xref: /dpdk/drivers/net/bnx2x/ecore_init.h (revision d80e42cce4c7017ed8c99dabb8ae444a492acc1c)
1 /*-
2  * Copyright (c) 2007-2013 Cavium Inc. All rights reserved.
3  *
4  * Eric Davis        <edavis@broadcom.com>
5  * David Christensen <davidch@broadcom.com>
6  * Gary Zambrano     <zambrano@broadcom.com>
7  *
8  * Copyright (c) 2013-2015 Brocade Communications Systems, Inc.
9  * Copyright (c) 2015-2018 Cavium Inc.
10  * All rights reserved.
11  * www.cavium.com
12  *
13  * See LICENSE.bnx2x_pmd for copyright and licensing details.
14  */
15 
16 #ifndef ECORE_INIT_H
17 #define ECORE_INIT_H
18 
19 /* Init operation types and structures */
20 enum {
21 	OP_RD = 0x1,	/* read a single register */
22 	OP_WR,		/* write a single register */
23 	OP_SW,		/* copy a string to the device */
24 	OP_ZR,		/* clear memory */
25 	OP_ZP,		/* unzip then copy with DMAE */
26 	OP_WR_64,	/* write 64 bit pattern */
27 	OP_WB,		/* copy a string using DMAE */
28 	OP_WB_ZR,	/* Clear a string using DMAE or indirect-wr */
29 	OP_IF_MODE_OR,  /* Skip the following ops if all init modes don't match */
30 	OP_IF_MODE_AND, /* Skip the following ops if any init modes don't match */
31 	OP_IF_PHASE,
32 	OP_RT,
33 	OP_DELAY,
34 	OP_VERIFY,
35 	OP_MAX
36 };
37 
38 enum {
39 	STAGE_START,
40 	STAGE_END,
41 };
42 
43 /* Returns the index of start or end of a specific block stage in ops array*/
44 #define BLOCK_OPS_IDX(block, stage, end) \
45 	(2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
46 
47 
48 /* structs for the various opcodes */
49 struct raw_op {
50 	uint32_t op:8;
51 	uint32_t offset:24;
52 	uint32_t raw_data;
53 };
54 
55 struct op_read {
56 	uint32_t op:8;
57 	uint32_t offset:24;
58 	uint32_t val;
59 };
60 
61 struct op_write {
62 	uint32_t op:8;
63 	uint32_t offset:24;
64 	uint32_t val;
65 };
66 
67 struct op_arr_write {
68 	uint32_t op:8;
69 	uint32_t offset:24;
70 #ifdef __BIG_ENDIAN
71 	uint16_t data_len;
72 	uint16_t data_off;
73 #else /* __LITTLE_ENDIAN */
74 	uint16_t data_off;
75 	uint16_t data_len;
76 #endif
77 };
78 
79 struct op_zero {
80 	uint32_t op:8;
81 	uint32_t offset:24;
82 	uint32_t len;
83 };
84 
85 struct op_if_mode {
86 	uint32_t op:8;
87 	uint32_t cmd_offset:24;
88 	uint32_t mode_bit_map;
89 };
90 
91 struct op_if_phase {
92 	uint32_t op:8;
93 	uint32_t cmd_offset:24;
94 	uint32_t phase_bit_map;
95 };
96 
97 struct op_delay {
98 	uint32_t op:8;
99 	uint32_t reserved:24;
100 	uint32_t delay;
101 };
102 
103 union init_op {
104 	struct op_read		read;
105 	struct op_write		write;
106 	struct op_arr_write	arr_wr;
107 	struct op_zero		zero;
108 	struct raw_op		raw;
109 	struct op_if_mode	if_mode;
110 	struct op_if_phase	if_phase;
111 	struct op_delay		delay;
112 };
113 
114 
115 /* Init Phases */
116 enum {
117 	PHASE_COMMON,
118 	PHASE_PORT0,
119 	PHASE_PORT1,
120 	PHASE_PF0,
121 	PHASE_PF1,
122 	PHASE_PF2,
123 	PHASE_PF3,
124 	PHASE_PF4,
125 	PHASE_PF5,
126 	PHASE_PF6,
127 	PHASE_PF7,
128 	NUM_OF_INIT_PHASES
129 };
130 
131 /* Init Modes */
132 enum {
133 	MODE_ASIC                      = 0x00000001,
134 	MODE_FPGA                      = 0x00000002,
135 	MODE_EMUL                      = 0x00000004,
136 	MODE_E2                        = 0x00000008,
137 	MODE_E3                        = 0x00000010,
138 	MODE_PORT2                     = 0x00000020,
139 	MODE_PORT4                     = 0x00000040,
140 	MODE_SF                        = 0x00000080,
141 	MODE_MF                        = 0x00000100,
142 	MODE_MF_SD                     = 0x00000200,
143 	MODE_MF_SI                     = 0x00000400,
144 	MODE_MF_AFEX                   = 0x00000800,
145 	MODE_E3_A0                     = 0x00001000,
146 	MODE_E3_B0                     = 0x00002000,
147 	MODE_COS3                      = 0x00004000,
148 	MODE_COS6                      = 0x00008000,
149 	MODE_LITTLE_ENDIAN             = 0x00010000,
150 	MODE_BIG_ENDIAN                = 0x00020000,
151 };
152 
153 /* Init Blocks */
154 enum {
155 	BLOCK_ATC,
156 	BLOCK_BRB1,
157 	BLOCK_CCM,
158 	BLOCK_CDU,
159 	BLOCK_CFC,
160 	BLOCK_CSDM,
161 	BLOCK_CSEM,
162 	BLOCK_DBG,
163 	BLOCK_DMAE,
164 	BLOCK_DORQ,
165 	BLOCK_HC,
166 	BLOCK_IGU,
167 	BLOCK_MISC,
168 	BLOCK_NIG,
169 	BLOCK_PBF,
170 	BLOCK_PGLUE_B,
171 	BLOCK_PRS,
172 	BLOCK_PXP2,
173 	BLOCK_PXP,
174 	BLOCK_QM,
175 	BLOCK_SRC,
176 	BLOCK_TCM,
177 	BLOCK_TM,
178 	BLOCK_TSDM,
179 	BLOCK_TSEM,
180 	BLOCK_UCM,
181 	BLOCK_UPB,
182 	BLOCK_USDM,
183 	BLOCK_USEM,
184 	BLOCK_XCM,
185 	BLOCK_XPB,
186 	BLOCK_XSDM,
187 	BLOCK_XSEM,
188 	BLOCK_MISC_AEU,
189 	NUM_OF_INIT_BLOCKS
190 };
191 
192 
193 
194 
195 
196 
197 
198 
199 /* Vnics per mode */
200 #define ECORE_PORT2_MODE_NUM_VNICS 4
201 
202 
203 /* QM queue numbers */
204 #define ECORE_ETH_Q		0
205 #define ECORE_TOE_Q		3
206 #define ECORE_TOE_ACK_Q		6
207 #define ECORE_ISCSI_Q		9
208 #define ECORE_ISCSI_ACK_Q	11
209 #define ECORE_FCOE_Q		10
210 
211 /* Vnics per mode */
212 #define ECORE_PORT4_MODE_NUM_VNICS 2
213 
214 /* COS offset for port1 in E3 B0 4port mode */
215 #define ECORE_E3B0_PORT1_COS_OFFSET 3
216 
217 /* QM Register addresses */
218 #define ECORE_Q_VOQ_REG_ADDR(pf_q_num)\
219 	(QM_REG_QVOQIDX_0 + 4 * (pf_q_num))
220 #define ECORE_VOQ_Q_REG_ADDR(cos, pf_q_num)\
221 	(QM_REG_VOQQMASK_0_LSB + 4 * ((cos) * 2 + ((pf_q_num) >> 5)))
222 #define ECORE_Q_CMDQ_REG_ADDR(pf_q_num)\
223 	(QM_REG_BYTECRDCMDQ_0 + 4 * ((pf_q_num) >> 4))
224 
225 /* extracts the QM queue number for the specified port and vnic */
226 #define ECORE_PF_Q_NUM(q_num, port, vnic)\
227 	((((port) << 1) | (vnic)) * 16 + (q_num))
228 
229 
230 /* Maps the specified queue to the specified COS */
231 static inline void ecore_map_q_cos(struct bnx2x_softc *sc, uint32_t q_num, uint32_t new_cos)
232 {
233 	/* find current COS mapping */
234 	uint32_t curr_cos = REG_RD(sc, QM_REG_QVOQIDX_0 + q_num * 4);
235 
236 	/* check if queue->COS mapping has changed */
237 	if (curr_cos != new_cos) {
238 		uint32_t num_vnics = ECORE_PORT2_MODE_NUM_VNICS;
239 		uint32_t reg_addr, reg_bit_map, vnic;
240 
241 		/* update parameters for 4port mode */
242 		if (INIT_MODE_FLAGS(sc) & MODE_PORT4) {
243 			num_vnics = ECORE_PORT4_MODE_NUM_VNICS;
244 			if (PORT_ID(sc)) {
245 				curr_cos += ECORE_E3B0_PORT1_COS_OFFSET;
246 				new_cos += ECORE_E3B0_PORT1_COS_OFFSET;
247 			}
248 		}
249 
250 		/* change queue mapping for each VNIC */
251 		for (vnic = 0; vnic < num_vnics; vnic++) {
252 			uint32_t pf_q_num =
253 				ECORE_PF_Q_NUM(q_num, PORT_ID(sc), vnic);
254 			uint32_t q_bit_map = 1 << (pf_q_num & 0x1f);
255 
256 			/* overwrite queue->VOQ mapping */
257 			REG_WR(sc, ECORE_Q_VOQ_REG_ADDR(pf_q_num), new_cos);
258 
259 			/* clear queue bit from current COS bit map */
260 			reg_addr = ECORE_VOQ_Q_REG_ADDR(curr_cos, pf_q_num);
261 			reg_bit_map = REG_RD(sc, reg_addr);
262 			REG_WR(sc, reg_addr, reg_bit_map & (~q_bit_map));
263 
264 			/* set queue bit in new COS bit map */
265 			reg_addr = ECORE_VOQ_Q_REG_ADDR(new_cos, pf_q_num);
266 			reg_bit_map = REG_RD(sc, reg_addr);
267 			REG_WR(sc, reg_addr, reg_bit_map | q_bit_map);
268 
269 			/* set/clear queue bit in command-queue bit map
270 			(E2/E3A0 only, valid COS values are 0/1) */
271 			if (!(INIT_MODE_FLAGS(sc) & MODE_E3_B0)) {
272 				reg_addr = ECORE_Q_CMDQ_REG_ADDR(pf_q_num);
273 				reg_bit_map = REG_RD(sc, reg_addr);
274 				q_bit_map = 1 << (2 * (pf_q_num & 0xf));
275 				reg_bit_map = new_cos ?
276 					      (reg_bit_map | q_bit_map) :
277 					      (reg_bit_map & (~q_bit_map));
278 				REG_WR(sc, reg_addr, reg_bit_map);
279 			}
280 		}
281 	}
282 }
283 
284 /* Configures the QM according to the specified per-traffic-type COSes */
285 static inline void ecore_dcb_config_qm(struct bnx2x_softc *sc, enum cos_mode mode,
286 				       struct priority_cos *traffic_cos)
287 {
288 	ecore_map_q_cos(sc, ECORE_FCOE_Q,
289 			traffic_cos[LLFC_TRAFFIC_TYPE_FCOE].cos);
290 	ecore_map_q_cos(sc, ECORE_ISCSI_Q,
291 			traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
292 	ecore_map_q_cos(sc, ECORE_ISCSI_ACK_Q,
293 		traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
294 	if (mode != STATIC_COS) {
295 		/* required only in OVERRIDE_COS mode */
296 		ecore_map_q_cos(sc, ECORE_ETH_Q,
297 				traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
298 		ecore_map_q_cos(sc, ECORE_TOE_Q,
299 				traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
300 		ecore_map_q_cos(sc, ECORE_TOE_ACK_Q,
301 				traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
302 	}
303 }
304 
305 
306 /*
307  * congestion management port init api description
308  * the api works as follows:
309  * the driver should pass the cmng_init_input struct, the port_init function
310  * will prepare the required internal ram structure which will be passed back
311  * to the driver (cmng_init) that will write it into the internal ram.
312  *
313  * IMPORTANT REMARKS:
314  * 1. the cmng_init struct does not represent the contiguous internal ram
315  *    structure. the driver should use the XSTORM_CMNG_PERPORT_VARS_OFFSET
316  *    offset in order to write the port sub struct and the
317  *    PFID_FROM_PORT_AND_VNIC offset for writing the vnic sub struct (in other
318  *    words - don't use memcpy!).
319  * 2. although the cmng_init struct is filled for the maximal vnic number
320  *    possible, the driver should only write the valid vnics into the internal
321  *    ram according to the appropriate port mode.
322  */
323 #define BITS_TO_BYTES(x) ((x)/8)
324 
325 /* CMNG constants, as derived from system spec calculations */
326 
327 /* default MIN rate in case VNIC min rate is configured to zero- 100Mbps */
328 #define DEF_MIN_RATE 100
329 
330 /* resolution of the rate shaping timer - 400 usec */
331 #define RS_PERIODIC_TIMEOUT_USEC 400
332 
333 /*
334  *  number of bytes in single QM arbitration cycle -
335  *  coefficient for calculating the fairness timer
336  */
337 #define QM_ARB_BYTES 160000
338 
339 /* resolution of Min algorithm 1:100 */
340 #define MIN_RES 100
341 
342 /*
343  *  how many bytes above threshold for
344  *  the minimal credit of Min algorithm
345  */
346 #define MIN_ABOVE_THRESH 32768
347 
348 /*
349  *  Fairness algorithm integration time coefficient -
350  *  for calculating the actual Tfair
351  */
352 #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
353 
354 /* Memory of fairness algorithm - 2 cycles */
355 #define FAIR_MEM 2
356 #define SAFC_TIMEOUT_USEC 52
357 
358 #define SDM_TICKS 4
359 
360 
361 static inline void ecore_init_max(const struct cmng_init_input *input_data,
362 				  uint32_t r_param, struct cmng_init *ram_data)
363 {
364 	uint32_t vnic;
365 	struct cmng_vnic *vdata = &ram_data->vnic;
366 	struct cmng_struct_per_port *pdata = &ram_data->port;
367 	/*
368 	 * rate shaping per-port variables
369 	 *  100 micro seconds in SDM ticks = 25
370 	 *  since each tick is 4 microSeconds
371 	 */
372 
373 	pdata->rs_vars.rs_periodic_timeout =
374 	RS_PERIODIC_TIMEOUT_USEC / SDM_TICKS;
375 
376 	/* this is the threshold below which no timer arming will occur.
377 	 *  1.25 coefficient is for the threshold to be a little bigger
378 	 *  then the real time to compensate for timer in-accuracy
379 	 */
380 	pdata->rs_vars.rs_threshold =
381 	(5 * RS_PERIODIC_TIMEOUT_USEC * r_param)/4;
382 
383 	/* rate shaping per-vnic variables */
384 	for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
385 		/* global vnic counter */
386 		vdata->vnic_max_rate[vnic].vn_counter.rate =
387 		input_data->vnic_max_rate[vnic];
388 		/*
389 		 * maximal Mbps for this vnic
390 		 * the quota in each timer period - number of bytes
391 		 * transmitted in this period
392 		 */
393 		vdata->vnic_max_rate[vnic].vn_counter.quota =
394 			RS_PERIODIC_TIMEOUT_USEC *
395 			(uint32_t)vdata->vnic_max_rate[vnic].vn_counter.rate / 8;
396 	}
397 
398 }
399 
400 static inline void ecore_init_max_per_vn(uint16_t vnic_max_rate,
401 				  struct rate_shaping_vars_per_vn *ram_data)
402 {
403 	/* global vnic counter */
404 	ram_data->vn_counter.rate = vnic_max_rate;
405 
406 	/*
407 	* maximal Mbps for this vnic
408 	* the quota in each timer period - number of bytes
409 	* transmitted in this period
410 	*/
411 	ram_data->vn_counter.quota =
412 		RS_PERIODIC_TIMEOUT_USEC * (uint32_t)vnic_max_rate / 8;
413 }
414 
415 static inline void ecore_init_min(const struct cmng_init_input *input_data,
416 				  uint32_t r_param, struct cmng_init *ram_data)
417 {
418 	uint32_t vnic, fair_periodic_timeout_usec, vnicWeightSum, tFair;
419 	struct cmng_vnic *vdata = &ram_data->vnic;
420 	struct cmng_struct_per_port *pdata = &ram_data->port;
421 
422 	/* this is the resolution of the fairness timer */
423 	fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
424 
425 	/*
426 	 * fairness per-port variables
427 	 * for 10G it is 1000usec. for 1G it is 10000usec.
428 	 */
429 	tFair = T_FAIR_COEF / input_data->port_rate;
430 
431 	/* this is the threshold below which we won't arm the timer anymore */
432 	pdata->fair_vars.fair_threshold = QM_ARB_BYTES;
433 
434 	/*
435 	 *  we multiply by 1e3/8 to get bytes/msec. We don't want the credits
436 	 *  to pass a credit of the T_FAIR*FAIR_MEM (algorithm resolution)
437 	 */
438 	pdata->fair_vars.upper_bound = r_param * tFair * FAIR_MEM;
439 
440 	/* since each tick is 4 microSeconds */
441 	pdata->fair_vars.fairness_timeout =
442 				fair_periodic_timeout_usec / SDM_TICKS;
443 
444 	/* calculate sum of weights */
445 	vnicWeightSum = 0;
446 
447 	for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++)
448 		vnicWeightSum += input_data->vnic_min_rate[vnic];
449 
450 	/* global vnic counter */
451 	if (vnicWeightSum > 0) {
452 		/* fairness per-vnic variables */
453 		for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
454 			/*
455 			 *  this is the credit for each period of the fairness
456 			 *  algorithm - number of bytes in T_FAIR (this vnic
457 			 *  share of the port rate)
458 			 */
459 			vdata->vnic_min_rate[vnic].vn_credit_delta =
460 				((uint32_t)(input_data->vnic_min_rate[vnic]) * 100 *
461 				(T_FAIR_COEF / (8 * 100 * vnicWeightSum)));
462 			if (vdata->vnic_min_rate[vnic].vn_credit_delta <
463 			    pdata->fair_vars.fair_threshold +
464 			    MIN_ABOVE_THRESH) {
465 				vdata->vnic_min_rate[vnic].vn_credit_delta =
466 					pdata->fair_vars.fair_threshold +
467 					MIN_ABOVE_THRESH;
468 			}
469 		}
470 	}
471 }
472 
473 static inline void ecore_init_fw_wrr(const struct cmng_init_input *input_data,
474 				     struct cmng_init *ram_data)
475 {
476 	uint32_t vnic, cos;
477 	uint32_t cosWeightSum = 0;
478 	struct cmng_vnic *vdata = &ram_data->vnic;
479 	struct cmng_struct_per_port *pdata = &ram_data->port;
480 
481 	for (cos = 0; cos < MAX_COS_NUMBER; cos++)
482 		cosWeightSum += input_data->cos_min_rate[cos];
483 
484 	if (cosWeightSum > 0) {
485 
486 		for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
487 			/*
488 			 *  Since cos and vnic shouldn't work together the rate
489 			 *  to divide between the coses is the port rate.
490 			 */
491 			uint32_t *ccd = vdata->vnic_min_rate[vnic].cos_credit_delta;
492 			for (cos = 0; cos < MAX_COS_NUMBER; cos++) {
493 				/*
494 				 * this is the credit for each period of
495 				 * the fairness algorithm - number of bytes
496 				 * in T_FAIR (this cos share of the vnic rate)
497 				 */
498 				ccd[cos] =
499 				    ((uint32_t)input_data->cos_min_rate[cos] * 100 *
500 				    (T_FAIR_COEF / (8 * 100 * cosWeightSum)));
501 				 if (ccd[cos] < pdata->fair_vars.fair_threshold
502 						+ MIN_ABOVE_THRESH) {
503 					ccd[cos] =
504 					    pdata->fair_vars.fair_threshold +
505 					    MIN_ABOVE_THRESH;
506 				}
507 			}
508 		}
509 	}
510 }
511 
512 static inline void ecore_init_safc(struct cmng_init *ram_data)
513 {
514 	/* in microSeconds */
515 	ram_data->port.safc_vars.safc_timeout_usec = SAFC_TIMEOUT_USEC;
516 }
517 
518 /* Congestion management port init */
519 static inline void ecore_init_cmng(const struct cmng_init_input *input_data,
520 				   struct cmng_init *ram_data)
521 {
522 	uint32_t r_param;
523 	ECORE_MEMSET(ram_data, 0,sizeof(struct cmng_init));
524 
525 	ram_data->port.flags = input_data->flags;
526 
527 	/*
528 	 *  number of bytes transmitted in a rate of 10Gbps
529 	 *  in one usec = 1.25KB.
530 	 */
531 	r_param = BITS_TO_BYTES(input_data->port_rate);
532 	ecore_init_max(input_data, r_param, ram_data);
533 	ecore_init_min(input_data, r_param, ram_data);
534 	ecore_init_fw_wrr(input_data, ram_data);
535 	ecore_init_safc(ram_data);
536 }
537 
538 
539 
540 
541 /* Returns the index of start or end of a specific block stage in ops array*/
542 #define BLOCK_OPS_IDX(block, stage, end) \
543 			(2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
544 
545 
546 #define INITOP_SET		0	/* set the HW directly */
547 #define INITOP_CLEAR		1	/* clear the HW directly */
548 #define INITOP_INIT		2	/* set the init-value array */
549 
550 /****************************************************************************
551 * ILT management
552 ****************************************************************************/
553 struct ilt_line {
554 	ecore_dma_addr_t page_mapping;
555 	void *page;
556 	uint32_t size;
557 };
558 
559 struct ilt_client_info {
560 	uint32_t page_size;
561 	uint16_t start;
562 	uint16_t end;
563 	uint16_t client_num;
564 	uint16_t flags;
565 #define ILT_CLIENT_SKIP_INIT	0x1
566 #define ILT_CLIENT_SKIP_MEM	0x2
567 };
568 
569 struct ecore_ilt {
570 	uint32_t start_line;
571 	struct ilt_line		*lines;
572 	struct ilt_client_info	clients[4];
573 #define ILT_CLIENT_CDU	0
574 #define ILT_CLIENT_QM	1
575 #define ILT_CLIENT_SRC	2
576 #define ILT_CLIENT_TM	3
577 };
578 
579 /****************************************************************************
580 * SRC configuration
581 ****************************************************************************/
582 struct src_ent {
583 	uint8_t opaque[56];
584 	uint64_t next;
585 };
586 
587 /****************************************************************************
588 * Parity configuration
589 ****************************************************************************/
590 #define BLOCK_PRTY_INFO(block, en_mask, m1h, m2, m3) \
591 { \
592 	block##_REG_##block##_PRTY_MASK, \
593 	block##_REG_##block##_PRTY_STS_CLR, \
594 	en_mask, {m1h, m2, m3}, #block \
595 }
596 
597 #define BLOCK_PRTY_INFO_0(block, en_mask, m1h, m2, m3) \
598 { \
599 	block##_REG_##block##_PRTY_MASK_0, \
600 	block##_REG_##block##_PRTY_STS_CLR_0, \
601 	en_mask, {m1h, m2, m3}, #block"_0" \
602 }
603 
604 #define BLOCK_PRTY_INFO_1(block, en_mask, m1h, m2, m3) \
605 { \
606 	block##_REG_##block##_PRTY_MASK_1, \
607 	block##_REG_##block##_PRTY_STS_CLR_1, \
608 	en_mask, {m1h, m2, m3}, #block"_1" \
609 }
610 
611 static const struct {
612 	uint32_t mask_addr;
613 	uint32_t sts_clr_addr;
614 	uint32_t en_mask;		/* Mask to enable parity attentions */
615 	struct {
616 		uint32_t e1h;	/* 57711 */
617 		uint32_t e2;		/* 57712 */
618 		uint32_t e3;		/* 578xx */
619 	} reg_mask;		/* Register mask (all valid bits) */
620 	char name[8];		/* Block's longest name is 7 characters long
621 				 * (name + suffix)
622 				 */
623 } ecore_blocks_parity_data[] = {
624 	/* bit 19 masked */
625 	/* REG_WR(bp, PXP_REG_PXP_PRTY_MASK, 0x80000); */
626 	/* bit 5,18,20-31 */
627 	/* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_0, 0xfff40020); */
628 	/* bit 5 */
629 	/* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_1, 0x20);	*/
630 	/* REG_WR(bp, HC_REG_HC_PRTY_MASK, 0x0); */
631 	/* REG_WR(bp, MISC_REG_MISC_PRTY_MASK, 0x0); */
632 
633 	/* Block IGU, MISC, PXP and PXP2 parity errors as long as we don't
634 	 * want to handle "system kill" flow at the moment.
635 	 */
636 	BLOCK_PRTY_INFO(PXP, 0x7ffffff, 0x3ffffff, 0x7ffffff,
637 			0x7ffffff),
638 	BLOCK_PRTY_INFO_0(PXP2,	0xffffffff, 0xffffffff, 0xffffffff,
639 			  0xffffffff),
640 	BLOCK_PRTY_INFO_1(PXP2,	0x1ffffff, 0x7f, 0x7ff, 0x1ffffff),
641 	BLOCK_PRTY_INFO(HC, 0x7, 0x7, 0, 0),
642 	BLOCK_PRTY_INFO(NIG, 0xffffffff, 0xffffffff, 0, 0),
643 	BLOCK_PRTY_INFO_0(NIG,	0xffffffff, 0, 0xffffffff, 0xffffffff),
644 	BLOCK_PRTY_INFO_1(NIG,	0xffff, 0, 0xff, 0xffff),
645 	BLOCK_PRTY_INFO(IGU, 0x7ff, 0, 0x7ff, 0x7ff),
646 	BLOCK_PRTY_INFO(MISC, 0x1, 0x1, 0x1, 0x1),
647 	BLOCK_PRTY_INFO(QM, 0, 0xfff, 0xfff, 0xfff),
648 	BLOCK_PRTY_INFO(ATC, 0x1f, 0, 0x1f, 0x1f),
649 	BLOCK_PRTY_INFO(PGLUE_B, 0x3, 0, 0x3, 0x3),
650 	BLOCK_PRTY_INFO(DORQ, 0, 0x3, 0x3, 0x3),
651 	{GRCBASE_UPB + PB_REG_PB_PRTY_MASK,
652 		GRCBASE_UPB + PB_REG_PB_PRTY_STS_CLR, 0xf,
653 		{0xf, 0xf, 0xf}, "UPB"},
654 	{GRCBASE_XPB + PB_REG_PB_PRTY_MASK,
655 		GRCBASE_XPB + PB_REG_PB_PRTY_STS_CLR, 0,
656 		{0xf, 0xf, 0xf}, "XPB"},
657 	BLOCK_PRTY_INFO(SRC, 0x4, 0x7, 0x7, 0x7),
658 	BLOCK_PRTY_INFO(CDU, 0, 0x1f, 0x1f, 0x1f),
659 	BLOCK_PRTY_INFO(CFC, 0, 0xf, 0xf, 0x3f),
660 	BLOCK_PRTY_INFO(DBG, 0, 0x1, 0x1, 0x1),
661 	BLOCK_PRTY_INFO(DMAE, 0, 0xf, 0xf, 0xf),
662 	BLOCK_PRTY_INFO(BRB1, 0, 0xf, 0xf, 0xf),
663 	BLOCK_PRTY_INFO(PRS, (1<<6), 0xff, 0xff, 0xff),
664 	BLOCK_PRTY_INFO(PBF, 0, 0x3ffff, 0xfffff, 0xfffffff),
665 	BLOCK_PRTY_INFO(TM, 0, 0x7f, 0x7f, 0x7f),
666 	BLOCK_PRTY_INFO(TSDM, 0x18, 0x7ff, 0x7ff, 0x7ff),
667 	BLOCK_PRTY_INFO(CSDM, 0x8, 0x7ff, 0x7ff, 0x7ff),
668 	BLOCK_PRTY_INFO(USDM, 0x38, 0x7ff, 0x7ff, 0x7ff),
669 	BLOCK_PRTY_INFO(XSDM, 0x8, 0x7ff, 0x7ff, 0x7ff),
670 	BLOCK_PRTY_INFO(TCM, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
671 	BLOCK_PRTY_INFO(CCM, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
672 	BLOCK_PRTY_INFO(UCM, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
673 	BLOCK_PRTY_INFO(XCM, 0, 0x3fffffff, 0x3fffffff, 0x3fffffff),
674 	BLOCK_PRTY_INFO_0(TSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff),
675 	BLOCK_PRTY_INFO_1(TSEM, 0, 0x1f, 0x3f, 0x3f),
676 	BLOCK_PRTY_INFO_0(USEM, 0, 0xffffffff, 0xffffffff, 0xffffffff),
677 	BLOCK_PRTY_INFO_1(USEM, 0, 0x1f, 0x1f, 0x1f),
678 	BLOCK_PRTY_INFO_0(CSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff),
679 	BLOCK_PRTY_INFO_1(CSEM, 0, 0x1f, 0x1f, 0x1f),
680 	BLOCK_PRTY_INFO_0(XSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff),
681 	BLOCK_PRTY_INFO_1(XSEM, 0, 0x1f, 0x3f, 0x3f),
682 };
683 
684 
685 /* [28] MCP Latched rom_parity
686  * [29] MCP Latched ump_rx_parity
687  * [30] MCP Latched ump_tx_parity
688  * [31] MCP Latched scpad_parity
689  */
690 #define MISC_AEU_ENABLE_MCP_PRTY_BITS	\
691 	(AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
692 	 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
693 	 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY | \
694 	 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
695 
696 /* Below registers control the MCP parity attention output. When
697  * MISC_AEU_ENABLE_MCP_PRTY_BITS are set - attentions are
698  * enabled, when cleared - disabled.
699  */
700 static const uint32_t mcp_attn_ctl_regs[] = {
701 	MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0,
702 	MISC_REG_AEU_ENABLE4_NIG_0,
703 	MISC_REG_AEU_ENABLE4_PXP_0,
704 	MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0,
705 	MISC_REG_AEU_ENABLE4_NIG_1,
706 	MISC_REG_AEU_ENABLE4_PXP_1
707 };
708 
709 static inline void ecore_set_mcp_parity(struct bnx2x_softc *sc, uint8_t enable)
710 {
711 	uint32_t i;
712 	uint32_t reg_val;
713 
714 	for (i = 0; i < ARRSIZE(mcp_attn_ctl_regs); i++) {
715 		reg_val = REG_RD(sc, mcp_attn_ctl_regs[i]);
716 
717 		if (enable)
718 			reg_val |= MISC_AEU_ENABLE_MCP_PRTY_BITS;
719 		else
720 			reg_val &= ~MISC_AEU_ENABLE_MCP_PRTY_BITS;
721 
722 		REG_WR(sc, mcp_attn_ctl_regs[i], reg_val);
723 	}
724 }
725 
726 static inline uint32_t ecore_parity_reg_mask(struct bnx2x_softc *sc, int idx)
727 {
728 	if (CHIP_IS_E1H(sc))
729 		return ecore_blocks_parity_data[idx].reg_mask.e1h;
730 	else if (CHIP_IS_E2(sc))
731 		return ecore_blocks_parity_data[idx].reg_mask.e2;
732 	else /* CHIP_IS_E3 */
733 		return ecore_blocks_parity_data[idx].reg_mask.e3;
734 }
735 
736 static inline void ecore_disable_blocks_parity(struct bnx2x_softc *sc)
737 {
738 	uint32_t i;
739 
740 	for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) {
741 		uint32_t dis_mask = ecore_parity_reg_mask(sc, i);
742 
743 		if (dis_mask) {
744 			REG_WR(sc, ecore_blocks_parity_data[i].mask_addr,
745 			       dis_mask);
746 			ECORE_MSG("Setting parity mask "
747 						 "for %s to\t\t0x%x",
748 				    ecore_blocks_parity_data[i].name, dis_mask);
749 		}
750 	}
751 
752 	/* Disable MCP parity attentions */
753 	ecore_set_mcp_parity(sc, FALSE);
754 }
755 
756 /**
757  * Clear the parity error status registers.
758  */
759 static inline void ecore_clear_blocks_parity(struct bnx2x_softc *sc)
760 {
761 	uint32_t i;
762 	uint32_t reg_val, mcp_aeu_bits =
763 		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY |
764 		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY |
765 		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY |
766 		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY;
767 
768 	/* Clear SEM_FAST parities */
769 	REG_WR(sc, XSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
770 	REG_WR(sc, TSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
771 	REG_WR(sc, USEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
772 	REG_WR(sc, CSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
773 
774 	for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) {
775 		uint32_t reg_mask = ecore_parity_reg_mask(sc, i);
776 
777 		if (reg_mask) {
778 			reg_val = REG_RD(sc, ecore_blocks_parity_data[i].
779 					 sts_clr_addr);
780 			if (reg_val & reg_mask)
781 				ECORE_MSG("Parity errors in %s: 0x%x",
782 					   ecore_blocks_parity_data[i].name,
783 					   reg_val & reg_mask);
784 		}
785 	}
786 
787 	/* Check if there were parity attentions in MCP */
788 	reg_val = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_MCP);
789 	if (reg_val & mcp_aeu_bits)
790 		ECORE_MSG("Parity error in MCP: 0x%x",
791 			   reg_val & mcp_aeu_bits);
792 
793 	/* Clear parity attentions in MCP:
794 	 * [7]  clears Latched rom_parity
795 	 * [8]  clears Latched ump_rx_parity
796 	 * [9]  clears Latched ump_tx_parity
797 	 * [10] clears Latched scpad_parity (both ports)
798 	 */
799 	REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x780);
800 }
801 
802 static inline void ecore_enable_blocks_parity(struct bnx2x_softc *sc)
803 {
804 	uint32_t i;
805 
806 	for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) {
807 		uint32_t reg_mask = ecore_parity_reg_mask(sc, i);
808 
809 		if (reg_mask)
810 			REG_WR(sc, ecore_blocks_parity_data[i].mask_addr,
811 				ecore_blocks_parity_data[i].en_mask & reg_mask);
812 	}
813 
814 	/* Enable MCP parity attentions */
815 	ecore_set_mcp_parity(sc, TRUE);
816 }
817 
818 
819 #endif /* ECORE_INIT_H */
820