xref: /dpdk/drivers/net/bnxt/bnxt_ethdev.c (revision 1ccdd771d6a00b681d346033ad274d68a2af7a4c)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) Broadcom Limited.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Broadcom Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <inttypes.h>
35 #include <stdbool.h>
36 
37 #include <rte_dev.h>
38 #include <rte_ethdev.h>
39 #include <rte_ethdev_pci.h>
40 #include <rte_malloc.h>
41 #include <rte_cycles.h>
42 
43 #include "bnxt.h"
44 #include "bnxt_cpr.h"
45 #include "bnxt_filter.h"
46 #include "bnxt_hwrm.h"
47 #include "bnxt_irq.h"
48 #include "bnxt_ring.h"
49 #include "bnxt_rxq.h"
50 #include "bnxt_rxr.h"
51 #include "bnxt_stats.h"
52 #include "bnxt_txq.h"
53 #include "bnxt_txr.h"
54 #include "bnxt_vnic.h"
55 #include "hsi_struct_def_dpdk.h"
56 #include "bnxt_nvm_defs.h"
57 
58 #define DRV_MODULE_NAME		"bnxt"
59 static const char bnxt_version[] =
60 	"Broadcom Cumulus driver " DRV_MODULE_NAME "\n";
61 
62 #define PCI_VENDOR_ID_BROADCOM 0x14E4
63 
64 #define BROADCOM_DEV_ID_STRATUS_NIC_VF 0x1609
65 #define BROADCOM_DEV_ID_STRATUS_NIC 0x1614
66 #define BROADCOM_DEV_ID_57414_VF 0x16c1
67 #define BROADCOM_DEV_ID_57301 0x16c8
68 #define BROADCOM_DEV_ID_57302 0x16c9
69 #define BROADCOM_DEV_ID_57304_PF 0x16ca
70 #define BROADCOM_DEV_ID_57304_VF 0x16cb
71 #define BROADCOM_DEV_ID_57417_MF 0x16cc
72 #define BROADCOM_DEV_ID_NS2 0x16cd
73 #define BROADCOM_DEV_ID_57311 0x16ce
74 #define BROADCOM_DEV_ID_57312 0x16cf
75 #define BROADCOM_DEV_ID_57402 0x16d0
76 #define BROADCOM_DEV_ID_57404 0x16d1
77 #define BROADCOM_DEV_ID_57406_PF 0x16d2
78 #define BROADCOM_DEV_ID_57406_VF 0x16d3
79 #define BROADCOM_DEV_ID_57402_MF 0x16d4
80 #define BROADCOM_DEV_ID_57407_RJ45 0x16d5
81 #define BROADCOM_DEV_ID_57412 0x16d6
82 #define BROADCOM_DEV_ID_57414 0x16d7
83 #define BROADCOM_DEV_ID_57416_RJ45 0x16d8
84 #define BROADCOM_DEV_ID_57417_RJ45 0x16d9
85 #define BROADCOM_DEV_ID_5741X_VF 0x16dc
86 #define BROADCOM_DEV_ID_57412_MF 0x16de
87 #define BROADCOM_DEV_ID_57314 0x16df
88 #define BROADCOM_DEV_ID_57317_RJ45 0x16e0
89 #define BROADCOM_DEV_ID_5731X_VF 0x16e1
90 #define BROADCOM_DEV_ID_57417_SFP 0x16e2
91 #define BROADCOM_DEV_ID_57416_SFP 0x16e3
92 #define BROADCOM_DEV_ID_57317_SFP 0x16e4
93 #define BROADCOM_DEV_ID_57404_MF 0x16e7
94 #define BROADCOM_DEV_ID_57406_MF 0x16e8
95 #define BROADCOM_DEV_ID_57407_SFP 0x16e9
96 #define BROADCOM_DEV_ID_57407_MF 0x16ea
97 #define BROADCOM_DEV_ID_57414_MF 0x16ec
98 #define BROADCOM_DEV_ID_57416_MF 0x16ee
99 
100 static const struct rte_pci_id bnxt_pci_id_map[] = {
101 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
102 			 BROADCOM_DEV_ID_STRATUS_NIC_VF) },
103 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_STRATUS_NIC) },
104 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_VF) },
105 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57301) },
106 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57302) },
107 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_PF) },
108 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_VF) },
109 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_NS2) },
110 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402) },
111 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404) },
112 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_PF) },
113 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_VF) },
114 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402_MF) },
115 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_RJ45) },
116 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404_MF) },
117 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_MF) },
118 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_SFP) },
119 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_MF) },
120 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5741X_VF) },
121 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5731X_VF) },
122 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57314) },
123 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_MF) },
124 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57311) },
125 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57312) },
126 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412) },
127 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414) },
128 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_RJ45) },
129 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_RJ45) },
130 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412_MF) },
131 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_RJ45) },
132 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_SFP) },
133 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_SFP) },
134 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_SFP) },
135 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_MF) },
136 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_MF) },
137 	{ .vendor_id = 0, /* sentinel */ },
138 };
139 
140 #define BNXT_ETH_RSS_SUPPORT (	\
141 	ETH_RSS_IPV4 |		\
142 	ETH_RSS_NONFRAG_IPV4_TCP |	\
143 	ETH_RSS_NONFRAG_IPV4_UDP |	\
144 	ETH_RSS_IPV6 |		\
145 	ETH_RSS_NONFRAG_IPV6_TCP |	\
146 	ETH_RSS_NONFRAG_IPV6_UDP)
147 
148 static int bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask);
149 
150 /***********************/
151 
152 /*
153  * High level utility functions
154  */
155 
156 static void bnxt_free_mem(struct bnxt *bp)
157 {
158 	bnxt_free_filter_mem(bp);
159 	bnxt_free_vnic_attributes(bp);
160 	bnxt_free_vnic_mem(bp);
161 
162 	bnxt_free_stats(bp);
163 	bnxt_free_tx_rings(bp);
164 	bnxt_free_rx_rings(bp);
165 	bnxt_free_def_cp_ring(bp);
166 }
167 
168 static int bnxt_alloc_mem(struct bnxt *bp)
169 {
170 	int rc;
171 
172 	/* Default completion ring */
173 	rc = bnxt_init_def_ring_struct(bp, SOCKET_ID_ANY);
174 	if (rc)
175 		goto alloc_mem_err;
176 
177 	rc = bnxt_alloc_rings(bp, 0, NULL, NULL,
178 			      bp->def_cp_ring, "def_cp");
179 	if (rc)
180 		goto alloc_mem_err;
181 
182 	rc = bnxt_alloc_vnic_mem(bp);
183 	if (rc)
184 		goto alloc_mem_err;
185 
186 	rc = bnxt_alloc_vnic_attributes(bp);
187 	if (rc)
188 		goto alloc_mem_err;
189 
190 	rc = bnxt_alloc_filter_mem(bp);
191 	if (rc)
192 		goto alloc_mem_err;
193 
194 	return 0;
195 
196 alloc_mem_err:
197 	bnxt_free_mem(bp);
198 	return rc;
199 }
200 
201 static int bnxt_init_chip(struct bnxt *bp)
202 {
203 	unsigned int i, rss_idx, fw_idx;
204 	struct rte_eth_link new;
205 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(bp->eth_dev);
206 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
207 	uint32_t intr_vector = 0;
208 	uint32_t queue_id, base = BNXT_MISC_VEC_ID;
209 	uint32_t vec = BNXT_MISC_VEC_ID;
210 	int rc;
211 
212 	/* disable uio/vfio intr/eventfd mapping */
213 	rte_intr_disable(intr_handle);
214 
215 	if (bp->eth_dev->data->mtu > ETHER_MTU) {
216 		bp->eth_dev->data->dev_conf.rxmode.jumbo_frame = 1;
217 		bp->flags |= BNXT_FLAG_JUMBO;
218 	} else {
219 		bp->eth_dev->data->dev_conf.rxmode.jumbo_frame = 0;
220 		bp->flags &= ~BNXT_FLAG_JUMBO;
221 	}
222 
223 	rc = bnxt_alloc_all_hwrm_stat_ctxs(bp);
224 	if (rc) {
225 		RTE_LOG(ERR, PMD, "HWRM stat ctx alloc failure rc: %x\n", rc);
226 		goto err_out;
227 	}
228 
229 	rc = bnxt_alloc_hwrm_rings(bp);
230 	if (rc) {
231 		RTE_LOG(ERR, PMD, "HWRM ring alloc failure rc: %x\n", rc);
232 		goto err_out;
233 	}
234 
235 	rc = bnxt_alloc_all_hwrm_ring_grps(bp);
236 	if (rc) {
237 		RTE_LOG(ERR, PMD, "HWRM ring grp alloc failure: %x\n", rc);
238 		goto err_out;
239 	}
240 
241 	rc = bnxt_mq_rx_configure(bp);
242 	if (rc) {
243 		RTE_LOG(ERR, PMD, "MQ mode configure failure rc: %x\n", rc);
244 		goto err_out;
245 	}
246 
247 	/* VNIC configuration */
248 	for (i = 0; i < bp->nr_vnics; i++) {
249 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
250 
251 		rc = bnxt_hwrm_vnic_alloc(bp, vnic);
252 		if (rc) {
253 			RTE_LOG(ERR, PMD, "HWRM vnic %d alloc failure rc: %x\n",
254 				i, rc);
255 			goto err_out;
256 		}
257 
258 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic);
259 		if (rc) {
260 			RTE_LOG(ERR, PMD,
261 				"HWRM vnic %d ctx alloc failure rc: %x\n",
262 				i, rc);
263 			goto err_out;
264 		}
265 
266 		rc = bnxt_hwrm_vnic_cfg(bp, vnic);
267 		if (rc) {
268 			RTE_LOG(ERR, PMD, "HWRM vnic %d cfg failure rc: %x\n",
269 				i, rc);
270 			goto err_out;
271 		}
272 
273 		rc = bnxt_set_hwrm_vnic_filters(bp, vnic);
274 		if (rc) {
275 			RTE_LOG(ERR, PMD,
276 				"HWRM vnic %d filter failure rc: %x\n",
277 				i, rc);
278 			goto err_out;
279 		}
280 		if (vnic->rss_table && vnic->hash_type) {
281 			/*
282 			 * Fill the RSS hash & redirection table with
283 			 * ring group ids for all VNICs
284 			 */
285 			for (rss_idx = 0, fw_idx = 0;
286 			     rss_idx < HW_HASH_INDEX_SIZE;
287 			     rss_idx++, fw_idx++) {
288 				if (vnic->fw_grp_ids[fw_idx] ==
289 				    INVALID_HW_RING_ID)
290 					fw_idx = 0;
291 				vnic->rss_table[rss_idx] =
292 						vnic->fw_grp_ids[fw_idx];
293 			}
294 			rc = bnxt_hwrm_vnic_rss_cfg(bp, vnic);
295 			if (rc) {
296 				RTE_LOG(ERR, PMD,
297 					"HWRM vnic %d set RSS failure rc: %x\n",
298 					i, rc);
299 				goto err_out;
300 			}
301 		}
302 
303 		bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
304 
305 		if (bp->eth_dev->data->dev_conf.rxmode.enable_lro)
306 			bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 1);
307 		else
308 			bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 0);
309 	}
310 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, &bp->vnic_info[0], 0, NULL);
311 	if (rc) {
312 		RTE_LOG(ERR, PMD,
313 			"HWRM cfa l2 rx mask failure rc: %x\n", rc);
314 		goto err_out;
315 	}
316 
317 	/* check and configure queue intr-vector mapping */
318 	if ((rte_intr_cap_multiple(intr_handle) ||
319 	     !RTE_ETH_DEV_SRIOV(bp->eth_dev).active) &&
320 	    bp->eth_dev->data->dev_conf.intr_conf.rxq != 0) {
321 		intr_vector = bp->eth_dev->data->nb_rx_queues;
322 		RTE_LOG(INFO, PMD, "%s(): intr_vector = %d\n", __func__,
323 			intr_vector);
324 		if (intr_vector > bp->rx_cp_nr_rings) {
325 			RTE_LOG(ERR, PMD, "At most %d intr queues supported",
326 					bp->rx_cp_nr_rings);
327 			return -ENOTSUP;
328 		}
329 		if (rte_intr_efd_enable(intr_handle, intr_vector))
330 			return -1;
331 	}
332 
333 	if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
334 		intr_handle->intr_vec =
335 			rte_zmalloc("intr_vec",
336 				    bp->eth_dev->data->nb_rx_queues *
337 				    sizeof(int), 0);
338 		if (intr_handle->intr_vec == NULL) {
339 			RTE_LOG(ERR, PMD, "Failed to allocate %d rx_queues"
340 				" intr_vec", bp->eth_dev->data->nb_rx_queues);
341 			return -ENOMEM;
342 		}
343 		RTE_LOG(DEBUG, PMD, "%s(): intr_handle->intr_vec = %p "
344 			"intr_handle->nb_efd = %d intr_handle->max_intr = %d\n",
345 			 __func__, intr_handle->intr_vec, intr_handle->nb_efd,
346 			intr_handle->max_intr);
347 	}
348 
349 	for (queue_id = 0; queue_id < bp->eth_dev->data->nb_rx_queues;
350 	     queue_id++) {
351 		intr_handle->intr_vec[queue_id] = vec;
352 		if (vec < base + intr_handle->nb_efd - 1)
353 			vec++;
354 	}
355 
356 	/* enable uio/vfio intr/eventfd mapping */
357 	rte_intr_enable(intr_handle);
358 
359 	rc = bnxt_get_hwrm_link_config(bp, &new);
360 	if (rc) {
361 		RTE_LOG(ERR, PMD, "HWRM Get link config failure rc: %x\n", rc);
362 		goto err_out;
363 	}
364 
365 	if (!bp->link_info.link_up) {
366 		rc = bnxt_set_hwrm_link_config(bp, true);
367 		if (rc) {
368 			RTE_LOG(ERR, PMD,
369 				"HWRM link config failure rc: %x\n", rc);
370 			goto err_out;
371 		}
372 	}
373 
374 	return 0;
375 
376 err_out:
377 	bnxt_free_all_hwrm_resources(bp);
378 
379 	return rc;
380 }
381 
382 static int bnxt_shutdown_nic(struct bnxt *bp)
383 {
384 	bnxt_free_all_hwrm_resources(bp);
385 	bnxt_free_all_filters(bp);
386 	bnxt_free_all_vnics(bp);
387 	return 0;
388 }
389 
390 static int bnxt_init_nic(struct bnxt *bp)
391 {
392 	int rc;
393 
394 	bnxt_init_ring_grps(bp);
395 	bnxt_init_vnics(bp);
396 	bnxt_init_filters(bp);
397 
398 	rc = bnxt_init_chip(bp);
399 	if (rc)
400 		return rc;
401 
402 	return 0;
403 }
404 
405 /*
406  * Device configuration and status function
407  */
408 
409 static void bnxt_dev_info_get_op(struct rte_eth_dev *eth_dev,
410 				  struct rte_eth_dev_info *dev_info)
411 {
412 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
413 	uint16_t max_vnics, i, j, vpool, vrxq;
414 	unsigned int max_rx_rings;
415 
416 	dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
417 
418 	/* MAC Specifics */
419 	dev_info->max_mac_addrs = bp->max_l2_ctx;
420 	dev_info->max_hash_mac_addrs = 0;
421 
422 	/* PF/VF specifics */
423 	if (BNXT_PF(bp))
424 		dev_info->max_vfs = bp->pdev->max_vfs;
425 	max_rx_rings = RTE_MIN(bp->max_vnics, RTE_MIN(bp->max_l2_ctx,
426 						RTE_MIN(bp->max_rsscos_ctx,
427 						bp->max_stat_ctx)));
428 	/* For the sake of symmetry, max_rx_queues = max_tx_queues */
429 	dev_info->max_rx_queues = max_rx_rings;
430 	dev_info->max_tx_queues = max_rx_rings;
431 	dev_info->reta_size = bp->max_rsscos_ctx;
432 	dev_info->hash_key_size = 40;
433 	max_vnics = bp->max_vnics;
434 
435 	/* Fast path specifics */
436 	dev_info->min_rx_bufsize = 1;
437 	dev_info->max_rx_pktlen = BNXT_MAX_MTU + ETHER_HDR_LEN + ETHER_CRC_LEN
438 				  + VLAN_TAG_SIZE;
439 	dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP |
440 					DEV_RX_OFFLOAD_IPV4_CKSUM |
441 					DEV_RX_OFFLOAD_UDP_CKSUM |
442 					DEV_RX_OFFLOAD_TCP_CKSUM |
443 					DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
444 	dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
445 					DEV_TX_OFFLOAD_IPV4_CKSUM |
446 					DEV_TX_OFFLOAD_TCP_CKSUM |
447 					DEV_TX_OFFLOAD_UDP_CKSUM |
448 					DEV_TX_OFFLOAD_TCP_TSO |
449 					DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
450 					DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
451 					DEV_TX_OFFLOAD_GRE_TNL_TSO |
452 					DEV_TX_OFFLOAD_IPIP_TNL_TSO |
453 					DEV_TX_OFFLOAD_GENEVE_TNL_TSO;
454 
455 	/* *INDENT-OFF* */
456 	dev_info->default_rxconf = (struct rte_eth_rxconf) {
457 		.rx_thresh = {
458 			.pthresh = 8,
459 			.hthresh = 8,
460 			.wthresh = 0,
461 		},
462 		.rx_free_thresh = 32,
463 		.rx_drop_en = 0,
464 	};
465 
466 	dev_info->default_txconf = (struct rte_eth_txconf) {
467 		.tx_thresh = {
468 			.pthresh = 32,
469 			.hthresh = 0,
470 			.wthresh = 0,
471 		},
472 		.tx_free_thresh = 32,
473 		.tx_rs_thresh = 32,
474 		.txq_flags = ETH_TXQ_FLAGS_NOMULTSEGS |
475 			     ETH_TXQ_FLAGS_NOOFFLOADS,
476 	};
477 	eth_dev->data->dev_conf.intr_conf.lsc = 1;
478 
479 	eth_dev->data->dev_conf.intr_conf.rxq = 1;
480 
481 	/* *INDENT-ON* */
482 
483 	/*
484 	 * TODO: default_rxconf, default_txconf, rx_desc_lim, and tx_desc_lim
485 	 *       need further investigation.
486 	 */
487 
488 	/* VMDq resources */
489 	vpool = 64; /* ETH_64_POOLS */
490 	vrxq = 128; /* ETH_VMDQ_DCB_NUM_QUEUES */
491 	for (i = 0; i < 4; vpool >>= 1, i++) {
492 		if (max_vnics > vpool) {
493 			for (j = 0; j < 5; vrxq >>= 1, j++) {
494 				if (dev_info->max_rx_queues > vrxq) {
495 					if (vpool > vrxq)
496 						vpool = vrxq;
497 					goto found;
498 				}
499 			}
500 			/* Not enough resources to support VMDq */
501 			break;
502 		}
503 	}
504 	/* Not enough resources to support VMDq */
505 	vpool = 0;
506 	vrxq = 0;
507 found:
508 	dev_info->max_vmdq_pools = vpool;
509 	dev_info->vmdq_queue_num = vrxq;
510 
511 	dev_info->vmdq_pool_base = 0;
512 	dev_info->vmdq_queue_base = 0;
513 }
514 
515 /* Configure the device based on the configuration provided */
516 static int bnxt_dev_configure_op(struct rte_eth_dev *eth_dev)
517 {
518 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
519 
520 	bp->rx_queues = (void *)eth_dev->data->rx_queues;
521 	bp->tx_queues = (void *)eth_dev->data->tx_queues;
522 
523 	/* Inherit new configurations */
524 	bp->rx_nr_rings = eth_dev->data->nb_rx_queues;
525 	bp->tx_nr_rings = eth_dev->data->nb_tx_queues;
526 	bp->rx_cp_nr_rings = bp->rx_nr_rings;
527 	bp->tx_cp_nr_rings = bp->tx_nr_rings;
528 
529 	if (eth_dev->data->dev_conf.rxmode.jumbo_frame)
530 		eth_dev->data->mtu =
531 				eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
532 				ETHER_HDR_LEN - ETHER_CRC_LEN - VLAN_TAG_SIZE;
533 	return 0;
534 }
535 
536 static inline int
537 rte_bnxt_atomic_write_link_status(struct rte_eth_dev *eth_dev,
538 				struct rte_eth_link *link)
539 {
540 	struct rte_eth_link *dst = &eth_dev->data->dev_link;
541 	struct rte_eth_link *src = link;
542 
543 	if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
544 					*(uint64_t *)src) == 0)
545 		return 1;
546 
547 	return 0;
548 }
549 
550 static void bnxt_print_link_info(struct rte_eth_dev *eth_dev)
551 {
552 	struct rte_eth_link *link = &eth_dev->data->dev_link;
553 
554 	if (link->link_status)
555 		RTE_LOG(INFO, PMD, "Port %d Link Up - speed %u Mbps - %s\n",
556 			eth_dev->data->port_id,
557 			(uint32_t)link->link_speed,
558 			(link->link_duplex == ETH_LINK_FULL_DUPLEX) ?
559 			("full-duplex") : ("half-duplex\n"));
560 	else
561 		RTE_LOG(INFO, PMD, "Port %d Link Down\n",
562 			eth_dev->data->port_id);
563 }
564 
565 static int bnxt_dev_lsc_intr_setup(struct rte_eth_dev *eth_dev)
566 {
567 	bnxt_print_link_info(eth_dev);
568 	return 0;
569 }
570 
571 static int bnxt_dev_start_op(struct rte_eth_dev *eth_dev)
572 {
573 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
574 	int vlan_mask = 0;
575 	int rc;
576 
577 	if (bp->rx_cp_nr_rings > RTE_ETHDEV_QUEUE_STAT_CNTRS) {
578 		RTE_LOG(ERR, PMD,
579 			"RxQ cnt %d > CONFIG_RTE_ETHDEV_QUEUE_STAT_CNTRS %d\n",
580 			bp->rx_cp_nr_rings, RTE_ETHDEV_QUEUE_STAT_CNTRS);
581 	}
582 	bp->dev_stopped = 0;
583 
584 	rc = bnxt_init_nic(bp);
585 	if (rc)
586 		goto error;
587 
588 	bnxt_link_update_op(eth_dev, 0);
589 
590 	if (eth_dev->data->dev_conf.rxmode.hw_vlan_filter)
591 		vlan_mask |= ETH_VLAN_FILTER_MASK;
592 	if (eth_dev->data->dev_conf.rxmode.hw_vlan_strip)
593 		vlan_mask |= ETH_VLAN_STRIP_MASK;
594 	rc = bnxt_vlan_offload_set_op(eth_dev, vlan_mask);
595 	if (rc)
596 		goto error;
597 
598 	return 0;
599 
600 error:
601 	bnxt_shutdown_nic(bp);
602 	bnxt_free_tx_mbufs(bp);
603 	bnxt_free_rx_mbufs(bp);
604 	return rc;
605 }
606 
607 static int bnxt_dev_set_link_up_op(struct rte_eth_dev *eth_dev)
608 {
609 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
610 
611 	eth_dev->data->dev_link.link_status = 1;
612 	bnxt_set_hwrm_link_config(bp, true);
613 	return 0;
614 }
615 
616 static int bnxt_dev_set_link_down_op(struct rte_eth_dev *eth_dev)
617 {
618 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
619 
620 	eth_dev->data->dev_link.link_status = 0;
621 	bnxt_set_hwrm_link_config(bp, false);
622 	return 0;
623 }
624 
625 /* Unload the driver, release resources */
626 static void bnxt_dev_stop_op(struct rte_eth_dev *eth_dev)
627 {
628 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
629 
630 	if (bp->eth_dev->data->dev_started) {
631 		/* TBD: STOP HW queues DMA */
632 		eth_dev->data->dev_link.link_status = 0;
633 	}
634 	bnxt_set_hwrm_link_config(bp, false);
635 	bnxt_hwrm_port_clr_stats(bp);
636 	bnxt_shutdown_nic(bp);
637 	bp->dev_stopped = 1;
638 }
639 
640 static void bnxt_dev_close_op(struct rte_eth_dev *eth_dev)
641 {
642 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
643 
644 	if (bp->dev_stopped == 0)
645 		bnxt_dev_stop_op(eth_dev);
646 
647 	bnxt_free_tx_mbufs(bp);
648 	bnxt_free_rx_mbufs(bp);
649 	bnxt_free_mem(bp);
650 	if (eth_dev->data->mac_addrs != NULL) {
651 		rte_free(eth_dev->data->mac_addrs);
652 		eth_dev->data->mac_addrs = NULL;
653 	}
654 	if (bp->grp_info != NULL) {
655 		rte_free(bp->grp_info);
656 		bp->grp_info = NULL;
657 	}
658 }
659 
660 static void bnxt_mac_addr_remove_op(struct rte_eth_dev *eth_dev,
661 				    uint32_t index)
662 {
663 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
664 	uint64_t pool_mask = eth_dev->data->mac_pool_sel[index];
665 	struct bnxt_vnic_info *vnic;
666 	struct bnxt_filter_info *filter, *temp_filter;
667 	uint32_t pool = RTE_MIN(MAX_FF_POOLS, ETH_64_POOLS);
668 	uint32_t i;
669 
670 	/*
671 	 * Loop through all VNICs from the specified filter flow pools to
672 	 * remove the corresponding MAC addr filter
673 	 */
674 	for (i = 0; i < pool; i++) {
675 		if (!(pool_mask & (1ULL << i)))
676 			continue;
677 
678 		STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
679 			filter = STAILQ_FIRST(&vnic->filter);
680 			while (filter) {
681 				temp_filter = STAILQ_NEXT(filter, next);
682 				if (filter->mac_index == index) {
683 					STAILQ_REMOVE(&vnic->filter, filter,
684 						      bnxt_filter_info, next);
685 					bnxt_hwrm_clear_l2_filter(bp, filter);
686 					filter->mac_index = INVALID_MAC_INDEX;
687 					memset(&filter->l2_addr, 0,
688 					       ETHER_ADDR_LEN);
689 					STAILQ_INSERT_TAIL(
690 							&bp->free_filter_list,
691 							filter, next);
692 				}
693 				filter = temp_filter;
694 			}
695 		}
696 	}
697 }
698 
699 static int bnxt_mac_addr_add_op(struct rte_eth_dev *eth_dev,
700 				struct ether_addr *mac_addr,
701 				uint32_t index, uint32_t pool)
702 {
703 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
704 	struct bnxt_vnic_info *vnic = STAILQ_FIRST(&bp->ff_pool[pool]);
705 	struct bnxt_filter_info *filter;
706 
707 	if (BNXT_VF(bp)) {
708 		RTE_LOG(ERR, PMD, "Cannot add MAC address to a VF interface\n");
709 		return -ENOTSUP;
710 	}
711 
712 	if (!vnic) {
713 		RTE_LOG(ERR, PMD, "VNIC not found for pool %d!\n", pool);
714 		return -EINVAL;
715 	}
716 	/* Attach requested MAC address to the new l2_filter */
717 	STAILQ_FOREACH(filter, &vnic->filter, next) {
718 		if (filter->mac_index == index) {
719 			RTE_LOG(ERR, PMD,
720 				"MAC addr already existed for pool %d\n", pool);
721 			return -EINVAL;
722 		}
723 	}
724 	filter = bnxt_alloc_filter(bp);
725 	if (!filter) {
726 		RTE_LOG(ERR, PMD, "L2 filter alloc failed\n");
727 		return -ENODEV;
728 	}
729 	STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
730 	filter->mac_index = index;
731 	memcpy(filter->l2_addr, mac_addr, ETHER_ADDR_LEN);
732 	return bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
733 }
734 
735 int bnxt_link_update_op(struct rte_eth_dev *eth_dev, int wait_to_complete)
736 {
737 	int rc = 0;
738 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
739 	struct rte_eth_link new;
740 	unsigned int cnt = BNXT_LINK_WAIT_CNT;
741 
742 	memset(&new, 0, sizeof(new));
743 	do {
744 		/* Retrieve link info from hardware */
745 		rc = bnxt_get_hwrm_link_config(bp, &new);
746 		if (rc) {
747 			new.link_speed = ETH_LINK_SPEED_100M;
748 			new.link_duplex = ETH_LINK_FULL_DUPLEX;
749 			RTE_LOG(ERR, PMD,
750 				"Failed to retrieve link rc = 0x%x!\n", rc);
751 			goto out;
752 		}
753 		rte_delay_ms(BNXT_LINK_WAIT_INTERVAL);
754 
755 		if (!wait_to_complete)
756 			break;
757 	} while (!new.link_status && cnt--);
758 
759 out:
760 	/* Timed out or success */
761 	if (new.link_status != eth_dev->data->dev_link.link_status ||
762 	new.link_speed != eth_dev->data->dev_link.link_speed) {
763 		rte_bnxt_atomic_write_link_status(eth_dev, &new);
764 		bnxt_print_link_info(eth_dev);
765 	}
766 
767 	return rc;
768 }
769 
770 static void bnxt_promiscuous_enable_op(struct rte_eth_dev *eth_dev)
771 {
772 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
773 	struct bnxt_vnic_info *vnic;
774 
775 	if (bp->vnic_info == NULL)
776 		return;
777 
778 	vnic = &bp->vnic_info[0];
779 
780 	vnic->flags |= BNXT_VNIC_INFO_PROMISC;
781 	bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
782 }
783 
784 static void bnxt_promiscuous_disable_op(struct rte_eth_dev *eth_dev)
785 {
786 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
787 	struct bnxt_vnic_info *vnic;
788 
789 	if (bp->vnic_info == NULL)
790 		return;
791 
792 	vnic = &bp->vnic_info[0];
793 
794 	vnic->flags &= ~BNXT_VNIC_INFO_PROMISC;
795 	bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
796 }
797 
798 static void bnxt_allmulticast_enable_op(struct rte_eth_dev *eth_dev)
799 {
800 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
801 	struct bnxt_vnic_info *vnic;
802 
803 	if (bp->vnic_info == NULL)
804 		return;
805 
806 	vnic = &bp->vnic_info[0];
807 
808 	vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
809 	bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
810 }
811 
812 static void bnxt_allmulticast_disable_op(struct rte_eth_dev *eth_dev)
813 {
814 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
815 	struct bnxt_vnic_info *vnic;
816 
817 	if (bp->vnic_info == NULL)
818 		return;
819 
820 	vnic = &bp->vnic_info[0];
821 
822 	vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
823 	bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
824 }
825 
826 static int bnxt_reta_update_op(struct rte_eth_dev *eth_dev,
827 			    struct rte_eth_rss_reta_entry64 *reta_conf,
828 			    uint16_t reta_size)
829 {
830 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
831 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
832 	struct bnxt_vnic_info *vnic;
833 	int i;
834 
835 	if (!(dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
836 		return -EINVAL;
837 
838 	if (reta_size != HW_HASH_INDEX_SIZE) {
839 		RTE_LOG(ERR, PMD, "The configured hash table lookup size "
840 			"(%d) must equal the size supported by the hardware "
841 			"(%d)\n", reta_size, HW_HASH_INDEX_SIZE);
842 		return -EINVAL;
843 	}
844 	/* Update the RSS VNIC(s) */
845 	for (i = 0; i < MAX_FF_POOLS; i++) {
846 		STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
847 			memcpy(vnic->rss_table, reta_conf, reta_size);
848 
849 			bnxt_hwrm_vnic_rss_cfg(bp, vnic);
850 		}
851 	}
852 	return 0;
853 }
854 
855 static int bnxt_reta_query_op(struct rte_eth_dev *eth_dev,
856 			      struct rte_eth_rss_reta_entry64 *reta_conf,
857 			      uint16_t reta_size)
858 {
859 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
860 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
861 	struct rte_intr_handle *intr_handle
862 		= &bp->pdev->intr_handle;
863 
864 	/* Retrieve from the default VNIC */
865 	if (!vnic)
866 		return -EINVAL;
867 	if (!vnic->rss_table)
868 		return -EINVAL;
869 
870 	if (reta_size != HW_HASH_INDEX_SIZE) {
871 		RTE_LOG(ERR, PMD, "The configured hash table lookup size "
872 			"(%d) must equal the size supported by the hardware "
873 			"(%d)\n", reta_size, HW_HASH_INDEX_SIZE);
874 		return -EINVAL;
875 	}
876 	/* EW - need to revisit here copying from u64 to u16 */
877 	memcpy(reta_conf, vnic->rss_table, reta_size);
878 
879 	if (rte_intr_allow_others(intr_handle)) {
880 		if (eth_dev->data->dev_conf.intr_conf.lsc != 0)
881 			bnxt_dev_lsc_intr_setup(eth_dev);
882 	}
883 
884 	return 0;
885 }
886 
887 static int bnxt_rss_hash_update_op(struct rte_eth_dev *eth_dev,
888 				   struct rte_eth_rss_conf *rss_conf)
889 {
890 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
891 	struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
892 	struct bnxt_vnic_info *vnic;
893 	uint16_t hash_type = 0;
894 	int i;
895 
896 	/*
897 	 * If RSS enablement were different than dev_configure,
898 	 * then return -EINVAL
899 	 */
900 	if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) {
901 		if (!rss_conf->rss_hf)
902 			RTE_LOG(ERR, PMD, "Hash type NONE\n");
903 	} else {
904 		if (rss_conf->rss_hf & BNXT_ETH_RSS_SUPPORT)
905 			return -EINVAL;
906 	}
907 
908 	bp->flags |= BNXT_FLAG_UPDATE_HASH;
909 	memcpy(&bp->rss_conf, rss_conf, sizeof(*rss_conf));
910 
911 	if (rss_conf->rss_hf & ETH_RSS_IPV4)
912 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
913 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
914 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
915 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
916 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
917 	if (rss_conf->rss_hf & ETH_RSS_IPV6)
918 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
919 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
920 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
921 	if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
922 		hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
923 
924 	/* Update the RSS VNIC(s) */
925 	for (i = 0; i < MAX_FF_POOLS; i++) {
926 		STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
927 			vnic->hash_type = hash_type;
928 
929 			/*
930 			 * Use the supplied key if the key length is
931 			 * acceptable and the rss_key is not NULL
932 			 */
933 			if (rss_conf->rss_key &&
934 			    rss_conf->rss_key_len <= HW_HASH_KEY_SIZE)
935 				memcpy(vnic->rss_hash_key, rss_conf->rss_key,
936 				       rss_conf->rss_key_len);
937 
938 			bnxt_hwrm_vnic_rss_cfg(bp, vnic);
939 		}
940 	}
941 	return 0;
942 }
943 
944 static int bnxt_rss_hash_conf_get_op(struct rte_eth_dev *eth_dev,
945 				     struct rte_eth_rss_conf *rss_conf)
946 {
947 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
948 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
949 	int len;
950 	uint32_t hash_types;
951 
952 	/* RSS configuration is the same for all VNICs */
953 	if (vnic && vnic->rss_hash_key) {
954 		if (rss_conf->rss_key) {
955 			len = rss_conf->rss_key_len <= HW_HASH_KEY_SIZE ?
956 			      rss_conf->rss_key_len : HW_HASH_KEY_SIZE;
957 			memcpy(rss_conf->rss_key, vnic->rss_hash_key, len);
958 		}
959 
960 		hash_types = vnic->hash_type;
961 		rss_conf->rss_hf = 0;
962 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4) {
963 			rss_conf->rss_hf |= ETH_RSS_IPV4;
964 			hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
965 		}
966 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4) {
967 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
968 			hash_types &=
969 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
970 		}
971 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4) {
972 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
973 			hash_types &=
974 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
975 		}
976 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6) {
977 			rss_conf->rss_hf |= ETH_RSS_IPV6;
978 			hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
979 		}
980 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6) {
981 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
982 			hash_types &=
983 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
984 		}
985 		if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6) {
986 			rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
987 			hash_types &=
988 				~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
989 		}
990 		if (hash_types) {
991 			RTE_LOG(ERR, PMD,
992 				"Unknwon RSS config from firmware (%08x), RSS disabled",
993 				vnic->hash_type);
994 			return -ENOTSUP;
995 		}
996 	} else {
997 		rss_conf->rss_hf = 0;
998 	}
999 	return 0;
1000 }
1001 
1002 static int bnxt_flow_ctrl_get_op(struct rte_eth_dev *dev,
1003 			       struct rte_eth_fc_conf *fc_conf)
1004 {
1005 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1006 	struct rte_eth_link link_info;
1007 	int rc;
1008 
1009 	rc = bnxt_get_hwrm_link_config(bp, &link_info);
1010 	if (rc)
1011 		return rc;
1012 
1013 	memset(fc_conf, 0, sizeof(*fc_conf));
1014 	if (bp->link_info.auto_pause)
1015 		fc_conf->autoneg = 1;
1016 	switch (bp->link_info.pause) {
1017 	case 0:
1018 		fc_conf->mode = RTE_FC_NONE;
1019 		break;
1020 	case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX:
1021 		fc_conf->mode = RTE_FC_TX_PAUSE;
1022 		break;
1023 	case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX:
1024 		fc_conf->mode = RTE_FC_RX_PAUSE;
1025 		break;
1026 	case (HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX |
1027 			HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX):
1028 		fc_conf->mode = RTE_FC_FULL;
1029 		break;
1030 	}
1031 	return 0;
1032 }
1033 
1034 static int bnxt_flow_ctrl_set_op(struct rte_eth_dev *dev,
1035 			       struct rte_eth_fc_conf *fc_conf)
1036 {
1037 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1038 
1039 	if (BNXT_NPAR_PF(bp) || BNXT_VF(bp)) {
1040 		RTE_LOG(ERR, PMD, "Flow Control Settings cannot be modified\n");
1041 		return -ENOTSUP;
1042 	}
1043 
1044 	switch (fc_conf->mode) {
1045 	case RTE_FC_NONE:
1046 		bp->link_info.auto_pause = 0;
1047 		bp->link_info.force_pause = 0;
1048 		break;
1049 	case RTE_FC_RX_PAUSE:
1050 		if (fc_conf->autoneg) {
1051 			bp->link_info.auto_pause =
1052 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
1053 			bp->link_info.force_pause = 0;
1054 		} else {
1055 			bp->link_info.auto_pause = 0;
1056 			bp->link_info.force_pause =
1057 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
1058 		}
1059 		break;
1060 	case RTE_FC_TX_PAUSE:
1061 		if (fc_conf->autoneg) {
1062 			bp->link_info.auto_pause =
1063 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX;
1064 			bp->link_info.force_pause = 0;
1065 		} else {
1066 			bp->link_info.auto_pause = 0;
1067 			bp->link_info.force_pause =
1068 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX;
1069 		}
1070 		break;
1071 	case RTE_FC_FULL:
1072 		if (fc_conf->autoneg) {
1073 			bp->link_info.auto_pause =
1074 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX |
1075 					HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
1076 			bp->link_info.force_pause = 0;
1077 		} else {
1078 			bp->link_info.auto_pause = 0;
1079 			bp->link_info.force_pause =
1080 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX |
1081 					HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
1082 		}
1083 		break;
1084 	}
1085 	return bnxt_set_hwrm_link_config(bp, true);
1086 }
1087 
1088 /* Add UDP tunneling port */
1089 static int
1090 bnxt_udp_tunnel_port_add_op(struct rte_eth_dev *eth_dev,
1091 			 struct rte_eth_udp_tunnel *udp_tunnel)
1092 {
1093 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1094 	uint16_t tunnel_type = 0;
1095 	int rc = 0;
1096 
1097 	switch (udp_tunnel->prot_type) {
1098 	case RTE_TUNNEL_TYPE_VXLAN:
1099 		if (bp->vxlan_port_cnt) {
1100 			RTE_LOG(ERR, PMD, "Tunnel Port %d already programmed\n",
1101 				udp_tunnel->udp_port);
1102 			if (bp->vxlan_port != udp_tunnel->udp_port) {
1103 				RTE_LOG(ERR, PMD, "Only one port allowed\n");
1104 				return -ENOSPC;
1105 			}
1106 			bp->vxlan_port_cnt++;
1107 			return 0;
1108 		}
1109 		tunnel_type =
1110 			HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_VXLAN;
1111 		bp->vxlan_port_cnt++;
1112 		break;
1113 	case RTE_TUNNEL_TYPE_GENEVE:
1114 		if (bp->geneve_port_cnt) {
1115 			RTE_LOG(ERR, PMD, "Tunnel Port %d already programmed\n",
1116 				udp_tunnel->udp_port);
1117 			if (bp->geneve_port != udp_tunnel->udp_port) {
1118 				RTE_LOG(ERR, PMD, "Only one port allowed\n");
1119 				return -ENOSPC;
1120 			}
1121 			bp->geneve_port_cnt++;
1122 			return 0;
1123 		}
1124 		tunnel_type =
1125 			HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_GENEVE;
1126 		bp->geneve_port_cnt++;
1127 		break;
1128 	default:
1129 		RTE_LOG(ERR, PMD, "Tunnel type is not supported\n");
1130 		return -ENOTSUP;
1131 	}
1132 	rc = bnxt_hwrm_tunnel_dst_port_alloc(bp, udp_tunnel->udp_port,
1133 					     tunnel_type);
1134 	return rc;
1135 }
1136 
1137 static int
1138 bnxt_udp_tunnel_port_del_op(struct rte_eth_dev *eth_dev,
1139 			 struct rte_eth_udp_tunnel *udp_tunnel)
1140 {
1141 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1142 	uint16_t tunnel_type = 0;
1143 	uint16_t port = 0;
1144 	int rc = 0;
1145 
1146 	switch (udp_tunnel->prot_type) {
1147 	case RTE_TUNNEL_TYPE_VXLAN:
1148 		if (!bp->vxlan_port_cnt) {
1149 			RTE_LOG(ERR, PMD, "No Tunnel port configured yet\n");
1150 			return -EINVAL;
1151 		}
1152 		if (bp->vxlan_port != udp_tunnel->udp_port) {
1153 			RTE_LOG(ERR, PMD, "Req Port: %d. Configured port: %d\n",
1154 				udp_tunnel->udp_port, bp->vxlan_port);
1155 			return -EINVAL;
1156 		}
1157 		if (--bp->vxlan_port_cnt)
1158 			return 0;
1159 
1160 		tunnel_type =
1161 			HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN;
1162 		port = bp->vxlan_fw_dst_port_id;
1163 		break;
1164 	case RTE_TUNNEL_TYPE_GENEVE:
1165 		if (!bp->geneve_port_cnt) {
1166 			RTE_LOG(ERR, PMD, "No Tunnel port configured yet\n");
1167 			return -EINVAL;
1168 		}
1169 		if (bp->geneve_port != udp_tunnel->udp_port) {
1170 			RTE_LOG(ERR, PMD, "Req Port: %d. Configured port: %d\n",
1171 				udp_tunnel->udp_port, bp->geneve_port);
1172 			return -EINVAL;
1173 		}
1174 		if (--bp->geneve_port_cnt)
1175 			return 0;
1176 
1177 		tunnel_type =
1178 			HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE;
1179 		port = bp->geneve_fw_dst_port_id;
1180 		break;
1181 	default:
1182 		RTE_LOG(ERR, PMD, "Tunnel type is not supported\n");
1183 		return -ENOTSUP;
1184 	}
1185 
1186 	rc = bnxt_hwrm_tunnel_dst_port_free(bp, port, tunnel_type);
1187 	if (!rc) {
1188 		if (tunnel_type ==
1189 		    HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN)
1190 			bp->vxlan_port = 0;
1191 		if (tunnel_type ==
1192 		    HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE)
1193 			bp->geneve_port = 0;
1194 	}
1195 	return rc;
1196 }
1197 
1198 static int bnxt_del_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
1199 {
1200 	struct bnxt_filter_info *filter, *temp_filter, *new_filter;
1201 	struct bnxt_vnic_info *vnic;
1202 	unsigned int i;
1203 	int rc = 0;
1204 	uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN;
1205 
1206 	/* Cycle through all VNICs */
1207 	for (i = 0; i < bp->nr_vnics; i++) {
1208 		/*
1209 		 * For each VNIC and each associated filter(s)
1210 		 * if VLAN exists && VLAN matches vlan_id
1211 		 *      remove the MAC+VLAN filter
1212 		 *      add a new MAC only filter
1213 		 * else
1214 		 *      VLAN filter doesn't exist, just skip and continue
1215 		 */
1216 		STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
1217 			filter = STAILQ_FIRST(&vnic->filter);
1218 			while (filter) {
1219 				temp_filter = STAILQ_NEXT(filter, next);
1220 
1221 				if (filter->enables & chk &&
1222 				    filter->l2_ovlan == vlan_id) {
1223 					/* Must delete the filter */
1224 					STAILQ_REMOVE(&vnic->filter, filter,
1225 						      bnxt_filter_info, next);
1226 					bnxt_hwrm_clear_l2_filter(bp, filter);
1227 					STAILQ_INSERT_TAIL(
1228 							&bp->free_filter_list,
1229 							filter, next);
1230 
1231 					/*
1232 					 * Need to examine to see if the MAC
1233 					 * filter already existed or not before
1234 					 * allocating a new one
1235 					 */
1236 
1237 					new_filter = bnxt_alloc_filter(bp);
1238 					if (!new_filter) {
1239 						RTE_LOG(ERR, PMD,
1240 							"MAC/VLAN filter alloc failed\n");
1241 						rc = -ENOMEM;
1242 						goto exit;
1243 					}
1244 					STAILQ_INSERT_TAIL(&vnic->filter,
1245 							   new_filter, next);
1246 					/* Inherit MAC from previous filter */
1247 					new_filter->mac_index =
1248 							filter->mac_index;
1249 					memcpy(new_filter->l2_addr,
1250 					       filter->l2_addr, ETHER_ADDR_LEN);
1251 					/* MAC only filter */
1252 					rc = bnxt_hwrm_set_l2_filter(bp,
1253 							vnic->fw_vnic_id,
1254 							new_filter);
1255 					if (rc)
1256 						goto exit;
1257 					RTE_LOG(INFO, PMD,
1258 						"Del Vlan filter for %d\n",
1259 						vlan_id);
1260 				}
1261 				filter = temp_filter;
1262 			}
1263 		}
1264 	}
1265 exit:
1266 	return rc;
1267 }
1268 
1269 static int bnxt_add_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
1270 {
1271 	struct bnxt_filter_info *filter, *temp_filter, *new_filter;
1272 	struct bnxt_vnic_info *vnic;
1273 	unsigned int i;
1274 	int rc = 0;
1275 	uint32_t en = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN |
1276 		HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN_MASK;
1277 	uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN;
1278 
1279 	/* Cycle through all VNICs */
1280 	for (i = 0; i < bp->nr_vnics; i++) {
1281 		/*
1282 		 * For each VNIC and each associated filter(s)
1283 		 * if VLAN exists:
1284 		 *   if VLAN matches vlan_id
1285 		 *      VLAN filter already exists, just skip and continue
1286 		 *   else
1287 		 *      add a new MAC+VLAN filter
1288 		 * else
1289 		 *   Remove the old MAC only filter
1290 		 *    Add a new MAC+VLAN filter
1291 		 */
1292 		STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
1293 			filter = STAILQ_FIRST(&vnic->filter);
1294 			while (filter) {
1295 				temp_filter = STAILQ_NEXT(filter, next);
1296 
1297 				if (filter->enables & chk) {
1298 					if (filter->l2_ovlan == vlan_id)
1299 						goto cont;
1300 				} else {
1301 					/* Must delete the MAC filter */
1302 					STAILQ_REMOVE(&vnic->filter, filter,
1303 						      bnxt_filter_info, next);
1304 					bnxt_hwrm_clear_l2_filter(bp, filter);
1305 					filter->l2_ovlan = 0;
1306 					STAILQ_INSERT_TAIL(
1307 							&bp->free_filter_list,
1308 							filter, next);
1309 				}
1310 				new_filter = bnxt_alloc_filter(bp);
1311 				if (!new_filter) {
1312 					RTE_LOG(ERR, PMD,
1313 						"MAC/VLAN filter alloc failed\n");
1314 					rc = -ENOMEM;
1315 					goto exit;
1316 				}
1317 				STAILQ_INSERT_TAIL(&vnic->filter, new_filter,
1318 						   next);
1319 				/* Inherit MAC from the previous filter */
1320 				new_filter->mac_index = filter->mac_index;
1321 				memcpy(new_filter->l2_addr, filter->l2_addr,
1322 				       ETHER_ADDR_LEN);
1323 				/* MAC + VLAN ID filter */
1324 				new_filter->l2_ovlan = vlan_id;
1325 				new_filter->l2_ovlan_mask = 0xF000;
1326 				new_filter->enables |= en;
1327 				rc = bnxt_hwrm_set_l2_filter(bp,
1328 							     vnic->fw_vnic_id,
1329 							     new_filter);
1330 				if (rc)
1331 					goto exit;
1332 				RTE_LOG(INFO, PMD,
1333 					"Added Vlan filter for %d\n", vlan_id);
1334 cont:
1335 				filter = temp_filter;
1336 			}
1337 		}
1338 	}
1339 exit:
1340 	return rc;
1341 }
1342 
1343 static int bnxt_vlan_filter_set_op(struct rte_eth_dev *eth_dev,
1344 				   uint16_t vlan_id, int on)
1345 {
1346 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1347 
1348 	/* These operations apply to ALL existing MAC/VLAN filters */
1349 	if (on)
1350 		return bnxt_add_vlan_filter(bp, vlan_id);
1351 	else
1352 		return bnxt_del_vlan_filter(bp, vlan_id);
1353 }
1354 
1355 static int
1356 bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask)
1357 {
1358 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1359 	unsigned int i;
1360 
1361 	if (mask & ETH_VLAN_FILTER_MASK) {
1362 		if (!dev->data->dev_conf.rxmode.hw_vlan_filter) {
1363 			/* Remove any VLAN filters programmed */
1364 			for (i = 0; i < 4095; i++)
1365 				bnxt_del_vlan_filter(bp, i);
1366 		}
1367 		RTE_LOG(INFO, PMD, "VLAN Filtering: %d\n",
1368 			dev->data->dev_conf.rxmode.hw_vlan_filter);
1369 	}
1370 
1371 	if (mask & ETH_VLAN_STRIP_MASK) {
1372 		/* Enable or disable VLAN stripping */
1373 		for (i = 0; i < bp->nr_vnics; i++) {
1374 			struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
1375 			if (dev->data->dev_conf.rxmode.hw_vlan_strip)
1376 				vnic->vlan_strip = true;
1377 			else
1378 				vnic->vlan_strip = false;
1379 			bnxt_hwrm_vnic_cfg(bp, vnic);
1380 		}
1381 		RTE_LOG(INFO, PMD, "VLAN Strip Offload: %d\n",
1382 			dev->data->dev_conf.rxmode.hw_vlan_strip);
1383 	}
1384 
1385 	if (mask & ETH_VLAN_EXTEND_MASK)
1386 		RTE_LOG(ERR, PMD, "Extend VLAN Not supported\n");
1387 
1388 	return 0;
1389 }
1390 
1391 static void
1392 bnxt_set_default_mac_addr_op(struct rte_eth_dev *dev, struct ether_addr *addr)
1393 {
1394 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1395 	/* Default Filter is tied to VNIC 0 */
1396 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
1397 	struct bnxt_filter_info *filter;
1398 	int rc;
1399 
1400 	if (BNXT_VF(bp))
1401 		return;
1402 
1403 	memcpy(bp->mac_addr, addr, sizeof(bp->mac_addr));
1404 	memcpy(&dev->data->mac_addrs[0], bp->mac_addr, ETHER_ADDR_LEN);
1405 
1406 	STAILQ_FOREACH(filter, &vnic->filter, next) {
1407 		/* Default Filter is at Index 0 */
1408 		if (filter->mac_index != 0)
1409 			continue;
1410 		rc = bnxt_hwrm_clear_l2_filter(bp, filter);
1411 		if (rc)
1412 			break;
1413 		memcpy(filter->l2_addr, bp->mac_addr, ETHER_ADDR_LEN);
1414 		memset(filter->l2_addr_mask, 0xff, ETHER_ADDR_LEN);
1415 		filter->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_PATH_RX;
1416 		filter->enables |=
1417 			HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR |
1418 			HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR_MASK;
1419 		rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
1420 		if (rc)
1421 			break;
1422 		filter->mac_index = 0;
1423 		RTE_LOG(DEBUG, PMD, "Set MAC addr\n");
1424 	}
1425 }
1426 
1427 static int
1428 bnxt_dev_set_mc_addr_list_op(struct rte_eth_dev *eth_dev,
1429 			  struct ether_addr *mc_addr_set,
1430 			  uint32_t nb_mc_addr)
1431 {
1432 	struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1433 	char *mc_addr_list = (char *)mc_addr_set;
1434 	struct bnxt_vnic_info *vnic;
1435 	uint32_t off = 0, i = 0;
1436 
1437 	vnic = &bp->vnic_info[0];
1438 
1439 	if (nb_mc_addr > BNXT_MAX_MC_ADDRS) {
1440 		vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
1441 		goto allmulti;
1442 	}
1443 
1444 	/* TODO Check for Duplicate mcast addresses */
1445 	vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
1446 	for (i = 0; i < nb_mc_addr; i++) {
1447 		memcpy(vnic->mc_list + off, &mc_addr_list[i], ETHER_ADDR_LEN);
1448 		off += ETHER_ADDR_LEN;
1449 	}
1450 
1451 	vnic->mc_addr_cnt = i;
1452 
1453 allmulti:
1454 	return bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1455 }
1456 
1457 static int
1458 bnxt_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
1459 {
1460 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1461 	uint8_t fw_major = (bp->fw_ver >> 24) & 0xff;
1462 	uint8_t fw_minor = (bp->fw_ver >> 16) & 0xff;
1463 	uint8_t fw_updt = (bp->fw_ver >> 8) & 0xff;
1464 	int ret;
1465 
1466 	ret = snprintf(fw_version, fw_size, "%d.%d.%d",
1467 			fw_major, fw_minor, fw_updt);
1468 
1469 	ret += 1; /* add the size of '\0' */
1470 	if (fw_size < (uint32_t)ret)
1471 		return ret;
1472 	else
1473 		return 0;
1474 }
1475 
1476 static void
1477 bnxt_rxq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
1478 	struct rte_eth_rxq_info *qinfo)
1479 {
1480 	struct bnxt_rx_queue *rxq;
1481 
1482 	rxq = dev->data->rx_queues[queue_id];
1483 
1484 	qinfo->mp = rxq->mb_pool;
1485 	qinfo->scattered_rx = dev->data->scattered_rx;
1486 	qinfo->nb_desc = rxq->nb_rx_desc;
1487 
1488 	qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
1489 	qinfo->conf.rx_drop_en = 0;
1490 	qinfo->conf.rx_deferred_start = 0;
1491 }
1492 
1493 static void
1494 bnxt_txq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
1495 	struct rte_eth_txq_info *qinfo)
1496 {
1497 	struct bnxt_tx_queue *txq;
1498 
1499 	txq = dev->data->tx_queues[queue_id];
1500 
1501 	qinfo->nb_desc = txq->nb_tx_desc;
1502 
1503 	qinfo->conf.tx_thresh.pthresh = txq->pthresh;
1504 	qinfo->conf.tx_thresh.hthresh = txq->hthresh;
1505 	qinfo->conf.tx_thresh.wthresh = txq->wthresh;
1506 
1507 	qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
1508 	qinfo->conf.tx_rs_thresh = 0;
1509 	qinfo->conf.txq_flags = txq->txq_flags;
1510 	qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
1511 }
1512 
1513 static int bnxt_mtu_set_op(struct rte_eth_dev *eth_dev, uint16_t new_mtu)
1514 {
1515 	struct bnxt *bp = eth_dev->data->dev_private;
1516 	struct rte_eth_dev_info dev_info;
1517 	uint32_t max_dev_mtu;
1518 	uint32_t rc = 0;
1519 	uint32_t i;
1520 
1521 	bnxt_dev_info_get_op(eth_dev, &dev_info);
1522 	max_dev_mtu = dev_info.max_rx_pktlen -
1523 		      ETHER_HDR_LEN - ETHER_CRC_LEN - VLAN_TAG_SIZE * 2;
1524 
1525 	if (new_mtu < ETHER_MIN_MTU || new_mtu > max_dev_mtu) {
1526 		RTE_LOG(ERR, PMD, "MTU requested must be within (%d, %d)\n",
1527 			ETHER_MIN_MTU, max_dev_mtu);
1528 		return -EINVAL;
1529 	}
1530 
1531 
1532 	if (new_mtu > ETHER_MTU) {
1533 		bp->flags |= BNXT_FLAG_JUMBO;
1534 		eth_dev->data->dev_conf.rxmode.jumbo_frame = 1;
1535 	} else {
1536 		eth_dev->data->dev_conf.rxmode.jumbo_frame = 0;
1537 		bp->flags &= ~BNXT_FLAG_JUMBO;
1538 	}
1539 
1540 	eth_dev->data->dev_conf.rxmode.max_rx_pkt_len =
1541 		new_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE * 2;
1542 
1543 	eth_dev->data->mtu = new_mtu;
1544 	RTE_LOG(INFO, PMD, "New MTU is %d\n", eth_dev->data->mtu);
1545 
1546 	for (i = 0; i < bp->nr_vnics; i++) {
1547 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
1548 
1549 		vnic->mru = bp->eth_dev->data->mtu + ETHER_HDR_LEN +
1550 					ETHER_CRC_LEN + VLAN_TAG_SIZE * 2;
1551 		rc = bnxt_hwrm_vnic_cfg(bp, vnic);
1552 		if (rc)
1553 			break;
1554 
1555 		rc = bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
1556 		if (rc)
1557 			return rc;
1558 	}
1559 
1560 	return rc;
1561 }
1562 
1563 static int
1564 bnxt_vlan_pvid_set_op(struct rte_eth_dev *dev, uint16_t pvid, int on)
1565 {
1566 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1567 	uint16_t vlan = bp->vlan;
1568 	int rc;
1569 
1570 	if (BNXT_NPAR_PF(bp) || BNXT_VF(bp)) {
1571 		RTE_LOG(ERR, PMD,
1572 			"PVID cannot be modified for this function\n");
1573 		return -ENOTSUP;
1574 	}
1575 	bp->vlan = on ? pvid : 0;
1576 
1577 	rc = bnxt_hwrm_set_default_vlan(bp, 0, 0);
1578 	if (rc)
1579 		bp->vlan = vlan;
1580 	return rc;
1581 }
1582 
1583 static int
1584 bnxt_dev_led_on_op(struct rte_eth_dev *dev)
1585 {
1586 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1587 
1588 	return bnxt_hwrm_port_led_cfg(bp, true);
1589 }
1590 
1591 static int
1592 bnxt_dev_led_off_op(struct rte_eth_dev *dev)
1593 {
1594 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1595 
1596 	return bnxt_hwrm_port_led_cfg(bp, false);
1597 }
1598 
1599 static uint32_t
1600 bnxt_rx_queue_count_op(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1601 {
1602 	uint32_t desc = 0, raw_cons = 0, cons;
1603 	struct bnxt_cp_ring_info *cpr;
1604 	struct bnxt_rx_queue *rxq;
1605 	struct rx_pkt_cmpl *rxcmp;
1606 	uint16_t cmp_type;
1607 	uint8_t cmp = 1;
1608 	bool valid;
1609 
1610 	rxq = dev->data->rx_queues[rx_queue_id];
1611 	cpr = rxq->cp_ring;
1612 	valid = cpr->valid;
1613 
1614 	while (raw_cons < rxq->nb_rx_desc) {
1615 		cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
1616 		rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1617 
1618 		if (!CMPL_VALID(rxcmp, valid))
1619 			goto nothing_to_do;
1620 		valid = FLIP_VALID(cons, cpr->cp_ring_struct->ring_mask, valid);
1621 		cmp_type = CMP_TYPE(rxcmp);
1622 		if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
1623 			cmp = (rte_le_to_cpu_32(
1624 					((struct rx_tpa_end_cmpl *)
1625 					 (rxcmp))->agg_bufs_v1) &
1626 			       RX_TPA_END_CMPL_AGG_BUFS_MASK) >>
1627 				RX_TPA_END_CMPL_AGG_BUFS_SFT;
1628 			desc++;
1629 		} else if (cmp_type == 0x11) {
1630 			desc++;
1631 			cmp = (rxcmp->agg_bufs_v1 &
1632 				   RX_PKT_CMPL_AGG_BUFS_MASK) >>
1633 				RX_PKT_CMPL_AGG_BUFS_SFT;
1634 		} else {
1635 			cmp = 1;
1636 		}
1637 nothing_to_do:
1638 		raw_cons += cmp ? cmp : 2;
1639 	}
1640 
1641 	return desc;
1642 }
1643 
1644 static int
1645 bnxt_rx_descriptor_status_op(void *rx_queue, uint16_t offset)
1646 {
1647 	struct bnxt_rx_queue *rxq = (struct bnxt_rx_queue *)rx_queue;
1648 	struct bnxt_rx_ring_info *rxr;
1649 	struct bnxt_cp_ring_info *cpr;
1650 	struct bnxt_sw_rx_bd *rx_buf;
1651 	struct rx_pkt_cmpl *rxcmp;
1652 	uint32_t cons, cp_cons;
1653 
1654 	if (!rxq)
1655 		return -EINVAL;
1656 
1657 	cpr = rxq->cp_ring;
1658 	rxr = rxq->rx_ring;
1659 
1660 	if (offset >= rxq->nb_rx_desc)
1661 		return -EINVAL;
1662 
1663 	cons = RING_CMP(cpr->cp_ring_struct, offset);
1664 	cp_cons = cpr->cp_raw_cons;
1665 	rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1666 
1667 	if (cons > cp_cons) {
1668 		if (CMPL_VALID(rxcmp, cpr->valid))
1669 			return RTE_ETH_RX_DESC_DONE;
1670 	} else {
1671 		if (CMPL_VALID(rxcmp, !cpr->valid))
1672 			return RTE_ETH_RX_DESC_DONE;
1673 	}
1674 	rx_buf = &rxr->rx_buf_ring[cons];
1675 	if (rx_buf->mbuf == NULL)
1676 		return RTE_ETH_RX_DESC_UNAVAIL;
1677 
1678 
1679 	return RTE_ETH_RX_DESC_AVAIL;
1680 }
1681 
1682 static int
1683 bnxt_tx_descriptor_status_op(void *tx_queue, uint16_t offset)
1684 {
1685 	struct bnxt_tx_queue *txq = (struct bnxt_tx_queue *)tx_queue;
1686 	struct bnxt_tx_ring_info *txr;
1687 	struct bnxt_cp_ring_info *cpr;
1688 	struct bnxt_sw_tx_bd *tx_buf;
1689 	struct tx_pkt_cmpl *txcmp;
1690 	uint32_t cons, cp_cons;
1691 
1692 	if (!txq)
1693 		return -EINVAL;
1694 
1695 	cpr = txq->cp_ring;
1696 	txr = txq->tx_ring;
1697 
1698 	if (offset >= txq->nb_tx_desc)
1699 		return -EINVAL;
1700 
1701 	cons = RING_CMP(cpr->cp_ring_struct, offset);
1702 	txcmp = (struct tx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1703 	cp_cons = cpr->cp_raw_cons;
1704 
1705 	if (cons > cp_cons) {
1706 		if (CMPL_VALID(txcmp, cpr->valid))
1707 			return RTE_ETH_TX_DESC_UNAVAIL;
1708 	} else {
1709 		if (CMPL_VALID(txcmp, !cpr->valid))
1710 			return RTE_ETH_TX_DESC_UNAVAIL;
1711 	}
1712 	tx_buf = &txr->tx_buf_ring[cons];
1713 	if (tx_buf->mbuf == NULL)
1714 		return RTE_ETH_TX_DESC_DONE;
1715 
1716 	return RTE_ETH_TX_DESC_FULL;
1717 }
1718 
1719 static struct bnxt_filter_info *
1720 bnxt_match_and_validate_ether_filter(struct bnxt *bp,
1721 				struct rte_eth_ethertype_filter *efilter,
1722 				struct bnxt_vnic_info *vnic0,
1723 				struct bnxt_vnic_info *vnic,
1724 				int *ret)
1725 {
1726 	struct bnxt_filter_info *mfilter = NULL;
1727 	int match = 0;
1728 	*ret = 0;
1729 
1730 	if (efilter->ether_type != ETHER_TYPE_IPv4 &&
1731 		efilter->ether_type != ETHER_TYPE_IPv6) {
1732 		RTE_LOG(ERR, PMD, "unsupported ether_type(0x%04x) in"
1733 			" ethertype filter.", efilter->ether_type);
1734 		*ret = -EINVAL;
1735 		goto exit;
1736 	}
1737 	if (efilter->queue >= bp->rx_nr_rings) {
1738 		RTE_LOG(ERR, PMD, "Invalid queue %d\n", efilter->queue);
1739 		*ret = -EINVAL;
1740 		goto exit;
1741 	}
1742 
1743 	vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
1744 	vnic = STAILQ_FIRST(&bp->ff_pool[efilter->queue]);
1745 	if (vnic == NULL) {
1746 		RTE_LOG(ERR, PMD, "Invalid queue %d\n", efilter->queue);
1747 		*ret = -EINVAL;
1748 		goto exit;
1749 	}
1750 
1751 	if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
1752 		STAILQ_FOREACH(mfilter, &vnic0->filter, next) {
1753 			if ((!memcmp(efilter->mac_addr.addr_bytes,
1754 				     mfilter->l2_addr, ETHER_ADDR_LEN) &&
1755 			     mfilter->flags ==
1756 			     HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP &&
1757 			     mfilter->ethertype == efilter->ether_type)) {
1758 				match = 1;
1759 				break;
1760 			}
1761 		}
1762 	} else {
1763 		STAILQ_FOREACH(mfilter, &vnic->filter, next)
1764 			if ((!memcmp(efilter->mac_addr.addr_bytes,
1765 				     mfilter->l2_addr, ETHER_ADDR_LEN) &&
1766 			     mfilter->ethertype == efilter->ether_type &&
1767 			     mfilter->flags ==
1768 			     HWRM_CFA_L2_FILTER_CFG_INPUT_FLAGS_PATH_RX)) {
1769 				match = 1;
1770 				break;
1771 			}
1772 	}
1773 
1774 	if (match)
1775 		*ret = -EEXIST;
1776 
1777 exit:
1778 	return mfilter;
1779 }
1780 
1781 static int
1782 bnxt_ethertype_filter(struct rte_eth_dev *dev,
1783 			enum rte_filter_op filter_op,
1784 			void *arg)
1785 {
1786 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1787 	struct rte_eth_ethertype_filter *efilter =
1788 			(struct rte_eth_ethertype_filter *)arg;
1789 	struct bnxt_filter_info *bfilter, *filter1;
1790 	struct bnxt_vnic_info *vnic, *vnic0;
1791 	int ret;
1792 
1793 	if (filter_op == RTE_ETH_FILTER_NOP)
1794 		return 0;
1795 
1796 	if (arg == NULL) {
1797 		RTE_LOG(ERR, PMD, "arg shouldn't be NULL for operation %u.",
1798 			    filter_op);
1799 		return -EINVAL;
1800 	}
1801 
1802 	vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
1803 	vnic = STAILQ_FIRST(&bp->ff_pool[efilter->queue]);
1804 
1805 	switch (filter_op) {
1806 	case RTE_ETH_FILTER_ADD:
1807 		bnxt_match_and_validate_ether_filter(bp, efilter,
1808 							vnic0, vnic, &ret);
1809 		if (ret < 0)
1810 			return ret;
1811 
1812 		bfilter = bnxt_get_unused_filter(bp);
1813 		if (bfilter == NULL) {
1814 			RTE_LOG(ERR, PMD,
1815 				"Not enough resources for a new filter.\n");
1816 			return -ENOMEM;
1817 		}
1818 		bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
1819 		memcpy(bfilter->l2_addr, efilter->mac_addr.addr_bytes,
1820 		       ETHER_ADDR_LEN);
1821 		memcpy(bfilter->dst_macaddr, efilter->mac_addr.addr_bytes,
1822 		       ETHER_ADDR_LEN);
1823 		bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
1824 		bfilter->ethertype = efilter->ether_type;
1825 		bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
1826 
1827 		filter1 = bnxt_get_l2_filter(bp, bfilter, vnic0);
1828 		if (filter1 == NULL) {
1829 			ret = -1;
1830 			goto cleanup;
1831 		}
1832 		bfilter->enables |=
1833 			HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
1834 		bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
1835 
1836 		bfilter->dst_id = vnic->fw_vnic_id;
1837 
1838 		if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
1839 			bfilter->flags =
1840 				HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
1841 		}
1842 
1843 		ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
1844 		if (ret)
1845 			goto cleanup;
1846 		STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
1847 		break;
1848 	case RTE_ETH_FILTER_DELETE:
1849 		filter1 = bnxt_match_and_validate_ether_filter(bp, efilter,
1850 							vnic0, vnic, &ret);
1851 		if (ret == -EEXIST) {
1852 			ret = bnxt_hwrm_clear_ntuple_filter(bp, filter1);
1853 
1854 			STAILQ_REMOVE(&vnic->filter, filter1, bnxt_filter_info,
1855 				      next);
1856 			bnxt_free_filter(bp, filter1);
1857 		} else if (ret == 0) {
1858 			RTE_LOG(ERR, PMD, "No matching filter found\n");
1859 		}
1860 		break;
1861 	default:
1862 		RTE_LOG(ERR, PMD, "unsupported operation %u.", filter_op);
1863 		ret = -EINVAL;
1864 		goto error;
1865 	}
1866 	return ret;
1867 cleanup:
1868 	bnxt_free_filter(bp, bfilter);
1869 error:
1870 	return ret;
1871 }
1872 
1873 static inline int
1874 parse_ntuple_filter(struct bnxt *bp,
1875 		    struct rte_eth_ntuple_filter *nfilter,
1876 		    struct bnxt_filter_info *bfilter)
1877 {
1878 	uint32_t en = 0;
1879 
1880 	if (nfilter->queue >= bp->rx_nr_rings) {
1881 		RTE_LOG(ERR, PMD, "Invalid queue %d\n", nfilter->queue);
1882 		return -EINVAL;
1883 	}
1884 
1885 	switch (nfilter->dst_port_mask) {
1886 	case UINT16_MAX:
1887 		bfilter->dst_port_mask = -1;
1888 		bfilter->dst_port = nfilter->dst_port;
1889 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT |
1890 			NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
1891 		break;
1892 	default:
1893 		RTE_LOG(ERR, PMD, "invalid dst_port mask.");
1894 		return -EINVAL;
1895 	}
1896 
1897 	bfilter->ip_addr_type = NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
1898 	en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
1899 
1900 	switch (nfilter->proto_mask) {
1901 	case UINT8_MAX:
1902 		if (nfilter->proto == 17) /* IPPROTO_UDP */
1903 			bfilter->ip_protocol = 17;
1904 		else if (nfilter->proto == 6) /* IPPROTO_TCP */
1905 			bfilter->ip_protocol = 6;
1906 		else
1907 			return -EINVAL;
1908 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
1909 		break;
1910 	default:
1911 		RTE_LOG(ERR, PMD, "invalid protocol mask.");
1912 		return -EINVAL;
1913 	}
1914 
1915 	switch (nfilter->dst_ip_mask) {
1916 	case UINT32_MAX:
1917 		bfilter->dst_ipaddr_mask[0] = -1;
1918 		bfilter->dst_ipaddr[0] = nfilter->dst_ip;
1919 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR |
1920 			NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
1921 		break;
1922 	default:
1923 		RTE_LOG(ERR, PMD, "invalid dst_ip mask.");
1924 		return -EINVAL;
1925 	}
1926 
1927 	switch (nfilter->src_ip_mask) {
1928 	case UINT32_MAX:
1929 		bfilter->src_ipaddr_mask[0] = -1;
1930 		bfilter->src_ipaddr[0] = nfilter->src_ip;
1931 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR |
1932 			NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
1933 		break;
1934 	default:
1935 		RTE_LOG(ERR, PMD, "invalid src_ip mask.");
1936 		return -EINVAL;
1937 	}
1938 
1939 	switch (nfilter->src_port_mask) {
1940 	case UINT16_MAX:
1941 		bfilter->src_port_mask = -1;
1942 		bfilter->src_port = nfilter->src_port;
1943 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT |
1944 			NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
1945 		break;
1946 	default:
1947 		RTE_LOG(ERR, PMD, "invalid src_port mask.");
1948 		return -EINVAL;
1949 	}
1950 
1951 	//TODO Priority
1952 	//nfilter->priority = (uint8_t)filter->priority;
1953 
1954 	bfilter->enables = en;
1955 	return 0;
1956 }
1957 
1958 static struct bnxt_filter_info*
1959 bnxt_match_ntuple_filter(struct bnxt *bp,
1960 			 struct bnxt_filter_info *bfilter)
1961 {
1962 	struct bnxt_filter_info *mfilter = NULL;
1963 	int i;
1964 
1965 	for (i = bp->nr_vnics - 1; i >= 0; i--) {
1966 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
1967 		STAILQ_FOREACH(mfilter, &vnic->filter, next) {
1968 			if (bfilter->src_ipaddr[0] == mfilter->src_ipaddr[0] &&
1969 			    bfilter->src_ipaddr_mask[0] ==
1970 			    mfilter->src_ipaddr_mask[0] &&
1971 			    bfilter->src_port == mfilter->src_port &&
1972 			    bfilter->src_port_mask == mfilter->src_port_mask &&
1973 			    bfilter->dst_ipaddr[0] == mfilter->dst_ipaddr[0] &&
1974 			    bfilter->dst_ipaddr_mask[0] ==
1975 			    mfilter->dst_ipaddr_mask[0] &&
1976 			    bfilter->dst_port == mfilter->dst_port &&
1977 			    bfilter->dst_port_mask == mfilter->dst_port_mask &&
1978 			    bfilter->flags == mfilter->flags &&
1979 			    bfilter->enables == mfilter->enables)
1980 				return mfilter;
1981 		}
1982 	}
1983 	return NULL;
1984 }
1985 
1986 static int
1987 bnxt_cfg_ntuple_filter(struct bnxt *bp,
1988 		       struct rte_eth_ntuple_filter *nfilter,
1989 		       enum rte_filter_op filter_op)
1990 {
1991 	struct bnxt_filter_info *bfilter, *mfilter, *filter1;
1992 	struct bnxt_vnic_info *vnic, *vnic0;
1993 	int ret;
1994 
1995 	if (nfilter->flags != RTE_5TUPLE_FLAGS) {
1996 		RTE_LOG(ERR, PMD, "only 5tuple is supported.");
1997 		return -EINVAL;
1998 	}
1999 
2000 	if (nfilter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG) {
2001 		RTE_LOG(ERR, PMD, "Ntuple filter: TCP flags not supported\n");
2002 		return -EINVAL;
2003 	}
2004 
2005 	bfilter = bnxt_get_unused_filter(bp);
2006 	if (bfilter == NULL) {
2007 		RTE_LOG(ERR, PMD,
2008 			"Not enough resources for a new filter.\n");
2009 		return -ENOMEM;
2010 	}
2011 	ret = parse_ntuple_filter(bp, nfilter, bfilter);
2012 	if (ret < 0)
2013 		goto free_filter;
2014 
2015 	vnic = STAILQ_FIRST(&bp->ff_pool[nfilter->queue]);
2016 	vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
2017 	filter1 = STAILQ_FIRST(&vnic0->filter);
2018 	if (filter1 == NULL) {
2019 		ret = -1;
2020 		goto free_filter;
2021 	}
2022 
2023 	bfilter->dst_id = vnic->fw_vnic_id;
2024 	bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
2025 	bfilter->enables |=
2026 		HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
2027 	bfilter->ethertype = 0x800;
2028 	bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2029 
2030 	mfilter = bnxt_match_ntuple_filter(bp, bfilter);
2031 
2032 	if (mfilter != NULL && filter_op == RTE_ETH_FILTER_ADD) {
2033 		RTE_LOG(ERR, PMD, "filter exists.");
2034 		ret = -EEXIST;
2035 		goto free_filter;
2036 	}
2037 	if (mfilter == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
2038 		RTE_LOG(ERR, PMD, "filter doesn't exist.");
2039 		ret = -ENOENT;
2040 		goto free_filter;
2041 	}
2042 
2043 	if (filter_op == RTE_ETH_FILTER_ADD) {
2044 		bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
2045 		ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
2046 		if (ret)
2047 			goto free_filter;
2048 		STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
2049 	} else {
2050 		if (mfilter == NULL) {
2051 			/* This should not happen. But for Coverity! */
2052 			ret = -ENOENT;
2053 			goto free_filter;
2054 		}
2055 		ret = bnxt_hwrm_clear_ntuple_filter(bp, mfilter);
2056 
2057 		STAILQ_REMOVE(&vnic->filter, mfilter, bnxt_filter_info,
2058 			      next);
2059 		bnxt_free_filter(bp, mfilter);
2060 		bfilter->fw_l2_filter_id = -1;
2061 		bnxt_free_filter(bp, bfilter);
2062 	}
2063 
2064 	return 0;
2065 free_filter:
2066 	bfilter->fw_l2_filter_id = -1;
2067 	bnxt_free_filter(bp, bfilter);
2068 	return ret;
2069 }
2070 
2071 static int
2072 bnxt_ntuple_filter(struct rte_eth_dev *dev,
2073 			enum rte_filter_op filter_op,
2074 			void *arg)
2075 {
2076 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2077 	int ret;
2078 
2079 	if (filter_op == RTE_ETH_FILTER_NOP)
2080 		return 0;
2081 
2082 	if (arg == NULL) {
2083 		RTE_LOG(ERR, PMD, "arg shouldn't be NULL for operation %u.",
2084 			    filter_op);
2085 		return -EINVAL;
2086 	}
2087 
2088 	switch (filter_op) {
2089 	case RTE_ETH_FILTER_ADD:
2090 		ret = bnxt_cfg_ntuple_filter(bp,
2091 			(struct rte_eth_ntuple_filter *)arg,
2092 			filter_op);
2093 		break;
2094 	case RTE_ETH_FILTER_DELETE:
2095 		ret = bnxt_cfg_ntuple_filter(bp,
2096 			(struct rte_eth_ntuple_filter *)arg,
2097 			filter_op);
2098 		break;
2099 	default:
2100 		RTE_LOG(ERR, PMD, "unsupported operation %u.", filter_op);
2101 		ret = -EINVAL;
2102 		break;
2103 	}
2104 	return ret;
2105 }
2106 
2107 static int
2108 bnxt_parse_fdir_filter(struct bnxt *bp,
2109 		       struct rte_eth_fdir_filter *fdir,
2110 		       struct bnxt_filter_info *filter)
2111 {
2112 	enum rte_fdir_mode fdir_mode =
2113 		bp->eth_dev->data->dev_conf.fdir_conf.mode;
2114 	struct bnxt_vnic_info *vnic0, *vnic;
2115 	struct bnxt_filter_info *filter1;
2116 	uint32_t en = 0;
2117 	int i;
2118 
2119 	if (fdir_mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2120 		return -EINVAL;
2121 
2122 	filter->l2_ovlan = fdir->input.flow_ext.vlan_tci;
2123 	en |= EM_FLOW_ALLOC_INPUT_EN_OVLAN_VID;
2124 
2125 	switch (fdir->input.flow_type) {
2126 	case RTE_ETH_FLOW_IPV4:
2127 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2128 		/* FALLTHROUGH */
2129 		filter->src_ipaddr[0] = fdir->input.flow.ip4_flow.src_ip;
2130 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2131 		filter->dst_ipaddr[0] = fdir->input.flow.ip4_flow.dst_ip;
2132 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2133 		filter->ip_protocol = fdir->input.flow.ip4_flow.proto;
2134 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2135 		filter->ip_addr_type =
2136 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2137 		filter->src_ipaddr_mask[0] = 0xffffffff;
2138 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2139 		filter->dst_ipaddr_mask[0] = 0xffffffff;
2140 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2141 		filter->ethertype = 0x800;
2142 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2143 		break;
2144 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2145 		filter->src_port = fdir->input.flow.tcp4_flow.src_port;
2146 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2147 		filter->dst_port = fdir->input.flow.tcp4_flow.dst_port;
2148 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2149 		filter->dst_port_mask = 0xffff;
2150 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2151 		filter->src_port_mask = 0xffff;
2152 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2153 		filter->src_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.src_ip;
2154 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2155 		filter->dst_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.dst_ip;
2156 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2157 		filter->ip_protocol = 6;
2158 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2159 		filter->ip_addr_type =
2160 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2161 		filter->src_ipaddr_mask[0] = 0xffffffff;
2162 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2163 		filter->dst_ipaddr_mask[0] = 0xffffffff;
2164 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2165 		filter->ethertype = 0x800;
2166 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2167 		break;
2168 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2169 		filter->src_port = fdir->input.flow.udp4_flow.src_port;
2170 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2171 		filter->dst_port = fdir->input.flow.udp4_flow.dst_port;
2172 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2173 		filter->dst_port_mask = 0xffff;
2174 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2175 		filter->src_port_mask = 0xffff;
2176 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2177 		filter->src_ipaddr[0] = fdir->input.flow.udp4_flow.ip.src_ip;
2178 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2179 		filter->dst_ipaddr[0] = fdir->input.flow.udp4_flow.ip.dst_ip;
2180 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2181 		filter->ip_protocol = 17;
2182 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2183 		filter->ip_addr_type =
2184 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2185 		filter->src_ipaddr_mask[0] = 0xffffffff;
2186 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2187 		filter->dst_ipaddr_mask[0] = 0xffffffff;
2188 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2189 		filter->ethertype = 0x800;
2190 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2191 		break;
2192 	case RTE_ETH_FLOW_IPV6:
2193 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2194 		/* FALLTHROUGH */
2195 		filter->ip_addr_type =
2196 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2197 		filter->ip_protocol = fdir->input.flow.ipv6_flow.proto;
2198 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2199 		rte_memcpy(filter->src_ipaddr,
2200 			   fdir->input.flow.ipv6_flow.src_ip, 16);
2201 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2202 		rte_memcpy(filter->dst_ipaddr,
2203 			   fdir->input.flow.ipv6_flow.dst_ip, 16);
2204 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2205 		memset(filter->dst_ipaddr_mask, 0xff, 16);
2206 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2207 		memset(filter->src_ipaddr_mask, 0xff, 16);
2208 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2209 		filter->ethertype = 0x86dd;
2210 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2211 		break;
2212 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2213 		filter->src_port = fdir->input.flow.tcp6_flow.src_port;
2214 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2215 		filter->dst_port = fdir->input.flow.tcp6_flow.dst_port;
2216 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2217 		filter->dst_port_mask = 0xffff;
2218 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2219 		filter->src_port_mask = 0xffff;
2220 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2221 		filter->ip_addr_type =
2222 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2223 		filter->ip_protocol = fdir->input.flow.tcp6_flow.ip.proto;
2224 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2225 		rte_memcpy(filter->src_ipaddr,
2226 			   fdir->input.flow.tcp6_flow.ip.src_ip, 16);
2227 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2228 		rte_memcpy(filter->dst_ipaddr,
2229 			   fdir->input.flow.tcp6_flow.ip.dst_ip, 16);
2230 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2231 		memset(filter->dst_ipaddr_mask, 0xff, 16);
2232 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2233 		memset(filter->src_ipaddr_mask, 0xff, 16);
2234 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2235 		filter->ethertype = 0x86dd;
2236 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2237 		break;
2238 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2239 		filter->src_port = fdir->input.flow.udp6_flow.src_port;
2240 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2241 		filter->dst_port = fdir->input.flow.udp6_flow.dst_port;
2242 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2243 		filter->dst_port_mask = 0xffff;
2244 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2245 		filter->src_port_mask = 0xffff;
2246 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2247 		filter->ip_addr_type =
2248 			NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2249 		filter->ip_protocol = fdir->input.flow.udp6_flow.ip.proto;
2250 		en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2251 		rte_memcpy(filter->src_ipaddr,
2252 			   fdir->input.flow.udp6_flow.ip.src_ip, 16);
2253 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2254 		rte_memcpy(filter->dst_ipaddr,
2255 			   fdir->input.flow.udp6_flow.ip.dst_ip, 16);
2256 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2257 		memset(filter->dst_ipaddr_mask, 0xff, 16);
2258 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2259 		memset(filter->src_ipaddr_mask, 0xff, 16);
2260 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2261 		filter->ethertype = 0x86dd;
2262 		filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2263 		break;
2264 	case RTE_ETH_FLOW_L2_PAYLOAD:
2265 		filter->ethertype = fdir->input.flow.l2_flow.ether_type;
2266 		en |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2267 		break;
2268 	case RTE_ETH_FLOW_VXLAN:
2269 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2270 			return -EINVAL;
2271 		filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
2272 		filter->tunnel_type =
2273 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
2274 		en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
2275 		break;
2276 	case RTE_ETH_FLOW_NVGRE:
2277 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2278 			return -EINVAL;
2279 		filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
2280 		filter->tunnel_type =
2281 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_NVGRE;
2282 		en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
2283 		break;
2284 	case RTE_ETH_FLOW_UNKNOWN:
2285 	case RTE_ETH_FLOW_RAW:
2286 	case RTE_ETH_FLOW_FRAG_IPV4:
2287 	case RTE_ETH_FLOW_NONFRAG_IPV4_SCTP:
2288 	case RTE_ETH_FLOW_FRAG_IPV6:
2289 	case RTE_ETH_FLOW_NONFRAG_IPV6_SCTP:
2290 	case RTE_ETH_FLOW_IPV6_EX:
2291 	case RTE_ETH_FLOW_IPV6_TCP_EX:
2292 	case RTE_ETH_FLOW_IPV6_UDP_EX:
2293 	case RTE_ETH_FLOW_GENEVE:
2294 		/* FALLTHROUGH */
2295 	default:
2296 		return -EINVAL;
2297 	}
2298 
2299 	vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
2300 	vnic = STAILQ_FIRST(&bp->ff_pool[fdir->action.rx_queue]);
2301 	if (vnic == NULL) {
2302 		RTE_LOG(ERR, PMD, "Invalid queue %d\n", fdir->action.rx_queue);
2303 		return -EINVAL;
2304 	}
2305 
2306 
2307 	if (fdir_mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2308 		rte_memcpy(filter->dst_macaddr,
2309 			fdir->input.flow.mac_vlan_flow.mac_addr.addr_bytes, 6);
2310 			en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
2311 	}
2312 
2313 	if (fdir->action.behavior == RTE_ETH_FDIR_REJECT) {
2314 		filter->flags = HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
2315 		filter1 = STAILQ_FIRST(&vnic0->filter);
2316 		//filter1 = bnxt_get_l2_filter(bp, filter, vnic0);
2317 	} else {
2318 		filter->dst_id = vnic->fw_vnic_id;
2319 		for (i = 0; i < ETHER_ADDR_LEN; i++)
2320 			if (filter->dst_macaddr[i] == 0x00)
2321 				filter1 = STAILQ_FIRST(&vnic0->filter);
2322 			else
2323 				filter1 = bnxt_get_l2_filter(bp, filter, vnic);
2324 	}
2325 
2326 	if (filter1 == NULL)
2327 		return -EINVAL;
2328 
2329 	en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
2330 	filter->fw_l2_filter_id = filter1->fw_l2_filter_id;
2331 
2332 	filter->enables = en;
2333 
2334 	return 0;
2335 }
2336 
2337 static struct bnxt_filter_info *
2338 bnxt_match_fdir(struct bnxt *bp, struct bnxt_filter_info *nf)
2339 {
2340 	struct bnxt_filter_info *mf = NULL;
2341 	int i;
2342 
2343 	for (i = bp->nr_vnics - 1; i >= 0; i--) {
2344 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2345 
2346 		STAILQ_FOREACH(mf, &vnic->filter, next) {
2347 			if (mf->filter_type == nf->filter_type &&
2348 			    mf->flags == nf->flags &&
2349 			    mf->src_port == nf->src_port &&
2350 			    mf->src_port_mask == nf->src_port_mask &&
2351 			    mf->dst_port == nf->dst_port &&
2352 			    mf->dst_port_mask == nf->dst_port_mask &&
2353 			    mf->ip_protocol == nf->ip_protocol &&
2354 			    mf->ip_addr_type == nf->ip_addr_type &&
2355 			    mf->ethertype == nf->ethertype &&
2356 			    mf->vni == nf->vni &&
2357 			    mf->tunnel_type == nf->tunnel_type &&
2358 			    mf->l2_ovlan == nf->l2_ovlan &&
2359 			    mf->l2_ovlan_mask == nf->l2_ovlan_mask &&
2360 			    mf->l2_ivlan == nf->l2_ivlan &&
2361 			    mf->l2_ivlan_mask == nf->l2_ivlan_mask &&
2362 			    !memcmp(mf->l2_addr, nf->l2_addr, ETHER_ADDR_LEN) &&
2363 			    !memcmp(mf->l2_addr_mask, nf->l2_addr_mask,
2364 				    ETHER_ADDR_LEN) &&
2365 			    !memcmp(mf->src_macaddr, nf->src_macaddr,
2366 				    ETHER_ADDR_LEN) &&
2367 			    !memcmp(mf->dst_macaddr, nf->dst_macaddr,
2368 				    ETHER_ADDR_LEN) &&
2369 			    !memcmp(mf->src_ipaddr, nf->src_ipaddr,
2370 				    sizeof(nf->src_ipaddr)) &&
2371 			    !memcmp(mf->src_ipaddr_mask, nf->src_ipaddr_mask,
2372 				    sizeof(nf->src_ipaddr_mask)) &&
2373 			    !memcmp(mf->dst_ipaddr, nf->dst_ipaddr,
2374 				    sizeof(nf->dst_ipaddr)) &&
2375 			    !memcmp(mf->dst_ipaddr_mask, nf->dst_ipaddr_mask,
2376 				    sizeof(nf->dst_ipaddr_mask)))
2377 				return mf;
2378 		}
2379 	}
2380 	return NULL;
2381 }
2382 
2383 static int
2384 bnxt_fdir_filter(struct rte_eth_dev *dev,
2385 		 enum rte_filter_op filter_op,
2386 		 void *arg)
2387 {
2388 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2389 	struct rte_eth_fdir_filter *fdir  = (struct rte_eth_fdir_filter *)arg;
2390 	struct bnxt_filter_info *filter, *match;
2391 	struct bnxt_vnic_info *vnic;
2392 	int ret = 0, i;
2393 
2394 	if (filter_op == RTE_ETH_FILTER_NOP)
2395 		return 0;
2396 
2397 	if (arg == NULL && filter_op != RTE_ETH_FILTER_FLUSH)
2398 		return -EINVAL;
2399 
2400 	switch (filter_op) {
2401 	case RTE_ETH_FILTER_ADD:
2402 	case RTE_ETH_FILTER_DELETE:
2403 		/* FALLTHROUGH */
2404 		filter = bnxt_get_unused_filter(bp);
2405 		if (filter == NULL) {
2406 			RTE_LOG(ERR, PMD,
2407 				"Not enough resources for a new flow.\n");
2408 			return -ENOMEM;
2409 		}
2410 
2411 		ret = bnxt_parse_fdir_filter(bp, fdir, filter);
2412 		if (ret != 0)
2413 			goto free_filter;
2414 		filter->filter_type = HWRM_CFA_NTUPLE_FILTER;
2415 
2416 		match = bnxt_match_fdir(bp, filter);
2417 		if (match != NULL && filter_op == RTE_ETH_FILTER_ADD) {
2418 			RTE_LOG(ERR, PMD, "Flow already exists.\n");
2419 			ret = -EEXIST;
2420 			goto free_filter;
2421 		}
2422 		if (match == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
2423 			RTE_LOG(ERR, PMD, "Flow does not exist.\n");
2424 			ret = -ENOENT;
2425 			goto free_filter;
2426 		}
2427 
2428 		if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2429 			vnic = STAILQ_FIRST(&bp->ff_pool[0]);
2430 		else
2431 			vnic =
2432 			STAILQ_FIRST(&bp->ff_pool[fdir->action.rx_queue]);
2433 
2434 		if (filter_op == RTE_ETH_FILTER_ADD) {
2435 			ret = bnxt_hwrm_set_ntuple_filter(bp,
2436 							  filter->dst_id,
2437 							  filter);
2438 			if (ret)
2439 				goto free_filter;
2440 			STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
2441 		} else {
2442 			ret = bnxt_hwrm_clear_ntuple_filter(bp, match);
2443 			STAILQ_REMOVE(&vnic->filter, match,
2444 				      bnxt_filter_info, next);
2445 			bnxt_free_filter(bp, match);
2446 			filter->fw_l2_filter_id = -1;
2447 			bnxt_free_filter(bp, filter);
2448 		}
2449 		break;
2450 	case RTE_ETH_FILTER_FLUSH:
2451 		for (i = bp->nr_vnics - 1; i >= 0; i--) {
2452 			struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2453 
2454 			STAILQ_FOREACH(filter, &vnic->filter, next) {
2455 				if (filter->filter_type ==
2456 				    HWRM_CFA_NTUPLE_FILTER) {
2457 					ret =
2458 					bnxt_hwrm_clear_ntuple_filter(bp,
2459 								      filter);
2460 					STAILQ_REMOVE(&vnic->filter, filter,
2461 						      bnxt_filter_info, next);
2462 				}
2463 			}
2464 		}
2465 		return ret;
2466 	case RTE_ETH_FILTER_UPDATE:
2467 	case RTE_ETH_FILTER_STATS:
2468 	case RTE_ETH_FILTER_INFO:
2469 		/* FALLTHROUGH */
2470 		RTE_LOG(ERR, PMD, "operation %u not implemented", filter_op);
2471 		break;
2472 	default:
2473 		RTE_LOG(ERR, PMD, "unknown operation %u", filter_op);
2474 		ret = -EINVAL;
2475 		break;
2476 	}
2477 	return ret;
2478 
2479 free_filter:
2480 	filter->fw_l2_filter_id = -1;
2481 	bnxt_free_filter(bp, filter);
2482 	return ret;
2483 }
2484 
2485 static int
2486 bnxt_filter_ctrl_op(struct rte_eth_dev *dev __rte_unused,
2487 		    enum rte_filter_type filter_type,
2488 		    enum rte_filter_op filter_op, void *arg)
2489 {
2490 	int ret = 0;
2491 
2492 	switch (filter_type) {
2493 	case RTE_ETH_FILTER_TUNNEL:
2494 		RTE_LOG(ERR, PMD,
2495 			"filter type: %d: To be implemented\n", filter_type);
2496 		break;
2497 	case RTE_ETH_FILTER_FDIR:
2498 		ret = bnxt_fdir_filter(dev, filter_op, arg);
2499 		break;
2500 	case RTE_ETH_FILTER_NTUPLE:
2501 		ret = bnxt_ntuple_filter(dev, filter_op, arg);
2502 		break;
2503 	case RTE_ETH_FILTER_ETHERTYPE:
2504 		ret = bnxt_ethertype_filter(dev, filter_op, arg);
2505 		break;
2506 	case RTE_ETH_FILTER_GENERIC:
2507 		if (filter_op != RTE_ETH_FILTER_GET)
2508 			return -EINVAL;
2509 		*(const void **)arg = &bnxt_flow_ops;
2510 		break;
2511 	default:
2512 		RTE_LOG(ERR, PMD,
2513 			"Filter type (%d) not supported", filter_type);
2514 		ret = -EINVAL;
2515 		break;
2516 	}
2517 	return ret;
2518 }
2519 
2520 static const uint32_t *
2521 bnxt_dev_supported_ptypes_get_op(struct rte_eth_dev *dev)
2522 {
2523 	static const uint32_t ptypes[] = {
2524 		RTE_PTYPE_L2_ETHER_VLAN,
2525 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
2526 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
2527 		RTE_PTYPE_L4_ICMP,
2528 		RTE_PTYPE_L4_TCP,
2529 		RTE_PTYPE_L4_UDP,
2530 		RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
2531 		RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
2532 		RTE_PTYPE_INNER_L4_ICMP,
2533 		RTE_PTYPE_INNER_L4_TCP,
2534 		RTE_PTYPE_INNER_L4_UDP,
2535 		RTE_PTYPE_UNKNOWN
2536 	};
2537 
2538 	if (dev->rx_pkt_burst == bnxt_recv_pkts)
2539 		return ptypes;
2540 	return NULL;
2541 }
2542 
2543 
2544 
2545 static int
2546 bnxt_get_eeprom_length_op(struct rte_eth_dev *dev)
2547 {
2548 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2549 	int rc;
2550 	uint32_t dir_entries;
2551 	uint32_t entry_length;
2552 
2553 	RTE_LOG(INFO, PMD, "%s(): %04x:%02x:%02x:%02x\n",
2554 		__func__, bp->pdev->addr.domain, bp->pdev->addr.bus,
2555 		bp->pdev->addr.devid, bp->pdev->addr.function);
2556 
2557 	rc = bnxt_hwrm_nvm_get_dir_info(bp, &dir_entries, &entry_length);
2558 	if (rc != 0)
2559 		return rc;
2560 
2561 	return dir_entries * entry_length;
2562 }
2563 
2564 static int
2565 bnxt_get_eeprom_op(struct rte_eth_dev *dev,
2566 		struct rte_dev_eeprom_info *in_eeprom)
2567 {
2568 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2569 	uint32_t index;
2570 	uint32_t offset;
2571 
2572 	RTE_LOG(INFO, PMD, "%s(): %04x:%02x:%02x:%02x in_eeprom->offset = %d "
2573 		"len = %d\n", __func__, bp->pdev->addr.domain,
2574 		bp->pdev->addr.bus, bp->pdev->addr.devid,
2575 		bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length);
2576 
2577 	if (in_eeprom->offset == 0) /* special offset value to get directory */
2578 		return bnxt_get_nvram_directory(bp, in_eeprom->length,
2579 						in_eeprom->data);
2580 
2581 	index = in_eeprom->offset >> 24;
2582 	offset = in_eeprom->offset & 0xffffff;
2583 
2584 	if (index != 0)
2585 		return bnxt_hwrm_get_nvram_item(bp, index - 1, offset,
2586 					   in_eeprom->length, in_eeprom->data);
2587 
2588 	return 0;
2589 }
2590 
2591 static bool bnxt_dir_type_is_ape_bin_format(uint16_t dir_type)
2592 {
2593 	switch (dir_type) {
2594 	case BNX_DIR_TYPE_CHIMP_PATCH:
2595 	case BNX_DIR_TYPE_BOOTCODE:
2596 	case BNX_DIR_TYPE_BOOTCODE_2:
2597 	case BNX_DIR_TYPE_APE_FW:
2598 	case BNX_DIR_TYPE_APE_PATCH:
2599 	case BNX_DIR_TYPE_KONG_FW:
2600 	case BNX_DIR_TYPE_KONG_PATCH:
2601 	case BNX_DIR_TYPE_BONO_FW:
2602 	case BNX_DIR_TYPE_BONO_PATCH:
2603 		return true;
2604 	}
2605 
2606 	return false;
2607 }
2608 
2609 static bool bnxt_dir_type_is_other_exec_format(uint16_t dir_type)
2610 {
2611 	switch (dir_type) {
2612 	case BNX_DIR_TYPE_AVS:
2613 	case BNX_DIR_TYPE_EXP_ROM_MBA:
2614 	case BNX_DIR_TYPE_PCIE:
2615 	case BNX_DIR_TYPE_TSCF_UCODE:
2616 	case BNX_DIR_TYPE_EXT_PHY:
2617 	case BNX_DIR_TYPE_CCM:
2618 	case BNX_DIR_TYPE_ISCSI_BOOT:
2619 	case BNX_DIR_TYPE_ISCSI_BOOT_IPV6:
2620 	case BNX_DIR_TYPE_ISCSI_BOOT_IPV4N6:
2621 		return true;
2622 	}
2623 
2624 	return false;
2625 }
2626 
2627 static bool bnxt_dir_type_is_executable(uint16_t dir_type)
2628 {
2629 	return bnxt_dir_type_is_ape_bin_format(dir_type) ||
2630 		bnxt_dir_type_is_other_exec_format(dir_type);
2631 }
2632 
2633 static int
2634 bnxt_set_eeprom_op(struct rte_eth_dev *dev,
2635 		struct rte_dev_eeprom_info *in_eeprom)
2636 {
2637 	struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2638 	uint8_t index, dir_op;
2639 	uint16_t type, ext, ordinal, attr;
2640 
2641 	RTE_LOG(INFO, PMD, "%s(): %04x:%02x:%02x:%02x in_eeprom->offset = %d "
2642 		"len = %d\n", __func__, bp->pdev->addr.domain,
2643 		bp->pdev->addr.bus, bp->pdev->addr.devid,
2644 		bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length);
2645 
2646 	if (!BNXT_PF(bp)) {
2647 		RTE_LOG(ERR, PMD, "NVM write not supported from a VF\n");
2648 		return -EINVAL;
2649 	}
2650 
2651 	type = in_eeprom->magic >> 16;
2652 
2653 	if (type == 0xffff) { /* special value for directory operations */
2654 		index = in_eeprom->magic & 0xff;
2655 		dir_op = in_eeprom->magic >> 8;
2656 		if (index == 0)
2657 			return -EINVAL;
2658 		switch (dir_op) {
2659 		case 0x0e: /* erase */
2660 			if (in_eeprom->offset != ~in_eeprom->magic)
2661 				return -EINVAL;
2662 			return bnxt_hwrm_erase_nvram_directory(bp, index - 1);
2663 		default:
2664 			return -EINVAL;
2665 		}
2666 	}
2667 
2668 	/* Create or re-write an NVM item: */
2669 	if (bnxt_dir_type_is_executable(type) == true)
2670 		return -EOPNOTSUPP;
2671 	ext = in_eeprom->magic & 0xffff;
2672 	ordinal = in_eeprom->offset >> 16;
2673 	attr = in_eeprom->offset & 0xffff;
2674 
2675 	return bnxt_hwrm_flash_nvram(bp, type, ordinal, ext, attr,
2676 				     in_eeprom->data, in_eeprom->length);
2677 	return 0;
2678 }
2679 
2680 /*
2681  * Initialization
2682  */
2683 
2684 static const struct eth_dev_ops bnxt_dev_ops = {
2685 	.dev_infos_get = bnxt_dev_info_get_op,
2686 	.dev_close = bnxt_dev_close_op,
2687 	.dev_configure = bnxt_dev_configure_op,
2688 	.dev_start = bnxt_dev_start_op,
2689 	.dev_stop = bnxt_dev_stop_op,
2690 	.dev_set_link_up = bnxt_dev_set_link_up_op,
2691 	.dev_set_link_down = bnxt_dev_set_link_down_op,
2692 	.stats_get = bnxt_stats_get_op,
2693 	.stats_reset = bnxt_stats_reset_op,
2694 	.rx_queue_setup = bnxt_rx_queue_setup_op,
2695 	.rx_queue_release = bnxt_rx_queue_release_op,
2696 	.tx_queue_setup = bnxt_tx_queue_setup_op,
2697 	.tx_queue_release = bnxt_tx_queue_release_op,
2698 	.rx_queue_intr_enable = bnxt_rx_queue_intr_enable_op,
2699 	.rx_queue_intr_disable = bnxt_rx_queue_intr_disable_op,
2700 	.reta_update = bnxt_reta_update_op,
2701 	.reta_query = bnxt_reta_query_op,
2702 	.rss_hash_update = bnxt_rss_hash_update_op,
2703 	.rss_hash_conf_get = bnxt_rss_hash_conf_get_op,
2704 	.link_update = bnxt_link_update_op,
2705 	.promiscuous_enable = bnxt_promiscuous_enable_op,
2706 	.promiscuous_disable = bnxt_promiscuous_disable_op,
2707 	.allmulticast_enable = bnxt_allmulticast_enable_op,
2708 	.allmulticast_disable = bnxt_allmulticast_disable_op,
2709 	.mac_addr_add = bnxt_mac_addr_add_op,
2710 	.mac_addr_remove = bnxt_mac_addr_remove_op,
2711 	.flow_ctrl_get = bnxt_flow_ctrl_get_op,
2712 	.flow_ctrl_set = bnxt_flow_ctrl_set_op,
2713 	.udp_tunnel_port_add  = bnxt_udp_tunnel_port_add_op,
2714 	.udp_tunnel_port_del  = bnxt_udp_tunnel_port_del_op,
2715 	.vlan_filter_set = bnxt_vlan_filter_set_op,
2716 	.vlan_offload_set = bnxt_vlan_offload_set_op,
2717 	.vlan_pvid_set = bnxt_vlan_pvid_set_op,
2718 	.mtu_set = bnxt_mtu_set_op,
2719 	.mac_addr_set = bnxt_set_default_mac_addr_op,
2720 	.xstats_get = bnxt_dev_xstats_get_op,
2721 	.xstats_get_names = bnxt_dev_xstats_get_names_op,
2722 	.xstats_reset = bnxt_dev_xstats_reset_op,
2723 	.fw_version_get = bnxt_fw_version_get,
2724 	.set_mc_addr_list = bnxt_dev_set_mc_addr_list_op,
2725 	.rxq_info_get = bnxt_rxq_info_get_op,
2726 	.txq_info_get = bnxt_txq_info_get_op,
2727 	.dev_led_on = bnxt_dev_led_on_op,
2728 	.dev_led_off = bnxt_dev_led_off_op,
2729 	.xstats_get_by_id = bnxt_dev_xstats_get_by_id_op,
2730 	.xstats_get_names_by_id = bnxt_dev_xstats_get_names_by_id_op,
2731 	.rx_queue_count = bnxt_rx_queue_count_op,
2732 	.rx_descriptor_status = bnxt_rx_descriptor_status_op,
2733 	.tx_descriptor_status = bnxt_tx_descriptor_status_op,
2734 	.filter_ctrl = bnxt_filter_ctrl_op,
2735 	.dev_supported_ptypes_get = bnxt_dev_supported_ptypes_get_op,
2736 	.get_eeprom_length    = bnxt_get_eeprom_length_op,
2737 	.get_eeprom           = bnxt_get_eeprom_op,
2738 	.set_eeprom           = bnxt_set_eeprom_op,
2739 };
2740 
2741 static bool bnxt_vf_pciid(uint16_t id)
2742 {
2743 	if (id == BROADCOM_DEV_ID_57304_VF ||
2744 	    id == BROADCOM_DEV_ID_57406_VF ||
2745 	    id == BROADCOM_DEV_ID_5731X_VF ||
2746 	    id == BROADCOM_DEV_ID_5741X_VF ||
2747 	    id == BROADCOM_DEV_ID_57414_VF ||
2748 	    id == BROADCOM_DEV_ID_STRATUS_NIC_VF)
2749 		return true;
2750 	return false;
2751 }
2752 
2753 static int bnxt_init_board(struct rte_eth_dev *eth_dev)
2754 {
2755 	struct bnxt *bp = eth_dev->data->dev_private;
2756 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2757 	int rc;
2758 
2759 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
2760 	if (!pci_dev->mem_resource[0].addr) {
2761 		RTE_LOG(ERR, PMD,
2762 			"Cannot find PCI device base address, aborting\n");
2763 		rc = -ENODEV;
2764 		goto init_err_disable;
2765 	}
2766 
2767 	bp->eth_dev = eth_dev;
2768 	bp->pdev = pci_dev;
2769 
2770 	bp->bar0 = (void *)pci_dev->mem_resource[0].addr;
2771 	if (!bp->bar0) {
2772 		RTE_LOG(ERR, PMD, "Cannot map device registers, aborting\n");
2773 		rc = -ENOMEM;
2774 		goto init_err_release;
2775 	}
2776 	return 0;
2777 
2778 init_err_release:
2779 	if (bp->bar0)
2780 		bp->bar0 = NULL;
2781 
2782 init_err_disable:
2783 
2784 	return rc;
2785 }
2786 
2787 static int bnxt_dev_uninit(struct rte_eth_dev *eth_dev);
2788 
2789 #define ALLOW_FUNC(x)	\
2790 	{ \
2791 		typeof(x) arg = (x); \
2792 		bp->pf.vf_req_fwd[((arg) >> 5)] &= \
2793 		~rte_cpu_to_le_32(1 << ((arg) & 0x1f)); \
2794 	}
2795 static int
2796 bnxt_dev_init(struct rte_eth_dev *eth_dev)
2797 {
2798 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2799 	char mz_name[RTE_MEMZONE_NAMESIZE];
2800 	const struct rte_memzone *mz = NULL;
2801 	static int version_printed;
2802 	uint32_t total_alloc_len;
2803 	rte_iova_t mz_phys_addr;
2804 	struct bnxt *bp;
2805 	int rc;
2806 
2807 	if (version_printed++ == 0)
2808 		RTE_LOG(INFO, PMD, "%s\n", bnxt_version);
2809 
2810 	rte_eth_copy_pci_info(eth_dev, pci_dev);
2811 
2812 	bp = eth_dev->data->dev_private;
2813 
2814 	rte_atomic64_init(&bp->rx_mbuf_alloc_fail);
2815 	bp->dev_stopped = 1;
2816 
2817 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2818 		goto skip_init;
2819 
2820 	if (bnxt_vf_pciid(pci_dev->id.device_id))
2821 		bp->flags |= BNXT_FLAG_VF;
2822 
2823 	rc = bnxt_init_board(eth_dev);
2824 	if (rc) {
2825 		RTE_LOG(ERR, PMD,
2826 			"Board initialization failed rc: %x\n", rc);
2827 		goto error;
2828 	}
2829 skip_init:
2830 	eth_dev->dev_ops = &bnxt_dev_ops;
2831 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2832 		return 0;
2833 	eth_dev->rx_pkt_burst = &bnxt_recv_pkts;
2834 	eth_dev->tx_pkt_burst = &bnxt_xmit_pkts;
2835 
2836 	if (BNXT_PF(bp) && pci_dev->id.device_id != BROADCOM_DEV_ID_NS2) {
2837 		snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
2838 			 "bnxt_%04x:%02x:%02x:%02x-%s", pci_dev->addr.domain,
2839 			 pci_dev->addr.bus, pci_dev->addr.devid,
2840 			 pci_dev->addr.function, "rx_port_stats");
2841 		mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
2842 		mz = rte_memzone_lookup(mz_name);
2843 		total_alloc_len = RTE_CACHE_LINE_ROUNDUP(
2844 				sizeof(struct rx_port_stats) + 512);
2845 		if (!mz) {
2846 			mz = rte_memzone_reserve(mz_name, total_alloc_len,
2847 						 SOCKET_ID_ANY,
2848 						 RTE_MEMZONE_2MB |
2849 						 RTE_MEMZONE_SIZE_HINT_ONLY);
2850 			if (mz == NULL)
2851 				return -ENOMEM;
2852 		}
2853 		memset(mz->addr, 0, mz->len);
2854 		mz_phys_addr = mz->iova;
2855 		if ((unsigned long)mz->addr == mz_phys_addr) {
2856 			RTE_LOG(WARNING, PMD,
2857 				"Memzone physical address same as virtual.\n");
2858 			RTE_LOG(WARNING, PMD,
2859 				"Using rte_mem_virt2iova()\n");
2860 			mz_phys_addr = rte_mem_virt2iova(mz->addr);
2861 			if (mz_phys_addr == 0) {
2862 				RTE_LOG(ERR, PMD,
2863 				"unable to map address to physical memory\n");
2864 				return -ENOMEM;
2865 			}
2866 		}
2867 
2868 		bp->rx_mem_zone = (const void *)mz;
2869 		bp->hw_rx_port_stats = mz->addr;
2870 		bp->hw_rx_port_stats_map = mz_phys_addr;
2871 
2872 		snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
2873 			 "bnxt_%04x:%02x:%02x:%02x-%s", pci_dev->addr.domain,
2874 			 pci_dev->addr.bus, pci_dev->addr.devid,
2875 			 pci_dev->addr.function, "tx_port_stats");
2876 		mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
2877 		mz = rte_memzone_lookup(mz_name);
2878 		total_alloc_len = RTE_CACHE_LINE_ROUNDUP(
2879 				sizeof(struct tx_port_stats) + 512);
2880 		if (!mz) {
2881 			mz = rte_memzone_reserve(mz_name, total_alloc_len,
2882 						 SOCKET_ID_ANY,
2883 						 RTE_MEMZONE_2MB |
2884 						 RTE_MEMZONE_SIZE_HINT_ONLY);
2885 			if (mz == NULL)
2886 				return -ENOMEM;
2887 		}
2888 		memset(mz->addr, 0, mz->len);
2889 		mz_phys_addr = mz->iova;
2890 		if ((unsigned long)mz->addr == mz_phys_addr) {
2891 			RTE_LOG(WARNING, PMD,
2892 				"Memzone physical address same as virtual.\n");
2893 			RTE_LOG(WARNING, PMD,
2894 				"Using rte_mem_virt2iova()\n");
2895 			mz_phys_addr = rte_mem_virt2iova(mz->addr);
2896 			if (mz_phys_addr == 0) {
2897 				RTE_LOG(ERR, PMD,
2898 				"unable to map address to physical memory\n");
2899 				return -ENOMEM;
2900 			}
2901 		}
2902 
2903 		bp->tx_mem_zone = (const void *)mz;
2904 		bp->hw_tx_port_stats = mz->addr;
2905 		bp->hw_tx_port_stats_map = mz_phys_addr;
2906 
2907 		bp->flags |= BNXT_FLAG_PORT_STATS;
2908 	}
2909 
2910 	rc = bnxt_alloc_hwrm_resources(bp);
2911 	if (rc) {
2912 		RTE_LOG(ERR, PMD,
2913 			"hwrm resource allocation failure rc: %x\n", rc);
2914 		goto error_free;
2915 	}
2916 	rc = bnxt_hwrm_ver_get(bp);
2917 	if (rc)
2918 		goto error_free;
2919 	bnxt_hwrm_queue_qportcfg(bp);
2920 
2921 	bnxt_hwrm_func_qcfg(bp);
2922 
2923 	/* Get the MAX capabilities for this function */
2924 	rc = bnxt_hwrm_func_qcaps(bp);
2925 	if (rc) {
2926 		RTE_LOG(ERR, PMD, "hwrm query capability failure rc: %x\n", rc);
2927 		goto error_free;
2928 	}
2929 	if (bp->max_tx_rings == 0) {
2930 		RTE_LOG(ERR, PMD, "No TX rings available!\n");
2931 		rc = -EBUSY;
2932 		goto error_free;
2933 	}
2934 	eth_dev->data->mac_addrs = rte_zmalloc("bnxt_mac_addr_tbl",
2935 					ETHER_ADDR_LEN * bp->max_l2_ctx, 0);
2936 	if (eth_dev->data->mac_addrs == NULL) {
2937 		RTE_LOG(ERR, PMD,
2938 			"Failed to alloc %u bytes needed to store MAC addr tbl",
2939 			ETHER_ADDR_LEN * bp->max_l2_ctx);
2940 		rc = -ENOMEM;
2941 		goto error_free;
2942 	}
2943 	/* Copy the permanent MAC from the qcap response address now. */
2944 	memcpy(bp->mac_addr, bp->dflt_mac_addr, sizeof(bp->mac_addr));
2945 	memcpy(&eth_dev->data->mac_addrs[0], bp->mac_addr, ETHER_ADDR_LEN);
2946 	bp->grp_info = rte_zmalloc("bnxt_grp_info",
2947 				sizeof(*bp->grp_info) * bp->max_ring_grps, 0);
2948 	if (!bp->grp_info) {
2949 		RTE_LOG(ERR, PMD,
2950 			"Failed to alloc %zu bytes needed to store group info table\n",
2951 			sizeof(*bp->grp_info) * bp->max_ring_grps);
2952 		rc = -ENOMEM;
2953 		goto error_free;
2954 	}
2955 
2956 	/* Forward all requests if firmware is new enough */
2957 	if (((bp->fw_ver >= ((20 << 24) | (6 << 16) | (100 << 8))) &&
2958 	    (bp->fw_ver < ((20 << 24) | (7 << 16)))) ||
2959 	    ((bp->fw_ver >= ((20 << 24) | (8 << 16))))) {
2960 		memset(bp->pf.vf_req_fwd, 0xff, sizeof(bp->pf.vf_req_fwd));
2961 	} else {
2962 		RTE_LOG(WARNING, PMD,
2963 			"Firmware too old for VF mailbox functionality\n");
2964 		memset(bp->pf.vf_req_fwd, 0, sizeof(bp->pf.vf_req_fwd));
2965 	}
2966 
2967 	/*
2968 	 * The following are used for driver cleanup.  If we disallow these,
2969 	 * VF drivers can't clean up cleanly.
2970 	 */
2971 	ALLOW_FUNC(HWRM_FUNC_DRV_UNRGTR);
2972 	ALLOW_FUNC(HWRM_VNIC_FREE);
2973 	ALLOW_FUNC(HWRM_RING_FREE);
2974 	ALLOW_FUNC(HWRM_RING_GRP_FREE);
2975 	ALLOW_FUNC(HWRM_VNIC_RSS_COS_LB_CTX_FREE);
2976 	ALLOW_FUNC(HWRM_CFA_L2_FILTER_FREE);
2977 	ALLOW_FUNC(HWRM_STAT_CTX_FREE);
2978 	ALLOW_FUNC(HWRM_PORT_PHY_QCFG);
2979 	ALLOW_FUNC(HWRM_VNIC_TPA_CFG);
2980 	rc = bnxt_hwrm_func_driver_register(bp);
2981 	if (rc) {
2982 		RTE_LOG(ERR, PMD,
2983 			"Failed to register driver");
2984 		rc = -EBUSY;
2985 		goto error_free;
2986 	}
2987 
2988 	RTE_LOG(INFO, PMD,
2989 		DRV_MODULE_NAME " found at mem %" PRIx64 ", node addr %pM\n",
2990 		pci_dev->mem_resource[0].phys_addr,
2991 		pci_dev->mem_resource[0].addr);
2992 
2993 	rc = bnxt_hwrm_func_reset(bp);
2994 	if (rc) {
2995 		RTE_LOG(ERR, PMD, "hwrm chip reset failure rc: %x\n", rc);
2996 		rc = -1;
2997 		goto error_free;
2998 	}
2999 
3000 	if (BNXT_PF(bp)) {
3001 		//if (bp->pf.active_vfs) {
3002 			// TODO: Deallocate VF resources?
3003 		//}
3004 		if (bp->pdev->max_vfs) {
3005 			rc = bnxt_hwrm_allocate_vfs(bp, bp->pdev->max_vfs);
3006 			if (rc) {
3007 				RTE_LOG(ERR, PMD, "Failed to allocate VFs\n");
3008 				goto error_free;
3009 			}
3010 		} else {
3011 			rc = bnxt_hwrm_allocate_pf_only(bp);
3012 			if (rc) {
3013 				RTE_LOG(ERR, PMD,
3014 					"Failed to allocate PF resources\n");
3015 				goto error_free;
3016 			}
3017 		}
3018 	}
3019 
3020 	bnxt_hwrm_port_led_qcaps(bp);
3021 
3022 	rc = bnxt_setup_int(bp);
3023 	if (rc)
3024 		goto error_free;
3025 
3026 	rc = bnxt_alloc_mem(bp);
3027 	if (rc)
3028 		goto error_free_int;
3029 
3030 	rc = bnxt_request_int(bp);
3031 	if (rc)
3032 		goto error_free_int;
3033 
3034 	rc = bnxt_alloc_def_cp_ring(bp);
3035 	if (rc)
3036 		goto error_free_int;
3037 
3038 	bnxt_enable_int(bp);
3039 
3040 	return 0;
3041 
3042 error_free_int:
3043 	bnxt_disable_int(bp);
3044 	bnxt_free_def_cp_ring(bp);
3045 	bnxt_hwrm_func_buf_unrgtr(bp);
3046 	bnxt_free_int(bp);
3047 	bnxt_free_mem(bp);
3048 error_free:
3049 	bnxt_dev_uninit(eth_dev);
3050 error:
3051 	return rc;
3052 }
3053 
3054 static int
3055 bnxt_dev_uninit(struct rte_eth_dev *eth_dev) {
3056 	struct bnxt *bp = eth_dev->data->dev_private;
3057 	int rc;
3058 
3059 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3060 		return -EPERM;
3061 
3062 	bnxt_disable_int(bp);
3063 	bnxt_free_int(bp);
3064 	bnxt_free_mem(bp);
3065 	if (eth_dev->data->mac_addrs != NULL) {
3066 		rte_free(eth_dev->data->mac_addrs);
3067 		eth_dev->data->mac_addrs = NULL;
3068 	}
3069 	if (bp->grp_info != NULL) {
3070 		rte_free(bp->grp_info);
3071 		bp->grp_info = NULL;
3072 	}
3073 	rc = bnxt_hwrm_func_driver_unregister(bp, 0);
3074 	bnxt_free_hwrm_resources(bp);
3075 	rte_memzone_free((const struct rte_memzone *)bp->tx_mem_zone);
3076 	rte_memzone_free((const struct rte_memzone *)bp->rx_mem_zone);
3077 	if (bp->dev_stopped == 0)
3078 		bnxt_dev_close_op(eth_dev);
3079 	if (bp->pf.vf_info)
3080 		rte_free(bp->pf.vf_info);
3081 	eth_dev->dev_ops = NULL;
3082 	eth_dev->rx_pkt_burst = NULL;
3083 	eth_dev->tx_pkt_burst = NULL;
3084 
3085 	return rc;
3086 }
3087 
3088 static int bnxt_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3089 	struct rte_pci_device *pci_dev)
3090 {
3091 	return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct bnxt),
3092 		bnxt_dev_init);
3093 }
3094 
3095 static int bnxt_pci_remove(struct rte_pci_device *pci_dev)
3096 {
3097 	return rte_eth_dev_pci_generic_remove(pci_dev, bnxt_dev_uninit);
3098 }
3099 
3100 static struct rte_pci_driver bnxt_rte_pmd = {
3101 	.id_table = bnxt_pci_id_map,
3102 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING |
3103 		RTE_PCI_DRV_INTR_LSC,
3104 	.probe = bnxt_pci_probe,
3105 	.remove = bnxt_pci_remove,
3106 };
3107 
3108 static bool
3109 is_device_supported(struct rte_eth_dev *dev, struct rte_pci_driver *drv)
3110 {
3111 	if (strcmp(dev->device->driver->name, drv->driver.name))
3112 		return false;
3113 
3114 	return true;
3115 }
3116 
3117 bool is_bnxt_supported(struct rte_eth_dev *dev)
3118 {
3119 	return is_device_supported(dev, &bnxt_rte_pmd);
3120 }
3121 
3122 RTE_PMD_REGISTER_PCI(net_bnxt, bnxt_rte_pmd);
3123 RTE_PMD_REGISTER_PCI_TABLE(net_bnxt, bnxt_pci_id_map);
3124 RTE_PMD_REGISTER_KMOD_DEP(net_bnxt, "* igb_uio | uio_pci_generic | vfio-pci");
3125