp->pf.active_vfs) {
3980 			// TODO: Deallocate VF resources?
3981 		//}
3982 		if (bp->pdev->max_vfs) {
3983 			rc = bnxt_hwrm_allocate_vfs(bp, bp->pdev->max_vfs);
3984 			if (rc) {
3985 				PMD_DRV_LOG(ERR, "Failed to allocate VFs\n");
3986 				goto error_free;
3987 			}
3988 		} else {
3989 			rc = bnxt_hwrm_allocate_pf_only(bp);
3990 			if (rc) {
3991 				PMD_DRV_LOG(ERR,
3992 					"Failed to allocate PF resources\n");
3993 				goto error_free;
3994 			}
3995 		}
3996 	}
3997 
3998 	bnxt_hwrm_port_led_qcaps(bp);
3999 
4000 	rc = bnxt_setup_int(bp);
4001 	if (rc)
4002 		goto error_free;
4003 
4004 	rc = bnxt_alloc_mem(bp);
4005 	if (rc)
4006 		goto error_free;
4007 
4008 	bnxt_init_nic(bp);
4009 
4010 	rc = bnxt_request_int(bp);
4011 	if (rc)
4012 		goto error_free;
4013 
4014 	return 0;
4015 
4016 error_free:
4017 	bnxt_dev_uninit(eth_dev);
4018 error:
4019 	return rc;
4020 }
4021 
4022 static int
4023 bnxt_dev_uninit(struct rte_eth_dev *eth_dev)
4024 {
4025 	struct bnxt *bp = eth_dev->data->dev_private;
4026 	int rc;
4027 
4028 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
4029 		return -EPERM;
4030 
4031 	PMD_DRV_LOG(DEBUG, "Calling Device uninit\n");
4032 	bnxt_disable_int(bp);
4033 	bnxt_free_int(bp);
4034 	bnxt_free_mem(bp);
4035 
4036 	bnxt_hwrm_func_buf_unrgtr(bp);
4037 
4038 	if (bp->grp_info != NULL) {
4039 		rte_free(bp->grp_info);
4040 		bp->grp_info = NULL;
4041 	}
4042 	rc = bnxt_hwrm_func_driver_unregister(bp, 0);
4043 	bnxt_free_hwrm_resources(bp);
4044 
4045 	if (bp->tx_mem_zone) {
4046 		rte_memzone_free((const struct rte_memzone *)bp->tx_mem_zone);
4047 		bp->tx_mem_zone = NULL;
4048 	}
4049 
4050 	if (bp->rx_mem_zone) {
4051 		rte_memzone_free((const struct rte_memzone *)bp->rx_mem_zone);
4052 		bp->rx_mem_zone = NULL;
4053 	}
4054 
4055 	if (bp->dev_stopped == 0)
4056 		bnxt_dev_close_op(eth_dev);
4057 	if (bp->pf.vf_info)
4058 		rte_free(bp->pf.vf_info);
4059 	bnxt_free_ctx_mem(bp);
4060 	eth_dev->dev_ops = NULL;
4061 	eth_dev->rx_pkt_burst = NULL;
4062 	eth_dev->tx_pkt_burst = NULL;
4063 
4064 	return rc;
4065 }
4066 
4067 static int bnxt_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
4068 	struct rte_pci_device *pci_dev)
4069 {
4070 	return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct bnxt),
4071 		bnxt_dev_init);
4072 }
4073 
4074 static int bnxt_pci_remove(struct rte_pci_device *pci_dev)
4075 {
4076 	if (rte_eal_process_type() == RTE_PROC_PRIMARY)
4077 		return rte_eth_dev_pci_generic_remove(pci_dev,
4078 				bnxt_dev_uninit);
4079 	else
4080 		return rte_eth_dev_pci_generic_remove(pci_dev, NULL);
4081 }
4082 
4083 static struct rte_pci_driver bnxt_rte_pmd = {
4084 	.id_table = bnxt_pci_id_map,
4085 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
4086 	.probe = bnxt_pci_probe,
4087 	.remove = bnxt_pci_remove,
4088 };
4089 
4090 static bool
4091 is_device_supported(struct rte_eth_dev *dev, struct rte_pci_driver *drv)
4092 {
4093 	if (strcmp(dev->device->driver->name, drv->driver.name))
4094 		return false;
4095 
4096 	return true;
4097 }
4098 
4099 bool is_bnxt_supported(struct rte_eth_dev *dev)
4100 {
4101 	return is_device_supported(dev, &bnxt_rte_pmd);
4102 }
4103 
4104 RTE_INIT(bnxt_init_log)
4105 {
4106 	bnxt_logtype_driver = rte_log_register("pmd.net.bnxt.driver");
4107 	if (bnxt_logtype_driver >= 0)
4108 		rte_log_set_level(bnxt_logtype_driver, RTE_LOG_NOTICE);
4109 }
4110 
4111 RTE_PMD_REGISTER_PCI(net_bnxt, bnxt_rte_pmd);
4112 RTE_PMD_REGISTER_PCI_TABLE(net_bnxt, bnxt_pci_id_map);
4113 RTE_PMD_REGISTER_KMOD_DEP(net_bnxt, "* igb_uio | uio_pci_generic | vfio-pci");
4114