xref: /dpdk/drivers/net/bnx2x/ecore_init_ops.h (revision d80e42cce4c7017ed8c99dabb8ae444a492acc1c)
1 /*-
2  * Copyright (c) 2007-2013 Cavium Inc. All rights reserved.
3  *
4  * Eric Davis        <edavis@broadcom.com>
5  * David Christensen <davidch@broadcom.com>
6  * Gary Zambrano     <zambrano@broadcom.com>
7  *
8  * Copyright (c) 2013-2015 Brocade Communications Systems, Inc.
9  * Copyright (c) 2015-2018 Cavium Inc.
10  * All rights reserved.
11  * www.cavium.com
12  *
13  * See LICENSE.bnx2x_pmd for copyright and licensing details.
14  */
15 
16 #ifndef ECORE_INIT_OPS_H
17 #define ECORE_INIT_OPS_H
18 
19 static int ecore_gunzip(struct bnx2x_softc *sc, const uint8_t *zbuf, int len);
20 static void ecore_write_dmae_phys_len(struct bnx2x_softc *sc,
21 				      ecore_dma_addr_t phys_addr, uint32_t addr,
22 				      uint32_t len);
23 
24 static void ecore_init_str_wr(struct bnx2x_softc *sc, uint32_t addr,
25 			      const uint32_t *data, uint32_t len)
26 {
27 	uint32_t i;
28 
29 	for (i = 0; i < len; i++)
30 		REG_WR(sc, addr + i*4, data[i]);
31 }
32 
33 static void ecore_write_big_buf(struct bnx2x_softc *sc, uint32_t addr, uint32_t len)
34 {
35 	if (DMAE_READY(sc))
36 		ecore_write_dmae_phys_len(sc, GUNZIP_PHYS(sc), addr, len);
37 
38 	else ecore_init_str_wr(sc, addr, GUNZIP_BUF(sc), len);
39 }
40 
41 static void ecore_init_fill(struct bnx2x_softc *sc, uint32_t addr, int fill,
42 			    uint32_t len)
43 {
44 	uint32_t buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
45 	uint32_t buf_len32 = buf_len/4;
46 	uint32_t i;
47 
48 	ECORE_MEMSET(GUNZIP_BUF(sc), (uint8_t)fill, buf_len);
49 
50 	for (i = 0; i < len; i += buf_len32) {
51 		uint32_t cur_len = min(buf_len32, len - i);
52 
53 		ecore_write_big_buf(sc, addr + i*4, cur_len);
54 	}
55 }
56 
57 static void ecore_write_big_buf_wb(struct bnx2x_softc *sc, uint32_t addr, uint32_t len)
58 {
59 	if (DMAE_READY(sc))
60 		ecore_write_dmae_phys_len(sc, GUNZIP_PHYS(sc), addr, len);
61 
62 	else ecore_init_str_wr(sc, addr, GUNZIP_BUF(sc), len);
63 }
64 
65 static void ecore_init_wr_64(struct bnx2x_softc *sc, uint32_t addr,
66 			     const uint32_t *data, uint32_t len64)
67 {
68 	uint32_t buf_len32 = FW_BUF_SIZE/4;
69 	uint32_t len = len64*2;
70 	uint64_t data64 = 0;
71 	uint32_t i;
72 
73 	/* 64 bit value is in a blob: first low DWORD, then high DWORD */
74 	data64 = HILO_U64((*(data + 1)), (*data));
75 
76 	len64 = min((uint32_t)(FW_BUF_SIZE/8), len64);
77 	for (i = 0; i < len64; i++) {
78 		uint64_t *pdata = ((uint64_t *)(GUNZIP_BUF(sc))) + i;
79 
80 		*pdata = data64;
81 	}
82 
83 	for (i = 0; i < len; i += buf_len32) {
84 		uint32_t cur_len = min(buf_len32, len - i);
85 
86 		ecore_write_big_buf_wb(sc, addr + i*4, cur_len);
87 	}
88 }
89 
90 /*********************************************************
91    There are different blobs for each PRAM section.
92    In addition, each blob write operation is divided into a few operations
93    in order to decrease the amount of phys. contiguous buffer needed.
94    Thus, when we select a blob the address may be with some offset
95    from the beginning of PRAM section.
96    The same holds for the INT_TABLE sections.
97 **********************************************************/
98 #define IF_IS_INT_TABLE_ADDR(base, addr) \
99 			if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
100 
101 #define IF_IS_PRAM_ADDR(base, addr) \
102 			if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
103 
104 static const uint8_t *ecore_sel_blob(struct bnx2x_softc *sc, uint32_t addr,
105 				const uint8_t *data)
106 {
107 	IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
108 		data = INIT_TSEM_INT_TABLE_DATA(sc);
109 	else
110 		IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
111 			data = INIT_CSEM_INT_TABLE_DATA(sc);
112 	else
113 		IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
114 			data = INIT_USEM_INT_TABLE_DATA(sc);
115 	else
116 		IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
117 			data = INIT_XSEM_INT_TABLE_DATA(sc);
118 	else
119 		IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
120 			data = INIT_TSEM_PRAM_DATA(sc);
121 	else
122 		IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
123 			data = INIT_CSEM_PRAM_DATA(sc);
124 	else
125 		IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
126 			data = INIT_USEM_PRAM_DATA(sc);
127 	else
128 		IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
129 			data = INIT_XSEM_PRAM_DATA(sc);
130 
131 	return data;
132 }
133 
134 static void ecore_init_wr_wb(struct bnx2x_softc *sc, uint32_t addr,
135 			     const uint32_t *data, uint32_t len)
136 {
137 	if (DMAE_READY(sc))
138 		VIRT_WR_DMAE_LEN(sc, data, addr, len, 0);
139 
140 	else ecore_init_str_wr(sc, addr, data, len);
141 }
142 
143 static void ecore_wr_64(struct bnx2x_softc *sc, uint32_t reg, uint32_t val_lo,
144 			uint32_t val_hi)
145 {
146 	uint32_t wb_write[2];
147 
148 	wb_write[0] = val_lo;
149 	wb_write[1] = val_hi;
150 	REG_WR_DMAE_LEN(sc, reg, wb_write, 2);
151 }
152 
153 static void ecore_init_wr_zp(struct bnx2x_softc *sc, uint32_t addr, uint32_t len,
154 			     uint32_t blob_off)
155 {
156 	const uint8_t *data = NULL;
157 	int rc;
158 	uint32_t i;
159 
160 	data = ecore_sel_blob(sc, addr, data) + blob_off*4;
161 
162 	rc = ecore_gunzip(sc, data, len);
163 	if (rc)
164 		return;
165 
166 	/* gunzip_outlen is in dwords */
167 	len = GUNZIP_OUTLEN(sc);
168 	for (i = 0; i < len; i++)
169 		((uint32_t *)GUNZIP_BUF(sc))[i] = (uint32_t)
170 				ECORE_CPU_TO_LE32(((uint32_t *)GUNZIP_BUF(sc))[i]);
171 
172 	ecore_write_big_buf_wb(sc, addr, len);
173 }
174 
175 static void ecore_init_block(struct bnx2x_softc *sc, uint32_t block, uint32_t stage)
176 {
177 	uint16_t op_start =
178 		INIT_OPS_OFFSETS(sc)[BLOCK_OPS_IDX(block, stage,
179 						     STAGE_START)];
180 	uint16_t op_end =
181 		INIT_OPS_OFFSETS(sc)[BLOCK_OPS_IDX(block, stage,
182 						     STAGE_END)];
183 	const union init_op *op;
184 	uint32_t op_idx, op_type, addr, len;
185 	const uint32_t *data, *data_base;
186 
187 	/* If empty block */
188 	if (op_start == op_end)
189 		return;
190 
191 	data_base = INIT_DATA(sc);
192 
193 	for (op_idx = op_start; op_idx < op_end; op_idx++) {
194 
195 		op = (const union init_op *)&(INIT_OPS(sc)[op_idx]);
196 		/* Get generic data */
197 		op_type = op->raw.op;
198 		addr = op->raw.offset;
199 		/* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and
200 		 * OP_WR64 (we assume that op_arr_write and op_write have the
201 		 * same structure).
202 		 */
203 		len = op->arr_wr.data_len;
204 		data = data_base + op->arr_wr.data_off;
205 
206 		switch (op_type) {
207 		case OP_RD:
208 			REG_RD(sc, addr);
209 			break;
210 		case OP_WR:
211 			REG_WR(sc, addr, op->write.val);
212 			break;
213 		case OP_SW:
214 			ecore_init_str_wr(sc, addr, data, len);
215 			break;
216 		case OP_WB:
217 			ecore_init_wr_wb(sc, addr, data, len);
218 			break;
219 		case OP_ZR:
220 		case OP_WB_ZR:
221 			ecore_init_fill(sc, addr, 0, op->zero.len);
222 			break;
223 		case OP_ZP:
224 			ecore_init_wr_zp(sc, addr, len, op->arr_wr.data_off);
225 			break;
226 		case OP_WR_64:
227 			ecore_init_wr_64(sc, addr, data, len);
228 			break;
229 		case OP_IF_MODE_AND:
230 			/* if any of the flags doesn't match, skip the
231 			 * conditional block.
232 			 */
233 			if ((INIT_MODE_FLAGS(sc) &
234 				op->if_mode.mode_bit_map) !=
235 				op->if_mode.mode_bit_map)
236 				op_idx += op->if_mode.cmd_offset;
237 			break;
238 		case OP_IF_MODE_OR:
239 			/* if all the flags don't match, skip the conditional
240 			 * block.
241 			 */
242 			if ((INIT_MODE_FLAGS(sc) &
243 				op->if_mode.mode_bit_map) == 0)
244 				op_idx += op->if_mode.cmd_offset;
245 			break;
246 		    /* the following opcodes are unused at the moment. */
247 		case OP_IF_PHASE:
248 		case OP_RT:
249 		case OP_DELAY:
250 		case OP_VERIFY:
251 		default:
252 			/* Should never get here! */
253 
254 			break;
255 		}
256 	}
257 }
258 
259 
260 /****************************************************************************
261 * PXP Arbiter
262 ****************************************************************************/
263 /*
264  * This code configures the PCI read/write arbiter
265  * which implements a weighted round robin
266  * between the virtual queues in the chip.
267  *
268  * The values were derived for each PCI max payload and max request size.
269  * since max payload and max request size are only known at run time,
270  * this is done as a separate init stage.
271  */
272 
273 #define NUM_WR_Q			13
274 #define NUM_RD_Q			29
275 #define MAX_RD_ORD			3
276 #define MAX_WR_ORD			2
277 
278 /* configuration for one arbiter queue */
279 struct arb_line {
280 	int l;
281 	int add;
282 	int ubound;
283 };
284 
285 /* derived configuration for each read queue for each max request size */
286 static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
287 /* 1 */	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
288 	{ {4, 8,  4},  {4,  8,  4},  {4,  8,  4},  {4,  8,  4}  },
289 	{ {4, 3,  3},  {4,  3,  3},  {4,  3,  3},  {4,  3,  3}  },
290 	{ {8, 3,  6},  {16, 3,  11}, {16, 3,  11}, {16, 3,  11} },
291 	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
292 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
293 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
294 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
295 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
296 /* 10 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
297 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
298 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
299 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
300 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
301 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
302 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
303 	{ {8, 64, 6},  {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
304 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
305 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
306 /* 20 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
307 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
308 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
309 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
310 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
311 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
312 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
313 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
314 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
315 	{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
316 };
317 
318 /* derived configuration for each write queue for each max request size */
319 static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
320 /* 1 */	{ {4, 6,  3},  {4,  6,  3},  {4,  6,  3} },
321 	{ {4, 2,  3},  {4,  2,  3},  {4,  2,  3} },
322 	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
323 	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
324 	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
325 	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
326 	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
327 	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
328 	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
329 /* 10 */{ {8, 9,  6},  {16, 9,  11}, {32, 9,  21} },
330 	{ {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
331 	{ {8, 9,  6},  {16, 9,  11}, {16, 9,  11} },
332 	{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
333 };
334 
335 /* register addresses for read queues */
336 static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
337 /* 1 */	{PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
338 		PXP2_REG_RQ_BW_RD_UBOUND0},
339 	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
340 		PXP2_REG_PSWRQ_BW_UB1},
341 	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
342 		PXP2_REG_PSWRQ_BW_UB2},
343 	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
344 		PXP2_REG_PSWRQ_BW_UB3},
345 	{PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
346 		PXP2_REG_RQ_BW_RD_UBOUND4},
347 	{PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
348 		PXP2_REG_RQ_BW_RD_UBOUND5},
349 	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
350 		PXP2_REG_PSWRQ_BW_UB6},
351 	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
352 		PXP2_REG_PSWRQ_BW_UB7},
353 	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
354 		PXP2_REG_PSWRQ_BW_UB8},
355 /* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
356 		PXP2_REG_PSWRQ_BW_UB9},
357 	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
358 		PXP2_REG_PSWRQ_BW_UB10},
359 	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
360 		PXP2_REG_PSWRQ_BW_UB11},
361 	{PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
362 		PXP2_REG_RQ_BW_RD_UBOUND12},
363 	{PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
364 		PXP2_REG_RQ_BW_RD_UBOUND13},
365 	{PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
366 		PXP2_REG_RQ_BW_RD_UBOUND14},
367 	{PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
368 		PXP2_REG_RQ_BW_RD_UBOUND15},
369 	{PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
370 		PXP2_REG_RQ_BW_RD_UBOUND16},
371 	{PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
372 		PXP2_REG_RQ_BW_RD_UBOUND17},
373 	{PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
374 		PXP2_REG_RQ_BW_RD_UBOUND18},
375 /* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
376 		PXP2_REG_RQ_BW_RD_UBOUND19},
377 	{PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
378 		PXP2_REG_RQ_BW_RD_UBOUND20},
379 	{PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
380 		PXP2_REG_RQ_BW_RD_UBOUND22},
381 	{PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
382 		PXP2_REG_RQ_BW_RD_UBOUND23},
383 	{PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
384 		PXP2_REG_RQ_BW_RD_UBOUND24},
385 	{PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
386 		PXP2_REG_RQ_BW_RD_UBOUND25},
387 	{PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
388 		PXP2_REG_RQ_BW_RD_UBOUND26},
389 	{PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
390 		PXP2_REG_RQ_BW_RD_UBOUND27},
391 	{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
392 		PXP2_REG_PSWRQ_BW_UB28}
393 };
394 
395 /* register addresses for write queues */
396 static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
397 /* 1 */	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
398 		PXP2_REG_PSWRQ_BW_UB1},
399 	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
400 		PXP2_REG_PSWRQ_BW_UB2},
401 	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
402 		PXP2_REG_PSWRQ_BW_UB3},
403 	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
404 		PXP2_REG_PSWRQ_BW_UB6},
405 	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
406 		PXP2_REG_PSWRQ_BW_UB7},
407 	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
408 		PXP2_REG_PSWRQ_BW_UB8},
409 	{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
410 		PXP2_REG_PSWRQ_BW_UB9},
411 	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
412 		PXP2_REG_PSWRQ_BW_UB10},
413 	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
414 		PXP2_REG_PSWRQ_BW_UB11},
415 /* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
416 		PXP2_REG_PSWRQ_BW_UB28},
417 	{PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
418 		PXP2_REG_RQ_BW_WR_UBOUND29},
419 	{PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
420 		PXP2_REG_RQ_BW_WR_UBOUND30}
421 };
422 
423 static void ecore_init_pxp_arb(struct bnx2x_softc *sc, int r_order,
424 			       int w_order)
425 {
426 	uint32_t val, i;
427 
428 	if (r_order > MAX_RD_ORD) {
429 		ECORE_MSG("read order of %d  order adjusted to %d",
430 			   r_order, MAX_RD_ORD);
431 		r_order = MAX_RD_ORD;
432 	}
433 	if (w_order > MAX_WR_ORD) {
434 		ECORE_MSG("write order of %d  order adjusted to %d",
435 			   w_order, MAX_WR_ORD);
436 		w_order = MAX_WR_ORD;
437 	}
438 	if (CHIP_REV_IS_FPGA(sc)) {
439 		ECORE_MSG("write order adjusted to 1 for FPGA");
440 		w_order = 0;
441 	}
442 	ECORE_MSG("read order %d  write order %d", r_order, w_order);
443 
444 	for (i = 0; i < NUM_RD_Q-1; i++) {
445 		REG_WR(sc, read_arb_addr[i].l, read_arb_data[i][r_order].l);
446 		REG_WR(sc, read_arb_addr[i].add,
447 		       read_arb_data[i][r_order].add);
448 		REG_WR(sc, read_arb_addr[i].ubound,
449 		       read_arb_data[i][r_order].ubound);
450 	}
451 
452 	for (i = 0; i < NUM_WR_Q-1; i++) {
453 		if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
454 		    (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
455 
456 			REG_WR(sc, write_arb_addr[i].l,
457 			       write_arb_data[i][w_order].l);
458 
459 			REG_WR(sc, write_arb_addr[i].add,
460 			       write_arb_data[i][w_order].add);
461 
462 			REG_WR(sc, write_arb_addr[i].ubound,
463 			       write_arb_data[i][w_order].ubound);
464 		} else {
465 
466 			val = REG_RD(sc, write_arb_addr[i].l);
467 			REG_WR(sc, write_arb_addr[i].l,
468 			       val | (write_arb_data[i][w_order].l << 10));
469 
470 			val = REG_RD(sc, write_arb_addr[i].add);
471 			REG_WR(sc, write_arb_addr[i].add,
472 			       val | (write_arb_data[i][w_order].add << 10));
473 
474 			val = REG_RD(sc, write_arb_addr[i].ubound);
475 			REG_WR(sc, write_arb_addr[i].ubound,
476 			       val | (write_arb_data[i][w_order].ubound << 7));
477 		}
478 	}
479 
480 	val =  write_arb_data[NUM_WR_Q-1][w_order].add;
481 	val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
482 	val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
483 	REG_WR(sc, PXP2_REG_PSWRQ_BW_RD, val);
484 
485 	val =  read_arb_data[NUM_RD_Q-1][r_order].add;
486 	val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
487 	val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
488 	REG_WR(sc, PXP2_REG_PSWRQ_BW_WR, val);
489 
490 	REG_WR(sc, PXP2_REG_RQ_WR_MBS0, w_order);
491 	REG_WR(sc, PXP2_REG_RQ_WR_MBS1, w_order);
492 	REG_WR(sc, PXP2_REG_RQ_RD_MBS0, r_order);
493 	REG_WR(sc, PXP2_REG_RQ_RD_MBS1, r_order);
494 
495 	if (CHIP_IS_E1H(sc) && (r_order == MAX_RD_ORD))
496 		REG_WR(sc, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
497 
498 	if (CHIP_IS_E3(sc))
499 		REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x4 << w_order));
500 	else if (CHIP_IS_E2(sc))
501 		REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order));
502 	else
503 		REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
504 
505 	/*    MPS      w_order     optimal TH      presently TH
506 	 *    128         0             0               2
507 	 *    256         1             1               3
508 	 *    >=512       2             2               3
509 	 */
510 	/* DMAE is special */
511 	if (!CHIP_IS_E1H(sc)) {
512 		/* E2 can use optimal TH */
513 		val = w_order;
514 		REG_WR(sc, PXP2_REG_WR_DMAE_MPS, val);
515 	} else {
516 		val = ((w_order == 0) ? 2 : 3);
517 		REG_WR(sc, PXP2_REG_WR_DMAE_MPS, 2);
518 	}
519 
520 	REG_WR(sc, PXP2_REG_WR_HC_MPS, val);
521 	REG_WR(sc, PXP2_REG_WR_USDM_MPS, val);
522 	REG_WR(sc, PXP2_REG_WR_CSDM_MPS, val);
523 	REG_WR(sc, PXP2_REG_WR_TSDM_MPS, val);
524 	REG_WR(sc, PXP2_REG_WR_XSDM_MPS, val);
525 	REG_WR(sc, PXP2_REG_WR_QM_MPS, val);
526 	REG_WR(sc, PXP2_REG_WR_TM_MPS, val);
527 	REG_WR(sc, PXP2_REG_WR_SRC_MPS, val);
528 	REG_WR(sc, PXP2_REG_WR_DBG_MPS, val);
529 	REG_WR(sc, PXP2_REG_WR_CDU_MPS, val);
530 
531 	/* Validate number of tags suppoted by device */
532 #define PCIE_REG_PCIER_TL_HDR_FC_ST		0x2980
533 	val = REG_RD(sc, PCIE_REG_PCIER_TL_HDR_FC_ST);
534 	val &= 0xFF;
535 	if (val <= 0x20)
536 		REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x20);
537 }
538 
539 /****************************************************************************
540 * ILT management
541 ****************************************************************************/
542 /*
543  * This codes hides the low level HW interaction for ILT management and
544  * configuration. The API consists of a shadow ILT table which is set by the
545  * driver and a set of routines to use it to configure the HW.
546  *
547  */
548 
549 /* ILT HW init operations */
550 
551 /* ILT memory management operations */
552 #define ILT_MEMOP_ALLOC		0
553 #define ILT_MEMOP_FREE		1
554 
555 /* the phys address is shifted right 12 bits and has an added
556  * 1=valid bit added to the 53rd bit
557  * then since this is a wide register(TM)
558  * we split it into two 32 bit writes
559  */
560 #define ILT_ADDR1(x)		((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF))
561 #define ILT_ADDR2(x)		((uint32_t)((1 << 20) | ((uint64_t)x >> 44)))
562 #define ILT_RANGE(f, l)		(((l) << 10) | f)
563 
564 static int ecore_ilt_line_mem_op(struct bnx2x_softc *sc,
565 				 struct ilt_line *line, uint32_t size, uint8_t memop, int cli_num, int i)
566 {
567 #define ECORE_ILT_NAMESIZE 10
568 	char str[ECORE_ILT_NAMESIZE];
569 
570 	if (memop == ILT_MEMOP_FREE) {
571 		ECORE_ILT_FREE(line->page, line->page_mapping, line->size);
572 		return 0;
573 	}
574 	snprintf(str, ECORE_ILT_NAMESIZE, "ILT_%d_%d", cli_num, i);
575 	ECORE_ILT_ZALLOC(line->page, &line->page_mapping, size, str);
576 	if (!line->page)
577 		return -1;
578 	line->size = size;
579 	return 0;
580 }
581 
582 
583 static int ecore_ilt_client_mem_op(struct bnx2x_softc *sc, int cli_num,
584 				   uint8_t memop)
585 {
586 	int i, rc = 0;
587 	struct ecore_ilt *ilt = SC_ILT(sc);
588 	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
589 
590 	if (!ilt || !ilt->lines)
591 		return -1;
592 
593 	if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM))
594 		return 0;
595 
596 	for (i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) {
597 		rc = ecore_ilt_line_mem_op(sc, &ilt->lines[i],
598 					   ilt_cli->page_size, memop, cli_num, i);
599 	}
600 	return rc;
601 }
602 
603 static inline int ecore_ilt_mem_op_cnic(struct bnx2x_softc *sc, uint8_t memop)
604 {
605 	int rc = 0;
606 
607 	if (CONFIGURE_NIC_MODE(sc))
608 		rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_SRC, memop);
609 	if (!rc)
610 		rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_TM, memop);
611 
612 	return rc;
613 }
614 
615 static int ecore_ilt_mem_op(struct bnx2x_softc *sc, uint8_t memop)
616 {
617 	int rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_CDU, memop);
618 	if (!rc)
619 		rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_QM, memop);
620 	if (!rc && CNIC_SUPPORT(sc) && !CONFIGURE_NIC_MODE(sc))
621 		rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_SRC, memop);
622 
623 	return rc;
624 }
625 
626 static void ecore_ilt_line_wr(struct bnx2x_softc *sc, int abs_idx,
627 			      ecore_dma_addr_t page_mapping)
628 {
629 	uint32_t reg;
630 
631 	reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8;
632 
633 	ecore_wr_64(sc, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping));
634 }
635 
636 static void ecore_ilt_line_init_op(struct bnx2x_softc *sc,
637 				   struct ecore_ilt *ilt, int idx, uint8_t initop)
638 {
639 	ecore_dma_addr_t	null_mapping;
640 	int abs_idx = ilt->start_line + idx;
641 
642 	switch (initop) {
643 	case INITOP_INIT:
644 		/* set in the init-value array */
645 	case INITOP_SET:
646 		ecore_ilt_line_wr(sc, abs_idx, ilt->lines[idx].page_mapping);
647 		break;
648 	case INITOP_CLEAR:
649 		null_mapping = 0;
650 		ecore_ilt_line_wr(sc, abs_idx, null_mapping);
651 		break;
652 	}
653 }
654 
655 static void ecore_ilt_boundry_init_op(struct bnx2x_softc *sc,
656 				      struct ilt_client_info *ilt_cli,
657 				      uint32_t ilt_start)
658 {
659 	uint32_t start_reg = 0;
660 	uint32_t end_reg = 0;
661 
662 	/* The boundary is either SET or INIT,
663 	   CLEAR => SET and for now SET ~~ INIT */
664 
665 	/* find the appropriate regs */
666 	switch (ilt_cli->client_num) {
667 		case ILT_CLIENT_CDU:
668 			start_reg = PXP2_REG_RQ_CDU_FIRST_ILT;
669 			end_reg = PXP2_REG_RQ_CDU_LAST_ILT;
670 			break;
671 		case ILT_CLIENT_QM:
672 			start_reg = PXP2_REG_RQ_QM_FIRST_ILT;
673 			end_reg = PXP2_REG_RQ_QM_LAST_ILT;
674 			break;
675 		case ILT_CLIENT_SRC:
676 			start_reg = PXP2_REG_RQ_SRC_FIRST_ILT;
677 			end_reg = PXP2_REG_RQ_SRC_LAST_ILT;
678 			break;
679 		case ILT_CLIENT_TM:
680 			start_reg = PXP2_REG_RQ_TM_FIRST_ILT;
681 			end_reg = PXP2_REG_RQ_TM_LAST_ILT;
682 			break;
683 	}
684 	REG_WR(sc, start_reg, (ilt_start + ilt_cli->start));
685 	REG_WR(sc, end_reg, (ilt_start + ilt_cli->end));
686 }
687 
688 static void ecore_ilt_client_init_op_ilt(struct bnx2x_softc *sc,
689 					 struct ecore_ilt *ilt,
690 					 struct ilt_client_info *ilt_cli,
691 					 uint8_t initop)
692 {
693 	int i;
694 
695 	if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
696 		return;
697 
698 	for (i = ilt_cli->start; i <= ilt_cli->end; i++)
699 		ecore_ilt_line_init_op(sc, ilt, i, initop);
700 
701 	/* init/clear the ILT boundries */
702 	ecore_ilt_boundry_init_op(sc, ilt_cli, ilt->start_line);
703 }
704 
705 static void ecore_ilt_client_init_op(struct bnx2x_softc *sc,
706 				     struct ilt_client_info *ilt_cli, uint8_t initop)
707 {
708 	struct ecore_ilt *ilt = SC_ILT(sc);
709 
710 	ecore_ilt_client_init_op_ilt(sc, ilt, ilt_cli, initop);
711 }
712 
713 static void ecore_ilt_client_id_init_op(struct bnx2x_softc *sc,
714 					int cli_num, uint8_t initop)
715 {
716 	struct ecore_ilt *ilt = SC_ILT(sc);
717 	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
718 
719 	ecore_ilt_client_init_op(sc, ilt_cli, initop);
720 }
721 
722 static inline void ecore_ilt_init_op_cnic(struct bnx2x_softc *sc, uint8_t initop)
723 {
724 	if (CONFIGURE_NIC_MODE(sc))
725 		ecore_ilt_client_id_init_op(sc, ILT_CLIENT_SRC, initop);
726 	ecore_ilt_client_id_init_op(sc, ILT_CLIENT_TM, initop);
727 }
728 
729 static void ecore_ilt_init_op(struct bnx2x_softc *sc, uint8_t initop)
730 {
731 	ecore_ilt_client_id_init_op(sc, ILT_CLIENT_CDU, initop);
732 	ecore_ilt_client_id_init_op(sc, ILT_CLIENT_QM, initop);
733 	if (CNIC_SUPPORT(sc) && !CONFIGURE_NIC_MODE(sc))
734 		ecore_ilt_client_id_init_op(sc, ILT_CLIENT_SRC, initop);
735 }
736 
737 static void ecore_ilt_init_client_psz(struct bnx2x_softc *sc, int cli_num,
738 				      uint32_t psz_reg, uint8_t initop)
739 {
740 	struct ecore_ilt *ilt = SC_ILT(sc);
741 	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
742 
743 	if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
744 		return;
745 
746 	switch (initop) {
747 	case INITOP_INIT:
748 		/* set in the init-value array */
749 	case INITOP_SET:
750 		REG_WR(sc, psz_reg, ILOG2(ilt_cli->page_size >> 12));
751 		break;
752 	case INITOP_CLEAR:
753 		break;
754 	}
755 }
756 
757 /*
758  * called during init common stage, ilt clients should be initialized
759  * prioir to calling this function
760  */
761 static void ecore_ilt_init_page_size(struct bnx2x_softc *sc, uint8_t initop)
762 {
763 	ecore_ilt_init_client_psz(sc, ILT_CLIENT_CDU,
764 				  PXP2_REG_RQ_CDU_P_SIZE, initop);
765 	ecore_ilt_init_client_psz(sc, ILT_CLIENT_QM,
766 				  PXP2_REG_RQ_QM_P_SIZE, initop);
767 	ecore_ilt_init_client_psz(sc, ILT_CLIENT_SRC,
768 				  PXP2_REG_RQ_SRC_P_SIZE, initop);
769 	ecore_ilt_init_client_psz(sc, ILT_CLIENT_TM,
770 				  PXP2_REG_RQ_TM_P_SIZE, initop);
771 }
772 
773 /****************************************************************************
774 * QM initializations
775 ****************************************************************************/
776 #define QM_QUEUES_PER_FUNC	16
777 #define QM_INIT_MIN_CID_COUNT	31
778 #define QM_INIT(cid_cnt)	(cid_cnt > QM_INIT_MIN_CID_COUNT)
779 
780 /* called during init port stage */
781 static void ecore_qm_init_cid_count(struct bnx2x_softc *sc, int qm_cid_count,
782 				    uint8_t initop)
783 {
784 	int port = SC_PORT(sc);
785 
786 	if (QM_INIT(qm_cid_count)) {
787 		switch (initop) {
788 		case INITOP_INIT:
789 			/* set in the init-value array */
790 		case INITOP_SET:
791 			REG_WR(sc, QM_REG_CONNNUM_0 + port*4,
792 			       qm_cid_count/16 - 1);
793 			break;
794 		case INITOP_CLEAR:
795 			break;
796 		}
797 	}
798 }
799 
800 static void ecore_qm_set_ptr_table(struct bnx2x_softc *sc, int qm_cid_count,
801 				   uint32_t base_reg, uint32_t reg)
802 {
803 	int i;
804 	uint32_t wb_data[2] = {0, 0};
805 	for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) {
806 		REG_WR(sc, base_reg + i*4,
807 		       qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
808 		ecore_init_wr_wb(sc, reg + i*8,
809 				 wb_data, 2);
810 	}
811 }
812 
813 /* called during init common stage */
814 static void ecore_qm_init_ptr_table(struct bnx2x_softc *sc, int qm_cid_count,
815 				    uint8_t initop)
816 {
817 	if (!QM_INIT(qm_cid_count))
818 		return;
819 
820 	switch (initop) {
821 	case INITOP_INIT:
822 		/* set in the init-value array */
823 	case INITOP_SET:
824 		ecore_qm_set_ptr_table(sc, qm_cid_count,
825 				       QM_REG_BASEADDR, QM_REG_PTRTBL);
826 		if (CHIP_IS_E1H(sc))
827 			ecore_qm_set_ptr_table(sc, qm_cid_count,
828 					       QM_REG_BASEADDR_EXT_A,
829 					       QM_REG_PTRTBL_EXT_A);
830 		break;
831 	case INITOP_CLEAR:
832 		break;
833 	}
834 }
835 
836 /****************************************************************************
837 * SRC initializations
838 ****************************************************************************/
839 #ifdef ECORE_L5
840 /* called during init func stage */
841 static void ecore_src_init_t2(struct bnx2x_softc *sc, struct src_ent *t2,
842 			      ecore_dma_addr_t t2_mapping, int src_cid_count)
843 {
844 	int i;
845 	int port = SC_PORT(sc);
846 
847 	/* Initialize T2 */
848 	for (i = 0; i < src_cid_count-1; i++)
849 		t2[i].next = (uint64_t)(t2_mapping +
850 			     (i+1)*sizeof(struct src_ent));
851 
852 	/* tell the searcher where the T2 table is */
853 	REG_WR(sc, SRC_REG_COUNTFREE0 + port*4, src_cid_count);
854 
855 	ecore_wr_64(sc, SRC_REG_FIRSTFREE0 + port*16,
856 		    U64_LO(t2_mapping), U64_HI(t2_mapping));
857 
858 	ecore_wr_64(sc, SRC_REG_LASTFREE0 + port*16,
859 		    U64_LO((uint64_t)t2_mapping +
860 			   (src_cid_count-1) * sizeof(struct src_ent)),
861 		    U64_HI((uint64_t)t2_mapping +
862 			   (src_cid_count-1) * sizeof(struct src_ent)));
863 }
864 #endif
865 #endif /* ECORE_INIT_OPS_H */
866