xref: /dpdk/drivers/net/bnx2x/ecore_sp.c (revision a3a2e2c8f7de433e10b1548df65b20bf10086d9c)
1 /*-
2  * Copyright (c) 2007-2013 QLogic Corporation. All rights reserved.
3  *
4  * Eric Davis        <edavis@broadcom.com>
5  * David Christensen <davidch@broadcom.com>
6  * Gary Zambrano     <zambrano@broadcom.com>
7  *
8  * Copyright (c) 2013-2015 Brocade Communications Systems, Inc.
9  * Copyright (c) 2015 QLogic Corporation.
10  * All rights reserved.
11  * www.qlogic.com
12  *
13  * See LICENSE.bnx2x_pmd for copyright and licensing details.
14  */
15 
16 #include "bnx2x.h"
17 #include "ecore_init.h"
18 
19 /**** Exe Queue interfaces ****/
20 
21 /**
22  * ecore_exe_queue_init - init the Exe Queue object
23  *
24  * @o:		pointer to the object
25  * @exe_len:	length
26  * @owner:	pointer to the owner
27  * @validate:	validate function pointer
28  * @optimize:	optimize function pointer
29  * @exec:	execute function pointer
30  * @get:	get function pointer
31  */
32 static void
33 ecore_exe_queue_init(struct bnx2x_softc *sc __rte_unused,
34 		     struct ecore_exe_queue_obj *o,
35 		     int exe_len,
36 		     union ecore_qable_obj *owner,
37 		     exe_q_validate validate,
38 		     exe_q_remove remove,
39 		     exe_q_optimize optimize, exe_q_execute exec, exe_q_get get)
40 {
41 	ECORE_MEMSET(o, 0, sizeof(*o));
42 
43 	ECORE_LIST_INIT(&o->exe_queue);
44 	ECORE_LIST_INIT(&o->pending_comp);
45 
46 	ECORE_SPIN_LOCK_INIT(&o->lock, sc);
47 
48 	o->exe_chunk_len = exe_len;
49 	o->owner = owner;
50 
51 	/* Owner specific callbacks */
52 	o->validate = validate;
53 	o->remove = remove;
54 	o->optimize = optimize;
55 	o->execute = exec;
56 	o->get = get;
57 
58 	ECORE_MSG("Setup the execution queue with the chunk length of %d",
59 		  exe_len);
60 }
61 
62 static void ecore_exe_queue_free_elem(struct bnx2x_softc *sc __rte_unused,
63 				      struct ecore_exeq_elem *elem)
64 {
65 	ECORE_MSG("Deleting an exe_queue element");
66 	ECORE_FREE(sc, elem, sizeof(*elem));
67 }
68 
69 static inline int ecore_exe_queue_length(struct ecore_exe_queue_obj *o)
70 {
71 	struct ecore_exeq_elem *elem;
72 	int cnt = 0;
73 
74 	ECORE_SPIN_LOCK_BH(&o->lock);
75 
76 	ECORE_LIST_FOR_EACH_ENTRY(elem, &o->exe_queue, link,
77 				  struct ecore_exeq_elem) cnt++;
78 
79 	ECORE_SPIN_UNLOCK_BH(&o->lock);
80 
81 	return cnt;
82 }
83 
84 /**
85  * ecore_exe_queue_add - add a new element to the execution queue
86  *
87  * @sc:		driver handle
88  * @o:		queue
89  * @cmd:	new command to add
90  * @restore:	true - do not optimize the command
91  *
92  * If the element is optimized or is illegal, frees it.
93  */
94 static int ecore_exe_queue_add(struct bnx2x_softc *sc,
95 			       struct ecore_exe_queue_obj *o,
96 			       struct ecore_exeq_elem *elem, int restore)
97 {
98 	int rc;
99 
100 	ECORE_SPIN_LOCK_BH(&o->lock);
101 
102 	if (!restore) {
103 		/* Try to cancel this element queue */
104 		rc = o->optimize(sc, o->owner, elem);
105 		if (rc)
106 			goto free_and_exit;
107 
108 		/* Check if this request is ok */
109 		rc = o->validate(sc, o->owner, elem);
110 		if (rc) {
111 			ECORE_MSG("Preamble failed: %d", rc);
112 			goto free_and_exit;
113 		}
114 	}
115 
116 	/* If so, add it to the execution queue */
117 	ECORE_LIST_PUSH_TAIL(&elem->link, &o->exe_queue);
118 
119 	ECORE_SPIN_UNLOCK_BH(&o->lock);
120 
121 	return ECORE_SUCCESS;
122 
123 free_and_exit:
124 	ecore_exe_queue_free_elem(sc, elem);
125 
126 	ECORE_SPIN_UNLOCK_BH(&o->lock);
127 
128 	return rc;
129 }
130 
131 static void __ecore_exe_queue_reset_pending(struct bnx2x_softc *sc, struct ecore_exe_queue_obj
132 					    *o)
133 {
134 	struct ecore_exeq_elem *elem;
135 
136 	while (!ECORE_LIST_IS_EMPTY(&o->pending_comp)) {
137 		elem = ECORE_LIST_FIRST_ENTRY(&o->pending_comp,
138 					      struct ecore_exeq_elem, link);
139 
140 		ECORE_LIST_REMOVE_ENTRY(&elem->link, &o->pending_comp);
141 		ecore_exe_queue_free_elem(sc, elem);
142 	}
143 }
144 
145 static inline void ecore_exe_queue_reset_pending(struct bnx2x_softc *sc,
146 						 struct ecore_exe_queue_obj *o)
147 {
148 	ECORE_SPIN_LOCK_BH(&o->lock);
149 
150 	__ecore_exe_queue_reset_pending(sc, o);
151 
152 	ECORE_SPIN_UNLOCK_BH(&o->lock);
153 }
154 
155 /**
156  * ecore_exe_queue_step - execute one execution chunk atomically
157  *
158  * @sc:			driver handle
159  * @o:			queue
160  * @ramrod_flags:	flags
161  *
162  * (Should be called while holding the exe_queue->lock).
163  */
164 static int ecore_exe_queue_step(struct bnx2x_softc *sc,
165 				struct ecore_exe_queue_obj *o,
166 				unsigned long *ramrod_flags)
167 {
168 	struct ecore_exeq_elem *elem, spacer;
169 	int cur_len = 0, rc;
170 
171 	ECORE_MEMSET(&spacer, 0, sizeof(spacer));
172 
173 	/* Next step should not be performed until the current is finished,
174 	 * unless a DRV_CLEAR_ONLY bit is set. In this case we just want to
175 	 * properly clear object internals without sending any command to the FW
176 	 * which also implies there won't be any completion to clear the
177 	 * 'pending' list.
178 	 */
179 	if (!ECORE_LIST_IS_EMPTY(&o->pending_comp)) {
180 		if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, ramrod_flags)) {
181 			ECORE_MSG
182 			    ("RAMROD_DRV_CLR_ONLY requested: resetting a pending_comp list");
183 			__ecore_exe_queue_reset_pending(sc, o);
184 		} else {
185 			return ECORE_PENDING;
186 		}
187 	}
188 
189 	/* Run through the pending commands list and create a next
190 	 * execution chunk.
191 	 */
192 	while (!ECORE_LIST_IS_EMPTY(&o->exe_queue)) {
193 		elem = ECORE_LIST_FIRST_ENTRY(&o->exe_queue,
194 					      struct ecore_exeq_elem, link);
195 		ECORE_DBG_BREAK_IF(!elem->cmd_len);
196 
197 		if (cur_len + elem->cmd_len <= o->exe_chunk_len) {
198 			cur_len += elem->cmd_len;
199 			/* Prevent from both lists being empty when moving an
200 			 * element. This will allow the call of
201 			 * ecore_exe_queue_empty() without locking.
202 			 */
203 			ECORE_LIST_PUSH_TAIL(&spacer.link, &o->pending_comp);
204 			mb();
205 			ECORE_LIST_REMOVE_ENTRY(&elem->link, &o->exe_queue);
206 			ECORE_LIST_PUSH_TAIL(&elem->link, &o->pending_comp);
207 			ECORE_LIST_REMOVE_ENTRY(&spacer.link, &o->pending_comp);
208 		} else
209 			break;
210 	}
211 
212 	/* Sanity check */
213 	if (!cur_len)
214 		return ECORE_SUCCESS;
215 
216 	rc = o->execute(sc, o->owner, &o->pending_comp, ramrod_flags);
217 	if (rc < 0)
218 		/* In case of an error return the commands back to the queue
219 		 *  and reset the pending_comp.
220 		 */
221 		ECORE_LIST_SPLICE_INIT(&o->pending_comp, &o->exe_queue);
222 	else if (!rc)
223 		/* If zero is returned, means there are no outstanding pending
224 		 * completions and we may dismiss the pending list.
225 		 */
226 		__ecore_exe_queue_reset_pending(sc, o);
227 
228 	return rc;
229 }
230 
231 static inline int ecore_exe_queue_empty(struct ecore_exe_queue_obj *o)
232 {
233 	int empty = ECORE_LIST_IS_EMPTY(&o->exe_queue);
234 
235 	/* Don't reorder!!! */
236 	mb();
237 
238 	return empty && ECORE_LIST_IS_EMPTY(&o->pending_comp);
239 }
240 
241 static struct ecore_exeq_elem *ecore_exe_queue_alloc_elem(struct
242 							  bnx2x_softc *sc
243 							  __rte_unused)
244 {
245 	ECORE_MSG("Allocating a new exe_queue element");
246 	return ECORE_ZALLOC(sizeof(struct ecore_exeq_elem), GFP_ATOMIC, sc);
247 }
248 
249 /************************ raw_obj functions ***********************************/
250 static int ecore_raw_check_pending(struct ecore_raw_obj *o)
251 {
252 	/*
253 	 * !! converts the value returned by ECORE_TEST_BIT such that it
254 	 * is guaranteed not to be truncated regardless of int definition.
255 	 *
256 	 * Note we cannot simply define the function's return value type
257 	 * to match the type returned by ECORE_TEST_BIT, as it varies by
258 	 * platform/implementation.
259 	 */
260 
261 	return ! !ECORE_TEST_BIT(o->state, o->pstate);
262 }
263 
264 static void ecore_raw_clear_pending(struct ecore_raw_obj *o)
265 {
266 	ECORE_SMP_MB_BEFORE_CLEAR_BIT();
267 	ECORE_CLEAR_BIT(o->state, o->pstate);
268 	ECORE_SMP_MB_AFTER_CLEAR_BIT();
269 }
270 
271 static void ecore_raw_set_pending(struct ecore_raw_obj *o)
272 {
273 	ECORE_SMP_MB_BEFORE_CLEAR_BIT();
274 	ECORE_SET_BIT(o->state, o->pstate);
275 	ECORE_SMP_MB_AFTER_CLEAR_BIT();
276 }
277 
278 /**
279  * ecore_state_wait - wait until the given bit(state) is cleared
280  *
281  * @sc:		device handle
282  * @state:	state which is to be cleared
283  * @state_p:	state buffer
284  *
285  */
286 static int ecore_state_wait(struct bnx2x_softc *sc, int state,
287 			    unsigned long *pstate)
288 {
289 	/* can take a while if any port is running */
290 	int cnt = 5000;
291 
292 	if (CHIP_REV_IS_EMUL(sc))
293 		cnt *= 20;
294 
295 	ECORE_MSG("waiting for state to become %d", state);
296 
297 	ECORE_MIGHT_SLEEP();
298 	while (cnt--) {
299 		bnx2x_intr_legacy(sc, 1);
300 		if (!ECORE_TEST_BIT(state, pstate)) {
301 #ifdef ECORE_STOP_ON_ERROR
302 			ECORE_MSG("exit  (cnt %d)", 5000 - cnt);
303 #endif
304 			return ECORE_SUCCESS;
305 		}
306 
307 		ECORE_WAIT(sc, delay_us);
308 
309 		if (sc->panic)
310 			return ECORE_IO;
311 	}
312 
313 	/* timeout! */
314 	PMD_DRV_LOG(ERR, "timeout waiting for state %d", state);
315 #ifdef ECORE_STOP_ON_ERROR
316 	ecore_panic();
317 #endif
318 
319 	return ECORE_TIMEOUT;
320 }
321 
322 static int ecore_raw_wait(struct bnx2x_softc *sc, struct ecore_raw_obj *raw)
323 {
324 	return ecore_state_wait(sc, raw->state, raw->pstate);
325 }
326 
327 /***************** Classification verbs: Set/Del MAC/VLAN/VLAN-MAC ************/
328 /* credit handling callbacks */
329 static int ecore_get_cam_offset_mac(struct ecore_vlan_mac_obj *o, int *offset)
330 {
331 	struct ecore_credit_pool_obj *mp = o->macs_pool;
332 
333 	ECORE_DBG_BREAK_IF(!mp);
334 
335 	return mp->get_entry(mp, offset);
336 }
337 
338 static int ecore_get_credit_mac(struct ecore_vlan_mac_obj *o)
339 {
340 	struct ecore_credit_pool_obj *mp = o->macs_pool;
341 
342 	ECORE_DBG_BREAK_IF(!mp);
343 
344 	return mp->get(mp, 1);
345 }
346 
347 static int ecore_put_cam_offset_mac(struct ecore_vlan_mac_obj *o, int offset)
348 {
349 	struct ecore_credit_pool_obj *mp = o->macs_pool;
350 
351 	return mp->put_entry(mp, offset);
352 }
353 
354 static int ecore_put_credit_mac(struct ecore_vlan_mac_obj *o)
355 {
356 	struct ecore_credit_pool_obj *mp = o->macs_pool;
357 
358 	return mp->put(mp, 1);
359 }
360 
361 /**
362  * __ecore_vlan_mac_h_write_trylock - try getting the writer lock on vlan mac
363  * head list.
364  *
365  * @sc:		device handle
366  * @o:		vlan_mac object
367  *
368  * @details: Non-blocking implementation; should be called under execution
369  *           queue lock.
370  */
371 static int __ecore_vlan_mac_h_write_trylock(struct bnx2x_softc *sc __rte_unused,
372 					    struct ecore_vlan_mac_obj *o)
373 {
374 	if (o->head_reader) {
375 		ECORE_MSG("vlan_mac_lock writer - There are readers; Busy");
376 		return ECORE_BUSY;
377 	}
378 
379 	ECORE_MSG("vlan_mac_lock writer - Taken");
380 	return ECORE_SUCCESS;
381 }
382 
383 /**
384  * __ecore_vlan_mac_h_exec_pending - execute step instead of a previous step
385  * which wasn't able to run due to a taken lock on vlan mac head list.
386  *
387  * @sc:		device handle
388  * @o:		vlan_mac object
389  *
390  * @details Should be called under execution queue lock; notice it might release
391  *          and reclaim it during its run.
392  */
393 static void __ecore_vlan_mac_h_exec_pending(struct bnx2x_softc *sc,
394 					    struct ecore_vlan_mac_obj *o)
395 {
396 	int rc;
397 	unsigned long ramrod_flags = o->saved_ramrod_flags;
398 
399 	ECORE_MSG("vlan_mac_lock execute pending command with ramrod flags %lu",
400 		  ramrod_flags);
401 	o->head_exe_request = FALSE;
402 	o->saved_ramrod_flags = 0;
403 	rc = ecore_exe_queue_step(sc, &o->exe_queue, &ramrod_flags);
404 	if (rc != ECORE_SUCCESS) {
405 		PMD_DRV_LOG(ERR,
406 			    "execution of pending commands failed with rc %d",
407 			    rc);
408 #ifdef ECORE_STOP_ON_ERROR
409 		ecore_panic();
410 #endif
411 	}
412 }
413 
414 /**
415  * __ecore_vlan_mac_h_pend - Pend an execution step which couldn't have been
416  * called due to vlan mac head list lock being taken.
417  *
418  * @sc:			device handle
419  * @o:			vlan_mac object
420  * @ramrod_flags:	ramrod flags of missed execution
421  *
422  * @details Should be called under execution queue lock.
423  */
424 static void __ecore_vlan_mac_h_pend(struct bnx2x_softc *sc __rte_unused,
425 				    struct ecore_vlan_mac_obj *o,
426 				    unsigned long ramrod_flags)
427 {
428 	o->head_exe_request = TRUE;
429 	o->saved_ramrod_flags = ramrod_flags;
430 	ECORE_MSG("Placing pending execution with ramrod flags %lu",
431 		  ramrod_flags);
432 }
433 
434 /**
435  * __ecore_vlan_mac_h_write_unlock - unlock the vlan mac head list writer lock
436  *
437  * @sc:			device handle
438  * @o:			vlan_mac object
439  *
440  * @details Should be called under execution queue lock. Notice if a pending
441  *          execution exists, it would perform it - possibly releasing and
442  *          reclaiming the execution queue lock.
443  */
444 static void __ecore_vlan_mac_h_write_unlock(struct bnx2x_softc *sc,
445 					    struct ecore_vlan_mac_obj *o)
446 {
447 	/* It's possible a new pending execution was added since this writer
448 	 * executed. If so, execute again. [Ad infinitum]
449 	 */
450 	while (o->head_exe_request) {
451 		ECORE_MSG
452 		    ("vlan_mac_lock - writer release encountered a pending request");
453 		__ecore_vlan_mac_h_exec_pending(sc, o);
454 	}
455 }
456 
457 /**
458  * ecore_vlan_mac_h_write_unlock - unlock the vlan mac head list writer lock
459  *
460  * @sc:			device handle
461  * @o:			vlan_mac object
462  *
463  * @details Notice if a pending execution exists, it would perform it -
464  *          possibly releasing and reclaiming the execution queue lock.
465  */
466 void ecore_vlan_mac_h_write_unlock(struct bnx2x_softc *sc,
467 				   struct ecore_vlan_mac_obj *o)
468 {
469 	ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
470 	__ecore_vlan_mac_h_write_unlock(sc, o);
471 	ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
472 }
473 
474 /**
475  * __ecore_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
476  *
477  * @sc:			device handle
478  * @o:			vlan_mac object
479  *
480  * @details Should be called under the execution queue lock. May sleep. May
481  *          release and reclaim execution queue lock during its run.
482  */
483 static int __ecore_vlan_mac_h_read_lock(struct bnx2x_softc *sc __rte_unused,
484 					struct ecore_vlan_mac_obj *o)
485 {
486 	/* If we got here, we're holding lock --> no WRITER exists */
487 	o->head_reader++;
488 	ECORE_MSG("vlan_mac_lock - locked reader - number %d", o->head_reader);
489 
490 	return ECORE_SUCCESS;
491 }
492 
493 /**
494  * ecore_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
495  *
496  * @sc:			device handle
497  * @o:			vlan_mac object
498  *
499  * @details May sleep. Claims and releases execution queue lock during its run.
500  */
501 static int ecore_vlan_mac_h_read_lock(struct bnx2x_softc *sc,
502 				      struct ecore_vlan_mac_obj *o)
503 {
504 	int rc;
505 
506 	ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
507 	rc = __ecore_vlan_mac_h_read_lock(sc, o);
508 	ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
509 
510 	return rc;
511 }
512 
513 /**
514  * __ecore_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
515  *
516  * @sc:			device handle
517  * @o:			vlan_mac object
518  *
519  * @details Should be called under execution queue lock. Notice if a pending
520  *          execution exists, it would be performed if this was the last
521  *          reader. possibly releasing and reclaiming the execution queue lock.
522  */
523 static void __ecore_vlan_mac_h_read_unlock(struct bnx2x_softc *sc,
524 					   struct ecore_vlan_mac_obj *o)
525 {
526 	if (!o->head_reader) {
527 		PMD_DRV_LOG(ERR,
528 			    "Need to release vlan mac reader lock, but lock isn't taken");
529 #ifdef ECORE_STOP_ON_ERROR
530 		ecore_panic();
531 #endif
532 	} else {
533 		o->head_reader--;
534 		PMD_DRV_LOG(INFO,
535 			    "vlan_mac_lock - decreased readers to %d",
536 			    o->head_reader);
537 	}
538 
539 	/* It's possible a new pending execution was added, and that this reader
540 	 * was last - if so we need to execute the command.
541 	 */
542 	if (!o->head_reader && o->head_exe_request) {
543 		PMD_DRV_LOG(INFO,
544 			    "vlan_mac_lock - reader release encountered a pending request");
545 
546 		/* Writer release will do the trick */
547 		__ecore_vlan_mac_h_write_unlock(sc, o);
548 	}
549 }
550 
551 /**
552  * ecore_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
553  *
554  * @sc:			device handle
555  * @o:			vlan_mac object
556  *
557  * @details Notice if a pending execution exists, it would be performed if this
558  *          was the last reader. Claims and releases the execution queue lock
559  *          during its run.
560  */
561 void ecore_vlan_mac_h_read_unlock(struct bnx2x_softc *sc,
562 				  struct ecore_vlan_mac_obj *o)
563 {
564 	ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
565 	__ecore_vlan_mac_h_read_unlock(sc, o);
566 	ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
567 }
568 
569 /**
570  * ecore_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
571  *
572  * @sc:			device handle
573  * @o:			vlan_mac object
574  * @n:			number of elements to get
575  * @base:		base address for element placement
576  * @stride:		stride between elements (in bytes)
577  */
578 static int ecore_get_n_elements(struct bnx2x_softc *sc,
579 				struct ecore_vlan_mac_obj *o, int n,
580 				uint8_t * base, uint8_t stride, uint8_t size)
581 {
582 	struct ecore_vlan_mac_registry_elem *pos;
583 	uint8_t *next = base;
584 	int counter = 0, read_lock;
585 
586 	ECORE_MSG("get_n_elements - taking vlan_mac_lock (reader)");
587 	read_lock = ecore_vlan_mac_h_read_lock(sc, o);
588 	if (read_lock != ECORE_SUCCESS)
589 		PMD_DRV_LOG(ERR,
590 			    "get_n_elements failed to get vlan mac reader lock; Access without lock");
591 
592 	/* traverse list */
593 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
594 				  struct ecore_vlan_mac_registry_elem) {
595 		if (counter < n) {
596 			ECORE_MEMCPY(next, &pos->u, size);
597 			counter++;
598 			ECORE_MSG
599 			    ("copied element number %d to address %p element was:",
600 			     counter, next);
601 			next += stride + size;
602 		}
603 	}
604 
605 	if (read_lock == ECORE_SUCCESS) {
606 		ECORE_MSG("get_n_elements - releasing vlan_mac_lock (reader)");
607 		ecore_vlan_mac_h_read_unlock(sc, o);
608 	}
609 
610 	return counter * ETH_ALEN;
611 }
612 
613 /* check_add() callbacks */
614 static int ecore_check_mac_add(struct bnx2x_softc *sc __rte_unused,
615 			       struct ecore_vlan_mac_obj *o,
616 			       union ecore_classification_ramrod_data *data)
617 {
618 	struct ecore_vlan_mac_registry_elem *pos;
619 
620 	ECORE_MSG("Checking MAC %02x:%02x:%02x:%02x:%02x:%02x for ADD command",
621 		  data->mac.mac[0], data->mac.mac[1], data->mac.mac[2],
622 		  data->mac.mac[3], data->mac.mac[4], data->mac.mac[5]);
623 
624 	if (!ECORE_IS_VALID_ETHER_ADDR(data->mac.mac))
625 		return ECORE_INVAL;
626 
627 	/* Check if a requested MAC already exists */
628 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
629 				  struct ecore_vlan_mac_registry_elem)
630 	    if (!ECORE_MEMCMP(data->mac.mac, pos->u.mac.mac, ETH_ALEN) &&
631 		(data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
632 		return ECORE_EXISTS;
633 
634 	return ECORE_SUCCESS;
635 }
636 
637 /* check_del() callbacks */
638 static struct ecore_vlan_mac_registry_elem *ecore_check_mac_del(struct bnx2x_softc
639 								*sc
640 								__rte_unused,
641 								struct
642 								ecore_vlan_mac_obj
643 								*o, union
644 								ecore_classification_ramrod_data
645 								*data)
646 {
647 	struct ecore_vlan_mac_registry_elem *pos;
648 
649 	ECORE_MSG("Checking MAC %02x:%02x:%02x:%02x:%02x:%02x for DEL command",
650 		  data->mac.mac[0], data->mac.mac[1], data->mac.mac[2],
651 		  data->mac.mac[3], data->mac.mac[4], data->mac.mac[5]);
652 
653 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
654 				  struct ecore_vlan_mac_registry_elem)
655 	if ((!ECORE_MEMCMP(data->mac.mac, pos->u.mac.mac, ETH_ALEN)) &&
656 	    (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
657 		return pos;
658 
659 	return NULL;
660 }
661 
662 /* check_move() callback */
663 static int ecore_check_move(struct bnx2x_softc *sc,
664 			    struct ecore_vlan_mac_obj *src_o,
665 			    struct ecore_vlan_mac_obj *dst_o,
666 			    union ecore_classification_ramrod_data *data)
667 {
668 	struct ecore_vlan_mac_registry_elem *pos;
669 	int rc;
670 
671 	/* Check if we can delete the requested configuration from the first
672 	 * object.
673 	 */
674 	pos = src_o->check_del(sc, src_o, data);
675 
676 	/*  check if configuration can be added */
677 	rc = dst_o->check_add(sc, dst_o, data);
678 
679 	/* If this classification can not be added (is already set)
680 	 * or can't be deleted - return an error.
681 	 */
682 	if (rc || !pos)
683 		return FALSE;
684 
685 	return TRUE;
686 }
687 
688 static int ecore_check_move_always_err(__rte_unused struct bnx2x_softc *sc,
689 				       __rte_unused struct ecore_vlan_mac_obj
690 				       *src_o, __rte_unused struct ecore_vlan_mac_obj
691 				       *dst_o, __rte_unused union
692 				       ecore_classification_ramrod_data *data)
693 {
694 	return FALSE;
695 }
696 
697 static uint8_t ecore_vlan_mac_get_rx_tx_flag(struct ecore_vlan_mac_obj
698 					     *o)
699 {
700 	struct ecore_raw_obj *raw = &o->raw;
701 	uint8_t rx_tx_flag = 0;
702 
703 	if ((raw->obj_type == ECORE_OBJ_TYPE_TX) ||
704 	    (raw->obj_type == ECORE_OBJ_TYPE_RX_TX))
705 		rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_TX_CMD;
706 
707 	if ((raw->obj_type == ECORE_OBJ_TYPE_RX) ||
708 	    (raw->obj_type == ECORE_OBJ_TYPE_RX_TX))
709 		rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_RX_CMD;
710 
711 	return rx_tx_flag;
712 }
713 
714 static void ecore_set_mac_in_nig(struct bnx2x_softc *sc,
715 				 int add, unsigned char *dev_addr, int index)
716 {
717 	uint32_t wb_data[2];
718 	uint32_t reg_offset = ECORE_PORT_ID(sc) ? NIG_REG_LLH1_FUNC_MEM :
719 	    NIG_REG_LLH0_FUNC_MEM;
720 
721 	if (!ECORE_IS_MF_SI_MODE(sc) && !IS_MF_AFEX(sc))
722 		return;
723 
724 	if (index > ECORE_LLH_CAM_MAX_PF_LINE)
725 		return;
726 
727 	ECORE_MSG("Going to %s LLH configuration at entry %d",
728 		  (add ? "ADD" : "DELETE"), index);
729 
730 	if (add) {
731 		/* LLH_FUNC_MEM is a uint64_t WB register */
732 		reg_offset += 8 * index;
733 
734 		wb_data[0] = ((dev_addr[2] << 24) | (dev_addr[3] << 16) |
735 			      (dev_addr[4] << 8) | dev_addr[5]);
736 		wb_data[1] = ((dev_addr[0] << 8) | dev_addr[1]);
737 
738 		ECORE_REG_WR_DMAE_LEN(sc, reg_offset, wb_data, 2);
739 	}
740 
741 	REG_WR(sc, (ECORE_PORT_ID(sc) ? NIG_REG_LLH1_FUNC_MEM_ENABLE :
742 		    NIG_REG_LLH0_FUNC_MEM_ENABLE) + 4 * index, add);
743 }
744 
745 /**
746  * ecore_vlan_mac_set_cmd_hdr_e2 - set a header in a single classify ramrod
747  *
748  * @sc:		device handle
749  * @o:		queue for which we want to configure this rule
750  * @add:	if TRUE the command is an ADD command, DEL otherwise
751  * @opcode:	CLASSIFY_RULE_OPCODE_XXX
752  * @hdr:	pointer to a header to setup
753  *
754  */
755 static void ecore_vlan_mac_set_cmd_hdr_e2(struct ecore_vlan_mac_obj *o,
756 					  int add, int opcode,
757 					  struct eth_classify_cmd_header
758 					  *hdr)
759 {
760 	struct ecore_raw_obj *raw = &o->raw;
761 
762 	hdr->client_id = raw->cl_id;
763 	hdr->func_id = raw->func_id;
764 
765 	/* Rx or/and Tx (internal switching) configuration ? */
766 	hdr->cmd_general_data |= ecore_vlan_mac_get_rx_tx_flag(o);
767 
768 	if (add)
769 		hdr->cmd_general_data |= ETH_CLASSIFY_CMD_HEADER_IS_ADD;
770 
771 	hdr->cmd_general_data |=
772 	    (opcode << ETH_CLASSIFY_CMD_HEADER_OPCODE_SHIFT);
773 }
774 
775 /**
776  * ecore_vlan_mac_set_rdata_hdr_e2 - set the classify ramrod data header
777  *
778  * @cid:	connection id
779  * @type:	ECORE_FILTER_XXX_PENDING
780  * @hdr:	pointer to header to setup
781  * @rule_cnt:
782  *
783  * currently we always configure one rule and echo field to contain a CID and an
784  * opcode type.
785  */
786 static void ecore_vlan_mac_set_rdata_hdr_e2(uint32_t cid, int type, struct eth_classify_header
787 					    *hdr, int rule_cnt)
788 {
789 	hdr->echo = ECORE_CPU_TO_LE32((cid & ECORE_SWCID_MASK) |
790 				      (type << ECORE_SWCID_SHIFT));
791 	hdr->rule_cnt = (uint8_t) rule_cnt;
792 }
793 
794 /* hw_config() callbacks */
795 static void ecore_set_one_mac_e2(struct bnx2x_softc *sc,
796 				 struct ecore_vlan_mac_obj *o,
797 				 struct ecore_exeq_elem *elem, int rule_idx,
798 				 __rte_unused int cam_offset)
799 {
800 	struct ecore_raw_obj *raw = &o->raw;
801 	struct eth_classify_rules_ramrod_data *data =
802 	    (struct eth_classify_rules_ramrod_data *)(raw->rdata);
803 	int rule_cnt = rule_idx + 1, cmd = elem->cmd_data.vlan_mac.cmd;
804 	union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
805 	int add = (cmd == ECORE_VLAN_MAC_ADD) ? TRUE : FALSE;
806 	unsigned long *vlan_mac_flags = &elem->cmd_data.vlan_mac.vlan_mac_flags;
807 	uint8_t *mac = elem->cmd_data.vlan_mac.u.mac.mac;
808 
809 	/* Set LLH CAM entry: currently only iSCSI and ETH macs are
810 	 * relevant. In addition, current implementation is tuned for a
811 	 * single ETH MAC.
812 	 *
813 	 * When multiple unicast ETH MACs PF configuration in switch
814 	 * independent mode is required (NetQ, multiple netdev MACs,
815 	 * etc.), consider better utilisation of 8 per function MAC
816 	 * entries in the LLH register. There is also
817 	 * NIG_REG_P[01]_LLH_FUNC_MEM2 registers that complete the
818 	 * total number of CAM entries to 16.
819 	 *
820 	 * Currently we won't configure NIG for MACs other than a primary ETH
821 	 * MAC and iSCSI L2 MAC.
822 	 *
823 	 * If this MAC is moving from one Queue to another, no need to change
824 	 * NIG configuration.
825 	 */
826 	if (cmd != ECORE_VLAN_MAC_MOVE) {
827 		if (ECORE_TEST_BIT(ECORE_ISCSI_ETH_MAC, vlan_mac_flags))
828 			ecore_set_mac_in_nig(sc, add, mac,
829 					     ECORE_LLH_CAM_ISCSI_ETH_LINE);
830 		else if (ECORE_TEST_BIT(ECORE_ETH_MAC, vlan_mac_flags))
831 			ecore_set_mac_in_nig(sc, add, mac,
832 					     ECORE_LLH_CAM_ETH_LINE);
833 	}
834 
835 	/* Reset the ramrod data buffer for the first rule */
836 	if (rule_idx == 0)
837 		ECORE_MEMSET(data, 0, sizeof(*data));
838 
839 	/* Setup a command header */
840 	ecore_vlan_mac_set_cmd_hdr_e2(o, add, CLASSIFY_RULE_OPCODE_MAC,
841 				      &rule_entry->mac.header);
842 
843 	ECORE_MSG("About to %s MAC %02x:%02x:%02x:%02x:%02x:%02x for Queue %d",
844 		  (add ? "add" : "delete"), mac[0], mac[1], mac[2], mac[3],
845 		  mac[4], mac[5], raw->cl_id);
846 
847 	/* Set a MAC itself */
848 	ecore_set_fw_mac_addr(&rule_entry->mac.mac_msb,
849 			      &rule_entry->mac.mac_mid,
850 			      &rule_entry->mac.mac_lsb, mac);
851 	rule_entry->mac.inner_mac = elem->cmd_data.vlan_mac.u.mac.is_inner_mac;
852 
853 	/* MOVE: Add a rule that will add this MAC to the target Queue */
854 	if (cmd == ECORE_VLAN_MAC_MOVE) {
855 		rule_entry++;
856 		rule_cnt++;
857 
858 		/* Setup ramrod data */
859 		ecore_vlan_mac_set_cmd_hdr_e2(elem->cmd_data.
860 					      vlan_mac.target_obj, TRUE,
861 					      CLASSIFY_RULE_OPCODE_MAC,
862 					      &rule_entry->mac.header);
863 
864 		/* Set a MAC itself */
865 		ecore_set_fw_mac_addr(&rule_entry->mac.mac_msb,
866 				      &rule_entry->mac.mac_mid,
867 				      &rule_entry->mac.mac_lsb, mac);
868 		rule_entry->mac.inner_mac =
869 		    elem->cmd_data.vlan_mac.u.mac.is_inner_mac;
870 	}
871 
872 	/* Set the ramrod data header */
873 	ecore_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
874 					rule_cnt);
875 }
876 
877 /**
878  * ecore_vlan_mac_set_rdata_hdr_e1x - set a header in a single classify ramrod
879  *
880  * @sc:		device handle
881  * @o:		queue
882  * @type:
883  * @cam_offset:	offset in cam memory
884  * @hdr:	pointer to a header to setup
885  *
886  * E1H
887  */
888 static void ecore_vlan_mac_set_rdata_hdr_e1x(struct ecore_vlan_mac_obj
889 					     *o, int type, int cam_offset, struct mac_configuration_hdr
890 					     *hdr)
891 {
892 	struct ecore_raw_obj *r = &o->raw;
893 
894 	hdr->length = 1;
895 	hdr->offset = (uint8_t) cam_offset;
896 	hdr->client_id = ECORE_CPU_TO_LE16(0xff);
897 	hdr->echo = ECORE_CPU_TO_LE32((r->cid & ECORE_SWCID_MASK) |
898 				      (type << ECORE_SWCID_SHIFT));
899 }
900 
901 static void ecore_vlan_mac_set_cfg_entry_e1x(struct ecore_vlan_mac_obj
902 					     *o, int add, int opcode,
903 					     uint8_t * mac,
904 					     uint16_t vlan_id, struct
905 					     mac_configuration_entry
906 					     *cfg_entry)
907 {
908 	struct ecore_raw_obj *r = &o->raw;
909 	uint32_t cl_bit_vec = (1 << r->cl_id);
910 
911 	cfg_entry->clients_bit_vector = ECORE_CPU_TO_LE32(cl_bit_vec);
912 	cfg_entry->pf_id = r->func_id;
913 	cfg_entry->vlan_id = ECORE_CPU_TO_LE16(vlan_id);
914 
915 	if (add) {
916 		ECORE_SET_FLAG(cfg_entry->flags,
917 			       MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
918 			       T_ETH_MAC_COMMAND_SET);
919 		ECORE_SET_FLAG(cfg_entry->flags,
920 			       MAC_CONFIGURATION_ENTRY_VLAN_FILTERING_MODE,
921 			       opcode);
922 
923 		/* Set a MAC in a ramrod data */
924 		ecore_set_fw_mac_addr(&cfg_entry->msb_mac_addr,
925 				      &cfg_entry->middle_mac_addr,
926 				      &cfg_entry->lsb_mac_addr, mac);
927 	} else
928 		ECORE_SET_FLAG(cfg_entry->flags,
929 			       MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
930 			       T_ETH_MAC_COMMAND_INVALIDATE);
931 }
932 
933 static void ecore_vlan_mac_set_rdata_e1x(struct bnx2x_softc *sc
934 					 __rte_unused,
935 					 struct ecore_vlan_mac_obj *o,
936 					 int type, int cam_offset,
937 					 int add, uint8_t * mac,
938 					 uint16_t vlan_id, int opcode,
939 					 struct mac_configuration_cmd
940 					 *config)
941 {
942 	struct mac_configuration_entry *cfg_entry = &config->config_table[0];
943 
944 	ecore_vlan_mac_set_rdata_hdr_e1x(o, type, cam_offset, &config->hdr);
945 	ecore_vlan_mac_set_cfg_entry_e1x(o, add, opcode, mac, vlan_id,
946 					 cfg_entry);
947 
948 	ECORE_MSG("%s MAC %02x:%02x:%02x:%02x:%02x:%02x CLID %d CAM offset %d",
949 		  (add ? "setting" : "clearing"),
950 		  mac[0], mac[1], mac[2], mac[3], mac[4], mac[5],
951 		  o->raw.cl_id, cam_offset);
952 }
953 
954 /**
955  * ecore_set_one_mac_e1x - fill a single MAC rule ramrod data
956  *
957  * @sc:		device handle
958  * @o:		ecore_vlan_mac_obj
959  * @elem:	ecore_exeq_elem
960  * @rule_idx:	rule_idx
961  * @cam_offset: cam_offset
962  */
963 static void ecore_set_one_mac_e1x(struct bnx2x_softc *sc,
964 				  struct ecore_vlan_mac_obj *o,
965 				  struct ecore_exeq_elem *elem,
966 				  __rte_unused int rule_idx, int cam_offset)
967 {
968 	struct ecore_raw_obj *raw = &o->raw;
969 	struct mac_configuration_cmd *config =
970 	    (struct mac_configuration_cmd *)(raw->rdata);
971 	/* 57711 do not support MOVE command,
972 	 * so it's either ADD or DEL
973 	 */
974 	int add = (elem->cmd_data.vlan_mac.cmd == ECORE_VLAN_MAC_ADD) ?
975 	    TRUE : FALSE;
976 
977 	/* Reset the ramrod data buffer */
978 	ECORE_MEMSET(config, 0, sizeof(*config));
979 
980 	ecore_vlan_mac_set_rdata_e1x(sc, o, raw->state,
981 				     cam_offset, add,
982 				     elem->cmd_data.vlan_mac.u.mac.mac, 0,
983 				     ETH_VLAN_FILTER_ANY_VLAN, config);
984 }
985 
986 /**
987  * ecore_vlan_mac_restore - reconfigure next MAC/VLAN/VLAN-MAC element
988  *
989  * @sc:		device handle
990  * @p:		command parameters
991  * @ppos:	pointer to the cookie
992  *
993  * reconfigure next MAC/VLAN/VLAN-MAC element from the
994  * previously configured elements list.
995  *
996  * from command parameters only RAMROD_COMP_WAIT bit in ramrod_flags is	taken
997  * into an account
998  *
999  * pointer to the cookie  - that should be given back in the next call to make
1000  * function handle the next element. If *ppos is set to NULL it will restart the
1001  * iterator. If returned *ppos == NULL this means that the last element has been
1002  * handled.
1003  *
1004  */
1005 static int ecore_vlan_mac_restore(struct bnx2x_softc *sc,
1006 				  struct ecore_vlan_mac_ramrod_params *p,
1007 				  struct ecore_vlan_mac_registry_elem **ppos)
1008 {
1009 	struct ecore_vlan_mac_registry_elem *pos;
1010 	struct ecore_vlan_mac_obj *o = p->vlan_mac_obj;
1011 
1012 	/* If list is empty - there is nothing to do here */
1013 	if (ECORE_LIST_IS_EMPTY(&o->head)) {
1014 		*ppos = NULL;
1015 		return 0;
1016 	}
1017 
1018 	/* make a step... */
1019 	if (*ppos == NULL)
1020 		*ppos = ECORE_LIST_FIRST_ENTRY(&o->head, struct
1021 					       ecore_vlan_mac_registry_elem,
1022 					       link);
1023 	else
1024 		*ppos = ECORE_LIST_NEXT(*ppos, link,
1025 					struct ecore_vlan_mac_registry_elem);
1026 
1027 	pos = *ppos;
1028 
1029 	/* If it's the last step - return NULL */
1030 	if (ECORE_LIST_IS_LAST(&pos->link, &o->head))
1031 		*ppos = NULL;
1032 
1033 	/* Prepare a 'user_req' */
1034 	ECORE_MEMCPY(&p->user_req.u, &pos->u, sizeof(pos->u));
1035 
1036 	/* Set the command */
1037 	p->user_req.cmd = ECORE_VLAN_MAC_ADD;
1038 
1039 	/* Set vlan_mac_flags */
1040 	p->user_req.vlan_mac_flags = pos->vlan_mac_flags;
1041 
1042 	/* Set a restore bit */
1043 	ECORE_SET_BIT_NA(RAMROD_RESTORE, &p->ramrod_flags);
1044 
1045 	return ecore_config_vlan_mac(sc, p);
1046 }
1047 
1048 /* ecore_exeq_get_mac/ecore_exeq_get_vlan/ecore_exeq_get_vlan_mac return a
1049  * pointer to an element with a specific criteria and NULL if such an element
1050  * hasn't been found.
1051  */
1052 static struct ecore_exeq_elem *ecore_exeq_get_mac(struct ecore_exe_queue_obj *o,
1053 						  struct ecore_exeq_elem *elem)
1054 {
1055 	struct ecore_exeq_elem *pos;
1056 	struct ecore_mac_ramrod_data *data = &elem->cmd_data.vlan_mac.u.mac;
1057 
1058 	/* Check pending for execution commands */
1059 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->exe_queue, link,
1060 				  struct ecore_exeq_elem)
1061 	if (!ECORE_MEMCMP(&pos->cmd_data.vlan_mac.u.mac, data,
1062 			  sizeof(*data)) &&
1063 	    (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1064 		return pos;
1065 
1066 	return NULL;
1067 }
1068 
1069 /**
1070  * ecore_validate_vlan_mac_add - check if an ADD command can be executed
1071  *
1072  * @sc:		device handle
1073  * @qo:		ecore_qable_obj
1074  * @elem:	ecore_exeq_elem
1075  *
1076  * Checks that the requested configuration can be added. If yes and if
1077  * requested, consume CAM credit.
1078  *
1079  * The 'validate' is run after the 'optimize'.
1080  *
1081  */
1082 static int ecore_validate_vlan_mac_add(struct bnx2x_softc *sc,
1083 				       union ecore_qable_obj *qo,
1084 				       struct ecore_exeq_elem *elem)
1085 {
1086 	struct ecore_vlan_mac_obj *o = &qo->vlan_mac;
1087 	struct ecore_exe_queue_obj *exeq = &o->exe_queue;
1088 	int rc;
1089 
1090 	/* Check the registry */
1091 	rc = o->check_add(sc, o, &elem->cmd_data.vlan_mac.u);
1092 	if (rc) {
1093 		ECORE_MSG
1094 		    ("ADD command is not allowed considering current registry state.");
1095 		return rc;
1096 	}
1097 
1098 	/* Check if there is a pending ADD command for this
1099 	 * MAC/VLAN/VLAN-MAC. Return an error if there is.
1100 	 */
1101 	if (exeq->get(exeq, elem)) {
1102 		ECORE_MSG("There is a pending ADD command already");
1103 		return ECORE_EXISTS;
1104 	}
1105 
1106 	/* Consume the credit if not requested not to */
1107 	if (!(ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1108 			     &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1109 	      o->get_credit(o)))
1110 		return ECORE_INVAL;
1111 
1112 	return ECORE_SUCCESS;
1113 }
1114 
1115 /**
1116  * ecore_validate_vlan_mac_del - check if the DEL command can be executed
1117  *
1118  * @sc:		device handle
1119  * @qo:		quable object to check
1120  * @elem:	element that needs to be deleted
1121  *
1122  * Checks that the requested configuration can be deleted. If yes and if
1123  * requested, returns a CAM credit.
1124  *
1125  * The 'validate' is run after the 'optimize'.
1126  */
1127 static int ecore_validate_vlan_mac_del(struct bnx2x_softc *sc,
1128 				       union ecore_qable_obj *qo,
1129 				       struct ecore_exeq_elem *elem)
1130 {
1131 	struct ecore_vlan_mac_obj *o = &qo->vlan_mac;
1132 	struct ecore_vlan_mac_registry_elem *pos;
1133 	struct ecore_exe_queue_obj *exeq = &o->exe_queue;
1134 	struct ecore_exeq_elem query_elem;
1135 
1136 	/* If this classification can not be deleted (doesn't exist)
1137 	 * - return a ECORE_EXIST.
1138 	 */
1139 	pos = o->check_del(sc, o, &elem->cmd_data.vlan_mac.u);
1140 	if (!pos) {
1141 		ECORE_MSG
1142 		    ("DEL command is not allowed considering current registry state");
1143 		return ECORE_EXISTS;
1144 	}
1145 
1146 	/* Check if there are pending DEL or MOVE commands for this
1147 	 * MAC/VLAN/VLAN-MAC. Return an error if so.
1148 	 */
1149 	ECORE_MEMCPY(&query_elem, elem, sizeof(query_elem));
1150 
1151 	/* Check for MOVE commands */
1152 	query_elem.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_MOVE;
1153 	if (exeq->get(exeq, &query_elem)) {
1154 		PMD_DRV_LOG(ERR, "There is a pending MOVE command already");
1155 		return ECORE_INVAL;
1156 	}
1157 
1158 	/* Check for DEL commands */
1159 	if (exeq->get(exeq, elem)) {
1160 		ECORE_MSG("There is a pending DEL command already");
1161 		return ECORE_EXISTS;
1162 	}
1163 
1164 	/* Return the credit to the credit pool if not requested not to */
1165 	if (!(ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1166 			     &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1167 	      o->put_credit(o))) {
1168 		PMD_DRV_LOG(ERR, "Failed to return a credit");
1169 		return ECORE_INVAL;
1170 	}
1171 
1172 	return ECORE_SUCCESS;
1173 }
1174 
1175 /**
1176  * ecore_validate_vlan_mac_move - check if the MOVE command can be executed
1177  *
1178  * @sc:		device handle
1179  * @qo:		quable object to check (source)
1180  * @elem:	element that needs to be moved
1181  *
1182  * Checks that the requested configuration can be moved. If yes and if
1183  * requested, returns a CAM credit.
1184  *
1185  * The 'validate' is run after the 'optimize'.
1186  */
1187 static int ecore_validate_vlan_mac_move(struct bnx2x_softc *sc,
1188 					union ecore_qable_obj *qo,
1189 					struct ecore_exeq_elem *elem)
1190 {
1191 	struct ecore_vlan_mac_obj *src_o = &qo->vlan_mac;
1192 	struct ecore_vlan_mac_obj *dest_o = elem->cmd_data.vlan_mac.target_obj;
1193 	struct ecore_exeq_elem query_elem;
1194 	struct ecore_exe_queue_obj *src_exeq = &src_o->exe_queue;
1195 	struct ecore_exe_queue_obj *dest_exeq = &dest_o->exe_queue;
1196 
1197 	/* Check if we can perform this operation based on the current registry
1198 	 * state.
1199 	 */
1200 	if (!src_o->check_move(sc, src_o, dest_o, &elem->cmd_data.vlan_mac.u)) {
1201 		ECORE_MSG
1202 		    ("MOVE command is not allowed considering current registry state");
1203 		return ECORE_INVAL;
1204 	}
1205 
1206 	/* Check if there is an already pending DEL or MOVE command for the
1207 	 * source object or ADD command for a destination object. Return an
1208 	 * error if so.
1209 	 */
1210 	ECORE_MEMCPY(&query_elem, elem, sizeof(query_elem));
1211 
1212 	/* Check DEL on source */
1213 	query_elem.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_DEL;
1214 	if (src_exeq->get(src_exeq, &query_elem)) {
1215 		PMD_DRV_LOG(ERR,
1216 			    "There is a pending DEL command on the source queue already");
1217 		return ECORE_INVAL;
1218 	}
1219 
1220 	/* Check MOVE on source */
1221 	if (src_exeq->get(src_exeq, elem)) {
1222 		ECORE_MSG("There is a pending MOVE command already");
1223 		return ECORE_EXISTS;
1224 	}
1225 
1226 	/* Check ADD on destination */
1227 	query_elem.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_ADD;
1228 	if (dest_exeq->get(dest_exeq, &query_elem)) {
1229 		PMD_DRV_LOG(ERR,
1230 			    "There is a pending ADD command on the destination queue already");
1231 		return ECORE_INVAL;
1232 	}
1233 
1234 	/* Consume the credit if not requested not to */
1235 	if (!(ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT_DEST,
1236 			     &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1237 	      dest_o->get_credit(dest_o)))
1238 		return ECORE_INVAL;
1239 
1240 	if (!(ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1241 			     &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1242 	      src_o->put_credit(src_o))) {
1243 		/* return the credit taken from dest... */
1244 		dest_o->put_credit(dest_o);
1245 		return ECORE_INVAL;
1246 	}
1247 
1248 	return ECORE_SUCCESS;
1249 }
1250 
1251 static int ecore_validate_vlan_mac(struct bnx2x_softc *sc,
1252 				   union ecore_qable_obj *qo,
1253 				   struct ecore_exeq_elem *elem)
1254 {
1255 	switch (elem->cmd_data.vlan_mac.cmd) {
1256 	case ECORE_VLAN_MAC_ADD:
1257 		return ecore_validate_vlan_mac_add(sc, qo, elem);
1258 	case ECORE_VLAN_MAC_DEL:
1259 		return ecore_validate_vlan_mac_del(sc, qo, elem);
1260 	case ECORE_VLAN_MAC_MOVE:
1261 		return ecore_validate_vlan_mac_move(sc, qo, elem);
1262 	default:
1263 		return ECORE_INVAL;
1264 	}
1265 }
1266 
1267 static int ecore_remove_vlan_mac(__rte_unused struct bnx2x_softc *sc,
1268 				 union ecore_qable_obj *qo,
1269 				 struct ecore_exeq_elem *elem)
1270 {
1271 	int rc = 0;
1272 
1273 	/* If consumption wasn't required, nothing to do */
1274 	if (ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1275 			   &elem->cmd_data.vlan_mac.vlan_mac_flags))
1276 		return ECORE_SUCCESS;
1277 
1278 	switch (elem->cmd_data.vlan_mac.cmd) {
1279 	case ECORE_VLAN_MAC_ADD:
1280 	case ECORE_VLAN_MAC_MOVE:
1281 		rc = qo->vlan_mac.put_credit(&qo->vlan_mac);
1282 		break;
1283 	case ECORE_VLAN_MAC_DEL:
1284 		rc = qo->vlan_mac.get_credit(&qo->vlan_mac);
1285 		break;
1286 	default:
1287 		return ECORE_INVAL;
1288 	}
1289 
1290 	if (rc != TRUE)
1291 		return ECORE_INVAL;
1292 
1293 	return ECORE_SUCCESS;
1294 }
1295 
1296 /**
1297  * ecore_wait_vlan_mac - passively wait for 5 seconds until all work completes.
1298  *
1299  * @sc:		device handle
1300  * @o:		ecore_vlan_mac_obj
1301  *
1302  */
1303 static int ecore_wait_vlan_mac(struct bnx2x_softc *sc,
1304 			       struct ecore_vlan_mac_obj *o)
1305 {
1306 	int cnt = 5000, rc;
1307 	struct ecore_exe_queue_obj *exeq = &o->exe_queue;
1308 	struct ecore_raw_obj *raw = &o->raw;
1309 
1310 	while (cnt--) {
1311 		/* Wait for the current command to complete */
1312 		rc = raw->wait_comp(sc, raw);
1313 		if (rc)
1314 			return rc;
1315 
1316 		/* Wait until there are no pending commands */
1317 		if (!ecore_exe_queue_empty(exeq))
1318 			ECORE_WAIT(sc, 1000);
1319 		else
1320 			return ECORE_SUCCESS;
1321 	}
1322 
1323 	return ECORE_TIMEOUT;
1324 }
1325 
1326 static int __ecore_vlan_mac_execute_step(struct bnx2x_softc *sc,
1327 					 struct ecore_vlan_mac_obj *o,
1328 					 unsigned long *ramrod_flags)
1329 {
1330 	int rc = ECORE_SUCCESS;
1331 
1332 	ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
1333 
1334 	ECORE_MSG("vlan_mac_execute_step - trying to take writer lock");
1335 	rc = __ecore_vlan_mac_h_write_trylock(sc, o);
1336 
1337 	if (rc != ECORE_SUCCESS) {
1338 		__ecore_vlan_mac_h_pend(sc, o, *ramrod_flags);
1339 
1340 		/** Calling function should not diffrentiate between this case
1341 		 *  and the case in which there is already a pending ramrod
1342 		 */
1343 		rc = ECORE_PENDING;
1344 	} else {
1345 		rc = ecore_exe_queue_step(sc, &o->exe_queue, ramrod_flags);
1346 	}
1347 	ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
1348 
1349 	return rc;
1350 }
1351 
1352 /**
1353  * ecore_complete_vlan_mac - complete one VLAN-MAC ramrod
1354  *
1355  * @sc:		device handle
1356  * @o:		ecore_vlan_mac_obj
1357  * @cqe:
1358  * @cont:	if TRUE schedule next execution chunk
1359  *
1360  */
1361 static int ecore_complete_vlan_mac(struct bnx2x_softc *sc,
1362 				   struct ecore_vlan_mac_obj *o,
1363 				   union event_ring_elem *cqe,
1364 				   unsigned long *ramrod_flags)
1365 {
1366 	struct ecore_raw_obj *r = &o->raw;
1367 	int rc;
1368 
1369 	/* Reset pending list */
1370 	ecore_exe_queue_reset_pending(sc, &o->exe_queue);
1371 
1372 	/* Clear pending */
1373 	r->clear_pending(r);
1374 
1375 	/* If ramrod failed this is most likely a SW bug */
1376 	if (cqe->message.error)
1377 		return ECORE_INVAL;
1378 
1379 	/* Run the next bulk of pending commands if requested */
1380 	if (ECORE_TEST_BIT(RAMROD_CONT, ramrod_flags)) {
1381 		rc = __ecore_vlan_mac_execute_step(sc, o, ramrod_flags);
1382 		if (rc < 0)
1383 			return rc;
1384 	}
1385 
1386 	/* If there is more work to do return PENDING */
1387 	if (!ecore_exe_queue_empty(&o->exe_queue))
1388 		return ECORE_PENDING;
1389 
1390 	return ECORE_SUCCESS;
1391 }
1392 
1393 /**
1394  * ecore_optimize_vlan_mac - optimize ADD and DEL commands.
1395  *
1396  * @sc:		device handle
1397  * @o:		ecore_qable_obj
1398  * @elem:	ecore_exeq_elem
1399  */
1400 static int ecore_optimize_vlan_mac(struct bnx2x_softc *sc,
1401 				   union ecore_qable_obj *qo,
1402 				   struct ecore_exeq_elem *elem)
1403 {
1404 	struct ecore_exeq_elem query, *pos;
1405 	struct ecore_vlan_mac_obj *o = &qo->vlan_mac;
1406 	struct ecore_exe_queue_obj *exeq = &o->exe_queue;
1407 
1408 	ECORE_MEMCPY(&query, elem, sizeof(query));
1409 
1410 	switch (elem->cmd_data.vlan_mac.cmd) {
1411 	case ECORE_VLAN_MAC_ADD:
1412 		query.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_DEL;
1413 		break;
1414 	case ECORE_VLAN_MAC_DEL:
1415 		query.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_ADD;
1416 		break;
1417 	default:
1418 		/* Don't handle anything other than ADD or DEL */
1419 		return 0;
1420 	}
1421 
1422 	/* If we found the appropriate element - delete it */
1423 	pos = exeq->get(exeq, &query);
1424 	if (pos) {
1425 
1426 		/* Return the credit of the optimized command */
1427 		if (!ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1428 				    &pos->cmd_data.vlan_mac.vlan_mac_flags)) {
1429 			if ((query.cmd_data.vlan_mac.cmd ==
1430 			     ECORE_VLAN_MAC_ADD) && !o->put_credit(o)) {
1431 				PMD_DRV_LOG(ERR,
1432 					    "Failed to return the credit for the optimized ADD command");
1433 				return ECORE_INVAL;
1434 			} else if (!o->get_credit(o)) {	/* VLAN_MAC_DEL */
1435 				PMD_DRV_LOG(ERR,
1436 					    "Failed to recover the credit from the optimized DEL command");
1437 				return ECORE_INVAL;
1438 			}
1439 		}
1440 
1441 		ECORE_MSG("Optimizing %s command",
1442 			  (elem->cmd_data.vlan_mac.cmd == ECORE_VLAN_MAC_ADD) ?
1443 			  "ADD" : "DEL");
1444 
1445 		ECORE_LIST_REMOVE_ENTRY(&pos->link, &exeq->exe_queue);
1446 		ecore_exe_queue_free_elem(sc, pos);
1447 		return 1;
1448 	}
1449 
1450 	return 0;
1451 }
1452 
1453 /**
1454  * ecore_vlan_mac_get_registry_elem - prepare a registry element
1455  *
1456  * @sc:	  device handle
1457  * @o:
1458  * @elem:
1459  * @restore:
1460  * @re:
1461  *
1462  * prepare a registry element according to the current command request.
1463  */
1464 static int ecore_vlan_mac_get_registry_elem(struct bnx2x_softc *sc,
1465 					    struct ecore_vlan_mac_obj *o,
1466 					    struct ecore_exeq_elem *elem,
1467 					    int restore, struct
1468 					    ecore_vlan_mac_registry_elem
1469 					    **re)
1470 {
1471 	enum ecore_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1472 	struct ecore_vlan_mac_registry_elem *reg_elem;
1473 
1474 	/* Allocate a new registry element if needed. */
1475 	if (!restore &&
1476 	    ((cmd == ECORE_VLAN_MAC_ADD) || (cmd == ECORE_VLAN_MAC_MOVE))) {
1477 		reg_elem = ECORE_ZALLOC(sizeof(*reg_elem), GFP_ATOMIC, sc);
1478 		if (!reg_elem)
1479 			return ECORE_NOMEM;
1480 
1481 		/* Get a new CAM offset */
1482 		if (!o->get_cam_offset(o, &reg_elem->cam_offset)) {
1483 			/* This shall never happen, because we have checked the
1484 			 * CAM availability in the 'validate'.
1485 			 */
1486 			ECORE_DBG_BREAK_IF(1);
1487 			ECORE_FREE(sc, reg_elem, sizeof(*reg_elem));
1488 			return ECORE_INVAL;
1489 		}
1490 
1491 		ECORE_MSG("Got cam offset %d", reg_elem->cam_offset);
1492 
1493 		/* Set a VLAN-MAC data */
1494 		ECORE_MEMCPY(&reg_elem->u, &elem->cmd_data.vlan_mac.u,
1495 			     sizeof(reg_elem->u));
1496 
1497 		/* Copy the flags (needed for DEL and RESTORE flows) */
1498 		reg_elem->vlan_mac_flags =
1499 		    elem->cmd_data.vlan_mac.vlan_mac_flags;
1500 	} else			/* DEL, RESTORE */
1501 		reg_elem = o->check_del(sc, o, &elem->cmd_data.vlan_mac.u);
1502 
1503 	*re = reg_elem;
1504 	return ECORE_SUCCESS;
1505 }
1506 
1507 /**
1508  * ecore_execute_vlan_mac - execute vlan mac command
1509  *
1510  * @sc:			device handle
1511  * @qo:
1512  * @exe_chunk:
1513  * @ramrod_flags:
1514  *
1515  * go and send a ramrod!
1516  */
1517 static int ecore_execute_vlan_mac(struct bnx2x_softc *sc,
1518 				  union ecore_qable_obj *qo,
1519 				  ecore_list_t * exe_chunk,
1520 				  unsigned long *ramrod_flags)
1521 {
1522 	struct ecore_exeq_elem *elem;
1523 	struct ecore_vlan_mac_obj *o = &qo->vlan_mac, *cam_obj;
1524 	struct ecore_raw_obj *r = &o->raw;
1525 	int rc, idx = 0;
1526 	int restore = ECORE_TEST_BIT(RAMROD_RESTORE, ramrod_flags);
1527 	int drv_only = ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, ramrod_flags);
1528 	struct ecore_vlan_mac_registry_elem *reg_elem;
1529 	enum ecore_vlan_mac_cmd cmd;
1530 
1531 	/* If DRIVER_ONLY execution is requested, cleanup a registry
1532 	 * and exit. Otherwise send a ramrod to FW.
1533 	 */
1534 	if (!drv_only) {
1535 
1536 		/* Set pending */
1537 		r->set_pending(r);
1538 
1539 		/* Fill the ramrod data */
1540 		ECORE_LIST_FOR_EACH_ENTRY(elem, exe_chunk, link,
1541 					  struct ecore_exeq_elem) {
1542 			cmd = elem->cmd_data.vlan_mac.cmd;
1543 			/* We will add to the target object in MOVE command, so
1544 			 * change the object for a CAM search.
1545 			 */
1546 			if (cmd == ECORE_VLAN_MAC_MOVE)
1547 				cam_obj = elem->cmd_data.vlan_mac.target_obj;
1548 			else
1549 				cam_obj = o;
1550 
1551 			rc = ecore_vlan_mac_get_registry_elem(sc, cam_obj,
1552 							      elem, restore,
1553 							      &reg_elem);
1554 			if (rc)
1555 				goto error_exit;
1556 
1557 			ECORE_DBG_BREAK_IF(!reg_elem);
1558 
1559 			/* Push a new entry into the registry */
1560 			if (!restore &&
1561 			    ((cmd == ECORE_VLAN_MAC_ADD) ||
1562 			     (cmd == ECORE_VLAN_MAC_MOVE)))
1563 				ECORE_LIST_PUSH_HEAD(&reg_elem->link,
1564 						     &cam_obj->head);
1565 
1566 			/* Configure a single command in a ramrod data buffer */
1567 			o->set_one_rule(sc, o, elem, idx, reg_elem->cam_offset);
1568 
1569 			/* MOVE command consumes 2 entries in the ramrod data */
1570 			if (cmd == ECORE_VLAN_MAC_MOVE)
1571 				idx += 2;
1572 			else
1573 				idx++;
1574 		}
1575 
1576 		/*
1577 		 *  No need for an explicit memory barrier here as long we would
1578 		 *  need to ensure the ordering of writing to the SPQ element
1579 		 *  and updating of the SPQ producer which involves a memory
1580 		 *  read and we will have to put a full memory barrier there
1581 		 *  (inside ecore_sp_post()).
1582 		 */
1583 
1584 		rc = ecore_sp_post(sc, o->ramrod_cmd, r->cid,
1585 				   r->rdata_mapping, ETH_CONNECTION_TYPE);
1586 		if (rc)
1587 			goto error_exit;
1588 	}
1589 
1590 	/* Now, when we are done with the ramrod - clean up the registry */
1591 	ECORE_LIST_FOR_EACH_ENTRY(elem, exe_chunk, link, struct ecore_exeq_elem) {
1592 		cmd = elem->cmd_data.vlan_mac.cmd;
1593 		if ((cmd == ECORE_VLAN_MAC_DEL) || (cmd == ECORE_VLAN_MAC_MOVE)) {
1594 			reg_elem = o->check_del(sc, o,
1595 						&elem->cmd_data.vlan_mac.u);
1596 
1597 			ECORE_DBG_BREAK_IF(!reg_elem);
1598 
1599 			o->put_cam_offset(o, reg_elem->cam_offset);
1600 			ECORE_LIST_REMOVE_ENTRY(&reg_elem->link, &o->head);
1601 			ECORE_FREE(sc, reg_elem, sizeof(*reg_elem));
1602 		}
1603 	}
1604 
1605 	if (!drv_only)
1606 		return ECORE_PENDING;
1607 	else
1608 		return ECORE_SUCCESS;
1609 
1610 error_exit:
1611 	r->clear_pending(r);
1612 
1613 	/* Cleanup a registry in case of a failure */
1614 	ECORE_LIST_FOR_EACH_ENTRY(elem, exe_chunk, link, struct ecore_exeq_elem) {
1615 		cmd = elem->cmd_data.vlan_mac.cmd;
1616 
1617 		if (cmd == ECORE_VLAN_MAC_MOVE)
1618 			cam_obj = elem->cmd_data.vlan_mac.target_obj;
1619 		else
1620 			cam_obj = o;
1621 
1622 		/* Delete all newly added above entries */
1623 		if (!restore &&
1624 		    ((cmd == ECORE_VLAN_MAC_ADD) ||
1625 		     (cmd == ECORE_VLAN_MAC_MOVE))) {
1626 			reg_elem = o->check_del(sc, cam_obj,
1627 						&elem->cmd_data.vlan_mac.u);
1628 			if (reg_elem) {
1629 				ECORE_LIST_REMOVE_ENTRY(&reg_elem->link,
1630 							&cam_obj->head);
1631 				ECORE_FREE(sc, reg_elem, sizeof(*reg_elem));
1632 			}
1633 		}
1634 	}
1635 
1636 	return rc;
1637 }
1638 
1639 static int ecore_vlan_mac_push_new_cmd(struct bnx2x_softc *sc, struct
1640 				       ecore_vlan_mac_ramrod_params *p)
1641 {
1642 	struct ecore_exeq_elem *elem;
1643 	struct ecore_vlan_mac_obj *o = p->vlan_mac_obj;
1644 	int restore = ECORE_TEST_BIT(RAMROD_RESTORE, &p->ramrod_flags);
1645 
1646 	/* Allocate the execution queue element */
1647 	elem = ecore_exe_queue_alloc_elem(sc);
1648 	if (!elem)
1649 		return ECORE_NOMEM;
1650 
1651 	/* Set the command 'length' */
1652 	switch (p->user_req.cmd) {
1653 	case ECORE_VLAN_MAC_MOVE:
1654 		elem->cmd_len = 2;
1655 		break;
1656 	default:
1657 		elem->cmd_len = 1;
1658 	}
1659 
1660 	/* Fill the object specific info */
1661 	ECORE_MEMCPY(&elem->cmd_data.vlan_mac, &p->user_req,
1662 		     sizeof(p->user_req));
1663 
1664 	/* Try to add a new command to the pending list */
1665 	return ecore_exe_queue_add(sc, &o->exe_queue, elem, restore);
1666 }
1667 
1668 /**
1669  * ecore_config_vlan_mac - configure VLAN/MAC/VLAN_MAC filtering rules.
1670  *
1671  * @sc:	  device handle
1672  * @p:
1673  *
1674  */
1675 int ecore_config_vlan_mac(struct bnx2x_softc *sc,
1676 			  struct ecore_vlan_mac_ramrod_params *p)
1677 {
1678 	int rc = ECORE_SUCCESS;
1679 	struct ecore_vlan_mac_obj *o = p->vlan_mac_obj;
1680 	unsigned long *ramrod_flags = &p->ramrod_flags;
1681 	int cont = ECORE_TEST_BIT(RAMROD_CONT, ramrod_flags);
1682 	struct ecore_raw_obj *raw = &o->raw;
1683 
1684 	/*
1685 	 * Add new elements to the execution list for commands that require it.
1686 	 */
1687 	if (!cont) {
1688 		rc = ecore_vlan_mac_push_new_cmd(sc, p);
1689 		if (rc)
1690 			return rc;
1691 	}
1692 
1693 	/* If nothing will be executed further in this iteration we want to
1694 	 * return PENDING if there are pending commands
1695 	 */
1696 	if (!ecore_exe_queue_empty(&o->exe_queue))
1697 		rc = ECORE_PENDING;
1698 
1699 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, ramrod_flags)) {
1700 		ECORE_MSG
1701 		    ("RAMROD_DRV_CLR_ONLY requested: clearing a pending bit.");
1702 		raw->clear_pending(raw);
1703 	}
1704 
1705 	/* Execute commands if required */
1706 	if (cont || ECORE_TEST_BIT(RAMROD_EXEC, ramrod_flags) ||
1707 	    ECORE_TEST_BIT(RAMROD_COMP_WAIT, ramrod_flags)) {
1708 		rc = __ecore_vlan_mac_execute_step(sc, p->vlan_mac_obj,
1709 						   &p->ramrod_flags);
1710 		if (rc < 0)
1711 			return rc;
1712 	}
1713 
1714 	/* RAMROD_COMP_WAIT is a superset of RAMROD_EXEC. If it was set
1715 	 * then user want to wait until the last command is done.
1716 	 */
1717 	if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
1718 		/* Wait maximum for the current exe_queue length iterations plus
1719 		 * one (for the current pending command).
1720 		 */
1721 		int max_iterations = ecore_exe_queue_length(&o->exe_queue) + 1;
1722 
1723 		while (!ecore_exe_queue_empty(&o->exe_queue) &&
1724 		       max_iterations--) {
1725 
1726 			/* Wait for the current command to complete */
1727 			rc = raw->wait_comp(sc, raw);
1728 			if (rc)
1729 				return rc;
1730 
1731 			/* Make a next step */
1732 			rc = __ecore_vlan_mac_execute_step(sc,
1733 							   p->vlan_mac_obj,
1734 							   &p->ramrod_flags);
1735 			if (rc < 0)
1736 				return rc;
1737 		}
1738 
1739 		return ECORE_SUCCESS;
1740 	}
1741 
1742 	return rc;
1743 }
1744 
1745 /**
1746  * ecore_vlan_mac_del_all - delete elements with given vlan_mac_flags spec
1747  *
1748  * @sc:			device handle
1749  * @o:
1750  * @vlan_mac_flags:
1751  * @ramrod_flags:	execution flags to be used for this deletion
1752  *
1753  * if the last operation has completed successfully and there are no
1754  * more elements left, positive value if the last operation has completed
1755  * successfully and there are more previously configured elements, negative
1756  * value is current operation has failed.
1757  */
1758 static int ecore_vlan_mac_del_all(struct bnx2x_softc *sc,
1759 				  struct ecore_vlan_mac_obj *o,
1760 				  unsigned long *vlan_mac_flags,
1761 				  unsigned long *ramrod_flags)
1762 {
1763 	struct ecore_vlan_mac_registry_elem *pos = NULL;
1764 	int rc = 0, read_lock;
1765 	struct ecore_vlan_mac_ramrod_params p;
1766 	struct ecore_exe_queue_obj *exeq = &o->exe_queue;
1767 	struct ecore_exeq_elem *exeq_pos, *exeq_pos_n;
1768 
1769 	/* Clear pending commands first */
1770 
1771 	ECORE_SPIN_LOCK_BH(&exeq->lock);
1772 
1773 	ECORE_LIST_FOR_EACH_ENTRY_SAFE(exeq_pos, exeq_pos_n,
1774 				       &exeq->exe_queue, link,
1775 				       struct ecore_exeq_elem) {
1776 		if (exeq_pos->cmd_data.vlan_mac.vlan_mac_flags ==
1777 		    *vlan_mac_flags) {
1778 			rc = exeq->remove(sc, exeq->owner, exeq_pos);
1779 			if (rc) {
1780 				PMD_DRV_LOG(ERR, "Failed to remove command");
1781 				ECORE_SPIN_UNLOCK_BH(&exeq->lock);
1782 				return rc;
1783 			}
1784 			ECORE_LIST_REMOVE_ENTRY(&exeq_pos->link,
1785 						&exeq->exe_queue);
1786 			ecore_exe_queue_free_elem(sc, exeq_pos);
1787 		}
1788 	}
1789 
1790 	ECORE_SPIN_UNLOCK_BH(&exeq->lock);
1791 
1792 	/* Prepare a command request */
1793 	ECORE_MEMSET(&p, 0, sizeof(p));
1794 	p.vlan_mac_obj = o;
1795 	p.ramrod_flags = *ramrod_flags;
1796 	p.user_req.cmd = ECORE_VLAN_MAC_DEL;
1797 
1798 	/* Add all but the last VLAN-MAC to the execution queue without actually
1799 	 * execution anything.
1800 	 */
1801 	ECORE_CLEAR_BIT_NA(RAMROD_COMP_WAIT, &p.ramrod_flags);
1802 	ECORE_CLEAR_BIT_NA(RAMROD_EXEC, &p.ramrod_flags);
1803 	ECORE_CLEAR_BIT_NA(RAMROD_CONT, &p.ramrod_flags);
1804 
1805 	ECORE_MSG("vlan_mac_del_all -- taking vlan_mac_lock (reader)");
1806 	read_lock = ecore_vlan_mac_h_read_lock(sc, o);
1807 	if (read_lock != ECORE_SUCCESS)
1808 		return read_lock;
1809 
1810 	ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
1811 				  struct ecore_vlan_mac_registry_elem) {
1812 		if (pos->vlan_mac_flags == *vlan_mac_flags) {
1813 			p.user_req.vlan_mac_flags = pos->vlan_mac_flags;
1814 			ECORE_MEMCPY(&p.user_req.u, &pos->u, sizeof(pos->u));
1815 			rc = ecore_config_vlan_mac(sc, &p);
1816 			if (rc < 0) {
1817 				PMD_DRV_LOG(ERR,
1818 					    "Failed to add a new DEL command");
1819 				ecore_vlan_mac_h_read_unlock(sc, o);
1820 				return rc;
1821 			}
1822 		}
1823 	}
1824 
1825 	ECORE_MSG("vlan_mac_del_all -- releasing vlan_mac_lock (reader)");
1826 	ecore_vlan_mac_h_read_unlock(sc, o);
1827 
1828 	p.ramrod_flags = *ramrod_flags;
1829 	ECORE_SET_BIT_NA(RAMROD_CONT, &p.ramrod_flags);
1830 
1831 	return ecore_config_vlan_mac(sc, &p);
1832 }
1833 
1834 static void ecore_init_raw_obj(struct ecore_raw_obj *raw, uint8_t cl_id,
1835 			       uint32_t cid, uint8_t func_id,
1836 			       void *rdata,
1837 			       ecore_dma_addr_t rdata_mapping, int state,
1838 			       unsigned long *pstate, ecore_obj_type type)
1839 {
1840 	raw->func_id = func_id;
1841 	raw->cid = cid;
1842 	raw->cl_id = cl_id;
1843 	raw->rdata = rdata;
1844 	raw->rdata_mapping = rdata_mapping;
1845 	raw->state = state;
1846 	raw->pstate = pstate;
1847 	raw->obj_type = type;
1848 	raw->check_pending = ecore_raw_check_pending;
1849 	raw->clear_pending = ecore_raw_clear_pending;
1850 	raw->set_pending = ecore_raw_set_pending;
1851 	raw->wait_comp = ecore_raw_wait;
1852 }
1853 
1854 static void ecore_init_vlan_mac_common(struct ecore_vlan_mac_obj *o,
1855 				       uint8_t cl_id, uint32_t cid,
1856 				       uint8_t func_id, void *rdata,
1857 				       ecore_dma_addr_t rdata_mapping,
1858 				       int state, unsigned long *pstate,
1859 				       ecore_obj_type type,
1860 				       struct ecore_credit_pool_obj
1861 				       *macs_pool, struct ecore_credit_pool_obj
1862 				       *vlans_pool)
1863 {
1864 	ECORE_LIST_INIT(&o->head);
1865 	o->head_reader = 0;
1866 	o->head_exe_request = FALSE;
1867 	o->saved_ramrod_flags = 0;
1868 
1869 	o->macs_pool = macs_pool;
1870 	o->vlans_pool = vlans_pool;
1871 
1872 	o->delete_all = ecore_vlan_mac_del_all;
1873 	o->restore = ecore_vlan_mac_restore;
1874 	o->complete = ecore_complete_vlan_mac;
1875 	o->wait = ecore_wait_vlan_mac;
1876 
1877 	ecore_init_raw_obj(&o->raw, cl_id, cid, func_id, rdata, rdata_mapping,
1878 			   state, pstate, type);
1879 }
1880 
1881 void ecore_init_mac_obj(struct bnx2x_softc *sc,
1882 			struct ecore_vlan_mac_obj *mac_obj,
1883 			uint8_t cl_id, uint32_t cid, uint8_t func_id,
1884 			void *rdata, ecore_dma_addr_t rdata_mapping, int state,
1885 			unsigned long *pstate, ecore_obj_type type,
1886 			struct ecore_credit_pool_obj *macs_pool)
1887 {
1888 	union ecore_qable_obj *qable_obj = (union ecore_qable_obj *)mac_obj;
1889 
1890 	ecore_init_vlan_mac_common(mac_obj, cl_id, cid, func_id, rdata,
1891 				   rdata_mapping, state, pstate, type,
1892 				   macs_pool, NULL);
1893 
1894 	/* CAM credit pool handling */
1895 	mac_obj->get_credit = ecore_get_credit_mac;
1896 	mac_obj->put_credit = ecore_put_credit_mac;
1897 	mac_obj->get_cam_offset = ecore_get_cam_offset_mac;
1898 	mac_obj->put_cam_offset = ecore_put_cam_offset_mac;
1899 
1900 	if (CHIP_IS_E1x(sc)) {
1901 		mac_obj->set_one_rule = ecore_set_one_mac_e1x;
1902 		mac_obj->check_del = ecore_check_mac_del;
1903 		mac_obj->check_add = ecore_check_mac_add;
1904 		mac_obj->check_move = ecore_check_move_always_err;
1905 		mac_obj->ramrod_cmd = RAMROD_CMD_ID_ETH_SET_MAC;
1906 
1907 		/* Exe Queue */
1908 		ecore_exe_queue_init(sc,
1909 				     &mac_obj->exe_queue, 1, qable_obj,
1910 				     ecore_validate_vlan_mac,
1911 				     ecore_remove_vlan_mac,
1912 				     ecore_optimize_vlan_mac,
1913 				     ecore_execute_vlan_mac,
1914 				     ecore_exeq_get_mac);
1915 	} else {
1916 		mac_obj->set_one_rule = ecore_set_one_mac_e2;
1917 		mac_obj->check_del = ecore_check_mac_del;
1918 		mac_obj->check_add = ecore_check_mac_add;
1919 		mac_obj->check_move = ecore_check_move;
1920 		mac_obj->ramrod_cmd = RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
1921 		mac_obj->get_n_elements = ecore_get_n_elements;
1922 
1923 		/* Exe Queue */
1924 		ecore_exe_queue_init(sc,
1925 				     &mac_obj->exe_queue, CLASSIFY_RULES_COUNT,
1926 				     qable_obj, ecore_validate_vlan_mac,
1927 				     ecore_remove_vlan_mac,
1928 				     ecore_optimize_vlan_mac,
1929 				     ecore_execute_vlan_mac,
1930 				     ecore_exeq_get_mac);
1931 	}
1932 }
1933 
1934 /* RX_MODE verbs: DROP_ALL/ACCEPT_ALL/ACCEPT_ALL_MULTI/ACCEPT_ALL_VLAN/NORMAL */
1935 static void __storm_memset_mac_filters(struct bnx2x_softc *sc, struct
1936 				       tstorm_eth_mac_filter_config
1937 				       *mac_filters, uint16_t pf_id)
1938 {
1939 	size_t size = sizeof(struct tstorm_eth_mac_filter_config);
1940 
1941 	uint32_t addr = BAR_TSTRORM_INTMEM +
1942 	    TSTORM_MAC_FILTER_CONFIG_OFFSET(pf_id);
1943 
1944 	ecore_storm_memset_struct(sc, addr, size, (uint32_t *) mac_filters);
1945 }
1946 
1947 static int ecore_set_rx_mode_e1x(struct bnx2x_softc *sc,
1948 				 struct ecore_rx_mode_ramrod_params *p)
1949 {
1950 	/* update the sc MAC filter structure */
1951 	uint32_t mask = (1 << p->cl_id);
1952 
1953 	struct tstorm_eth_mac_filter_config *mac_filters =
1954 	    (struct tstorm_eth_mac_filter_config *)p->rdata;
1955 
1956 	/* initial setting is drop-all */
1957 	uint8_t drop_all_ucast = 1, drop_all_mcast = 1;
1958 	uint8_t accp_all_ucast = 0, accp_all_bcast = 0, accp_all_mcast = 0;
1959 	uint8_t unmatched_unicast = 0;
1960 
1961 	/* In e1x there we only take into account rx accept flag since tx switching
1962 	 * isn't enabled. */
1963 	if (ECORE_TEST_BIT(ECORE_ACCEPT_UNICAST, &p->rx_accept_flags))
1964 		/* accept matched ucast */
1965 		drop_all_ucast = 0;
1966 
1967 	if (ECORE_TEST_BIT(ECORE_ACCEPT_MULTICAST, &p->rx_accept_flags))
1968 		/* accept matched mcast */
1969 		drop_all_mcast = 0;
1970 
1971 	if (ECORE_TEST_BIT(ECORE_ACCEPT_ALL_UNICAST, &p->rx_accept_flags)) {
1972 		/* accept all mcast */
1973 		drop_all_ucast = 0;
1974 		accp_all_ucast = 1;
1975 	}
1976 	if (ECORE_TEST_BIT(ECORE_ACCEPT_ALL_MULTICAST, &p->rx_accept_flags)) {
1977 		/* accept all mcast */
1978 		drop_all_mcast = 0;
1979 		accp_all_mcast = 1;
1980 	}
1981 	if (ECORE_TEST_BIT(ECORE_ACCEPT_BROADCAST, &p->rx_accept_flags))
1982 		/* accept (all) bcast */
1983 		accp_all_bcast = 1;
1984 	if (ECORE_TEST_BIT(ECORE_ACCEPT_UNMATCHED, &p->rx_accept_flags))
1985 		/* accept unmatched unicasts */
1986 		unmatched_unicast = 1;
1987 
1988 	mac_filters->ucast_drop_all = drop_all_ucast ?
1989 	    mac_filters->ucast_drop_all | mask :
1990 	    mac_filters->ucast_drop_all & ~mask;
1991 
1992 	mac_filters->mcast_drop_all = drop_all_mcast ?
1993 	    mac_filters->mcast_drop_all | mask :
1994 	    mac_filters->mcast_drop_all & ~mask;
1995 
1996 	mac_filters->ucast_accept_all = accp_all_ucast ?
1997 	    mac_filters->ucast_accept_all | mask :
1998 	    mac_filters->ucast_accept_all & ~mask;
1999 
2000 	mac_filters->mcast_accept_all = accp_all_mcast ?
2001 	    mac_filters->mcast_accept_all | mask :
2002 	    mac_filters->mcast_accept_all & ~mask;
2003 
2004 	mac_filters->bcast_accept_all = accp_all_bcast ?
2005 	    mac_filters->bcast_accept_all | mask :
2006 	    mac_filters->bcast_accept_all & ~mask;
2007 
2008 	mac_filters->unmatched_unicast = unmatched_unicast ?
2009 	    mac_filters->unmatched_unicast | mask :
2010 	    mac_filters->unmatched_unicast & ~mask;
2011 
2012 	ECORE_MSG("drop_ucast 0x%xdrop_mcast 0x%x accp_ucast 0x%x"
2013 		  "accp_mcast 0x%xaccp_bcast 0x%x",
2014 		  mac_filters->ucast_drop_all, mac_filters->mcast_drop_all,
2015 		  mac_filters->ucast_accept_all, mac_filters->mcast_accept_all,
2016 		  mac_filters->bcast_accept_all);
2017 
2018 	/* write the MAC filter structure */
2019 	__storm_memset_mac_filters(sc, mac_filters, p->func_id);
2020 
2021 	/* The operation is completed */
2022 	ECORE_CLEAR_BIT(p->state, p->pstate);
2023 	ECORE_SMP_MB_AFTER_CLEAR_BIT();
2024 
2025 	return ECORE_SUCCESS;
2026 }
2027 
2028 /* Setup ramrod data */
2029 static void ecore_rx_mode_set_rdata_hdr_e2(uint32_t cid, struct eth_classify_header
2030 					   *hdr, uint8_t rule_cnt)
2031 {
2032 	hdr->echo = ECORE_CPU_TO_LE32(cid);
2033 	hdr->rule_cnt = rule_cnt;
2034 }
2035 
2036 static void ecore_rx_mode_set_cmd_state_e2(unsigned long *accept_flags, struct eth_filter_rules_cmd
2037 					   *cmd, int clear_accept_all)
2038 {
2039 	uint16_t state;
2040 
2041 	/* start with 'drop-all' */
2042 	state = ETH_FILTER_RULES_CMD_UCAST_DROP_ALL |
2043 	    ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2044 
2045 	if (ECORE_TEST_BIT(ECORE_ACCEPT_UNICAST, accept_flags))
2046 		state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2047 
2048 	if (ECORE_TEST_BIT(ECORE_ACCEPT_MULTICAST, accept_flags))
2049 		state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2050 
2051 	if (ECORE_TEST_BIT(ECORE_ACCEPT_ALL_UNICAST, accept_flags)) {
2052 		state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2053 		state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2054 	}
2055 
2056 	if (ECORE_TEST_BIT(ECORE_ACCEPT_ALL_MULTICAST, accept_flags)) {
2057 		state |= ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2058 		state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2059 	}
2060 	if (ECORE_TEST_BIT(ECORE_ACCEPT_BROADCAST, accept_flags))
2061 		state |= ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2062 
2063 	if (ECORE_TEST_BIT(ECORE_ACCEPT_UNMATCHED, accept_flags)) {
2064 		state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2065 		state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2066 	}
2067 	if (ECORE_TEST_BIT(ECORE_ACCEPT_ANY_VLAN, accept_flags))
2068 		state |= ETH_FILTER_RULES_CMD_ACCEPT_ANY_VLAN;
2069 
2070 	/* Clear ACCEPT_ALL_XXX flags for FCoE L2 Queue */
2071 	if (clear_accept_all) {
2072 		state &= ~ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2073 		state &= ~ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2074 		state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2075 		state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2076 	}
2077 
2078 	cmd->state = ECORE_CPU_TO_LE16(state);
2079 }
2080 
2081 static int ecore_set_rx_mode_e2(struct bnx2x_softc *sc,
2082 				struct ecore_rx_mode_ramrod_params *p)
2083 {
2084 	struct eth_filter_rules_ramrod_data *data = p->rdata;
2085 	int rc;
2086 	uint8_t rule_idx = 0;
2087 
2088 	/* Reset the ramrod data buffer */
2089 	ECORE_MEMSET(data, 0, sizeof(*data));
2090 
2091 	/* Setup ramrod data */
2092 
2093 	/* Tx (internal switching) */
2094 	if (ECORE_TEST_BIT(RAMROD_TX, &p->ramrod_flags)) {
2095 		data->rules[rule_idx].client_id = p->cl_id;
2096 		data->rules[rule_idx].func_id = p->func_id;
2097 
2098 		data->rules[rule_idx].cmd_general_data =
2099 		    ETH_FILTER_RULES_CMD_TX_CMD;
2100 
2101 		ecore_rx_mode_set_cmd_state_e2(&p->tx_accept_flags,
2102 					       &(data->rules[rule_idx++]),
2103 					       FALSE);
2104 	}
2105 
2106 	/* Rx */
2107 	if (ECORE_TEST_BIT(RAMROD_RX, &p->ramrod_flags)) {
2108 		data->rules[rule_idx].client_id = p->cl_id;
2109 		data->rules[rule_idx].func_id = p->func_id;
2110 
2111 		data->rules[rule_idx].cmd_general_data =
2112 		    ETH_FILTER_RULES_CMD_RX_CMD;
2113 
2114 		ecore_rx_mode_set_cmd_state_e2(&p->rx_accept_flags,
2115 					       &(data->rules[rule_idx++]),
2116 					       FALSE);
2117 	}
2118 
2119 	/* If FCoE Queue configuration has been requested configure the Rx and
2120 	 * internal switching modes for this queue in separate rules.
2121 	 *
2122 	 * FCoE queue shell never be set to ACCEPT_ALL packets of any sort:
2123 	 * MCAST_ALL, UCAST_ALL, BCAST_ALL and UNMATCHED.
2124 	 */
2125 	if (ECORE_TEST_BIT(ECORE_RX_MODE_FCOE_ETH, &p->rx_mode_flags)) {
2126 		/*  Tx (internal switching) */
2127 		if (ECORE_TEST_BIT(RAMROD_TX, &p->ramrod_flags)) {
2128 			data->rules[rule_idx].client_id = ECORE_FCOE_CID(sc);
2129 			data->rules[rule_idx].func_id = p->func_id;
2130 
2131 			data->rules[rule_idx].cmd_general_data =
2132 			    ETH_FILTER_RULES_CMD_TX_CMD;
2133 
2134 			ecore_rx_mode_set_cmd_state_e2(&p->tx_accept_flags,
2135 						       &(data->rules
2136 							 [rule_idx++]), TRUE);
2137 		}
2138 
2139 		/* Rx */
2140 		if (ECORE_TEST_BIT(RAMROD_RX, &p->ramrod_flags)) {
2141 			data->rules[rule_idx].client_id = ECORE_FCOE_CID(sc);
2142 			data->rules[rule_idx].func_id = p->func_id;
2143 
2144 			data->rules[rule_idx].cmd_general_data =
2145 			    ETH_FILTER_RULES_CMD_RX_CMD;
2146 
2147 			ecore_rx_mode_set_cmd_state_e2(&p->rx_accept_flags,
2148 						       &(data->rules
2149 							 [rule_idx++]), TRUE);
2150 		}
2151 	}
2152 
2153 	/* Set the ramrod header (most importantly - number of rules to
2154 	 * configure).
2155 	 */
2156 	ecore_rx_mode_set_rdata_hdr_e2(p->cid, &data->header, rule_idx);
2157 
2158 	ECORE_MSG
2159 	    ("About to configure %d rules, rx_accept_flags 0x%lx, tx_accept_flags 0x%lx",
2160 	     data->header.rule_cnt, p->rx_accept_flags, p->tx_accept_flags);
2161 
2162 	/* No need for an explicit memory barrier here as long we would
2163 	 * need to ensure the ordering of writing to the SPQ element
2164 	 * and updating of the SPQ producer which involves a memory
2165 	 * read and we will have to put a full memory barrier there
2166 	 * (inside ecore_sp_post()).
2167 	 */
2168 
2169 	/* Send a ramrod */
2170 	rc = ecore_sp_post(sc,
2171 			   RAMROD_CMD_ID_ETH_FILTER_RULES,
2172 			   p->cid, p->rdata_mapping, ETH_CONNECTION_TYPE);
2173 	if (rc)
2174 		return rc;
2175 
2176 	/* Ramrod completion is pending */
2177 	return ECORE_PENDING;
2178 }
2179 
2180 static int ecore_wait_rx_mode_comp_e2(struct bnx2x_softc *sc,
2181 				      struct ecore_rx_mode_ramrod_params *p)
2182 {
2183 	return ecore_state_wait(sc, p->state, p->pstate);
2184 }
2185 
2186 static int ecore_empty_rx_mode_wait(__rte_unused struct bnx2x_softc *sc,
2187 				    __rte_unused struct
2188 				    ecore_rx_mode_ramrod_params *p)
2189 {
2190 	/* Do nothing */
2191 	return ECORE_SUCCESS;
2192 }
2193 
2194 int ecore_config_rx_mode(struct bnx2x_softc *sc,
2195 			 struct ecore_rx_mode_ramrod_params *p)
2196 {
2197 	int rc;
2198 
2199 	/* Configure the new classification in the chip */
2200 	if (p->rx_mode_obj->config_rx_mode) {
2201 		rc = p->rx_mode_obj->config_rx_mode(sc, p);
2202 		if (rc < 0)
2203 			return rc;
2204 
2205 		/* Wait for a ramrod completion if was requested */
2206 		if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
2207 			rc = p->rx_mode_obj->wait_comp(sc, p);
2208 			if (rc)
2209 				return rc;
2210 		}
2211 	} else {
2212 		ECORE_MSG("ERROR: config_rx_mode is NULL");
2213 		return -1;
2214 	}
2215 
2216 	return rc;
2217 }
2218 
2219 void ecore_init_rx_mode_obj(struct bnx2x_softc *sc, struct ecore_rx_mode_obj *o)
2220 {
2221 	if (CHIP_IS_E1x(sc)) {
2222 		o->wait_comp = ecore_empty_rx_mode_wait;
2223 		o->config_rx_mode = ecore_set_rx_mode_e1x;
2224 	} else {
2225 		o->wait_comp = ecore_wait_rx_mode_comp_e2;
2226 		o->config_rx_mode = ecore_set_rx_mode_e2;
2227 	}
2228 }
2229 
2230 /********************* Multicast verbs: SET, CLEAR ****************************/
2231 static uint8_t ecore_mcast_bin_from_mac(uint8_t * mac)
2232 {
2233 	return (ECORE_CRC32_LE(0, mac, ETH_ALEN) >> 24) & 0xff;
2234 }
2235 
2236 struct ecore_mcast_mac_elem {
2237 	ecore_list_entry_t link;
2238 	uint8_t mac[ETH_ALEN];
2239 	uint8_t pad[2];		/* For a natural alignment of the following buffer */
2240 };
2241 
2242 struct ecore_pending_mcast_cmd {
2243 	ecore_list_entry_t link;
2244 	int type;		/* ECORE_MCAST_CMD_X */
2245 	union {
2246 		ecore_list_t macs_head;
2247 		uint32_t macs_num;	/* Needed for DEL command */
2248 		int next_bin;	/* Needed for RESTORE flow with aprox match */
2249 	} data;
2250 
2251 	int done;		/* set to TRUE, when the command has been handled,
2252 				 * practically used in 57712 handling only, where one pending
2253 				 * command may be handled in a few operations. As long as for
2254 				 * other chips every operation handling is completed in a
2255 				 * single ramrod, there is no need to utilize this field.
2256 				 */
2257 };
2258 
2259 static int ecore_mcast_wait(struct bnx2x_softc *sc, struct ecore_mcast_obj *o)
2260 {
2261 	if (ecore_state_wait(sc, o->sched_state, o->raw.pstate) ||
2262 	    o->raw.wait_comp(sc, &o->raw))
2263 		return ECORE_TIMEOUT;
2264 
2265 	return ECORE_SUCCESS;
2266 }
2267 
2268 static int ecore_mcast_enqueue_cmd(struct bnx2x_softc *sc __rte_unused,
2269 				   struct ecore_mcast_obj *o,
2270 				   struct ecore_mcast_ramrod_params *p,
2271 				   enum ecore_mcast_cmd cmd)
2272 {
2273 	int total_sz;
2274 	struct ecore_pending_mcast_cmd *new_cmd;
2275 	struct ecore_mcast_mac_elem *cur_mac = NULL;
2276 	struct ecore_mcast_list_elem *pos;
2277 	int macs_list_len = ((cmd == ECORE_MCAST_CMD_ADD) ?
2278 			     p->mcast_list_len : 0);
2279 
2280 	/* If the command is empty ("handle pending commands only"), break */
2281 	if (!p->mcast_list_len)
2282 		return ECORE_SUCCESS;
2283 
2284 	total_sz = sizeof(*new_cmd) +
2285 	    macs_list_len * sizeof(struct ecore_mcast_mac_elem);
2286 
2287 	/* Add mcast is called under spin_lock, thus calling with GFP_ATOMIC */
2288 	new_cmd = ECORE_ZALLOC(total_sz, GFP_ATOMIC, sc);
2289 
2290 	if (!new_cmd)
2291 		return ECORE_NOMEM;
2292 
2293 	ECORE_MSG("About to enqueue a new %d command. macs_list_len=%d",
2294 		  cmd, macs_list_len);
2295 
2296 	ECORE_LIST_INIT(&new_cmd->data.macs_head);
2297 
2298 	new_cmd->type = cmd;
2299 	new_cmd->done = FALSE;
2300 
2301 	switch (cmd) {
2302 	case ECORE_MCAST_CMD_ADD:
2303 		cur_mac = (struct ecore_mcast_mac_elem *)
2304 		    ((uint8_t *) new_cmd + sizeof(*new_cmd));
2305 
2306 		/* Push the MACs of the current command into the pending command
2307 		 * MACs list: FIFO
2308 		 */
2309 		ECORE_LIST_FOR_EACH_ENTRY(pos, &p->mcast_list, link,
2310 					  struct ecore_mcast_list_elem) {
2311 			ECORE_MEMCPY(cur_mac->mac, pos->mac, ETH_ALEN);
2312 			ECORE_LIST_PUSH_TAIL(&cur_mac->link,
2313 					     &new_cmd->data.macs_head);
2314 			cur_mac++;
2315 		}
2316 
2317 		break;
2318 
2319 	case ECORE_MCAST_CMD_DEL:
2320 		new_cmd->data.macs_num = p->mcast_list_len;
2321 		break;
2322 
2323 	case ECORE_MCAST_CMD_RESTORE:
2324 		new_cmd->data.next_bin = 0;
2325 		break;
2326 
2327 	default:
2328 		ECORE_FREE(sc, new_cmd, total_sz);
2329 		PMD_DRV_LOG(ERR, "Unknown command: %d", cmd);
2330 		return ECORE_INVAL;
2331 	}
2332 
2333 	/* Push the new pending command to the tail of the pending list: FIFO */
2334 	ECORE_LIST_PUSH_TAIL(&new_cmd->link, &o->pending_cmds_head);
2335 
2336 	o->set_sched(o);
2337 
2338 	return ECORE_PENDING;
2339 }
2340 
2341 /**
2342  * ecore_mcast_get_next_bin - get the next set bin (index)
2343  *
2344  * @o:
2345  * @last:	index to start looking from (including)
2346  *
2347  * returns the next found (set) bin or a negative value if none is found.
2348  */
2349 static int ecore_mcast_get_next_bin(struct ecore_mcast_obj *o, int last)
2350 {
2351 	int i, j, inner_start = last % BIT_VEC64_ELEM_SZ;
2352 
2353 	for (i = last / BIT_VEC64_ELEM_SZ; i < ECORE_MCAST_VEC_SZ; i++) {
2354 		if (o->registry.aprox_match.vec[i])
2355 			for (j = inner_start; j < BIT_VEC64_ELEM_SZ; j++) {
2356 				int cur_bit = j + BIT_VEC64_ELEM_SZ * i;
2357 				if (BIT_VEC64_TEST_BIT
2358 				    (o->registry.aprox_match.vec, cur_bit)) {
2359 					return cur_bit;
2360 				}
2361 			}
2362 		inner_start = 0;
2363 	}
2364 
2365 	/* None found */
2366 	return -1;
2367 }
2368 
2369 /**
2370  * ecore_mcast_clear_first_bin - find the first set bin and clear it
2371  *
2372  * @o:
2373  *
2374  * returns the index of the found bin or -1 if none is found
2375  */
2376 static int ecore_mcast_clear_first_bin(struct ecore_mcast_obj *o)
2377 {
2378 	int cur_bit = ecore_mcast_get_next_bin(o, 0);
2379 
2380 	if (cur_bit >= 0)
2381 		BIT_VEC64_CLEAR_BIT(o->registry.aprox_match.vec, cur_bit);
2382 
2383 	return cur_bit;
2384 }
2385 
2386 static uint8_t ecore_mcast_get_rx_tx_flag(struct ecore_mcast_obj *o)
2387 {
2388 	struct ecore_raw_obj *raw = &o->raw;
2389 	uint8_t rx_tx_flag = 0;
2390 
2391 	if ((raw->obj_type == ECORE_OBJ_TYPE_TX) ||
2392 	    (raw->obj_type == ECORE_OBJ_TYPE_RX_TX))
2393 		rx_tx_flag |= ETH_MULTICAST_RULES_CMD_TX_CMD;
2394 
2395 	if ((raw->obj_type == ECORE_OBJ_TYPE_RX) ||
2396 	    (raw->obj_type == ECORE_OBJ_TYPE_RX_TX))
2397 		rx_tx_flag |= ETH_MULTICAST_RULES_CMD_RX_CMD;
2398 
2399 	return rx_tx_flag;
2400 }
2401 
2402 static void ecore_mcast_set_one_rule_e2(struct bnx2x_softc *sc __rte_unused,
2403 					struct ecore_mcast_obj *o, int idx,
2404 					union ecore_mcast_config_data *cfg_data,
2405 					enum ecore_mcast_cmd cmd)
2406 {
2407 	struct ecore_raw_obj *r = &o->raw;
2408 	struct eth_multicast_rules_ramrod_data *data =
2409 	    (struct eth_multicast_rules_ramrod_data *)(r->rdata);
2410 	uint8_t func_id = r->func_id;
2411 	uint8_t rx_tx_add_flag = ecore_mcast_get_rx_tx_flag(o);
2412 	int bin;
2413 
2414 	if ((cmd == ECORE_MCAST_CMD_ADD) || (cmd == ECORE_MCAST_CMD_RESTORE))
2415 		rx_tx_add_flag |= ETH_MULTICAST_RULES_CMD_IS_ADD;
2416 
2417 	data->rules[idx].cmd_general_data |= rx_tx_add_flag;
2418 
2419 	/* Get a bin and update a bins' vector */
2420 	switch (cmd) {
2421 	case ECORE_MCAST_CMD_ADD:
2422 		bin = ecore_mcast_bin_from_mac(cfg_data->mac);
2423 		BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, bin);
2424 		break;
2425 
2426 	case ECORE_MCAST_CMD_DEL:
2427 		/* If there were no more bins to clear
2428 		 * (ecore_mcast_clear_first_bin() returns -1) then we would
2429 		 * clear any (0xff) bin.
2430 		 * See ecore_mcast_validate_e2() for explanation when it may
2431 		 * happen.
2432 		 */
2433 		bin = ecore_mcast_clear_first_bin(o);
2434 		break;
2435 
2436 	case ECORE_MCAST_CMD_RESTORE:
2437 		bin = cfg_data->bin;
2438 		break;
2439 
2440 	default:
2441 		PMD_DRV_LOG(ERR, "Unknown command: %d", cmd);
2442 		return;
2443 	}
2444 
2445 	ECORE_MSG("%s bin %d",
2446 		  ((rx_tx_add_flag & ETH_MULTICAST_RULES_CMD_IS_ADD) ?
2447 		   "Setting" : "Clearing"), bin);
2448 
2449 	data->rules[idx].bin_id = (uint8_t) bin;
2450 	data->rules[idx].func_id = func_id;
2451 	data->rules[idx].engine_id = o->engine_id;
2452 }
2453 
2454 /**
2455  * ecore_mcast_handle_restore_cmd_e2 - restore configuration from the registry
2456  *
2457  * @sc:		device handle
2458  * @o:
2459  * @start_bin:	index in the registry to start from (including)
2460  * @rdata_idx:	index in the ramrod data to start from
2461  *
2462  * returns last handled bin index or -1 if all bins have been handled
2463  */
2464 static int ecore_mcast_handle_restore_cmd_e2(struct bnx2x_softc *sc,
2465 					     struct ecore_mcast_obj *o,
2466 					     int start_bin, int *rdata_idx)
2467 {
2468 	int cur_bin, cnt = *rdata_idx;
2469 	union ecore_mcast_config_data cfg_data = { NULL };
2470 
2471 	/* go through the registry and configure the bins from it */
2472 	for (cur_bin = ecore_mcast_get_next_bin(o, start_bin); cur_bin >= 0;
2473 	     cur_bin = ecore_mcast_get_next_bin(o, cur_bin + 1)) {
2474 
2475 		cfg_data.bin = (uint8_t) cur_bin;
2476 		o->set_one_rule(sc, o, cnt, &cfg_data, ECORE_MCAST_CMD_RESTORE);
2477 
2478 		cnt++;
2479 
2480 		ECORE_MSG("About to configure a bin %d", cur_bin);
2481 
2482 		/* Break if we reached the maximum number
2483 		 * of rules.
2484 		 */
2485 		if (cnt >= o->max_cmd_len)
2486 			break;
2487 	}
2488 
2489 	*rdata_idx = cnt;
2490 
2491 	return cur_bin;
2492 }
2493 
2494 static void ecore_mcast_hdl_pending_add_e2(struct bnx2x_softc *sc,
2495 					   struct ecore_mcast_obj *o,
2496 					   struct ecore_pending_mcast_cmd
2497 					   *cmd_pos, int *line_idx)
2498 {
2499 	struct ecore_mcast_mac_elem *pmac_pos, *pmac_pos_n;
2500 	int cnt = *line_idx;
2501 	union ecore_mcast_config_data cfg_data = { NULL };
2502 
2503 	ECORE_LIST_FOR_EACH_ENTRY_SAFE(pmac_pos, pmac_pos_n,
2504 				       &cmd_pos->data.macs_head, link,
2505 				       struct ecore_mcast_mac_elem) {
2506 
2507 		cfg_data.mac = &pmac_pos->mac[0];
2508 		o->set_one_rule(sc, o, cnt, &cfg_data, cmd_pos->type);
2509 
2510 		cnt++;
2511 
2512 		ECORE_MSG
2513 		    ("About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC",
2514 		     pmac_pos->mac[0], pmac_pos->mac[1], pmac_pos->mac[2],
2515 		     pmac_pos->mac[3], pmac_pos->mac[4], pmac_pos->mac[5]);
2516 
2517 		ECORE_LIST_REMOVE_ENTRY(&pmac_pos->link,
2518 					&cmd_pos->data.macs_head);
2519 
2520 		/* Break if we reached the maximum number
2521 		 * of rules.
2522 		 */
2523 		if (cnt >= o->max_cmd_len)
2524 			break;
2525 	}
2526 
2527 	*line_idx = cnt;
2528 
2529 	/* if no more MACs to configure - we are done */
2530 	if (ECORE_LIST_IS_EMPTY(&cmd_pos->data.macs_head))
2531 		cmd_pos->done = TRUE;
2532 }
2533 
2534 static void ecore_mcast_hdl_pending_del_e2(struct bnx2x_softc *sc,
2535 					   struct ecore_mcast_obj *o,
2536 					   struct ecore_pending_mcast_cmd
2537 					   *cmd_pos, int *line_idx)
2538 {
2539 	int cnt = *line_idx;
2540 
2541 	while (cmd_pos->data.macs_num) {
2542 		o->set_one_rule(sc, o, cnt, NULL, cmd_pos->type);
2543 
2544 		cnt++;
2545 
2546 		cmd_pos->data.macs_num--;
2547 
2548 		ECORE_MSG("Deleting MAC. %d left,cnt is %d",
2549 			  cmd_pos->data.macs_num, cnt);
2550 
2551 		/* Break if we reached the maximum
2552 		 * number of rules.
2553 		 */
2554 		if (cnt >= o->max_cmd_len)
2555 			break;
2556 	}
2557 
2558 	*line_idx = cnt;
2559 
2560 	/* If we cleared all bins - we are done */
2561 	if (!cmd_pos->data.macs_num)
2562 		cmd_pos->done = TRUE;
2563 }
2564 
2565 static void ecore_mcast_hdl_pending_restore_e2(struct bnx2x_softc *sc,
2566 					       struct ecore_mcast_obj *o, struct
2567 					       ecore_pending_mcast_cmd
2568 					       *cmd_pos, int *line_idx)
2569 {
2570 	cmd_pos->data.next_bin = o->hdl_restore(sc, o, cmd_pos->data.next_bin,
2571 						line_idx);
2572 
2573 	if (cmd_pos->data.next_bin < 0)
2574 		/* If o->set_restore returned -1 we are done */
2575 		cmd_pos->done = TRUE;
2576 	else
2577 		/* Start from the next bin next time */
2578 		cmd_pos->data.next_bin++;
2579 }
2580 
2581 static int ecore_mcast_handle_pending_cmds_e2(struct bnx2x_softc *sc, struct
2582 					      ecore_mcast_ramrod_params
2583 					      *p)
2584 {
2585 	struct ecore_pending_mcast_cmd *cmd_pos, *cmd_pos_n;
2586 	int cnt = 0;
2587 	struct ecore_mcast_obj *o = p->mcast_obj;
2588 
2589 	ECORE_LIST_FOR_EACH_ENTRY_SAFE(cmd_pos, cmd_pos_n,
2590 				       &o->pending_cmds_head, link,
2591 				       struct ecore_pending_mcast_cmd) {
2592 		switch (cmd_pos->type) {
2593 		case ECORE_MCAST_CMD_ADD:
2594 			ecore_mcast_hdl_pending_add_e2(sc, o, cmd_pos, &cnt);
2595 			break;
2596 
2597 		case ECORE_MCAST_CMD_DEL:
2598 			ecore_mcast_hdl_pending_del_e2(sc, o, cmd_pos, &cnt);
2599 			break;
2600 
2601 		case ECORE_MCAST_CMD_RESTORE:
2602 			ecore_mcast_hdl_pending_restore_e2(sc, o, cmd_pos,
2603 							   &cnt);
2604 			break;
2605 
2606 		default:
2607 			PMD_DRV_LOG(ERR, "Unknown command: %d", cmd_pos->type);
2608 			return ECORE_INVAL;
2609 		}
2610 
2611 		/* If the command has been completed - remove it from the list
2612 		 * and free the memory
2613 		 */
2614 		if (cmd_pos->done) {
2615 			ECORE_LIST_REMOVE_ENTRY(&cmd_pos->link,
2616 						&o->pending_cmds_head);
2617 			ECORE_FREE(sc, cmd_pos, cmd_pos->alloc_len);
2618 		}
2619 
2620 		/* Break if we reached the maximum number of rules */
2621 		if (cnt >= o->max_cmd_len)
2622 			break;
2623 	}
2624 
2625 	return cnt;
2626 }
2627 
2628 static void ecore_mcast_hdl_add(struct bnx2x_softc *sc,
2629 				struct ecore_mcast_obj *o,
2630 				struct ecore_mcast_ramrod_params *p,
2631 				int *line_idx)
2632 {
2633 	struct ecore_mcast_list_elem *mlist_pos;
2634 	union ecore_mcast_config_data cfg_data = { NULL };
2635 	int cnt = *line_idx;
2636 
2637 	ECORE_LIST_FOR_EACH_ENTRY(mlist_pos, &p->mcast_list, link,
2638 				  struct ecore_mcast_list_elem) {
2639 		cfg_data.mac = mlist_pos->mac;
2640 		o->set_one_rule(sc, o, cnt, &cfg_data, ECORE_MCAST_CMD_ADD);
2641 
2642 		cnt++;
2643 
2644 		ECORE_MSG
2645 		    ("About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC",
2646 		     mlist_pos->mac[0], mlist_pos->mac[1], mlist_pos->mac[2],
2647 		     mlist_pos->mac[3], mlist_pos->mac[4], mlist_pos->mac[5]);
2648 	}
2649 
2650 	*line_idx = cnt;
2651 }
2652 
2653 static void ecore_mcast_hdl_del(struct bnx2x_softc *sc,
2654 				struct ecore_mcast_obj *o,
2655 				struct ecore_mcast_ramrod_params *p,
2656 				int *line_idx)
2657 {
2658 	int cnt = *line_idx, i;
2659 
2660 	for (i = 0; i < p->mcast_list_len; i++) {
2661 		o->set_one_rule(sc, o, cnt, NULL, ECORE_MCAST_CMD_DEL);
2662 
2663 		cnt++;
2664 
2665 		ECORE_MSG("Deleting MAC. %d left", p->mcast_list_len - i - 1);
2666 	}
2667 
2668 	*line_idx = cnt;
2669 }
2670 
2671 /**
2672  * ecore_mcast_handle_current_cmd -
2673  *
2674  * @sc:		device handle
2675  * @p:
2676  * @cmd:
2677  * @start_cnt:	first line in the ramrod data that may be used
2678  *
2679  * This function is called if there is enough place for the current command in
2680  * the ramrod data.
2681  * Returns number of lines filled in the ramrod data in total.
2682  */
2683 static int ecore_mcast_handle_current_cmd(struct bnx2x_softc *sc, struct
2684 					  ecore_mcast_ramrod_params *p,
2685 					  enum ecore_mcast_cmd cmd,
2686 					  int start_cnt)
2687 {
2688 	struct ecore_mcast_obj *o = p->mcast_obj;
2689 	int cnt = start_cnt;
2690 
2691 	ECORE_MSG("p->mcast_list_len=%d", p->mcast_list_len);
2692 
2693 	switch (cmd) {
2694 	case ECORE_MCAST_CMD_ADD:
2695 		ecore_mcast_hdl_add(sc, o, p, &cnt);
2696 		break;
2697 
2698 	case ECORE_MCAST_CMD_DEL:
2699 		ecore_mcast_hdl_del(sc, o, p, &cnt);
2700 		break;
2701 
2702 	case ECORE_MCAST_CMD_RESTORE:
2703 		o->hdl_restore(sc, o, 0, &cnt);
2704 		break;
2705 
2706 	default:
2707 		PMD_DRV_LOG(ERR, "Unknown command: %d", cmd);
2708 		return ECORE_INVAL;
2709 	}
2710 
2711 	/* The current command has been handled */
2712 	p->mcast_list_len = 0;
2713 
2714 	return cnt;
2715 }
2716 
2717 static int ecore_mcast_validate_e2(__rte_unused struct bnx2x_softc *sc,
2718 				   struct ecore_mcast_ramrod_params *p,
2719 				   enum ecore_mcast_cmd cmd)
2720 {
2721 	struct ecore_mcast_obj *o = p->mcast_obj;
2722 	int reg_sz = o->get_registry_size(o);
2723 
2724 	switch (cmd) {
2725 		/* DEL command deletes all currently configured MACs */
2726 	case ECORE_MCAST_CMD_DEL:
2727 		o->set_registry_size(o, 0);
2728 		/* fall-through */
2729 
2730 		/* RESTORE command will restore the entire multicast configuration */
2731 	case ECORE_MCAST_CMD_RESTORE:
2732 		/* Here we set the approximate amount of work to do, which in
2733 		 * fact may be only less as some MACs in postponed ADD
2734 		 * command(s) scheduled before this command may fall into
2735 		 * the same bin and the actual number of bins set in the
2736 		 * registry would be less than we estimated here. See
2737 		 * ecore_mcast_set_one_rule_e2() for further details.
2738 		 */
2739 		p->mcast_list_len = reg_sz;
2740 		break;
2741 
2742 	case ECORE_MCAST_CMD_ADD:
2743 	case ECORE_MCAST_CMD_CONT:
2744 		/* Here we assume that all new MACs will fall into new bins.
2745 		 * However we will correct the real registry size after we
2746 		 * handle all pending commands.
2747 		 */
2748 		o->set_registry_size(o, reg_sz + p->mcast_list_len);
2749 		break;
2750 
2751 	default:
2752 		PMD_DRV_LOG(ERR, "Unknown command: %d", cmd);
2753 		return ECORE_INVAL;
2754 	}
2755 
2756 	/* Increase the total number of MACs pending to be configured */
2757 	o->total_pending_num += p->mcast_list_len;
2758 
2759 	return ECORE_SUCCESS;
2760 }
2761 
2762 static void ecore_mcast_revert_e2(__rte_unused struct bnx2x_softc *sc,
2763 				  struct ecore_mcast_ramrod_params *p,
2764 				  int old_num_bins)
2765 {
2766 	struct ecore_mcast_obj *o = p->mcast_obj;
2767 
2768 	o->set_registry_size(o, old_num_bins);
2769 	o->total_pending_num -= p->mcast_list_len;
2770 }
2771 
2772 /**
2773  * ecore_mcast_set_rdata_hdr_e2 - sets a header values
2774  *
2775  * @sc:		device handle
2776  * @p:
2777  * @len:	number of rules to handle
2778  */
2779 static void ecore_mcast_set_rdata_hdr_e2(__rte_unused struct bnx2x_softc
2780 					 *sc, struct ecore_mcast_ramrod_params
2781 					 *p, uint8_t len)
2782 {
2783 	struct ecore_raw_obj *r = &p->mcast_obj->raw;
2784 	struct eth_multicast_rules_ramrod_data *data =
2785 	    (struct eth_multicast_rules_ramrod_data *)(r->rdata);
2786 
2787 	data->header.echo = ECORE_CPU_TO_LE32((r->cid & ECORE_SWCID_MASK) |
2788 					      (ECORE_FILTER_MCAST_PENDING <<
2789 					       ECORE_SWCID_SHIFT));
2790 	data->header.rule_cnt = len;
2791 }
2792 
2793 /**
2794  * ecore_mcast_refresh_registry_e2 - recalculate the actual number of set bins
2795  *
2796  * @sc:		device handle
2797  * @o:
2798  *
2799  * Recalculate the actual number of set bins in the registry using Brian
2800  * Kernighan's algorithm: it's execution complexity is as a number of set bins.
2801  */
2802 static int ecore_mcast_refresh_registry_e2(struct ecore_mcast_obj *o)
2803 {
2804 	int i, cnt = 0;
2805 	uint64_t elem;
2806 
2807 	for (i = 0; i < ECORE_MCAST_VEC_SZ; i++) {
2808 		elem = o->registry.aprox_match.vec[i];
2809 		for (; elem; cnt++)
2810 			elem &= elem - 1;
2811 	}
2812 
2813 	o->set_registry_size(o, cnt);
2814 
2815 	return ECORE_SUCCESS;
2816 }
2817 
2818 static int ecore_mcast_setup_e2(struct bnx2x_softc *sc,
2819 				struct ecore_mcast_ramrod_params *p,
2820 				enum ecore_mcast_cmd cmd)
2821 {
2822 	struct ecore_raw_obj *raw = &p->mcast_obj->raw;
2823 	struct ecore_mcast_obj *o = p->mcast_obj;
2824 	struct eth_multicast_rules_ramrod_data *data =
2825 	    (struct eth_multicast_rules_ramrod_data *)(raw->rdata);
2826 	int cnt = 0, rc;
2827 
2828 	/* Reset the ramrod data buffer */
2829 	ECORE_MEMSET(data, 0, sizeof(*data));
2830 
2831 	cnt = ecore_mcast_handle_pending_cmds_e2(sc, p);
2832 
2833 	/* If there are no more pending commands - clear SCHEDULED state */
2834 	if (ECORE_LIST_IS_EMPTY(&o->pending_cmds_head))
2835 		o->clear_sched(o);
2836 
2837 	/* The below may be TRUE if there was enough room in ramrod
2838 	 * data for all pending commands and for the current
2839 	 * command. Otherwise the current command would have been added
2840 	 * to the pending commands and p->mcast_list_len would have been
2841 	 * zeroed.
2842 	 */
2843 	if (p->mcast_list_len > 0)
2844 		cnt = ecore_mcast_handle_current_cmd(sc, p, cmd, cnt);
2845 
2846 	/* We've pulled out some MACs - update the total number of
2847 	 * outstanding.
2848 	 */
2849 	o->total_pending_num -= cnt;
2850 
2851 	/* send a ramrod */
2852 	ECORE_DBG_BREAK_IF(o->total_pending_num < 0);
2853 	ECORE_DBG_BREAK_IF(cnt > o->max_cmd_len);
2854 
2855 	ecore_mcast_set_rdata_hdr_e2(sc, p, (uint8_t) cnt);
2856 
2857 	/* Update a registry size if there are no more pending operations.
2858 	 *
2859 	 * We don't want to change the value of the registry size if there are
2860 	 * pending operations because we want it to always be equal to the
2861 	 * exact or the approximate number (see ecore_mcast_validate_e2()) of
2862 	 * set bins after the last requested operation in order to properly
2863 	 * evaluate the size of the next DEL/RESTORE operation.
2864 	 *
2865 	 * Note that we update the registry itself during command(s) handling
2866 	 * - see ecore_mcast_set_one_rule_e2(). That's because for 57712 we
2867 	 * aggregate multiple commands (ADD/DEL/RESTORE) into one ramrod but
2868 	 * with a limited amount of update commands (per MAC/bin) and we don't
2869 	 * know in this scope what the actual state of bins configuration is
2870 	 * going to be after this ramrod.
2871 	 */
2872 	if (!o->total_pending_num)
2873 		ecore_mcast_refresh_registry_e2(o);
2874 
2875 	/* If CLEAR_ONLY was requested - don't send a ramrod and clear
2876 	 * RAMROD_PENDING status immediately.
2877 	 */
2878 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
2879 		raw->clear_pending(raw);
2880 		return ECORE_SUCCESS;
2881 	} else {
2882 		/* No need for an explicit memory barrier here as long we would
2883 		 * need to ensure the ordering of writing to the SPQ element
2884 		 * and updating of the SPQ producer which involves a memory
2885 		 * read and we will have to put a full memory barrier there
2886 		 * (inside ecore_sp_post()).
2887 		 */
2888 
2889 		/* Send a ramrod */
2890 		rc = ecore_sp_post(sc,
2891 				   RAMROD_CMD_ID_ETH_MULTICAST_RULES,
2892 				   raw->cid,
2893 				   raw->rdata_mapping, ETH_CONNECTION_TYPE);
2894 		if (rc)
2895 			return rc;
2896 
2897 		/* Ramrod completion is pending */
2898 		return ECORE_PENDING;
2899 	}
2900 }
2901 
2902 static int ecore_mcast_validate_e1h(__rte_unused struct bnx2x_softc *sc,
2903 				    struct ecore_mcast_ramrod_params *p,
2904 				    enum ecore_mcast_cmd cmd)
2905 {
2906 	/* Mark, that there is a work to do */
2907 	if ((cmd == ECORE_MCAST_CMD_DEL) || (cmd == ECORE_MCAST_CMD_RESTORE))
2908 		p->mcast_list_len = 1;
2909 
2910 	return ECORE_SUCCESS;
2911 }
2912 
2913 static void ecore_mcast_revert_e1h(__rte_unused struct bnx2x_softc *sc,
2914 				   __rte_unused struct ecore_mcast_ramrod_params
2915 				   *p, __rte_unused int old_num_bins)
2916 {
2917 	/* Do nothing */
2918 }
2919 
2920 #define ECORE_57711_SET_MC_FILTER(filter, bit) \
2921 do { \
2922 	(filter)[(bit) >> 5] |= (1 << ((bit) & 0x1f)); \
2923 } while (0)
2924 
2925 static void ecore_mcast_hdl_add_e1h(struct bnx2x_softc *sc __rte_unused,
2926 				    struct ecore_mcast_obj *o,
2927 				    struct ecore_mcast_ramrod_params *p,
2928 				    uint32_t * mc_filter)
2929 {
2930 	struct ecore_mcast_list_elem *mlist_pos;
2931 	int bit;
2932 
2933 	ECORE_LIST_FOR_EACH_ENTRY(mlist_pos, &p->mcast_list, link,
2934 				  struct ecore_mcast_list_elem) {
2935 		bit = ecore_mcast_bin_from_mac(mlist_pos->mac);
2936 		ECORE_57711_SET_MC_FILTER(mc_filter, bit);
2937 
2938 		ECORE_MSG
2939 		    ("About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC, bin %d",
2940 		     mlist_pos->mac[0], mlist_pos->mac[1], mlist_pos->mac[2],
2941 		     mlist_pos->mac[3], mlist_pos->mac[4], mlist_pos->mac[5],
2942 		     bit);
2943 
2944 		/* bookkeeping... */
2945 		BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, bit);
2946 	}
2947 }
2948 
2949 static void ecore_mcast_hdl_restore_e1h(struct bnx2x_softc *sc
2950 					__rte_unused,
2951 					struct ecore_mcast_obj *o,
2952 					uint32_t * mc_filter)
2953 {
2954 	int bit;
2955 
2956 	for (bit = ecore_mcast_get_next_bin(o, 0);
2957 	     bit >= 0; bit = ecore_mcast_get_next_bin(o, bit + 1)) {
2958 		ECORE_57711_SET_MC_FILTER(mc_filter, bit);
2959 		ECORE_MSG("About to set bin %d", bit);
2960 	}
2961 }
2962 
2963 /* On 57711 we write the multicast MACs' approximate match
2964  * table by directly into the TSTORM's internal RAM. So we don't
2965  * really need to handle any tricks to make it work.
2966  */
2967 static int ecore_mcast_setup_e1h(struct bnx2x_softc *sc,
2968 				 struct ecore_mcast_ramrod_params *p,
2969 				 enum ecore_mcast_cmd cmd)
2970 {
2971 	int i;
2972 	struct ecore_mcast_obj *o = p->mcast_obj;
2973 	struct ecore_raw_obj *r = &o->raw;
2974 
2975 	/* If CLEAR_ONLY has been requested - clear the registry
2976 	 * and clear a pending bit.
2977 	 */
2978 	if (!ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
2979 		uint32_t mc_filter[ECORE_MC_HASH_SIZE] = { 0 };
2980 
2981 		/* Set the multicast filter bits before writing it into
2982 		 * the internal memory.
2983 		 */
2984 		switch (cmd) {
2985 		case ECORE_MCAST_CMD_ADD:
2986 			ecore_mcast_hdl_add_e1h(sc, o, p, mc_filter);
2987 			break;
2988 
2989 		case ECORE_MCAST_CMD_DEL:
2990 			ECORE_MSG("Invalidating multicast MACs configuration");
2991 
2992 			/* clear the registry */
2993 			ECORE_MEMSET(o->registry.aprox_match.vec, 0,
2994 				     sizeof(o->registry.aprox_match.vec));
2995 			break;
2996 
2997 		case ECORE_MCAST_CMD_RESTORE:
2998 			ecore_mcast_hdl_restore_e1h(sc, o, mc_filter);
2999 			break;
3000 
3001 		default:
3002 			PMD_DRV_LOG(ERR, "Unknown command: %d", cmd);
3003 			return ECORE_INVAL;
3004 		}
3005 
3006 		/* Set the mcast filter in the internal memory */
3007 		for (i = 0; i < ECORE_MC_HASH_SIZE; i++)
3008 			REG_WR(sc, ECORE_MC_HASH_OFFSET(sc, i), mc_filter[i]);
3009 	} else
3010 		/* clear the registry */
3011 		ECORE_MEMSET(o->registry.aprox_match.vec, 0,
3012 			     sizeof(o->registry.aprox_match.vec));
3013 
3014 	/* We are done */
3015 	r->clear_pending(r);
3016 
3017 	return ECORE_SUCCESS;
3018 }
3019 
3020 static int ecore_mcast_get_registry_size_aprox(struct ecore_mcast_obj *o)
3021 {
3022 	return o->registry.aprox_match.num_bins_set;
3023 }
3024 
3025 static void ecore_mcast_set_registry_size_aprox(struct ecore_mcast_obj *o,
3026 						int n)
3027 {
3028 	o->registry.aprox_match.num_bins_set = n;
3029 }
3030 
3031 int ecore_config_mcast(struct bnx2x_softc *sc,
3032 		       struct ecore_mcast_ramrod_params *p,
3033 		       enum ecore_mcast_cmd cmd)
3034 {
3035 	struct ecore_mcast_obj *o = p->mcast_obj;
3036 	struct ecore_raw_obj *r = &o->raw;
3037 	int rc = 0, old_reg_size;
3038 
3039 	/* This is needed to recover number of currently configured mcast macs
3040 	 * in case of failure.
3041 	 */
3042 	old_reg_size = o->get_registry_size(o);
3043 
3044 	/* Do some calculations and checks */
3045 	rc = o->validate(sc, p, cmd);
3046 	if (rc)
3047 		return rc;
3048 
3049 	/* Return if there is no work to do */
3050 	if ((!p->mcast_list_len) && (!o->check_sched(o)))
3051 		return ECORE_SUCCESS;
3052 
3053 	ECORE_MSG
3054 	    ("o->total_pending_num=%d p->mcast_list_len=%d o->max_cmd_len=%d",
3055 	     o->total_pending_num, p->mcast_list_len, o->max_cmd_len);
3056 
3057 	/* Enqueue the current command to the pending list if we can't complete
3058 	 * it in the current iteration
3059 	 */
3060 	if (r->check_pending(r) ||
3061 	    ((o->max_cmd_len > 0) && (o->total_pending_num > o->max_cmd_len))) {
3062 		rc = o->enqueue_cmd(sc, p->mcast_obj, p, cmd);
3063 		if (rc < 0)
3064 			goto error_exit1;
3065 
3066 		/* As long as the current command is in a command list we
3067 		 * don't need to handle it separately.
3068 		 */
3069 		p->mcast_list_len = 0;
3070 	}
3071 
3072 	if (!r->check_pending(r)) {
3073 
3074 		/* Set 'pending' state */
3075 		r->set_pending(r);
3076 
3077 		/* Configure the new classification in the chip */
3078 		rc = o->config_mcast(sc, p, cmd);
3079 		if (rc < 0)
3080 			goto error_exit2;
3081 
3082 		/* Wait for a ramrod completion if was requested */
3083 		if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &p->ramrod_flags))
3084 			rc = o->wait_comp(sc, o);
3085 	}
3086 
3087 	return rc;
3088 
3089 error_exit2:
3090 	r->clear_pending(r);
3091 
3092 error_exit1:
3093 	o->revert(sc, p, old_reg_size);
3094 
3095 	return rc;
3096 }
3097 
3098 static void ecore_mcast_clear_sched(struct ecore_mcast_obj *o)
3099 {
3100 	ECORE_SMP_MB_BEFORE_CLEAR_BIT();
3101 	ECORE_CLEAR_BIT(o->sched_state, o->raw.pstate);
3102 	ECORE_SMP_MB_AFTER_CLEAR_BIT();
3103 }
3104 
3105 static void ecore_mcast_set_sched(struct ecore_mcast_obj *o)
3106 {
3107 	ECORE_SMP_MB_BEFORE_CLEAR_BIT();
3108 	ECORE_SET_BIT(o->sched_state, o->raw.pstate);
3109 	ECORE_SMP_MB_AFTER_CLEAR_BIT();
3110 }
3111 
3112 static int ecore_mcast_check_sched(struct ecore_mcast_obj *o)
3113 {
3114 	return ! !ECORE_TEST_BIT(o->sched_state, o->raw.pstate);
3115 }
3116 
3117 static int ecore_mcast_check_pending(struct ecore_mcast_obj *o)
3118 {
3119 	return o->raw.check_pending(&o->raw) || o->check_sched(o);
3120 }
3121 
3122 void ecore_init_mcast_obj(struct bnx2x_softc *sc,
3123 			  struct ecore_mcast_obj *mcast_obj,
3124 			  uint8_t mcast_cl_id, uint32_t mcast_cid,
3125 			  uint8_t func_id, uint8_t engine_id, void *rdata,
3126 			  ecore_dma_addr_t rdata_mapping, int state,
3127 			  unsigned long *pstate, ecore_obj_type type)
3128 {
3129 	ECORE_MEMSET(mcast_obj, 0, sizeof(*mcast_obj));
3130 
3131 	ecore_init_raw_obj(&mcast_obj->raw, mcast_cl_id, mcast_cid, func_id,
3132 			   rdata, rdata_mapping, state, pstate, type);
3133 
3134 	mcast_obj->engine_id = engine_id;
3135 
3136 	ECORE_LIST_INIT(&mcast_obj->pending_cmds_head);
3137 
3138 	mcast_obj->sched_state = ECORE_FILTER_MCAST_SCHED;
3139 	mcast_obj->check_sched = ecore_mcast_check_sched;
3140 	mcast_obj->set_sched = ecore_mcast_set_sched;
3141 	mcast_obj->clear_sched = ecore_mcast_clear_sched;
3142 
3143 	if (CHIP_IS_E1H(sc)) {
3144 		mcast_obj->config_mcast = ecore_mcast_setup_e1h;
3145 		mcast_obj->enqueue_cmd = NULL;
3146 		mcast_obj->hdl_restore = NULL;
3147 		mcast_obj->check_pending = ecore_mcast_check_pending;
3148 
3149 		/* 57711 doesn't send a ramrod, so it has unlimited credit
3150 		 * for one command.
3151 		 */
3152 		mcast_obj->max_cmd_len = -1;
3153 		mcast_obj->wait_comp = ecore_mcast_wait;
3154 		mcast_obj->set_one_rule = NULL;
3155 		mcast_obj->validate = ecore_mcast_validate_e1h;
3156 		mcast_obj->revert = ecore_mcast_revert_e1h;
3157 		mcast_obj->get_registry_size =
3158 		    ecore_mcast_get_registry_size_aprox;
3159 		mcast_obj->set_registry_size =
3160 		    ecore_mcast_set_registry_size_aprox;
3161 	} else {
3162 		mcast_obj->config_mcast = ecore_mcast_setup_e2;
3163 		mcast_obj->enqueue_cmd = ecore_mcast_enqueue_cmd;
3164 		mcast_obj->hdl_restore = ecore_mcast_handle_restore_cmd_e2;
3165 		mcast_obj->check_pending = ecore_mcast_check_pending;
3166 		mcast_obj->max_cmd_len = 16;
3167 		mcast_obj->wait_comp = ecore_mcast_wait;
3168 		mcast_obj->set_one_rule = ecore_mcast_set_one_rule_e2;
3169 		mcast_obj->validate = ecore_mcast_validate_e2;
3170 		mcast_obj->revert = ecore_mcast_revert_e2;
3171 		mcast_obj->get_registry_size =
3172 		    ecore_mcast_get_registry_size_aprox;
3173 		mcast_obj->set_registry_size =
3174 		    ecore_mcast_set_registry_size_aprox;
3175 	}
3176 }
3177 
3178 /*************************** Credit handling **********************************/
3179 
3180 /**
3181  * atomic_add_ifless - add if the result is less than a given value.
3182  *
3183  * @v:	pointer of type ecore_atomic_t
3184  * @a:	the amount to add to v...
3185  * @u:	...if (v + a) is less than u.
3186  *
3187  * returns TRUE if (v + a) was less than u, and FALSE otherwise.
3188  *
3189  */
3190 static int __atomic_add_ifless(ecore_atomic_t * v, int a, int u)
3191 {
3192 	int c, old;
3193 
3194 	c = ECORE_ATOMIC_READ(v);
3195 	for (;;) {
3196 		if (ECORE_UNLIKELY(c + a >= u))
3197 			return FALSE;
3198 
3199 		old = ECORE_ATOMIC_CMPXCHG((v), c, c + a);
3200 		if (ECORE_LIKELY(old == c))
3201 			break;
3202 		c = old;
3203 	}
3204 
3205 	return TRUE;
3206 }
3207 
3208 /**
3209  * atomic_dec_ifmoe - dec if the result is more or equal than a given value.
3210  *
3211  * @v:	pointer of type ecore_atomic_t
3212  * @a:	the amount to dec from v...
3213  * @u:	...if (v - a) is more or equal than u.
3214  *
3215  * returns TRUE if (v - a) was more or equal than u, and FALSE
3216  * otherwise.
3217  */
3218 static int __atomic_dec_ifmoe(ecore_atomic_t * v, int a, int u)
3219 {
3220 	int c, old;
3221 
3222 	c = ECORE_ATOMIC_READ(v);
3223 	for (;;) {
3224 		if (ECORE_UNLIKELY(c - a < u))
3225 			return FALSE;
3226 
3227 		old = ECORE_ATOMIC_CMPXCHG((v), c, c - a);
3228 		if (ECORE_LIKELY(old == c))
3229 			break;
3230 		c = old;
3231 	}
3232 
3233 	return TRUE;
3234 }
3235 
3236 static int ecore_credit_pool_get(struct ecore_credit_pool_obj *o, int cnt)
3237 {
3238 	int rc;
3239 
3240 	ECORE_SMP_MB();
3241 	rc = __atomic_dec_ifmoe(&o->credit, cnt, 0);
3242 	ECORE_SMP_MB();
3243 
3244 	return rc;
3245 }
3246 
3247 static int ecore_credit_pool_put(struct ecore_credit_pool_obj *o, int cnt)
3248 {
3249 	int rc;
3250 
3251 	ECORE_SMP_MB();
3252 
3253 	/* Don't let to refill if credit + cnt > pool_sz */
3254 	rc = __atomic_add_ifless(&o->credit, cnt, o->pool_sz + 1);
3255 
3256 	ECORE_SMP_MB();
3257 
3258 	return rc;
3259 }
3260 
3261 static int ecore_credit_pool_check(struct ecore_credit_pool_obj *o)
3262 {
3263 	int cur_credit;
3264 
3265 	ECORE_SMP_MB();
3266 	cur_credit = ECORE_ATOMIC_READ(&o->credit);
3267 
3268 	return cur_credit;
3269 }
3270 
3271 static int ecore_credit_pool_always_TRUE(__rte_unused struct
3272 					 ecore_credit_pool_obj *o,
3273 					 __rte_unused int cnt)
3274 {
3275 	return TRUE;
3276 }
3277 
3278 static int ecore_credit_pool_get_entry(struct ecore_credit_pool_obj *o,
3279 				       int *offset)
3280 {
3281 	int idx, vec, i;
3282 
3283 	*offset = -1;
3284 
3285 	/* Find "internal cam-offset" then add to base for this object... */
3286 	for (vec = 0; vec < ECORE_POOL_VEC_SIZE; vec++) {
3287 
3288 		/* Skip the current vector if there are no free entries in it */
3289 		if (!o->pool_mirror[vec])
3290 			continue;
3291 
3292 		/* If we've got here we are going to find a free entry */
3293 		for (idx = vec * BIT_VEC64_ELEM_SZ, i = 0;
3294 		     i < BIT_VEC64_ELEM_SZ; idx++, i++)
3295 
3296 			if (BIT_VEC64_TEST_BIT(o->pool_mirror, idx)) {
3297 				/* Got one!! */
3298 				BIT_VEC64_CLEAR_BIT(o->pool_mirror, idx);
3299 				*offset = o->base_pool_offset + idx;
3300 				return TRUE;
3301 			}
3302 	}
3303 
3304 	return FALSE;
3305 }
3306 
3307 static int ecore_credit_pool_put_entry(struct ecore_credit_pool_obj *o,
3308 				       int offset)
3309 {
3310 	if (offset < o->base_pool_offset)
3311 		return FALSE;
3312 
3313 	offset -= o->base_pool_offset;
3314 
3315 	if (offset >= o->pool_sz)
3316 		return FALSE;
3317 
3318 	/* Return the entry to the pool */
3319 	BIT_VEC64_SET_BIT(o->pool_mirror, offset);
3320 
3321 	return TRUE;
3322 }
3323 
3324 static int ecore_credit_pool_put_entry_always_TRUE(__rte_unused struct
3325 						   ecore_credit_pool_obj *o,
3326 						   __rte_unused int offset)
3327 {
3328 	return TRUE;
3329 }
3330 
3331 static int ecore_credit_pool_get_entry_always_TRUE(__rte_unused struct
3332 						   ecore_credit_pool_obj *o,
3333 						   __rte_unused int *offset)
3334 {
3335 	*offset = -1;
3336 	return TRUE;
3337 }
3338 
3339 /**
3340  * ecore_init_credit_pool - initialize credit pool internals.
3341  *
3342  * @p:
3343  * @base:	Base entry in the CAM to use.
3344  * @credit:	pool size.
3345  *
3346  * If base is negative no CAM entries handling will be performed.
3347  * If credit is negative pool operations will always succeed (unlimited pool).
3348  *
3349  */
3350 static void ecore_init_credit_pool(struct ecore_credit_pool_obj *p,
3351 				   int base, int credit)
3352 {
3353 	/* Zero the object first */
3354 	ECORE_MEMSET(p, 0, sizeof(*p));
3355 
3356 	/* Set the table to all 1s */
3357 	ECORE_MEMSET(&p->pool_mirror, 0xff, sizeof(p->pool_mirror));
3358 
3359 	/* Init a pool as full */
3360 	ECORE_ATOMIC_SET(&p->credit, credit);
3361 
3362 	/* The total poll size */
3363 	p->pool_sz = credit;
3364 
3365 	p->base_pool_offset = base;
3366 
3367 	/* Commit the change */
3368 	ECORE_SMP_MB();
3369 
3370 	p->check = ecore_credit_pool_check;
3371 
3372 	/* if pool credit is negative - disable the checks */
3373 	if (credit >= 0) {
3374 		p->put = ecore_credit_pool_put;
3375 		p->get = ecore_credit_pool_get;
3376 		p->put_entry = ecore_credit_pool_put_entry;
3377 		p->get_entry = ecore_credit_pool_get_entry;
3378 	} else {
3379 		p->put = ecore_credit_pool_always_TRUE;
3380 		p->get = ecore_credit_pool_always_TRUE;
3381 		p->put_entry = ecore_credit_pool_put_entry_always_TRUE;
3382 		p->get_entry = ecore_credit_pool_get_entry_always_TRUE;
3383 	}
3384 
3385 	/* If base is negative - disable entries handling */
3386 	if (base < 0) {
3387 		p->put_entry = ecore_credit_pool_put_entry_always_TRUE;
3388 		p->get_entry = ecore_credit_pool_get_entry_always_TRUE;
3389 	}
3390 }
3391 
3392 void ecore_init_mac_credit_pool(struct bnx2x_softc *sc,
3393 				struct ecore_credit_pool_obj *p,
3394 				uint8_t func_id, uint8_t func_num)
3395 {
3396 
3397 #define ECORE_CAM_SIZE_EMUL 5
3398 
3399 	int cam_sz;
3400 
3401 	if (CHIP_IS_E1H(sc)) {
3402 		/* CAM credit is equally divided between all active functions
3403 		 * on the PORT!.
3404 		 */
3405 		if ((func_num > 0)) {
3406 			if (!CHIP_REV_IS_SLOW(sc))
3407 				cam_sz = (MAX_MAC_CREDIT_E1H / (2 * func_num));
3408 			else
3409 				cam_sz = ECORE_CAM_SIZE_EMUL;
3410 			ecore_init_credit_pool(p, func_id * cam_sz, cam_sz);
3411 		} else {
3412 			/* this should never happen! Block MAC operations. */
3413 			ecore_init_credit_pool(p, 0, 0);
3414 		}
3415 
3416 	} else {
3417 
3418 		/*
3419 		 * CAM credit is equaly divided between all active functions
3420 		 * on the PATH.
3421 		 */
3422 		if ((func_num > 0)) {
3423 			if (!CHIP_REV_IS_SLOW(sc))
3424 				cam_sz = (MAX_MAC_CREDIT_E2 / func_num);
3425 			else
3426 				cam_sz = ECORE_CAM_SIZE_EMUL;
3427 
3428 			/* No need for CAM entries handling for 57712 and
3429 			 * newer.
3430 			 */
3431 			ecore_init_credit_pool(p, -1, cam_sz);
3432 		} else {
3433 			/* this should never happen! Block MAC operations. */
3434 			ecore_init_credit_pool(p, 0, 0);
3435 		}
3436 	}
3437 }
3438 
3439 void ecore_init_vlan_credit_pool(struct bnx2x_softc *sc,
3440 				 struct ecore_credit_pool_obj *p,
3441 				 uint8_t func_id, uint8_t func_num)
3442 {
3443 	if (CHIP_IS_E1x(sc)) {
3444 		/* There is no VLAN credit in HW on 57711 only
3445 		 * MAC / MAC-VLAN can be set
3446 		 */
3447 		ecore_init_credit_pool(p, 0, -1);
3448 	} else {
3449 		/* CAM credit is equally divided between all active functions
3450 		 * on the PATH.
3451 		 */
3452 		if (func_num > 0) {
3453 			int credit = MAX_VLAN_CREDIT_E2 / func_num;
3454 			ecore_init_credit_pool(p, func_id * credit, credit);
3455 		} else
3456 			/* this should never happen! Block VLAN operations. */
3457 			ecore_init_credit_pool(p, 0, 0);
3458 	}
3459 }
3460 
3461 /****************** RSS Configuration ******************/
3462 
3463 /**
3464  * ecore_setup_rss - configure RSS
3465  *
3466  * @sc:		device handle
3467  * @p:		rss configuration
3468  *
3469  * sends on UPDATE ramrod for that matter.
3470  */
3471 static int ecore_setup_rss(struct bnx2x_softc *sc,
3472 			   struct ecore_config_rss_params *p)
3473 {
3474 	struct ecore_rss_config_obj *o = p->rss_obj;
3475 	struct ecore_raw_obj *r = &o->raw;
3476 	struct eth_rss_update_ramrod_data *data =
3477 	    (struct eth_rss_update_ramrod_data *)(r->rdata);
3478 	uint8_t rss_mode = 0;
3479 	int rc;
3480 
3481 	ECORE_MEMSET(data, 0, sizeof(*data));
3482 
3483 	ECORE_MSG("Configuring RSS");
3484 
3485 	/* Set an echo field */
3486 	data->echo = ECORE_CPU_TO_LE32((r->cid & ECORE_SWCID_MASK) |
3487 				       (r->state << ECORE_SWCID_SHIFT));
3488 
3489 	/* RSS mode */
3490 	if (ECORE_TEST_BIT(ECORE_RSS_MODE_DISABLED, &p->rss_flags))
3491 		rss_mode = ETH_RSS_MODE_DISABLED;
3492 	else if (ECORE_TEST_BIT(ECORE_RSS_MODE_REGULAR, &p->rss_flags))
3493 		rss_mode = ETH_RSS_MODE_REGULAR;
3494 
3495 	data->rss_mode = rss_mode;
3496 
3497 	ECORE_MSG("rss_mode=%d", rss_mode);
3498 
3499 	/* RSS capabilities */
3500 	if (ECORE_TEST_BIT(ECORE_RSS_IPV4, &p->rss_flags))
3501 		data->capabilities |=
3502 		    ETH_RSS_UPDATE_RAMROD_DATA_IPV4_CAPABILITY;
3503 
3504 	if (ECORE_TEST_BIT(ECORE_RSS_IPV4_TCP, &p->rss_flags))
3505 		data->capabilities |=
3506 		    ETH_RSS_UPDATE_RAMROD_DATA_IPV4_TCP_CAPABILITY;
3507 
3508 	if (ECORE_TEST_BIT(ECORE_RSS_IPV4_UDP, &p->rss_flags))
3509 		data->capabilities |=
3510 		    ETH_RSS_UPDATE_RAMROD_DATA_IPV4_UDP_CAPABILITY;
3511 
3512 	if (ECORE_TEST_BIT(ECORE_RSS_IPV6, &p->rss_flags))
3513 		data->capabilities |=
3514 		    ETH_RSS_UPDATE_RAMROD_DATA_IPV6_CAPABILITY;
3515 
3516 	if (ECORE_TEST_BIT(ECORE_RSS_IPV6_TCP, &p->rss_flags))
3517 		data->capabilities |=
3518 		    ETH_RSS_UPDATE_RAMROD_DATA_IPV6_TCP_CAPABILITY;
3519 
3520 	if (ECORE_TEST_BIT(ECORE_RSS_IPV6_UDP, &p->rss_flags))
3521 		data->capabilities |=
3522 		    ETH_RSS_UPDATE_RAMROD_DATA_IPV6_UDP_CAPABILITY;
3523 
3524 	if (ECORE_TEST_BIT(ECORE_RSS_TUNNELING, &p->rss_flags)) {
3525 		data->udp_4tuple_dst_port_mask =
3526 		    ECORE_CPU_TO_LE16(p->tunnel_mask);
3527 		data->udp_4tuple_dst_port_value =
3528 		    ECORE_CPU_TO_LE16(p->tunnel_value);
3529 	}
3530 
3531 	/* Hashing mask */
3532 	data->rss_result_mask = p->rss_result_mask;
3533 
3534 	/* RSS engine ID */
3535 	data->rss_engine_id = o->engine_id;
3536 
3537 	ECORE_MSG("rss_engine_id=%d", data->rss_engine_id);
3538 
3539 	/* Indirection table */
3540 	ECORE_MEMCPY(data->indirection_table, p->ind_table,
3541 		     T_ETH_INDIRECTION_TABLE_SIZE);
3542 
3543 	/* Remember the last configuration */
3544 	ECORE_MEMCPY(o->ind_table, p->ind_table, T_ETH_INDIRECTION_TABLE_SIZE);
3545 
3546 	/* RSS keys */
3547 	if (ECORE_TEST_BIT(ECORE_RSS_SET_SRCH, &p->rss_flags)) {
3548 		ECORE_MEMCPY(&data->rss_key[0], &p->rss_key[0],
3549 			     sizeof(data->rss_key));
3550 		data->capabilities |= ETH_RSS_UPDATE_RAMROD_DATA_UPDATE_RSS_KEY;
3551 	}
3552 
3553 	/* No need for an explicit memory barrier here as long we would
3554 	 * need to ensure the ordering of writing to the SPQ element
3555 	 * and updating of the SPQ producer which involves a memory
3556 	 * read and we will have to put a full memory barrier there
3557 	 * (inside ecore_sp_post()).
3558 	 */
3559 
3560 	/* Send a ramrod */
3561 	rc = ecore_sp_post(sc,
3562 			   RAMROD_CMD_ID_ETH_RSS_UPDATE,
3563 			   r->cid, r->rdata_mapping, ETH_CONNECTION_TYPE);
3564 
3565 	if (rc < 0)
3566 		return rc;
3567 
3568 	return ECORE_PENDING;
3569 }
3570 
3571 int ecore_config_rss(struct bnx2x_softc *sc, struct ecore_config_rss_params *p)
3572 {
3573 	int rc;
3574 	struct ecore_rss_config_obj *o = p->rss_obj;
3575 	struct ecore_raw_obj *r = &o->raw;
3576 
3577 	/* Do nothing if only driver cleanup was requested */
3578 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags))
3579 		return ECORE_SUCCESS;
3580 
3581 	r->set_pending(r);
3582 
3583 	rc = o->config_rss(sc, p);
3584 	if (rc < 0) {
3585 		r->clear_pending(r);
3586 		return rc;
3587 	}
3588 
3589 	if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &p->ramrod_flags))
3590 		rc = r->wait_comp(sc, r);
3591 
3592 	return rc;
3593 }
3594 
3595 void ecore_init_rss_config_obj(struct ecore_rss_config_obj *rss_obj,
3596 			       uint8_t cl_id, uint32_t cid, uint8_t func_id,
3597 			       uint8_t engine_id, void *rdata,
3598 			       ecore_dma_addr_t rdata_mapping, int state,
3599 			       unsigned long *pstate, ecore_obj_type type)
3600 {
3601 	ecore_init_raw_obj(&rss_obj->raw, cl_id, cid, func_id, rdata,
3602 			   rdata_mapping, state, pstate, type);
3603 
3604 	rss_obj->engine_id = engine_id;
3605 	rss_obj->config_rss = ecore_setup_rss;
3606 }
3607 
3608 /********************** Queue state object ***********************************/
3609 
3610 /**
3611  * ecore_queue_state_change - perform Queue state change transition
3612  *
3613  * @sc:		device handle
3614  * @params:	parameters to perform the transition
3615  *
3616  * returns 0 in case of successfully completed transition, negative error
3617  * code in case of failure, positive (EBUSY) value if there is a completion
3618  * to that is still pending (possible only if RAMROD_COMP_WAIT is
3619  * not set in params->ramrod_flags for asynchronous commands).
3620  *
3621  */
3622 int ecore_queue_state_change(struct bnx2x_softc *sc,
3623 			     struct ecore_queue_state_params *params)
3624 {
3625 	struct ecore_queue_sp_obj *o = params->q_obj;
3626 	int rc, pending_bit;
3627 	unsigned long *pending = &o->pending;
3628 
3629 	/* Check that the requested transition is legal */
3630 	rc = o->check_transition(sc, o, params);
3631 	if (rc) {
3632 		PMD_DRV_LOG(ERR, "check transition returned an error. rc %d",
3633 			    rc);
3634 		return ECORE_INVAL;
3635 	}
3636 
3637 	/* Set "pending" bit */
3638 	ECORE_MSG("pending bit was=%lx", o->pending);
3639 	pending_bit = o->set_pending(o, params);
3640 	ECORE_MSG("pending bit now=%lx", o->pending);
3641 
3642 	/* Don't send a command if only driver cleanup was requested */
3643 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags))
3644 		o->complete_cmd(sc, o, pending_bit);
3645 	else {
3646 		/* Send a ramrod */
3647 		rc = o->send_cmd(sc, params);
3648 		if (rc) {
3649 			o->next_state = ECORE_Q_STATE_MAX;
3650 			ECORE_CLEAR_BIT(pending_bit, pending);
3651 			ECORE_SMP_MB_AFTER_CLEAR_BIT();
3652 			return rc;
3653 		}
3654 
3655 		if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
3656 			rc = o->wait_comp(sc, o, pending_bit);
3657 			if (rc)
3658 				return rc;
3659 
3660 			return ECORE_SUCCESS;
3661 		}
3662 	}
3663 
3664 	return ECORE_RET_PENDING(pending_bit, pending);
3665 }
3666 
3667 static int ecore_queue_set_pending(struct ecore_queue_sp_obj *obj,
3668 				   struct ecore_queue_state_params *params)
3669 {
3670 	enum ecore_queue_cmd cmd = params->cmd, bit;
3671 
3672 	/* ACTIVATE and DEACTIVATE commands are implemented on top of
3673 	 * UPDATE command.
3674 	 */
3675 	if ((cmd == ECORE_Q_CMD_ACTIVATE) || (cmd == ECORE_Q_CMD_DEACTIVATE))
3676 		bit = ECORE_Q_CMD_UPDATE;
3677 	else
3678 		bit = cmd;
3679 
3680 	ECORE_SET_BIT(bit, &obj->pending);
3681 	return bit;
3682 }
3683 
3684 static int ecore_queue_wait_comp(struct bnx2x_softc *sc,
3685 				 struct ecore_queue_sp_obj *o,
3686 				 enum ecore_queue_cmd cmd)
3687 {
3688 	return ecore_state_wait(sc, cmd, &o->pending);
3689 }
3690 
3691 /**
3692  * ecore_queue_comp_cmd - complete the state change command.
3693  *
3694  * @sc:		device handle
3695  * @o:
3696  * @cmd:
3697  *
3698  * Checks that the arrived completion is expected.
3699  */
3700 static int ecore_queue_comp_cmd(struct bnx2x_softc *sc __rte_unused,
3701 				struct ecore_queue_sp_obj *o,
3702 				enum ecore_queue_cmd cmd)
3703 {
3704 	unsigned long cur_pending = o->pending;
3705 
3706 	if (!ECORE_TEST_AND_CLEAR_BIT(cmd, &cur_pending)) {
3707 		PMD_DRV_LOG(ERR,
3708 			    "Bad MC reply %d for queue %d in state %d pending 0x%lx, next_state %d",
3709 			    cmd, o->cids[ECORE_PRIMARY_CID_INDEX], o->state,
3710 			    cur_pending, o->next_state);
3711 		return ECORE_INVAL;
3712 	}
3713 
3714 	if (o->next_tx_only >= o->max_cos)
3715 		/* >= because tx only must always be smaller than cos since the
3716 		 * primary connection supports COS 0
3717 		 */
3718 		PMD_DRV_LOG(ERR,
3719 			    "illegal value for next tx_only: %d. max cos was %d",
3720 			    o->next_tx_only, o->max_cos);
3721 
3722 	ECORE_MSG("Completing command %d for queue %d, setting state to %d",
3723 		  cmd, o->cids[ECORE_PRIMARY_CID_INDEX], o->next_state);
3724 
3725 	if (o->next_tx_only)	/* print num tx-only if any exist */
3726 		ECORE_MSG("primary cid %d: num tx-only cons %d",
3727 			  o->cids[ECORE_PRIMARY_CID_INDEX], o->next_tx_only);
3728 
3729 	o->state = o->next_state;
3730 	o->num_tx_only = o->next_tx_only;
3731 	o->next_state = ECORE_Q_STATE_MAX;
3732 
3733 	/* It's important that o->state and o->next_state are
3734 	 * updated before o->pending.
3735 	 */
3736 	wmb();
3737 
3738 	ECORE_CLEAR_BIT(cmd, &o->pending);
3739 	ECORE_SMP_MB_AFTER_CLEAR_BIT();
3740 
3741 	return ECORE_SUCCESS;
3742 }
3743 
3744 static void ecore_q_fill_setup_data_e2(struct ecore_queue_state_params
3745 				       *cmd_params,
3746 				       struct client_init_ramrod_data *data)
3747 {
3748 	struct ecore_queue_setup_params *params = &cmd_params->params.setup;
3749 
3750 	/* Rx data */
3751 
3752 	/* IPv6 TPA supported for E2 and above only */
3753 	data->rx.tpa_en |= ECORE_TEST_BIT(ECORE_Q_FLG_TPA_IPV6,
3754 					  &params->flags) *
3755 	    CLIENT_INIT_RX_DATA_TPA_EN_IPV6;
3756 }
3757 
3758 static void ecore_q_fill_init_general_data(struct bnx2x_softc *sc __rte_unused,
3759 					   struct ecore_queue_sp_obj *o,
3760 					   struct ecore_general_setup_params
3761 					   *params, struct client_init_general_data
3762 					   *gen_data, unsigned long *flags)
3763 {
3764 	gen_data->client_id = o->cl_id;
3765 
3766 	if (ECORE_TEST_BIT(ECORE_Q_FLG_STATS, flags)) {
3767 		gen_data->statistics_counter_id = params->stat_id;
3768 		gen_data->statistics_en_flg = 1;
3769 		gen_data->statistics_zero_flg =
3770 		    ECORE_TEST_BIT(ECORE_Q_FLG_ZERO_STATS, flags);
3771 	} else
3772 		gen_data->statistics_counter_id =
3773 		    DISABLE_STATISTIC_COUNTER_ID_VALUE;
3774 
3775 	gen_data->is_fcoe_flg = ECORE_TEST_BIT(ECORE_Q_FLG_FCOE, flags);
3776 	gen_data->activate_flg = ECORE_TEST_BIT(ECORE_Q_FLG_ACTIVE, flags);
3777 	gen_data->sp_client_id = params->spcl_id;
3778 	gen_data->mtu = ECORE_CPU_TO_LE16(params->mtu);
3779 	gen_data->func_id = o->func_id;
3780 
3781 	gen_data->cos = params->cos;
3782 
3783 	gen_data->traffic_type =
3784 	    ECORE_TEST_BIT(ECORE_Q_FLG_FCOE, flags) ?
3785 	    LLFC_TRAFFIC_TYPE_FCOE : LLFC_TRAFFIC_TYPE_NW;
3786 
3787 	ECORE_MSG("flags: active %d, cos %d, stats en %d",
3788 		  gen_data->activate_flg, gen_data->cos,
3789 		  gen_data->statistics_en_flg);
3790 }
3791 
3792 static void ecore_q_fill_init_tx_data(struct ecore_txq_setup_params *params,
3793 				      struct client_init_tx_data *tx_data,
3794 				      unsigned long *flags)
3795 {
3796 	tx_data->enforce_security_flg =
3797 	    ECORE_TEST_BIT(ECORE_Q_FLG_TX_SEC, flags);
3798 	tx_data->default_vlan = ECORE_CPU_TO_LE16(params->default_vlan);
3799 	tx_data->default_vlan_flg = ECORE_TEST_BIT(ECORE_Q_FLG_DEF_VLAN, flags);
3800 	tx_data->tx_switching_flg =
3801 	    ECORE_TEST_BIT(ECORE_Q_FLG_TX_SWITCH, flags);
3802 	tx_data->anti_spoofing_flg =
3803 	    ECORE_TEST_BIT(ECORE_Q_FLG_ANTI_SPOOF, flags);
3804 	tx_data->force_default_pri_flg =
3805 	    ECORE_TEST_BIT(ECORE_Q_FLG_FORCE_DEFAULT_PRI, flags);
3806 	tx_data->refuse_outband_vlan_flg =
3807 	    ECORE_TEST_BIT(ECORE_Q_FLG_REFUSE_OUTBAND_VLAN, flags);
3808 	tx_data->tunnel_non_lso_pcsum_location =
3809 	    ECORE_TEST_BIT(ECORE_Q_FLG_PCSUM_ON_PKT, flags) ? CSUM_ON_PKT :
3810 	    CSUM_ON_BD;
3811 
3812 	tx_data->tx_status_block_id = params->fw_sb_id;
3813 	tx_data->tx_sb_index_number = params->sb_cq_index;
3814 	tx_data->tss_leading_client_id = params->tss_leading_cl_id;
3815 
3816 	tx_data->tx_bd_page_base.lo =
3817 	    ECORE_CPU_TO_LE32(U64_LO(params->dscr_map));
3818 	tx_data->tx_bd_page_base.hi =
3819 	    ECORE_CPU_TO_LE32(U64_HI(params->dscr_map));
3820 
3821 	/* Don't configure any Tx switching mode during queue SETUP */
3822 	tx_data->state = 0;
3823 }
3824 
3825 static void ecore_q_fill_init_pause_data(struct rxq_pause_params *params,
3826 					 struct client_init_rx_data *rx_data)
3827 {
3828 	/* flow control data */
3829 	rx_data->cqe_pause_thr_low = ECORE_CPU_TO_LE16(params->rcq_th_lo);
3830 	rx_data->cqe_pause_thr_high = ECORE_CPU_TO_LE16(params->rcq_th_hi);
3831 	rx_data->bd_pause_thr_low = ECORE_CPU_TO_LE16(params->bd_th_lo);
3832 	rx_data->bd_pause_thr_high = ECORE_CPU_TO_LE16(params->bd_th_hi);
3833 	rx_data->sge_pause_thr_low = ECORE_CPU_TO_LE16(params->sge_th_lo);
3834 	rx_data->sge_pause_thr_high = ECORE_CPU_TO_LE16(params->sge_th_hi);
3835 	rx_data->rx_cos_mask = ECORE_CPU_TO_LE16(params->pri_map);
3836 }
3837 
3838 static void ecore_q_fill_init_rx_data(struct ecore_rxq_setup_params *params,
3839 				      struct client_init_rx_data *rx_data,
3840 				      unsigned long *flags)
3841 {
3842 	rx_data->tpa_en = ECORE_TEST_BIT(ECORE_Q_FLG_TPA, flags) *
3843 	    CLIENT_INIT_RX_DATA_TPA_EN_IPV4;
3844 	rx_data->tpa_en |= ECORE_TEST_BIT(ECORE_Q_FLG_TPA_GRO, flags) *
3845 	    CLIENT_INIT_RX_DATA_TPA_MODE;
3846 	rx_data->vmqueue_mode_en_flg = 0;
3847 
3848 	rx_data->extra_data_over_sgl_en_flg =
3849 	    ECORE_TEST_BIT(ECORE_Q_FLG_OOO, flags);
3850 	rx_data->cache_line_alignment_log_size = params->cache_line_log;
3851 	rx_data->enable_dynamic_hc = ECORE_TEST_BIT(ECORE_Q_FLG_DHC, flags);
3852 	rx_data->client_qzone_id = params->cl_qzone_id;
3853 	rx_data->max_agg_size = ECORE_CPU_TO_LE16(params->tpa_agg_sz);
3854 
3855 	/* Always start in DROP_ALL mode */
3856 	rx_data->state = ECORE_CPU_TO_LE16(CLIENT_INIT_RX_DATA_UCAST_DROP_ALL |
3857 					   CLIENT_INIT_RX_DATA_MCAST_DROP_ALL);
3858 
3859 	/* We don't set drop flags */
3860 	rx_data->drop_ip_cs_err_flg = 0;
3861 	rx_data->drop_tcp_cs_err_flg = 0;
3862 	rx_data->drop_ttl0_flg = 0;
3863 	rx_data->drop_udp_cs_err_flg = 0;
3864 	rx_data->inner_vlan_removal_enable_flg =
3865 	    ECORE_TEST_BIT(ECORE_Q_FLG_VLAN, flags);
3866 	rx_data->outer_vlan_removal_enable_flg =
3867 	    ECORE_TEST_BIT(ECORE_Q_FLG_OV, flags);
3868 	rx_data->status_block_id = params->fw_sb_id;
3869 	rx_data->rx_sb_index_number = params->sb_cq_index;
3870 	rx_data->max_tpa_queues = params->max_tpa_queues;
3871 	rx_data->max_bytes_on_bd = ECORE_CPU_TO_LE16(params->buf_sz);
3872 	rx_data->bd_page_base.lo = ECORE_CPU_TO_LE32(U64_LO(params->dscr_map));
3873 	rx_data->bd_page_base.hi = ECORE_CPU_TO_LE32(U64_HI(params->dscr_map));
3874 	rx_data->cqe_page_base.lo = ECORE_CPU_TO_LE32(U64_LO(params->rcq_map));
3875 	rx_data->cqe_page_base.hi = ECORE_CPU_TO_LE32(U64_HI(params->rcq_map));
3876 	rx_data->is_leading_rss = ECORE_TEST_BIT(ECORE_Q_FLG_LEADING_RSS,
3877 						 flags);
3878 
3879 	if (ECORE_TEST_BIT(ECORE_Q_FLG_MCAST, flags)) {
3880 		rx_data->approx_mcast_engine_id = params->mcast_engine_id;
3881 		rx_data->is_approx_mcast = 1;
3882 	}
3883 
3884 	rx_data->rss_engine_id = params->rss_engine_id;
3885 
3886 	/* silent vlan removal */
3887 	rx_data->silent_vlan_removal_flg =
3888 	    ECORE_TEST_BIT(ECORE_Q_FLG_SILENT_VLAN_REM, flags);
3889 	rx_data->silent_vlan_value =
3890 	    ECORE_CPU_TO_LE16(params->silent_removal_value);
3891 	rx_data->silent_vlan_mask =
3892 	    ECORE_CPU_TO_LE16(params->silent_removal_mask);
3893 }
3894 
3895 /* initialize the general, tx and rx parts of a queue object */
3896 static void ecore_q_fill_setup_data_cmn(struct bnx2x_softc *sc, struct ecore_queue_state_params
3897 					*cmd_params,
3898 					struct client_init_ramrod_data *data)
3899 {
3900 	ecore_q_fill_init_general_data(sc, cmd_params->q_obj,
3901 				       &cmd_params->params.setup.gen_params,
3902 				       &data->general,
3903 				       &cmd_params->params.setup.flags);
3904 
3905 	ecore_q_fill_init_tx_data(&cmd_params->params.setup.txq_params,
3906 				  &data->tx, &cmd_params->params.setup.flags);
3907 
3908 	ecore_q_fill_init_rx_data(&cmd_params->params.setup.rxq_params,
3909 				  &data->rx, &cmd_params->params.setup.flags);
3910 
3911 	ecore_q_fill_init_pause_data(&cmd_params->params.setup.pause_params,
3912 				     &data->rx);
3913 }
3914 
3915 /* initialize the general and tx parts of a tx-only queue object */
3916 static void ecore_q_fill_setup_tx_only(struct bnx2x_softc *sc, struct ecore_queue_state_params
3917 				       *cmd_params,
3918 				       struct tx_queue_init_ramrod_data *data)
3919 {
3920 	ecore_q_fill_init_general_data(sc, cmd_params->q_obj,
3921 				       &cmd_params->params.tx_only.gen_params,
3922 				       &data->general,
3923 				       &cmd_params->params.tx_only.flags);
3924 
3925 	ecore_q_fill_init_tx_data(&cmd_params->params.tx_only.txq_params,
3926 				  &data->tx, &cmd_params->params.tx_only.flags);
3927 
3928 	ECORE_MSG("cid %d, tx bd page lo %x hi %x",
3929 		  cmd_params->q_obj->cids[0],
3930 		  data->tx.tx_bd_page_base.lo, data->tx.tx_bd_page_base.hi);
3931 }
3932 
3933 /**
3934  * ecore_q_init - init HW/FW queue
3935  *
3936  * @sc:		device handle
3937  * @params:
3938  *
3939  * HW/FW initial Queue configuration:
3940  *      - HC: Rx and Tx
3941  *      - CDU context validation
3942  *
3943  */
3944 static int ecore_q_init(struct bnx2x_softc *sc,
3945 			struct ecore_queue_state_params *params)
3946 {
3947 	struct ecore_queue_sp_obj *o = params->q_obj;
3948 	struct ecore_queue_init_params *init = &params->params.init;
3949 	uint16_t hc_usec;
3950 	uint8_t cos;
3951 
3952 	/* Tx HC configuration */
3953 	if (ECORE_TEST_BIT(ECORE_Q_TYPE_HAS_TX, &o->type) &&
3954 	    ECORE_TEST_BIT(ECORE_Q_FLG_HC, &init->tx.flags)) {
3955 		hc_usec = init->tx.hc_rate ? 1000000 / init->tx.hc_rate : 0;
3956 
3957 		ECORE_UPDATE_COALESCE_SB_INDEX(sc, init->tx.fw_sb_id,
3958 					       init->tx.sb_cq_index,
3959 					       !ECORE_TEST_BIT
3960 					       (ECORE_Q_FLG_HC_EN,
3961 						&init->tx.flags), hc_usec);
3962 	}
3963 
3964 	/* Rx HC configuration */
3965 	if (ECORE_TEST_BIT(ECORE_Q_TYPE_HAS_RX, &o->type) &&
3966 	    ECORE_TEST_BIT(ECORE_Q_FLG_HC, &init->rx.flags)) {
3967 		hc_usec = init->rx.hc_rate ? 1000000 / init->rx.hc_rate : 0;
3968 
3969 		ECORE_UPDATE_COALESCE_SB_INDEX(sc, init->rx.fw_sb_id,
3970 					       init->rx.sb_cq_index,
3971 					       !ECORE_TEST_BIT
3972 					       (ECORE_Q_FLG_HC_EN,
3973 						&init->rx.flags), hc_usec);
3974 	}
3975 
3976 	/* Set CDU context validation values */
3977 	for (cos = 0; cos < o->max_cos; cos++) {
3978 		ECORE_MSG("setting context validation. cid %d, cos %d",
3979 			  o->cids[cos], cos);
3980 		ECORE_MSG("context pointer %p", init->cxts[cos]);
3981 		ECORE_SET_CTX_VALIDATION(sc, init->cxts[cos], o->cids[cos]);
3982 	}
3983 
3984 	/* As no ramrod is sent, complete the command immediately  */
3985 	o->complete_cmd(sc, o, ECORE_Q_CMD_INIT);
3986 
3987 	ECORE_MMIOWB();
3988 	ECORE_SMP_MB();
3989 
3990 	return ECORE_SUCCESS;
3991 }
3992 
3993 static int ecore_q_send_setup_e1x(struct bnx2x_softc *sc, struct ecore_queue_state_params
3994 				  *params)
3995 {
3996 	struct ecore_queue_sp_obj *o = params->q_obj;
3997 	struct client_init_ramrod_data *rdata =
3998 	    (struct client_init_ramrod_data *)o->rdata;
3999 	ecore_dma_addr_t data_mapping = o->rdata_mapping;
4000 	int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
4001 
4002 	/* Clear the ramrod data */
4003 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
4004 
4005 	/* Fill the ramrod data */
4006 	ecore_q_fill_setup_data_cmn(sc, params, rdata);
4007 
4008 	/* No need for an explicit memory barrier here as long we would
4009 	 * need to ensure the ordering of writing to the SPQ element
4010 	 * and updating of the SPQ producer which involves a memory
4011 	 * read and we will have to put a full memory barrier there
4012 	 * (inside ecore_sp_post()).
4013 	 */
4014 
4015 	return ecore_sp_post(sc,
4016 			     ramrod,
4017 			     o->cids[ECORE_PRIMARY_CID_INDEX],
4018 			     data_mapping, ETH_CONNECTION_TYPE);
4019 }
4020 
4021 static int ecore_q_send_setup_e2(struct bnx2x_softc *sc,
4022 				 struct ecore_queue_state_params *params)
4023 {
4024 	struct ecore_queue_sp_obj *o = params->q_obj;
4025 	struct client_init_ramrod_data *rdata =
4026 	    (struct client_init_ramrod_data *)o->rdata;
4027 	ecore_dma_addr_t data_mapping = o->rdata_mapping;
4028 	int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
4029 
4030 	/* Clear the ramrod data */
4031 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
4032 
4033 	/* Fill the ramrod data */
4034 	ecore_q_fill_setup_data_cmn(sc, params, rdata);
4035 	ecore_q_fill_setup_data_e2(params, rdata);
4036 
4037 	/* No need for an explicit memory barrier here as long we would
4038 	 * need to ensure the ordering of writing to the SPQ element
4039 	 * and updating of the SPQ producer which involves a memory
4040 	 * read and we will have to put a full memory barrier there
4041 	 * (inside ecore_sp_post()).
4042 	 */
4043 
4044 	return ecore_sp_post(sc,
4045 			     ramrod,
4046 			     o->cids[ECORE_PRIMARY_CID_INDEX],
4047 			     data_mapping, ETH_CONNECTION_TYPE);
4048 }
4049 
4050 static int ecore_q_send_setup_tx_only(struct bnx2x_softc *sc, struct ecore_queue_state_params
4051 				      *params)
4052 {
4053 	struct ecore_queue_sp_obj *o = params->q_obj;
4054 	struct tx_queue_init_ramrod_data *rdata =
4055 	    (struct tx_queue_init_ramrod_data *)o->rdata;
4056 	ecore_dma_addr_t data_mapping = o->rdata_mapping;
4057 	int ramrod = RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP;
4058 	struct ecore_queue_setup_tx_only_params *tx_only_params =
4059 	    &params->params.tx_only;
4060 	uint8_t cid_index = tx_only_params->cid_index;
4061 
4062 	if (ECORE_TEST_BIT(ECORE_Q_TYPE_FWD, &o->type))
4063 		ramrod = RAMROD_CMD_ID_ETH_FORWARD_SETUP;
4064 	ECORE_MSG("sending forward tx-only ramrod");
4065 
4066 	if (cid_index >= o->max_cos) {
4067 		PMD_DRV_LOG(ERR, "queue[%d]: cid_index (%d) is out of range",
4068 			    o->cl_id, cid_index);
4069 		return ECORE_INVAL;
4070 	}
4071 
4072 	ECORE_MSG("parameters received: cos: %d sp-id: %d",
4073 		  tx_only_params->gen_params.cos,
4074 		  tx_only_params->gen_params.spcl_id);
4075 
4076 	/* Clear the ramrod data */
4077 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
4078 
4079 	/* Fill the ramrod data */
4080 	ecore_q_fill_setup_tx_only(sc, params, rdata);
4081 
4082 	ECORE_MSG
4083 	    ("sending tx-only ramrod: cid %d, client-id %d, sp-client id %d, cos %d",
4084 	     o->cids[cid_index], rdata->general.client_id,
4085 	     rdata->general.sp_client_id, rdata->general.cos);
4086 
4087 	/* No need for an explicit memory barrier here as long we would
4088 	 * need to ensure the ordering of writing to the SPQ element
4089 	 * and updating of the SPQ producer which involves a memory
4090 	 * read and we will have to put a full memory barrier there
4091 	 * (inside ecore_sp_post()).
4092 	 */
4093 
4094 	return ecore_sp_post(sc, ramrod, o->cids[cid_index],
4095 			     data_mapping, ETH_CONNECTION_TYPE);
4096 }
4097 
4098 static void ecore_q_fill_update_data(struct ecore_queue_sp_obj *obj,
4099 				     struct ecore_queue_update_params *params,
4100 				     struct client_update_ramrod_data *data)
4101 {
4102 	/* Client ID of the client to update */
4103 	data->client_id = obj->cl_id;
4104 
4105 	/* Function ID of the client to update */
4106 	data->func_id = obj->func_id;
4107 
4108 	/* Default VLAN value */
4109 	data->default_vlan = ECORE_CPU_TO_LE16(params->def_vlan);
4110 
4111 	/* Inner VLAN stripping */
4112 	data->inner_vlan_removal_enable_flg =
4113 	    ECORE_TEST_BIT(ECORE_Q_UPDATE_IN_VLAN_REM, &params->update_flags);
4114 	data->inner_vlan_removal_change_flg =
4115 	    ECORE_TEST_BIT(ECORE_Q_UPDATE_IN_VLAN_REM_CHNG,
4116 			   &params->update_flags);
4117 
4118 	/* Outer VLAN stripping */
4119 	data->outer_vlan_removal_enable_flg =
4120 	    ECORE_TEST_BIT(ECORE_Q_UPDATE_OUT_VLAN_REM, &params->update_flags);
4121 	data->outer_vlan_removal_change_flg =
4122 	    ECORE_TEST_BIT(ECORE_Q_UPDATE_OUT_VLAN_REM_CHNG,
4123 			   &params->update_flags);
4124 
4125 	/* Drop packets that have source MAC that doesn't belong to this
4126 	 * Queue.
4127 	 */
4128 	data->anti_spoofing_enable_flg =
4129 	    ECORE_TEST_BIT(ECORE_Q_UPDATE_ANTI_SPOOF, &params->update_flags);
4130 	data->anti_spoofing_change_flg =
4131 	    ECORE_TEST_BIT(ECORE_Q_UPDATE_ANTI_SPOOF_CHNG,
4132 			   &params->update_flags);
4133 
4134 	/* Activate/Deactivate */
4135 	data->activate_flg =
4136 	    ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE, &params->update_flags);
4137 	data->activate_change_flg =
4138 	    ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE_CHNG, &params->update_flags);
4139 
4140 	/* Enable default VLAN */
4141 	data->default_vlan_enable_flg =
4142 	    ECORE_TEST_BIT(ECORE_Q_UPDATE_DEF_VLAN_EN, &params->update_flags);
4143 	data->default_vlan_change_flg =
4144 	    ECORE_TEST_BIT(ECORE_Q_UPDATE_DEF_VLAN_EN_CHNG,
4145 			   &params->update_flags);
4146 
4147 	/* silent vlan removal */
4148 	data->silent_vlan_change_flg =
4149 	    ECORE_TEST_BIT(ECORE_Q_UPDATE_SILENT_VLAN_REM_CHNG,
4150 			   &params->update_flags);
4151 	data->silent_vlan_removal_flg =
4152 	    ECORE_TEST_BIT(ECORE_Q_UPDATE_SILENT_VLAN_REM,
4153 			   &params->update_flags);
4154 	data->silent_vlan_value =
4155 	    ECORE_CPU_TO_LE16(params->silent_removal_value);
4156 	data->silent_vlan_mask = ECORE_CPU_TO_LE16(params->silent_removal_mask);
4157 
4158 	/* tx switching */
4159 	data->tx_switching_flg =
4160 	    ECORE_TEST_BIT(ECORE_Q_UPDATE_TX_SWITCHING, &params->update_flags);
4161 	data->tx_switching_change_flg =
4162 	    ECORE_TEST_BIT(ECORE_Q_UPDATE_TX_SWITCHING_CHNG,
4163 			   &params->update_flags);
4164 }
4165 
4166 static int ecore_q_send_update(struct bnx2x_softc *sc,
4167 			       struct ecore_queue_state_params *params)
4168 {
4169 	struct ecore_queue_sp_obj *o = params->q_obj;
4170 	struct client_update_ramrod_data *rdata =
4171 	    (struct client_update_ramrod_data *)o->rdata;
4172 	ecore_dma_addr_t data_mapping = o->rdata_mapping;
4173 	struct ecore_queue_update_params *update_params =
4174 	    &params->params.update;
4175 	uint8_t cid_index = update_params->cid_index;
4176 
4177 	if (cid_index >= o->max_cos) {
4178 		PMD_DRV_LOG(ERR, "queue[%d]: cid_index (%d) is out of range",
4179 			    o->cl_id, cid_index);
4180 		return ECORE_INVAL;
4181 	}
4182 
4183 	/* Clear the ramrod data */
4184 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
4185 
4186 	/* Fill the ramrod data */
4187 	ecore_q_fill_update_data(o, update_params, rdata);
4188 
4189 	/* No need for an explicit memory barrier here as long we would
4190 	 * need to ensure the ordering of writing to the SPQ element
4191 	 * and updating of the SPQ producer which involves a memory
4192 	 * read and we will have to put a full memory barrier there
4193 	 * (inside ecore_sp_post()).
4194 	 */
4195 
4196 	return ecore_sp_post(sc, RAMROD_CMD_ID_ETH_CLIENT_UPDATE,
4197 			     o->cids[cid_index], data_mapping,
4198 			     ETH_CONNECTION_TYPE);
4199 }
4200 
4201 /**
4202  * ecore_q_send_deactivate - send DEACTIVATE command
4203  *
4204  * @sc:		device handle
4205  * @params:
4206  *
4207  * implemented using the UPDATE command.
4208  */
4209 static int ecore_q_send_deactivate(struct bnx2x_softc *sc, struct ecore_queue_state_params
4210 				   *params)
4211 {
4212 	struct ecore_queue_update_params *update = &params->params.update;
4213 
4214 	ECORE_MEMSET(update, 0, sizeof(*update));
4215 
4216 	ECORE_SET_BIT_NA(ECORE_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
4217 
4218 	return ecore_q_send_update(sc, params);
4219 }
4220 
4221 /**
4222  * ecore_q_send_activate - send ACTIVATE command
4223  *
4224  * @sc:		device handle
4225  * @params:
4226  *
4227  * implemented using the UPDATE command.
4228  */
4229 static int ecore_q_send_activate(struct bnx2x_softc *sc,
4230 				 struct ecore_queue_state_params *params)
4231 {
4232 	struct ecore_queue_update_params *update = &params->params.update;
4233 
4234 	ECORE_MEMSET(update, 0, sizeof(*update));
4235 
4236 	ECORE_SET_BIT_NA(ECORE_Q_UPDATE_ACTIVATE, &update->update_flags);
4237 	ECORE_SET_BIT_NA(ECORE_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
4238 
4239 	return ecore_q_send_update(sc, params);
4240 }
4241 
4242 static int ecore_q_send_update_tpa(__rte_unused struct bnx2x_softc *sc,
4243 				   __rte_unused struct
4244 				   ecore_queue_state_params *params)
4245 {
4246 	/* Not implemented yet. */
4247 	return -1;
4248 }
4249 
4250 static int ecore_q_send_halt(struct bnx2x_softc *sc,
4251 			     struct ecore_queue_state_params *params)
4252 {
4253 	struct ecore_queue_sp_obj *o = params->q_obj;
4254 
4255 	/* build eth_halt_ramrod_data.client_id in a big-endian friendly way */
4256 	ecore_dma_addr_t data_mapping = 0;
4257 	data_mapping = (ecore_dma_addr_t) o->cl_id;
4258 
4259 	return ecore_sp_post(sc,
4260 			     RAMROD_CMD_ID_ETH_HALT,
4261 			     o->cids[ECORE_PRIMARY_CID_INDEX],
4262 			     data_mapping, ETH_CONNECTION_TYPE);
4263 }
4264 
4265 static int ecore_q_send_cfc_del(struct bnx2x_softc *sc,
4266 				struct ecore_queue_state_params *params)
4267 {
4268 	struct ecore_queue_sp_obj *o = params->q_obj;
4269 	uint8_t cid_idx = params->params.cfc_del.cid_index;
4270 
4271 	if (cid_idx >= o->max_cos) {
4272 		PMD_DRV_LOG(ERR, "queue[%d]: cid_index (%d) is out of range",
4273 			    o->cl_id, cid_idx);
4274 		return ECORE_INVAL;
4275 	}
4276 
4277 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_CFC_DEL,
4278 			     o->cids[cid_idx], 0, NONE_CONNECTION_TYPE);
4279 }
4280 
4281 static int ecore_q_send_terminate(struct bnx2x_softc *sc, struct ecore_queue_state_params
4282 				  *params)
4283 {
4284 	struct ecore_queue_sp_obj *o = params->q_obj;
4285 	uint8_t cid_index = params->params.terminate.cid_index;
4286 
4287 	if (cid_index >= o->max_cos) {
4288 		PMD_DRV_LOG(ERR, "queue[%d]: cid_index (%d) is out of range",
4289 			    o->cl_id, cid_index);
4290 		return ECORE_INVAL;
4291 	}
4292 
4293 	return ecore_sp_post(sc, RAMROD_CMD_ID_ETH_TERMINATE,
4294 			     o->cids[cid_index], 0, ETH_CONNECTION_TYPE);
4295 }
4296 
4297 static int ecore_q_send_empty(struct bnx2x_softc *sc,
4298 			      struct ecore_queue_state_params *params)
4299 {
4300 	struct ecore_queue_sp_obj *o = params->q_obj;
4301 
4302 	return ecore_sp_post(sc, RAMROD_CMD_ID_ETH_EMPTY,
4303 			     o->cids[ECORE_PRIMARY_CID_INDEX], 0,
4304 			     ETH_CONNECTION_TYPE);
4305 }
4306 
4307 static int ecore_queue_send_cmd_cmn(struct bnx2x_softc *sc, struct ecore_queue_state_params
4308 				    *params)
4309 {
4310 	switch (params->cmd) {
4311 	case ECORE_Q_CMD_INIT:
4312 		return ecore_q_init(sc, params);
4313 	case ECORE_Q_CMD_SETUP_TX_ONLY:
4314 		return ecore_q_send_setup_tx_only(sc, params);
4315 	case ECORE_Q_CMD_DEACTIVATE:
4316 		return ecore_q_send_deactivate(sc, params);
4317 	case ECORE_Q_CMD_ACTIVATE:
4318 		return ecore_q_send_activate(sc, params);
4319 	case ECORE_Q_CMD_UPDATE:
4320 		return ecore_q_send_update(sc, params);
4321 	case ECORE_Q_CMD_UPDATE_TPA:
4322 		return ecore_q_send_update_tpa(sc, params);
4323 	case ECORE_Q_CMD_HALT:
4324 		return ecore_q_send_halt(sc, params);
4325 	case ECORE_Q_CMD_CFC_DEL:
4326 		return ecore_q_send_cfc_del(sc, params);
4327 	case ECORE_Q_CMD_TERMINATE:
4328 		return ecore_q_send_terminate(sc, params);
4329 	case ECORE_Q_CMD_EMPTY:
4330 		return ecore_q_send_empty(sc, params);
4331 	default:
4332 		PMD_DRV_LOG(ERR, "Unknown command: %d", params->cmd);
4333 		return ECORE_INVAL;
4334 	}
4335 }
4336 
4337 static int ecore_queue_send_cmd_e1x(struct bnx2x_softc *sc,
4338 				    struct ecore_queue_state_params *params)
4339 {
4340 	switch (params->cmd) {
4341 	case ECORE_Q_CMD_SETUP:
4342 		return ecore_q_send_setup_e1x(sc, params);
4343 	case ECORE_Q_CMD_INIT:
4344 	case ECORE_Q_CMD_SETUP_TX_ONLY:
4345 	case ECORE_Q_CMD_DEACTIVATE:
4346 	case ECORE_Q_CMD_ACTIVATE:
4347 	case ECORE_Q_CMD_UPDATE:
4348 	case ECORE_Q_CMD_UPDATE_TPA:
4349 	case ECORE_Q_CMD_HALT:
4350 	case ECORE_Q_CMD_CFC_DEL:
4351 	case ECORE_Q_CMD_TERMINATE:
4352 	case ECORE_Q_CMD_EMPTY:
4353 		return ecore_queue_send_cmd_cmn(sc, params);
4354 	default:
4355 		PMD_DRV_LOG(ERR, "Unknown command: %d", params->cmd);
4356 		return ECORE_INVAL;
4357 	}
4358 }
4359 
4360 static int ecore_queue_send_cmd_e2(struct bnx2x_softc *sc,
4361 				   struct ecore_queue_state_params *params)
4362 {
4363 	switch (params->cmd) {
4364 	case ECORE_Q_CMD_SETUP:
4365 		return ecore_q_send_setup_e2(sc, params);
4366 	case ECORE_Q_CMD_INIT:
4367 	case ECORE_Q_CMD_SETUP_TX_ONLY:
4368 	case ECORE_Q_CMD_DEACTIVATE:
4369 	case ECORE_Q_CMD_ACTIVATE:
4370 	case ECORE_Q_CMD_UPDATE:
4371 	case ECORE_Q_CMD_UPDATE_TPA:
4372 	case ECORE_Q_CMD_HALT:
4373 	case ECORE_Q_CMD_CFC_DEL:
4374 	case ECORE_Q_CMD_TERMINATE:
4375 	case ECORE_Q_CMD_EMPTY:
4376 		return ecore_queue_send_cmd_cmn(sc, params);
4377 	default:
4378 		PMD_DRV_LOG(ERR, "Unknown command: %d", params->cmd);
4379 		return ECORE_INVAL;
4380 	}
4381 }
4382 
4383 /**
4384  * ecore_queue_chk_transition - check state machine of a regular Queue
4385  *
4386  * @sc:		device handle
4387  * @o:
4388  * @params:
4389  *
4390  * (not Forwarding)
4391  * It both checks if the requested command is legal in a current
4392  * state and, if it's legal, sets a `next_state' in the object
4393  * that will be used in the completion flow to set the `state'
4394  * of the object.
4395  *
4396  * returns 0 if a requested command is a legal transition,
4397  *         ECORE_INVAL otherwise.
4398  */
4399 static int ecore_queue_chk_transition(struct bnx2x_softc *sc __rte_unused,
4400 				      struct ecore_queue_sp_obj *o,
4401 				      struct ecore_queue_state_params *params)
4402 {
4403 	enum ecore_q_state state = o->state, next_state = ECORE_Q_STATE_MAX;
4404 	enum ecore_queue_cmd cmd = params->cmd;
4405 	struct ecore_queue_update_params *update_params =
4406 	    &params->params.update;
4407 	uint8_t next_tx_only = o->num_tx_only;
4408 
4409 	/* Forget all pending for completion commands if a driver only state
4410 	 * transition has been requested.
4411 	 */
4412 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
4413 		o->pending = 0;
4414 		o->next_state = ECORE_Q_STATE_MAX;
4415 	}
4416 
4417 	/* Don't allow a next state transition if we are in the middle of
4418 	 * the previous one.
4419 	 */
4420 	if (o->pending) {
4421 		PMD_DRV_LOG(ERR, "Blocking transition since pending was %lx",
4422 			    o->pending);
4423 		return ECORE_BUSY;
4424 	}
4425 
4426 	switch (state) {
4427 	case ECORE_Q_STATE_RESET:
4428 		if (cmd == ECORE_Q_CMD_INIT)
4429 			next_state = ECORE_Q_STATE_INITIALIZED;
4430 
4431 		break;
4432 	case ECORE_Q_STATE_INITIALIZED:
4433 		if (cmd == ECORE_Q_CMD_SETUP) {
4434 			if (ECORE_TEST_BIT(ECORE_Q_FLG_ACTIVE,
4435 					   &params->params.setup.flags))
4436 				next_state = ECORE_Q_STATE_ACTIVE;
4437 			else
4438 				next_state = ECORE_Q_STATE_INACTIVE;
4439 		}
4440 
4441 		break;
4442 	case ECORE_Q_STATE_ACTIVE:
4443 		if (cmd == ECORE_Q_CMD_DEACTIVATE)
4444 			next_state = ECORE_Q_STATE_INACTIVE;
4445 
4446 		else if ((cmd == ECORE_Q_CMD_EMPTY) ||
4447 			 (cmd == ECORE_Q_CMD_UPDATE_TPA))
4448 			next_state = ECORE_Q_STATE_ACTIVE;
4449 
4450 		else if (cmd == ECORE_Q_CMD_SETUP_TX_ONLY) {
4451 			next_state = ECORE_Q_STATE_MULTI_COS;
4452 			next_tx_only = 1;
4453 		}
4454 
4455 		else if (cmd == ECORE_Q_CMD_HALT)
4456 			next_state = ECORE_Q_STATE_STOPPED;
4457 
4458 		else if (cmd == ECORE_Q_CMD_UPDATE) {
4459 			/* If "active" state change is requested, update the
4460 			 *  state accordingly.
4461 			 */
4462 			if (ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE_CHNG,
4463 					   &update_params->update_flags) &&
4464 			    !ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE,
4465 					    &update_params->update_flags))
4466 				next_state = ECORE_Q_STATE_INACTIVE;
4467 			else
4468 				next_state = ECORE_Q_STATE_ACTIVE;
4469 		}
4470 
4471 		break;
4472 	case ECORE_Q_STATE_MULTI_COS:
4473 		if (cmd == ECORE_Q_CMD_TERMINATE)
4474 			next_state = ECORE_Q_STATE_MCOS_TERMINATED;
4475 
4476 		else if (cmd == ECORE_Q_CMD_SETUP_TX_ONLY) {
4477 			next_state = ECORE_Q_STATE_MULTI_COS;
4478 			next_tx_only = o->num_tx_only + 1;
4479 		}
4480 
4481 		else if ((cmd == ECORE_Q_CMD_EMPTY) ||
4482 			 (cmd == ECORE_Q_CMD_UPDATE_TPA))
4483 			next_state = ECORE_Q_STATE_MULTI_COS;
4484 
4485 		else if (cmd == ECORE_Q_CMD_UPDATE) {
4486 			/* If "active" state change is requested, update the
4487 			 *  state accordingly.
4488 			 */
4489 			if (ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE_CHNG,
4490 					   &update_params->update_flags) &&
4491 			    !ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE,
4492 					    &update_params->update_flags))
4493 				next_state = ECORE_Q_STATE_INACTIVE;
4494 			else
4495 				next_state = ECORE_Q_STATE_MULTI_COS;
4496 		}
4497 
4498 		break;
4499 	case ECORE_Q_STATE_MCOS_TERMINATED:
4500 		if (cmd == ECORE_Q_CMD_CFC_DEL) {
4501 			next_tx_only = o->num_tx_only - 1;
4502 			if (next_tx_only == 0)
4503 				next_state = ECORE_Q_STATE_ACTIVE;
4504 			else
4505 				next_state = ECORE_Q_STATE_MULTI_COS;
4506 		}
4507 
4508 		break;
4509 	case ECORE_Q_STATE_INACTIVE:
4510 		if (cmd == ECORE_Q_CMD_ACTIVATE)
4511 			next_state = ECORE_Q_STATE_ACTIVE;
4512 
4513 		else if ((cmd == ECORE_Q_CMD_EMPTY) ||
4514 			 (cmd == ECORE_Q_CMD_UPDATE_TPA))
4515 			next_state = ECORE_Q_STATE_INACTIVE;
4516 
4517 		else if (cmd == ECORE_Q_CMD_HALT)
4518 			next_state = ECORE_Q_STATE_STOPPED;
4519 
4520 		else if (cmd == ECORE_Q_CMD_UPDATE) {
4521 			/* If "active" state change is requested, update the
4522 			 * state accordingly.
4523 			 */
4524 			if (ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE_CHNG,
4525 					   &update_params->update_flags) &&
4526 			    ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE,
4527 					   &update_params->update_flags)) {
4528 				if (o->num_tx_only == 0)
4529 					next_state = ECORE_Q_STATE_ACTIVE;
4530 				else	/* tx only queues exist for this queue */
4531 					next_state = ECORE_Q_STATE_MULTI_COS;
4532 			} else
4533 				next_state = ECORE_Q_STATE_INACTIVE;
4534 		}
4535 
4536 		break;
4537 	case ECORE_Q_STATE_STOPPED:
4538 		if (cmd == ECORE_Q_CMD_TERMINATE)
4539 			next_state = ECORE_Q_STATE_TERMINATED;
4540 
4541 		break;
4542 	case ECORE_Q_STATE_TERMINATED:
4543 		if (cmd == ECORE_Q_CMD_CFC_DEL)
4544 			next_state = ECORE_Q_STATE_RESET;
4545 
4546 		break;
4547 	default:
4548 		PMD_DRV_LOG(ERR, "Illegal state: %d", state);
4549 	}
4550 
4551 	/* Transition is assured */
4552 	if (next_state != ECORE_Q_STATE_MAX) {
4553 		ECORE_MSG("Good state transition: %d(%d)->%d",
4554 			  state, cmd, next_state);
4555 		o->next_state = next_state;
4556 		o->next_tx_only = next_tx_only;
4557 		return ECORE_SUCCESS;
4558 	}
4559 
4560 	ECORE_MSG("Bad state transition request: %d %d", state, cmd);
4561 
4562 	return ECORE_INVAL;
4563 }
4564 
4565 /**
4566  * ecore_queue_chk_fwd_transition - check state machine of a Forwarding Queue.
4567  *
4568  * @sc:		device handle
4569  * @o:
4570  * @params:
4571  *
4572  * It both checks if the requested command is legal in a current
4573  * state and, if it's legal, sets a `next_state' in the object
4574  * that will be used in the completion flow to set the `state'
4575  * of the object.
4576  *
4577  * returns 0 if a requested command is a legal transition,
4578  *         ECORE_INVAL otherwise.
4579  */
4580 static int ecore_queue_chk_fwd_transition(struct bnx2x_softc *sc __rte_unused,
4581 					  struct ecore_queue_sp_obj *o,
4582 					  struct ecore_queue_state_params
4583 					  *params)
4584 {
4585 	enum ecore_q_state state = o->state, next_state = ECORE_Q_STATE_MAX;
4586 	enum ecore_queue_cmd cmd = params->cmd;
4587 
4588 	switch (state) {
4589 	case ECORE_Q_STATE_RESET:
4590 		if (cmd == ECORE_Q_CMD_INIT)
4591 			next_state = ECORE_Q_STATE_INITIALIZED;
4592 
4593 		break;
4594 	case ECORE_Q_STATE_INITIALIZED:
4595 		if (cmd == ECORE_Q_CMD_SETUP_TX_ONLY) {
4596 			if (ECORE_TEST_BIT(ECORE_Q_FLG_ACTIVE,
4597 					   &params->params.tx_only.flags))
4598 				next_state = ECORE_Q_STATE_ACTIVE;
4599 			else
4600 				next_state = ECORE_Q_STATE_INACTIVE;
4601 		}
4602 
4603 		break;
4604 	case ECORE_Q_STATE_ACTIVE:
4605 	case ECORE_Q_STATE_INACTIVE:
4606 		if (cmd == ECORE_Q_CMD_CFC_DEL)
4607 			next_state = ECORE_Q_STATE_RESET;
4608 
4609 		break;
4610 	default:
4611 		PMD_DRV_LOG(ERR, "Illegal state: %d", state);
4612 	}
4613 
4614 	/* Transition is assured */
4615 	if (next_state != ECORE_Q_STATE_MAX) {
4616 		ECORE_MSG("Good state transition: %d(%d)->%d",
4617 			  state, cmd, next_state);
4618 		o->next_state = next_state;
4619 		return ECORE_SUCCESS;
4620 	}
4621 
4622 	ECORE_MSG("Bad state transition request: %d %d", state, cmd);
4623 	return ECORE_INVAL;
4624 }
4625 
4626 void ecore_init_queue_obj(struct bnx2x_softc *sc,
4627 			  struct ecore_queue_sp_obj *obj,
4628 			  uint8_t cl_id, uint32_t * cids, uint8_t cid_cnt,
4629 			  uint8_t func_id, void *rdata,
4630 			  ecore_dma_addr_t rdata_mapping, unsigned long type)
4631 {
4632 	ECORE_MEMSET(obj, 0, sizeof(*obj));
4633 
4634 	/* We support only ECORE_MULTI_TX_COS Tx CoS at the moment */
4635 	ECORE_BUG_ON(ECORE_MULTI_TX_COS < cid_cnt);
4636 
4637 	rte_memcpy(obj->cids, cids, sizeof(obj->cids[0]) * cid_cnt);
4638 	obj->max_cos = cid_cnt;
4639 	obj->cl_id = cl_id;
4640 	obj->func_id = func_id;
4641 	obj->rdata = rdata;
4642 	obj->rdata_mapping = rdata_mapping;
4643 	obj->type = type;
4644 	obj->next_state = ECORE_Q_STATE_MAX;
4645 
4646 	if (CHIP_IS_E1x(sc))
4647 		obj->send_cmd = ecore_queue_send_cmd_e1x;
4648 	else
4649 		obj->send_cmd = ecore_queue_send_cmd_e2;
4650 
4651 	if (ECORE_TEST_BIT(ECORE_Q_TYPE_FWD, &type))
4652 		obj->check_transition = ecore_queue_chk_fwd_transition;
4653 	else
4654 		obj->check_transition = ecore_queue_chk_transition;
4655 
4656 	obj->complete_cmd = ecore_queue_comp_cmd;
4657 	obj->wait_comp = ecore_queue_wait_comp;
4658 	obj->set_pending = ecore_queue_set_pending;
4659 }
4660 
4661 /********************** Function state object *********************************/
4662 enum ecore_func_state ecore_func_get_state(__rte_unused struct bnx2x_softc *sc,
4663 					   struct ecore_func_sp_obj *o)
4664 {
4665 	/* in the middle of transaction - return INVALID state */
4666 	if (o->pending)
4667 		return ECORE_F_STATE_MAX;
4668 
4669 	/* unsure the order of reading of o->pending and o->state
4670 	 * o->pending should be read first
4671 	 */
4672 	rmb();
4673 
4674 	return o->state;
4675 }
4676 
4677 static int ecore_func_wait_comp(struct bnx2x_softc *sc,
4678 				struct ecore_func_sp_obj *o,
4679 				enum ecore_func_cmd cmd)
4680 {
4681 	return ecore_state_wait(sc, cmd, &o->pending);
4682 }
4683 
4684 /**
4685  * ecore_func_state_change_comp - complete the state machine transition
4686  *
4687  * @sc:		device handle
4688  * @o:
4689  * @cmd:
4690  *
4691  * Called on state change transition. Completes the state
4692  * machine transition only - no HW interaction.
4693  */
4694 static int
4695 ecore_func_state_change_comp(struct bnx2x_softc *sc __rte_unused,
4696 			     struct ecore_func_sp_obj *o,
4697 			     enum ecore_func_cmd cmd)
4698 {
4699 	unsigned long cur_pending = o->pending;
4700 
4701 	if (!ECORE_TEST_AND_CLEAR_BIT(cmd, &cur_pending)) {
4702 		PMD_DRV_LOG(ERR,
4703 			    "Bad MC reply %d for func %d in state %d pending 0x%lx, next_state %d",
4704 			    cmd, ECORE_FUNC_ID(sc), o->state, cur_pending,
4705 			    o->next_state);
4706 		return ECORE_INVAL;
4707 	}
4708 
4709 	ECORE_MSG("Completing command %d for func %d, setting state to %d",
4710 		  cmd, ECORE_FUNC_ID(sc), o->next_state);
4711 
4712 	o->state = o->next_state;
4713 	o->next_state = ECORE_F_STATE_MAX;
4714 
4715 	/* It's important that o->state and o->next_state are
4716 	 * updated before o->pending.
4717 	 */
4718 	wmb();
4719 
4720 	ECORE_CLEAR_BIT(cmd, &o->pending);
4721 	ECORE_SMP_MB_AFTER_CLEAR_BIT();
4722 
4723 	return ECORE_SUCCESS;
4724 }
4725 
4726 /**
4727  * ecore_func_comp_cmd - complete the state change command
4728  *
4729  * @sc:		device handle
4730  * @o:
4731  * @cmd:
4732  *
4733  * Checks that the arrived completion is expected.
4734  */
4735 static int ecore_func_comp_cmd(struct bnx2x_softc *sc,
4736 			       struct ecore_func_sp_obj *o,
4737 			       enum ecore_func_cmd cmd)
4738 {
4739 	/* Complete the state machine part first, check if it's a
4740 	 * legal completion.
4741 	 */
4742 	int rc = ecore_func_state_change_comp(sc, o, cmd);
4743 	return rc;
4744 }
4745 
4746 /**
4747  * ecore_func_chk_transition - perform function state machine transition
4748  *
4749  * @sc:		device handle
4750  * @o:
4751  * @params:
4752  *
4753  * It both checks if the requested command is legal in a current
4754  * state and, if it's legal, sets a `next_state' in the object
4755  * that will be used in the completion flow to set the `state'
4756  * of the object.
4757  *
4758  * returns 0 if a requested command is a legal transition,
4759  *         ECORE_INVAL otherwise.
4760  */
4761 static int ecore_func_chk_transition(struct bnx2x_softc *sc __rte_unused,
4762 				     struct ecore_func_sp_obj *o,
4763 				     struct ecore_func_state_params *params)
4764 {
4765 	enum ecore_func_state state = o->state, next_state = ECORE_F_STATE_MAX;
4766 	enum ecore_func_cmd cmd = params->cmd;
4767 
4768 	/* Forget all pending for completion commands if a driver only state
4769 	 * transition has been requested.
4770 	 */
4771 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
4772 		o->pending = 0;
4773 		o->next_state = ECORE_F_STATE_MAX;
4774 	}
4775 
4776 	/* Don't allow a next state transition if we are in the middle of
4777 	 * the previous one.
4778 	 */
4779 	if (o->pending)
4780 		return ECORE_BUSY;
4781 
4782 	switch (state) {
4783 	case ECORE_F_STATE_RESET:
4784 		if (cmd == ECORE_F_CMD_HW_INIT)
4785 			next_state = ECORE_F_STATE_INITIALIZED;
4786 
4787 		break;
4788 	case ECORE_F_STATE_INITIALIZED:
4789 		if (cmd == ECORE_F_CMD_START)
4790 			next_state = ECORE_F_STATE_STARTED;
4791 
4792 		else if (cmd == ECORE_F_CMD_HW_RESET)
4793 			next_state = ECORE_F_STATE_RESET;
4794 
4795 		break;
4796 	case ECORE_F_STATE_STARTED:
4797 		if (cmd == ECORE_F_CMD_STOP)
4798 			next_state = ECORE_F_STATE_INITIALIZED;
4799 		/* afex ramrods can be sent only in started mode, and only
4800 		 * if not pending for function_stop ramrod completion
4801 		 * for these events - next state remained STARTED.
4802 		 */
4803 		else if ((cmd == ECORE_F_CMD_AFEX_UPDATE) &&
4804 			 (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
4805 			next_state = ECORE_F_STATE_STARTED;
4806 
4807 		else if ((cmd == ECORE_F_CMD_AFEX_VIFLISTS) &&
4808 			 (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
4809 			next_state = ECORE_F_STATE_STARTED;
4810 
4811 		/* Switch_update ramrod can be sent in either started or
4812 		 * tx_stopped state, and it doesn't change the state.
4813 		 */
4814 		else if ((cmd == ECORE_F_CMD_SWITCH_UPDATE) &&
4815 			 (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
4816 			next_state = ECORE_F_STATE_STARTED;
4817 
4818 		else if (cmd == ECORE_F_CMD_TX_STOP)
4819 			next_state = ECORE_F_STATE_TX_STOPPED;
4820 
4821 		break;
4822 	case ECORE_F_STATE_TX_STOPPED:
4823 		if ((cmd == ECORE_F_CMD_SWITCH_UPDATE) &&
4824 		    (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
4825 			next_state = ECORE_F_STATE_TX_STOPPED;
4826 
4827 		else if (cmd == ECORE_F_CMD_TX_START)
4828 			next_state = ECORE_F_STATE_STARTED;
4829 
4830 		break;
4831 	default:
4832 		PMD_DRV_LOG(ERR, "Unknown state: %d", state);
4833 	}
4834 
4835 	/* Transition is assured */
4836 	if (next_state != ECORE_F_STATE_MAX) {
4837 		ECORE_MSG("Good function state transition: %d(%d)->%d",
4838 			  state, cmd, next_state);
4839 		o->next_state = next_state;
4840 		return ECORE_SUCCESS;
4841 	}
4842 
4843 	ECORE_MSG("Bad function state transition request: %d %d", state, cmd);
4844 
4845 	return ECORE_INVAL;
4846 }
4847 
4848 /**
4849  * ecore_func_init_func - performs HW init at function stage
4850  *
4851  * @sc:		device handle
4852  * @drv:
4853  *
4854  * Init HW when the current phase is
4855  * FW_MSG_CODE_DRV_LOAD_FUNCTION: initialize only FUNCTION-only
4856  * HW blocks.
4857  */
4858 static int ecore_func_init_func(struct bnx2x_softc *sc,
4859 				const struct ecore_func_sp_drv_ops *drv)
4860 {
4861 	return drv->init_hw_func(sc);
4862 }
4863 
4864 /**
4865  * ecore_func_init_port - performs HW init at port stage
4866  *
4867  * @sc:		device handle
4868  * @drv:
4869  *
4870  * Init HW when the current phase is
4871  * FW_MSG_CODE_DRV_LOAD_PORT: initialize PORT-only and
4872  * FUNCTION-only HW blocks.
4873  *
4874  */
4875 static int ecore_func_init_port(struct bnx2x_softc *sc,
4876 				const struct ecore_func_sp_drv_ops *drv)
4877 {
4878 	int rc = drv->init_hw_port(sc);
4879 	if (rc)
4880 		return rc;
4881 
4882 	return ecore_func_init_func(sc, drv);
4883 }
4884 
4885 /**
4886  * ecore_func_init_cmn_chip - performs HW init at chip-common stage
4887  *
4888  * @sc:		device handle
4889  * @drv:
4890  *
4891  * Init HW when the current phase is
4892  * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON_CHIP,
4893  * PORT-only and FUNCTION-only HW blocks.
4894  */
4895 static int ecore_func_init_cmn_chip(struct bnx2x_softc *sc, const struct ecore_func_sp_drv_ops
4896 				    *drv)
4897 {
4898 	int rc = drv->init_hw_cmn_chip(sc);
4899 	if (rc)
4900 		return rc;
4901 
4902 	return ecore_func_init_port(sc, drv);
4903 }
4904 
4905 /**
4906  * ecore_func_init_cmn - performs HW init at common stage
4907  *
4908  * @sc:		device handle
4909  * @drv:
4910  *
4911  * Init HW when the current phase is
4912  * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON,
4913  * PORT-only and FUNCTION-only HW blocks.
4914  */
4915 static int ecore_func_init_cmn(struct bnx2x_softc *sc,
4916 			       const struct ecore_func_sp_drv_ops *drv)
4917 {
4918 	int rc = drv->init_hw_cmn(sc);
4919 	if (rc)
4920 		return rc;
4921 
4922 	return ecore_func_init_port(sc, drv);
4923 }
4924 
4925 static int ecore_func_hw_init(struct bnx2x_softc *sc,
4926 			      struct ecore_func_state_params *params)
4927 {
4928 	uint32_t load_code = params->params.hw_init.load_phase;
4929 	struct ecore_func_sp_obj *o = params->f_obj;
4930 	const struct ecore_func_sp_drv_ops *drv = o->drv;
4931 	int rc = 0;
4932 
4933 	ECORE_MSG("function %d  load_code %x",
4934 		  ECORE_ABS_FUNC_ID(sc), load_code);
4935 
4936 	/* Prepare FW */
4937 	rc = drv->init_fw(sc);
4938 	if (rc) {
4939 		PMD_DRV_LOG(ERR, "Error loading firmware");
4940 		goto init_err;
4941 	}
4942 
4943 	/* Handle the beginning of COMMON_XXX pases separately... */
4944 	switch (load_code) {
4945 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
4946 		rc = ecore_func_init_cmn_chip(sc, drv);
4947 		if (rc)
4948 			goto init_err;
4949 
4950 		break;
4951 	case FW_MSG_CODE_DRV_LOAD_COMMON:
4952 		rc = ecore_func_init_cmn(sc, drv);
4953 		if (rc)
4954 			goto init_err;
4955 
4956 		break;
4957 	case FW_MSG_CODE_DRV_LOAD_PORT:
4958 		rc = ecore_func_init_port(sc, drv);
4959 		if (rc)
4960 			goto init_err;
4961 
4962 		break;
4963 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
4964 		rc = ecore_func_init_func(sc, drv);
4965 		if (rc)
4966 			goto init_err;
4967 
4968 		break;
4969 	default:
4970 		PMD_DRV_LOG(ERR, "Unknown load_code (0x%x) from MCP",
4971 			    load_code);
4972 		rc = ECORE_INVAL;
4973 	}
4974 
4975 init_err:
4976 	/* In case of success, complete the command immediately: no ramrods
4977 	 * have been sent.
4978 	 */
4979 	if (!rc)
4980 		o->complete_cmd(sc, o, ECORE_F_CMD_HW_INIT);
4981 
4982 	return rc;
4983 }
4984 
4985 /**
4986  * ecore_func_reset_func - reset HW at function stage
4987  *
4988  * @sc:		device handle
4989  * @drv:
4990  *
4991  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_FUNCTION stage: reset only
4992  * FUNCTION-only HW blocks.
4993  */
4994 static void ecore_func_reset_func(struct bnx2x_softc *sc, const struct ecore_func_sp_drv_ops
4995 				  *drv)
4996 {
4997 	drv->reset_hw_func(sc);
4998 }
4999 
5000 /**
5001  * ecore_func_reset_port - reser HW at port stage
5002  *
5003  * @sc:		device handle
5004  * @drv:
5005  *
5006  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_PORT stage: reset
5007  * FUNCTION-only and PORT-only HW blocks.
5008  *
5009  *                 !!!IMPORTANT!!!
5010  *
5011  * It's important to call reset_port before reset_func() as the last thing
5012  * reset_func does is pf_disable() thus disabling PGLUE_B, which
5013  * makes impossible any DMAE transactions.
5014  */
5015 static void ecore_func_reset_port(struct bnx2x_softc *sc, const struct ecore_func_sp_drv_ops
5016 				  *drv)
5017 {
5018 	drv->reset_hw_port(sc);
5019 	ecore_func_reset_func(sc, drv);
5020 }
5021 
5022 /**
5023  * ecore_func_reset_cmn - reser HW at common stage
5024  *
5025  * @sc:		device handle
5026  * @drv:
5027  *
5028  * Reset HW at FW_MSG_CODE_DRV_UNLOAD_COMMON and
5029  * FW_MSG_CODE_DRV_UNLOAD_COMMON_CHIP stages: reset COMMON,
5030  * COMMON_CHIP, FUNCTION-only and PORT-only HW blocks.
5031  */
5032 static void ecore_func_reset_cmn(struct bnx2x_softc *sc,
5033 				 const struct ecore_func_sp_drv_ops *drv)
5034 {
5035 	ecore_func_reset_port(sc, drv);
5036 	drv->reset_hw_cmn(sc);
5037 }
5038 
5039 static int ecore_func_hw_reset(struct bnx2x_softc *sc,
5040 			       struct ecore_func_state_params *params)
5041 {
5042 	uint32_t reset_phase = params->params.hw_reset.reset_phase;
5043 	struct ecore_func_sp_obj *o = params->f_obj;
5044 	const struct ecore_func_sp_drv_ops *drv = o->drv;
5045 
5046 	ECORE_MSG("function %d  reset_phase %x", ECORE_ABS_FUNC_ID(sc),
5047 		  reset_phase);
5048 
5049 	switch (reset_phase) {
5050 	case FW_MSG_CODE_DRV_UNLOAD_COMMON:
5051 		ecore_func_reset_cmn(sc, drv);
5052 		break;
5053 	case FW_MSG_CODE_DRV_UNLOAD_PORT:
5054 		ecore_func_reset_port(sc, drv);
5055 		break;
5056 	case FW_MSG_CODE_DRV_UNLOAD_FUNCTION:
5057 		ecore_func_reset_func(sc, drv);
5058 		break;
5059 	default:
5060 		PMD_DRV_LOG(ERR, "Unknown reset_phase (0x%x) from MCP",
5061 			    reset_phase);
5062 		break;
5063 	}
5064 
5065 	/* Complete the command immediately: no ramrods have been sent. */
5066 	o->complete_cmd(sc, o, ECORE_F_CMD_HW_RESET);
5067 
5068 	return ECORE_SUCCESS;
5069 }
5070 
5071 static int ecore_func_send_start(struct bnx2x_softc *sc,
5072 				 struct ecore_func_state_params *params)
5073 {
5074 	struct ecore_func_sp_obj *o = params->f_obj;
5075 	struct function_start_data *rdata =
5076 	    (struct function_start_data *)o->rdata;
5077 	ecore_dma_addr_t data_mapping = o->rdata_mapping;
5078 	struct ecore_func_start_params *start_params = &params->params.start;
5079 
5080 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
5081 
5082 	/* Fill the ramrod data with provided parameters */
5083 	rdata->function_mode = (uint8_t) start_params->mf_mode;
5084 	rdata->sd_vlan_tag = ECORE_CPU_TO_LE16(start_params->sd_vlan_tag);
5085 	rdata->path_id = ECORE_PATH_ID(sc);
5086 	rdata->network_cos_mode = start_params->network_cos_mode;
5087 	rdata->gre_tunnel_mode = start_params->gre_tunnel_mode;
5088 	rdata->gre_tunnel_rss = start_params->gre_tunnel_rss;
5089 
5090 	/*
5091 	 *  No need for an explicit memory barrier here as long we would
5092 	 *  need to ensure the ordering of writing to the SPQ element
5093 	 *  and updating of the SPQ producer which involves a memory
5094 	 *  read and we will have to put a full memory barrier there
5095 	 *  (inside ecore_sp_post()).
5096 	 */
5097 
5098 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_FUNCTION_START, 0,
5099 			     data_mapping, NONE_CONNECTION_TYPE);
5100 }
5101 
5102 static int ecore_func_send_switch_update(struct bnx2x_softc *sc, struct ecore_func_state_params
5103 					 *params)
5104 {
5105 	struct ecore_func_sp_obj *o = params->f_obj;
5106 	struct function_update_data *rdata =
5107 	    (struct function_update_data *)o->rdata;
5108 	ecore_dma_addr_t data_mapping = o->rdata_mapping;
5109 	struct ecore_func_switch_update_params *switch_update_params =
5110 	    &params->params.switch_update;
5111 
5112 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
5113 
5114 	/* Fill the ramrod data with provided parameters */
5115 	rdata->tx_switch_suspend_change_flg = 1;
5116 	rdata->tx_switch_suspend = switch_update_params->suspend;
5117 	rdata->echo = SWITCH_UPDATE;
5118 
5119 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
5120 			     data_mapping, NONE_CONNECTION_TYPE);
5121 }
5122 
5123 static int ecore_func_send_afex_update(struct bnx2x_softc *sc, struct ecore_func_state_params
5124 				       *params)
5125 {
5126 	struct ecore_func_sp_obj *o = params->f_obj;
5127 	struct function_update_data *rdata =
5128 	    (struct function_update_data *)o->afex_rdata;
5129 	ecore_dma_addr_t data_mapping = o->afex_rdata_mapping;
5130 	struct ecore_func_afex_update_params *afex_update_params =
5131 	    &params->params.afex_update;
5132 
5133 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
5134 
5135 	/* Fill the ramrod data with provided parameters */
5136 	rdata->vif_id_change_flg = 1;
5137 	rdata->vif_id = ECORE_CPU_TO_LE16(afex_update_params->vif_id);
5138 	rdata->afex_default_vlan_change_flg = 1;
5139 	rdata->afex_default_vlan =
5140 	    ECORE_CPU_TO_LE16(afex_update_params->afex_default_vlan);
5141 	rdata->allowed_priorities_change_flg = 1;
5142 	rdata->allowed_priorities = afex_update_params->allowed_priorities;
5143 	rdata->echo = AFEX_UPDATE;
5144 
5145 	/*  No need for an explicit memory barrier here as long we would
5146 	 *  need to ensure the ordering of writing to the SPQ element
5147 	 *  and updating of the SPQ producer which involves a memory
5148 	 *  read and we will have to put a full memory barrier there
5149 	 *  (inside ecore_sp_post()).
5150 	 */
5151 	ECORE_MSG("afex: sending func_update vif_id 0x%x dvlan 0x%x prio 0x%x",
5152 		  rdata->vif_id,
5153 		  rdata->afex_default_vlan, rdata->allowed_priorities);
5154 
5155 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
5156 			     data_mapping, NONE_CONNECTION_TYPE);
5157 }
5158 
5159 static
5160 inline int ecore_func_send_afex_viflists(struct bnx2x_softc *sc,
5161 					 struct ecore_func_state_params *params)
5162 {
5163 	struct ecore_func_sp_obj *o = params->f_obj;
5164 	struct afex_vif_list_ramrod_data *rdata =
5165 	    (struct afex_vif_list_ramrod_data *)o->afex_rdata;
5166 	struct ecore_func_afex_viflists_params *afex_vif_params =
5167 	    &params->params.afex_viflists;
5168 	uint64_t *p_rdata = (uint64_t *) rdata;
5169 
5170 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
5171 
5172 	/* Fill the ramrod data with provided parameters */
5173 	rdata->vif_list_index =
5174 	    ECORE_CPU_TO_LE16(afex_vif_params->vif_list_index);
5175 	rdata->func_bit_map = afex_vif_params->func_bit_map;
5176 	rdata->afex_vif_list_command = afex_vif_params->afex_vif_list_command;
5177 	rdata->func_to_clear = afex_vif_params->func_to_clear;
5178 
5179 	/* send in echo type of sub command */
5180 	rdata->echo = afex_vif_params->afex_vif_list_command;
5181 
5182 	/*  No need for an explicit memory barrier here as long we would
5183 	 *  need to ensure the ordering of writing to the SPQ element
5184 	 *  and updating of the SPQ producer which involves a memory
5185 	 *  read and we will have to put a full memory barrier there
5186 	 *  (inside ecore_sp_post()).
5187 	 */
5188 
5189 	ECORE_MSG
5190 	    ("afex: ramrod lists, cmd 0x%x index 0x%x func_bit_map 0x%x func_to_clr 0x%x",
5191 	     rdata->afex_vif_list_command, rdata->vif_list_index,
5192 	     rdata->func_bit_map, rdata->func_to_clear);
5193 
5194 	/* this ramrod sends data directly and not through DMA mapping */
5195 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_AFEX_VIF_LISTS, 0,
5196 			     *p_rdata, NONE_CONNECTION_TYPE);
5197 }
5198 
5199 static int ecore_func_send_stop(struct bnx2x_softc *sc, __rte_unused struct
5200 				ecore_func_state_params *params)
5201 {
5202 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_FUNCTION_STOP, 0, 0,
5203 			     NONE_CONNECTION_TYPE);
5204 }
5205 
5206 static int ecore_func_send_tx_stop(struct bnx2x_softc *sc, __rte_unused struct
5207 				   ecore_func_state_params *params)
5208 {
5209 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_STOP_TRAFFIC, 0, 0,
5210 			     NONE_CONNECTION_TYPE);
5211 }
5212 
5213 static int ecore_func_send_tx_start(struct bnx2x_softc *sc, struct ecore_func_state_params
5214 				    *params)
5215 {
5216 	struct ecore_func_sp_obj *o = params->f_obj;
5217 	struct flow_control_configuration *rdata =
5218 	    (struct flow_control_configuration *)o->rdata;
5219 	ecore_dma_addr_t data_mapping = o->rdata_mapping;
5220 	struct ecore_func_tx_start_params *tx_start_params =
5221 	    &params->params.tx_start;
5222 	uint32_t i;
5223 
5224 	ECORE_MEMSET(rdata, 0, sizeof(*rdata));
5225 
5226 	rdata->dcb_enabled = tx_start_params->dcb_enabled;
5227 	rdata->dcb_version = tx_start_params->dcb_version;
5228 	rdata->dont_add_pri_0 = tx_start_params->dont_add_pri_0;
5229 
5230 	for (i = 0; i < ARRAY_SIZE(rdata->traffic_type_to_priority_cos); i++)
5231 		rdata->traffic_type_to_priority_cos[i] =
5232 		    tx_start_params->traffic_type_to_priority_cos[i];
5233 
5234 	return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_START_TRAFFIC, 0,
5235 			     data_mapping, NONE_CONNECTION_TYPE);
5236 }
5237 
5238 static int ecore_func_send_cmd(struct bnx2x_softc *sc,
5239 			       struct ecore_func_state_params *params)
5240 {
5241 	switch (params->cmd) {
5242 	case ECORE_F_CMD_HW_INIT:
5243 		return ecore_func_hw_init(sc, params);
5244 	case ECORE_F_CMD_START:
5245 		return ecore_func_send_start(sc, params);
5246 	case ECORE_F_CMD_STOP:
5247 		return ecore_func_send_stop(sc, params);
5248 	case ECORE_F_CMD_HW_RESET:
5249 		return ecore_func_hw_reset(sc, params);
5250 	case ECORE_F_CMD_AFEX_UPDATE:
5251 		return ecore_func_send_afex_update(sc, params);
5252 	case ECORE_F_CMD_AFEX_VIFLISTS:
5253 		return ecore_func_send_afex_viflists(sc, params);
5254 	case ECORE_F_CMD_TX_STOP:
5255 		return ecore_func_send_tx_stop(sc, params);
5256 	case ECORE_F_CMD_TX_START:
5257 		return ecore_func_send_tx_start(sc, params);
5258 	case ECORE_F_CMD_SWITCH_UPDATE:
5259 		return ecore_func_send_switch_update(sc, params);
5260 	default:
5261 		PMD_DRV_LOG(ERR, "Unknown command: %d", params->cmd);
5262 		return ECORE_INVAL;
5263 	}
5264 }
5265 
5266 void ecore_init_func_obj(__rte_unused struct bnx2x_softc *sc,
5267 			 struct ecore_func_sp_obj *obj,
5268 			 void *rdata, ecore_dma_addr_t rdata_mapping,
5269 			 void *afex_rdata, ecore_dma_addr_t afex_rdata_mapping,
5270 			 struct ecore_func_sp_drv_ops *drv_iface)
5271 {
5272 	ECORE_MEMSET(obj, 0, sizeof(*obj));
5273 
5274 	ECORE_MUTEX_INIT(&obj->one_pending_mutex);
5275 
5276 	obj->rdata = rdata;
5277 	obj->rdata_mapping = rdata_mapping;
5278 	obj->afex_rdata = afex_rdata;
5279 	obj->afex_rdata_mapping = afex_rdata_mapping;
5280 	obj->send_cmd = ecore_func_send_cmd;
5281 	obj->check_transition = ecore_func_chk_transition;
5282 	obj->complete_cmd = ecore_func_comp_cmd;
5283 	obj->wait_comp = ecore_func_wait_comp;
5284 	obj->drv = drv_iface;
5285 }
5286 
5287 /**
5288  * ecore_func_state_change - perform Function state change transition
5289  *
5290  * @sc:		device handle
5291  * @params:	parameters to perform the transaction
5292  *
5293  * returns 0 in case of successfully completed transition,
5294  *         negative error code in case of failure, positive
5295  *         (EBUSY) value if there is a completion to that is
5296  *         still pending (possible only if RAMROD_COMP_WAIT is
5297  *         not set in params->ramrod_flags for asynchronous
5298  *         commands).
5299  */
5300 int ecore_func_state_change(struct bnx2x_softc *sc,
5301 			    struct ecore_func_state_params *params)
5302 {
5303 	struct ecore_func_sp_obj *o = params->f_obj;
5304 	int rc, cnt = 300;
5305 	enum ecore_func_cmd cmd = params->cmd;
5306 	unsigned long *pending = &o->pending;
5307 
5308 	ECORE_MUTEX_LOCK(&o->one_pending_mutex);
5309 
5310 	/* Check that the requested transition is legal */
5311 	rc = o->check_transition(sc, o, params);
5312 	if ((rc == ECORE_BUSY) &&
5313 	    (ECORE_TEST_BIT(RAMROD_RETRY, &params->ramrod_flags))) {
5314 		while ((rc == ECORE_BUSY) && (--cnt > 0)) {
5315 			ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
5316 			ECORE_MSLEEP(10);
5317 			ECORE_MUTEX_LOCK(&o->one_pending_mutex);
5318 			rc = o->check_transition(sc, o, params);
5319 		}
5320 		if (rc == ECORE_BUSY) {
5321 			ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
5322 			PMD_DRV_LOG(ERR,
5323 				    "timeout waiting for previous ramrod completion");
5324 			return rc;
5325 		}
5326 	} else if (rc) {
5327 		ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
5328 		return rc;
5329 	}
5330 
5331 	/* Set "pending" bit */
5332 	ECORE_SET_BIT(cmd, pending);
5333 
5334 	/* Don't send a command if only driver cleanup was requested */
5335 	if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &params->ramrod_flags)) {
5336 		ecore_func_state_change_comp(sc, o, cmd);
5337 		ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
5338 	} else {
5339 		/* Send a ramrod */
5340 		rc = o->send_cmd(sc, params);
5341 
5342 		ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
5343 
5344 		if (rc) {
5345 			o->next_state = ECORE_F_STATE_MAX;
5346 			ECORE_CLEAR_BIT(cmd, pending);
5347 			ECORE_SMP_MB_AFTER_CLEAR_BIT();
5348 			return rc;
5349 		}
5350 
5351 		if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &params->ramrod_flags)) {
5352 			rc = o->wait_comp(sc, o, cmd);
5353 			if (rc)
5354 				return rc;
5355 
5356 			return ECORE_SUCCESS;
5357 		}
5358 	}
5359 
5360 	return ECORE_RET_PENDING(cmd, pending);
5361 }
5362 
5363 /******************************************************************************
5364  * Description:
5365  *	   Calculates crc 8 on a word value: polynomial 0-1-2-8
5366  *	   Code was translated from Verilog.
5367  * Return:
5368  *****************************************************************************/
5369 uint8_t ecore_calc_crc8(uint32_t data, uint8_t crc)
5370 {
5371 	uint8_t D[32];
5372 	uint8_t NewCRC[8];
5373 	uint8_t C[8];
5374 	uint8_t crc_res;
5375 	uint8_t i;
5376 
5377 	/* split the data into 31 bits */
5378 	for (i = 0; i < 32; i++) {
5379 		D[i] = (uint8_t) (data & 1);
5380 		data = data >> 1;
5381 	}
5382 
5383 	/* split the crc into 8 bits */
5384 	for (i = 0; i < 8; i++) {
5385 		C[i] = crc & 1;
5386 		crc = crc >> 1;
5387 	}
5388 
5389 	NewCRC[0] = D[31] ^ D[30] ^ D[28] ^ D[23] ^ D[21] ^ D[19] ^ D[18] ^
5390 	    D[16] ^ D[14] ^ D[12] ^ D[8] ^ D[7] ^ D[6] ^ D[0] ^ C[4] ^
5391 	    C[6] ^ C[7];
5392 	NewCRC[1] = D[30] ^ D[29] ^ D[28] ^ D[24] ^ D[23] ^ D[22] ^ D[21] ^
5393 	    D[20] ^ D[18] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^
5394 	    D[12] ^ D[9] ^ D[6] ^ D[1] ^ D[0] ^ C[0] ^ C[4] ^ C[5] ^ C[6];
5395 	NewCRC[2] = D[29] ^ D[28] ^ D[25] ^ D[24] ^ D[22] ^ D[17] ^ D[15] ^
5396 	    D[13] ^ D[12] ^ D[10] ^ D[8] ^ D[6] ^ D[2] ^ D[1] ^ D[0] ^
5397 	    C[0] ^ C[1] ^ C[4] ^ C[5];
5398 	NewCRC[3] = D[30] ^ D[29] ^ D[26] ^ D[25] ^ D[23] ^ D[18] ^ D[16] ^
5399 	    D[14] ^ D[13] ^ D[11] ^ D[9] ^ D[7] ^ D[3] ^ D[2] ^ D[1] ^
5400 	    C[1] ^ C[2] ^ C[5] ^ C[6];
5401 	NewCRC[4] = D[31] ^ D[30] ^ D[27] ^ D[26] ^ D[24] ^ D[19] ^ D[17] ^
5402 	    D[15] ^ D[14] ^ D[12] ^ D[10] ^ D[8] ^ D[4] ^ D[3] ^ D[2] ^
5403 	    C[0] ^ C[2] ^ C[3] ^ C[6] ^ C[7];
5404 	NewCRC[5] = D[31] ^ D[28] ^ D[27] ^ D[25] ^ D[20] ^ D[18] ^ D[16] ^
5405 	    D[15] ^ D[13] ^ D[11] ^ D[9] ^ D[5] ^ D[4] ^ D[3] ^ C[1] ^
5406 	    C[3] ^ C[4] ^ C[7];
5407 	NewCRC[6] = D[29] ^ D[28] ^ D[26] ^ D[21] ^ D[19] ^ D[17] ^ D[16] ^
5408 	    D[14] ^ D[12] ^ D[10] ^ D[6] ^ D[5] ^ D[4] ^ C[2] ^ C[4] ^ C[5];
5409 	NewCRC[7] = D[30] ^ D[29] ^ D[27] ^ D[22] ^ D[20] ^ D[18] ^ D[17] ^
5410 	    D[15] ^ D[13] ^ D[11] ^ D[7] ^ D[6] ^ D[5] ^ C[3] ^ C[5] ^ C[6];
5411 
5412 	crc_res = 0;
5413 	for (i = 0; i < 8; i++) {
5414 		crc_res |= (NewCRC[i] << i);
5415 	}
5416 
5417 	return crc_res;
5418 }
5419 
5420 uint32_t
5421 ecore_calc_crc32(uint32_t crc, uint8_t const *p, uint32_t len, uint32_t magic)
5422 {
5423 	int i;
5424 	while (len--) {
5425 		crc ^= *p++;
5426 		for (i = 0; i < 8; i++)
5427 			crc = (crc >> 1) ^ ((crc & 1) ? magic : 0);
5428 	}
5429 	return crc;
5430 }
5431