xref: /dpdk/drivers/net/bnx2x/bnx2x.c (revision 089e5ed727a15da2729cfee9b63533dd120bd04c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2007-2013 Broadcom Corporation.
3  *
4  * Eric Davis        <edavis@broadcom.com>
5  * David Christensen <davidch@broadcom.com>
6  * Gary Zambrano     <zambrano@broadcom.com>
7  *
8  * Copyright (c) 2013-2015 Brocade Communications Systems, Inc.
9  * Copyright (c) 2015-2018 Cavium Inc.
10  * All rights reserved.
11  * www.cavium.com
12  */
13 
14 #define BNX2X_DRIVER_VERSION "1.78.18"
15 
16 #include "bnx2x.h"
17 #include "bnx2x_vfpf.h"
18 #include "ecore_sp.h"
19 #include "ecore_init.h"
20 #include "ecore_init_ops.h"
21 
22 #include "rte_version.h"
23 
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <fcntl.h>
27 #include <zlib.h>
28 #include <rte_string_fns.h>
29 
30 #define BNX2X_PMD_VER_PREFIX "BNX2X PMD"
31 #define BNX2X_PMD_VERSION_MAJOR 1
32 #define BNX2X_PMD_VERSION_MINOR 0
33 #define BNX2X_PMD_VERSION_REVISION 7
34 #define BNX2X_PMD_VERSION_PATCH 1
35 
36 static inline const char *
37 bnx2x_pmd_version(void)
38 {
39 	static char version[32];
40 
41 	snprintf(version, sizeof(version), "%s %s_%d.%d.%d.%d",
42 			BNX2X_PMD_VER_PREFIX,
43 			BNX2X_DRIVER_VERSION,
44 			BNX2X_PMD_VERSION_MAJOR,
45 			BNX2X_PMD_VERSION_MINOR,
46 			BNX2X_PMD_VERSION_REVISION,
47 			BNX2X_PMD_VERSION_PATCH);
48 
49 	return version;
50 }
51 
52 static z_stream zlib_stream;
53 
54 #define EVL_VLID_MASK 0x0FFF
55 
56 #define BNX2X_DEF_SB_ATT_IDX 0x0001
57 #define BNX2X_DEF_SB_IDX     0x0002
58 
59 /*
60  * FLR Support - bnx2x_pf_flr_clnup() is called during nic_load in the per
61  * function HW initialization.
62  */
63 #define FLR_WAIT_USEC     10000	/* 10 msecs */
64 #define FLR_WAIT_INTERVAL 50	/* usecs */
65 #define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL)	/* 200 */
66 
67 struct pbf_pN_buf_regs {
68 	int pN;
69 	uint32_t init_crd;
70 	uint32_t crd;
71 	uint32_t crd_freed;
72 };
73 
74 struct pbf_pN_cmd_regs {
75 	int pN;
76 	uint32_t lines_occup;
77 	uint32_t lines_freed;
78 };
79 
80 /* resources needed for unloading a previously loaded device */
81 
82 #define BNX2X_PREV_WAIT_NEEDED 1
83 rte_spinlock_t bnx2x_prev_mtx;
84 struct bnx2x_prev_list_node {
85 	LIST_ENTRY(bnx2x_prev_list_node) node;
86 	uint8_t bus;
87 	uint8_t slot;
88 	uint8_t path;
89 	uint8_t aer;
90 	uint8_t undi;
91 };
92 
93 static LIST_HEAD(, bnx2x_prev_list_node) bnx2x_prev_list
94 	= LIST_HEAD_INITIALIZER(bnx2x_prev_list);
95 
96 static int load_count[2][3] = { { 0 } };
97 	/* per-path: 0-common, 1-port0, 2-port1 */
98 
99 static void bnx2x_cmng_fns_init(struct bnx2x_softc *sc, uint8_t read_cfg,
100 				uint8_t cmng_type);
101 static int bnx2x_get_cmng_fns_mode(struct bnx2x_softc *sc);
102 static void storm_memset_cmng(struct bnx2x_softc *sc, struct cmng_init *cmng,
103 			      uint8_t port);
104 static void bnx2x_set_reset_global(struct bnx2x_softc *sc);
105 static void bnx2x_set_reset_in_progress(struct bnx2x_softc *sc);
106 static uint8_t bnx2x_reset_is_done(struct bnx2x_softc *sc, int engine);
107 static uint8_t bnx2x_clear_pf_load(struct bnx2x_softc *sc);
108 static uint8_t bnx2x_chk_parity_attn(struct bnx2x_softc *sc, uint8_t * global,
109 				     uint8_t print);
110 static void bnx2x_int_disable(struct bnx2x_softc *sc);
111 static int bnx2x_release_leader_lock(struct bnx2x_softc *sc);
112 static void bnx2x_pf_disable(struct bnx2x_softc *sc);
113 static void bnx2x_update_rx_prod(struct bnx2x_softc *sc,
114 				 struct bnx2x_fastpath *fp,
115 				 uint16_t rx_bd_prod, uint16_t rx_cq_prod);
116 static void bnx2x_link_report_locked(struct bnx2x_softc *sc);
117 static void bnx2x_link_report(struct bnx2x_softc *sc);
118 void bnx2x_link_status_update(struct bnx2x_softc *sc);
119 static int bnx2x_alloc_mem(struct bnx2x_softc *sc);
120 static void bnx2x_free_mem(struct bnx2x_softc *sc);
121 static int bnx2x_alloc_fw_stats_mem(struct bnx2x_softc *sc);
122 static void bnx2x_free_fw_stats_mem(struct bnx2x_softc *sc);
123 static __rte_noinline
124 int bnx2x_nic_load(struct bnx2x_softc *sc);
125 
126 static int bnx2x_handle_sp_tq(struct bnx2x_softc *sc);
127 static void bnx2x_handle_fp_tq(struct bnx2x_fastpath *fp);
128 static void bnx2x_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id,
129 			 uint8_t storm, uint16_t index, uint8_t op,
130 			 uint8_t update);
131 
132 int bnx2x_test_bit(int nr, volatile unsigned long *addr)
133 {
134 	int res;
135 
136 	mb();
137 	res = ((*addr) & (1UL << nr)) != 0;
138 	mb();
139 	return res;
140 }
141 
142 void bnx2x_set_bit(unsigned int nr, volatile unsigned long *addr)
143 {
144 	__sync_fetch_and_or(addr, (1UL << nr));
145 }
146 
147 void bnx2x_clear_bit(int nr, volatile unsigned long *addr)
148 {
149 	__sync_fetch_and_and(addr, ~(1UL << nr));
150 }
151 
152 int bnx2x_test_and_clear_bit(int nr, volatile unsigned long *addr)
153 {
154 	unsigned long mask = (1UL << nr);
155 	return __sync_fetch_and_and(addr, ~mask) & mask;
156 }
157 
158 int bnx2x_cmpxchg(volatile int *addr, int old, int new)
159 {
160 	return __sync_val_compare_and_swap(addr, old, new);
161 }
162 
163 int
164 bnx2x_dma_alloc(struct bnx2x_softc *sc, size_t size, struct bnx2x_dma *dma,
165 	      const char *msg, uint32_t align)
166 {
167 	char mz_name[RTE_MEMZONE_NAMESIZE];
168 	const struct rte_memzone *z;
169 
170 	dma->sc = sc;
171 	if (IS_PF(sc))
172 		snprintf(mz_name, sizeof(mz_name), "bnx2x%d_%s_%" PRIx64, SC_ABS_FUNC(sc), msg,
173 			rte_get_timer_cycles());
174 	else
175 		snprintf(mz_name, sizeof(mz_name), "bnx2x%d_%s_%" PRIx64, sc->pcie_device, msg,
176 			rte_get_timer_cycles());
177 
178 	/* Caller must take care that strlen(mz_name) < RTE_MEMZONE_NAMESIZE */
179 	z = rte_memzone_reserve_aligned(mz_name, (uint64_t)size,
180 					SOCKET_ID_ANY,
181 					RTE_MEMZONE_IOVA_CONTIG, align);
182 	if (z == NULL) {
183 		PMD_DRV_LOG(ERR, sc, "DMA alloc failed for %s", msg);
184 		return -ENOMEM;
185 	}
186 	dma->paddr = (uint64_t) z->iova;
187 	dma->vaddr = z->addr;
188 	dma->mzone = (const void *)z;
189 
190 	PMD_DRV_LOG(DEBUG, sc,
191 		    "%s: virt=%p phys=%" PRIx64, msg, dma->vaddr, dma->paddr);
192 
193 	return 0;
194 }
195 
196 void bnx2x_dma_free(struct bnx2x_dma *dma)
197 {
198 	if (dma->mzone == NULL)
199 		return;
200 
201 	rte_memzone_free((const struct rte_memzone *)dma->mzone);
202 	dma->sc = NULL;
203 	dma->paddr = 0;
204 	dma->vaddr = NULL;
205 	dma->nseg = 0;
206 	dma->mzone = NULL;
207 }
208 
209 static int bnx2x_acquire_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
210 {
211 	uint32_t lock_status;
212 	uint32_t resource_bit = (1 << resource);
213 	int func = SC_FUNC(sc);
214 	uint32_t hw_lock_control_reg;
215 	int cnt;
216 
217 #ifndef RTE_LIBRTE_BNX2X_DEBUG_PERIODIC
218 	if (resource)
219 		PMD_INIT_FUNC_TRACE(sc);
220 #else
221 	PMD_INIT_FUNC_TRACE(sc);
222 #endif
223 
224 	/* validate the resource is within range */
225 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
226 		PMD_DRV_LOG(NOTICE, sc,
227 			    "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE",
228 			    resource);
229 		return -1;
230 	}
231 
232 	if (func <= 5) {
233 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
234 	} else {
235 		hw_lock_control_reg =
236 		    (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
237 	}
238 
239 	/* validate the resource is not already taken */
240 	lock_status = REG_RD(sc, hw_lock_control_reg);
241 	if (lock_status & resource_bit) {
242 		PMD_DRV_LOG(NOTICE, sc,
243 			    "resource in use (status 0x%x bit 0x%x)",
244 			    lock_status, resource_bit);
245 		return -1;
246 	}
247 
248 	/* try every 5ms for 5 seconds */
249 	for (cnt = 0; cnt < 1000; cnt++) {
250 		REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
251 		lock_status = REG_RD(sc, hw_lock_control_reg);
252 		if (lock_status & resource_bit) {
253 			return 0;
254 		}
255 		DELAY(5000);
256 	}
257 
258 	PMD_DRV_LOG(NOTICE, sc, "Resource 0x%x resource_bit 0x%x lock timeout!",
259 		    resource, resource_bit);
260 	return -1;
261 }
262 
263 static int bnx2x_release_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
264 {
265 	uint32_t lock_status;
266 	uint32_t resource_bit = (1 << resource);
267 	int func = SC_FUNC(sc);
268 	uint32_t hw_lock_control_reg;
269 
270 #ifndef RTE_LIBRTE_BNX2X_DEBUG_PERIODIC
271 	if (resource)
272 		PMD_INIT_FUNC_TRACE(sc);
273 #else
274 	PMD_INIT_FUNC_TRACE(sc);
275 #endif
276 
277 	/* validate the resource is within range */
278 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
279 		PMD_DRV_LOG(NOTICE, sc,
280 			    "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
281 			    " resource_bit 0x%x", resource, resource_bit);
282 		return -1;
283 	}
284 
285 	if (func <= 5) {
286 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
287 	} else {
288 		hw_lock_control_reg =
289 		    (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
290 	}
291 
292 	/* validate the resource is currently taken */
293 	lock_status = REG_RD(sc, hw_lock_control_reg);
294 	if (!(lock_status & resource_bit)) {
295 		PMD_DRV_LOG(NOTICE, sc,
296 			    "resource not in use (status 0x%x bit 0x%x)",
297 			    lock_status, resource_bit);
298 		return -1;
299 	}
300 
301 	REG_WR(sc, hw_lock_control_reg, resource_bit);
302 	return 0;
303 }
304 
305 static void bnx2x_acquire_phy_lock(struct bnx2x_softc *sc)
306 {
307 	BNX2X_PHY_LOCK(sc);
308 	bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_MDIO);
309 }
310 
311 static void bnx2x_release_phy_lock(struct bnx2x_softc *sc)
312 {
313 	bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_MDIO);
314 	BNX2X_PHY_UNLOCK(sc);
315 }
316 
317 /* copy command into DMAE command memory and set DMAE command Go */
318 void bnx2x_post_dmae(struct bnx2x_softc *sc, struct dmae_command *dmae, int idx)
319 {
320 	uint32_t cmd_offset;
321 	uint32_t i;
322 
323 	cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
324 	for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
325 		REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *) dmae) + i));
326 	}
327 
328 	REG_WR(sc, dmae_reg_go_c[idx], 1);
329 }
330 
331 uint32_t bnx2x_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type)
332 {
333 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
334 			  DMAE_COMMAND_C_TYPE_ENABLE);
335 }
336 
337 uint32_t bnx2x_dmae_opcode_clr_src_reset(uint32_t opcode)
338 {
339 	return opcode & ~DMAE_COMMAND_SRC_RESET;
340 }
341 
342 uint32_t
343 bnx2x_dmae_opcode(struct bnx2x_softc * sc, uint8_t src_type, uint8_t dst_type,
344 		uint8_t with_comp, uint8_t comp_type)
345 {
346 	uint32_t opcode = 0;
347 
348 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
349 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
350 
351 	opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
352 
353 	opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
354 
355 	opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
356 		   (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
357 
358 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
359 
360 #ifdef __BIG_ENDIAN
361 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
362 #else
363 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
364 #endif
365 
366 	if (with_comp) {
367 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
368 	}
369 
370 	return opcode;
371 }
372 
373 static void
374 bnx2x_prep_dmae_with_comp(struct bnx2x_softc *sc, struct dmae_command *dmae,
375 			uint8_t src_type, uint8_t dst_type)
376 {
377 	memset(dmae, 0, sizeof(struct dmae_command));
378 
379 	/* set the opcode */
380 	dmae->opcode = bnx2x_dmae_opcode(sc, src_type, dst_type,
381 				       TRUE, DMAE_COMP_PCI);
382 
383 	/* fill in the completion parameters */
384 	dmae->comp_addr_lo = U64_LO(BNX2X_SP_MAPPING(sc, wb_comp));
385 	dmae->comp_addr_hi = U64_HI(BNX2X_SP_MAPPING(sc, wb_comp));
386 	dmae->comp_val = DMAE_COMP_VAL;
387 }
388 
389 /* issue a DMAE command over the init channel and wait for completion */
390 static int
391 bnx2x_issue_dmae_with_comp(struct bnx2x_softc *sc, struct dmae_command *dmae)
392 {
393 	uint32_t *wb_comp = BNX2X_SP(sc, wb_comp);
394 	int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
395 
396 	/* reset completion */
397 	*wb_comp = 0;
398 
399 	/* post the command on the channel used for initializations */
400 	bnx2x_post_dmae(sc, dmae, INIT_DMAE_C(sc));
401 
402 	/* wait for completion */
403 	DELAY(500);
404 
405 	while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
406 		if (!timeout ||
407 		    (sc->recovery_state != BNX2X_RECOVERY_DONE &&
408 		     sc->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
409 			PMD_DRV_LOG(INFO, sc, "DMAE timeout!");
410 			return DMAE_TIMEOUT;
411 		}
412 
413 		timeout--;
414 		DELAY(50);
415 	}
416 
417 	if (*wb_comp & DMAE_PCI_ERR_FLAG) {
418 		PMD_DRV_LOG(INFO, sc, "DMAE PCI error!");
419 		return DMAE_PCI_ERROR;
420 	}
421 
422 	return 0;
423 }
424 
425 void bnx2x_read_dmae(struct bnx2x_softc *sc, uint32_t src_addr, uint32_t len32)
426 {
427 	struct dmae_command dmae;
428 	uint32_t *data;
429 	uint32_t i;
430 	int rc;
431 
432 	if (!sc->dmae_ready) {
433 		data = BNX2X_SP(sc, wb_data[0]);
434 
435 		for (i = 0; i < len32; i++) {
436 			data[i] = REG_RD(sc, (src_addr + (i * 4)));
437 		}
438 
439 		return;
440 	}
441 
442 	/* set opcode and fixed command fields */
443 	bnx2x_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
444 
445 	/* fill in addresses and len */
446 	dmae.src_addr_lo = (src_addr >> 2);	/* GRC addr has dword resolution */
447 	dmae.src_addr_hi = 0;
448 	dmae.dst_addr_lo = U64_LO(BNX2X_SP_MAPPING(sc, wb_data));
449 	dmae.dst_addr_hi = U64_HI(BNX2X_SP_MAPPING(sc, wb_data));
450 	dmae.len = len32;
451 
452 	/* issue the command and wait for completion */
453 	if ((rc = bnx2x_issue_dmae_with_comp(sc, &dmae)) != 0) {
454 		rte_panic("DMAE failed (%d)", rc);
455 	};
456 }
457 
458 void
459 bnx2x_write_dmae(struct bnx2x_softc *sc, rte_iova_t dma_addr, uint32_t dst_addr,
460 	       uint32_t len32)
461 {
462 	struct dmae_command dmae;
463 	int rc;
464 
465 	if (!sc->dmae_ready) {
466 		ecore_init_str_wr(sc, dst_addr, BNX2X_SP(sc, wb_data[0]), len32);
467 		return;
468 	}
469 
470 	/* set opcode and fixed command fields */
471 	bnx2x_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
472 
473 	/* fill in addresses and len */
474 	dmae.src_addr_lo = U64_LO(dma_addr);
475 	dmae.src_addr_hi = U64_HI(dma_addr);
476 	dmae.dst_addr_lo = (dst_addr >> 2);	/* GRC addr has dword resolution */
477 	dmae.dst_addr_hi = 0;
478 	dmae.len = len32;
479 
480 	/* issue the command and wait for completion */
481 	if ((rc = bnx2x_issue_dmae_with_comp(sc, &dmae)) != 0) {
482 		rte_panic("DMAE failed (%d)", rc);
483 	}
484 }
485 
486 static void
487 bnx2x_write_dmae_phys_len(struct bnx2x_softc *sc, rte_iova_t phys_addr,
488 			uint32_t addr, uint32_t len)
489 {
490 	uint32_t dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
491 	uint32_t offset = 0;
492 
493 	while (len > dmae_wr_max) {
494 		bnx2x_write_dmae(sc, (phys_addr + offset),	/* src DMA address */
495 			       (addr + offset),	/* dst GRC address */
496 			       dmae_wr_max);
497 		offset += (dmae_wr_max * 4);
498 		len -= dmae_wr_max;
499 	}
500 
501 	bnx2x_write_dmae(sc, (phys_addr + offset),	/* src DMA address */
502 		       (addr + offset),	/* dst GRC address */
503 		       len);
504 }
505 
506 void
507 bnx2x_set_ctx_validation(struct bnx2x_softc *sc, struct eth_context *cxt,
508 		       uint32_t cid)
509 {
510 	/* ustorm cxt validation */
511 	cxt->ustorm_ag_context.cdu_usage =
512 	    CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
513 				   CDU_REGION_NUMBER_UCM_AG,
514 				   ETH_CONNECTION_TYPE);
515 	/* xcontext validation */
516 	cxt->xstorm_ag_context.cdu_reserved =
517 	    CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
518 				   CDU_REGION_NUMBER_XCM_AG,
519 				   ETH_CONNECTION_TYPE);
520 }
521 
522 static void
523 bnx2x_storm_memset_hc_timeout(struct bnx2x_softc *sc, uint8_t fw_sb_id,
524 			    uint8_t sb_index, uint8_t ticks)
525 {
526 	uint32_t addr =
527 	    (BAR_CSTRORM_INTMEM +
528 	     CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
529 
530 	REG_WR8(sc, addr, ticks);
531 }
532 
533 static void
534 bnx2x_storm_memset_hc_disable(struct bnx2x_softc *sc, uint16_t fw_sb_id,
535 			    uint8_t sb_index, uint8_t disable)
536 {
537 	uint32_t enable_flag =
538 	    (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
539 	uint32_t addr =
540 	    (BAR_CSTRORM_INTMEM +
541 	     CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
542 	uint8_t flags;
543 
544 	/* clear and set */
545 	flags = REG_RD8(sc, addr);
546 	flags &= ~HC_INDEX_DATA_HC_ENABLED;
547 	flags |= enable_flag;
548 	REG_WR8(sc, addr, flags);
549 }
550 
551 void
552 bnx2x_update_coalesce_sb_index(struct bnx2x_softc *sc, uint8_t fw_sb_id,
553 			     uint8_t sb_index, uint8_t disable, uint16_t usec)
554 {
555 	uint8_t ticks = (usec / 4);
556 
557 	bnx2x_storm_memset_hc_timeout(sc, fw_sb_id, sb_index, ticks);
558 
559 	disable = (disable) ? 1 : ((usec) ? 0 : 1);
560 	bnx2x_storm_memset_hc_disable(sc, fw_sb_id, sb_index, disable);
561 }
562 
563 uint32_t elink_cb_reg_read(struct bnx2x_softc *sc, uint32_t reg_addr)
564 {
565 	return REG_RD(sc, reg_addr);
566 }
567 
568 void elink_cb_reg_write(struct bnx2x_softc *sc, uint32_t reg_addr, uint32_t val)
569 {
570 	REG_WR(sc, reg_addr, val);
571 }
572 
573 void
574 elink_cb_event_log(__rte_unused struct bnx2x_softc *sc,
575 		   __rte_unused const elink_log_id_t elink_log_id, ...)
576 {
577 	PMD_DRV_LOG(DEBUG, sc, "ELINK EVENT LOG (%d)", elink_log_id);
578 }
579 
580 static int bnx2x_set_spio(struct bnx2x_softc *sc, int spio, uint32_t mode)
581 {
582 	uint32_t spio_reg;
583 
584 	/* Only 2 SPIOs are configurable */
585 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
586 		PMD_DRV_LOG(NOTICE, sc, "Invalid SPIO 0x%x", spio);
587 		return -1;
588 	}
589 
590 	bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
591 
592 	/* read SPIO and mask except the float bits */
593 	spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
594 
595 	switch (mode) {
596 	case MISC_SPIO_OUTPUT_LOW:
597 		/* clear FLOAT and set CLR */
598 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
599 		spio_reg |= (spio << MISC_SPIO_CLR_POS);
600 		break;
601 
602 	case MISC_SPIO_OUTPUT_HIGH:
603 		/* clear FLOAT and set SET */
604 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
605 		spio_reg |= (spio << MISC_SPIO_SET_POS);
606 		break;
607 
608 	case MISC_SPIO_INPUT_HI_Z:
609 		/* set FLOAT */
610 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
611 		break;
612 
613 	default:
614 		break;
615 	}
616 
617 	REG_WR(sc, MISC_REG_SPIO, spio_reg);
618 	bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
619 
620 	return 0;
621 }
622 
623 static int bnx2x_gpio_read(struct bnx2x_softc *sc, int gpio_num, uint8_t port)
624 {
625 	/* The GPIO should be swapped if swap register is set and active */
626 	int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
627 			  REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
628 	int gpio_shift = gpio_num;
629 	if (gpio_port)
630 		gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
631 
632 	uint32_t gpio_mask = (1 << gpio_shift);
633 	uint32_t gpio_reg;
634 
635 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
636 		PMD_DRV_LOG(NOTICE, sc, "Invalid GPIO %d", gpio_num);
637 		return -1;
638 	}
639 
640 	/* read GPIO value */
641 	gpio_reg = REG_RD(sc, MISC_REG_GPIO);
642 
643 	/* get the requested pin value */
644 	return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
645 }
646 
647 static int
648 bnx2x_gpio_write(struct bnx2x_softc *sc, int gpio_num, uint32_t mode, uint8_t port)
649 {
650 	/* The GPIO should be swapped if swap register is set and active */
651 	int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
652 			  REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
653 	int gpio_shift = gpio_num;
654 	if (gpio_port)
655 		gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
656 
657 	uint32_t gpio_mask = (1 << gpio_shift);
658 	uint32_t gpio_reg;
659 
660 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
661 		PMD_DRV_LOG(NOTICE, sc, "Invalid GPIO %d", gpio_num);
662 		return -1;
663 	}
664 
665 	bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
666 
667 	/* read GPIO and mask except the float bits */
668 	gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
669 
670 	switch (mode) {
671 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
672 		/* clear FLOAT and set CLR */
673 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
674 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
675 		break;
676 
677 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
678 		/* clear FLOAT and set SET */
679 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
680 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
681 		break;
682 
683 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
684 		/* set FLOAT */
685 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
686 		break;
687 
688 	default:
689 		break;
690 	}
691 
692 	REG_WR(sc, MISC_REG_GPIO, gpio_reg);
693 	bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
694 
695 	return 0;
696 }
697 
698 static int
699 bnx2x_gpio_mult_write(struct bnx2x_softc *sc, uint8_t pins, uint32_t mode)
700 {
701 	uint32_t gpio_reg;
702 
703 	/* any port swapping should be handled by caller */
704 
705 	bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
706 
707 	/* read GPIO and mask except the float bits */
708 	gpio_reg = REG_RD(sc, MISC_REG_GPIO);
709 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
710 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
711 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
712 
713 	switch (mode) {
714 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
715 		/* set CLR */
716 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
717 		break;
718 
719 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
720 		/* set SET */
721 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
722 		break;
723 
724 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
725 		/* set FLOAT */
726 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
727 		break;
728 
729 	default:
730 		PMD_DRV_LOG(NOTICE, sc,
731 			    "Invalid GPIO mode assignment %d", mode);
732 		bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
733 		return -1;
734 	}
735 
736 	REG_WR(sc, MISC_REG_GPIO, gpio_reg);
737 	bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
738 
739 	return 0;
740 }
741 
742 static int
743 bnx2x_gpio_int_write(struct bnx2x_softc *sc, int gpio_num, uint32_t mode,
744 		   uint8_t port)
745 {
746 	/* The GPIO should be swapped if swap register is set and active */
747 	int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
748 			  REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
749 	int gpio_shift = gpio_num;
750 	if (gpio_port)
751 		gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
752 
753 	uint32_t gpio_mask = (1 << gpio_shift);
754 	uint32_t gpio_reg;
755 
756 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
757 		PMD_DRV_LOG(NOTICE, sc, "Invalid GPIO %d", gpio_num);
758 		return -1;
759 	}
760 
761 	bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
762 
763 	/* read GPIO int */
764 	gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
765 
766 	switch (mode) {
767 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
768 		/* clear SET and set CLR */
769 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
770 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
771 		break;
772 
773 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
774 		/* clear CLR and set SET */
775 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
776 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
777 		break;
778 
779 	default:
780 		break;
781 	}
782 
783 	REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
784 	bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
785 
786 	return 0;
787 }
788 
789 uint32_t
790 elink_cb_gpio_read(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t port)
791 {
792 	return bnx2x_gpio_read(sc, gpio_num, port);
793 }
794 
795 uint8_t elink_cb_gpio_write(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t mode,	/* 0=low 1=high */
796 			    uint8_t port)
797 {
798 	return bnx2x_gpio_write(sc, gpio_num, mode, port);
799 }
800 
801 uint8_t
802 elink_cb_gpio_mult_write(struct bnx2x_softc * sc, uint8_t pins,
803 			 uint8_t mode /* 0=low 1=high */ )
804 {
805 	return bnx2x_gpio_mult_write(sc, pins, mode);
806 }
807 
808 uint8_t elink_cb_gpio_int_write(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t mode,	/* 0=low 1=high */
809 				uint8_t port)
810 {
811 	return bnx2x_gpio_int_write(sc, gpio_num, mode, port);
812 }
813 
814 void elink_cb_notify_link_changed(struct bnx2x_softc *sc)
815 {
816 	REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
817 		    (SC_FUNC(sc) * sizeof(uint32_t))), 1);
818 }
819 
820 /* send the MCP a request, block until there is a reply */
821 uint32_t
822 elink_cb_fw_command(struct bnx2x_softc *sc, uint32_t command, uint32_t param)
823 {
824 	int mb_idx = SC_FW_MB_IDX(sc);
825 	uint32_t seq;
826 	uint32_t rc = 0;
827 	uint32_t cnt = 1;
828 	uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
829 
830 	seq = ++sc->fw_seq;
831 	SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
832 	SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
833 
834 	PMD_DRV_LOG(DEBUG, sc,
835 		    "wrote command 0x%08x to FW MB param 0x%08x",
836 		    (command | seq), param);
837 
838 	/* Let the FW do it's magic. GIve it up to 5 seconds... */
839 	do {
840 		DELAY(delay * 1000);
841 		rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
842 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
843 
844 	/* is this a reply to our command? */
845 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
846 		rc &= FW_MSG_CODE_MASK;
847 	} else {
848 		/* Ruh-roh! */
849 		PMD_DRV_LOG(NOTICE, sc, "FW failed to respond!");
850 		rc = 0;
851 	}
852 
853 	return rc;
854 }
855 
856 static uint32_t
857 bnx2x_fw_command(struct bnx2x_softc *sc, uint32_t command, uint32_t param)
858 {
859 	return elink_cb_fw_command(sc, command, param);
860 }
861 
862 static void
863 __storm_memset_dma_mapping(struct bnx2x_softc *sc, uint32_t addr,
864 			   rte_iova_t mapping)
865 {
866 	REG_WR(sc, addr, U64_LO(mapping));
867 	REG_WR(sc, (addr + 4), U64_HI(mapping));
868 }
869 
870 static void
871 storm_memset_spq_addr(struct bnx2x_softc *sc, rte_iova_t mapping,
872 		      uint16_t abs_fid)
873 {
874 	uint32_t addr = (XSEM_REG_FAST_MEMORY +
875 			 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
876 	__storm_memset_dma_mapping(sc, addr, mapping);
877 }
878 
879 static void
880 storm_memset_vf_to_pf(struct bnx2x_softc *sc, uint16_t abs_fid, uint16_t pf_id)
881 {
882 	REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)),
883 		pf_id);
884 	REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)),
885 		pf_id);
886 	REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)),
887 		pf_id);
888 	REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)),
889 		pf_id);
890 }
891 
892 static void
893 storm_memset_func_en(struct bnx2x_softc *sc, uint16_t abs_fid, uint8_t enable)
894 {
895 	REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)),
896 		enable);
897 	REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)),
898 		enable);
899 	REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)),
900 		enable);
901 	REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)),
902 		enable);
903 }
904 
905 static void
906 storm_memset_eq_data(struct bnx2x_softc *sc, struct event_ring_data *eq_data,
907 		     uint16_t pfid)
908 {
909 	uint32_t addr;
910 	size_t size;
911 
912 	addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
913 	size = sizeof(struct event_ring_data);
914 	ecore_storm_memset_struct(sc, addr, size, (uint32_t *) eq_data);
915 }
916 
917 static void
918 storm_memset_eq_prod(struct bnx2x_softc *sc, uint16_t eq_prod, uint16_t pfid)
919 {
920 	uint32_t addr = (BAR_CSTRORM_INTMEM +
921 			 CSTORM_EVENT_RING_PROD_OFFSET(pfid));
922 	REG_WR16(sc, addr, eq_prod);
923 }
924 
925 /*
926  * Post a slowpath command.
927  *
928  * A slowpath command is used to propagate a configuration change through
929  * the controller in a controlled manner, allowing each STORM processor and
930  * other H/W blocks to phase in the change.  The commands sent on the
931  * slowpath are referred to as ramrods.  Depending on the ramrod used the
932  * completion of the ramrod will occur in different ways.  Here's a
933  * breakdown of ramrods and how they complete:
934  *
935  * RAMROD_CMD_ID_ETH_PORT_SETUP
936  *   Used to setup the leading connection on a port.  Completes on the
937  *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
938  *
939  * RAMROD_CMD_ID_ETH_CLIENT_SETUP
940  *   Used to setup an additional connection on a port.  Completes on the
941  *   RCQ of the multi-queue/RSS connection being initialized.
942  *
943  * RAMROD_CMD_ID_ETH_STAT_QUERY
944  *   Used to force the storm processors to update the statistics database
945  *   in host memory.  This ramrod is send on the leading connection CID and
946  *   completes as an index increment of the CSTORM on the default status
947  *   block.
948  *
949  * RAMROD_CMD_ID_ETH_UPDATE
950  *   Used to update the state of the leading connection, usually to udpate
951  *   the RSS indirection table.  Completes on the RCQ of the leading
952  *   connection. (Not currently used under FreeBSD until OS support becomes
953  *   available.)
954  *
955  * RAMROD_CMD_ID_ETH_HALT
956  *   Used when tearing down a connection prior to driver unload.  Completes
957  *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
958  *   use this on the leading connection.
959  *
960  * RAMROD_CMD_ID_ETH_SET_MAC
961  *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
962  *   the RCQ of the leading connection.
963  *
964  * RAMROD_CMD_ID_ETH_CFC_DEL
965  *   Used when tearing down a conneciton prior to driver unload.  Completes
966  *   on the RCQ of the leading connection (since the current connection
967  *   has been completely removed from controller memory).
968  *
969  * RAMROD_CMD_ID_ETH_PORT_DEL
970  *   Used to tear down the leading connection prior to driver unload,
971  *   typically fp[0].  Completes as an index increment of the CSTORM on the
972  *   default status block.
973  *
974  * RAMROD_CMD_ID_ETH_FORWARD_SETUP
975  *   Used for connection offload.  Completes on the RCQ of the multi-queue
976  *   RSS connection that is being offloaded.  (Not currently used under
977  *   FreeBSD.)
978  *
979  * There can only be one command pending per function.
980  *
981  * Returns:
982  *   0 = Success, !0 = Failure.
983  */
984 
985 /* must be called under the spq lock */
986 static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x_softc *sc)
987 {
988 	struct eth_spe *next_spe = sc->spq_prod_bd;
989 
990 	if (sc->spq_prod_bd == sc->spq_last_bd) {
991 		/* wrap back to the first eth_spq */
992 		sc->spq_prod_bd = sc->spq;
993 		sc->spq_prod_idx = 0;
994 	} else {
995 		sc->spq_prod_bd++;
996 		sc->spq_prod_idx++;
997 	}
998 
999 	return next_spe;
1000 }
1001 
1002 /* must be called under the spq lock */
1003 static void bnx2x_sp_prod_update(struct bnx2x_softc *sc)
1004 {
1005 	int func = SC_FUNC(sc);
1006 
1007 	/*
1008 	 * Make sure that BD data is updated before writing the producer.
1009 	 * BD data is written to the memory, the producer is read from the
1010 	 * memory, thus we need a full memory barrier to ensure the ordering.
1011 	 */
1012 	mb();
1013 
1014 	REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
1015 		 sc->spq_prod_idx);
1016 
1017 	mb();
1018 }
1019 
1020 /**
1021  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
1022  *
1023  * @cmd:      command to check
1024  * @cmd_type: command type
1025  */
1026 static int bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
1027 {
1028 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
1029 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
1030 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
1031 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
1032 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
1033 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
1034 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
1035 		return TRUE;
1036 	} else {
1037 		return FALSE;
1038 	}
1039 }
1040 
1041 /**
1042  * bnx2x_sp_post - place a single command on an SP ring
1043  *
1044  * @sc:         driver handle
1045  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
1046  * @cid:        SW CID the command is related to
1047  * @data_hi:    command private data address (high 32 bits)
1048  * @data_lo:    command private data address (low 32 bits)
1049  * @cmd_type:   command type (e.g. NONE, ETH)
1050  *
1051  * SP data is handled as if it's always an address pair, thus data fields are
1052  * not swapped to little endian in upper functions. Instead this function swaps
1053  * data as if it's two uint32 fields.
1054  */
1055 int
1056 bnx2x_sp_post(struct bnx2x_softc *sc, int command, int cid, uint32_t data_hi,
1057 	    uint32_t data_lo, int cmd_type)
1058 {
1059 	struct eth_spe *spe;
1060 	uint16_t type;
1061 	int common;
1062 
1063 	common = bnx2x_is_contextless_ramrod(command, cmd_type);
1064 
1065 	if (common) {
1066 		if (!atomic_load_acq_long(&sc->eq_spq_left)) {
1067 			PMD_DRV_LOG(INFO, sc, "EQ ring is full!");
1068 			return -1;
1069 		}
1070 	} else {
1071 		if (!atomic_load_acq_long(&sc->cq_spq_left)) {
1072 			PMD_DRV_LOG(INFO, sc, "SPQ ring is full!");
1073 			return -1;
1074 		}
1075 	}
1076 
1077 	spe = bnx2x_sp_get_next(sc);
1078 
1079 	/* CID needs port number to be encoded int it */
1080 	spe->hdr.conn_and_cmd_data =
1081 	    htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
1082 
1083 	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
1084 
1085 	/* TBD: Check if it works for VFs */
1086 	type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
1087 		 SPE_HDR_FUNCTION_ID);
1088 
1089 	spe->hdr.type = htole16(type);
1090 
1091 	spe->data.update_data_addr.hi = htole32(data_hi);
1092 	spe->data.update_data_addr.lo = htole32(data_lo);
1093 
1094 	/*
1095 	 * It's ok if the actual decrement is issued towards the memory
1096 	 * somewhere between the lock and unlock. Thus no more explict
1097 	 * memory barrier is needed.
1098 	 */
1099 	if (common) {
1100 		atomic_subtract_acq_long(&sc->eq_spq_left, 1);
1101 	} else {
1102 		atomic_subtract_acq_long(&sc->cq_spq_left, 1);
1103 	}
1104 
1105 	PMD_DRV_LOG(DEBUG, sc,
1106 		    "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x"
1107 		    "data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)",
1108 		    sc->spq_prod_idx,
1109 		    (uint32_t) U64_HI(sc->spq_dma.paddr),
1110 		    (uint32_t) (U64_LO(sc->spq_dma.paddr) +
1111 				(uint8_t *) sc->spq_prod_bd -
1112 				(uint8_t *) sc->spq), command, common,
1113 		    HW_CID(sc, cid), data_hi, data_lo, type,
1114 		    atomic_load_acq_long(&sc->cq_spq_left),
1115 		    atomic_load_acq_long(&sc->eq_spq_left));
1116 
1117 	/* RAMROD completion is processed in bnx2x_intr_legacy()
1118 	 * which can run from different contexts.
1119 	 * Ask bnx2x_intr_intr() to process RAMROD
1120 	 * completion whenever it gets scheduled.
1121 	 */
1122 	rte_atomic32_set(&sc->scan_fp, 1);
1123 	bnx2x_sp_prod_update(sc);
1124 
1125 	return 0;
1126 }
1127 
1128 static void bnx2x_drv_pulse(struct bnx2x_softc *sc)
1129 {
1130 	SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
1131 		 sc->fw_drv_pulse_wr_seq);
1132 }
1133 
1134 static int bnx2x_tx_queue_has_work(const struct bnx2x_fastpath *fp)
1135 {
1136 	uint16_t hw_cons;
1137 	struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
1138 
1139 	if (unlikely(!txq)) {
1140 		PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
1141 		return 0;
1142 	}
1143 
1144 	mb();			/* status block fields can change */
1145 	hw_cons = le16toh(*fp->tx_cons_sb);
1146 	return hw_cons != txq->tx_pkt_head;
1147 }
1148 
1149 static uint8_t bnx2x_has_tx_work(struct bnx2x_fastpath *fp)
1150 {
1151 	/* expand this for multi-cos if ever supported */
1152 	return bnx2x_tx_queue_has_work(fp);
1153 }
1154 
1155 static int bnx2x_has_rx_work(struct bnx2x_fastpath *fp)
1156 {
1157 	uint16_t rx_cq_cons_sb;
1158 	struct bnx2x_rx_queue *rxq;
1159 	rxq = fp->sc->rx_queues[fp->index];
1160 	if (unlikely(!rxq)) {
1161 		PMD_RX_LOG(ERR, "ERROR: RX queue is NULL");
1162 		return 0;
1163 	}
1164 
1165 	mb();			/* status block fields can change */
1166 	rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
1167 	if (unlikely((rx_cq_cons_sb & MAX_RCQ_ENTRIES(rxq)) ==
1168 		     MAX_RCQ_ENTRIES(rxq)))
1169 		rx_cq_cons_sb++;
1170 	return rxq->rx_cq_head != rx_cq_cons_sb;
1171 }
1172 
1173 static void
1174 bnx2x_sp_event(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
1175 	     union eth_rx_cqe *rr_cqe)
1176 {
1177 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1178 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1179 	enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
1180 	struct ecore_queue_sp_obj *q_obj = &BNX2X_SP_OBJ(sc, fp).q_obj;
1181 
1182 	PMD_DRV_LOG(DEBUG, sc,
1183 		    "fp=%d cid=%d got ramrod #%d state is %x type is %d",
1184 		    fp->index, cid, command, sc->state,
1185 		    rr_cqe->ramrod_cqe.ramrod_type);
1186 
1187 	switch (command) {
1188 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1189 		PMD_DRV_LOG(DEBUG, sc, "got UPDATE ramrod. CID %d", cid);
1190 		drv_cmd = ECORE_Q_CMD_UPDATE;
1191 		break;
1192 
1193 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1194 		PMD_DRV_LOG(DEBUG, sc, "got MULTI[%d] setup ramrod", cid);
1195 		drv_cmd = ECORE_Q_CMD_SETUP;
1196 		break;
1197 
1198 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1199 		PMD_DRV_LOG(DEBUG, sc,
1200 			    "got MULTI[%d] tx-only setup ramrod", cid);
1201 		drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
1202 		break;
1203 
1204 	case (RAMROD_CMD_ID_ETH_HALT):
1205 		PMD_DRV_LOG(DEBUG, sc, "got MULTI[%d] halt ramrod", cid);
1206 		drv_cmd = ECORE_Q_CMD_HALT;
1207 		break;
1208 
1209 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1210 		PMD_DRV_LOG(DEBUG, sc, "got MULTI[%d] teminate ramrod", cid);
1211 		drv_cmd = ECORE_Q_CMD_TERMINATE;
1212 		break;
1213 
1214 	case (RAMROD_CMD_ID_ETH_EMPTY):
1215 		PMD_DRV_LOG(DEBUG, sc, "got MULTI[%d] empty ramrod", cid);
1216 		drv_cmd = ECORE_Q_CMD_EMPTY;
1217 		break;
1218 
1219 	default:
1220 		PMD_DRV_LOG(DEBUG, sc,
1221 			    "ERROR: unexpected MC reply (%d)"
1222 			    "on fp[%d]", command, fp->index);
1223 		return;
1224 	}
1225 
1226 	if ((drv_cmd != ECORE_Q_CMD_MAX) &&
1227 	    q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
1228 		/*
1229 		 * q_obj->complete_cmd() failure means that this was
1230 		 * an unexpected completion.
1231 		 *
1232 		 * In this case we don't want to increase the sc->spq_left
1233 		 * because apparently we haven't sent this command the first
1234 		 * place.
1235 		 */
1236 		// rte_panic("Unexpected SP completion");
1237 		return;
1238 	}
1239 
1240 	atomic_add_acq_long(&sc->cq_spq_left, 1);
1241 
1242 	PMD_DRV_LOG(DEBUG, sc, "sc->cq_spq_left 0x%lx",
1243 		    atomic_load_acq_long(&sc->cq_spq_left));
1244 }
1245 
1246 static uint8_t bnx2x_rxeof(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp)
1247 {
1248 	struct bnx2x_rx_queue *rxq;
1249 	uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
1250 	uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
1251 
1252 	rxq = sc->rx_queues[fp->index];
1253 	if (!rxq) {
1254 		PMD_RX_LOG(ERR, "RX queue %d is NULL", fp->index);
1255 		return 0;
1256 	}
1257 
1258 	/* CQ "next element" is of the size of the regular element */
1259 	hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
1260 	if (unlikely((hw_cq_cons & USABLE_RCQ_ENTRIES_PER_PAGE) ==
1261 		     USABLE_RCQ_ENTRIES_PER_PAGE)) {
1262 		hw_cq_cons++;
1263 	}
1264 
1265 	bd_cons = rxq->rx_bd_head;
1266 	bd_prod = rxq->rx_bd_tail;
1267 	bd_prod_fw = bd_prod;
1268 	sw_cq_cons = rxq->rx_cq_head;
1269 	sw_cq_prod = rxq->rx_cq_tail;
1270 
1271 	/*
1272 	 * Memory barrier necessary as speculative reads of the rx
1273 	 * buffer can be ahead of the index in the status block
1274 	 */
1275 	rmb();
1276 
1277 	while (sw_cq_cons != hw_cq_cons) {
1278 		union eth_rx_cqe *cqe;
1279 		struct eth_fast_path_rx_cqe *cqe_fp;
1280 		uint8_t cqe_fp_flags;
1281 		enum eth_rx_cqe_type cqe_fp_type;
1282 
1283 		comp_ring_cons = RCQ_ENTRY(sw_cq_cons, rxq);
1284 		bd_prod = RX_BD(bd_prod, rxq);
1285 		bd_cons = RX_BD(bd_cons, rxq);
1286 
1287 		cqe = &rxq->cq_ring[comp_ring_cons];
1288 		cqe_fp = &cqe->fast_path_cqe;
1289 		cqe_fp_flags = cqe_fp->type_error_flags;
1290 		cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
1291 
1292 		/* is this a slowpath msg? */
1293 		if (CQE_TYPE_SLOW(cqe_fp_type)) {
1294 			bnx2x_sp_event(sc, fp, cqe);
1295 			goto next_cqe;
1296 		}
1297 
1298 		/* is this an error packet? */
1299 		if (unlikely(cqe_fp_flags &
1300 			     ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
1301 			PMD_RX_LOG(DEBUG, "flags 0x%x rx packet %u",
1302 				   cqe_fp_flags, sw_cq_cons);
1303 			goto next_rx;
1304 		}
1305 
1306 		PMD_RX_LOG(DEBUG, "Dropping fastpath called from attn poller!");
1307 
1308 next_rx:
1309 		bd_cons = NEXT_RX_BD(bd_cons);
1310 		bd_prod = NEXT_RX_BD(bd_prod);
1311 		bd_prod_fw = NEXT_RX_BD(bd_prod_fw);
1312 
1313 next_cqe:
1314 		sw_cq_prod = NEXT_RCQ_IDX(sw_cq_prod);
1315 		sw_cq_cons = NEXT_RCQ_IDX(sw_cq_cons);
1316 
1317 	}			/* while work to do */
1318 
1319 	rxq->rx_bd_head = bd_cons;
1320 	rxq->rx_bd_tail = bd_prod_fw;
1321 	rxq->rx_cq_head = sw_cq_cons;
1322 	rxq->rx_cq_tail = sw_cq_prod;
1323 
1324 	/* Update producers */
1325 	bnx2x_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod);
1326 
1327 	return sw_cq_cons != hw_cq_cons;
1328 }
1329 
1330 static uint16_t
1331 bnx2x_free_tx_pkt(__rte_unused struct bnx2x_fastpath *fp, struct bnx2x_tx_queue *txq,
1332 		uint16_t pkt_idx, uint16_t bd_idx)
1333 {
1334 	struct eth_tx_start_bd *tx_start_bd =
1335 	    &txq->tx_ring[TX_BD(bd_idx, txq)].start_bd;
1336 	uint16_t nbd = rte_le_to_cpu_16(tx_start_bd->nbd);
1337 	struct rte_mbuf *tx_mbuf = txq->sw_ring[TX_BD(pkt_idx, txq)];
1338 
1339 	if (likely(tx_mbuf != NULL)) {
1340 		rte_pktmbuf_free_seg(tx_mbuf);
1341 	} else {
1342 		PMD_RX_LOG(ERR, "fp[%02d] lost mbuf %lu",
1343 			   fp->index, (unsigned long)TX_BD(pkt_idx, txq));
1344 	}
1345 
1346 	txq->sw_ring[TX_BD(pkt_idx, txq)] = NULL;
1347 	txq->nb_tx_avail += nbd;
1348 
1349 	while (nbd--)
1350 		bd_idx = NEXT_TX_BD(bd_idx);
1351 
1352 	return bd_idx;
1353 }
1354 
1355 /* processes transmit completions */
1356 uint8_t bnx2x_txeof(__rte_unused struct bnx2x_softc * sc, struct bnx2x_fastpath * fp)
1357 {
1358 	uint16_t bd_cons, hw_cons, sw_cons;
1359 	__rte_unused uint16_t tx_bd_avail;
1360 
1361 	struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
1362 
1363 	if (unlikely(!txq)) {
1364 		PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
1365 		return 0;
1366 	}
1367 
1368 	bd_cons = txq->tx_bd_head;
1369 	hw_cons = rte_le_to_cpu_16(*fp->tx_cons_sb);
1370 	sw_cons = txq->tx_pkt_head;
1371 
1372 	while (sw_cons != hw_cons) {
1373 		bd_cons = bnx2x_free_tx_pkt(fp, txq, sw_cons, bd_cons);
1374 		sw_cons++;
1375 	}
1376 
1377 	txq->tx_pkt_head = sw_cons;
1378 	txq->tx_bd_head = bd_cons;
1379 
1380 	tx_bd_avail = txq->nb_tx_avail;
1381 
1382 	PMD_TX_LOG(DEBUG, "fp[%02d] avail=%u cons_sb=%u, "
1383 		   "pkt_head=%u pkt_tail=%u bd_head=%u bd_tail=%u",
1384 		   fp->index, tx_bd_avail, hw_cons,
1385 		   txq->tx_pkt_head, txq->tx_pkt_tail,
1386 		   txq->tx_bd_head, txq->tx_bd_tail);
1387 	return TRUE;
1388 }
1389 
1390 static void bnx2x_drain_tx_queues(struct bnx2x_softc *sc)
1391 {
1392 	struct bnx2x_fastpath *fp;
1393 	int i, count;
1394 
1395 	/* wait until all TX fastpath tasks have completed */
1396 	for (i = 0; i < sc->num_queues; i++) {
1397 		fp = &sc->fp[i];
1398 
1399 		count = 1000;
1400 
1401 		while (bnx2x_has_tx_work(fp)) {
1402 			bnx2x_txeof(sc, fp);
1403 
1404 			if (count == 0) {
1405 				PMD_TX_LOG(ERR,
1406 					   "Timeout waiting for fp[%d] "
1407 					   "transmits to complete!", i);
1408 				rte_panic("tx drain failure");
1409 				return;
1410 			}
1411 
1412 			count--;
1413 			DELAY(1000);
1414 			rmb();
1415 		}
1416 	}
1417 
1418 	return;
1419 }
1420 
1421 static int
1422 bnx2x_del_all_macs(struct bnx2x_softc *sc, struct ecore_vlan_mac_obj *mac_obj,
1423 		 int mac_type, uint8_t wait_for_comp)
1424 {
1425 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
1426 	int rc;
1427 
1428 	/* wait for completion of requested */
1429 	if (wait_for_comp) {
1430 		bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1431 	}
1432 
1433 	/* Set the mac type of addresses we want to clear */
1434 	bnx2x_set_bit(mac_type, &vlan_mac_flags);
1435 
1436 	rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
1437 	if (rc < 0)
1438 		PMD_DRV_LOG(ERR, sc, "Failed to delete MACs (%d)", rc);
1439 
1440 	return rc;
1441 }
1442 
1443 static int
1444 bnx2x_fill_accept_flags(struct bnx2x_softc *sc, uint32_t rx_mode,
1445 			unsigned long *rx_accept_flags,
1446 			unsigned long *tx_accept_flags)
1447 {
1448 	/* Clear the flags first */
1449 	*rx_accept_flags = 0;
1450 	*tx_accept_flags = 0;
1451 
1452 	switch (rx_mode) {
1453 	case BNX2X_RX_MODE_NONE:
1454 		/*
1455 		 * 'drop all' supersedes any accept flags that may have been
1456 		 * passed to the function.
1457 		 */
1458 		break;
1459 
1460 	case BNX2X_RX_MODE_NORMAL:
1461 		bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1462 		bnx2x_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
1463 		bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1464 
1465 		/* internal switching mode */
1466 		bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1467 		bnx2x_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
1468 		bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1469 
1470 		break;
1471 
1472 	case BNX2X_RX_MODE_ALLMULTI:
1473 		bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1474 		bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
1475 		bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1476 
1477 		/* internal switching mode */
1478 		bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1479 		bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
1480 		bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1481 
1482 		break;
1483 
1484 	case BNX2X_RX_MODE_ALLMULTI_PROMISC:
1485 	case BNX2X_RX_MODE_PROMISC:
1486 		/*
1487 		 * According to deffinition of SI mode, iface in promisc mode
1488 		 * should receive matched and unmatched (in resolution of port)
1489 		 * unicast packets.
1490 		 */
1491 		bnx2x_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
1492 		bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1493 		bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
1494 		bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1495 
1496 		/* internal switching mode */
1497 		bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
1498 		bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1499 
1500 		if (IS_MF_SI(sc)) {
1501 			bnx2x_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
1502 		} else {
1503 			bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1504 		}
1505 
1506 		break;
1507 
1508 	default:
1509 		PMD_RX_LOG(ERR, "Unknown rx_mode (%d)", rx_mode);
1510 		return -1;
1511 	}
1512 
1513 	/* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
1514 	if (rx_mode != BNX2X_RX_MODE_NONE) {
1515 		bnx2x_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
1516 		bnx2x_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
1517 	}
1518 
1519 	return 0;
1520 }
1521 
1522 static int
1523 bnx2x_set_q_rx_mode(struct bnx2x_softc *sc, uint8_t cl_id,
1524 		  unsigned long rx_mode_flags,
1525 		  unsigned long rx_accept_flags,
1526 		  unsigned long tx_accept_flags, unsigned long ramrod_flags)
1527 {
1528 	struct ecore_rx_mode_ramrod_params ramrod_param;
1529 	int rc;
1530 
1531 	memset(&ramrod_param, 0, sizeof(ramrod_param));
1532 
1533 	/* Prepare ramrod parameters */
1534 	ramrod_param.cid = 0;
1535 	ramrod_param.cl_id = cl_id;
1536 	ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
1537 	ramrod_param.func_id = SC_FUNC(sc);
1538 
1539 	ramrod_param.pstate = &sc->sp_state;
1540 	ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
1541 
1542 	ramrod_param.rdata = BNX2X_SP(sc, rx_mode_rdata);
1543 	ramrod_param.rdata_mapping =
1544 	    (rte_iova_t)BNX2X_SP_MAPPING(sc, rx_mode_rdata),
1545 	    bnx2x_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
1546 
1547 	ramrod_param.ramrod_flags = ramrod_flags;
1548 	ramrod_param.rx_mode_flags = rx_mode_flags;
1549 
1550 	ramrod_param.rx_accept_flags = rx_accept_flags;
1551 	ramrod_param.tx_accept_flags = tx_accept_flags;
1552 
1553 	rc = ecore_config_rx_mode(sc, &ramrod_param);
1554 	if (rc < 0) {
1555 		PMD_RX_LOG(ERR, "Set rx_mode %d failed", sc->rx_mode);
1556 		return rc;
1557 	}
1558 
1559 	return 0;
1560 }
1561 
1562 int bnx2x_set_storm_rx_mode(struct bnx2x_softc *sc)
1563 {
1564 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
1565 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
1566 	int rc;
1567 
1568 	rc = bnx2x_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
1569 				   &tx_accept_flags);
1570 	if (rc) {
1571 		return rc;
1572 	}
1573 
1574 	bnx2x_set_bit(RAMROD_RX, &ramrod_flags);
1575 	bnx2x_set_bit(RAMROD_TX, &ramrod_flags);
1576 	bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1577 
1578 	return bnx2x_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
1579 				 rx_accept_flags, tx_accept_flags,
1580 				 ramrod_flags);
1581 }
1582 
1583 /* returns the "mcp load_code" according to global load_count array */
1584 static int bnx2x_nic_load_no_mcp(struct bnx2x_softc *sc)
1585 {
1586 	int path = SC_PATH(sc);
1587 	int port = SC_PORT(sc);
1588 
1589 	PMD_DRV_LOG(INFO, sc, "NO MCP - load counts[%d]      %d, %d, %d",
1590 		    path, load_count[path][0], load_count[path][1],
1591 		    load_count[path][2]);
1592 
1593 	load_count[path][0]++;
1594 	load_count[path][1 + port]++;
1595 	PMD_DRV_LOG(INFO, sc, "NO MCP - new load counts[%d]  %d, %d, %d",
1596 		    path, load_count[path][0], load_count[path][1],
1597 		    load_count[path][2]);
1598 	if (load_count[path][0] == 1)
1599 		return FW_MSG_CODE_DRV_LOAD_COMMON;
1600 	else if (load_count[path][1 + port] == 1)
1601 		return FW_MSG_CODE_DRV_LOAD_PORT;
1602 	else
1603 		return FW_MSG_CODE_DRV_LOAD_FUNCTION;
1604 }
1605 
1606 /* returns the "mcp load_code" according to global load_count array */
1607 static int bnx2x_nic_unload_no_mcp(struct bnx2x_softc *sc)
1608 {
1609 	int port = SC_PORT(sc);
1610 	int path = SC_PATH(sc);
1611 
1612 	PMD_DRV_LOG(INFO, sc, "NO MCP - load counts[%d]      %d, %d, %d",
1613 		    path, load_count[path][0], load_count[path][1],
1614 		    load_count[path][2]);
1615 	load_count[path][0]--;
1616 	load_count[path][1 + port]--;
1617 	PMD_DRV_LOG(INFO, sc, "NO MCP - new load counts[%d]  %d, %d, %d",
1618 		    path, load_count[path][0], load_count[path][1],
1619 		    load_count[path][2]);
1620 	if (load_count[path][0] == 0) {
1621 		return FW_MSG_CODE_DRV_UNLOAD_COMMON;
1622 	} else if (load_count[path][1 + port] == 0) {
1623 		return FW_MSG_CODE_DRV_UNLOAD_PORT;
1624 	} else {
1625 		return FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
1626 	}
1627 }
1628 
1629 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
1630 static uint32_t bnx2x_send_unload_req(struct bnx2x_softc *sc, int unload_mode)
1631 {
1632 	uint32_t reset_code = 0;
1633 
1634 	/* Select the UNLOAD request mode */
1635 	if (unload_mode == UNLOAD_NORMAL) {
1636 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
1637 	} else {
1638 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
1639 	}
1640 
1641 	/* Send the request to the MCP */
1642 	if (!BNX2X_NOMCP(sc)) {
1643 		reset_code = bnx2x_fw_command(sc, reset_code, 0);
1644 	} else {
1645 		reset_code = bnx2x_nic_unload_no_mcp(sc);
1646 	}
1647 
1648 	return reset_code;
1649 }
1650 
1651 /* send UNLOAD_DONE command to the MCP */
1652 static void bnx2x_send_unload_done(struct bnx2x_softc *sc, uint8_t keep_link)
1653 {
1654 	uint32_t reset_param =
1655 	    keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
1656 
1657 	/* Report UNLOAD_DONE to MCP */
1658 	if (!BNX2X_NOMCP(sc)) {
1659 		bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
1660 	}
1661 }
1662 
1663 static int bnx2x_func_wait_started(struct bnx2x_softc *sc)
1664 {
1665 	int tout = 50;
1666 
1667 	if (!sc->port.pmf) {
1668 		return 0;
1669 	}
1670 
1671 	/*
1672 	 * (assumption: No Attention from MCP at this stage)
1673 	 * PMF probably in the middle of TX disable/enable transaction
1674 	 * 1. Sync IRS for default SB
1675 	 * 2. Sync SP queue - this guarantees us that attention handling started
1676 	 * 3. Wait, that TX disable/enable transaction completes
1677 	 *
1678 	 * 1+2 guarantee that if DCBX attention was scheduled it already changed
1679 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
1680 	 * received completion for the transaction the state is TX_STOPPED.
1681 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
1682 	 * transaction.
1683 	 */
1684 
1685 	while (ecore_func_get_state(sc, &sc->func_obj) !=
1686 	       ECORE_F_STATE_STARTED && tout--) {
1687 		DELAY(20000);
1688 	}
1689 
1690 	if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
1691 		/*
1692 		 * Failed to complete the transaction in a "good way"
1693 		 * Force both transactions with CLR bit.
1694 		 */
1695 		struct ecore_func_state_params func_params = { NULL };
1696 
1697 		PMD_DRV_LOG(NOTICE, sc, "Unexpected function state! "
1698 			    "Forcing STARTED-->TX_STOPPED-->STARTED");
1699 
1700 		func_params.f_obj = &sc->func_obj;
1701 		bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
1702 
1703 		/* STARTED-->TX_STOPPED */
1704 		func_params.cmd = ECORE_F_CMD_TX_STOP;
1705 		ecore_func_state_change(sc, &func_params);
1706 
1707 		/* TX_STOPPED-->STARTED */
1708 		func_params.cmd = ECORE_F_CMD_TX_START;
1709 		return ecore_func_state_change(sc, &func_params);
1710 	}
1711 
1712 	return 0;
1713 }
1714 
1715 static int bnx2x_stop_queue(struct bnx2x_softc *sc, int index)
1716 {
1717 	struct bnx2x_fastpath *fp = &sc->fp[index];
1718 	struct ecore_queue_state_params q_params = { NULL };
1719 	int rc;
1720 
1721 	PMD_DRV_LOG(DEBUG, sc, "stopping queue %d cid %d", index, fp->index);
1722 
1723 	q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
1724 	/* We want to wait for completion in this context */
1725 	bnx2x_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
1726 
1727 	/* Stop the primary connection: */
1728 
1729 	/* ...halt the connection */
1730 	q_params.cmd = ECORE_Q_CMD_HALT;
1731 	rc = ecore_queue_state_change(sc, &q_params);
1732 	if (rc) {
1733 		return rc;
1734 	}
1735 
1736 	/* ...terminate the connection */
1737 	q_params.cmd = ECORE_Q_CMD_TERMINATE;
1738 	memset(&q_params.params.terminate, 0,
1739 	       sizeof(q_params.params.terminate));
1740 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
1741 	rc = ecore_queue_state_change(sc, &q_params);
1742 	if (rc) {
1743 		return rc;
1744 	}
1745 
1746 	/* ...delete cfc entry */
1747 	q_params.cmd = ECORE_Q_CMD_CFC_DEL;
1748 	memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
1749 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
1750 	return ecore_queue_state_change(sc, &q_params);
1751 }
1752 
1753 /* wait for the outstanding SP commands */
1754 static uint8_t bnx2x_wait_sp_comp(struct bnx2x_softc *sc, unsigned long mask)
1755 {
1756 	unsigned long tmp;
1757 	int tout = 5000;	/* wait for 5 secs tops */
1758 
1759 	while (tout--) {
1760 		mb();
1761 		if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
1762 			return TRUE;
1763 		}
1764 
1765 		DELAY(1000);
1766 	}
1767 
1768 	mb();
1769 
1770 	tmp = atomic_load_acq_long(&sc->sp_state);
1771 	if (tmp & mask) {
1772 		PMD_DRV_LOG(INFO, sc, "Filtering completion timed out: "
1773 			    "sp_state 0x%lx, mask 0x%lx", tmp, mask);
1774 		return FALSE;
1775 	}
1776 
1777 	return FALSE;
1778 }
1779 
1780 static int bnx2x_func_stop(struct bnx2x_softc *sc)
1781 {
1782 	struct ecore_func_state_params func_params = { NULL };
1783 	int rc;
1784 
1785 	/* prepare parameters for function state transitions */
1786 	bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
1787 	func_params.f_obj = &sc->func_obj;
1788 	func_params.cmd = ECORE_F_CMD_STOP;
1789 
1790 	/*
1791 	 * Try to stop the function the 'good way'. If it fails (in case
1792 	 * of a parity error during bnx2x_chip_cleanup()) and we are
1793 	 * not in a debug mode, perform a state transaction in order to
1794 	 * enable further HW_RESET transaction.
1795 	 */
1796 	rc = ecore_func_state_change(sc, &func_params);
1797 	if (rc) {
1798 		PMD_DRV_LOG(NOTICE, sc, "FUNC_STOP ramrod failed. "
1799 			    "Running a dry transaction");
1800 		bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
1801 		return ecore_func_state_change(sc, &func_params);
1802 	}
1803 
1804 	return 0;
1805 }
1806 
1807 static int bnx2x_reset_hw(struct bnx2x_softc *sc, uint32_t load_code)
1808 {
1809 	struct ecore_func_state_params func_params = { NULL };
1810 
1811 	/* Prepare parameters for function state transitions */
1812 	bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
1813 
1814 	func_params.f_obj = &sc->func_obj;
1815 	func_params.cmd = ECORE_F_CMD_HW_RESET;
1816 
1817 	func_params.params.hw_init.load_phase = load_code;
1818 
1819 	return ecore_func_state_change(sc, &func_params);
1820 }
1821 
1822 static void bnx2x_int_disable_sync(struct bnx2x_softc *sc, int disable_hw)
1823 {
1824 	if (disable_hw) {
1825 		/* prevent the HW from sending interrupts */
1826 		bnx2x_int_disable(sc);
1827 	}
1828 }
1829 
1830 static void
1831 bnx2x_chip_cleanup(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link)
1832 {
1833 	int port = SC_PORT(sc);
1834 	struct ecore_mcast_ramrod_params rparam = { NULL };
1835 	uint32_t reset_code;
1836 	int i, rc = 0;
1837 
1838 	bnx2x_drain_tx_queues(sc);
1839 
1840 	/* give HW time to discard old tx messages */
1841 	DELAY(1000);
1842 
1843 	/* Clean all ETH MACs */
1844 	rc = bnx2x_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC,
1845 			      FALSE);
1846 	if (rc < 0) {
1847 		PMD_DRV_LOG(NOTICE, sc,
1848 			    "Failed to delete all ETH MACs (%d)", rc);
1849 	}
1850 
1851 	/* Clean up UC list  */
1852 	rc = bnx2x_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC,
1853 			      TRUE);
1854 	if (rc < 0) {
1855 		PMD_DRV_LOG(NOTICE, sc,
1856 			    "Failed to delete UC MACs list (%d)", rc);
1857 	}
1858 
1859 	/* Disable LLH */
1860 	REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 0);
1861 
1862 	/* Set "drop all" to stop Rx */
1863 
1864 	/*
1865 	 * We need to take the if_maddr_lock() here in order to prevent
1866 	 * a race between the completion code and this code.
1867 	 */
1868 
1869 	if (bnx2x_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
1870 		bnx2x_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
1871 	} else {
1872 		bnx2x_set_storm_rx_mode(sc);
1873 	}
1874 
1875 	/* Clean up multicast configuration */
1876 	rparam.mcast_obj = &sc->mcast_obj;
1877 	rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
1878 	if (rc < 0) {
1879 		PMD_DRV_LOG(NOTICE, sc,
1880 			    "Failed to send DEL MCAST command (%d)", rc);
1881 	}
1882 
1883 	/*
1884 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
1885 	 * this function should perform FUNCTION, PORT, or COMMON HW
1886 	 * reset.
1887 	 */
1888 	reset_code = bnx2x_send_unload_req(sc, unload_mode);
1889 
1890 	/*
1891 	 * (assumption: No Attention from MCP at this stage)
1892 	 * PMF probably in the middle of TX disable/enable transaction
1893 	 */
1894 	rc = bnx2x_func_wait_started(sc);
1895 	if (rc) {
1896 		PMD_DRV_LOG(NOTICE, sc, "bnx2x_func_wait_started failed");
1897 	}
1898 
1899 	/*
1900 	 * Close multi and leading connections
1901 	 * Completions for ramrods are collected in a synchronous way
1902 	 */
1903 	for (i = 0; i < sc->num_queues; i++) {
1904 		if (bnx2x_stop_queue(sc, i)) {
1905 			goto unload_error;
1906 		}
1907 	}
1908 
1909 	/*
1910 	 * If SP settings didn't get completed so far - something
1911 	 * very wrong has happen.
1912 	 */
1913 	if (!bnx2x_wait_sp_comp(sc, ~0x0UL)) {
1914 		PMD_DRV_LOG(NOTICE, sc, "Common slow path ramrods got stuck!");
1915 	}
1916 
1917 unload_error:
1918 
1919 	rc = bnx2x_func_stop(sc);
1920 	if (rc) {
1921 		PMD_DRV_LOG(NOTICE, sc, "Function stop failed!");
1922 	}
1923 
1924 	/* disable HW interrupts */
1925 	bnx2x_int_disable_sync(sc, TRUE);
1926 
1927 	/* Reset the chip */
1928 	rc = bnx2x_reset_hw(sc, reset_code);
1929 	if (rc) {
1930 		PMD_DRV_LOG(NOTICE, sc, "Hardware reset failed");
1931 	}
1932 
1933 	/* Report UNLOAD_DONE to MCP */
1934 	bnx2x_send_unload_done(sc, keep_link);
1935 }
1936 
1937 static void bnx2x_disable_close_the_gate(struct bnx2x_softc *sc)
1938 {
1939 	uint32_t val;
1940 
1941 	PMD_DRV_LOG(DEBUG, sc, "Disabling 'close the gates'");
1942 
1943 	val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
1944 	val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
1945 		 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
1946 	REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
1947 }
1948 
1949 /*
1950  * Cleans the object that have internal lists without sending
1951  * ramrods. Should be run when interrutps are disabled.
1952  */
1953 static void bnx2x_squeeze_objects(struct bnx2x_softc *sc)
1954 {
1955 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
1956 	struct ecore_mcast_ramrod_params rparam = { NULL };
1957 	struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
1958 	int rc;
1959 
1960 	/* Cleanup MACs' object first... */
1961 
1962 	/* Wait for completion of requested */
1963 	bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1964 	/* Perform a dry cleanup */
1965 	bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
1966 
1967 	/* Clean ETH primary MAC */
1968 	bnx2x_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
1969 	rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
1970 				 &ramrod_flags);
1971 	if (rc != 0) {
1972 		PMD_DRV_LOG(NOTICE, sc, "Failed to clean ETH MACs (%d)", rc);
1973 	}
1974 
1975 	/* Cleanup UC list */
1976 	vlan_mac_flags = 0;
1977 	bnx2x_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
1978 	rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
1979 	if (rc != 0) {
1980 		PMD_DRV_LOG(NOTICE, sc,
1981 			    "Failed to clean UC list MACs (%d)", rc);
1982 	}
1983 
1984 	/* Now clean mcast object... */
1985 
1986 	rparam.mcast_obj = &sc->mcast_obj;
1987 	bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
1988 
1989 	/* Add a DEL command... */
1990 	rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
1991 	if (rc < 0) {
1992 		PMD_DRV_LOG(NOTICE, sc,
1993 			    "Failed to send DEL MCAST command (%d)", rc);
1994 	}
1995 
1996 	/* now wait until all pending commands are cleared */
1997 
1998 	rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
1999 	while (rc != 0) {
2000 		if (rc < 0) {
2001 			PMD_DRV_LOG(NOTICE, sc,
2002 				    "Failed to clean MCAST object (%d)", rc);
2003 			return;
2004 		}
2005 
2006 		rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
2007 	}
2008 }
2009 
2010 /* stop the controller */
2011 __rte_noinline
2012 int
2013 bnx2x_nic_unload(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link)
2014 {
2015 	uint8_t global = FALSE;
2016 	uint32_t val;
2017 
2018 	PMD_INIT_FUNC_TRACE(sc);
2019 
2020 	PMD_DRV_LOG(DEBUG, sc, "Starting NIC unload...");
2021 
2022 	/* mark driver as unloaded in shmem2 */
2023 	if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
2024 		val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
2025 		SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
2026 			  val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2027 	}
2028 
2029 	if (IS_PF(sc) && sc->recovery_state != BNX2X_RECOVERY_DONE &&
2030 	    (sc->state == BNX2X_STATE_CLOSED || sc->state == BNX2X_STATE_ERROR)) {
2031 		/*
2032 		 * We can get here if the driver has been unloaded
2033 		 * during parity error recovery and is either waiting for a
2034 		 * leader to complete or for other functions to unload and
2035 		 * then ifconfig down has been issued. In this case we want to
2036 		 * unload and let other functions to complete a recovery
2037 		 * process.
2038 		 */
2039 		sc->recovery_state = BNX2X_RECOVERY_DONE;
2040 		sc->is_leader = 0;
2041 		bnx2x_release_leader_lock(sc);
2042 		mb();
2043 
2044 		PMD_DRV_LOG(NOTICE, sc, "Can't unload in closed or error state");
2045 		return -1;
2046 	}
2047 
2048 	/*
2049 	 * Nothing to do during unload if previous bnx2x_nic_load()
2050 	 * did not completed successfully - all resourses are released.
2051 	 */
2052 	if ((sc->state == BNX2X_STATE_CLOSED) || (sc->state == BNX2X_STATE_ERROR)) {
2053 		return 0;
2054 	}
2055 
2056 	sc->state = BNX2X_STATE_CLOSING_WAITING_HALT;
2057 	mb();
2058 
2059 	sc->rx_mode = BNX2X_RX_MODE_NONE;
2060 	bnx2x_set_rx_mode(sc);
2061 	mb();
2062 
2063 	if (IS_PF(sc)) {
2064 		/* set ALWAYS_ALIVE bit in shmem */
2065 		sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
2066 
2067 		bnx2x_drv_pulse(sc);
2068 
2069 		bnx2x_stats_handle(sc, STATS_EVENT_STOP);
2070 		bnx2x_save_statistics(sc);
2071 	}
2072 
2073 	/* wait till consumers catch up with producers in all queues */
2074 	bnx2x_drain_tx_queues(sc);
2075 
2076 	/* if VF indicate to PF this function is going down (PF will delete sp
2077 	 * elements and clear initializations
2078 	 */
2079 	if (IS_VF(sc)) {
2080 		bnx2x_vf_unload(sc);
2081 	} else if (unload_mode != UNLOAD_RECOVERY) {
2082 		/* if this is a normal/close unload need to clean up chip */
2083 		bnx2x_chip_cleanup(sc, unload_mode, keep_link);
2084 	} else {
2085 		/* Send the UNLOAD_REQUEST to the MCP */
2086 		bnx2x_send_unload_req(sc, unload_mode);
2087 
2088 		/*
2089 		 * Prevent transactions to host from the functions on the
2090 		 * engine that doesn't reset global blocks in case of global
2091 		 * attention once gloabl blocks are reset and gates are opened
2092 		 * (the engine which leader will perform the recovery
2093 		 * last).
2094 		 */
2095 		if (!CHIP_IS_E1x(sc)) {
2096 			bnx2x_pf_disable(sc);
2097 		}
2098 
2099 		/* disable HW interrupts */
2100 		bnx2x_int_disable_sync(sc, TRUE);
2101 
2102 		/* Report UNLOAD_DONE to MCP */
2103 		bnx2x_send_unload_done(sc, FALSE);
2104 	}
2105 
2106 	/*
2107 	 * At this stage no more interrupts will arrive so we may safely clean
2108 	 * the queue'able objects here in case they failed to get cleaned so far.
2109 	 */
2110 	if (IS_PF(sc)) {
2111 		bnx2x_squeeze_objects(sc);
2112 	}
2113 
2114 	/* There should be no more pending SP commands at this stage */
2115 	sc->sp_state = 0;
2116 
2117 	sc->port.pmf = 0;
2118 
2119 	if (IS_PF(sc)) {
2120 		bnx2x_free_mem(sc);
2121 	}
2122 
2123 	/* free the host hardware/software hsi structures */
2124 	bnx2x_free_hsi_mem(sc);
2125 
2126 	bnx2x_free_fw_stats_mem(sc);
2127 
2128 	sc->state = BNX2X_STATE_CLOSED;
2129 
2130 	/*
2131 	 * Check if there are pending parity attentions. If there are - set
2132 	 * RECOVERY_IN_PROGRESS.
2133 	 */
2134 	if (IS_PF(sc) && bnx2x_chk_parity_attn(sc, &global, FALSE)) {
2135 		bnx2x_set_reset_in_progress(sc);
2136 
2137 		/* Set RESET_IS_GLOBAL if needed */
2138 		if (global) {
2139 			bnx2x_set_reset_global(sc);
2140 		}
2141 	}
2142 
2143 	/*
2144 	 * The last driver must disable a "close the gate" if there is no
2145 	 * parity attention or "process kill" pending.
2146 	 */
2147 	if (IS_PF(sc) && !bnx2x_clear_pf_load(sc) &&
2148 	    bnx2x_reset_is_done(sc, SC_PATH(sc))) {
2149 		bnx2x_disable_close_the_gate(sc);
2150 	}
2151 
2152 	PMD_DRV_LOG(DEBUG, sc, "Ended NIC unload");
2153 
2154 	return 0;
2155 }
2156 
2157 /*
2158  * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
2159  * visible to the controller.
2160  *
2161  * If an mbuf is submitted to this routine and cannot be given to the
2162  * controller (e.g. it has too many fragments) then the function may free
2163  * the mbuf and return to the caller.
2164  *
2165  * Returns:
2166  *     int: Number of TX BDs used for the mbuf
2167  *
2168  *   Note the side effect that an mbuf may be freed if it causes a problem.
2169  */
2170 int bnx2x_tx_encap(struct bnx2x_tx_queue *txq, struct rte_mbuf *m0)
2171 {
2172 	struct eth_tx_start_bd *tx_start_bd;
2173 	uint16_t bd_prod, pkt_prod;
2174 	struct bnx2x_softc *sc;
2175 	uint32_t nbds = 0;
2176 
2177 	sc = txq->sc;
2178 	bd_prod = txq->tx_bd_tail;
2179 	pkt_prod = txq->tx_pkt_tail;
2180 
2181 	txq->sw_ring[TX_BD(pkt_prod, txq)] = m0;
2182 
2183 	tx_start_bd = &txq->tx_ring[TX_BD(bd_prod, txq)].start_bd;
2184 
2185 	tx_start_bd->addr =
2186 	    rte_cpu_to_le_64(rte_mbuf_data_iova(m0));
2187 	tx_start_bd->nbytes = rte_cpu_to_le_16(m0->data_len);
2188 	tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
2189 	tx_start_bd->general_data =
2190 	    (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
2191 
2192 	tx_start_bd->nbd = rte_cpu_to_le_16(2);
2193 
2194 	if (m0->ol_flags & PKT_TX_VLAN_PKT) {
2195 		tx_start_bd->vlan_or_ethertype =
2196 		    rte_cpu_to_le_16(m0->vlan_tci);
2197 		tx_start_bd->bd_flags.as_bitfield |=
2198 		    (X_ETH_OUTBAND_VLAN <<
2199 		     ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
2200 	} else {
2201 		if (IS_PF(sc))
2202 			tx_start_bd->vlan_or_ethertype =
2203 			    rte_cpu_to_le_16(pkt_prod);
2204 		else {
2205 			struct rte_ether_hdr *eh =
2206 			    rte_pktmbuf_mtod(m0, struct rte_ether_hdr *);
2207 
2208 			tx_start_bd->vlan_or_ethertype =
2209 			    rte_cpu_to_le_16(rte_be_to_cpu_16(eh->ether_type));
2210 		}
2211 	}
2212 
2213 	bd_prod = NEXT_TX_BD(bd_prod);
2214 	if (IS_VF(sc)) {
2215 		struct eth_tx_parse_bd_e2 *tx_parse_bd;
2216 		const struct rte_ether_hdr *eh =
2217 		    rte_pktmbuf_mtod(m0, struct rte_ether_hdr *);
2218 		uint8_t mac_type = UNICAST_ADDRESS;
2219 
2220 		tx_parse_bd =
2221 		    &txq->tx_ring[TX_BD(bd_prod, txq)].parse_bd_e2;
2222 		if (rte_is_multicast_ether_addr(&eh->d_addr)) {
2223 			if (rte_is_broadcast_ether_addr(&eh->d_addr))
2224 				mac_type = BROADCAST_ADDRESS;
2225 			else
2226 				mac_type = MULTICAST_ADDRESS;
2227 		}
2228 		tx_parse_bd->parsing_data =
2229 		    (mac_type << ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE_SHIFT);
2230 
2231 		rte_memcpy(&tx_parse_bd->data.mac_addr.dst_hi,
2232 			   &eh->d_addr.addr_bytes[0], 2);
2233 		rte_memcpy(&tx_parse_bd->data.mac_addr.dst_mid,
2234 			   &eh->d_addr.addr_bytes[2], 2);
2235 		rte_memcpy(&tx_parse_bd->data.mac_addr.dst_lo,
2236 			   &eh->d_addr.addr_bytes[4], 2);
2237 		rte_memcpy(&tx_parse_bd->data.mac_addr.src_hi,
2238 			   &eh->s_addr.addr_bytes[0], 2);
2239 		rte_memcpy(&tx_parse_bd->data.mac_addr.src_mid,
2240 			   &eh->s_addr.addr_bytes[2], 2);
2241 		rte_memcpy(&tx_parse_bd->data.mac_addr.src_lo,
2242 			   &eh->s_addr.addr_bytes[4], 2);
2243 
2244 		tx_parse_bd->data.mac_addr.dst_hi =
2245 		    rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.dst_hi);
2246 		tx_parse_bd->data.mac_addr.dst_mid =
2247 		    rte_cpu_to_be_16(tx_parse_bd->data.
2248 				     mac_addr.dst_mid);
2249 		tx_parse_bd->data.mac_addr.dst_lo =
2250 		    rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.dst_lo);
2251 		tx_parse_bd->data.mac_addr.src_hi =
2252 		    rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.src_hi);
2253 		tx_parse_bd->data.mac_addr.src_mid =
2254 		    rte_cpu_to_be_16(tx_parse_bd->data.
2255 				     mac_addr.src_mid);
2256 		tx_parse_bd->data.mac_addr.src_lo =
2257 		    rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.src_lo);
2258 
2259 		PMD_TX_LOG(DEBUG,
2260 			   "PBD dst %x %x %x src %x %x %x p_data %x",
2261 			   tx_parse_bd->data.mac_addr.dst_hi,
2262 			   tx_parse_bd->data.mac_addr.dst_mid,
2263 			   tx_parse_bd->data.mac_addr.dst_lo,
2264 			   tx_parse_bd->data.mac_addr.src_hi,
2265 			   tx_parse_bd->data.mac_addr.src_mid,
2266 			   tx_parse_bd->data.mac_addr.src_lo,
2267 			   tx_parse_bd->parsing_data);
2268 	}
2269 
2270 	PMD_TX_LOG(DEBUG,
2271 		   "start bd: nbytes %d flags %x vlan %x",
2272 		   tx_start_bd->nbytes,
2273 		   tx_start_bd->bd_flags.as_bitfield,
2274 		   tx_start_bd->vlan_or_ethertype);
2275 
2276 	bd_prod = NEXT_TX_BD(bd_prod);
2277 	pkt_prod++;
2278 
2279 	if (TX_IDX(bd_prod) < 2)
2280 		nbds++;
2281 
2282 	txq->nb_tx_avail -= 2;
2283 	txq->tx_bd_tail = bd_prod;
2284 	txq->tx_pkt_tail = pkt_prod;
2285 
2286 	return nbds + 2;
2287 }
2288 
2289 static uint16_t bnx2x_cid_ilt_lines(struct bnx2x_softc *sc)
2290 {
2291 	return L2_ILT_LINES(sc);
2292 }
2293 
2294 static void bnx2x_ilt_set_info(struct bnx2x_softc *sc)
2295 {
2296 	struct ilt_client_info *ilt_client;
2297 	struct ecore_ilt *ilt = sc->ilt;
2298 	uint16_t line = 0;
2299 
2300 	PMD_INIT_FUNC_TRACE(sc);
2301 
2302 	ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
2303 
2304 	/* CDU */
2305 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
2306 	ilt_client->client_num = ILT_CLIENT_CDU;
2307 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
2308 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
2309 	ilt_client->start = line;
2310 	line += bnx2x_cid_ilt_lines(sc);
2311 
2312 	if (CNIC_SUPPORT(sc)) {
2313 		line += CNIC_ILT_LINES;
2314 	}
2315 
2316 	ilt_client->end = (line - 1);
2317 
2318 	/* QM */
2319 	if (QM_INIT(sc->qm_cid_count)) {
2320 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
2321 		ilt_client->client_num = ILT_CLIENT_QM;
2322 		ilt_client->page_size = QM_ILT_PAGE_SZ;
2323 		ilt_client->flags = 0;
2324 		ilt_client->start = line;
2325 
2326 		/* 4 bytes for each cid */
2327 		line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
2328 				     QM_ILT_PAGE_SZ);
2329 
2330 		ilt_client->end = (line - 1);
2331 	}
2332 
2333 	if (CNIC_SUPPORT(sc)) {
2334 		/* SRC */
2335 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
2336 		ilt_client->client_num = ILT_CLIENT_SRC;
2337 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
2338 		ilt_client->flags = 0;
2339 		ilt_client->start = line;
2340 		line += SRC_ILT_LINES;
2341 		ilt_client->end = (line - 1);
2342 
2343 		/* TM */
2344 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
2345 		ilt_client->client_num = ILT_CLIENT_TM;
2346 		ilt_client->page_size = TM_ILT_PAGE_SZ;
2347 		ilt_client->flags = 0;
2348 		ilt_client->start = line;
2349 		line += TM_ILT_LINES;
2350 		ilt_client->end = (line - 1);
2351 	}
2352 
2353 	assert((line <= ILT_MAX_LINES));
2354 }
2355 
2356 static void bnx2x_set_fp_rx_buf_size(struct bnx2x_softc *sc)
2357 {
2358 	int i;
2359 
2360 	for (i = 0; i < sc->num_queues; i++) {
2361 		/* get the Rx buffer size for RX frames */
2362 		sc->fp[i].rx_buf_size =
2363 		    (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
2364 	}
2365 }
2366 
2367 int bnx2x_alloc_ilt_mem(struct bnx2x_softc *sc)
2368 {
2369 
2370 	sc->ilt = rte_malloc("", sizeof(struct ecore_ilt), RTE_CACHE_LINE_SIZE);
2371 
2372 	return sc->ilt == NULL;
2373 }
2374 
2375 static int bnx2x_alloc_ilt_lines_mem(struct bnx2x_softc *sc)
2376 {
2377 	sc->ilt->lines = rte_calloc("",
2378 				    sizeof(struct ilt_line), ILT_MAX_LINES,
2379 				    RTE_CACHE_LINE_SIZE);
2380 	return sc->ilt->lines == NULL;
2381 }
2382 
2383 void bnx2x_free_ilt_mem(struct bnx2x_softc *sc)
2384 {
2385 	rte_free(sc->ilt);
2386 	sc->ilt = NULL;
2387 }
2388 
2389 static void bnx2x_free_ilt_lines_mem(struct bnx2x_softc *sc)
2390 {
2391 	if (sc->ilt->lines != NULL) {
2392 		rte_free(sc->ilt->lines);
2393 		sc->ilt->lines = NULL;
2394 	}
2395 }
2396 
2397 static void bnx2x_free_mem(struct bnx2x_softc *sc)
2398 {
2399 	uint32_t i;
2400 
2401 	for (i = 0; i < L2_ILT_LINES(sc); i++) {
2402 		sc->context[i].vcxt = NULL;
2403 		sc->context[i].size = 0;
2404 	}
2405 
2406 	ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
2407 
2408 	bnx2x_free_ilt_lines_mem(sc);
2409 }
2410 
2411 static int bnx2x_alloc_mem(struct bnx2x_softc *sc)
2412 {
2413 	int context_size;
2414 	int allocated;
2415 	int i;
2416 	char cdu_name[RTE_MEMZONE_NAMESIZE];
2417 
2418 	/*
2419 	 * Allocate memory for CDU context:
2420 	 * This memory is allocated separately and not in the generic ILT
2421 	 * functions because CDU differs in few aspects:
2422 	 * 1. There can be multiple entities allocating memory for context -
2423 	 * regular L2, CNIC, and SRIOV drivers. Each separately controls
2424 	 * its own ILT lines.
2425 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
2426 	 * for the other ILT clients), to be efficient we want to support
2427 	 * allocation of sub-page-size in the last entry.
2428 	 * 3. Context pointers are used by the driver to pass to FW / update
2429 	 * the context (for the other ILT clients the pointers are used just to
2430 	 * free the memory during unload).
2431 	 */
2432 	context_size = (sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(sc));
2433 	for (i = 0, allocated = 0; allocated < context_size; i++) {
2434 		sc->context[i].size = min(CDU_ILT_PAGE_SZ,
2435 					  (context_size - allocated));
2436 
2437 		snprintf(cdu_name, sizeof(cdu_name), "cdu_%d", i);
2438 		if (bnx2x_dma_alloc(sc, sc->context[i].size,
2439 				  &sc->context[i].vcxt_dma,
2440 				  cdu_name, BNX2X_PAGE_SIZE) != 0) {
2441 			bnx2x_free_mem(sc);
2442 			return -1;
2443 		}
2444 
2445 		sc->context[i].vcxt =
2446 		    (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
2447 
2448 		allocated += sc->context[i].size;
2449 	}
2450 
2451 	bnx2x_alloc_ilt_lines_mem(sc);
2452 
2453 	if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
2454 		PMD_DRV_LOG(NOTICE, sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed");
2455 		bnx2x_free_mem(sc);
2456 		return -1;
2457 	}
2458 
2459 	return 0;
2460 }
2461 
2462 static void bnx2x_free_fw_stats_mem(struct bnx2x_softc *sc)
2463 {
2464 	bnx2x_dma_free(&sc->fw_stats_dma);
2465 	sc->fw_stats_num = 0;
2466 
2467 	sc->fw_stats_req_size = 0;
2468 	sc->fw_stats_req = NULL;
2469 	sc->fw_stats_req_mapping = 0;
2470 
2471 	sc->fw_stats_data_size = 0;
2472 	sc->fw_stats_data = NULL;
2473 	sc->fw_stats_data_mapping = 0;
2474 }
2475 
2476 static int bnx2x_alloc_fw_stats_mem(struct bnx2x_softc *sc)
2477 {
2478 	uint8_t num_queue_stats;
2479 	int num_groups, vf_headroom = 0;
2480 
2481 	/* number of queues for statistics is number of eth queues */
2482 	num_queue_stats = BNX2X_NUM_ETH_QUEUES(sc);
2483 
2484 	/*
2485 	 * Total number of FW statistics requests =
2486 	 *   1 for port stats + 1 for PF stats + num of queues
2487 	 */
2488 	sc->fw_stats_num = (2 + num_queue_stats);
2489 
2490 	/*
2491 	 * Request is built from stats_query_header and an array of
2492 	 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
2493 	 * rules. The real number or requests is configured in the
2494 	 * stats_query_header.
2495 	 */
2496 	num_groups = (sc->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT;
2497 	if ((sc->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT)
2498 		num_groups++;
2499 
2500 	sc->fw_stats_req_size =
2501 	    (sizeof(struct stats_query_header) +
2502 	     (num_groups * sizeof(struct stats_query_cmd_group)));
2503 
2504 	/*
2505 	 * Data for statistics requests + stats_counter.
2506 	 * stats_counter holds per-STORM counters that are incremented when
2507 	 * STORM has finished with the current request. Memory for FCoE
2508 	 * offloaded statistics are counted anyway, even if they will not be sent.
2509 	 * VF stats are not accounted for here as the data of VF stats is stored
2510 	 * in memory allocated by the VF, not here.
2511 	 */
2512 	sc->fw_stats_data_size =
2513 	    (sizeof(struct stats_counter) +
2514 	     sizeof(struct per_port_stats) + sizeof(struct per_pf_stats) +
2515 	     /* sizeof(struct fcoe_statistics_params) + */
2516 	     (sizeof(struct per_queue_stats) * num_queue_stats));
2517 
2518 	if (bnx2x_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
2519 			  &sc->fw_stats_dma, "fw_stats",
2520 			  RTE_CACHE_LINE_SIZE) != 0) {
2521 		bnx2x_free_fw_stats_mem(sc);
2522 		return -1;
2523 	}
2524 
2525 	/* set up the shortcuts */
2526 
2527 	sc->fw_stats_req = (struct bnx2x_fw_stats_req *)sc->fw_stats_dma.vaddr;
2528 	sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
2529 
2530 	sc->fw_stats_data =
2531 	    (struct bnx2x_fw_stats_data *)((uint8_t *) sc->fw_stats_dma.vaddr +
2532 					 sc->fw_stats_req_size);
2533 	sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
2534 				     sc->fw_stats_req_size);
2535 
2536 	return 0;
2537 }
2538 
2539 /*
2540  * Bits map:
2541  * 0-7  - Engine0 load counter.
2542  * 8-15 - Engine1 load counter.
2543  * 16   - Engine0 RESET_IN_PROGRESS bit.
2544  * 17   - Engine1 RESET_IN_PROGRESS bit.
2545  * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
2546  *        function on the engine
2547  * 19   - Engine1 ONE_IS_LOADED.
2548  * 20   - Chip reset flow bit. When set none-leader must wait for both engines
2549  *        leader to complete (check for both RESET_IN_PROGRESS bits and not
2550  *        for just the one belonging to its engine).
2551  */
2552 #define BNX2X_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
2553 #define BNX2X_PATH0_LOAD_CNT_MASK   0x000000ff
2554 #define BNX2X_PATH0_LOAD_CNT_SHIFT  0
2555 #define BNX2X_PATH1_LOAD_CNT_MASK   0x0000ff00
2556 #define BNX2X_PATH1_LOAD_CNT_SHIFT  8
2557 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
2558 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
2559 #define BNX2X_GLOBAL_RESET_BIT      0x00040000
2560 
2561 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
2562 static void bnx2x_set_reset_global(struct bnx2x_softc *sc)
2563 {
2564 	uint32_t val;
2565 	bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2566 	val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2567 	REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
2568 	bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2569 }
2570 
2571 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
2572 static void bnx2x_clear_reset_global(struct bnx2x_softc *sc)
2573 {
2574 	uint32_t val;
2575 	bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2576 	val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2577 	REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
2578 	bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2579 }
2580 
2581 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
2582 static uint8_t bnx2x_reset_is_global(struct bnx2x_softc *sc)
2583 {
2584 	return REG_RD(sc, BNX2X_RECOVERY_GLOB_REG) & BNX2X_GLOBAL_RESET_BIT;
2585 }
2586 
2587 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
2588 static void bnx2x_set_reset_done(struct bnx2x_softc *sc)
2589 {
2590 	uint32_t val;
2591 	uint32_t bit = SC_PATH(sc) ? BNX2X_PATH1_RST_IN_PROG_BIT :
2592 	    BNX2X_PATH0_RST_IN_PROG_BIT;
2593 
2594 	bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2595 
2596 	val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2597 	/* Clear the bit */
2598 	val &= ~bit;
2599 	REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2600 
2601 	bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2602 }
2603 
2604 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
2605 static void bnx2x_set_reset_in_progress(struct bnx2x_softc *sc)
2606 {
2607 	uint32_t val;
2608 	uint32_t bit = SC_PATH(sc) ? BNX2X_PATH1_RST_IN_PROG_BIT :
2609 	    BNX2X_PATH0_RST_IN_PROG_BIT;
2610 
2611 	bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2612 
2613 	val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2614 	/* Set the bit */
2615 	val |= bit;
2616 	REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2617 
2618 	bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2619 }
2620 
2621 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
2622 static uint8_t bnx2x_reset_is_done(struct bnx2x_softc *sc, int engine)
2623 {
2624 	uint32_t val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2625 	uint32_t bit = engine ? BNX2X_PATH1_RST_IN_PROG_BIT :
2626 	    BNX2X_PATH0_RST_IN_PROG_BIT;
2627 
2628 	/* return false if bit is set */
2629 	return (val & bit) ? FALSE : TRUE;
2630 }
2631 
2632 /* get the load status for an engine, should be run under rtnl lock */
2633 static uint8_t bnx2x_get_load_status(struct bnx2x_softc *sc, int engine)
2634 {
2635 	uint32_t mask = engine ? BNX2X_PATH1_LOAD_CNT_MASK :
2636 	    BNX2X_PATH0_LOAD_CNT_MASK;
2637 	uint32_t shift = engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2638 	    BNX2X_PATH0_LOAD_CNT_SHIFT;
2639 	uint32_t val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2640 
2641 	val = ((val & mask) >> shift);
2642 
2643 	return val != 0;
2644 }
2645 
2646 /* set pf load mark */
2647 static void bnx2x_set_pf_load(struct bnx2x_softc *sc)
2648 {
2649 	uint32_t val;
2650 	uint32_t val1;
2651 	uint32_t mask = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_MASK :
2652 	    BNX2X_PATH0_LOAD_CNT_MASK;
2653 	uint32_t shift = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2654 	    BNX2X_PATH0_LOAD_CNT_SHIFT;
2655 
2656 	bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2657 
2658 	PMD_INIT_FUNC_TRACE(sc);
2659 
2660 	val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2661 
2662 	/* get the current counter value */
2663 	val1 = ((val & mask) >> shift);
2664 
2665 	/* set bit of this PF */
2666 	val1 |= (1 << SC_ABS_FUNC(sc));
2667 
2668 	/* clear the old value */
2669 	val &= ~mask;
2670 
2671 	/* set the new one */
2672 	val |= ((val1 << shift) & mask);
2673 
2674 	REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2675 
2676 	bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2677 }
2678 
2679 /* clear pf load mark */
2680 static uint8_t bnx2x_clear_pf_load(struct bnx2x_softc *sc)
2681 {
2682 	uint32_t val1, val;
2683 	uint32_t mask = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_MASK :
2684 	    BNX2X_PATH0_LOAD_CNT_MASK;
2685 	uint32_t shift = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2686 	    BNX2X_PATH0_LOAD_CNT_SHIFT;
2687 
2688 	bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2689 	val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2690 
2691 	/* get the current counter value */
2692 	val1 = (val & mask) >> shift;
2693 
2694 	/* clear bit of that PF */
2695 	val1 &= ~(1 << SC_ABS_FUNC(sc));
2696 
2697 	/* clear the old value */
2698 	val &= ~mask;
2699 
2700 	/* set the new one */
2701 	val |= ((val1 << shift) & mask);
2702 
2703 	REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2704 	bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2705 	return val1 != 0;
2706 }
2707 
2708 /* send load requrest to mcp and analyze response */
2709 static int bnx2x_nic_load_request(struct bnx2x_softc *sc, uint32_t * load_code)
2710 {
2711 	PMD_INIT_FUNC_TRACE(sc);
2712 
2713 	/* init fw_seq */
2714 	sc->fw_seq =
2715 	    (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
2716 	     DRV_MSG_SEQ_NUMBER_MASK);
2717 
2718 	PMD_DRV_LOG(DEBUG, sc, "initial fw_seq 0x%04x", sc->fw_seq);
2719 
2720 #ifdef BNX2X_PULSE
2721 	/* get the current FW pulse sequence */
2722 	sc->fw_drv_pulse_wr_seq =
2723 	    (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
2724 	     DRV_PULSE_SEQ_MASK);
2725 #else
2726 	/* set ALWAYS_ALIVE bit in shmem */
2727 	sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
2728 	bnx2x_drv_pulse(sc);
2729 #endif
2730 
2731 	/* load request */
2732 	(*load_code) = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
2733 				      DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
2734 
2735 	/* if the MCP fails to respond we must abort */
2736 	if (!(*load_code)) {
2737 		PMD_DRV_LOG(NOTICE, sc, "MCP response failure!");
2738 		return -1;
2739 	}
2740 
2741 	/* if MCP refused then must abort */
2742 	if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2743 		PMD_DRV_LOG(NOTICE, sc, "MCP refused load request");
2744 		return -1;
2745 	}
2746 
2747 	return 0;
2748 }
2749 
2750 /*
2751  * Check whether another PF has already loaded FW to chip. In virtualized
2752  * environments a pf from anoth VM may have already initialized the device
2753  * including loading FW.
2754  */
2755 static int bnx2x_nic_load_analyze_req(struct bnx2x_softc *sc, uint32_t load_code)
2756 {
2757 	uint32_t my_fw, loaded_fw;
2758 
2759 	/* is another pf loaded on this engine? */
2760 	if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
2761 	    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
2762 		/* build my FW version dword */
2763 		my_fw = (BNX2X_5710_FW_MAJOR_VERSION +
2764 			 (BNX2X_5710_FW_MINOR_VERSION << 8) +
2765 			 (BNX2X_5710_FW_REVISION_VERSION << 16) +
2766 			 (BNX2X_5710_FW_ENGINEERING_VERSION << 24));
2767 
2768 		/* read loaded FW from chip */
2769 		loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
2770 		PMD_DRV_LOG(DEBUG, sc, "loaded FW 0x%08x / my FW 0x%08x",
2771 			    loaded_fw, my_fw);
2772 
2773 		/* abort nic load if version mismatch */
2774 		if (my_fw != loaded_fw) {
2775 			PMD_DRV_LOG(NOTICE, sc,
2776 				    "FW 0x%08x already loaded (mine is 0x%08x)",
2777 				    loaded_fw, my_fw);
2778 			return -1;
2779 		}
2780 	}
2781 
2782 	return 0;
2783 }
2784 
2785 /* mark PMF if applicable */
2786 static void bnx2x_nic_load_pmf(struct bnx2x_softc *sc, uint32_t load_code)
2787 {
2788 	uint32_t ncsi_oem_data_addr;
2789 
2790 	PMD_INIT_FUNC_TRACE(sc);
2791 
2792 	if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2793 	    (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2794 	    (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2795 		/*
2796 		 * Barrier here for ordering between the writing to sc->port.pmf here
2797 		 * and reading it from the periodic task.
2798 		 */
2799 		sc->port.pmf = 1;
2800 		mb();
2801 	} else {
2802 		sc->port.pmf = 0;
2803 	}
2804 
2805 	PMD_DRV_LOG(DEBUG, sc, "pmf %d", sc->port.pmf);
2806 
2807 	if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
2808 		if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
2809 			ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
2810 			if (ncsi_oem_data_addr) {
2811 				REG_WR(sc,
2812 				       (ncsi_oem_data_addr +
2813 					offsetof(struct glob_ncsi_oem_data,
2814 						 driver_version)), 0);
2815 			}
2816 		}
2817 	}
2818 }
2819 
2820 static void bnx2x_read_mf_cfg(struct bnx2x_softc *sc)
2821 {
2822 	int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
2823 	int abs_func;
2824 	int vn;
2825 
2826 	if (BNX2X_NOMCP(sc)) {
2827 		return;		/* what should be the default bvalue in this case */
2828 	}
2829 
2830 	/*
2831 	 * The formula for computing the absolute function number is...
2832 	 * For 2 port configuration (4 functions per port):
2833 	 *   abs_func = 2 * vn + SC_PORT + SC_PATH
2834 	 * For 4 port configuration (2 functions per port):
2835 	 *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
2836 	 */
2837 	for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
2838 		abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
2839 		if (abs_func >= E1H_FUNC_MAX) {
2840 			break;
2841 		}
2842 		sc->devinfo.mf_info.mf_config[vn] =
2843 		    MFCFG_RD(sc, func_mf_config[abs_func].config);
2844 	}
2845 
2846 	if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
2847 	    FUNC_MF_CFG_FUNC_DISABLED) {
2848 		PMD_DRV_LOG(DEBUG, sc, "mf_cfg function disabled");
2849 		sc->flags |= BNX2X_MF_FUNC_DIS;
2850 	} else {
2851 		PMD_DRV_LOG(DEBUG, sc, "mf_cfg function enabled");
2852 		sc->flags &= ~BNX2X_MF_FUNC_DIS;
2853 	}
2854 }
2855 
2856 /* acquire split MCP access lock register */
2857 static int bnx2x_acquire_alr(struct bnx2x_softc *sc)
2858 {
2859 	uint32_t j, val;
2860 
2861 	for (j = 0; j < 1000; j++) {
2862 		val = (1UL << 31);
2863 		REG_WR(sc, GRCBASE_MCP + 0x9c, val);
2864 		val = REG_RD(sc, GRCBASE_MCP + 0x9c);
2865 		if (val & (1L << 31))
2866 			break;
2867 
2868 		DELAY(5000);
2869 	}
2870 
2871 	if (!(val & (1L << 31))) {
2872 		PMD_DRV_LOG(NOTICE, sc, "Cannot acquire MCP access lock register");
2873 		return -1;
2874 	}
2875 
2876 	return 0;
2877 }
2878 
2879 /* release split MCP access lock register */
2880 static void bnx2x_release_alr(struct bnx2x_softc *sc)
2881 {
2882 	REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
2883 }
2884 
2885 static void bnx2x_fan_failure(struct bnx2x_softc *sc)
2886 {
2887 	int port = SC_PORT(sc);
2888 	uint32_t ext_phy_config;
2889 
2890 	/* mark the failure */
2891 	ext_phy_config =
2892 	    SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
2893 
2894 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
2895 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
2896 	SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
2897 		 ext_phy_config);
2898 
2899 	/* log the failure */
2900 	PMD_DRV_LOG(INFO, sc,
2901 		    "Fan Failure has caused the driver to shutdown "
2902 		    "the card to prevent permanent damage. "
2903 		    "Please contact OEM Support for assistance");
2904 
2905 	rte_panic("Schedule task to handle fan failure");
2906 }
2907 
2908 /* this function is called upon a link interrupt */
2909 static void bnx2x_link_attn(struct bnx2x_softc *sc)
2910 {
2911 	uint32_t pause_enabled = 0;
2912 	struct host_port_stats *pstats;
2913 	int cmng_fns;
2914 
2915 	/* Make sure that we are synced with the current statistics */
2916 	bnx2x_stats_handle(sc, STATS_EVENT_STOP);
2917 
2918 	elink_link_update(&sc->link_params, &sc->link_vars);
2919 
2920 	if (sc->link_vars.link_up) {
2921 
2922 		/* dropless flow control */
2923 		if (sc->dropless_fc) {
2924 			pause_enabled = 0;
2925 
2926 			if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
2927 				pause_enabled = 1;
2928 			}
2929 
2930 			REG_WR(sc,
2931 			       (BAR_USTRORM_INTMEM +
2932 				USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
2933 			       pause_enabled);
2934 		}
2935 
2936 		if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
2937 			pstats = BNX2X_SP(sc, port_stats);
2938 			/* reset old mac stats */
2939 			memset(&(pstats->mac_stx[0]), 0,
2940 			       sizeof(struct mac_stx));
2941 		}
2942 
2943 		if (sc->state == BNX2X_STATE_OPEN) {
2944 			bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
2945 		}
2946 	}
2947 
2948 	if (sc->link_vars.link_up && sc->link_vars.line_speed) {
2949 		cmng_fns = bnx2x_get_cmng_fns_mode(sc);
2950 
2951 		if (cmng_fns != CMNG_FNS_NONE) {
2952 			bnx2x_cmng_fns_init(sc, FALSE, cmng_fns);
2953 			storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
2954 		}
2955 	}
2956 
2957 	bnx2x_link_report_locked(sc);
2958 
2959 	if (IS_MF(sc)) {
2960 		bnx2x_link_sync_notify(sc);
2961 	}
2962 }
2963 
2964 static void bnx2x_attn_int_asserted(struct bnx2x_softc *sc, uint32_t asserted)
2965 {
2966 	int port = SC_PORT(sc);
2967 	uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
2968 	    MISC_REG_AEU_MASK_ATTN_FUNC_0;
2969 	uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
2970 	    NIG_REG_MASK_INTERRUPT_PORT0;
2971 	uint32_t aeu_mask;
2972 	uint32_t nig_mask = 0;
2973 	uint32_t reg_addr;
2974 	uint32_t igu_acked;
2975 	uint32_t cnt;
2976 
2977 	if (sc->attn_state & asserted) {
2978 		PMD_DRV_LOG(ERR, sc, "IGU ERROR attn=0x%08x", asserted);
2979 	}
2980 
2981 	bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
2982 
2983 	aeu_mask = REG_RD(sc, aeu_addr);
2984 
2985 	aeu_mask &= ~(asserted & 0x3ff);
2986 
2987 	REG_WR(sc, aeu_addr, aeu_mask);
2988 
2989 	bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
2990 
2991 	sc->attn_state |= asserted;
2992 
2993 	if (asserted & ATTN_HARD_WIRED_MASK) {
2994 		if (asserted & ATTN_NIG_FOR_FUNC) {
2995 
2996 			bnx2x_acquire_phy_lock(sc);
2997 			/* save nig interrupt mask */
2998 			nig_mask = REG_RD(sc, nig_int_mask_addr);
2999 
3000 			/* If nig_mask is not set, no need to call the update function */
3001 			if (nig_mask) {
3002 				REG_WR(sc, nig_int_mask_addr, 0);
3003 
3004 				bnx2x_link_attn(sc);
3005 			}
3006 
3007 			/* handle unicore attn? */
3008 		}
3009 
3010 		if (asserted & ATTN_SW_TIMER_4_FUNC) {
3011 			PMD_DRV_LOG(DEBUG, sc, "ATTN_SW_TIMER_4_FUNC!");
3012 		}
3013 
3014 		if (asserted & GPIO_2_FUNC) {
3015 			PMD_DRV_LOG(DEBUG, sc, "GPIO_2_FUNC!");
3016 		}
3017 
3018 		if (asserted & GPIO_3_FUNC) {
3019 			PMD_DRV_LOG(DEBUG, sc, "GPIO_3_FUNC!");
3020 		}
3021 
3022 		if (asserted & GPIO_4_FUNC) {
3023 			PMD_DRV_LOG(DEBUG, sc, "GPIO_4_FUNC!");
3024 		}
3025 
3026 		if (port == 0) {
3027 			if (asserted & ATTN_GENERAL_ATTN_1) {
3028 				PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_1!");
3029 				REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3030 			}
3031 			if (asserted & ATTN_GENERAL_ATTN_2) {
3032 				PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_2!");
3033 				REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3034 			}
3035 			if (asserted & ATTN_GENERAL_ATTN_3) {
3036 				PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_3!");
3037 				REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3038 			}
3039 		} else {
3040 			if (asserted & ATTN_GENERAL_ATTN_4) {
3041 				PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_4!");
3042 				REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3043 			}
3044 			if (asserted & ATTN_GENERAL_ATTN_5) {
3045 				PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_5!");
3046 				REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3047 			}
3048 			if (asserted & ATTN_GENERAL_ATTN_6) {
3049 				PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_6!");
3050 				REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3051 			}
3052 		}
3053 	}
3054 	/* hardwired */
3055 	if (sc->devinfo.int_block == INT_BLOCK_HC) {
3056 		reg_addr =
3057 		    (HC_REG_COMMAND_REG + port * 32 +
3058 		     COMMAND_REG_ATTN_BITS_SET);
3059 	} else {
3060 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER * 8);
3061 	}
3062 
3063 	PMD_DRV_LOG(DEBUG, sc, "about to mask 0x%08x at %s addr 0x%08x",
3064 		    asserted,
3065 		    (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU",
3066 		    reg_addr);
3067 	REG_WR(sc, reg_addr, asserted);
3068 
3069 	/* now set back the mask */
3070 	if (asserted & ATTN_NIG_FOR_FUNC) {
3071 		/*
3072 		 * Verify that IGU ack through BAR was written before restoring
3073 		 * NIG mask. This loop should exit after 2-3 iterations max.
3074 		 */
3075 		if (sc->devinfo.int_block != INT_BLOCK_HC) {
3076 			cnt = 0;
3077 
3078 			do {
3079 				igu_acked =
3080 				    REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
3081 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0)
3082 				 && (++cnt < MAX_IGU_ATTN_ACK_TO));
3083 
3084 			if (!igu_acked) {
3085 				PMD_DRV_LOG(ERR, sc,
3086 					    "Failed to verify IGU ack on time");
3087 			}
3088 
3089 			mb();
3090 		}
3091 
3092 		REG_WR(sc, nig_int_mask_addr, nig_mask);
3093 
3094 		bnx2x_release_phy_lock(sc);
3095 	}
3096 }
3097 
3098 static void
3099 bnx2x_print_next_block(__rte_unused struct bnx2x_softc *sc, __rte_unused int idx,
3100 		     __rte_unused const char *blk)
3101 {
3102 	PMD_DRV_LOG(INFO, sc, "%s%s", idx ? ", " : "", blk);
3103 }
3104 
3105 static int
3106 bnx2x_check_blocks_with_parity0(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3107 			      uint8_t print)
3108 {
3109 	uint32_t cur_bit = 0;
3110 	int i = 0;
3111 
3112 	for (i = 0; sig; i++) {
3113 		cur_bit = ((uint32_t) 0x1 << i);
3114 		if (sig & cur_bit) {
3115 			switch (cur_bit) {
3116 			case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3117 				if (print)
3118 					bnx2x_print_next_block(sc, par_num++,
3119 							     "BRB");
3120 				break;
3121 			case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3122 				if (print)
3123 					bnx2x_print_next_block(sc, par_num++,
3124 							     "PARSER");
3125 				break;
3126 			case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3127 				if (print)
3128 					bnx2x_print_next_block(sc, par_num++,
3129 							     "TSDM");
3130 				break;
3131 			case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3132 				if (print)
3133 					bnx2x_print_next_block(sc, par_num++,
3134 							     "SEARCHER");
3135 				break;
3136 			case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3137 				if (print)
3138 					bnx2x_print_next_block(sc, par_num++,
3139 							     "TCM");
3140 				break;
3141 			case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3142 				if (print)
3143 					bnx2x_print_next_block(sc, par_num++,
3144 							     "TSEMI");
3145 				break;
3146 			case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3147 				if (print)
3148 					bnx2x_print_next_block(sc, par_num++,
3149 							     "XPB");
3150 				break;
3151 			}
3152 
3153 			/* Clear the bit */
3154 			sig &= ~cur_bit;
3155 		}
3156 	}
3157 
3158 	return par_num;
3159 }
3160 
3161 static int
3162 bnx2x_check_blocks_with_parity1(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3163 			      uint8_t * global, uint8_t print)
3164 {
3165 	int i = 0;
3166 	uint32_t cur_bit = 0;
3167 	for (i = 0; sig; i++) {
3168 		cur_bit = ((uint32_t) 0x1 << i);
3169 		if (sig & cur_bit) {
3170 			switch (cur_bit) {
3171 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3172 				if (print)
3173 					bnx2x_print_next_block(sc, par_num++,
3174 							     "PBF");
3175 				break;
3176 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3177 				if (print)
3178 					bnx2x_print_next_block(sc, par_num++,
3179 							     "QM");
3180 				break;
3181 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3182 				if (print)
3183 					bnx2x_print_next_block(sc, par_num++,
3184 							     "TM");
3185 				break;
3186 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3187 				if (print)
3188 					bnx2x_print_next_block(sc, par_num++,
3189 							     "XSDM");
3190 				break;
3191 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
3192 				if (print)
3193 					bnx2x_print_next_block(sc, par_num++,
3194 							     "XCM");
3195 				break;
3196 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
3197 				if (print)
3198 					bnx2x_print_next_block(sc, par_num++,
3199 							     "XSEMI");
3200 				break;
3201 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
3202 				if (print)
3203 					bnx2x_print_next_block(sc, par_num++,
3204 							     "DOORBELLQ");
3205 				break;
3206 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
3207 				if (print)
3208 					bnx2x_print_next_block(sc, par_num++,
3209 							     "NIG");
3210 				break;
3211 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
3212 				if (print)
3213 					bnx2x_print_next_block(sc, par_num++,
3214 							     "VAUX PCI CORE");
3215 				*global = TRUE;
3216 				break;
3217 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
3218 				if (print)
3219 					bnx2x_print_next_block(sc, par_num++,
3220 							     "DEBUG");
3221 				break;
3222 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
3223 				if (print)
3224 					bnx2x_print_next_block(sc, par_num++,
3225 							     "USDM");
3226 				break;
3227 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
3228 				if (print)
3229 					bnx2x_print_next_block(sc, par_num++,
3230 							     "UCM");
3231 				break;
3232 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
3233 				if (print)
3234 					bnx2x_print_next_block(sc, par_num++,
3235 							     "USEMI");
3236 				break;
3237 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
3238 				if (print)
3239 					bnx2x_print_next_block(sc, par_num++,
3240 							     "UPB");
3241 				break;
3242 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
3243 				if (print)
3244 					bnx2x_print_next_block(sc, par_num++,
3245 							     "CSDM");
3246 				break;
3247 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
3248 				if (print)
3249 					bnx2x_print_next_block(sc, par_num++,
3250 							     "CCM");
3251 				break;
3252 			}
3253 
3254 			/* Clear the bit */
3255 			sig &= ~cur_bit;
3256 		}
3257 	}
3258 
3259 	return par_num;
3260 }
3261 
3262 static int
3263 bnx2x_check_blocks_with_parity2(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3264 			      uint8_t print)
3265 {
3266 	uint32_t cur_bit = 0;
3267 	int i = 0;
3268 
3269 	for (i = 0; sig; i++) {
3270 		cur_bit = ((uint32_t) 0x1 << i);
3271 		if (sig & cur_bit) {
3272 			switch (cur_bit) {
3273 			case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
3274 				if (print)
3275 					bnx2x_print_next_block(sc, par_num++,
3276 							     "CSEMI");
3277 				break;
3278 			case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
3279 				if (print)
3280 					bnx2x_print_next_block(sc, par_num++,
3281 							     "PXP");
3282 				break;
3283 			case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
3284 				if (print)
3285 					bnx2x_print_next_block(sc, par_num++,
3286 							     "PXPPCICLOCKCLIENT");
3287 				break;
3288 			case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
3289 				if (print)
3290 					bnx2x_print_next_block(sc, par_num++,
3291 							     "CFC");
3292 				break;
3293 			case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
3294 				if (print)
3295 					bnx2x_print_next_block(sc, par_num++,
3296 							     "CDU");
3297 				break;
3298 			case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
3299 				if (print)
3300 					bnx2x_print_next_block(sc, par_num++,
3301 							     "DMAE");
3302 				break;
3303 			case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
3304 				if (print)
3305 					bnx2x_print_next_block(sc, par_num++,
3306 							     "IGU");
3307 				break;
3308 			case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
3309 				if (print)
3310 					bnx2x_print_next_block(sc, par_num++,
3311 							     "MISC");
3312 				break;
3313 			}
3314 
3315 			/* Clear the bit */
3316 			sig &= ~cur_bit;
3317 		}
3318 	}
3319 
3320 	return par_num;
3321 }
3322 
3323 static int
3324 bnx2x_check_blocks_with_parity3(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3325 			      uint8_t * global, uint8_t print)
3326 {
3327 	uint32_t cur_bit = 0;
3328 	int i = 0;
3329 
3330 	for (i = 0; sig; i++) {
3331 		cur_bit = ((uint32_t) 0x1 << i);
3332 		if (sig & cur_bit) {
3333 			switch (cur_bit) {
3334 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
3335 				if (print)
3336 					bnx2x_print_next_block(sc, par_num++,
3337 							     "MCP ROM");
3338 				*global = TRUE;
3339 				break;
3340 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
3341 				if (print)
3342 					bnx2x_print_next_block(sc, par_num++,
3343 							     "MCP UMP RX");
3344 				*global = TRUE;
3345 				break;
3346 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
3347 				if (print)
3348 					bnx2x_print_next_block(sc, par_num++,
3349 							     "MCP UMP TX");
3350 				*global = TRUE;
3351 				break;
3352 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
3353 				if (print)
3354 					bnx2x_print_next_block(sc, par_num++,
3355 							     "MCP SCPAD");
3356 				*global = TRUE;
3357 				break;
3358 			}
3359 
3360 			/* Clear the bit */
3361 			sig &= ~cur_bit;
3362 		}
3363 	}
3364 
3365 	return par_num;
3366 }
3367 
3368 static int
3369 bnx2x_check_blocks_with_parity4(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3370 			      uint8_t print)
3371 {
3372 	uint32_t cur_bit = 0;
3373 	int i = 0;
3374 
3375 	for (i = 0; sig; i++) {
3376 		cur_bit = ((uint32_t) 0x1 << i);
3377 		if (sig & cur_bit) {
3378 			switch (cur_bit) {
3379 			case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
3380 				if (print)
3381 					bnx2x_print_next_block(sc, par_num++,
3382 							     "PGLUE_B");
3383 				break;
3384 			case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
3385 				if (print)
3386 					bnx2x_print_next_block(sc, par_num++,
3387 							     "ATC");
3388 				break;
3389 			}
3390 
3391 			/* Clear the bit */
3392 			sig &= ~cur_bit;
3393 		}
3394 	}
3395 
3396 	return par_num;
3397 }
3398 
3399 static uint8_t
3400 bnx2x_parity_attn(struct bnx2x_softc *sc, uint8_t * global, uint8_t print,
3401 		uint32_t * sig)
3402 {
3403 	int par_num = 0;
3404 
3405 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
3406 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
3407 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
3408 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
3409 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
3410 		PMD_DRV_LOG(ERR, sc,
3411 			    "Parity error: HW block parity attention:"
3412 			    "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x",
3413 			    (uint32_t) (sig[0] & HW_PRTY_ASSERT_SET_0),
3414 			    (uint32_t) (sig[1] & HW_PRTY_ASSERT_SET_1),
3415 			    (uint32_t) (sig[2] & HW_PRTY_ASSERT_SET_2),
3416 			    (uint32_t) (sig[3] & HW_PRTY_ASSERT_SET_3),
3417 			    (uint32_t) (sig[4] & HW_PRTY_ASSERT_SET_4));
3418 
3419 		if (print)
3420 			PMD_DRV_LOG(INFO, sc, "Parity errors detected in blocks: ");
3421 
3422 		par_num =
3423 		    bnx2x_check_blocks_with_parity0(sc, sig[0] &
3424 						  HW_PRTY_ASSERT_SET_0,
3425 						  par_num, print);
3426 		par_num =
3427 		    bnx2x_check_blocks_with_parity1(sc, sig[1] &
3428 						  HW_PRTY_ASSERT_SET_1,
3429 						  par_num, global, print);
3430 		par_num =
3431 		    bnx2x_check_blocks_with_parity2(sc, sig[2] &
3432 						  HW_PRTY_ASSERT_SET_2,
3433 						  par_num, print);
3434 		par_num =
3435 		    bnx2x_check_blocks_with_parity3(sc, sig[3] &
3436 						  HW_PRTY_ASSERT_SET_3,
3437 						  par_num, global, print);
3438 		par_num =
3439 		    bnx2x_check_blocks_with_parity4(sc, sig[4] &
3440 						  HW_PRTY_ASSERT_SET_4,
3441 						  par_num, print);
3442 
3443 		if (print)
3444 			PMD_DRV_LOG(INFO, sc, "");
3445 
3446 		return TRUE;
3447 	}
3448 
3449 	return FALSE;
3450 }
3451 
3452 static uint8_t
3453 bnx2x_chk_parity_attn(struct bnx2x_softc *sc, uint8_t * global, uint8_t print)
3454 {
3455 	struct attn_route attn = { {0} };
3456 	int port = SC_PORT(sc);
3457 
3458 	attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port * 4);
3459 	attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port * 4);
3460 	attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port * 4);
3461 	attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port * 4);
3462 
3463 	if (!CHIP_IS_E1x(sc))
3464 		attn.sig[4] =
3465 		    REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port * 4);
3466 
3467 	return bnx2x_parity_attn(sc, global, print, attn.sig);
3468 }
3469 
3470 static void bnx2x_attn_int_deasserted4(struct bnx2x_softc *sc, uint32_t attn)
3471 {
3472 	uint32_t val;
3473 
3474 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
3475 		val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
3476 		PMD_DRV_LOG(INFO, sc, "ERROR: PGLUE hw attention 0x%08x", val);
3477 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
3478 			PMD_DRV_LOG(INFO, sc,
3479 				    "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR");
3480 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
3481 			PMD_DRV_LOG(INFO, sc,
3482 				    "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR");
3483 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
3484 			PMD_DRV_LOG(INFO, sc,
3485 				    "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN");
3486 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
3487 			PMD_DRV_LOG(INFO, sc,
3488 				    "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN");
3489 		if (val &
3490 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
3491 			PMD_DRV_LOG(INFO, sc,
3492 				    "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN");
3493 		if (val &
3494 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
3495 			PMD_DRV_LOG(INFO, sc,
3496 				    "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN");
3497 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
3498 			PMD_DRV_LOG(INFO, sc,
3499 				    "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN");
3500 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
3501 			PMD_DRV_LOG(INFO, sc,
3502 				    "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN");
3503 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
3504 			PMD_DRV_LOG(INFO, sc,
3505 				    "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW");
3506 	}
3507 
3508 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
3509 		val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
3510 		PMD_DRV_LOG(INFO, sc, "ERROR: ATC hw attention 0x%08x", val);
3511 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
3512 			PMD_DRV_LOG(INFO, sc,
3513 				    "ERROR: ATC_ATC_INT_STS_REG_ADDRESS_ERROR");
3514 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
3515 			PMD_DRV_LOG(INFO, sc,
3516 				    "ERROR: ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND");
3517 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
3518 			PMD_DRV_LOG(INFO, sc,
3519 				    "ERROR: ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS");
3520 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
3521 			PMD_DRV_LOG(INFO, sc,
3522 				    "ERROR: ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT");
3523 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
3524 			PMD_DRV_LOG(INFO, sc,
3525 				    "ERROR: ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR");
3526 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
3527 			PMD_DRV_LOG(INFO, sc,
3528 				    "ERROR: ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU");
3529 	}
3530 
3531 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
3532 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
3533 		PMD_DRV_LOG(INFO, sc,
3534 			    "ERROR: FATAL parity attention set4 0x%08x",
3535 			    (uint32_t) (attn &
3536 					(AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR
3537 					 |
3538 					 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
3539 	}
3540 }
3541 
3542 static void bnx2x_e1h_disable(struct bnx2x_softc *sc)
3543 {
3544 	int port = SC_PORT(sc);
3545 
3546 	REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 0);
3547 }
3548 
3549 static void bnx2x_e1h_enable(struct bnx2x_softc *sc)
3550 {
3551 	int port = SC_PORT(sc);
3552 
3553 	REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3554 }
3555 
3556 /*
3557  * called due to MCP event (on pmf):
3558  *   reread new bandwidth configuration
3559  *   configure FW
3560  *   notify others function about the change
3561  */
3562 static void bnx2x_config_mf_bw(struct bnx2x_softc *sc)
3563 {
3564 	if (sc->link_vars.link_up) {
3565 		bnx2x_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
3566 		bnx2x_link_sync_notify(sc);
3567 	}
3568 
3569 	storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
3570 }
3571 
3572 static void bnx2x_set_mf_bw(struct bnx2x_softc *sc)
3573 {
3574 	bnx2x_config_mf_bw(sc);
3575 	bnx2x_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3576 }
3577 
3578 static void bnx2x_handle_eee_event(struct bnx2x_softc *sc)
3579 {
3580 	bnx2x_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3581 }
3582 
3583 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3584 
3585 static void bnx2x_drv_info_ether_stat(struct bnx2x_softc *sc)
3586 {
3587 	struct eth_stats_info *ether_stat = &sc->sp->drv_info_to_mcp.ether_stat;
3588 
3589 	strncpy(ether_stat->version, BNX2X_DRIVER_VERSION,
3590 		ETH_STAT_INFO_VERSION_LEN);
3591 
3592 	sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
3593 					      DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3594 					      ether_stat->mac_local + MAC_PAD,
3595 					      MAC_PAD, ETH_ALEN);
3596 
3597 	ether_stat->mtu_size = sc->mtu;
3598 
3599 	ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3600 	ether_stat->promiscuous_mode = 0;	// (flags & PROMISC) ? 1 : 0;
3601 
3602 	ether_stat->txq_size = sc->tx_ring_size;
3603 	ether_stat->rxq_size = sc->rx_ring_size;
3604 }
3605 
3606 static void bnx2x_handle_drv_info_req(struct bnx2x_softc *sc)
3607 {
3608 	enum drv_info_opcode op_code;
3609 	uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
3610 
3611 	/* if drv_info version supported by MFW doesn't match - send NACK */
3612 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3613 		bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3614 		return;
3615 	}
3616 
3617 	op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3618 		   DRV_INFO_CONTROL_OP_CODE_SHIFT);
3619 
3620 	memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
3621 
3622 	switch (op_code) {
3623 	case ETH_STATS_OPCODE:
3624 		bnx2x_drv_info_ether_stat(sc);
3625 		break;
3626 	case FCOE_STATS_OPCODE:
3627 	case ISCSI_STATS_OPCODE:
3628 	default:
3629 		/* if op code isn't supported - send NACK */
3630 		bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3631 		return;
3632 	}
3633 
3634 	/*
3635 	 * If we got drv_info attn from MFW then these fields are defined in
3636 	 * shmem2 for sure
3637 	 */
3638 	SHMEM2_WR(sc, drv_info_host_addr_lo,
3639 		  U64_LO(BNX2X_SP_MAPPING(sc, drv_info_to_mcp)));
3640 	SHMEM2_WR(sc, drv_info_host_addr_hi,
3641 		  U64_HI(BNX2X_SP_MAPPING(sc, drv_info_to_mcp)));
3642 
3643 	bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3644 }
3645 
3646 static void bnx2x_dcc_event(struct bnx2x_softc *sc, uint32_t dcc_event)
3647 {
3648 	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3649 /*
3650  * This is the only place besides the function initialization
3651  * where the sc->flags can change so it is done without any
3652  * locks
3653  */
3654 		if (sc->devinfo.
3655 		    mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
3656 			PMD_DRV_LOG(DEBUG, sc, "mf_cfg function disabled");
3657 			sc->flags |= BNX2X_MF_FUNC_DIS;
3658 			bnx2x_e1h_disable(sc);
3659 		} else {
3660 			PMD_DRV_LOG(DEBUG, sc, "mf_cfg function enabled");
3661 			sc->flags &= ~BNX2X_MF_FUNC_DIS;
3662 			bnx2x_e1h_enable(sc);
3663 		}
3664 		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3665 	}
3666 
3667 	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3668 		bnx2x_config_mf_bw(sc);
3669 		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3670 	}
3671 
3672 	/* Report results to MCP */
3673 	if (dcc_event)
3674 		bnx2x_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
3675 	else
3676 		bnx2x_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
3677 }
3678 
3679 static void bnx2x_pmf_update(struct bnx2x_softc *sc)
3680 {
3681 	int port = SC_PORT(sc);
3682 	uint32_t val;
3683 
3684 	sc->port.pmf = 1;
3685 
3686 	/*
3687 	 * We need the mb() to ensure the ordering between the writing to
3688 	 * sc->port.pmf here and reading it from the bnx2x_periodic_task().
3689 	 */
3690 	mb();
3691 
3692 	/* enable nig attention */
3693 	val = (0xff0f | (1 << (SC_VN(sc) + 4)));
3694 	if (sc->devinfo.int_block == INT_BLOCK_HC) {
3695 		REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, val);
3696 		REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, val);
3697 	} else if (!CHIP_IS_E1x(sc)) {
3698 		REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
3699 		REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
3700 	}
3701 
3702 	bnx2x_stats_handle(sc, STATS_EVENT_PMF);
3703 }
3704 
3705 static int bnx2x_mc_assert(struct bnx2x_softc *sc)
3706 {
3707 	char last_idx;
3708 	int i, rc = 0;
3709 	__rte_unused uint32_t row0, row1, row2, row3;
3710 
3711 	/* XSTORM */
3712 	last_idx =
3713 	    REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
3714 	if (last_idx)
3715 		PMD_DRV_LOG(ERR, sc, "XSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3716 
3717 	/* print the asserts */
3718 	for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3719 
3720 		row0 =
3721 		    REG_RD(sc,
3722 			   BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
3723 		row1 =
3724 		    REG_RD(sc,
3725 			   BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3726 			   4);
3727 		row2 =
3728 		    REG_RD(sc,
3729 			   BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3730 			   8);
3731 		row3 =
3732 		    REG_RD(sc,
3733 			   BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3734 			   12);
3735 
3736 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3737 			PMD_DRV_LOG(ERR, sc,
3738 				    "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3739 				    i, row3, row2, row1, row0);
3740 			rc++;
3741 		} else {
3742 			break;
3743 		}
3744 	}
3745 
3746 	/* TSTORM */
3747 	last_idx =
3748 	    REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
3749 	if (last_idx) {
3750 		PMD_DRV_LOG(ERR, sc, "TSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3751 	}
3752 
3753 	/* print the asserts */
3754 	for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3755 
3756 		row0 =
3757 		    REG_RD(sc,
3758 			   BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
3759 		row1 =
3760 		    REG_RD(sc,
3761 			   BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3762 			   4);
3763 		row2 =
3764 		    REG_RD(sc,
3765 			   BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3766 			   8);
3767 		row3 =
3768 		    REG_RD(sc,
3769 			   BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3770 			   12);
3771 
3772 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3773 			PMD_DRV_LOG(ERR, sc,
3774 				    "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3775 				    i, row3, row2, row1, row0);
3776 			rc++;
3777 		} else {
3778 			break;
3779 		}
3780 	}
3781 
3782 	/* CSTORM */
3783 	last_idx =
3784 	    REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
3785 	if (last_idx) {
3786 		PMD_DRV_LOG(ERR, sc, "CSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3787 	}
3788 
3789 	/* print the asserts */
3790 	for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3791 
3792 		row0 =
3793 		    REG_RD(sc,
3794 			   BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
3795 		row1 =
3796 		    REG_RD(sc,
3797 			   BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3798 			   4);
3799 		row2 =
3800 		    REG_RD(sc,
3801 			   BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3802 			   8);
3803 		row3 =
3804 		    REG_RD(sc,
3805 			   BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3806 			   12);
3807 
3808 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3809 			PMD_DRV_LOG(ERR, sc,
3810 				    "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3811 				    i, row3, row2, row1, row0);
3812 			rc++;
3813 		} else {
3814 			break;
3815 		}
3816 	}
3817 
3818 	/* USTORM */
3819 	last_idx =
3820 	    REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
3821 	if (last_idx) {
3822 		PMD_DRV_LOG(ERR, sc, "USTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3823 	}
3824 
3825 	/* print the asserts */
3826 	for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3827 
3828 		row0 =
3829 		    REG_RD(sc,
3830 			   BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
3831 		row1 =
3832 		    REG_RD(sc,
3833 			   BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3834 			   4);
3835 		row2 =
3836 		    REG_RD(sc,
3837 			   BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3838 			   8);
3839 		row3 =
3840 		    REG_RD(sc,
3841 			   BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3842 			   12);
3843 
3844 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3845 			PMD_DRV_LOG(ERR, sc,
3846 				    "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3847 				    i, row3, row2, row1, row0);
3848 			rc++;
3849 		} else {
3850 			break;
3851 		}
3852 	}
3853 
3854 	return rc;
3855 }
3856 
3857 static void bnx2x_attn_int_deasserted3(struct bnx2x_softc *sc, uint32_t attn)
3858 {
3859 	int func = SC_FUNC(sc);
3860 	uint32_t val;
3861 
3862 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3863 
3864 		if (attn & BNX2X_PMF_LINK_ASSERT(sc)) {
3865 
3866 			REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
3867 			bnx2x_read_mf_cfg(sc);
3868 			sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
3869 			    MFCFG_RD(sc,
3870 				     func_mf_config[SC_ABS_FUNC(sc)].config);
3871 			val =
3872 			    SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
3873 
3874 			if (val & DRV_STATUS_DCC_EVENT_MASK)
3875 				bnx2x_dcc_event(sc,
3876 					      (val &
3877 					       DRV_STATUS_DCC_EVENT_MASK));
3878 
3879 			if (val & DRV_STATUS_SET_MF_BW)
3880 				bnx2x_set_mf_bw(sc);
3881 
3882 			if (val & DRV_STATUS_DRV_INFO_REQ)
3883 				bnx2x_handle_drv_info_req(sc);
3884 
3885 			if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
3886 				bnx2x_pmf_update(sc);
3887 
3888 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
3889 				bnx2x_handle_eee_event(sc);
3890 
3891 			if (sc->link_vars.periodic_flags &
3892 			    ELINK_PERIODIC_FLAGS_LINK_EVENT) {
3893 				/* sync with link */
3894 				bnx2x_acquire_phy_lock(sc);
3895 				sc->link_vars.periodic_flags &=
3896 				    ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
3897 				bnx2x_release_phy_lock(sc);
3898 				if (IS_MF(sc)) {
3899 					bnx2x_link_sync_notify(sc);
3900 				}
3901 				bnx2x_link_report(sc);
3902 			}
3903 
3904 			/*
3905 			 * Always call it here: bnx2x_link_report() will
3906 			 * prevent the link indication duplication.
3907 			 */
3908 			bnx2x_link_status_update(sc);
3909 
3910 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
3911 
3912 			PMD_DRV_LOG(ERR, sc, "MC assert!");
3913 			bnx2x_mc_assert(sc);
3914 			REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3915 			REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3916 			REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3917 			REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3918 			rte_panic("MC assert!");
3919 
3920 		} else if (attn & BNX2X_MCP_ASSERT) {
3921 
3922 			PMD_DRV_LOG(ERR, sc, "MCP assert!");
3923 			REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3924 
3925 		} else {
3926 			PMD_DRV_LOG(ERR, sc,
3927 				    "Unknown HW assert! (attn 0x%08x)", attn);
3928 		}
3929 	}
3930 
3931 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3932 		PMD_DRV_LOG(ERR, sc, "LATCHED attention 0x%08x (masked)", attn);
3933 		if (attn & BNX2X_GRC_TIMEOUT) {
3934 			val = REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
3935 			PMD_DRV_LOG(ERR, sc, "GRC time-out 0x%08x", val);
3936 		}
3937 		if (attn & BNX2X_GRC_RSV) {
3938 			val = REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
3939 			PMD_DRV_LOG(ERR, sc, "GRC reserved 0x%08x", val);
3940 		}
3941 		REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3942 	}
3943 }
3944 
3945 static void bnx2x_attn_int_deasserted2(struct bnx2x_softc *sc, uint32_t attn)
3946 {
3947 	int port = SC_PORT(sc);
3948 	int reg_offset;
3949 	uint32_t val0, mask0, val1, mask1;
3950 	uint32_t val;
3951 
3952 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3953 		val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
3954 		PMD_DRV_LOG(ERR, sc, "CFC hw attention 0x%08x", val);
3955 /* CFC error attention */
3956 		if (val & 0x2) {
3957 			PMD_DRV_LOG(ERR, sc, "FATAL error from CFC");
3958 		}
3959 	}
3960 
3961 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3962 		val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
3963 		PMD_DRV_LOG(ERR, sc, "PXP hw attention-0 0x%08x", val);
3964 /* RQ_USDMDP_FIFO_OVERFLOW */
3965 		if (val & 0x18000) {
3966 			PMD_DRV_LOG(ERR, sc, "FATAL error from PXP");
3967 		}
3968 
3969 		if (!CHIP_IS_E1x(sc)) {
3970 			val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
3971 			PMD_DRV_LOG(ERR, sc, "PXP hw attention-1 0x%08x", val);
3972 		}
3973 	}
3974 #define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
3975 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
3976 
3977 	if (attn & AEU_PXP2_HW_INT_BIT) {
3978 /*  CQ47854 workaround do not panic on
3979  *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
3980  */
3981 		if (!CHIP_IS_E1x(sc)) {
3982 			mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
3983 			val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
3984 			mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
3985 			val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
3986 			/*
3987 			 * If the only PXP2_EOP_ERROR_BIT is set in
3988 			 * STS0 and STS1 - clear it
3989 			 *
3990 			 * probably we lose additional attentions between
3991 			 * STS0 and STS_CLR0, in this case user will not
3992 			 * be notified about them
3993 			 */
3994 			if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
3995 			    !(val1 & mask1))
3996 				val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
3997 
3998 			/* print the register, since no one can restore it */
3999 			PMD_DRV_LOG(ERR, sc,
4000 				    "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x", val0);
4001 
4002 			/*
4003 			 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
4004 			 * then notify
4005 			 */
4006 			if (val0 & PXP2_EOP_ERROR_BIT) {
4007 				PMD_DRV_LOG(ERR, sc, "PXP2_WR_PGLUE_EOP_ERROR");
4008 
4009 				/*
4010 				 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
4011 				 * set then clear attention from PXP2 block without panic
4012 				 */
4013 				if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
4014 				    ((val1 & mask1) == 0))
4015 					attn &= ~AEU_PXP2_HW_INT_BIT;
4016 			}
4017 		}
4018 	}
4019 
4020 	if (attn & HW_INTERRUT_ASSERT_SET_2) {
4021 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4022 			      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4023 
4024 		val = REG_RD(sc, reg_offset);
4025 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4026 		REG_WR(sc, reg_offset, val);
4027 
4028 		PMD_DRV_LOG(ERR, sc,
4029 			    "FATAL HW block attention set2 0x%x",
4030 			    (uint32_t) (attn & HW_INTERRUT_ASSERT_SET_2));
4031 		rte_panic("HW block attention set2");
4032 	}
4033 }
4034 
4035 static void bnx2x_attn_int_deasserted1(struct bnx2x_softc *sc, uint32_t attn)
4036 {
4037 	int port = SC_PORT(sc);
4038 	int reg_offset;
4039 	uint32_t val;
4040 
4041 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4042 		val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
4043 		PMD_DRV_LOG(ERR, sc, "DB hw attention 0x%08x", val);
4044 /* DORQ discard attention */
4045 		if (val & 0x2) {
4046 			PMD_DRV_LOG(ERR, sc, "FATAL error from DORQ");
4047 		}
4048 	}
4049 
4050 	if (attn & HW_INTERRUT_ASSERT_SET_1) {
4051 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4052 			      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4053 
4054 		val = REG_RD(sc, reg_offset);
4055 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4056 		REG_WR(sc, reg_offset, val);
4057 
4058 		PMD_DRV_LOG(ERR, sc,
4059 			    "FATAL HW block attention set1 0x%08x",
4060 			    (uint32_t) (attn & HW_INTERRUT_ASSERT_SET_1));
4061 		rte_panic("HW block attention set1");
4062 	}
4063 }
4064 
4065 static void bnx2x_attn_int_deasserted0(struct bnx2x_softc *sc, uint32_t attn)
4066 {
4067 	int port = SC_PORT(sc);
4068 	int reg_offset;
4069 	uint32_t val;
4070 
4071 	reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4072 	    MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
4073 
4074 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4075 		val = REG_RD(sc, reg_offset);
4076 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4077 		REG_WR(sc, reg_offset, val);
4078 
4079 		PMD_DRV_LOG(WARNING, sc, "SPIO5 hw attention");
4080 
4081 /* Fan failure attention */
4082 		elink_hw_reset_phy(&sc->link_params);
4083 		bnx2x_fan_failure(sc);
4084 	}
4085 
4086 	if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
4087 		bnx2x_acquire_phy_lock(sc);
4088 		elink_handle_module_detect_int(&sc->link_params);
4089 		bnx2x_release_phy_lock(sc);
4090 	}
4091 
4092 	if (attn & HW_INTERRUT_ASSERT_SET_0) {
4093 		val = REG_RD(sc, reg_offset);
4094 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4095 		REG_WR(sc, reg_offset, val);
4096 
4097 		rte_panic("FATAL HW block attention set0 0x%lx",
4098 			  (attn & HW_INTERRUT_ASSERT_SET_0));
4099 	}
4100 }
4101 
4102 static void bnx2x_attn_int_deasserted(struct bnx2x_softc *sc, uint32_t deasserted)
4103 {
4104 	struct attn_route attn;
4105 	struct attn_route *group_mask;
4106 	int port = SC_PORT(sc);
4107 	int index;
4108 	uint32_t reg_addr;
4109 	uint32_t val;
4110 	uint32_t aeu_mask;
4111 	uint8_t global = FALSE;
4112 
4113 	/*
4114 	 * Need to take HW lock because MCP or other port might also
4115 	 * try to handle this event.
4116 	 */
4117 	bnx2x_acquire_alr(sc);
4118 
4119 	if (bnx2x_chk_parity_attn(sc, &global, TRUE)) {
4120 		sc->recovery_state = BNX2X_RECOVERY_INIT;
4121 
4122 /* disable HW interrupts */
4123 		bnx2x_int_disable(sc);
4124 		bnx2x_release_alr(sc);
4125 		return;
4126 	}
4127 
4128 	attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port * 4);
4129 	attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port * 4);
4130 	attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port * 4);
4131 	attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port * 4);
4132 	if (!CHIP_IS_E1x(sc)) {
4133 		attn.sig[4] =
4134 		    REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port * 4);
4135 	} else {
4136 		attn.sig[4] = 0;
4137 	}
4138 
4139 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4140 		if (deasserted & (1 << index)) {
4141 			group_mask = &sc->attn_group[index];
4142 
4143 			bnx2x_attn_int_deasserted4(sc,
4144 						 attn.
4145 						 sig[4] & group_mask->sig[4]);
4146 			bnx2x_attn_int_deasserted3(sc,
4147 						 attn.
4148 						 sig[3] & group_mask->sig[3]);
4149 			bnx2x_attn_int_deasserted1(sc,
4150 						 attn.
4151 						 sig[1] & group_mask->sig[1]);
4152 			bnx2x_attn_int_deasserted2(sc,
4153 						 attn.
4154 						 sig[2] & group_mask->sig[2]);
4155 			bnx2x_attn_int_deasserted0(sc,
4156 						 attn.
4157 						 sig[0] & group_mask->sig[0]);
4158 		}
4159 	}
4160 
4161 	bnx2x_release_alr(sc);
4162 
4163 	if (sc->devinfo.int_block == INT_BLOCK_HC) {
4164 		reg_addr = (HC_REG_COMMAND_REG + port * 32 +
4165 			    COMMAND_REG_ATTN_BITS_CLR);
4166 	} else {
4167 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER * 8);
4168 	}
4169 
4170 	val = ~deasserted;
4171 	PMD_DRV_LOG(DEBUG, sc,
4172 		    "about to mask 0x%08x at %s addr 0x%08x", val,
4173 		    (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU",
4174 		    reg_addr);
4175 	REG_WR(sc, reg_addr, val);
4176 
4177 	if (~sc->attn_state & deasserted) {
4178 		PMD_DRV_LOG(ERR, sc, "IGU error");
4179 	}
4180 
4181 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4182 	    MISC_REG_AEU_MASK_ATTN_FUNC_0;
4183 
4184 	bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4185 
4186 	aeu_mask = REG_RD(sc, reg_addr);
4187 
4188 	aeu_mask |= (deasserted & 0x3ff);
4189 
4190 	REG_WR(sc, reg_addr, aeu_mask);
4191 	bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4192 
4193 	sc->attn_state &= ~deasserted;
4194 }
4195 
4196 static void bnx2x_attn_int(struct bnx2x_softc *sc)
4197 {
4198 	/* read local copy of bits */
4199 	uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
4200 	uint32_t attn_ack =
4201 	    le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
4202 	uint32_t attn_state = sc->attn_state;
4203 
4204 	/* look for changed bits */
4205 	uint32_t asserted = attn_bits & ~attn_ack & ~attn_state;
4206 	uint32_t deasserted = ~attn_bits & attn_ack & attn_state;
4207 
4208 	PMD_DRV_LOG(DEBUG, sc,
4209 		    "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x",
4210 		    attn_bits, attn_ack, asserted, deasserted);
4211 
4212 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
4213 		PMD_DRV_LOG(ERR, sc, "BAD attention state");
4214 	}
4215 
4216 	/* handle bits that were raised */
4217 	if (asserted) {
4218 		bnx2x_attn_int_asserted(sc, asserted);
4219 	}
4220 
4221 	if (deasserted) {
4222 		bnx2x_attn_int_deasserted(sc, deasserted);
4223 	}
4224 }
4225 
4226 static uint16_t bnx2x_update_dsb_idx(struct bnx2x_softc *sc)
4227 {
4228 	struct host_sp_status_block *def_sb = sc->def_sb;
4229 	uint16_t rc = 0;
4230 
4231 	if (!def_sb)
4232 		return 0;
4233 
4234 	mb();			/* status block is written to by the chip */
4235 
4236 	if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
4237 		sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
4238 		rc |= BNX2X_DEF_SB_ATT_IDX;
4239 	}
4240 
4241 	if (sc->def_idx != def_sb->sp_sb.running_index) {
4242 		sc->def_idx = def_sb->sp_sb.running_index;
4243 		rc |= BNX2X_DEF_SB_IDX;
4244 	}
4245 
4246 	mb();
4247 
4248 	return rc;
4249 }
4250 
4251 static struct ecore_queue_sp_obj *bnx2x_cid_to_q_obj(struct bnx2x_softc *sc,
4252 							  uint32_t cid)
4253 {
4254 	return &sc->sp_objs[CID_TO_FP(cid, sc)].q_obj;
4255 }
4256 
4257 static void bnx2x_handle_mcast_eqe(struct bnx2x_softc *sc)
4258 {
4259 	struct ecore_mcast_ramrod_params rparam;
4260 	int rc;
4261 
4262 	memset(&rparam, 0, sizeof(rparam));
4263 
4264 	rparam.mcast_obj = &sc->mcast_obj;
4265 
4266 	/* clear pending state for the last command */
4267 	sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
4268 
4269 	/* if there are pending mcast commands - send them */
4270 	if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
4271 		rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4272 		if (rc < 0) {
4273 			PMD_DRV_LOG(INFO, sc,
4274 				    "Failed to send pending mcast commands (%d)",
4275 				    rc);
4276 		}
4277 	}
4278 }
4279 
4280 static void
4281 bnx2x_handle_classification_eqe(struct bnx2x_softc *sc, union event_ring_elem *elem)
4282 {
4283 	unsigned long ramrod_flags = 0;
4284 	int rc = 0;
4285 	uint32_t cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4286 	struct ecore_vlan_mac_obj *vlan_mac_obj;
4287 
4288 	/* always push next commands out, don't wait here */
4289 	bnx2x_set_bit(RAMROD_CONT, &ramrod_flags);
4290 
4291 	switch (le32toh(elem->message.data.eth_event.echo) >> BNX2X_SWCID_SHIFT) {
4292 	case ECORE_FILTER_MAC_PENDING:
4293 		PMD_DRV_LOG(DEBUG, sc, "Got SETUP_MAC completions");
4294 		vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
4295 		break;
4296 
4297 	case ECORE_FILTER_MCAST_PENDING:
4298 		PMD_DRV_LOG(DEBUG, sc, "Got SETUP_MCAST completions");
4299 		bnx2x_handle_mcast_eqe(sc);
4300 		return;
4301 
4302 	default:
4303 		PMD_DRV_LOG(NOTICE, sc, "Unsupported classification command: %d",
4304 			    elem->message.data.eth_event.echo);
4305 		return;
4306 	}
4307 
4308 	rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
4309 
4310 	if (rc < 0) {
4311 		PMD_DRV_LOG(NOTICE, sc,
4312 			    "Failed to schedule new commands (%d)", rc);
4313 	} else if (rc > 0) {
4314 		PMD_DRV_LOG(DEBUG, sc, "Scheduled next pending commands...");
4315 	}
4316 }
4317 
4318 static void bnx2x_handle_rx_mode_eqe(struct bnx2x_softc *sc)
4319 {
4320 	bnx2x_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
4321 
4322 	/* send rx_mode command again if was requested */
4323 	if (bnx2x_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state)) {
4324 		bnx2x_set_storm_rx_mode(sc);
4325 	}
4326 }
4327 
4328 static void bnx2x_update_eq_prod(struct bnx2x_softc *sc, uint16_t prod)
4329 {
4330 	storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
4331 	wmb();			/* keep prod updates ordered */
4332 }
4333 
4334 static void bnx2x_eq_int(struct bnx2x_softc *sc)
4335 {
4336 	uint16_t hw_cons, sw_cons, sw_prod;
4337 	union event_ring_elem *elem;
4338 	uint8_t echo;
4339 	uint32_t cid;
4340 	uint8_t opcode;
4341 	int spqe_cnt = 0;
4342 	struct ecore_queue_sp_obj *q_obj;
4343 	struct ecore_func_sp_obj *f_obj = &sc->func_obj;
4344 	struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
4345 
4346 	hw_cons = le16toh(*sc->eq_cons_sb);
4347 
4348 	/*
4349 	 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
4350 	 * when we get to the next-page we need to adjust so the loop
4351 	 * condition below will be met. The next element is the size of a
4352 	 * regular element and hence incrementing by 1
4353 	 */
4354 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
4355 		hw_cons++;
4356 	}
4357 
4358 	/*
4359 	 * This function may never run in parallel with itself for a
4360 	 * specific sc and no need for a read memory barrier here.
4361 	 */
4362 	sw_cons = sc->eq_cons;
4363 	sw_prod = sc->eq_prod;
4364 
4365 	for (;
4366 	     sw_cons != hw_cons;
4367 	     sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4368 
4369 		elem = &sc->eq[EQ_DESC(sw_cons)];
4370 
4371 /* elem CID originates from FW, actually LE */
4372 		cid = SW_CID(elem->message.data.cfc_del_event.cid);
4373 		opcode = elem->message.opcode;
4374 
4375 /* handle eq element */
4376 		switch (opcode) {
4377 		case EVENT_RING_OPCODE_STAT_QUERY:
4378 			PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "got statistics completion event %d",
4379 				    sc->stats_comp++);
4380 			/* nothing to do with stats comp */
4381 			goto next_spqe;
4382 
4383 		case EVENT_RING_OPCODE_CFC_DEL:
4384 			/* handle according to cid range */
4385 			/* we may want to verify here that the sc state is HALTING */
4386 			PMD_DRV_LOG(DEBUG, sc, "got delete ramrod for MULTI[%d]",
4387 				    cid);
4388 			q_obj = bnx2x_cid_to_q_obj(sc, cid);
4389 			if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
4390 				break;
4391 			}
4392 			goto next_spqe;
4393 
4394 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
4395 			PMD_DRV_LOG(DEBUG, sc, "got STOP TRAFFIC");
4396 			if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
4397 				break;
4398 			}
4399 			goto next_spqe;
4400 
4401 		case EVENT_RING_OPCODE_START_TRAFFIC:
4402 			PMD_DRV_LOG(DEBUG, sc, "got START TRAFFIC");
4403 			if (f_obj->complete_cmd
4404 			    (sc, f_obj, ECORE_F_CMD_TX_START)) {
4405 				break;
4406 			}
4407 			goto next_spqe;
4408 
4409 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
4410 			echo = elem->message.data.function_update_event.echo;
4411 			if (echo == SWITCH_UPDATE) {
4412 				PMD_DRV_LOG(DEBUG, sc,
4413 					    "got FUNC_SWITCH_UPDATE ramrod");
4414 				if (f_obj->complete_cmd(sc, f_obj,
4415 							ECORE_F_CMD_SWITCH_UPDATE))
4416 				{
4417 					break;
4418 				}
4419 			} else {
4420 				PMD_DRV_LOG(DEBUG, sc,
4421 					    "AFEX: ramrod completed FUNCTION_UPDATE");
4422 				f_obj->complete_cmd(sc, f_obj,
4423 						    ECORE_F_CMD_AFEX_UPDATE);
4424 			}
4425 			goto next_spqe;
4426 
4427 		case EVENT_RING_OPCODE_FORWARD_SETUP:
4428 			q_obj = &bnx2x_fwd_sp_obj(sc, q_obj);
4429 			if (q_obj->complete_cmd(sc, q_obj,
4430 						ECORE_Q_CMD_SETUP_TX_ONLY)) {
4431 				break;
4432 			}
4433 			goto next_spqe;
4434 
4435 		case EVENT_RING_OPCODE_FUNCTION_START:
4436 			PMD_DRV_LOG(DEBUG, sc, "got FUNC_START ramrod");
4437 			if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
4438 				break;
4439 			}
4440 			goto next_spqe;
4441 
4442 		case EVENT_RING_OPCODE_FUNCTION_STOP:
4443 			PMD_DRV_LOG(DEBUG, sc, "got FUNC_STOP ramrod");
4444 			if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
4445 				break;
4446 			}
4447 			goto next_spqe;
4448 		}
4449 
4450 		switch (opcode | sc->state) {
4451 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BNX2X_STATE_OPEN):
4452 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BNX2X_STATE_OPENING_WAITING_PORT):
4453 			cid =
4454 			    elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4455 			PMD_DRV_LOG(DEBUG, sc, "got RSS_UPDATE ramrod. CID %d",
4456 				    cid);
4457 			rss_raw->clear_pending(rss_raw);
4458 			break;
4459 
4460 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4461 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4462 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_CLOSING_WAITING_HALT):
4463 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_OPEN):
4464 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_DIAG):
4465 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4466 			PMD_DRV_LOG(DEBUG, sc,
4467 				    "got (un)set mac ramrod");
4468 			bnx2x_handle_classification_eqe(sc, elem);
4469 			break;
4470 
4471 		case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_OPEN):
4472 		case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_DIAG):
4473 		case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4474 			PMD_DRV_LOG(DEBUG, sc,
4475 				    "got mcast ramrod");
4476 			bnx2x_handle_mcast_eqe(sc);
4477 			break;
4478 
4479 		case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_OPEN):
4480 		case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_DIAG):
4481 		case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4482 			PMD_DRV_LOG(DEBUG, sc,
4483 				    "got rx_mode ramrod");
4484 			bnx2x_handle_rx_mode_eqe(sc);
4485 			break;
4486 
4487 		default:
4488 			/* unknown event log error and continue */
4489 			PMD_DRV_LOG(INFO, sc, "Unknown EQ event %d, sc->state 0x%x",
4490 				    elem->message.opcode, sc->state);
4491 		}
4492 
4493 next_spqe:
4494 		spqe_cnt++;
4495 	}			/* for */
4496 
4497 	mb();
4498 	atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
4499 
4500 	sc->eq_cons = sw_cons;
4501 	sc->eq_prod = sw_prod;
4502 
4503 	/* make sure that above mem writes were issued towards the memory */
4504 	wmb();
4505 
4506 	/* update producer */
4507 	bnx2x_update_eq_prod(sc, sc->eq_prod);
4508 }
4509 
4510 static int bnx2x_handle_sp_tq(struct bnx2x_softc *sc)
4511 {
4512 	uint16_t status;
4513 	int rc = 0;
4514 
4515 	PMD_DRV_LOG(DEBUG, sc, "---> SP TASK <---");
4516 
4517 	/* what work needs to be performed? */
4518 	status = bnx2x_update_dsb_idx(sc);
4519 
4520 	PMD_DRV_LOG(DEBUG, sc, "dsb status 0x%04x", status);
4521 
4522 	/* HW attentions */
4523 	if (status & BNX2X_DEF_SB_ATT_IDX) {
4524 		PMD_DRV_LOG(DEBUG, sc, "---> ATTN INTR <---");
4525 		bnx2x_attn_int(sc);
4526 		status &= ~BNX2X_DEF_SB_ATT_IDX;
4527 		rc = 1;
4528 	}
4529 
4530 	/* SP events: STAT_QUERY and others */
4531 	if (status & BNX2X_DEF_SB_IDX) {
4532 /* handle EQ completions */
4533 		PMD_DRV_LOG(DEBUG, sc, "---> EQ INTR <---");
4534 		bnx2x_eq_int(sc);
4535 		bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
4536 			   le16toh(sc->def_idx), IGU_INT_NOP, 1);
4537 		status &= ~BNX2X_DEF_SB_IDX;
4538 	}
4539 
4540 	/* if status is non zero then something went wrong */
4541 	if (unlikely(status)) {
4542 		PMD_DRV_LOG(INFO, sc,
4543 			    "Got an unknown SP interrupt! (0x%04x)", status);
4544 	}
4545 
4546 	/* ack status block only if something was actually handled */
4547 	bnx2x_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
4548 		   le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
4549 
4550 	return rc;
4551 }
4552 
4553 static void bnx2x_handle_fp_tq(struct bnx2x_fastpath *fp)
4554 {
4555 	struct bnx2x_softc *sc = fp->sc;
4556 	uint8_t more_rx = FALSE;
4557 
4558 	/* Make sure FP is initialized */
4559 	if (!fp->sb_running_index)
4560 		return;
4561 
4562 	PMD_DEBUG_PERIODIC_LOG(DEBUG, sc,
4563 			       "---> FP TASK QUEUE (%d) <--", fp->index);
4564 
4565 	/* update the fastpath index */
4566 	bnx2x_update_fp_sb_idx(fp);
4567 
4568 	if (rte_atomic32_read(&sc->scan_fp) == 1) {
4569 		if (bnx2x_has_rx_work(fp)) {
4570 			more_rx = bnx2x_rxeof(sc, fp);
4571 		}
4572 
4573 		if (more_rx) {
4574 			/* still more work to do */
4575 			bnx2x_handle_fp_tq(fp);
4576 			return;
4577 		}
4578 	}
4579 
4580 	/* Assuming we have completed slow path completion, clear the flag */
4581 	rte_atomic32_set(&sc->scan_fp, 0);
4582 	bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
4583 		   le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
4584 }
4585 
4586 /*
4587  * Legacy interrupt entry point.
4588  *
4589  * Verifies that the controller generated the interrupt and
4590  * then calls a separate routine to handle the various
4591  * interrupt causes: link, RX, and TX.
4592  */
4593 int bnx2x_intr_legacy(struct bnx2x_softc *sc)
4594 {
4595 	struct bnx2x_fastpath *fp;
4596 	uint32_t status, mask;
4597 	int i, rc = 0;
4598 
4599 	/*
4600 	 * 0 for ustorm, 1 for cstorm
4601 	 * the bits returned from ack_int() are 0-15
4602 	 * bit 0 = attention status block
4603 	 * bit 1 = fast path status block
4604 	 * a mask of 0x2 or more = tx/rx event
4605 	 * a mask of 1 = slow path event
4606 	 */
4607 
4608 	status = bnx2x_ack_int(sc);
4609 
4610 	/* the interrupt is not for us */
4611 	if (unlikely(status == 0)) {
4612 		return 0;
4613 	}
4614 
4615 	PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "Interrupt status 0x%04x", status);
4616 	//bnx2x_dump_status_block(sc);
4617 
4618 	FOR_EACH_ETH_QUEUE(sc, i) {
4619 		fp = &sc->fp[i];
4620 		mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
4621 		if (status & mask) {
4622 		/* acknowledge and disable further fastpath interrupts */
4623 			bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
4624 				     0, IGU_INT_DISABLE, 0);
4625 			bnx2x_handle_fp_tq(fp);
4626 			status &= ~mask;
4627 		}
4628 	}
4629 
4630 	if (unlikely(status & 0x1)) {
4631 		/* acknowledge and disable further slowpath interrupts */
4632 		bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
4633 			     0, IGU_INT_DISABLE, 0);
4634 		rc = bnx2x_handle_sp_tq(sc);
4635 		status &= ~0x1;
4636 	}
4637 
4638 	if (unlikely(status)) {
4639 		PMD_DRV_LOG(WARNING, sc,
4640 			    "Unexpected fastpath status (0x%08x)!", status);
4641 	}
4642 
4643 	return rc;
4644 }
4645 
4646 static int bnx2x_init_hw_common_chip(struct bnx2x_softc *sc);
4647 static int bnx2x_init_hw_common(struct bnx2x_softc *sc);
4648 static int bnx2x_init_hw_port(struct bnx2x_softc *sc);
4649 static int bnx2x_init_hw_func(struct bnx2x_softc *sc);
4650 static void bnx2x_reset_common(struct bnx2x_softc *sc);
4651 static void bnx2x_reset_port(struct bnx2x_softc *sc);
4652 static void bnx2x_reset_func(struct bnx2x_softc *sc);
4653 static int bnx2x_init_firmware(struct bnx2x_softc *sc);
4654 static void bnx2x_release_firmware(struct bnx2x_softc *sc);
4655 
4656 static struct
4657 ecore_func_sp_drv_ops bnx2x_func_sp_drv = {
4658 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
4659 	.init_hw_cmn = bnx2x_init_hw_common,
4660 	.init_hw_port = bnx2x_init_hw_port,
4661 	.init_hw_func = bnx2x_init_hw_func,
4662 
4663 	.reset_hw_cmn = bnx2x_reset_common,
4664 	.reset_hw_port = bnx2x_reset_port,
4665 	.reset_hw_func = bnx2x_reset_func,
4666 
4667 	.init_fw = bnx2x_init_firmware,
4668 	.release_fw = bnx2x_release_firmware,
4669 };
4670 
4671 static void bnx2x_init_func_obj(struct bnx2x_softc *sc)
4672 {
4673 	sc->dmae_ready = 0;
4674 
4675 	PMD_INIT_FUNC_TRACE(sc);
4676 
4677 	ecore_init_func_obj(sc,
4678 			    &sc->func_obj,
4679 			    BNX2X_SP(sc, func_rdata),
4680 			    (rte_iova_t)BNX2X_SP_MAPPING(sc, func_rdata),
4681 			    BNX2X_SP(sc, func_afex_rdata),
4682 			    (rte_iova_t)BNX2X_SP_MAPPING(sc, func_afex_rdata),
4683 			    &bnx2x_func_sp_drv);
4684 }
4685 
4686 static int bnx2x_init_hw(struct bnx2x_softc *sc, uint32_t load_code)
4687 {
4688 	struct ecore_func_state_params func_params = { NULL };
4689 	int rc;
4690 
4691 	PMD_INIT_FUNC_TRACE(sc);
4692 
4693 	/* prepare the parameters for function state transitions */
4694 	bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4695 
4696 	func_params.f_obj = &sc->func_obj;
4697 	func_params.cmd = ECORE_F_CMD_HW_INIT;
4698 
4699 	func_params.params.hw_init.load_phase = load_code;
4700 
4701 	/*
4702 	 * Via a plethora of function pointers, we will eventually reach
4703 	 * bnx2x_init_hw_common(), bnx2x_init_hw_port(), or bnx2x_init_hw_func().
4704 	 */
4705 	rc = ecore_func_state_change(sc, &func_params);
4706 
4707 	return rc;
4708 }
4709 
4710 static void
4711 bnx2x_fill(struct bnx2x_softc *sc, uint32_t addr, int fill, uint32_t len)
4712 {
4713 	uint32_t i;
4714 
4715 	if (!(len % 4) && !(addr % 4)) {
4716 		for (i = 0; i < len; i += 4) {
4717 			REG_WR(sc, (addr + i), fill);
4718 		}
4719 	} else {
4720 		for (i = 0; i < len; i++) {
4721 			REG_WR8(sc, (addr + i), fill);
4722 		}
4723 	}
4724 }
4725 
4726 /* writes FP SP data to FW - data_size in dwords */
4727 static void
4728 bnx2x_wr_fp_sb_data(struct bnx2x_softc *sc, int fw_sb_id, uint32_t * sb_data_p,
4729 		  uint32_t data_size)
4730 {
4731 	uint32_t index;
4732 
4733 	for (index = 0; index < data_size; index++) {
4734 		REG_WR(sc,
4735 		       (BAR_CSTRORM_INTMEM +
4736 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4737 			(sizeof(uint32_t) * index)), *(sb_data_p + index));
4738 	}
4739 }
4740 
4741 static void bnx2x_zero_fp_sb(struct bnx2x_softc *sc, int fw_sb_id)
4742 {
4743 	struct hc_status_block_data_e2 sb_data_e2;
4744 	struct hc_status_block_data_e1x sb_data_e1x;
4745 	uint32_t *sb_data_p;
4746 	uint32_t data_size = 0;
4747 
4748 	if (!CHIP_IS_E1x(sc)) {
4749 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4750 		sb_data_e2.common.state = SB_DISABLED;
4751 		sb_data_e2.common.p_func.vf_valid = FALSE;
4752 		sb_data_p = (uint32_t *) & sb_data_e2;
4753 		data_size = (sizeof(struct hc_status_block_data_e2) /
4754 			     sizeof(uint32_t));
4755 	} else {
4756 		memset(&sb_data_e1x, 0,
4757 		       sizeof(struct hc_status_block_data_e1x));
4758 		sb_data_e1x.common.state = SB_DISABLED;
4759 		sb_data_e1x.common.p_func.vf_valid = FALSE;
4760 		sb_data_p = (uint32_t *) & sb_data_e1x;
4761 		data_size = (sizeof(struct hc_status_block_data_e1x) /
4762 			     sizeof(uint32_t));
4763 	}
4764 
4765 	bnx2x_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
4766 
4767 	bnx2x_fill(sc,
4768 		 (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 0,
4769 		 CSTORM_STATUS_BLOCK_SIZE);
4770 	bnx2x_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
4771 		 0, CSTORM_SYNC_BLOCK_SIZE);
4772 }
4773 
4774 static void
4775 bnx2x_wr_sp_sb_data(struct bnx2x_softc *sc,
4776 		  struct hc_sp_status_block_data *sp_sb_data)
4777 {
4778 	uint32_t i;
4779 
4780 	for (i = 0;
4781 	     i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
4782 	     i++) {
4783 		REG_WR(sc,
4784 		       (BAR_CSTRORM_INTMEM +
4785 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
4786 			(i * sizeof(uint32_t))),
4787 		       *((uint32_t *) sp_sb_data + i));
4788 	}
4789 }
4790 
4791 static void bnx2x_zero_sp_sb(struct bnx2x_softc *sc)
4792 {
4793 	struct hc_sp_status_block_data sp_sb_data;
4794 
4795 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4796 
4797 	sp_sb_data.state = SB_DISABLED;
4798 	sp_sb_data.p_func.vf_valid = FALSE;
4799 
4800 	bnx2x_wr_sp_sb_data(sc, &sp_sb_data);
4801 
4802 	bnx2x_fill(sc,
4803 		 (BAR_CSTRORM_INTMEM +
4804 		  CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
4805 		 0, CSTORM_SP_STATUS_BLOCK_SIZE);
4806 	bnx2x_fill(sc,
4807 		 (BAR_CSTRORM_INTMEM +
4808 		  CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
4809 		 0, CSTORM_SP_SYNC_BLOCK_SIZE);
4810 }
4811 
4812 static void
4813 bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, int igu_sb_id,
4814 			     int igu_seg_id)
4815 {
4816 	hc_sm->igu_sb_id = igu_sb_id;
4817 	hc_sm->igu_seg_id = igu_seg_id;
4818 	hc_sm->timer_value = 0xFF;
4819 	hc_sm->time_to_expire = 0xFFFFFFFF;
4820 }
4821 
4822 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
4823 {
4824 	/* zero out state machine indices */
4825 
4826 	/* rx indices */
4827 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4828 
4829 	/* tx indices */
4830 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4831 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
4832 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
4833 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
4834 
4835 	/* map indices */
4836 
4837 	/* rx indices */
4838 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
4839 	    (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4840 
4841 	/* tx indices */
4842 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
4843 	    (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4844 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
4845 	    (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4846 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
4847 	    (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4848 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
4849 	    (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4850 }
4851 
4852 static void
4853 bnx2x_init_sb(struct bnx2x_softc *sc, rte_iova_t busaddr, int vfid,
4854 	    uint8_t vf_valid, int fw_sb_id, int igu_sb_id)
4855 {
4856 	struct hc_status_block_data_e2 sb_data_e2;
4857 	struct hc_status_block_data_e1x sb_data_e1x;
4858 	struct hc_status_block_sm *hc_sm_p;
4859 	uint32_t *sb_data_p;
4860 	int igu_seg_id;
4861 	int data_size;
4862 
4863 	if (CHIP_INT_MODE_IS_BC(sc)) {
4864 		igu_seg_id = HC_SEG_ACCESS_NORM;
4865 	} else {
4866 		igu_seg_id = IGU_SEG_ACCESS_NORM;
4867 	}
4868 
4869 	bnx2x_zero_fp_sb(sc, fw_sb_id);
4870 
4871 	if (!CHIP_IS_E1x(sc)) {
4872 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4873 		sb_data_e2.common.state = SB_ENABLED;
4874 		sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
4875 		sb_data_e2.common.p_func.vf_id = vfid;
4876 		sb_data_e2.common.p_func.vf_valid = vf_valid;
4877 		sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
4878 		sb_data_e2.common.same_igu_sb_1b = TRUE;
4879 		sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
4880 		sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
4881 		hc_sm_p = sb_data_e2.common.state_machine;
4882 		sb_data_p = (uint32_t *) & sb_data_e2;
4883 		data_size = (sizeof(struct hc_status_block_data_e2) /
4884 			     sizeof(uint32_t));
4885 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
4886 	} else {
4887 		memset(&sb_data_e1x, 0,
4888 		       sizeof(struct hc_status_block_data_e1x));
4889 		sb_data_e1x.common.state = SB_ENABLED;
4890 		sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
4891 		sb_data_e1x.common.p_func.vf_id = 0xff;
4892 		sb_data_e1x.common.p_func.vf_valid = FALSE;
4893 		sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
4894 		sb_data_e1x.common.same_igu_sb_1b = TRUE;
4895 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
4896 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
4897 		hc_sm_p = sb_data_e1x.common.state_machine;
4898 		sb_data_p = (uint32_t *) & sb_data_e1x;
4899 		data_size = (sizeof(struct hc_status_block_data_e1x) /
4900 			     sizeof(uint32_t));
4901 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
4902 	}
4903 
4904 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
4905 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
4906 
4907 	/* write indices to HW - PCI guarantees endianity of regpairs */
4908 	bnx2x_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
4909 }
4910 
4911 static uint8_t bnx2x_fp_qzone_id(struct bnx2x_fastpath *fp)
4912 {
4913 	if (CHIP_IS_E1x(fp->sc)) {
4914 		return fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H;
4915 	} else {
4916 		return fp->cl_id;
4917 	}
4918 }
4919 
4920 static uint32_t
4921 bnx2x_rx_ustorm_prods_offset(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp)
4922 {
4923 	uint32_t offset = BAR_USTRORM_INTMEM;
4924 
4925 	if (IS_VF(sc)) {
4926 		return PXP_VF_ADDR_USDM_QUEUES_START +
4927 			(sc->acquire_resp.resc.hw_qid[fp->index] *
4928 			 sizeof(struct ustorm_queue_zone_data));
4929 	} else if (!CHIP_IS_E1x(sc)) {
4930 		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
4931 	} else {
4932 		offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
4933 	}
4934 
4935 	return offset;
4936 }
4937 
4938 static void bnx2x_init_eth_fp(struct bnx2x_softc *sc, int idx)
4939 {
4940 	struct bnx2x_fastpath *fp = &sc->fp[idx];
4941 	uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
4942 	unsigned long q_type = 0;
4943 	int cos;
4944 
4945 	fp->sc = sc;
4946 	fp->index = idx;
4947 
4948 	fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
4949 	fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
4950 
4951 	if (CHIP_IS_E1x(sc))
4952 		fp->cl_id = SC_L_ID(sc) + idx;
4953 	else
4954 /* want client ID same as IGU SB ID for non-E1 */
4955 		fp->cl_id = fp->igu_sb_id;
4956 	fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
4957 
4958 	/* setup sb indices */
4959 	if (!CHIP_IS_E1x(sc)) {
4960 		fp->sb_index_values = fp->status_block.e2_sb->sb.index_values;
4961 		fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
4962 	} else {
4963 		fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values;
4964 		fp->sb_running_index =
4965 		    fp->status_block.e1x_sb->sb.running_index;
4966 	}
4967 
4968 	/* init shortcut */
4969 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(sc, fp);
4970 
4971 	fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
4972 
4973 	for (cos = 0; cos < sc->max_cos; cos++) {
4974 		cids[cos] = idx;
4975 	}
4976 	fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
4977 
4978 	/* nothing more for a VF to do */
4979 	if (IS_VF(sc)) {
4980 		return;
4981 	}
4982 
4983 	bnx2x_init_sb(sc, fp->sb_dma.paddr, BNX2X_VF_ID_INVALID, FALSE,
4984 		    fp->fw_sb_id, fp->igu_sb_id);
4985 
4986 	bnx2x_update_fp_sb_idx(fp);
4987 
4988 	/* Configure Queue State object */
4989 	bnx2x_set_bit(ECORE_Q_TYPE_HAS_RX, &q_type);
4990 	bnx2x_set_bit(ECORE_Q_TYPE_HAS_TX, &q_type);
4991 
4992 	ecore_init_queue_obj(sc,
4993 			     &sc->sp_objs[idx].q_obj,
4994 			     fp->cl_id,
4995 			     cids,
4996 			     sc->max_cos,
4997 			     SC_FUNC(sc),
4998 			     BNX2X_SP(sc, q_rdata),
4999 			     (rte_iova_t)BNX2X_SP_MAPPING(sc, q_rdata),
5000 			     q_type);
5001 
5002 	/* configure classification DBs */
5003 	ecore_init_mac_obj(sc,
5004 			   &sc->sp_objs[idx].mac_obj,
5005 			   fp->cl_id,
5006 			   idx,
5007 			   SC_FUNC(sc),
5008 			   BNX2X_SP(sc, mac_rdata),
5009 			   (rte_iova_t)BNX2X_SP_MAPPING(sc, mac_rdata),
5010 			   ECORE_FILTER_MAC_PENDING, &sc->sp_state,
5011 			   ECORE_OBJ_TYPE_RX_TX, &sc->macs_pool);
5012 }
5013 
5014 static void
5015 bnx2x_update_rx_prod(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
5016 		   uint16_t rx_bd_prod, uint16_t rx_cq_prod)
5017 {
5018 	union ustorm_eth_rx_producers rx_prods;
5019 	uint32_t i;
5020 
5021 	/* update producers */
5022 	rx_prods.prod.bd_prod = rx_bd_prod;
5023 	rx_prods.prod.cqe_prod = rx_cq_prod;
5024 	rx_prods.prod.reserved = 0;
5025 
5026 	/*
5027 	 * Make sure that the BD and SGE data is updated before updating the
5028 	 * producers since FW might read the BD/SGE right after the producer
5029 	 * is updated.
5030 	 * This is only applicable for weak-ordered memory model archs such
5031 	 * as IA-64. The following barrier is also mandatory since FW will
5032 	 * assumes BDs must have buffers.
5033 	 */
5034 	wmb();
5035 
5036 	for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
5037 		REG_WR(sc,
5038 		       (fp->ustorm_rx_prods_offset + (i * 4)),
5039 		       rx_prods.raw_data[i]);
5040 	}
5041 
5042 	wmb();			/* keep prod updates ordered */
5043 }
5044 
5045 static void bnx2x_init_rx_rings(struct bnx2x_softc *sc)
5046 {
5047 	struct bnx2x_fastpath *fp;
5048 	int i;
5049 	struct bnx2x_rx_queue *rxq;
5050 
5051 	for (i = 0; i < sc->num_queues; i++) {
5052 		fp = &sc->fp[i];
5053 		rxq = sc->rx_queues[fp->index];
5054 		if (!rxq) {
5055 			PMD_RX_LOG(ERR, "RX queue is NULL");
5056 			return;
5057 		}
5058 
5059 		rxq->rx_bd_head = 0;
5060 		rxq->rx_bd_tail = rxq->nb_rx_desc;
5061 		rxq->rx_cq_head = 0;
5062 		rxq->rx_cq_tail = TOTAL_RCQ_ENTRIES(rxq);
5063 		*fp->rx_cq_cons_sb = 0;
5064 
5065 		/*
5066 		 * Activate the BD ring...
5067 		 * Warning, this will generate an interrupt (to the TSTORM)
5068 		 * so this can only be done after the chip is initialized
5069 		 */
5070 		bnx2x_update_rx_prod(sc, fp, rxq->rx_bd_tail, rxq->rx_cq_tail);
5071 
5072 		if (i != 0) {
5073 			continue;
5074 		}
5075 	}
5076 }
5077 
5078 static void bnx2x_init_tx_ring_one(struct bnx2x_fastpath *fp)
5079 {
5080 	struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
5081 
5082 	fp->tx_db.data.header.header = 1 << DOORBELL_HDR_DB_TYPE_SHIFT;
5083 	fp->tx_db.data.zero_fill1 = 0;
5084 	fp->tx_db.data.prod = 0;
5085 
5086 	if (!txq) {
5087 		PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
5088 		return;
5089 	}
5090 
5091 	txq->tx_pkt_tail = 0;
5092 	txq->tx_pkt_head = 0;
5093 	txq->tx_bd_tail = 0;
5094 	txq->tx_bd_head = 0;
5095 }
5096 
5097 static void bnx2x_init_tx_rings(struct bnx2x_softc *sc)
5098 {
5099 	int i;
5100 
5101 	for (i = 0; i < sc->num_queues; i++) {
5102 		bnx2x_init_tx_ring_one(&sc->fp[i]);
5103 	}
5104 }
5105 
5106 static void bnx2x_init_def_sb(struct bnx2x_softc *sc)
5107 {
5108 	struct host_sp_status_block *def_sb = sc->def_sb;
5109 	rte_iova_t mapping = sc->def_sb_dma.paddr;
5110 	int igu_sp_sb_index;
5111 	int igu_seg_id;
5112 	int port = SC_PORT(sc);
5113 	int func = SC_FUNC(sc);
5114 	int reg_offset, reg_offset_en5;
5115 	uint64_t section;
5116 	int index, sindex;
5117 	struct hc_sp_status_block_data sp_sb_data;
5118 
5119 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5120 
5121 	if (CHIP_INT_MODE_IS_BC(sc)) {
5122 		igu_sp_sb_index = DEF_SB_IGU_ID;
5123 		igu_seg_id = HC_SEG_ACCESS_DEF;
5124 	} else {
5125 		igu_sp_sb_index = sc->igu_dsb_id;
5126 		igu_seg_id = IGU_SEG_ACCESS_DEF;
5127 	}
5128 
5129 	/* attentions */
5130 	section = ((uint64_t) mapping +
5131 		   offsetof(struct host_sp_status_block, atten_status_block));
5132 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5133 	sc->attn_state = 0;
5134 
5135 	reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5136 	    MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
5137 
5138 	reg_offset_en5 = (port) ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5139 	    MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
5140 
5141 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5142 /* take care of sig[0]..sig[4] */
5143 		for (sindex = 0; sindex < 4; sindex++) {
5144 			sc->attn_group[index].sig[sindex] =
5145 			    REG_RD(sc,
5146 				   (reg_offset + (sindex * 0x4) +
5147 				    (0x10 * index)));
5148 		}
5149 
5150 		if (!CHIP_IS_E1x(sc)) {
5151 			/*
5152 			 * enable5 is separate from the rest of the registers,
5153 			 * and the address skip is 4 and not 16 between the
5154 			 * different groups
5155 			 */
5156 			sc->attn_group[index].sig[4] =
5157 			    REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
5158 		} else {
5159 			sc->attn_group[index].sig[4] = 0;
5160 		}
5161 	}
5162 
5163 	if (sc->devinfo.int_block == INT_BLOCK_HC) {
5164 		reg_offset =
5165 		    port ? HC_REG_ATTN_MSG1_ADDR_L : HC_REG_ATTN_MSG0_ADDR_L;
5166 		REG_WR(sc, reg_offset, U64_LO(section));
5167 		REG_WR(sc, (reg_offset + 4), U64_HI(section));
5168 	} else if (!CHIP_IS_E1x(sc)) {
5169 		REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5170 		REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5171 	}
5172 
5173 	section = ((uint64_t) mapping +
5174 		   offsetof(struct host_sp_status_block, sp_sb));
5175 
5176 	bnx2x_zero_sp_sb(sc);
5177 
5178 	/* PCI guarantees endianity of regpair */
5179 	sp_sb_data.state = SB_ENABLED;
5180 	sp_sb_data.host_sb_addr.lo = U64_LO(section);
5181 	sp_sb_data.host_sb_addr.hi = U64_HI(section);
5182 	sp_sb_data.igu_sb_id = igu_sp_sb_index;
5183 	sp_sb_data.igu_seg_id = igu_seg_id;
5184 	sp_sb_data.p_func.pf_id = func;
5185 	sp_sb_data.p_func.vnic_id = SC_VN(sc);
5186 	sp_sb_data.p_func.vf_id = 0xff;
5187 
5188 	bnx2x_wr_sp_sb_data(sc, &sp_sb_data);
5189 
5190 	bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5191 }
5192 
5193 static void bnx2x_init_sp_ring(struct bnx2x_softc *sc)
5194 {
5195 	atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
5196 	sc->spq_prod_idx = 0;
5197 	sc->dsb_sp_prod =
5198 	    &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
5199 	sc->spq_prod_bd = sc->spq;
5200 	sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
5201 }
5202 
5203 static void bnx2x_init_eq_ring(struct bnx2x_softc *sc)
5204 {
5205 	union event_ring_elem *elem;
5206 	int i;
5207 
5208 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5209 		elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
5210 
5211 		elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
5212 							 BNX2X_PAGE_SIZE *
5213 							 (i % NUM_EQ_PAGES)));
5214 		elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
5215 							 BNX2X_PAGE_SIZE *
5216 							 (i % NUM_EQ_PAGES)));
5217 	}
5218 
5219 	sc->eq_cons = 0;
5220 	sc->eq_prod = NUM_EQ_DESC;
5221 	sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
5222 
5223 	atomic_store_rel_long(&sc->eq_spq_left,
5224 			      (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
5225 				   NUM_EQ_DESC) - 1));
5226 }
5227 
5228 static void bnx2x_init_internal_common(struct bnx2x_softc *sc)
5229 {
5230 	int i;
5231 
5232 	if (IS_MF_SI(sc)) {
5233 /*
5234  * In switch independent mode, the TSTORM needs to accept
5235  * packets that failed classification, since approximate match
5236  * mac addresses aren't written to NIG LLH.
5237  */
5238 		REG_WR8(sc,
5239 			(BAR_TSTRORM_INTMEM +
5240 			 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 2);
5241 	} else
5242 		REG_WR8(sc,
5243 			(BAR_TSTRORM_INTMEM +
5244 			 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 0);
5245 
5246 	/*
5247 	 * Zero this manually as its initialization is currently missing
5248 	 * in the initTool.
5249 	 */
5250 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
5251 		REG_WR(sc,
5252 		       (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
5253 		       0);
5254 	}
5255 
5256 	if (!CHIP_IS_E1x(sc)) {
5257 		REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
5258 			CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE :
5259 			HC_IGU_NBC_MODE);
5260 	}
5261 }
5262 
5263 static void bnx2x_init_internal(struct bnx2x_softc *sc, uint32_t load_code)
5264 {
5265 	switch (load_code) {
5266 	case FW_MSG_CODE_DRV_LOAD_COMMON:
5267 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5268 		bnx2x_init_internal_common(sc);
5269 		/* no break */
5270 
5271 	case FW_MSG_CODE_DRV_LOAD_PORT:
5272 		/* nothing to do */
5273 		/* no break */
5274 
5275 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5276 		/* internal memory per function is initialized inside bnx2x_pf_init */
5277 		break;
5278 
5279 	default:
5280 		PMD_DRV_LOG(NOTICE, sc, "Unknown load_code (0x%x) from MCP",
5281 			    load_code);
5282 		break;
5283 	}
5284 }
5285 
5286 static void
5287 storm_memset_func_cfg(struct bnx2x_softc *sc,
5288 		      struct tstorm_eth_function_common_config *tcfg,
5289 		      uint16_t abs_fid)
5290 {
5291 	uint32_t addr;
5292 	size_t size;
5293 
5294 	addr = (BAR_TSTRORM_INTMEM +
5295 		TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
5296 	size = sizeof(struct tstorm_eth_function_common_config);
5297 	ecore_storm_memset_struct(sc, addr, size, (uint32_t *) tcfg);
5298 }
5299 
5300 static void bnx2x_func_init(struct bnx2x_softc *sc, struct bnx2x_func_init_params *p)
5301 {
5302 	struct tstorm_eth_function_common_config tcfg = { 0 };
5303 
5304 	if (CHIP_IS_E1x(sc)) {
5305 		storm_memset_func_cfg(sc, &tcfg, p->func_id);
5306 	}
5307 
5308 	/* Enable the function in the FW */
5309 	storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
5310 	storm_memset_func_en(sc, p->func_id, 1);
5311 
5312 	/* spq */
5313 	if (p->func_flgs & FUNC_FLG_SPQ) {
5314 		storm_memset_spq_addr(sc, p->spq_map, p->func_id);
5315 		REG_WR(sc,
5316 		       (XSEM_REG_FAST_MEMORY +
5317 			XSTORM_SPQ_PROD_OFFSET(p->func_id)), p->spq_prod);
5318 	}
5319 }
5320 
5321 /*
5322  * Calculates the sum of vn_min_rates.
5323  * It's needed for further normalizing of the min_rates.
5324  * Returns:
5325  *   sum of vn_min_rates.
5326  *     or
5327  *   0 - if all the min_rates are 0.
5328  * In the later case fainess algorithm should be deactivated.
5329  * If all min rates are not zero then those that are zeroes will be set to 1.
5330  */
5331 static void bnx2x_calc_vn_min(struct bnx2x_softc *sc, struct cmng_init_input *input)
5332 {
5333 	uint32_t vn_cfg;
5334 	uint32_t vn_min_rate;
5335 	int all_zero = 1;
5336 	int vn;
5337 
5338 	for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5339 		vn_cfg = sc->devinfo.mf_info.mf_config[vn];
5340 		vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
5341 				FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
5342 
5343 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
5344 			/* skip hidden VNs */
5345 			vn_min_rate = 0;
5346 		} else if (!vn_min_rate) {
5347 			/* If min rate is zero - set it to 100 */
5348 			vn_min_rate = DEF_MIN_RATE;
5349 		} else {
5350 			all_zero = 0;
5351 		}
5352 
5353 		input->vnic_min_rate[vn] = vn_min_rate;
5354 	}
5355 
5356 	/* if ETS or all min rates are zeros - disable fairness */
5357 	if (all_zero) {
5358 		input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
5359 	} else {
5360 		input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
5361 	}
5362 }
5363 
5364 static uint16_t
5365 bnx2x_extract_max_cfg(__rte_unused struct bnx2x_softc *sc, uint32_t mf_cfg)
5366 {
5367 	uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
5368 			    FUNC_MF_CFG_MAX_BW_SHIFT);
5369 
5370 	if (!max_cfg) {
5371 		PMD_DRV_LOG(DEBUG, sc,
5372 			    "Max BW configured to 0 - using 100 instead");
5373 		max_cfg = 100;
5374 	}
5375 
5376 	return max_cfg;
5377 }
5378 
5379 static void
5380 bnx2x_calc_vn_max(struct bnx2x_softc *sc, int vn, struct cmng_init_input *input)
5381 {
5382 	uint16_t vn_max_rate;
5383 	uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
5384 	uint32_t max_cfg;
5385 
5386 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
5387 		vn_max_rate = 0;
5388 	} else {
5389 		max_cfg = bnx2x_extract_max_cfg(sc, vn_cfg);
5390 
5391 		if (IS_MF_SI(sc)) {
5392 			/* max_cfg in percents of linkspeed */
5393 			vn_max_rate =
5394 			    ((sc->link_vars.line_speed * max_cfg) / 100);
5395 		} else {	/* SD modes */
5396 			/* max_cfg is absolute in 100Mb units */
5397 			vn_max_rate = (max_cfg * 100);
5398 		}
5399 	}
5400 
5401 	input->vnic_max_rate[vn] = vn_max_rate;
5402 }
5403 
5404 static void
5405 bnx2x_cmng_fns_init(struct bnx2x_softc *sc, uint8_t read_cfg, uint8_t cmng_type)
5406 {
5407 	struct cmng_init_input input;
5408 	int vn;
5409 
5410 	memset(&input, 0, sizeof(struct cmng_init_input));
5411 
5412 	input.port_rate = sc->link_vars.line_speed;
5413 
5414 	if (cmng_type == CMNG_FNS_MINMAX) {
5415 /* read mf conf from shmem */
5416 		if (read_cfg) {
5417 			bnx2x_read_mf_cfg(sc);
5418 		}
5419 
5420 /* get VN min rate and enable fairness if not 0 */
5421 		bnx2x_calc_vn_min(sc, &input);
5422 
5423 /* get VN max rate */
5424 		if (sc->port.pmf) {
5425 			for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5426 				bnx2x_calc_vn_max(sc, vn, &input);
5427 			}
5428 		}
5429 
5430 /* always enable rate shaping and fairness */
5431 		input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
5432 
5433 		ecore_init_cmng(&input, &sc->cmng);
5434 		return;
5435 	}
5436 }
5437 
5438 static int bnx2x_get_cmng_fns_mode(struct bnx2x_softc *sc)
5439 {
5440 	if (CHIP_REV_IS_SLOW(sc)) {
5441 		return CMNG_FNS_NONE;
5442 	}
5443 
5444 	if (IS_MF(sc)) {
5445 		return CMNG_FNS_MINMAX;
5446 	}
5447 
5448 	return CMNG_FNS_NONE;
5449 }
5450 
5451 static void
5452 storm_memset_cmng(struct bnx2x_softc *sc, struct cmng_init *cmng, uint8_t port)
5453 {
5454 	int vn;
5455 	int func;
5456 	uint32_t addr;
5457 	size_t size;
5458 
5459 	addr = (BAR_XSTRORM_INTMEM + XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
5460 	size = sizeof(struct cmng_struct_per_port);
5461 	ecore_storm_memset_struct(sc, addr, size, (uint32_t *) & cmng->port);
5462 
5463 	for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5464 		func = func_by_vn(sc, vn);
5465 
5466 		addr = (BAR_XSTRORM_INTMEM +
5467 			XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
5468 		size = sizeof(struct rate_shaping_vars_per_vn);
5469 		ecore_storm_memset_struct(sc, addr, size,
5470 					  (uint32_t *) & cmng->
5471 					  vnic.vnic_max_rate[vn]);
5472 
5473 		addr = (BAR_XSTRORM_INTMEM +
5474 			XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
5475 		size = sizeof(struct fairness_vars_per_vn);
5476 		ecore_storm_memset_struct(sc, addr, size,
5477 					  (uint32_t *) & cmng->
5478 					  vnic.vnic_min_rate[vn]);
5479 	}
5480 }
5481 
5482 static void bnx2x_pf_init(struct bnx2x_softc *sc)
5483 {
5484 	struct bnx2x_func_init_params func_init;
5485 	struct event_ring_data eq_data;
5486 	uint16_t flags;
5487 
5488 	memset(&eq_data, 0, sizeof(struct event_ring_data));
5489 	memset(&func_init, 0, sizeof(struct bnx2x_func_init_params));
5490 
5491 	if (!CHIP_IS_E1x(sc)) {
5492 /* reset IGU PF statistics: MSIX + ATTN */
5493 /* PF */
5494 		REG_WR(sc,
5495 		       (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
5496 			(BNX2X_IGU_STAS_MSG_VF_CNT * 4) +
5497 			((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) *
5498 			 4)), 0);
5499 /* ATTN */
5500 		REG_WR(sc,
5501 		       (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
5502 			(BNX2X_IGU_STAS_MSG_VF_CNT * 4) +
5503 			(BNX2X_IGU_STAS_MSG_PF_CNT * 4) +
5504 			((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) *
5505 			 4)), 0);
5506 	}
5507 
5508 	/* function setup flags */
5509 	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
5510 
5511 	func_init.func_flgs = flags;
5512 	func_init.pf_id = SC_FUNC(sc);
5513 	func_init.func_id = SC_FUNC(sc);
5514 	func_init.spq_map = sc->spq_dma.paddr;
5515 	func_init.spq_prod = sc->spq_prod_idx;
5516 
5517 	bnx2x_func_init(sc, &func_init);
5518 
5519 	memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
5520 
5521 	/*
5522 	 * Congestion management values depend on the link rate.
5523 	 * There is no active link so initial link rate is set to 10Gbps.
5524 	 * When the link comes up the congestion management values are
5525 	 * re-calculated according to the actual link rate.
5526 	 */
5527 	sc->link_vars.line_speed = SPEED_10000;
5528 	bnx2x_cmng_fns_init(sc, TRUE, bnx2x_get_cmng_fns_mode(sc));
5529 
5530 	/* Only the PMF sets the HW */
5531 	if (sc->port.pmf) {
5532 		storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
5533 	}
5534 
5535 	/* init Event Queue - PCI bus guarantees correct endainity */
5536 	eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
5537 	eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
5538 	eq_data.producer = sc->eq_prod;
5539 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
5540 	eq_data.sb_id = DEF_SB_ID;
5541 	storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
5542 }
5543 
5544 static void bnx2x_hc_int_enable(struct bnx2x_softc *sc)
5545 {
5546 	int port = SC_PORT(sc);
5547 	uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
5548 	uint32_t val = REG_RD(sc, addr);
5549 	uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX)
5550 	    || (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5551 	uint8_t single_msix = (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5552 	uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI);
5553 
5554 	if (msix) {
5555 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5556 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
5557 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5558 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5559 		if (single_msix) {
5560 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
5561 		}
5562 	} else if (msi) {
5563 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
5564 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5565 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5566 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5567 	} else {
5568 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5569 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5570 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
5571 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5572 
5573 		REG_WR(sc, addr, val);
5574 
5575 		val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
5576 	}
5577 
5578 	REG_WR(sc, addr, val);
5579 
5580 	/* ensure that HC_CONFIG is written before leading/trailing edge config */
5581 	mb();
5582 
5583 	/* init leading/trailing edge */
5584 	if (IS_MF(sc)) {
5585 		val = (0xee0f | (1 << (SC_VN(sc) + 4)));
5586 		if (sc->port.pmf) {
5587 			/* enable nig and gpio3 attention */
5588 			val |= 0x1100;
5589 		}
5590 	} else {
5591 		val = 0xffff;
5592 	}
5593 
5594 	REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port * 8), val);
5595 	REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port * 8), val);
5596 
5597 	/* make sure that interrupts are indeed enabled from here on */
5598 	mb();
5599 }
5600 
5601 static void bnx2x_igu_int_enable(struct bnx2x_softc *sc)
5602 {
5603 	uint32_t val;
5604 	uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX)
5605 	    || (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5606 	uint8_t single_msix = (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5607 	uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI);
5608 
5609 	val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
5610 
5611 	if (msix) {
5612 		val &= ~(IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5613 		val |= (IGU_PF_CONF_MSI_MSIX_EN | IGU_PF_CONF_ATTN_BIT_EN);
5614 		if (single_msix) {
5615 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
5616 		}
5617 	} else if (msi) {
5618 		val &= ~IGU_PF_CONF_INT_LINE_EN;
5619 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
5620 			IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5621 	} else {
5622 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
5623 		val |= (IGU_PF_CONF_INT_LINE_EN |
5624 			IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5625 	}
5626 
5627 	/* clean previous status - need to configure igu prior to ack */
5628 	if ((!msix) || single_msix) {
5629 		REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5630 		bnx2x_ack_int(sc);
5631 	}
5632 
5633 	val |= IGU_PF_CONF_FUNC_EN;
5634 
5635 	PMD_DRV_LOG(DEBUG, sc, "write 0x%x to IGU mode %s",
5636 		    val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
5637 
5638 	REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5639 
5640 	mb();
5641 
5642 	/* init leading/trailing edge */
5643 	if (IS_MF(sc)) {
5644 		val = (0xee0f | (1 << (SC_VN(sc) + 4)));
5645 		if (sc->port.pmf) {
5646 			/* enable nig and gpio3 attention */
5647 			val |= 0x1100;
5648 		}
5649 	} else {
5650 		val = 0xffff;
5651 	}
5652 
5653 	REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
5654 	REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
5655 
5656 	/* make sure that interrupts are indeed enabled from here on */
5657 	mb();
5658 }
5659 
5660 static void bnx2x_int_enable(struct bnx2x_softc *sc)
5661 {
5662 	if (sc->devinfo.int_block == INT_BLOCK_HC) {
5663 		bnx2x_hc_int_enable(sc);
5664 	} else {
5665 		bnx2x_igu_int_enable(sc);
5666 	}
5667 }
5668 
5669 static void bnx2x_hc_int_disable(struct bnx2x_softc *sc)
5670 {
5671 	int port = SC_PORT(sc);
5672 	uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
5673 	uint32_t val = REG_RD(sc, addr);
5674 
5675 	val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5676 		 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5677 		 HC_CONFIG_0_REG_INT_LINE_EN_0 | HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5678 	/* flush all outstanding writes */
5679 	mb();
5680 
5681 	REG_WR(sc, addr, val);
5682 	if (REG_RD(sc, addr) != val) {
5683 		PMD_DRV_LOG(ERR, sc, "proper val not read from HC IGU!");
5684 	}
5685 }
5686 
5687 static void bnx2x_igu_int_disable(struct bnx2x_softc *sc)
5688 {
5689 	uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
5690 
5691 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
5692 		 IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_ATTN_BIT_EN);
5693 
5694 	PMD_DRV_LOG(DEBUG, sc, "write %x to IGU", val);
5695 
5696 	/* flush all outstanding writes */
5697 	mb();
5698 
5699 	REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5700 	if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
5701 		PMD_DRV_LOG(ERR, sc, "proper val not read from IGU!");
5702 	}
5703 }
5704 
5705 static void bnx2x_int_disable(struct bnx2x_softc *sc)
5706 {
5707 	if (sc->devinfo.int_block == INT_BLOCK_HC) {
5708 		bnx2x_hc_int_disable(sc);
5709 	} else {
5710 		bnx2x_igu_int_disable(sc);
5711 	}
5712 }
5713 
5714 static void bnx2x_nic_init(struct bnx2x_softc *sc, int load_code)
5715 {
5716 	int i;
5717 
5718 	PMD_INIT_FUNC_TRACE(sc);
5719 
5720 	for (i = 0; i < sc->num_queues; i++) {
5721 		bnx2x_init_eth_fp(sc, i);
5722 	}
5723 
5724 	rmb();			/* ensure status block indices were read */
5725 
5726 	bnx2x_init_rx_rings(sc);
5727 	bnx2x_init_tx_rings(sc);
5728 
5729 	if (IS_VF(sc)) {
5730 		bnx2x_memset_stats(sc);
5731 		return;
5732 	}
5733 
5734 	/* initialize MOD_ABS interrupts */
5735 	elink_init_mod_abs_int(sc, &sc->link_vars,
5736 			       sc->devinfo.chip_id,
5737 			       sc->devinfo.shmem_base,
5738 			       sc->devinfo.shmem2_base, SC_PORT(sc));
5739 
5740 	bnx2x_init_def_sb(sc);
5741 	bnx2x_update_dsb_idx(sc);
5742 	bnx2x_init_sp_ring(sc);
5743 	bnx2x_init_eq_ring(sc);
5744 	bnx2x_init_internal(sc, load_code);
5745 	bnx2x_pf_init(sc);
5746 	bnx2x_stats_init(sc);
5747 
5748 	/* flush all before enabling interrupts */
5749 	mb();
5750 
5751 	bnx2x_int_enable(sc);
5752 
5753 	/* check for SPIO5 */
5754 	bnx2x_attn_int_deasserted0(sc,
5755 				 REG_RD(sc,
5756 					(MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5757 					 SC_PORT(sc) * 4)) &
5758 				 AEU_INPUTS_ATTN_BITS_SPIO5);
5759 }
5760 
5761 static void bnx2x_init_objs(struct bnx2x_softc *sc)
5762 {
5763 	/* mcast rules must be added to tx if tx switching is enabled */
5764 	ecore_obj_type o_type;
5765 	if (sc->flags & BNX2X_TX_SWITCHING)
5766 		o_type = ECORE_OBJ_TYPE_RX_TX;
5767 	else
5768 		o_type = ECORE_OBJ_TYPE_RX;
5769 
5770 	/* RX_MODE controlling object */
5771 	ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
5772 
5773 	/* multicast configuration controlling object */
5774 	ecore_init_mcast_obj(sc,
5775 			     &sc->mcast_obj,
5776 			     sc->fp[0].cl_id,
5777 			     sc->fp[0].index,
5778 			     SC_FUNC(sc),
5779 			     SC_FUNC(sc),
5780 			     BNX2X_SP(sc, mcast_rdata),
5781 			     (rte_iova_t)BNX2X_SP_MAPPING(sc, mcast_rdata),
5782 			     ECORE_FILTER_MCAST_PENDING,
5783 			     &sc->sp_state, o_type);
5784 
5785 	/* Setup CAM credit pools */
5786 	ecore_init_mac_credit_pool(sc,
5787 				   &sc->macs_pool,
5788 				   SC_FUNC(sc),
5789 				   CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
5790 				   VNICS_PER_PATH(sc));
5791 
5792 	ecore_init_vlan_credit_pool(sc,
5793 				    &sc->vlans_pool,
5794 				    SC_ABS_FUNC(sc) >> 1,
5795 				    CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
5796 				    VNICS_PER_PATH(sc));
5797 
5798 	/* RSS configuration object */
5799 	ecore_init_rss_config_obj(&sc->rss_conf_obj,
5800 				  sc->fp[0].cl_id,
5801 				  sc->fp[0].index,
5802 				  SC_FUNC(sc),
5803 				  SC_FUNC(sc),
5804 				  BNX2X_SP(sc, rss_rdata),
5805 				  (rte_iova_t)BNX2X_SP_MAPPING(sc, rss_rdata),
5806 				  ECORE_FILTER_RSS_CONF_PENDING,
5807 				  &sc->sp_state, ECORE_OBJ_TYPE_RX);
5808 }
5809 
5810 /*
5811  * Initialize the function. This must be called before sending CLIENT_SETUP
5812  * for the first client.
5813  */
5814 static int bnx2x_func_start(struct bnx2x_softc *sc)
5815 {
5816 	struct ecore_func_state_params func_params = { NULL };
5817 	struct ecore_func_start_params *start_params =
5818 	    &func_params.params.start;
5819 
5820 	/* Prepare parameters for function state transitions */
5821 	bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
5822 
5823 	func_params.f_obj = &sc->func_obj;
5824 	func_params.cmd = ECORE_F_CMD_START;
5825 
5826 	/* Function parameters */
5827 	start_params->mf_mode = sc->devinfo.mf_info.mf_mode;
5828 	start_params->sd_vlan_tag = OVLAN(sc);
5829 
5830 	if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
5831 		start_params->network_cos_mode = STATIC_COS;
5832 	} else {		/* CHIP_IS_E1X */
5833 		start_params->network_cos_mode = FW_WRR;
5834 	}
5835 
5836 	start_params->gre_tunnel_mode = 0;
5837 	start_params->gre_tunnel_rss = 0;
5838 
5839 	return ecore_func_state_change(sc, &func_params);
5840 }
5841 
5842 static int bnx2x_set_power_state(struct bnx2x_softc *sc, uint8_t state)
5843 {
5844 	uint16_t pmcsr;
5845 
5846 	/* If there is no power capability, silently succeed */
5847 	if (!(sc->devinfo.pcie_cap_flags & BNX2X_PM_CAPABLE_FLAG)) {
5848 		PMD_DRV_LOG(INFO, sc, "No power capability");
5849 		return 0;
5850 	}
5851 
5852 	pci_read(sc, (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), &pmcsr,
5853 		 2);
5854 
5855 	switch (state) {
5856 	case PCI_PM_D0:
5857 		pci_write_word(sc,
5858 			       (sc->devinfo.pcie_pm_cap_reg +
5859 				PCIR_POWER_STATUS),
5860 			       ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME));
5861 
5862 		if (pmcsr & PCIM_PSTAT_DMASK) {
5863 			/* delay required during transition out of D3hot */
5864 			DELAY(20000);
5865 		}
5866 
5867 		break;
5868 
5869 	case PCI_PM_D3hot:
5870 		/* don't shut down the power for emulation and FPGA */
5871 		if (CHIP_REV_IS_SLOW(sc)) {
5872 			return 0;
5873 		}
5874 
5875 		pmcsr &= ~PCIM_PSTAT_DMASK;
5876 		pmcsr |= PCIM_PSTAT_D3;
5877 
5878 		if (sc->wol) {
5879 			pmcsr |= PCIM_PSTAT_PMEENABLE;
5880 		}
5881 
5882 		pci_write_long(sc,
5883 			       (sc->devinfo.pcie_pm_cap_reg +
5884 				PCIR_POWER_STATUS), pmcsr);
5885 
5886 		/*
5887 		 * No more memory access after this point until device is brought back
5888 		 * to D0 state.
5889 		 */
5890 		break;
5891 
5892 	default:
5893 		PMD_DRV_LOG(NOTICE, sc, "Can't support PCI power state = %d",
5894 			    state);
5895 		return -1;
5896 	}
5897 
5898 	return 0;
5899 }
5900 
5901 /* return true if succeeded to acquire the lock */
5902 static uint8_t bnx2x_trylock_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
5903 {
5904 	uint32_t lock_status;
5905 	uint32_t resource_bit = (1 << resource);
5906 	int func = SC_FUNC(sc);
5907 	uint32_t hw_lock_control_reg;
5908 
5909 	/* Validating that the resource is within range */
5910 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
5911 		PMD_DRV_LOG(INFO, sc,
5912 			    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)",
5913 			    resource, HW_LOCK_MAX_RESOURCE_VALUE);
5914 		return FALSE;
5915 	}
5916 
5917 	if (func <= 5) {
5918 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func * 8);
5919 	} else {
5920 		hw_lock_control_reg =
5921 		    (MISC_REG_DRIVER_CONTROL_7 + (func - 6) * 8);
5922 	}
5923 
5924 	/* try to acquire the lock */
5925 	REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
5926 	lock_status = REG_RD(sc, hw_lock_control_reg);
5927 	if (lock_status & resource_bit) {
5928 		return TRUE;
5929 	}
5930 
5931 	PMD_DRV_LOG(NOTICE, sc, "Failed to get a resource lock 0x%x", resource);
5932 
5933 	return FALSE;
5934 }
5935 
5936 /*
5937  * Get the recovery leader resource id according to the engine this function
5938  * belongs to. Currently only only 2 engines is supported.
5939  */
5940 static int bnx2x_get_leader_lock_resource(struct bnx2x_softc *sc)
5941 {
5942 	if (SC_PATH(sc)) {
5943 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
5944 	} else {
5945 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
5946 	}
5947 }
5948 
5949 /* try to acquire a leader lock for current engine */
5950 static uint8_t bnx2x_trylock_leader_lock(struct bnx2x_softc *sc)
5951 {
5952 	return bnx2x_trylock_hw_lock(sc, bnx2x_get_leader_lock_resource(sc));
5953 }
5954 
5955 static int bnx2x_release_leader_lock(struct bnx2x_softc *sc)
5956 {
5957 	return bnx2x_release_hw_lock(sc, bnx2x_get_leader_lock_resource(sc));
5958 }
5959 
5960 /* close gates #2, #3 and #4 */
5961 static void bnx2x_set_234_gates(struct bnx2x_softc *sc, uint8_t close)
5962 {
5963 	uint32_t val;
5964 
5965 	/* gates #2 and #4a are closed/opened */
5966 	/* #4 */
5967 	REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, ! !close);
5968 	/* #2 */
5969 	REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, ! !close);
5970 
5971 	/* #3 */
5972 	if (CHIP_IS_E1x(sc)) {
5973 /* prevent interrupts from HC on both ports */
5974 		val = REG_RD(sc, HC_REG_CONFIG_1);
5975 		if (close)
5976 			REG_WR(sc, HC_REG_CONFIG_1, (val & ~(uint32_t)
5977 						     HC_CONFIG_1_REG_BLOCK_DISABLE_1));
5978 		else
5979 			REG_WR(sc, HC_REG_CONFIG_1,
5980 			       (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1));
5981 
5982 		val = REG_RD(sc, HC_REG_CONFIG_0);
5983 		if (close)
5984 			REG_WR(sc, HC_REG_CONFIG_0, (val & ~(uint32_t)
5985 						     HC_CONFIG_0_REG_BLOCK_DISABLE_0));
5986 		else
5987 			REG_WR(sc, HC_REG_CONFIG_0,
5988 			       (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0));
5989 
5990 	} else {
5991 /* Prevent incoming interrupts in IGU */
5992 		val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
5993 
5994 		if (close)
5995 			REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
5996 			       (val & ~(uint32_t)
5997 				IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
5998 		else
5999 			REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
6000 			       (val |
6001 				IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
6002 	}
6003 
6004 	wmb();
6005 }
6006 
6007 /* poll for pending writes bit, it should get cleared in no more than 1s */
6008 static int bnx2x_er_poll_igu_vq(struct bnx2x_softc *sc)
6009 {
6010 	uint32_t cnt = 1000;
6011 	uint32_t pend_bits = 0;
6012 
6013 	do {
6014 		pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
6015 
6016 		if (pend_bits == 0) {
6017 			break;
6018 		}
6019 
6020 		DELAY(1000);
6021 	} while (cnt-- > 0);
6022 
6023 	if (cnt <= 0) {
6024 		PMD_DRV_LOG(NOTICE, sc, "Still pending IGU requests bits=0x%08x!",
6025 			    pend_bits);
6026 		return -1;
6027 	}
6028 
6029 	return 0;
6030 }
6031 
6032 #define SHARED_MF_CLP_MAGIC  0x80000000	/* 'magic' bit */
6033 
6034 static void bnx2x_clp_reset_prep(struct bnx2x_softc *sc, uint32_t * magic_val)
6035 {
6036 	/* Do some magic... */
6037 	uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
6038 	*magic_val = val & SHARED_MF_CLP_MAGIC;
6039 	MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
6040 }
6041 
6042 /* restore the value of the 'magic' bit */
6043 static void bnx2x_clp_reset_done(struct bnx2x_softc *sc, uint32_t magic_val)
6044 {
6045 	/* Restore the 'magic' bit value... */
6046 	uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
6047 	MFCFG_WR(sc, shared_mf_config.clp_mb,
6048 		 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
6049 }
6050 
6051 /* prepare for MCP reset, takes care of CLP configurations */
6052 static void bnx2x_reset_mcp_prep(struct bnx2x_softc *sc, uint32_t * magic_val)
6053 {
6054 	uint32_t shmem;
6055 	uint32_t validity_offset;
6056 
6057 	/* set `magic' bit in order to save MF config */
6058 	bnx2x_clp_reset_prep(sc, magic_val);
6059 
6060 	/* get shmem offset */
6061 	shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
6062 	validity_offset =
6063 	    offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
6064 
6065 	/* Clear validity map flags */
6066 	if (shmem > 0) {
6067 		REG_WR(sc, shmem + validity_offset, 0);
6068 	}
6069 }
6070 
6071 #define MCP_TIMEOUT      5000	/* 5 seconds (in ms) */
6072 #define MCP_ONE_TIMEOUT  100	/* 100 ms */
6073 
6074 static void bnx2x_mcp_wait_one(struct bnx2x_softc *sc)
6075 {
6076 	/* special handling for emulation and FPGA (10 times longer) */
6077 	if (CHIP_REV_IS_SLOW(sc)) {
6078 		DELAY((MCP_ONE_TIMEOUT * 10) * 1000);
6079 	} else {
6080 		DELAY((MCP_ONE_TIMEOUT) * 1000);
6081 	}
6082 }
6083 
6084 /* initialize shmem_base and waits for validity signature to appear */
6085 static int bnx2x_init_shmem(struct bnx2x_softc *sc)
6086 {
6087 	int cnt = 0;
6088 	uint32_t val = 0;
6089 
6090 	do {
6091 		sc->devinfo.shmem_base =
6092 		    sc->link_params.shmem_base =
6093 		    REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
6094 
6095 		if (sc->devinfo.shmem_base) {
6096 			val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
6097 			if (val & SHR_MEM_VALIDITY_MB)
6098 				return 0;
6099 		}
6100 
6101 		bnx2x_mcp_wait_one(sc);
6102 
6103 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
6104 
6105 	PMD_DRV_LOG(NOTICE, sc, "BAD MCP validity signature");
6106 
6107 	return -1;
6108 }
6109 
6110 static int bnx2x_reset_mcp_comp(struct bnx2x_softc *sc, uint32_t magic_val)
6111 {
6112 	int rc = bnx2x_init_shmem(sc);
6113 
6114 	/* Restore the `magic' bit value */
6115 	bnx2x_clp_reset_done(sc, magic_val);
6116 
6117 	return rc;
6118 }
6119 
6120 static void bnx2x_pxp_prep(struct bnx2x_softc *sc)
6121 {
6122 	REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
6123 	REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
6124 	wmb();
6125 }
6126 
6127 /*
6128  * Reset the whole chip except for:
6129  *      - PCIE core
6130  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
6131  *      - IGU
6132  *      - MISC (including AEU)
6133  *      - GRC
6134  *      - RBCN, RBCP
6135  */
6136 static void bnx2x_process_kill_chip_reset(struct bnx2x_softc *sc, uint8_t global)
6137 {
6138 	uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
6139 	uint32_t global_bits2, stay_reset2;
6140 
6141 	/*
6142 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
6143 	 * (per chip) blocks.
6144 	 */
6145 	global_bits2 =
6146 	    MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
6147 	    MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
6148 
6149 	/*
6150 	 * Don't reset the following blocks.
6151 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
6152 	 *            reset, as in 4 port device they might still be owned
6153 	 *            by the MCP (there is only one leader per path).
6154 	 */
6155 	not_reset_mask1 =
6156 	    MISC_REGISTERS_RESET_REG_1_RST_HC |
6157 	    MISC_REGISTERS_RESET_REG_1_RST_PXPV |
6158 	    MISC_REGISTERS_RESET_REG_1_RST_PXP;
6159 
6160 	not_reset_mask2 =
6161 	    MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
6162 	    MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
6163 	    MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
6164 	    MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
6165 	    MISC_REGISTERS_RESET_REG_2_RST_RBCN |
6166 	    MISC_REGISTERS_RESET_REG_2_RST_GRC |
6167 	    MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
6168 	    MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
6169 	    MISC_REGISTERS_RESET_REG_2_RST_ATC |
6170 	    MISC_REGISTERS_RESET_REG_2_PGLC |
6171 	    MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
6172 	    MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
6173 	    MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
6174 	    MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
6175 	    MISC_REGISTERS_RESET_REG_2_UMAC0 | MISC_REGISTERS_RESET_REG_2_UMAC1;
6176 
6177 	/*
6178 	 * Keep the following blocks in reset:
6179 	 *  - all xxMACs are handled by the elink code.
6180 	 */
6181 	stay_reset2 =
6182 	    MISC_REGISTERS_RESET_REG_2_XMAC |
6183 	    MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
6184 
6185 	/* Full reset masks according to the chip */
6186 	reset_mask1 = 0xffffffff;
6187 
6188 	if (CHIP_IS_E1H(sc))
6189 		reset_mask2 = 0x1ffff;
6190 	else if (CHIP_IS_E2(sc))
6191 		reset_mask2 = 0xfffff;
6192 	else			/* CHIP_IS_E3 */
6193 		reset_mask2 = 0x3ffffff;
6194 
6195 	/* Don't reset global blocks unless we need to */
6196 	if (!global)
6197 		reset_mask2 &= ~global_bits2;
6198 
6199 	/*
6200 	 * In case of attention in the QM, we need to reset PXP
6201 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
6202 	 * because otherwise QM reset would release 'close the gates' shortly
6203 	 * before resetting the PXP, then the PSWRQ would send a write
6204 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
6205 	 * read the payload data from PSWWR, but PSWWR would not
6206 	 * respond. The write queue in PGLUE would stuck, dmae commands
6207 	 * would not return. Therefore it's important to reset the second
6208 	 * reset register (containing the
6209 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
6210 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
6211 	 * bit).
6212 	 */
6213 	REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
6214 	       reset_mask2 & (~not_reset_mask2));
6215 
6216 	REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6217 	       reset_mask1 & (~not_reset_mask1));
6218 
6219 	mb();
6220 	wmb();
6221 
6222 	REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
6223 	       reset_mask2 & (~stay_reset2));
6224 
6225 	mb();
6226 	wmb();
6227 
6228 	REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
6229 	wmb();
6230 }
6231 
6232 static int bnx2x_process_kill(struct bnx2x_softc *sc, uint8_t global)
6233 {
6234 	int cnt = 1000;
6235 	uint32_t val = 0;
6236 	uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
6237 	uint32_t tags_63_32 = 0;
6238 
6239 	/* Empty the Tetris buffer, wait for 1s */
6240 	do {
6241 		sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT);
6242 		blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
6243 		port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
6244 		port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
6245 		pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
6246 		if (CHIP_IS_E3(sc)) {
6247 			tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
6248 		}
6249 
6250 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
6251 		    ((port_is_idle_0 & 0x1) == 0x1) &&
6252 		    ((port_is_idle_1 & 0x1) == 0x1) &&
6253 		    (pgl_exp_rom2 == 0xffffffff) &&
6254 		    (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
6255 			break;
6256 		DELAY(1000);
6257 	} while (cnt-- > 0);
6258 
6259 	if (cnt <= 0) {
6260 		PMD_DRV_LOG(NOTICE, sc,
6261 			    "ERROR: Tetris buffer didn't get empty or there "
6262 			    "are still outstanding read requests after 1s! "
6263 			    "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
6264 			    "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x",
6265 			    sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
6266 			    pgl_exp_rom2);
6267 		return -1;
6268 	}
6269 
6270 	mb();
6271 
6272 	/* Close gates #2, #3 and #4 */
6273 	bnx2x_set_234_gates(sc, TRUE);
6274 
6275 	/* Poll for IGU VQs for 57712 and newer chips */
6276 	if (!CHIP_IS_E1x(sc) && bnx2x_er_poll_igu_vq(sc)) {
6277 		return -1;
6278 	}
6279 
6280 	/* clear "unprepared" bit */
6281 	REG_WR(sc, MISC_REG_UNPREPARED, 0);
6282 	mb();
6283 
6284 	/* Make sure all is written to the chip before the reset */
6285 	wmb();
6286 
6287 	/*
6288 	 * Wait for 1ms to empty GLUE and PCI-E core queues,
6289 	 * PSWHST, GRC and PSWRD Tetris buffer.
6290 	 */
6291 	DELAY(1000);
6292 
6293 	/* Prepare to chip reset: */
6294 	/* MCP */
6295 	if (global) {
6296 		bnx2x_reset_mcp_prep(sc, &val);
6297 	}
6298 
6299 	/* PXP */
6300 	bnx2x_pxp_prep(sc);
6301 	mb();
6302 
6303 	/* reset the chip */
6304 	bnx2x_process_kill_chip_reset(sc, global);
6305 	mb();
6306 
6307 	/* Recover after reset: */
6308 	/* MCP */
6309 	if (global && bnx2x_reset_mcp_comp(sc, val)) {
6310 		return -1;
6311 	}
6312 
6313 	/* Open the gates #2, #3 and #4 */
6314 	bnx2x_set_234_gates(sc, FALSE);
6315 
6316 	return 0;
6317 }
6318 
6319 static int bnx2x_leader_reset(struct bnx2x_softc *sc)
6320 {
6321 	int rc = 0;
6322 	uint8_t global = bnx2x_reset_is_global(sc);
6323 	uint32_t load_code;
6324 
6325 	/*
6326 	 * If not going to reset MCP, load "fake" driver to reset HW while
6327 	 * driver is owner of the HW.
6328 	 */
6329 	if (!global && !BNX2X_NOMCP(sc)) {
6330 		load_code = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
6331 					   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
6332 		if (!load_code) {
6333 			PMD_DRV_LOG(NOTICE, sc, "MCP response failure, aborting");
6334 			rc = -1;
6335 			goto exit_leader_reset;
6336 		}
6337 
6338 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
6339 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
6340 			PMD_DRV_LOG(NOTICE, sc,
6341 				    "MCP unexpected response, aborting");
6342 			rc = -1;
6343 			goto exit_leader_reset2;
6344 		}
6345 
6346 		load_code = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
6347 		if (!load_code) {
6348 			PMD_DRV_LOG(NOTICE, sc, "MCP response failure, aborting");
6349 			rc = -1;
6350 			goto exit_leader_reset2;
6351 		}
6352 	}
6353 
6354 	/* try to recover after the failure */
6355 	if (bnx2x_process_kill(sc, global)) {
6356 		PMD_DRV_LOG(NOTICE, sc, "Something bad occurred on engine %d!",
6357 			    SC_PATH(sc));
6358 		rc = -1;
6359 		goto exit_leader_reset2;
6360 	}
6361 
6362 	/*
6363 	 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
6364 	 * state.
6365 	 */
6366 	bnx2x_set_reset_done(sc);
6367 	if (global) {
6368 		bnx2x_clear_reset_global(sc);
6369 	}
6370 
6371 exit_leader_reset2:
6372 
6373 	/* unload "fake driver" if it was loaded */
6374 	if (!global &&!BNX2X_NOMCP(sc)) {
6375 		bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
6376 		bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
6377 	}
6378 
6379 exit_leader_reset:
6380 
6381 	sc->is_leader = 0;
6382 	bnx2x_release_leader_lock(sc);
6383 
6384 	mb();
6385 	return rc;
6386 }
6387 
6388 /*
6389  * prepare INIT transition, parameters configured:
6390  *   - HC configuration
6391  *   - Queue's CDU context
6392  */
6393 static void
6394 bnx2x_pf_q_prep_init(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6395 		   struct ecore_queue_init_params *init_params)
6396 {
6397 	uint8_t cos;
6398 	int cxt_index, cxt_offset;
6399 
6400 	bnx2x_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
6401 	bnx2x_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
6402 
6403 	bnx2x_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
6404 	bnx2x_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
6405 
6406 	/* HC rate */
6407 	init_params->rx.hc_rate =
6408 	    sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
6409 	init_params->tx.hc_rate =
6410 	    sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
6411 
6412 	/* FW SB ID */
6413 	init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
6414 
6415 	/* CQ index among the SB indices */
6416 	init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
6417 	init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
6418 
6419 	/* set maximum number of COSs supported by this queue */
6420 	init_params->max_cos = sc->max_cos;
6421 
6422 	/* set the context pointers queue object */
6423 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
6424 		cxt_index = fp->index / ILT_PAGE_CIDS;
6425 		cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
6426 		init_params->cxts[cos] =
6427 		    &sc->context[cxt_index].vcxt[cxt_offset].eth;
6428 	}
6429 }
6430 
6431 /* set flags that are common for the Tx-only and not normal connections */
6432 static unsigned long
6433 bnx2x_get_common_flags(struct bnx2x_softc *sc, uint8_t zero_stats)
6434 {
6435 	unsigned long flags = 0;
6436 
6437 	/* PF driver will always initialize the Queue to an ACTIVE state */
6438 	bnx2x_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
6439 
6440 	/*
6441 	 * tx only connections collect statistics (on the same index as the
6442 	 * parent connection). The statistics are zeroed when the parent
6443 	 * connection is initialized.
6444 	 */
6445 
6446 	bnx2x_set_bit(ECORE_Q_FLG_STATS, &flags);
6447 	if (zero_stats) {
6448 		bnx2x_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
6449 	}
6450 
6451 	/*
6452 	 * tx only connections can support tx-switching, though their
6453 	 * CoS-ness doesn't survive the loopback
6454 	 */
6455 	if (sc->flags & BNX2X_TX_SWITCHING) {
6456 		bnx2x_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
6457 	}
6458 
6459 	bnx2x_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
6460 
6461 	return flags;
6462 }
6463 
6464 static unsigned long bnx2x_get_q_flags(struct bnx2x_softc *sc, uint8_t leading)
6465 {
6466 	unsigned long flags = 0;
6467 
6468 	if (IS_MF_SD(sc)) {
6469 		bnx2x_set_bit(ECORE_Q_FLG_OV, &flags);
6470 	}
6471 
6472 	if (leading) {
6473 		bnx2x_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
6474 		bnx2x_set_bit(ECORE_Q_FLG_MCAST, &flags);
6475 	}
6476 
6477 	bnx2x_set_bit(ECORE_Q_FLG_VLAN, &flags);
6478 
6479 	/* merge with common flags */
6480 	return flags | bnx2x_get_common_flags(sc, TRUE);
6481 }
6482 
6483 static void
6484 bnx2x_pf_q_prep_general(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6485 		      struct ecore_general_setup_params *gen_init, uint8_t cos)
6486 {
6487 	gen_init->stat_id = bnx2x_stats_id(fp);
6488 	gen_init->spcl_id = fp->cl_id;
6489 	gen_init->mtu = sc->mtu;
6490 	gen_init->cos = cos;
6491 }
6492 
6493 static void
6494 bnx2x_pf_rx_q_prep(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6495 		 struct rxq_pause_params *pause,
6496 		 struct ecore_rxq_setup_params *rxq_init)
6497 {
6498 	struct bnx2x_rx_queue *rxq;
6499 
6500 	rxq = sc->rx_queues[fp->index];
6501 	if (!rxq) {
6502 		PMD_RX_LOG(ERR, "RX queue is NULL");
6503 		return;
6504 	}
6505 	/* pause */
6506 	pause->bd_th_lo = BD_TH_LO(sc);
6507 	pause->bd_th_hi = BD_TH_HI(sc);
6508 
6509 	pause->rcq_th_lo = RCQ_TH_LO(sc);
6510 	pause->rcq_th_hi = RCQ_TH_HI(sc);
6511 
6512 	/* validate rings have enough entries to cross high thresholds */
6513 	if (sc->dropless_fc &&
6514 	    pause->bd_th_hi + FW_PREFETCH_CNT > sc->rx_ring_size) {
6515 		PMD_DRV_LOG(WARNING, sc, "rx bd ring threshold limit");
6516 	}
6517 
6518 	if (sc->dropless_fc &&
6519 	    pause->rcq_th_hi + FW_PREFETCH_CNT > USABLE_RCQ_ENTRIES(rxq)) {
6520 		PMD_DRV_LOG(WARNING, sc, "rcq ring threshold limit");
6521 	}
6522 
6523 	pause->pri_map = 1;
6524 
6525 	/* rxq setup */
6526 	rxq_init->dscr_map = (rte_iova_t)rxq->rx_ring_phys_addr;
6527 	rxq_init->rcq_map = (rte_iova_t)rxq->cq_ring_phys_addr;
6528 	rxq_init->rcq_np_map = (rte_iova_t)(rxq->cq_ring_phys_addr +
6529 					      BNX2X_PAGE_SIZE);
6530 
6531 	/*
6532 	 * This should be a maximum number of data bytes that may be
6533 	 * placed on the BD (not including paddings).
6534 	 */
6535 	rxq_init->buf_sz = (fp->rx_buf_size - IP_HEADER_ALIGNMENT_PADDING);
6536 
6537 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
6538 	rxq_init->rss_engine_id = SC_FUNC(sc);
6539 	rxq_init->mcast_engine_id = SC_FUNC(sc);
6540 
6541 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
6542 	rxq_init->fw_sb_id = fp->fw_sb_id;
6543 
6544 	rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
6545 
6546 	/*
6547 	 * configure silent vlan removal
6548 	 * if multi function mode is afex, then mask default vlan
6549 	 */
6550 	if (IS_MF_AFEX(sc)) {
6551 		rxq_init->silent_removal_value =
6552 		    sc->devinfo.mf_info.afex_def_vlan_tag;
6553 		rxq_init->silent_removal_mask = EVL_VLID_MASK;
6554 	}
6555 }
6556 
6557 static void
6558 bnx2x_pf_tx_q_prep(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6559 		 struct ecore_txq_setup_params *txq_init, uint8_t cos)
6560 {
6561 	struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
6562 
6563 	if (!txq) {
6564 		PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
6565 		return;
6566 	}
6567 	txq_init->dscr_map = (rte_iova_t)txq->tx_ring_phys_addr;
6568 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
6569 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
6570 	txq_init->fw_sb_id = fp->fw_sb_id;
6571 
6572 	/*
6573 	 * set the TSS leading client id for TX classfication to the
6574 	 * leading RSS client id
6575 	 */
6576 	txq_init->tss_leading_cl_id = BNX2X_FP(sc, 0, cl_id);
6577 }
6578 
6579 /*
6580  * This function performs 2 steps in a queue state machine:
6581  *   1) RESET->INIT
6582  *   2) INIT->SETUP
6583  */
6584 static int
6585 bnx2x_setup_queue(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp, uint8_t leading)
6586 {
6587 	struct ecore_queue_state_params q_params = { NULL };
6588 	struct ecore_queue_setup_params *setup_params = &q_params.params.setup;
6589 	int rc;
6590 
6591 	PMD_DRV_LOG(DEBUG, sc, "setting up queue %d", fp->index);
6592 
6593 	bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6594 
6595 	q_params.q_obj = &BNX2X_SP_OBJ(sc, fp).q_obj;
6596 
6597 	/* we want to wait for completion in this context */
6598 	bnx2x_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
6599 
6600 	/* prepare the INIT parameters */
6601 	bnx2x_pf_q_prep_init(sc, fp, &q_params.params.init);
6602 
6603 	/* Set the command */
6604 	q_params.cmd = ECORE_Q_CMD_INIT;
6605 
6606 	/* Change the state to INIT */
6607 	rc = ecore_queue_state_change(sc, &q_params);
6608 	if (rc) {
6609 		PMD_DRV_LOG(NOTICE, sc, "Queue(%d) INIT failed", fp->index);
6610 		return rc;
6611 	}
6612 
6613 	PMD_DRV_LOG(DEBUG, sc, "init complete");
6614 
6615 	/* now move the Queue to the SETUP state */
6616 	memset(setup_params, 0, sizeof(*setup_params));
6617 
6618 	/* set Queue flags */
6619 	setup_params->flags = bnx2x_get_q_flags(sc, leading);
6620 
6621 	/* set general SETUP parameters */
6622 	bnx2x_pf_q_prep_general(sc, fp, &setup_params->gen_params,
6623 			      FIRST_TX_COS_INDEX);
6624 
6625 	bnx2x_pf_rx_q_prep(sc, fp,
6626 			 &setup_params->pause_params,
6627 			 &setup_params->rxq_params);
6628 
6629 	bnx2x_pf_tx_q_prep(sc, fp, &setup_params->txq_params, FIRST_TX_COS_INDEX);
6630 
6631 	/* Set the command */
6632 	q_params.cmd = ECORE_Q_CMD_SETUP;
6633 
6634 	/* change the state to SETUP */
6635 	rc = ecore_queue_state_change(sc, &q_params);
6636 	if (rc) {
6637 		PMD_DRV_LOG(NOTICE, sc, "Queue(%d) SETUP failed", fp->index);
6638 		return rc;
6639 	}
6640 
6641 	return rc;
6642 }
6643 
6644 static int bnx2x_setup_leading(struct bnx2x_softc *sc)
6645 {
6646 	if (IS_PF(sc))
6647 		return bnx2x_setup_queue(sc, &sc->fp[0], TRUE);
6648 	else			/* VF */
6649 		return bnx2x_vf_setup_queue(sc, &sc->fp[0], TRUE);
6650 }
6651 
6652 static int
6653 bnx2x_config_rss_pf(struct bnx2x_softc *sc, struct ecore_rss_config_obj *rss_obj,
6654 		  uint8_t config_hash)
6655 {
6656 	struct ecore_config_rss_params params = { NULL };
6657 	uint32_t i;
6658 
6659 	/*
6660 	 * Although RSS is meaningless when there is a single HW queue we
6661 	 * still need it enabled in order to have HW Rx hash generated.
6662 	 */
6663 
6664 	params.rss_obj = rss_obj;
6665 
6666 	bnx2x_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
6667 
6668 	bnx2x_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
6669 
6670 	/* RSS configuration */
6671 	bnx2x_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
6672 	bnx2x_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
6673 	bnx2x_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
6674 	bnx2x_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
6675 	if (rss_obj->udp_rss_v4) {
6676 		bnx2x_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
6677 	}
6678 	if (rss_obj->udp_rss_v6) {
6679 		bnx2x_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
6680 	}
6681 
6682 	/* Hash bits */
6683 	params.rss_result_mask = MULTI_MASK;
6684 
6685 	rte_memcpy(params.ind_table, rss_obj->ind_table,
6686 			 sizeof(params.ind_table));
6687 
6688 	if (config_hash) {
6689 /* RSS keys */
6690 		for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
6691 			params.rss_key[i] = (uint32_t) rte_rand();
6692 		}
6693 
6694 		bnx2x_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
6695 	}
6696 
6697 	if (IS_PF(sc))
6698 		return ecore_config_rss(sc, &params);
6699 	else
6700 		return bnx2x_vf_config_rss(sc, &params);
6701 }
6702 
6703 static int bnx2x_config_rss_eth(struct bnx2x_softc *sc, uint8_t config_hash)
6704 {
6705 	return bnx2x_config_rss_pf(sc, &sc->rss_conf_obj, config_hash);
6706 }
6707 
6708 static int bnx2x_init_rss_pf(struct bnx2x_softc *sc)
6709 {
6710 	uint8_t num_eth_queues = BNX2X_NUM_ETH_QUEUES(sc);
6711 	uint32_t i;
6712 
6713 	/*
6714 	 * Prepare the initial contents of the indirection table if
6715 	 * RSS is enabled
6716 	 */
6717 	for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
6718 		sc->rss_conf_obj.ind_table[i] =
6719 		    (sc->fp->cl_id + (i % num_eth_queues));
6720 	}
6721 
6722 	if (sc->udp_rss) {
6723 		sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
6724 	}
6725 
6726 	/*
6727 	 * For 57711 SEARCHER configuration (rss_keys) is
6728 	 * per-port, so if explicit configuration is needed, do it only
6729 	 * for a PMF.
6730 	 *
6731 	 * For 57712 and newer it's a per-function configuration.
6732 	 */
6733 	return bnx2x_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc));
6734 }
6735 
6736 static int
6737 bnx2x_set_mac_one(struct bnx2x_softc *sc, uint8_t * mac,
6738 		struct ecore_vlan_mac_obj *obj, uint8_t set, int mac_type,
6739 		unsigned long *ramrod_flags)
6740 {
6741 	struct ecore_vlan_mac_ramrod_params ramrod_param;
6742 	int rc;
6743 
6744 	memset(&ramrod_param, 0, sizeof(ramrod_param));
6745 
6746 	/* fill in general parameters */
6747 	ramrod_param.vlan_mac_obj = obj;
6748 	ramrod_param.ramrod_flags = *ramrod_flags;
6749 
6750 	/* fill a user request section if needed */
6751 	if (!bnx2x_test_bit(RAMROD_CONT, ramrod_flags)) {
6752 		rte_memcpy(ramrod_param.user_req.u.mac.mac, mac,
6753 				 ETH_ALEN);
6754 
6755 		bnx2x_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
6756 
6757 /* Set the command: ADD or DEL */
6758 		ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
6759 		    ECORE_VLAN_MAC_DEL;
6760 	}
6761 
6762 	rc = ecore_config_vlan_mac(sc, &ramrod_param);
6763 
6764 	if (rc == ECORE_EXISTS) {
6765 		PMD_DRV_LOG(INFO, sc, "Failed to schedule ADD operations (EEXIST)");
6766 /* do not treat adding same MAC as error */
6767 		rc = 0;
6768 	} else if (rc < 0) {
6769 		PMD_DRV_LOG(ERR, sc,
6770 			    "%s MAC failed (%d)", (set ? "Set" : "Delete"), rc);
6771 	}
6772 
6773 	return rc;
6774 }
6775 
6776 static int bnx2x_set_eth_mac(struct bnx2x_softc *sc, uint8_t set)
6777 {
6778 	unsigned long ramrod_flags = 0;
6779 
6780 	PMD_DRV_LOG(DEBUG, sc, "Adding Ethernet MAC");
6781 
6782 	bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
6783 
6784 	/* Eth MAC is set on RSS leading client (fp[0]) */
6785 	return bnx2x_set_mac_one(sc, sc->link_params.mac_addr,
6786 			       &sc->sp_objs->mac_obj,
6787 			       set, ECORE_ETH_MAC, &ramrod_flags);
6788 }
6789 
6790 static int bnx2x_get_cur_phy_idx(struct bnx2x_softc *sc)
6791 {
6792 	uint32_t sel_phy_idx = 0;
6793 
6794 	if (sc->link_params.num_phys <= 1) {
6795 		return ELINK_INT_PHY;
6796 	}
6797 
6798 	if (sc->link_vars.link_up) {
6799 		sel_phy_idx = ELINK_EXT_PHY1;
6800 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
6801 		if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
6802 		    (sc->link_params.phy[ELINK_EXT_PHY2].supported &
6803 		     ELINK_SUPPORTED_FIBRE))
6804 			sel_phy_idx = ELINK_EXT_PHY2;
6805 	} else {
6806 		switch (elink_phy_selection(&sc->link_params)) {
6807 		case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
6808 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
6809 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
6810 			sel_phy_idx = ELINK_EXT_PHY1;
6811 			break;
6812 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
6813 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
6814 			sel_phy_idx = ELINK_EXT_PHY2;
6815 			break;
6816 		}
6817 	}
6818 
6819 	return sel_phy_idx;
6820 }
6821 
6822 static int bnx2x_get_link_cfg_idx(struct bnx2x_softc *sc)
6823 {
6824 	uint32_t sel_phy_idx = bnx2x_get_cur_phy_idx(sc);
6825 
6826 	/*
6827 	 * The selected activated PHY is always after swapping (in case PHY
6828 	 * swapping is enabled). So when swapping is enabled, we need to reverse
6829 	 * the configuration
6830 	 */
6831 
6832 	if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
6833 		if (sel_phy_idx == ELINK_EXT_PHY1)
6834 			sel_phy_idx = ELINK_EXT_PHY2;
6835 		else if (sel_phy_idx == ELINK_EXT_PHY2)
6836 			sel_phy_idx = ELINK_EXT_PHY1;
6837 	}
6838 
6839 	return ELINK_LINK_CONFIG_IDX(sel_phy_idx);
6840 }
6841 
6842 static void bnx2x_set_requested_fc(struct bnx2x_softc *sc)
6843 {
6844 	/*
6845 	 * Initialize link parameters structure variables
6846 	 * It is recommended to turn off RX FC for jumbo frames
6847 	 * for better performance
6848 	 */
6849 	if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
6850 		sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
6851 	} else {
6852 		sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
6853 	}
6854 }
6855 
6856 static void bnx2x_calc_fc_adv(struct bnx2x_softc *sc)
6857 {
6858 	uint8_t cfg_idx = bnx2x_get_link_cfg_idx(sc);
6859 	switch (sc->link_vars.ieee_fc &
6860 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
6861 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
6862 	default:
6863 		sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
6864 						   ADVERTISED_Pause);
6865 		break;
6866 
6867 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
6868 		sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
6869 						  ADVERTISED_Pause);
6870 		break;
6871 
6872 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
6873 		sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
6874 		break;
6875 	}
6876 }
6877 
6878 static uint16_t bnx2x_get_mf_speed(struct bnx2x_softc *sc)
6879 {
6880 	uint16_t line_speed = sc->link_vars.line_speed;
6881 	if (IS_MF(sc)) {
6882 		uint16_t maxCfg = bnx2x_extract_max_cfg(sc,
6883 						      sc->devinfo.
6884 						      mf_info.mf_config[SC_VN
6885 									(sc)]);
6886 
6887 /* calculate the current MAX line speed limit for the MF devices */
6888 		if (IS_MF_SI(sc)) {
6889 			line_speed = (line_speed * maxCfg) / 100;
6890 		} else {	/* SD mode */
6891 			uint16_t vn_max_rate = maxCfg * 100;
6892 
6893 			if (vn_max_rate < line_speed) {
6894 				line_speed = vn_max_rate;
6895 			}
6896 		}
6897 	}
6898 
6899 	return line_speed;
6900 }
6901 
6902 static void
6903 bnx2x_fill_report_data(struct bnx2x_softc *sc, struct bnx2x_link_report_data *data)
6904 {
6905 	uint16_t line_speed = bnx2x_get_mf_speed(sc);
6906 
6907 	memset(data, 0, sizeof(*data));
6908 
6909 	/* fill the report data with the effective line speed */
6910 	data->line_speed = line_speed;
6911 
6912 	/* Link is down */
6913 	if (!sc->link_vars.link_up || (sc->flags & BNX2X_MF_FUNC_DIS)) {
6914 		bnx2x_set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6915 			    &data->link_report_flags);
6916 	}
6917 
6918 	/* Full DUPLEX */
6919 	if (sc->link_vars.duplex == DUPLEX_FULL) {
6920 		bnx2x_set_bit(BNX2X_LINK_REPORT_FULL_DUPLEX,
6921 			    &data->link_report_flags);
6922 	}
6923 
6924 	/* Rx Flow Control is ON */
6925 	if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
6926 		bnx2x_set_bit(BNX2X_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
6927 	}
6928 
6929 	/* Tx Flow Control is ON */
6930 	if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
6931 		bnx2x_set_bit(BNX2X_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
6932 	}
6933 }
6934 
6935 /* report link status to OS, should be called under phy_lock */
6936 static void bnx2x_link_report_locked(struct bnx2x_softc *sc)
6937 {
6938 	struct bnx2x_link_report_data cur_data;
6939 
6940 	/* reread mf_cfg */
6941 	if (IS_PF(sc)) {
6942 		bnx2x_read_mf_cfg(sc);
6943 	}
6944 
6945 	/* Read the current link report info */
6946 	bnx2x_fill_report_data(sc, &cur_data);
6947 
6948 	/* Don't report link down or exactly the same link status twice */
6949 	if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
6950 	    (bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6951 			  &sc->last_reported_link.link_report_flags) &&
6952 	     bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6953 			  &cur_data.link_report_flags))) {
6954 		return;
6955 	}
6956 
6957 	ELINK_DEBUG_P2(sc, "Change in link status : cur_data = %lx, last_reported_link = %lx",
6958 		       cur_data.link_report_flags,
6959 		       sc->last_reported_link.link_report_flags);
6960 
6961 	sc->link_cnt++;
6962 
6963 	ELINK_DEBUG_P1(sc, "link status change count = %x", sc->link_cnt);
6964 	/* report new link params and remember the state for the next time */
6965 	rte_memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
6966 
6967 	if (bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6968 			 &cur_data.link_report_flags)) {
6969 		ELINK_DEBUG_P0(sc, "NIC Link is Down");
6970 	} else {
6971 		__rte_unused const char *duplex;
6972 		__rte_unused const char *flow;
6973 
6974 		if (bnx2x_test_and_clear_bit(BNX2X_LINK_REPORT_FULL_DUPLEX,
6975 					   &cur_data.link_report_flags)) {
6976 			duplex = "full";
6977 				ELINK_DEBUG_P0(sc, "link set to full duplex");
6978 		} else {
6979 			duplex = "half";
6980 				ELINK_DEBUG_P0(sc, "link set to half duplex");
6981 		}
6982 
6983 /*
6984  * Handle the FC at the end so that only these flags would be
6985  * possibly set. This way we may easily check if there is no FC
6986  * enabled.
6987  */
6988 		if (cur_data.link_report_flags) {
6989 			if (bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
6990 					 &cur_data.link_report_flags) &&
6991 			    bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
6992 					 &cur_data.link_report_flags)) {
6993 				flow = "ON - receive & transmit";
6994 			} else if (bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
6995 						&cur_data.link_report_flags) &&
6996 				   !bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
6997 						 &cur_data.link_report_flags)) {
6998 				flow = "ON - receive";
6999 			} else if (!bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
7000 						 &cur_data.link_report_flags) &&
7001 				   bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
7002 						&cur_data.link_report_flags)) {
7003 				flow = "ON - transmit";
7004 			} else {
7005 				flow = "none";	/* possible? */
7006 			}
7007 		} else {
7008 			flow = "none";
7009 		}
7010 
7011 		PMD_DRV_LOG(INFO, sc,
7012 			    "NIC Link is Up, %d Mbps %s duplex, Flow control: %s",
7013 			    cur_data.line_speed, duplex, flow);
7014 	}
7015 }
7016 
7017 static void
7018 bnx2x_link_report(struct bnx2x_softc *sc)
7019 {
7020 	bnx2x_acquire_phy_lock(sc);
7021 	bnx2x_link_report_locked(sc);
7022 	bnx2x_release_phy_lock(sc);
7023 }
7024 
7025 void bnx2x_link_status_update(struct bnx2x_softc *sc)
7026 {
7027 	if (sc->state != BNX2X_STATE_OPEN) {
7028 		return;
7029 	}
7030 
7031 	if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
7032 		elink_link_status_update(&sc->link_params, &sc->link_vars);
7033 	} else {
7034 		sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
7035 					  ELINK_SUPPORTED_10baseT_Full |
7036 					  ELINK_SUPPORTED_100baseT_Half |
7037 					  ELINK_SUPPORTED_100baseT_Full |
7038 					  ELINK_SUPPORTED_1000baseT_Full |
7039 					  ELINK_SUPPORTED_2500baseX_Full |
7040 					  ELINK_SUPPORTED_10000baseT_Full |
7041 					  ELINK_SUPPORTED_TP |
7042 					  ELINK_SUPPORTED_FIBRE |
7043 					  ELINK_SUPPORTED_Autoneg |
7044 					  ELINK_SUPPORTED_Pause |
7045 					  ELINK_SUPPORTED_Asym_Pause);
7046 		sc->port.advertising[0] = sc->port.supported[0];
7047 
7048 		sc->link_params.sc = sc;
7049 		sc->link_params.port = SC_PORT(sc);
7050 		sc->link_params.req_duplex[0] = DUPLEX_FULL;
7051 		sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE;
7052 		sc->link_params.req_line_speed[0] = SPEED_10000;
7053 		sc->link_params.speed_cap_mask[0] = 0x7f0000;
7054 		sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G;
7055 
7056 		if (CHIP_REV_IS_FPGA(sc)) {
7057 			sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC;
7058 			sc->link_vars.line_speed = ELINK_SPEED_1000;
7059 			sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
7060 						     LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
7061 		} else {
7062 			sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC;
7063 			sc->link_vars.line_speed = ELINK_SPEED_10000;
7064 			sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
7065 						     LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
7066 		}
7067 
7068 		sc->link_vars.link_up = 1;
7069 
7070 		sc->link_vars.duplex = DUPLEX_FULL;
7071 		sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
7072 
7073 		if (IS_PF(sc)) {
7074 			REG_WR(sc,
7075 			       NIG_REG_EGRESS_DRAIN0_MODE +
7076 			       sc->link_params.port * 4, 0);
7077 			bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7078 			bnx2x_link_report(sc);
7079 		}
7080 	}
7081 
7082 	if (IS_PF(sc)) {
7083 		if (sc->link_vars.link_up) {
7084 			bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7085 		} else {
7086 			bnx2x_stats_handle(sc, STATS_EVENT_STOP);
7087 		}
7088 		bnx2x_link_report(sc);
7089 	} else {
7090 		bnx2x_link_report_locked(sc);
7091 		bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7092 	}
7093 }
7094 
7095 static int bnx2x_initial_phy_init(struct bnx2x_softc *sc, int load_mode)
7096 {
7097 	int rc, cfg_idx = bnx2x_get_link_cfg_idx(sc);
7098 	uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
7099 	struct elink_params *lp = &sc->link_params;
7100 
7101 	bnx2x_set_requested_fc(sc);
7102 
7103 	bnx2x_acquire_phy_lock(sc);
7104 
7105 	if (load_mode == LOAD_DIAG) {
7106 		lp->loopback_mode = ELINK_LOOPBACK_XGXS;
7107 /* Prefer doing PHY loopback at 10G speed, if possible */
7108 		if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
7109 			if (lp->speed_cap_mask[cfg_idx] &
7110 			    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
7111 				lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
7112 			} else {
7113 				lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
7114 			}
7115 		}
7116 	}
7117 
7118 	if (load_mode == LOAD_LOOPBACK_EXT) {
7119 		lp->loopback_mode = ELINK_LOOPBACK_EXT;
7120 	}
7121 
7122 	rc = elink_phy_init(&sc->link_params, &sc->link_vars);
7123 
7124 	bnx2x_release_phy_lock(sc);
7125 
7126 	bnx2x_calc_fc_adv(sc);
7127 
7128 	if (sc->link_vars.link_up) {
7129 		bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7130 		bnx2x_link_report(sc);
7131 	}
7132 
7133 	sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
7134 	return rc;
7135 }
7136 
7137 /* update flags in shmem */
7138 static void
7139 bnx2x_update_drv_flags(struct bnx2x_softc *sc, uint32_t flags, uint32_t set)
7140 {
7141 	uint32_t drv_flags;
7142 
7143 	if (SHMEM2_HAS(sc, drv_flags)) {
7144 		bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
7145 		drv_flags = SHMEM2_RD(sc, drv_flags);
7146 
7147 		if (set) {
7148 			drv_flags |= flags;
7149 		} else {
7150 			drv_flags &= ~flags;
7151 		}
7152 
7153 		SHMEM2_WR(sc, drv_flags, drv_flags);
7154 
7155 		bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
7156 	}
7157 }
7158 
7159 /* periodic timer callout routine, only runs when the interface is up */
7160 void bnx2x_periodic_callout(struct bnx2x_softc *sc)
7161 {
7162 	if ((sc->state != BNX2X_STATE_OPEN) ||
7163 	    (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
7164 		PMD_DRV_LOG(DEBUG, sc, "periodic callout exit (state=0x%x)",
7165 			    sc->state);
7166 		return;
7167 	}
7168 	if (!CHIP_REV_IS_SLOW(sc)) {
7169 /*
7170  * This barrier is needed to ensure the ordering between the writing
7171  * to the sc->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
7172  * the reading here.
7173  */
7174 		mb();
7175 		if (sc->port.pmf) {
7176 			bnx2x_acquire_phy_lock(sc);
7177 			elink_period_func(&sc->link_params, &sc->link_vars);
7178 			bnx2x_release_phy_lock(sc);
7179 		}
7180 	}
7181 #ifdef BNX2X_PULSE
7182 	if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
7183 		int mb_idx = SC_FW_MB_IDX(sc);
7184 		uint32_t drv_pulse;
7185 		uint32_t mcp_pulse;
7186 
7187 		++sc->fw_drv_pulse_wr_seq;
7188 		sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
7189 
7190 		drv_pulse = sc->fw_drv_pulse_wr_seq;
7191 		bnx2x_drv_pulse(sc);
7192 
7193 		mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
7194 			     MCP_PULSE_SEQ_MASK);
7195 
7196 /*
7197  * The delta between driver pulse and mcp response should
7198  * be 1 (before mcp response) or 0 (after mcp response).
7199  */
7200 		if ((drv_pulse != mcp_pulse) &&
7201 		    (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
7202 			/* someone lost a heartbeat... */
7203 			PMD_DRV_LOG(ERR, sc,
7204 				    "drv_pulse (0x%x) != mcp_pulse (0x%x)",
7205 				    drv_pulse, mcp_pulse);
7206 		}
7207 	}
7208 #endif
7209 }
7210 
7211 /* start the controller */
7212 static __rte_noinline
7213 int bnx2x_nic_load(struct bnx2x_softc *sc)
7214 {
7215 	uint32_t val;
7216 	uint32_t load_code = 0;
7217 	int i, rc = 0;
7218 
7219 	PMD_INIT_FUNC_TRACE(sc);
7220 
7221 	sc->state = BNX2X_STATE_OPENING_WAITING_LOAD;
7222 
7223 	if (IS_PF(sc)) {
7224 /* must be called before memory allocation and HW init */
7225 		bnx2x_ilt_set_info(sc);
7226 	}
7227 
7228 	bnx2x_set_fp_rx_buf_size(sc);
7229 
7230 	if (IS_PF(sc)) {
7231 		if (bnx2x_alloc_mem(sc) != 0) {
7232 			sc->state = BNX2X_STATE_CLOSED;
7233 			rc = -ENOMEM;
7234 			goto bnx2x_nic_load_error0;
7235 		}
7236 	}
7237 
7238 	/* allocate the host hardware/software hsi structures */
7239 	if (bnx2x_alloc_hsi_mem(sc) != 0) {
7240 		PMD_DRV_LOG(ERR, sc, "bnx2x_alloc_hsi_mem was failed");
7241 		sc->state = BNX2X_STATE_CLOSED;
7242 		rc = -ENOMEM;
7243 		goto bnx2x_nic_load_error0;
7244 	}
7245 
7246 	if (bnx2x_alloc_fw_stats_mem(sc) != 0) {
7247 		sc->state = BNX2X_STATE_CLOSED;
7248 		rc = -ENOMEM;
7249 		goto bnx2x_nic_load_error0;
7250 	}
7251 
7252 	if (IS_VF(sc)) {
7253 		rc = bnx2x_vf_init(sc);
7254 		if (rc) {
7255 			sc->state = BNX2X_STATE_ERROR;
7256 			goto bnx2x_nic_load_error0;
7257 		}
7258 	}
7259 
7260 	if (IS_PF(sc)) {
7261 /* set pf load just before approaching the MCP */
7262 		bnx2x_set_pf_load(sc);
7263 
7264 /* if MCP exists send load request and analyze response */
7265 		if (!BNX2X_NOMCP(sc)) {
7266 			/* attempt to load pf */
7267 			if (bnx2x_nic_load_request(sc, &load_code) != 0) {
7268 				sc->state = BNX2X_STATE_CLOSED;
7269 				rc = -ENXIO;
7270 				goto bnx2x_nic_load_error1;
7271 			}
7272 
7273 			/* what did the MCP say? */
7274 			if (bnx2x_nic_load_analyze_req(sc, load_code) != 0) {
7275 				bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7276 				sc->state = BNX2X_STATE_CLOSED;
7277 				rc = -ENXIO;
7278 				goto bnx2x_nic_load_error2;
7279 			}
7280 		} else {
7281 			PMD_DRV_LOG(INFO, sc, "Device has no MCP!");
7282 			load_code = bnx2x_nic_load_no_mcp(sc);
7283 		}
7284 
7285 /* mark PMF if applicable */
7286 		bnx2x_nic_load_pmf(sc, load_code);
7287 
7288 /* Init Function state controlling object */
7289 		bnx2x_init_func_obj(sc);
7290 
7291 /* Initialize HW */
7292 		if (bnx2x_init_hw(sc, load_code) != 0) {
7293 			PMD_DRV_LOG(NOTICE, sc, "HW init failed");
7294 			bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7295 			sc->state = BNX2X_STATE_CLOSED;
7296 			rc = -ENXIO;
7297 			goto bnx2x_nic_load_error2;
7298 		}
7299 	}
7300 
7301 	bnx2x_nic_init(sc, load_code);
7302 
7303 	/* Init per-function objects */
7304 	if (IS_PF(sc)) {
7305 		bnx2x_init_objs(sc);
7306 
7307 /* set AFEX default VLAN tag to an invalid value */
7308 		sc->devinfo.mf_info.afex_def_vlan_tag = -1;
7309 
7310 		sc->state = BNX2X_STATE_OPENING_WAITING_PORT;
7311 		rc = bnx2x_func_start(sc);
7312 		if (rc) {
7313 			PMD_DRV_LOG(NOTICE, sc, "Function start failed!");
7314 			bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7315 			sc->state = BNX2X_STATE_ERROR;
7316 			goto bnx2x_nic_load_error3;
7317 		}
7318 
7319 /* send LOAD_DONE command to MCP */
7320 		if (!BNX2X_NOMCP(sc)) {
7321 			load_code =
7322 			    bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7323 			if (!load_code) {
7324 				PMD_DRV_LOG(NOTICE, sc,
7325 					    "MCP response failure, aborting");
7326 				sc->state = BNX2X_STATE_ERROR;
7327 				rc = -ENXIO;
7328 				goto bnx2x_nic_load_error3;
7329 			}
7330 		}
7331 	}
7332 
7333 	rc = bnx2x_setup_leading(sc);
7334 	if (rc) {
7335 		PMD_DRV_LOG(NOTICE, sc, "Setup leading failed!");
7336 		sc->state = BNX2X_STATE_ERROR;
7337 		goto bnx2x_nic_load_error3;
7338 	}
7339 
7340 	FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
7341 		if (IS_PF(sc))
7342 			rc = bnx2x_setup_queue(sc, &sc->fp[i], FALSE);
7343 		else		/* IS_VF(sc) */
7344 			rc = bnx2x_vf_setup_queue(sc, &sc->fp[i], FALSE);
7345 
7346 		if (rc) {
7347 			PMD_DRV_LOG(NOTICE, sc, "Queue(%d) setup failed", i);
7348 			sc->state = BNX2X_STATE_ERROR;
7349 			goto bnx2x_nic_load_error3;
7350 		}
7351 	}
7352 
7353 	rc = bnx2x_init_rss_pf(sc);
7354 	if (rc) {
7355 		PMD_DRV_LOG(NOTICE, sc, "PF RSS init failed");
7356 		sc->state = BNX2X_STATE_ERROR;
7357 		goto bnx2x_nic_load_error3;
7358 	}
7359 
7360 	/* now when Clients are configured we are ready to work */
7361 	sc->state = BNX2X_STATE_OPEN;
7362 
7363 	/* Configure a ucast MAC */
7364 	if (IS_PF(sc)) {
7365 		rc = bnx2x_set_eth_mac(sc, TRUE);
7366 	} else {		/* IS_VF(sc) */
7367 		rc = bnx2x_vf_set_mac(sc, TRUE);
7368 	}
7369 
7370 	if (rc) {
7371 		PMD_DRV_LOG(NOTICE, sc, "Setting Ethernet MAC failed");
7372 		sc->state = BNX2X_STATE_ERROR;
7373 		goto bnx2x_nic_load_error3;
7374 	}
7375 
7376 	if (sc->port.pmf) {
7377 		rc = bnx2x_initial_phy_init(sc, LOAD_OPEN);
7378 		if (rc) {
7379 			sc->state = BNX2X_STATE_ERROR;
7380 			goto bnx2x_nic_load_error3;
7381 		}
7382 	}
7383 
7384 	sc->link_params.feature_config_flags &=
7385 	    ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
7386 
7387 	/* start the Tx */
7388 	switch (LOAD_OPEN) {
7389 	case LOAD_NORMAL:
7390 	case LOAD_OPEN:
7391 		break;
7392 
7393 	case LOAD_DIAG:
7394 	case LOAD_LOOPBACK_EXT:
7395 		sc->state = BNX2X_STATE_DIAG;
7396 		break;
7397 
7398 	default:
7399 		break;
7400 	}
7401 
7402 	if (sc->port.pmf) {
7403 		bnx2x_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
7404 	} else {
7405 		bnx2x_link_status_update(sc);
7406 	}
7407 
7408 	if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
7409 /* mark driver is loaded in shmem2 */
7410 		val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
7411 		SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
7412 			  (val |
7413 			   DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
7414 			   DRV_FLAGS_CAPABILITIES_LOADED_L2));
7415 	}
7416 
7417 	/* start fast path */
7418 	/* Initialize Rx filter */
7419 	bnx2x_set_rx_mode(sc);
7420 
7421 	/* wait for all pending SP commands to complete */
7422 	if (IS_PF(sc) && !bnx2x_wait_sp_comp(sc, ~0x0UL)) {
7423 		PMD_DRV_LOG(NOTICE, sc, "Timeout waiting for all SPs to complete!");
7424 		bnx2x_periodic_stop(sc);
7425 		bnx2x_nic_unload(sc, UNLOAD_CLOSE, FALSE);
7426 		return -ENXIO;
7427 	}
7428 
7429 	PMD_DRV_LOG(DEBUG, sc, "NIC successfully loaded");
7430 
7431 	return 0;
7432 
7433 bnx2x_nic_load_error3:
7434 
7435 	if (IS_PF(sc)) {
7436 		bnx2x_int_disable_sync(sc, 1);
7437 
7438 /* clean out queued objects */
7439 		bnx2x_squeeze_objects(sc);
7440 	}
7441 
7442 bnx2x_nic_load_error2:
7443 
7444 	if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
7445 		bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
7446 		bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
7447 	}
7448 
7449 	sc->port.pmf = 0;
7450 
7451 bnx2x_nic_load_error1:
7452 
7453 	/* clear pf_load status, as it was already set */
7454 	if (IS_PF(sc)) {
7455 		bnx2x_clear_pf_load(sc);
7456 	}
7457 
7458 bnx2x_nic_load_error0:
7459 
7460 	bnx2x_free_fw_stats_mem(sc);
7461 	bnx2x_free_hsi_mem(sc);
7462 	bnx2x_free_mem(sc);
7463 
7464 	return rc;
7465 }
7466 
7467 /*
7468 * Handles controller initialization.
7469 */
7470 int bnx2x_init(struct bnx2x_softc *sc)
7471 {
7472 	int other_engine = SC_PATH(sc) ? 0 : 1;
7473 	uint8_t other_load_status, load_status;
7474 	uint8_t global = FALSE;
7475 	int rc;
7476 
7477 	/* Check if the driver is still running and bail out if it is. */
7478 	if (sc->state != BNX2X_STATE_CLOSED) {
7479 		PMD_DRV_LOG(DEBUG, sc, "Init called while driver is running!");
7480 		rc = 0;
7481 		goto bnx2x_init_done;
7482 	}
7483 
7484 	bnx2x_set_power_state(sc, PCI_PM_D0);
7485 
7486 	/*
7487 	 * If parity occurred during the unload, then attentions and/or
7488 	 * RECOVERY_IN_PROGRESS may still be set. If so we want the first function
7489 	 * loaded on the current engine to complete the recovery. Parity recovery
7490 	 * is only relevant for PF driver.
7491 	 */
7492 	if (IS_PF(sc)) {
7493 		other_load_status = bnx2x_get_load_status(sc, other_engine);
7494 		load_status = bnx2x_get_load_status(sc, SC_PATH(sc));
7495 
7496 		if (!bnx2x_reset_is_done(sc, SC_PATH(sc)) ||
7497 		    bnx2x_chk_parity_attn(sc, &global, TRUE)) {
7498 			do {
7499 				/*
7500 				 * If there are attentions and they are in global blocks, set
7501 				 * the GLOBAL_RESET bit regardless whether it will be this
7502 				 * function that will complete the recovery or not.
7503 				 */
7504 				if (global) {
7505 					bnx2x_set_reset_global(sc);
7506 				}
7507 
7508 				/*
7509 				 * Only the first function on the current engine should try
7510 				 * to recover in open. In case of attentions in global blocks
7511 				 * only the first in the chip should try to recover.
7512 				 */
7513 				if ((!load_status
7514 				     && (!global ||!other_load_status))
7515 				    && bnx2x_trylock_leader_lock(sc)
7516 				    && !bnx2x_leader_reset(sc)) {
7517 					PMD_DRV_LOG(INFO, sc,
7518 						    "Recovered during init");
7519 					break;
7520 				}
7521 
7522 				/* recovery has failed... */
7523 				bnx2x_set_power_state(sc, PCI_PM_D3hot);
7524 
7525 				sc->recovery_state = BNX2X_RECOVERY_FAILED;
7526 
7527 				PMD_DRV_LOG(NOTICE, sc,
7528 					    "Recovery flow hasn't properly "
7529 					    "completed yet, try again later. "
7530 					    "If you still see this message after a "
7531 					    "few retries then power cycle is required.");
7532 
7533 				rc = -ENXIO;
7534 				goto bnx2x_init_done;
7535 			} while (0);
7536 		}
7537 	}
7538 
7539 	sc->recovery_state = BNX2X_RECOVERY_DONE;
7540 
7541 	rc = bnx2x_nic_load(sc);
7542 
7543 bnx2x_init_done:
7544 
7545 	if (rc) {
7546 		PMD_DRV_LOG(NOTICE, sc, "Initialization failed, "
7547 			    "stack notified driver is NOT running!");
7548 	}
7549 
7550 	return rc;
7551 }
7552 
7553 static void bnx2x_get_function_num(struct bnx2x_softc *sc)
7554 {
7555 	uint32_t val = 0;
7556 
7557 	/*
7558 	 * Read the ME register to get the function number. The ME register
7559 	 * holds the relative-function number and absolute-function number. The
7560 	 * absolute-function number appears only in E2 and above. Before that
7561 	 * these bits always contained zero, therefore we cannot blindly use them.
7562 	 */
7563 
7564 	val = REG_RD(sc, BAR_ME_REGISTER);
7565 
7566 	sc->pfunc_rel =
7567 	    (uint8_t) ((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
7568 	sc->path_id =
7569 	    (uint8_t) ((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) &
7570 	    1;
7571 
7572 	if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
7573 		sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
7574 	} else {
7575 		sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
7576 	}
7577 
7578 	PMD_DRV_LOG(DEBUG, sc,
7579 		    "Relative function %d, Absolute function %d, Path %d",
7580 		    sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
7581 }
7582 
7583 static uint32_t bnx2x_get_shmem_mf_cfg_base(struct bnx2x_softc *sc)
7584 {
7585 	uint32_t shmem2_size;
7586 	uint32_t offset;
7587 	uint32_t mf_cfg_offset_value;
7588 
7589 	/* Non 57712 */
7590 	offset = (SHMEM_ADDR(sc, func_mb) +
7591 		  (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
7592 
7593 	/* 57712 plus */
7594 	if (sc->devinfo.shmem2_base != 0) {
7595 		shmem2_size = SHMEM2_RD(sc, size);
7596 		if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
7597 			mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
7598 			if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
7599 				offset = mf_cfg_offset_value;
7600 			}
7601 		}
7602 	}
7603 
7604 	return offset;
7605 }
7606 
7607 static uint32_t bnx2x_pcie_capability_read(struct bnx2x_softc *sc, int reg)
7608 {
7609 	uint32_t ret;
7610 	struct bnx2x_pci_cap *caps;
7611 
7612 	/* ensure PCIe capability is enabled */
7613 	caps = pci_find_cap(sc, PCIY_EXPRESS, BNX2X_PCI_CAP);
7614 	if (NULL != caps) {
7615 		PMD_DRV_LOG(DEBUG, sc, "Found PCIe capability: "
7616 			    "id=0x%04X type=0x%04X addr=0x%08X",
7617 			    caps->id, caps->type, caps->addr);
7618 		pci_read(sc, (caps->addr + reg), &ret, 2);
7619 		return ret;
7620 	}
7621 
7622 	PMD_DRV_LOG(WARNING, sc, "PCIe capability NOT FOUND!!!");
7623 
7624 	return 0;
7625 }
7626 
7627 static uint8_t bnx2x_is_pcie_pending(struct bnx2x_softc *sc)
7628 {
7629 	return bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA) &
7630 		PCIM_EXP_STA_TRANSACTION_PND;
7631 }
7632 
7633 /*
7634 * Walk the PCI capabiites list for the device to find what features are
7635 * supported. These capabilites may be enabled/disabled by firmware so it's
7636 * best to walk the list rather than make assumptions.
7637 */
7638 static void bnx2x_probe_pci_caps(struct bnx2x_softc *sc)
7639 {
7640 	PMD_INIT_FUNC_TRACE(sc);
7641 
7642 	struct bnx2x_pci_cap *caps;
7643 	uint16_t link_status;
7644 	int reg = 0;
7645 
7646 	/* check if PCI Power Management is enabled */
7647 	caps = pci_find_cap(sc, PCIY_PMG, BNX2X_PCI_CAP);
7648 	if (NULL != caps) {
7649 		PMD_DRV_LOG(DEBUG, sc, "Found PM capability: "
7650 			    "id=0x%04X type=0x%04X addr=0x%08X",
7651 			    caps->id, caps->type, caps->addr);
7652 
7653 		sc->devinfo.pcie_cap_flags |= BNX2X_PM_CAPABLE_FLAG;
7654 		sc->devinfo.pcie_pm_cap_reg = caps->addr;
7655 	}
7656 
7657 	link_status = bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA);
7658 
7659 	sc->devinfo.pcie_link_speed = (link_status & PCIM_LINK_STA_SPEED);
7660 	sc->devinfo.pcie_link_width =
7661 	    ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
7662 
7663 	PMD_DRV_LOG(DEBUG, sc, "PCIe link speed=%d width=%d",
7664 		    sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
7665 
7666 	sc->devinfo.pcie_cap_flags |= BNX2X_PCIE_CAPABLE_FLAG;
7667 
7668 	/* check if MSI capability is enabled */
7669 	caps = pci_find_cap(sc, PCIY_MSI, BNX2X_PCI_CAP);
7670 	if (NULL != caps) {
7671 		PMD_DRV_LOG(DEBUG, sc, "Found MSI capability at 0x%04x", reg);
7672 
7673 		sc->devinfo.pcie_cap_flags |= BNX2X_MSI_CAPABLE_FLAG;
7674 		sc->devinfo.pcie_msi_cap_reg = caps->addr;
7675 	}
7676 
7677 	/* check if MSI-X capability is enabled */
7678 	caps = pci_find_cap(sc, PCIY_MSIX, BNX2X_PCI_CAP);
7679 	if (NULL != caps) {
7680 		PMD_DRV_LOG(DEBUG, sc, "Found MSI-X capability at 0x%04x", reg);
7681 
7682 		sc->devinfo.pcie_cap_flags |= BNX2X_MSIX_CAPABLE_FLAG;
7683 		sc->devinfo.pcie_msix_cap_reg = caps->addr;
7684 	}
7685 }
7686 
7687 static int bnx2x_get_shmem_mf_cfg_info_sd(struct bnx2x_softc *sc)
7688 {
7689 	struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7690 	uint32_t val;
7691 
7692 	/* get the outer vlan if we're in switch-dependent mode */
7693 
7694 	val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7695 	mf_info->ext_id = (uint16_t) val;
7696 
7697 	mf_info->multi_vnics_mode = 1;
7698 
7699 	if (!VALID_OVLAN(mf_info->ext_id)) {
7700 		PMD_DRV_LOG(NOTICE, sc, "Invalid VLAN (%d)", mf_info->ext_id);
7701 		return 1;
7702 	}
7703 
7704 	/* get the capabilities */
7705 	if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
7706 	    FUNC_MF_CFG_PROTOCOL_ISCSI) {
7707 		mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
7708 	} else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK)
7709 		   == FUNC_MF_CFG_PROTOCOL_FCOE) {
7710 		mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
7711 	} else {
7712 		mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
7713 	}
7714 
7715 	mf_info->vnics_per_port =
7716 	    (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7717 
7718 	return 0;
7719 }
7720 
7721 static uint32_t bnx2x_get_shmem_ext_proto_support_flags(struct bnx2x_softc *sc)
7722 {
7723 	uint32_t retval = 0;
7724 	uint32_t val;
7725 
7726 	val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
7727 
7728 	if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
7729 		if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
7730 			retval |= MF_PROTO_SUPPORT_ETHERNET;
7731 		}
7732 		if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
7733 			retval |= MF_PROTO_SUPPORT_ISCSI;
7734 		}
7735 		if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
7736 			retval |= MF_PROTO_SUPPORT_FCOE;
7737 		}
7738 	}
7739 
7740 	return retval;
7741 }
7742 
7743 static int bnx2x_get_shmem_mf_cfg_info_si(struct bnx2x_softc *sc)
7744 {
7745 	struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7746 	uint32_t val;
7747 
7748 	/*
7749 	 * There is no outer vlan if we're in switch-independent mode.
7750 	 * If the mac is valid then assume multi-function.
7751 	 */
7752 
7753 	val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
7754 
7755 	mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
7756 
7757 	mf_info->mf_protos_supported =
7758 	    bnx2x_get_shmem_ext_proto_support_flags(sc);
7759 
7760 	mf_info->vnics_per_port =
7761 	    (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7762 
7763 	return 0;
7764 }
7765 
7766 static int bnx2x_get_shmem_mf_cfg_info_niv(struct bnx2x_softc *sc)
7767 {
7768 	struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7769 	uint32_t e1hov_tag;
7770 	uint32_t func_config;
7771 	uint32_t niv_config;
7772 
7773 	mf_info->multi_vnics_mode = 1;
7774 
7775 	e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7776 	func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7777 	niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
7778 
7779 	mf_info->ext_id =
7780 	    (uint16_t) ((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
7781 			FUNC_MF_CFG_E1HOV_TAG_SHIFT);
7782 
7783 	mf_info->default_vlan =
7784 	    (uint16_t) ((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
7785 			FUNC_MF_CFG_AFEX_VLAN_SHIFT);
7786 
7787 	mf_info->niv_allowed_priorities =
7788 	    (uint8_t) ((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
7789 		       FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
7790 
7791 	mf_info->niv_default_cos =
7792 	    (uint8_t) ((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
7793 		       FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
7794 
7795 	mf_info->afex_vlan_mode =
7796 	    ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
7797 	     FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
7798 
7799 	mf_info->niv_mba_enabled =
7800 	    ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
7801 	     FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
7802 
7803 	mf_info->mf_protos_supported =
7804 	    bnx2x_get_shmem_ext_proto_support_flags(sc);
7805 
7806 	mf_info->vnics_per_port =
7807 	    (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7808 
7809 	return 0;
7810 }
7811 
7812 static int bnx2x_check_valid_mf_cfg(struct bnx2x_softc *sc)
7813 {
7814 	struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7815 	uint32_t mf_cfg1;
7816 	uint32_t mf_cfg2;
7817 	uint32_t ovlan1;
7818 	uint32_t ovlan2;
7819 	uint8_t i, j;
7820 
7821 	/* various MF mode sanity checks... */
7822 
7823 	if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
7824 		PMD_DRV_LOG(NOTICE, sc,
7825 			    "Enumerated function %d is marked as hidden",
7826 			    SC_PORT(sc));
7827 		return 1;
7828 	}
7829 
7830 	if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
7831 		PMD_DRV_LOG(NOTICE, sc, "vnics_per_port=%d multi_vnics_mode=%d",
7832 			    mf_info->vnics_per_port, mf_info->multi_vnics_mode);
7833 		return 1;
7834 	}
7835 
7836 	if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
7837 /* vnic id > 0 must have valid ovlan in switch-dependent mode */
7838 		if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
7839 			PMD_DRV_LOG(NOTICE, sc, "mf_mode=SD vnic_id=%d ovlan=%d",
7840 				    SC_VN(sc), OVLAN(sc));
7841 			return 1;
7842 		}
7843 
7844 		if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
7845 			PMD_DRV_LOG(NOTICE, sc,
7846 				    "mf_mode=SD multi_vnics_mode=%d ovlan=%d",
7847 				    mf_info->multi_vnics_mode, OVLAN(sc));
7848 			return 1;
7849 		}
7850 
7851 /*
7852  * Verify all functions are either MF or SF mode. If MF, make sure
7853  * sure that all non-hidden functions have a valid ovlan. If SF,
7854  * make sure that all non-hidden functions have an invalid ovlan.
7855  */
7856 		FOREACH_ABS_FUNC_IN_PORT(sc, i) {
7857 			mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
7858 			ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
7859 			if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
7860 			    (((mf_info->multi_vnics_mode)
7861 			      && !VALID_OVLAN(ovlan1))
7862 			     || ((!mf_info->multi_vnics_mode)
7863 				 && VALID_OVLAN(ovlan1)))) {
7864 				PMD_DRV_LOG(NOTICE, sc,
7865 					    "mf_mode=SD function %d MF config "
7866 					    "mismatch, multi_vnics_mode=%d ovlan=%d",
7867 					    i, mf_info->multi_vnics_mode,
7868 					    ovlan1);
7869 				return 1;
7870 			}
7871 		}
7872 
7873 /* Verify all funcs on the same port each have a different ovlan. */
7874 		FOREACH_ABS_FUNC_IN_PORT(sc, i) {
7875 			mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
7876 			ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
7877 			/* iterate from the next function on the port to the max func */
7878 			for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
7879 				mf_cfg2 =
7880 				    MFCFG_RD(sc, func_mf_config[j].config);
7881 				ovlan2 =
7882 				    MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
7883 				if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE)
7884 				    && VALID_OVLAN(ovlan1)
7885 				    && !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE)
7886 				    && VALID_OVLAN(ovlan2)
7887 				    && (ovlan1 == ovlan2)) {
7888 					PMD_DRV_LOG(NOTICE, sc,
7889 						    "mf_mode=SD functions %d and %d "
7890 						    "have the same ovlan (%d)",
7891 						    i, j, ovlan1);
7892 					return 1;
7893 				}
7894 			}
7895 		}
7896 	}
7897 	/* MULTI_FUNCTION_SD */
7898 	return 0;
7899 }
7900 
7901 static int bnx2x_get_mf_cfg_info(struct bnx2x_softc *sc)
7902 {
7903 	struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7904 	uint32_t val, mac_upper;
7905 	uint8_t i, vnic;
7906 
7907 	/* initialize mf_info defaults */
7908 	mf_info->vnics_per_port = 1;
7909 	mf_info->multi_vnics_mode = FALSE;
7910 	mf_info->path_has_ovlan = FALSE;
7911 	mf_info->mf_mode = SINGLE_FUNCTION;
7912 
7913 	if (!CHIP_IS_MF_CAP(sc)) {
7914 		return 0;
7915 	}
7916 
7917 	if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
7918 		PMD_DRV_LOG(NOTICE, sc, "Invalid mf_cfg_base!");
7919 		return 1;
7920 	}
7921 
7922 	/* get the MF mode (switch dependent / independent / single-function) */
7923 
7924 	val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
7925 
7926 	switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) {
7927 	case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
7928 
7929 		mac_upper =
7930 		    MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
7931 
7932 		/* check for legal upper mac bytes */
7933 		if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
7934 			mf_info->mf_mode = MULTI_FUNCTION_SI;
7935 		} else {
7936 			PMD_DRV_LOG(NOTICE, sc,
7937 				    "Invalid config for Switch Independent mode");
7938 		}
7939 
7940 		break;
7941 
7942 	case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
7943 	case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
7944 
7945 		/* get outer vlan configuration */
7946 		val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7947 
7948 		if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
7949 		    FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
7950 			mf_info->mf_mode = MULTI_FUNCTION_SD;
7951 		} else {
7952 			PMD_DRV_LOG(NOTICE, sc,
7953 				    "Invalid config for Switch Dependent mode");
7954 		}
7955 
7956 		break;
7957 
7958 	case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
7959 
7960 		/* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
7961 		return 0;
7962 
7963 	case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
7964 
7965 		/*
7966 		 * Mark MF mode as NIV if MCP version includes NPAR-SD support
7967 		 * and the MAC address is valid.
7968 		 */
7969 		mac_upper =
7970 		    MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
7971 
7972 		if ((SHMEM2_HAS(sc, afex_driver_support)) &&
7973 		    (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
7974 			mf_info->mf_mode = MULTI_FUNCTION_AFEX;
7975 		} else {
7976 			PMD_DRV_LOG(NOTICE, sc, "Invalid config for AFEX mode");
7977 		}
7978 
7979 		break;
7980 
7981 	default:
7982 
7983 		PMD_DRV_LOG(NOTICE, sc, "Unknown MF mode (0x%08x)",
7984 			    (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
7985 
7986 		return 1;
7987 	}
7988 
7989 	/* set path mf_mode (which could be different than function mf_mode) */
7990 	if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
7991 		mf_info->path_has_ovlan = TRUE;
7992 	} else if (mf_info->mf_mode == SINGLE_FUNCTION) {
7993 /*
7994  * Decide on path multi vnics mode. If we're not in MF mode and in
7995  * 4-port mode, this is good enough to check vnic-0 of the other port
7996  * on the same path
7997  */
7998 		if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
7999 			uint8_t other_port = !(PORT_ID(sc) & 1);
8000 			uint8_t abs_func_other_port =
8001 			    (SC_PATH(sc) + (2 * other_port));
8002 
8003 			val =
8004 			    MFCFG_RD(sc,
8005 				     func_mf_config
8006 				     [abs_func_other_port].e1hov_tag);
8007 
8008 			mf_info->path_has_ovlan = VALID_OVLAN((uint16_t) val);
8009 		}
8010 	}
8011 
8012 	if (mf_info->mf_mode == SINGLE_FUNCTION) {
8013 /* invalid MF config */
8014 		if (SC_VN(sc) >= 1) {
8015 			PMD_DRV_LOG(NOTICE, sc, "VNIC ID >= 1 in SF mode");
8016 			return 1;
8017 		}
8018 
8019 		return 0;
8020 	}
8021 
8022 	/* get the MF configuration */
8023 	mf_info->mf_config[SC_VN(sc)] =
8024 	    MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
8025 
8026 	switch (mf_info->mf_mode) {
8027 	case MULTI_FUNCTION_SD:
8028 
8029 		bnx2x_get_shmem_mf_cfg_info_sd(sc);
8030 		break;
8031 
8032 	case MULTI_FUNCTION_SI:
8033 
8034 		bnx2x_get_shmem_mf_cfg_info_si(sc);
8035 		break;
8036 
8037 	case MULTI_FUNCTION_AFEX:
8038 
8039 		bnx2x_get_shmem_mf_cfg_info_niv(sc);
8040 		break;
8041 
8042 	default:
8043 
8044 		PMD_DRV_LOG(NOTICE, sc, "Get MF config failed (mf_mode=0x%08x)",
8045 			    mf_info->mf_mode);
8046 		return 1;
8047 	}
8048 
8049 	/* get the congestion management parameters */
8050 
8051 	vnic = 0;
8052 	FOREACH_ABS_FUNC_IN_PORT(sc, i) {
8053 /* get min/max bw */
8054 		val = MFCFG_RD(sc, func_mf_config[i].config);
8055 		mf_info->min_bw[vnic] =
8056 		    ((val & FUNC_MF_CFG_MIN_BW_MASK) >>
8057 		     FUNC_MF_CFG_MIN_BW_SHIFT);
8058 		mf_info->max_bw[vnic] =
8059 		    ((val & FUNC_MF_CFG_MAX_BW_MASK) >>
8060 		     FUNC_MF_CFG_MAX_BW_SHIFT);
8061 		vnic++;
8062 	}
8063 
8064 	return bnx2x_check_valid_mf_cfg(sc);
8065 }
8066 
8067 static int bnx2x_get_shmem_info(struct bnx2x_softc *sc)
8068 {
8069 	int port;
8070 	uint32_t mac_hi, mac_lo, val;
8071 
8072 	PMD_INIT_FUNC_TRACE(sc);
8073 
8074 	port = SC_PORT(sc);
8075 	mac_hi = mac_lo = 0;
8076 
8077 	sc->link_params.sc = sc;
8078 	sc->link_params.port = port;
8079 
8080 	/* get the hardware config info */
8081 	sc->devinfo.hw_config = SHMEM_RD(sc, dev_info.shared_hw_config.config);
8082 	sc->devinfo.hw_config2 =
8083 	    SHMEM_RD(sc, dev_info.shared_hw_config.config2);
8084 
8085 	sc->link_params.hw_led_mode =
8086 	    ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
8087 	     SHARED_HW_CFG_LED_MODE_SHIFT);
8088 
8089 	/* get the port feature config */
8090 	sc->port.config =
8091 	    SHMEM_RD(sc, dev_info.port_feature_config[port].config);
8092 
8093 	/* get the link params */
8094 	sc->link_params.speed_cap_mask[ELINK_INT_PHY] =
8095 	    SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask)
8096 	    & PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
8097 	sc->link_params.speed_cap_mask[ELINK_EXT_PHY1] =
8098 	    SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2)
8099 	    & PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
8100 
8101 	/* get the lane config */
8102 	sc->link_params.lane_config =
8103 	    SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
8104 
8105 	/* get the link config */
8106 	val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
8107 	sc->port.link_config[ELINK_INT_PHY] = val;
8108 	sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
8109 	sc->port.link_config[ELINK_EXT_PHY1] =
8110 	    SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
8111 
8112 	/* get the override preemphasis flag and enable it or turn it off */
8113 	val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
8114 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
8115 		sc->link_params.feature_config_flags |=
8116 		    ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8117 	} else {
8118 		sc->link_params.feature_config_flags &=
8119 		    ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8120 	}
8121 
8122 	val = sc->devinfo.bc_ver >> 8;
8123 	if (val < BNX2X_BC_VER) {
8124 		/* for now only warn later we might need to enforce this */
8125 		PMD_DRV_LOG(NOTICE, sc, "This driver needs bc_ver %X but found %X, please upgrade BC\n",
8126 			    BNX2X_BC_VER, val);
8127 	}
8128 	sc->link_params.feature_config_flags |=
8129 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
8130 				ELINK_FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY :
8131 				0;
8132 
8133 	sc->link_params.feature_config_flags |=
8134 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
8135 		ELINK_FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
8136 	sc->link_params.feature_config_flags |=
8137 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
8138 		ELINK_FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
8139 	sc->link_params.feature_config_flags |=
8140 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
8141 		ELINK_FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
8142 
8143 	/* get the initial value of the link params */
8144 	sc->link_params.multi_phy_config =
8145 	    SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
8146 
8147 	/* get external phy info */
8148 	sc->port.ext_phy_config =
8149 	    SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
8150 
8151 	/* get the multifunction configuration */
8152 	bnx2x_get_mf_cfg_info(sc);
8153 
8154 	/* get the mac address */
8155 	if (IS_MF(sc)) {
8156 		mac_hi =
8157 		    MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
8158 		mac_lo =
8159 		    MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
8160 	} else {
8161 		mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
8162 		mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
8163 	}
8164 
8165 	if ((mac_lo == 0) && (mac_hi == 0)) {
8166 		*sc->mac_addr_str = 0;
8167 		PMD_DRV_LOG(NOTICE, sc, "No Ethernet address programmed!");
8168 	} else {
8169 		sc->link_params.mac_addr[0] = (uint8_t) (mac_hi >> 8);
8170 		sc->link_params.mac_addr[1] = (uint8_t) (mac_hi);
8171 		sc->link_params.mac_addr[2] = (uint8_t) (mac_lo >> 24);
8172 		sc->link_params.mac_addr[3] = (uint8_t) (mac_lo >> 16);
8173 		sc->link_params.mac_addr[4] = (uint8_t) (mac_lo >> 8);
8174 		sc->link_params.mac_addr[5] = (uint8_t) (mac_lo);
8175 		snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
8176 			 "%02x:%02x:%02x:%02x:%02x:%02x",
8177 			 sc->link_params.mac_addr[0],
8178 			 sc->link_params.mac_addr[1],
8179 			 sc->link_params.mac_addr[2],
8180 			 sc->link_params.mac_addr[3],
8181 			 sc->link_params.mac_addr[4],
8182 			 sc->link_params.mac_addr[5]);
8183 		PMD_DRV_LOG(DEBUG, sc,
8184 			    "Ethernet address: %s", sc->mac_addr_str);
8185 	}
8186 
8187 	return 0;
8188 }
8189 
8190 static void bnx2x_media_detect(struct bnx2x_softc *sc)
8191 {
8192 	uint32_t phy_idx = bnx2x_get_cur_phy_idx(sc);
8193 	switch (sc->link_params.phy[phy_idx].media_type) {
8194 	case ELINK_ETH_PHY_SFPP_10G_FIBER:
8195 	case ELINK_ETH_PHY_SFP_1G_FIBER:
8196 	case ELINK_ETH_PHY_XFP_FIBER:
8197 	case ELINK_ETH_PHY_KR:
8198 	case ELINK_ETH_PHY_CX4:
8199 		PMD_DRV_LOG(INFO, sc, "Found 10GBase-CX4 media.");
8200 		sc->media = IFM_10G_CX4;
8201 		break;
8202 	case ELINK_ETH_PHY_DA_TWINAX:
8203 		PMD_DRV_LOG(INFO, sc, "Found 10Gb Twinax media.");
8204 		sc->media = IFM_10G_TWINAX;
8205 		break;
8206 	case ELINK_ETH_PHY_BASE_T:
8207 		PMD_DRV_LOG(INFO, sc, "Found 10GBase-T media.");
8208 		sc->media = IFM_10G_T;
8209 		break;
8210 	case ELINK_ETH_PHY_NOT_PRESENT:
8211 		PMD_DRV_LOG(INFO, sc, "Media not present.");
8212 		sc->media = 0;
8213 		break;
8214 	case ELINK_ETH_PHY_UNSPECIFIED:
8215 	default:
8216 		PMD_DRV_LOG(INFO, sc, "Unknown media!");
8217 		sc->media = 0;
8218 		break;
8219 	}
8220 }
8221 
8222 #define GET_FIELD(value, fname)                     \
8223 (((value) & (fname##_MASK)) >> (fname##_SHIFT))
8224 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
8225 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
8226 
8227 static int bnx2x_get_igu_cam_info(struct bnx2x_softc *sc)
8228 {
8229 	int pfid = SC_FUNC(sc);
8230 	int igu_sb_id;
8231 	uint32_t val;
8232 	uint8_t fid, igu_sb_cnt = 0;
8233 
8234 	sc->igu_base_sb = 0xff;
8235 
8236 	if (CHIP_INT_MODE_IS_BC(sc)) {
8237 		int vn = SC_VN(sc);
8238 		igu_sb_cnt = sc->igu_sb_cnt;
8239 		sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
8240 				   FP_SB_MAX_E1x);
8241 		sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
8242 				  (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
8243 		return 0;
8244 	}
8245 
8246 	/* IGU in normal mode - read CAM */
8247 	for (igu_sb_id = 0;
8248 	     igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; igu_sb_id++) {
8249 		val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
8250 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
8251 			continue;
8252 		}
8253 		fid = IGU_FID(val);
8254 		if (fid & IGU_FID_ENCODE_IS_PF) {
8255 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
8256 				continue;
8257 			}
8258 			if (IGU_VEC(val) == 0) {
8259 				/* default status block */
8260 				sc->igu_dsb_id = igu_sb_id;
8261 			} else {
8262 				if (sc->igu_base_sb == 0xff) {
8263 					sc->igu_base_sb = igu_sb_id;
8264 				}
8265 				igu_sb_cnt++;
8266 			}
8267 		}
8268 	}
8269 
8270 	/*
8271 	 * Due to new PF resource allocation by MFW T7.4 and above, it's optional
8272 	 * that number of CAM entries will not be equal to the value advertised in
8273 	 * PCI. Driver should use the minimal value of both as the actual status
8274 	 * block count
8275 	 */
8276 	sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
8277 
8278 	if (igu_sb_cnt == 0) {
8279 		PMD_DRV_LOG(ERR, sc, "CAM configuration error");
8280 		return -1;
8281 	}
8282 
8283 	return 0;
8284 }
8285 
8286 /*
8287 * Gather various information from the device config space, the device itself,
8288 * shmem, and the user input.
8289 */
8290 static int bnx2x_get_device_info(struct bnx2x_softc *sc)
8291 {
8292 	uint32_t val;
8293 	int rc;
8294 
8295 	/* get the chip revision (chip metal comes from pci config space) */
8296 	sc->devinfo.chip_id = sc->link_params.chip_id =
8297 	    (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) |
8298 	     ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) |
8299 	     (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) |
8300 	     ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0));
8301 
8302 	/* force 57811 according to MISC register */
8303 	if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
8304 		if (CHIP_IS_57810(sc)) {
8305 			sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
8306 					       (sc->
8307 						devinfo.chip_id & 0x0000ffff));
8308 		} else if (CHIP_IS_57810_MF(sc)) {
8309 			sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
8310 					       (sc->
8311 						devinfo.chip_id & 0x0000ffff));
8312 		}
8313 		sc->devinfo.chip_id |= 0x1;
8314 	}
8315 
8316 	PMD_DRV_LOG(DEBUG, sc,
8317 		    "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)",
8318 		    sc->devinfo.chip_id,
8319 		    ((sc->devinfo.chip_id >> 16) & 0xffff),
8320 		    ((sc->devinfo.chip_id >> 12) & 0xf),
8321 		    ((sc->devinfo.chip_id >> 4) & 0xff),
8322 		    ((sc->devinfo.chip_id >> 0) & 0xf));
8323 
8324 	val = (REG_RD(sc, 0x2874) & 0x55);
8325 	if ((sc->devinfo.chip_id & 0x1) || (CHIP_IS_E1H(sc) && (val == 0x55))) {
8326 		sc->flags |= BNX2X_ONE_PORT_FLAG;
8327 		PMD_DRV_LOG(DEBUG, sc, "single port device");
8328 	}
8329 
8330 	/* set the doorbell size */
8331 	sc->doorbell_size = (1 << BNX2X_DB_SHIFT);
8332 
8333 	/* determine whether the device is in 2 port or 4 port mode */
8334 	sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE;	/* E1h */
8335 	if (CHIP_IS_E2E3(sc)) {
8336 /*
8337  * Read port4mode_en_ovwr[0]:
8338  *   If 1, four port mode is in port4mode_en_ovwr[1].
8339  *   If 0, four port mode is in port4mode_en[0].
8340  */
8341 		val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
8342 		if (val & 1) {
8343 			val = ((val >> 1) & 1);
8344 		} else {
8345 			val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
8346 		}
8347 
8348 		sc->devinfo.chip_port_mode =
8349 		    (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
8350 
8351 		PMD_DRV_LOG(DEBUG, sc, "Port mode = %s", (val) ? "4" : "2");
8352 	}
8353 
8354 	/* get the function and path info for the device */
8355 	bnx2x_get_function_num(sc);
8356 
8357 	/* get the shared memory base address */
8358 	sc->devinfo.shmem_base =
8359 	    sc->link_params.shmem_base = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
8360 	sc->devinfo.shmem2_base =
8361 	    REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
8362 			MISC_REG_GENERIC_CR_0));
8363 
8364 	if (!sc->devinfo.shmem_base) {
8365 /* this should ONLY prevent upcoming shmem reads */
8366 		PMD_DRV_LOG(INFO, sc, "MCP not active");
8367 		sc->flags |= BNX2X_NO_MCP_FLAG;
8368 		return 0;
8369 	}
8370 
8371 	/* make sure the shared memory contents are valid */
8372 	val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
8373 	if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
8374 	    (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
8375 		PMD_DRV_LOG(NOTICE, sc, "Invalid SHMEM validity signature: 0x%08x",
8376 			    val);
8377 		return 0;
8378 	}
8379 
8380 	/* get the bootcode version */
8381 	sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
8382 	snprintf(sc->devinfo.bc_ver_str,
8383 		 sizeof(sc->devinfo.bc_ver_str),
8384 		 "%d.%d.%d",
8385 		 ((sc->devinfo.bc_ver >> 24) & 0xff),
8386 		 ((sc->devinfo.bc_ver >> 16) & 0xff),
8387 		 ((sc->devinfo.bc_ver >> 8) & 0xff));
8388 	PMD_DRV_LOG(DEBUG, sc, "Bootcode version: %s", sc->devinfo.bc_ver_str);
8389 
8390 	/* get the bootcode shmem address */
8391 	sc->devinfo.mf_cfg_base = bnx2x_get_shmem_mf_cfg_base(sc);
8392 
8393 	/* clean indirect addresses as they're not used */
8394 	pci_write_long(sc, PCICFG_GRC_ADDRESS, 0);
8395 	if (IS_PF(sc)) {
8396 		REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
8397 		REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
8398 		REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
8399 		REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
8400 		if (CHIP_IS_E1x(sc)) {
8401 			REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
8402 			REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
8403 			REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
8404 			REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
8405 		}
8406 	}
8407 
8408 	/* get the nvram size */
8409 	val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
8410 	sc->devinfo.flash_size =
8411 	    (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
8412 
8413 	bnx2x_set_power_state(sc, PCI_PM_D0);
8414 	/* get various configuration parameters from shmem */
8415 	bnx2x_get_shmem_info(sc);
8416 
8417 	/* initialize IGU parameters */
8418 	if (CHIP_IS_E1x(sc)) {
8419 		sc->devinfo.int_block = INT_BLOCK_HC;
8420 		sc->igu_dsb_id = DEF_SB_IGU_ID;
8421 		sc->igu_base_sb = 0;
8422 	} else {
8423 		sc->devinfo.int_block = INT_BLOCK_IGU;
8424 
8425 /* do not allow device reset during IGU info preocessing */
8426 		bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8427 
8428 		val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
8429 
8430 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
8431 			int tout = 5000;
8432 
8433 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
8434 			REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
8435 			REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
8436 
8437 			while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
8438 				tout--;
8439 				DELAY(1000);
8440 			}
8441 
8442 			if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
8443 				PMD_DRV_LOG(NOTICE, sc,
8444 					    "FORCING IGU Normal Mode failed!!!");
8445 				bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8446 				return -1;
8447 			}
8448 		}
8449 
8450 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
8451 			PMD_DRV_LOG(DEBUG, sc, "IGU Backward Compatible Mode");
8452 			sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
8453 		} else {
8454 			PMD_DRV_LOG(DEBUG, sc, "IGU Normal Mode");
8455 		}
8456 
8457 		rc = bnx2x_get_igu_cam_info(sc);
8458 
8459 		bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8460 
8461 		if (rc) {
8462 			return rc;
8463 		}
8464 	}
8465 
8466 	/*
8467 	 * Get base FW non-default (fast path) status block ID. This value is
8468 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
8469 	 * determine the id used by the FW.
8470 	 */
8471 	if (CHIP_IS_E1x(sc)) {
8472 		sc->base_fw_ndsb =
8473 		    ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
8474 	} else {
8475 /*
8476  * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
8477  * the same queue are indicated on the same IGU SB). So we prefer
8478  * FW and IGU SBs to be the same value.
8479  */
8480 		sc->base_fw_ndsb = sc->igu_base_sb;
8481 	}
8482 
8483 	elink_phy_probe(&sc->link_params);
8484 
8485 	return 0;
8486 }
8487 
8488 static void
8489 bnx2x_link_settings_supported(struct bnx2x_softc *sc, uint32_t switch_cfg)
8490 {
8491 	uint32_t cfg_size = 0;
8492 	uint32_t idx;
8493 	uint8_t port = SC_PORT(sc);
8494 
8495 	/* aggregation of supported attributes of all external phys */
8496 	sc->port.supported[0] = 0;
8497 	sc->port.supported[1] = 0;
8498 
8499 	switch (sc->link_params.num_phys) {
8500 	case 1:
8501 		sc->port.supported[0] =
8502 		    sc->link_params.phy[ELINK_INT_PHY].supported;
8503 		cfg_size = 1;
8504 		break;
8505 	case 2:
8506 		sc->port.supported[0] =
8507 		    sc->link_params.phy[ELINK_EXT_PHY1].supported;
8508 		cfg_size = 1;
8509 		break;
8510 	case 3:
8511 		if (sc->link_params.multi_phy_config &
8512 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
8513 			sc->port.supported[1] =
8514 			    sc->link_params.phy[ELINK_EXT_PHY1].supported;
8515 			sc->port.supported[0] =
8516 			    sc->link_params.phy[ELINK_EXT_PHY2].supported;
8517 		} else {
8518 			sc->port.supported[0] =
8519 			    sc->link_params.phy[ELINK_EXT_PHY1].supported;
8520 			sc->port.supported[1] =
8521 			    sc->link_params.phy[ELINK_EXT_PHY2].supported;
8522 		}
8523 		cfg_size = 2;
8524 		break;
8525 	}
8526 
8527 	if (!(sc->port.supported[0] || sc->port.supported[1])) {
8528 		PMD_DRV_LOG(ERR, sc,
8529 			    "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)",
8530 			    SHMEM_RD(sc,
8531 				     dev_info.port_hw_config
8532 				     [port].external_phy_config),
8533 			    SHMEM_RD(sc,
8534 				     dev_info.port_hw_config
8535 				     [port].external_phy_config2));
8536 		return;
8537 	}
8538 
8539 	if (CHIP_IS_E3(sc))
8540 		sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
8541 	else {
8542 		switch (switch_cfg) {
8543 		case ELINK_SWITCH_CFG_1G:
8544 			sc->port.phy_addr =
8545 			    REG_RD(sc,
8546 				   NIG_REG_SERDES0_CTRL_PHY_ADDR + port * 0x10);
8547 			break;
8548 		case ELINK_SWITCH_CFG_10G:
8549 			sc->port.phy_addr =
8550 			    REG_RD(sc,
8551 				   NIG_REG_XGXS0_CTRL_PHY_ADDR + port * 0x18);
8552 			break;
8553 		default:
8554 			PMD_DRV_LOG(ERR, sc,
8555 				    "Invalid switch config in"
8556 				    "link_config=0x%08x",
8557 				    sc->port.link_config[0]);
8558 			return;
8559 		}
8560 	}
8561 
8562 	PMD_DRV_LOG(INFO, sc, "PHY addr 0x%08x", sc->port.phy_addr);
8563 
8564 	/* mask what we support according to speed_cap_mask per configuration */
8565 	for (idx = 0; idx < cfg_size; idx++) {
8566 		if (!(sc->link_params.speed_cap_mask[idx] &
8567 		      PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
8568 			sc->port.supported[idx] &=
8569 			    ~ELINK_SUPPORTED_10baseT_Half;
8570 		}
8571 
8572 		if (!(sc->link_params.speed_cap_mask[idx] &
8573 		      PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
8574 			sc->port.supported[idx] &=
8575 			    ~ELINK_SUPPORTED_10baseT_Full;
8576 		}
8577 
8578 		if (!(sc->link_params.speed_cap_mask[idx] &
8579 		      PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
8580 			sc->port.supported[idx] &=
8581 			    ~ELINK_SUPPORTED_100baseT_Half;
8582 		}
8583 
8584 		if (!(sc->link_params.speed_cap_mask[idx] &
8585 		      PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
8586 			sc->port.supported[idx] &=
8587 			    ~ELINK_SUPPORTED_100baseT_Full;
8588 		}
8589 
8590 		if (!(sc->link_params.speed_cap_mask[idx] &
8591 		      PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
8592 			sc->port.supported[idx] &=
8593 			    ~ELINK_SUPPORTED_1000baseT_Full;
8594 		}
8595 
8596 		if (!(sc->link_params.speed_cap_mask[idx] &
8597 		      PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
8598 			sc->port.supported[idx] &=
8599 			    ~ELINK_SUPPORTED_2500baseX_Full;
8600 		}
8601 
8602 		if (!(sc->link_params.speed_cap_mask[idx] &
8603 		      PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
8604 			sc->port.supported[idx] &=
8605 			    ~ELINK_SUPPORTED_10000baseT_Full;
8606 		}
8607 
8608 		if (!(sc->link_params.speed_cap_mask[idx] &
8609 		      PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
8610 			sc->port.supported[idx] &=
8611 			    ~ELINK_SUPPORTED_20000baseKR2_Full;
8612 		}
8613 	}
8614 
8615 	PMD_DRV_LOG(INFO, sc, "PHY supported 0=0x%08x 1=0x%08x",
8616 		    sc->port.supported[0], sc->port.supported[1]);
8617 }
8618 
8619 static void bnx2x_link_settings_requested(struct bnx2x_softc *sc)
8620 {
8621 	uint32_t link_config;
8622 	uint32_t idx;
8623 	uint32_t cfg_size = 0;
8624 
8625 	sc->port.advertising[0] = 0;
8626 	sc->port.advertising[1] = 0;
8627 
8628 	switch (sc->link_params.num_phys) {
8629 	case 1:
8630 	case 2:
8631 		cfg_size = 1;
8632 		break;
8633 	case 3:
8634 		cfg_size = 2;
8635 		break;
8636 	}
8637 
8638 	for (idx = 0; idx < cfg_size; idx++) {
8639 		sc->link_params.req_duplex[idx] = DUPLEX_FULL;
8640 		link_config = sc->port.link_config[idx];
8641 
8642 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
8643 		case PORT_FEATURE_LINK_SPEED_AUTO:
8644 			if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
8645 				sc->link_params.req_line_speed[idx] =
8646 				    ELINK_SPEED_AUTO_NEG;
8647 				sc->port.advertising[idx] |=
8648 				    sc->port.supported[idx];
8649 				if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
8650 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BNX2X84833)
8651 					sc->port.advertising[idx] |=
8652 					    (ELINK_SUPPORTED_100baseT_Half |
8653 					     ELINK_SUPPORTED_100baseT_Full);
8654 			} else {
8655 				/* force 10G, no AN */
8656 				sc->link_params.req_line_speed[idx] =
8657 				    ELINK_SPEED_10000;
8658 				sc->port.advertising[idx] |=
8659 				    (ADVERTISED_10000baseT_Full |
8660 				     ADVERTISED_FIBRE);
8661 				continue;
8662 			}
8663 			break;
8664 
8665 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
8666 			if (sc->
8667 			    port.supported[idx] & ELINK_SUPPORTED_10baseT_Full)
8668 			{
8669 				sc->link_params.req_line_speed[idx] =
8670 				    ELINK_SPEED_10;
8671 				sc->port.advertising[idx] |=
8672 				    (ADVERTISED_10baseT_Full | ADVERTISED_TP);
8673 			} else {
8674 				PMD_DRV_LOG(ERR, sc,
8675 					    "Invalid NVRAM config link_config=0x%08x "
8676 					    "speed_cap_mask=0x%08x",
8677 					    link_config,
8678 					    sc->
8679 					    link_params.speed_cap_mask[idx]);
8680 				return;
8681 			}
8682 			break;
8683 
8684 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
8685 			if (sc->
8686 			    port.supported[idx] & ELINK_SUPPORTED_10baseT_Half)
8687 			{
8688 				sc->link_params.req_line_speed[idx] =
8689 				    ELINK_SPEED_10;
8690 				sc->link_params.req_duplex[idx] = DUPLEX_HALF;
8691 				sc->port.advertising[idx] |=
8692 				    (ADVERTISED_10baseT_Half | ADVERTISED_TP);
8693 			} else {
8694 				PMD_DRV_LOG(ERR, sc,
8695 					    "Invalid NVRAM config link_config=0x%08x "
8696 					    "speed_cap_mask=0x%08x",
8697 					    link_config,
8698 					    sc->
8699 					    link_params.speed_cap_mask[idx]);
8700 				return;
8701 			}
8702 			break;
8703 
8704 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
8705 			if (sc->
8706 			    port.supported[idx] & ELINK_SUPPORTED_100baseT_Full)
8707 			{
8708 				sc->link_params.req_line_speed[idx] =
8709 				    ELINK_SPEED_100;
8710 				sc->port.advertising[idx] |=
8711 				    (ADVERTISED_100baseT_Full | ADVERTISED_TP);
8712 			} else {
8713 				PMD_DRV_LOG(ERR, sc,
8714 					    "Invalid NVRAM config link_config=0x%08x "
8715 					    "speed_cap_mask=0x%08x",
8716 					    link_config,
8717 					    sc->
8718 					    link_params.speed_cap_mask[idx]);
8719 				return;
8720 			}
8721 			break;
8722 
8723 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
8724 			if (sc->
8725 			    port.supported[idx] & ELINK_SUPPORTED_100baseT_Half)
8726 			{
8727 				sc->link_params.req_line_speed[idx] =
8728 				    ELINK_SPEED_100;
8729 				sc->link_params.req_duplex[idx] = DUPLEX_HALF;
8730 				sc->port.advertising[idx] |=
8731 				    (ADVERTISED_100baseT_Half | ADVERTISED_TP);
8732 			} else {
8733 				PMD_DRV_LOG(ERR, sc,
8734 					    "Invalid NVRAM config link_config=0x%08x "
8735 					    "speed_cap_mask=0x%08x",
8736 					    link_config,
8737 					    sc->
8738 					    link_params.speed_cap_mask[idx]);
8739 				return;
8740 			}
8741 			break;
8742 
8743 		case PORT_FEATURE_LINK_SPEED_1G:
8744 			if (sc->port.supported[idx] &
8745 			    ELINK_SUPPORTED_1000baseT_Full) {
8746 				sc->link_params.req_line_speed[idx] =
8747 				    ELINK_SPEED_1000;
8748 				sc->port.advertising[idx] |=
8749 				    (ADVERTISED_1000baseT_Full | ADVERTISED_TP);
8750 			} else {
8751 				PMD_DRV_LOG(ERR, sc,
8752 					    "Invalid NVRAM config link_config=0x%08x "
8753 					    "speed_cap_mask=0x%08x",
8754 					    link_config,
8755 					    sc->
8756 					    link_params.speed_cap_mask[idx]);
8757 				return;
8758 			}
8759 			break;
8760 
8761 		case PORT_FEATURE_LINK_SPEED_2_5G:
8762 			if (sc->port.supported[idx] &
8763 			    ELINK_SUPPORTED_2500baseX_Full) {
8764 				sc->link_params.req_line_speed[idx] =
8765 				    ELINK_SPEED_2500;
8766 				sc->port.advertising[idx] |=
8767 				    (ADVERTISED_2500baseX_Full | ADVERTISED_TP);
8768 			} else {
8769 				PMD_DRV_LOG(ERR, sc,
8770 					    "Invalid NVRAM config link_config=0x%08x "
8771 					    "speed_cap_mask=0x%08x",
8772 					    link_config,
8773 					    sc->
8774 					    link_params.speed_cap_mask[idx]);
8775 				return;
8776 			}
8777 			break;
8778 
8779 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
8780 			if (sc->port.supported[idx] &
8781 			    ELINK_SUPPORTED_10000baseT_Full) {
8782 				sc->link_params.req_line_speed[idx] =
8783 				    ELINK_SPEED_10000;
8784 				sc->port.advertising[idx] |=
8785 				    (ADVERTISED_10000baseT_Full |
8786 				     ADVERTISED_FIBRE);
8787 			} else {
8788 				PMD_DRV_LOG(ERR, sc,
8789 					    "Invalid NVRAM config link_config=0x%08x "
8790 					    "speed_cap_mask=0x%08x",
8791 					    link_config,
8792 					    sc->
8793 					    link_params.speed_cap_mask[idx]);
8794 				return;
8795 			}
8796 			break;
8797 
8798 		case PORT_FEATURE_LINK_SPEED_20G:
8799 			sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
8800 			break;
8801 
8802 		default:
8803 			PMD_DRV_LOG(ERR, sc,
8804 				    "Invalid NVRAM config link_config=0x%08x "
8805 				    "speed_cap_mask=0x%08x", link_config,
8806 				    sc->link_params.speed_cap_mask[idx]);
8807 			sc->link_params.req_line_speed[idx] =
8808 			    ELINK_SPEED_AUTO_NEG;
8809 			sc->port.advertising[idx] = sc->port.supported[idx];
8810 			break;
8811 		}
8812 
8813 		sc->link_params.req_flow_ctrl[idx] =
8814 		    (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
8815 
8816 		if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
8817 			if (!
8818 			    (sc->
8819 			     port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
8820 				sc->link_params.req_flow_ctrl[idx] =
8821 				    ELINK_FLOW_CTRL_NONE;
8822 			} else {
8823 				bnx2x_set_requested_fc(sc);
8824 			}
8825 		}
8826 	}
8827 }
8828 
8829 static void bnx2x_get_phy_info(struct bnx2x_softc *sc)
8830 {
8831 	uint8_t port = SC_PORT(sc);
8832 	uint32_t eee_mode;
8833 
8834 	PMD_INIT_FUNC_TRACE(sc);
8835 
8836 	/* shmem data already read in bnx2x_get_shmem_info() */
8837 
8838 	bnx2x_link_settings_supported(sc, sc->link_params.switch_cfg);
8839 	bnx2x_link_settings_requested(sc);
8840 
8841 	/* configure link feature according to nvram value */
8842 	eee_mode =
8843 	    (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode))
8844 	      & PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
8845 	     PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
8846 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
8847 		sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
8848 					    ELINK_EEE_MODE_ENABLE_LPI |
8849 					    ELINK_EEE_MODE_OUTPUT_TIME);
8850 	} else {
8851 		sc->link_params.eee_mode = 0;
8852 	}
8853 
8854 	/* get the media type */
8855 	bnx2x_media_detect(sc);
8856 }
8857 
8858 static void bnx2x_set_modes_bitmap(struct bnx2x_softc *sc)
8859 {
8860 	uint32_t flags = MODE_ASIC | MODE_PORT2;
8861 
8862 	if (CHIP_IS_E2(sc)) {
8863 		flags |= MODE_E2;
8864 	} else if (CHIP_IS_E3(sc)) {
8865 		flags |= MODE_E3;
8866 		if (CHIP_REV(sc) == CHIP_REV_Ax) {
8867 			flags |= MODE_E3_A0;
8868 		} else {	/*if (CHIP_REV(sc) == CHIP_REV_Bx) */
8869 
8870 			flags |= MODE_E3_B0 | MODE_COS3;
8871 		}
8872 	}
8873 
8874 	if (IS_MF(sc)) {
8875 		flags |= MODE_MF;
8876 		switch (sc->devinfo.mf_info.mf_mode) {
8877 		case MULTI_FUNCTION_SD:
8878 			flags |= MODE_MF_SD;
8879 			break;
8880 		case MULTI_FUNCTION_SI:
8881 			flags |= MODE_MF_SI;
8882 			break;
8883 		case MULTI_FUNCTION_AFEX:
8884 			flags |= MODE_MF_AFEX;
8885 			break;
8886 		}
8887 	} else {
8888 		flags |= MODE_SF;
8889 	}
8890 
8891 #if defined(__LITTLE_ENDIAN)
8892 	flags |= MODE_LITTLE_ENDIAN;
8893 #else /* __BIG_ENDIAN */
8894 	flags |= MODE_BIG_ENDIAN;
8895 #endif
8896 
8897 	INIT_MODE_FLAGS(sc) = flags;
8898 }
8899 
8900 int bnx2x_alloc_hsi_mem(struct bnx2x_softc *sc)
8901 {
8902 	struct bnx2x_fastpath *fp;
8903 	char buf[32];
8904 	uint32_t i;
8905 
8906 	if (IS_PF(sc)) {
8907 		/************************/
8908 		/* DEFAULT STATUS BLOCK */
8909 		/************************/
8910 
8911 		if (bnx2x_dma_alloc(sc, sizeof(struct host_sp_status_block),
8912 				  &sc->def_sb_dma, "def_sb",
8913 				  RTE_CACHE_LINE_SIZE) != 0) {
8914 			return -1;
8915 		}
8916 
8917 		sc->def_sb =
8918 		    (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
8919 		/***************/
8920 		/* EVENT QUEUE */
8921 		/***************/
8922 
8923 		if (bnx2x_dma_alloc(sc, BNX2X_PAGE_SIZE,
8924 				  &sc->eq_dma, "ev_queue",
8925 				  RTE_CACHE_LINE_SIZE) != 0) {
8926 			sc->def_sb = NULL;
8927 			return -1;
8928 		}
8929 
8930 		sc->eq = (union event_ring_elem *)sc->eq_dma.vaddr;
8931 
8932 		/*************/
8933 		/* SLOW PATH */
8934 		/*************/
8935 
8936 		if (bnx2x_dma_alloc(sc, sizeof(struct bnx2x_slowpath),
8937 				  &sc->sp_dma, "sp",
8938 				  RTE_CACHE_LINE_SIZE) != 0) {
8939 			sc->eq = NULL;
8940 			sc->def_sb = NULL;
8941 			return -1;
8942 		}
8943 
8944 		sc->sp = (struct bnx2x_slowpath *)sc->sp_dma.vaddr;
8945 
8946 		/*******************/
8947 		/* SLOW PATH QUEUE */
8948 		/*******************/
8949 
8950 		if (bnx2x_dma_alloc(sc, BNX2X_PAGE_SIZE,
8951 				  &sc->spq_dma, "sp_queue",
8952 				  RTE_CACHE_LINE_SIZE) != 0) {
8953 			sc->sp = NULL;
8954 			sc->eq = NULL;
8955 			sc->def_sb = NULL;
8956 			return -1;
8957 		}
8958 
8959 		sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
8960 
8961 		/***************************/
8962 		/* FW DECOMPRESSION BUFFER */
8963 		/***************************/
8964 
8965 		if (bnx2x_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
8966 				  "fw_buf", RTE_CACHE_LINE_SIZE) != 0) {
8967 			sc->spq = NULL;
8968 			sc->sp = NULL;
8969 			sc->eq = NULL;
8970 			sc->def_sb = NULL;
8971 			return -1;
8972 		}
8973 
8974 		sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
8975 	}
8976 
8977 	/*************/
8978 	/* FASTPATHS */
8979 	/*************/
8980 
8981 	/* allocate DMA memory for each fastpath structure */
8982 	for (i = 0; i < sc->num_queues; i++) {
8983 		fp = &sc->fp[i];
8984 		fp->sc = sc;
8985 		fp->index = i;
8986 
8987 		/*******************/
8988 		/* FP STATUS BLOCK */
8989 		/*******************/
8990 
8991 		snprintf(buf, sizeof(buf), "fp_%d_sb", i);
8992 		if (bnx2x_dma_alloc(sc, sizeof(union bnx2x_host_hc_status_block),
8993 				  &fp->sb_dma, buf, RTE_CACHE_LINE_SIZE) != 0) {
8994 			PMD_DRV_LOG(NOTICE, sc, "Failed to alloc %s", buf);
8995 			return -1;
8996 		} else {
8997 			if (CHIP_IS_E2E3(sc)) {
8998 				fp->status_block.e2_sb =
8999 				    (struct host_hc_status_block_e2 *)
9000 				    fp->sb_dma.vaddr;
9001 			} else {
9002 				fp->status_block.e1x_sb =
9003 				    (struct host_hc_status_block_e1x *)
9004 				    fp->sb_dma.vaddr;
9005 			}
9006 		}
9007 	}
9008 
9009 	return 0;
9010 }
9011 
9012 void bnx2x_free_hsi_mem(struct bnx2x_softc *sc)
9013 {
9014 	struct bnx2x_fastpath *fp;
9015 	int i;
9016 
9017 	for (i = 0; i < sc->num_queues; i++) {
9018 		fp = &sc->fp[i];
9019 
9020 		/*******************/
9021 		/* FP STATUS BLOCK */
9022 		/*******************/
9023 
9024 		memset(&fp->status_block, 0, sizeof(fp->status_block));
9025 		bnx2x_dma_free(&fp->sb_dma);
9026 	}
9027 
9028 	if (IS_PF(sc)) {
9029 		/***************************/
9030 		/* FW DECOMPRESSION BUFFER */
9031 		/***************************/
9032 
9033 		bnx2x_dma_free(&sc->gz_buf_dma);
9034 		sc->gz_buf = NULL;
9035 
9036 		/*******************/
9037 		/* SLOW PATH QUEUE */
9038 		/*******************/
9039 
9040 		bnx2x_dma_free(&sc->spq_dma);
9041 		sc->spq = NULL;
9042 
9043 		/*************/
9044 		/* SLOW PATH */
9045 		/*************/
9046 
9047 		bnx2x_dma_free(&sc->sp_dma);
9048 		sc->sp = NULL;
9049 
9050 		/***************/
9051 		/* EVENT QUEUE */
9052 		/***************/
9053 
9054 		bnx2x_dma_free(&sc->eq_dma);
9055 		sc->eq = NULL;
9056 
9057 		/************************/
9058 		/* DEFAULT STATUS BLOCK */
9059 		/************************/
9060 
9061 		bnx2x_dma_free(&sc->def_sb_dma);
9062 		sc->def_sb = NULL;
9063 	}
9064 }
9065 
9066 /*
9067 * Previous driver DMAE transaction may have occurred when pre-boot stage
9068 * ended and boot began. This would invalidate the addresses of the
9069 * transaction, resulting in was-error bit set in the PCI causing all
9070 * hw-to-host PCIe transactions to timeout. If this happened we want to clear
9071 * the interrupt which detected this from the pglueb and the was-done bit
9072 */
9073 static void bnx2x_prev_interrupted_dmae(struct bnx2x_softc *sc)
9074 {
9075 	uint32_t val;
9076 
9077 	if (!CHIP_IS_E1x(sc)) {
9078 		val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
9079 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
9080 			REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
9081 			       1 << SC_FUNC(sc));
9082 		}
9083 	}
9084 }
9085 
9086 static int bnx2x_prev_mcp_done(struct bnx2x_softc *sc)
9087 {
9088 	uint32_t rc = bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
9089 				     DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9090 	if (!rc) {
9091 		PMD_DRV_LOG(NOTICE, sc, "MCP response failure, aborting");
9092 		return -1;
9093 	}
9094 
9095 	return 0;
9096 }
9097 
9098 static struct bnx2x_prev_list_node *bnx2x_prev_path_get_entry(struct bnx2x_softc *sc)
9099 {
9100 	struct bnx2x_prev_list_node *tmp;
9101 
9102 	LIST_FOREACH(tmp, &bnx2x_prev_list, node) {
9103 		if ((sc->pcie_bus == tmp->bus) &&
9104 		    (sc->pcie_device == tmp->slot) &&
9105 		    (SC_PATH(sc) == tmp->path)) {
9106 			return tmp;
9107 		}
9108 	}
9109 
9110 	return NULL;
9111 }
9112 
9113 static uint8_t bnx2x_prev_is_path_marked(struct bnx2x_softc *sc)
9114 {
9115 	struct bnx2x_prev_list_node *tmp;
9116 	int rc = FALSE;
9117 
9118 	rte_spinlock_lock(&bnx2x_prev_mtx);
9119 
9120 	tmp = bnx2x_prev_path_get_entry(sc);
9121 	if (tmp) {
9122 		if (tmp->aer) {
9123 			PMD_DRV_LOG(DEBUG, sc,
9124 				    "Path %d/%d/%d was marked by AER",
9125 				    sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9126 		} else {
9127 			rc = TRUE;
9128 			PMD_DRV_LOG(DEBUG, sc,
9129 				    "Path %d/%d/%d was already cleaned from previous drivers",
9130 				    sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9131 		}
9132 	}
9133 
9134 	rte_spinlock_unlock(&bnx2x_prev_mtx);
9135 
9136 	return rc;
9137 }
9138 
9139 static int bnx2x_prev_mark_path(struct bnx2x_softc *sc, uint8_t after_undi)
9140 {
9141 	struct bnx2x_prev_list_node *tmp;
9142 
9143 	rte_spinlock_lock(&bnx2x_prev_mtx);
9144 
9145 	/* Check whether the entry for this path already exists */
9146 	tmp = bnx2x_prev_path_get_entry(sc);
9147 	if (tmp) {
9148 		if (!tmp->aer) {
9149 			PMD_DRV_LOG(DEBUG, sc,
9150 				    "Re-marking AER in path %d/%d/%d",
9151 				    sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9152 		} else {
9153 			PMD_DRV_LOG(DEBUG, sc,
9154 				    "Removing AER indication from path %d/%d/%d",
9155 				    sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9156 			tmp->aer = 0;
9157 		}
9158 
9159 		rte_spinlock_unlock(&bnx2x_prev_mtx);
9160 		return 0;
9161 	}
9162 
9163 	rte_spinlock_unlock(&bnx2x_prev_mtx);
9164 
9165 	/* Create an entry for this path and add it */
9166 	tmp = rte_malloc("", sizeof(struct bnx2x_prev_list_node),
9167 			 RTE_CACHE_LINE_SIZE);
9168 	if (!tmp) {
9169 		PMD_DRV_LOG(NOTICE, sc, "Failed to allocate 'bnx2x_prev_list_node'");
9170 		return -1;
9171 	}
9172 
9173 	tmp->bus = sc->pcie_bus;
9174 	tmp->slot = sc->pcie_device;
9175 	tmp->path = SC_PATH(sc);
9176 	tmp->aer = 0;
9177 	tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
9178 
9179 	rte_spinlock_lock(&bnx2x_prev_mtx);
9180 
9181 	LIST_INSERT_HEAD(&bnx2x_prev_list, tmp, node);
9182 
9183 	rte_spinlock_unlock(&bnx2x_prev_mtx);
9184 
9185 	return 0;
9186 }
9187 
9188 static int bnx2x_do_flr(struct bnx2x_softc *sc)
9189 {
9190 	int i;
9191 
9192 	/* only E2 and onwards support FLR */
9193 	if (CHIP_IS_E1x(sc)) {
9194 		PMD_DRV_LOG(WARNING, sc, "FLR not supported in E1H");
9195 		return -1;
9196 	}
9197 
9198 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9199 	if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9200 		PMD_DRV_LOG(WARNING, sc,
9201 			    "FLR not supported by BC_VER: 0x%08x",
9202 			    sc->devinfo.bc_ver);
9203 		return -1;
9204 	}
9205 
9206 	/* Wait for Transaction Pending bit clean */
9207 	for (i = 0; i < 4; i++) {
9208 		if (i) {
9209 			DELAY(((1 << (i - 1)) * 100) * 1000);
9210 		}
9211 
9212 		if (!bnx2x_is_pcie_pending(sc)) {
9213 			goto clear;
9214 		}
9215 	}
9216 
9217 	PMD_DRV_LOG(NOTICE, sc, "PCIE transaction is not cleared, "
9218 		    "proceeding with reset anyway");
9219 
9220 clear:
9221 	bnx2x_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
9222 
9223 	return 0;
9224 }
9225 
9226 struct bnx2x_mac_vals {
9227 	uint32_t xmac_addr;
9228 	uint32_t xmac_val;
9229 	uint32_t emac_addr;
9230 	uint32_t emac_val;
9231 	uint32_t umac_addr;
9232 	uint32_t umac_val;
9233 	uint32_t bmac_addr;
9234 	uint32_t bmac_val[2];
9235 };
9236 
9237 static void
9238 bnx2x_prev_unload_close_mac(struct bnx2x_softc *sc, struct bnx2x_mac_vals *vals)
9239 {
9240 	uint32_t val, base_addr, offset, mask, reset_reg;
9241 	uint8_t mac_stopped = FALSE;
9242 	uint8_t port = SC_PORT(sc);
9243 	uint32_t wb_data[2];
9244 
9245 	/* reset addresses as they also mark which values were changed */
9246 	vals->bmac_addr = 0;
9247 	vals->umac_addr = 0;
9248 	vals->xmac_addr = 0;
9249 	vals->emac_addr = 0;
9250 
9251 	reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
9252 
9253 	if (!CHIP_IS_E3(sc)) {
9254 		val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9255 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9256 		if ((mask & reset_reg) && val) {
9257 			base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
9258 			    : NIG_REG_INGRESS_BMAC0_MEM;
9259 			offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
9260 			    : BIGMAC_REGISTER_BMAC_CONTROL;
9261 
9262 			/*
9263 			 * use rd/wr since we cannot use dmae. This is safe
9264 			 * since MCP won't access the bus due to the request
9265 			 * to unload, and no function on the path can be
9266 			 * loaded at this time.
9267 			 */
9268 			wb_data[0] = REG_RD(sc, base_addr + offset);
9269 			wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
9270 			vals->bmac_addr = base_addr + offset;
9271 			vals->bmac_val[0] = wb_data[0];
9272 			vals->bmac_val[1] = wb_data[1];
9273 			wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
9274 			REG_WR(sc, vals->bmac_addr, wb_data[0]);
9275 			REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
9276 		}
9277 
9278 		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc) * 4;
9279 		vals->emac_val = REG_RD(sc, vals->emac_addr);
9280 		REG_WR(sc, vals->emac_addr, 0);
9281 		mac_stopped = TRUE;
9282 	} else {
9283 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9284 			base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9285 			val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
9286 			REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI,
9287 			       val & ~(1 << 1));
9288 			REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI,
9289 			       val | (1 << 1));
9290 			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9291 			vals->xmac_val = REG_RD(sc, vals->xmac_addr);
9292 			REG_WR(sc, vals->xmac_addr, 0);
9293 			mac_stopped = TRUE;
9294 		}
9295 
9296 		mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9297 		if (mask & reset_reg) {
9298 			base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9299 			vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9300 			vals->umac_val = REG_RD(sc, vals->umac_addr);
9301 			REG_WR(sc, vals->umac_addr, 0);
9302 			mac_stopped = TRUE;
9303 		}
9304 	}
9305 
9306 	if (mac_stopped) {
9307 		DELAY(20000);
9308 	}
9309 }
9310 
9311 #define BNX2X_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9312 #define BNX2X_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
9313 #define BNX2X_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
9314 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
9315 
9316 static void
9317 bnx2x_prev_unload_undi_inc(struct bnx2x_softc *sc, uint8_t port, uint8_t inc)
9318 {
9319 	uint16_t rcq, bd;
9320 	uint32_t tmp_reg = REG_RD(sc, BNX2X_PREV_UNDI_PROD_ADDR(port));
9321 
9322 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9323 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9324 
9325 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9326 	REG_WR(sc, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9327 }
9328 
9329 static int bnx2x_prev_unload_common(struct bnx2x_softc *sc)
9330 {
9331 	uint32_t reset_reg, tmp_reg = 0, rc;
9332 	uint8_t prev_undi = FALSE;
9333 	struct bnx2x_mac_vals mac_vals;
9334 	uint32_t timer_count = 1000;
9335 	uint32_t prev_brb;
9336 
9337 	/*
9338 	 * It is possible a previous function received 'common' answer,
9339 	 * but hasn't loaded yet, therefore creating a scenario of
9340 	 * multiple functions receiving 'common' on the same path.
9341 	 */
9342 	memset(&mac_vals, 0, sizeof(mac_vals));
9343 
9344 	if (bnx2x_prev_is_path_marked(sc)) {
9345 		return bnx2x_prev_mcp_done(sc);
9346 	}
9347 
9348 	reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
9349 
9350 	/* Reset should be performed after BRB is emptied */
9351 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
9352 		/* Close the MAC Rx to prevent BRB from filling up */
9353 		bnx2x_prev_unload_close_mac(sc, &mac_vals);
9354 
9355 		/* close LLH filters towards the BRB */
9356 		elink_set_rx_filter(&sc->link_params, 0);
9357 
9358 		/*
9359 		 * Check if the UNDI driver was previously loaded.
9360 		 * UNDI driver initializes CID offset for normal bell to 0x7
9361 		 */
9362 		if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
9363 			tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
9364 			if (tmp_reg == 0x7) {
9365 				PMD_DRV_LOG(DEBUG, sc, "UNDI previously loaded");
9366 				prev_undi = TRUE;
9367 				/* clear the UNDI indication */
9368 				REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
9369 				/* clear possible idle check errors */
9370 				REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
9371 			}
9372 		}
9373 
9374 		/* wait until BRB is empty */
9375 		tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
9376 		while (timer_count) {
9377 			prev_brb = tmp_reg;
9378 
9379 			tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
9380 			if (!tmp_reg) {
9381 				break;
9382 			}
9383 
9384 			PMD_DRV_LOG(DEBUG, sc, "BRB still has 0x%08x", tmp_reg);
9385 
9386 			/* reset timer as long as BRB actually gets emptied */
9387 			if (prev_brb > tmp_reg) {
9388 				timer_count = 1000;
9389 			} else {
9390 				timer_count--;
9391 			}
9392 
9393 			/* If UNDI resides in memory, manually increment it */
9394 			if (prev_undi) {
9395 				bnx2x_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
9396 			}
9397 
9398 			DELAY(10);
9399 		}
9400 
9401 		if (!timer_count) {
9402 			PMD_DRV_LOG(NOTICE, sc, "Failed to empty BRB");
9403 		}
9404 	}
9405 
9406 	/* No packets are in the pipeline, path is ready for reset */
9407 	bnx2x_reset_common(sc);
9408 
9409 	if (mac_vals.xmac_addr) {
9410 		REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
9411 	}
9412 	if (mac_vals.umac_addr) {
9413 		REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
9414 	}
9415 	if (mac_vals.emac_addr) {
9416 		REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
9417 	}
9418 	if (mac_vals.bmac_addr) {
9419 		REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
9420 		REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
9421 	}
9422 
9423 	rc = bnx2x_prev_mark_path(sc, prev_undi);
9424 	if (rc) {
9425 		bnx2x_prev_mcp_done(sc);
9426 		return rc;
9427 	}
9428 
9429 	return bnx2x_prev_mcp_done(sc);
9430 }
9431 
9432 static int bnx2x_prev_unload_uncommon(struct bnx2x_softc *sc)
9433 {
9434 	int rc;
9435 
9436 	/* Test if previous unload process was already finished for this path */
9437 	if (bnx2x_prev_is_path_marked(sc)) {
9438 		return bnx2x_prev_mcp_done(sc);
9439 	}
9440 
9441 	/*
9442 	 * If function has FLR capabilities, and existing FW version matches
9443 	 * the one required, then FLR will be sufficient to clean any residue
9444 	 * left by previous driver
9445 	 */
9446 	rc = bnx2x_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
9447 	if (!rc) {
9448 		/* fw version is good */
9449 		rc = bnx2x_do_flr(sc);
9450 	}
9451 
9452 	if (!rc) {
9453 		/* FLR was performed */
9454 		return 0;
9455 	}
9456 
9457 	PMD_DRV_LOG(INFO, sc, "Could not FLR");
9458 
9459 	/* Close the MCP request, return failure */
9460 	rc = bnx2x_prev_mcp_done(sc);
9461 	if (!rc) {
9462 		rc = BNX2X_PREV_WAIT_NEEDED;
9463 	}
9464 
9465 	return rc;
9466 }
9467 
9468 static int bnx2x_prev_unload(struct bnx2x_softc *sc)
9469 {
9470 	int time_counter = 10;
9471 	uint32_t fw, hw_lock_reg, hw_lock_val;
9472 	uint32_t rc = 0;
9473 
9474 	PMD_INIT_FUNC_TRACE(sc);
9475 
9476 	/*
9477 	 * Clear HW from errors which may have resulted from an interrupted
9478 	 * DMAE transaction.
9479 	 */
9480 	bnx2x_prev_interrupted_dmae(sc);
9481 
9482 	/* Release previously held locks */
9483 	hw_lock_reg = (SC_FUNC(sc) <= 5) ?
9484 			(MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
9485 			(MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
9486 
9487 	hw_lock_val = (REG_RD(sc, hw_lock_reg));
9488 	if (hw_lock_val) {
9489 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
9490 			PMD_DRV_LOG(DEBUG, sc, "Releasing previously held NVRAM lock\n");
9491 			REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
9492 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
9493 		}
9494 		PMD_DRV_LOG(DEBUG, sc, "Releasing previously held HW lock\n");
9495 		REG_WR(sc, hw_lock_reg, 0xffffffff);
9496 	}
9497 
9498 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
9499 		PMD_DRV_LOG(DEBUG, sc, "Releasing previously held ALR\n");
9500 		REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
9501 	}
9502 
9503 	do {
9504 		/* Lock MCP using an unload request */
9505 		fw = bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
9506 		if (!fw) {
9507 			PMD_DRV_LOG(NOTICE, sc, "MCP response failure, aborting");
9508 			rc = -1;
9509 			break;
9510 		}
9511 
9512 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
9513 			rc = bnx2x_prev_unload_common(sc);
9514 			break;
9515 		}
9516 
9517 		/* non-common reply from MCP might require looping */
9518 		rc = bnx2x_prev_unload_uncommon(sc);
9519 		if (rc != BNX2X_PREV_WAIT_NEEDED) {
9520 			break;
9521 		}
9522 
9523 		DELAY(20000);
9524 	} while (--time_counter);
9525 
9526 	if (!time_counter || rc) {
9527 		PMD_DRV_LOG(NOTICE, sc, "Failed to unload previous driver!");
9528 		rc = -1;
9529 	}
9530 
9531 	return rc;
9532 }
9533 
9534 static void
9535 bnx2x_dcbx_set_state(struct bnx2x_softc *sc, uint8_t dcb_on, uint32_t dcbx_enabled)
9536 {
9537 	if (!CHIP_IS_E1x(sc)) {
9538 		sc->dcb_state = dcb_on;
9539 		sc->dcbx_enabled = dcbx_enabled;
9540 	} else {
9541 		sc->dcb_state = FALSE;
9542 		sc->dcbx_enabled = BNX2X_DCBX_ENABLED_INVALID;
9543 	}
9544 	PMD_DRV_LOG(DEBUG, sc,
9545 		    "DCB state [%s:%s]",
9546 		    dcb_on ? "ON" : "OFF",
9547 		    (dcbx_enabled == BNX2X_DCBX_ENABLED_OFF) ? "user-mode" :
9548 		    (dcbx_enabled ==
9549 		     BNX2X_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static"
9550 		    : (dcbx_enabled ==
9551 		       BNX2X_DCBX_ENABLED_ON_NEG_ON) ?
9552 		    "on-chip with negotiation" : "invalid");
9553 }
9554 
9555 static int bnx2x_set_qm_cid_count(struct bnx2x_softc *sc)
9556 {
9557 	int cid_count = BNX2X_L2_MAX_CID(sc);
9558 
9559 	if (CNIC_SUPPORT(sc)) {
9560 		cid_count += CNIC_CID_MAX;
9561 	}
9562 
9563 	return roundup(cid_count, QM_CID_ROUND);
9564 }
9565 
9566 static void bnx2x_init_multi_cos(struct bnx2x_softc *sc)
9567 {
9568 	int pri, cos;
9569 
9570 	uint32_t pri_map = 0;
9571 
9572 	for (pri = 0; pri < BNX2X_MAX_PRIORITY; pri++) {
9573 		cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
9574 		if (cos < sc->max_cos) {
9575 			sc->prio_to_cos[pri] = cos;
9576 		} else {
9577 			PMD_DRV_LOG(WARNING, sc,
9578 				    "Invalid COS %d for priority %d "
9579 				    "(max COS is %d), setting to 0", cos, pri,
9580 				    (sc->max_cos - 1));
9581 			sc->prio_to_cos[pri] = 0;
9582 		}
9583 	}
9584 }
9585 
9586 static int bnx2x_pci_get_caps(struct bnx2x_softc *sc)
9587 {
9588 	struct {
9589 		uint8_t id;
9590 		uint8_t next;
9591 	} pci_cap;
9592 	uint16_t status;
9593 	struct bnx2x_pci_cap *cap;
9594 
9595 	cap = sc->pci_caps = rte_zmalloc("caps", sizeof(struct bnx2x_pci_cap),
9596 					 RTE_CACHE_LINE_SIZE);
9597 	if (!cap) {
9598 		PMD_DRV_LOG(NOTICE, sc, "Failed to allocate memory");
9599 		return -ENOMEM;
9600 	}
9601 
9602 #ifndef __FreeBSD__
9603 	pci_read(sc, PCI_STATUS, &status, 2);
9604 	if (!(status & PCI_STATUS_CAP_LIST)) {
9605 #else
9606 	pci_read(sc, PCIR_STATUS, &status, 2);
9607 	if (!(status & PCIM_STATUS_CAPPRESENT)) {
9608 #endif
9609 		PMD_DRV_LOG(NOTICE, sc, "PCIe capability reading failed");
9610 		return -1;
9611 	}
9612 
9613 #ifndef __FreeBSD__
9614 	pci_read(sc, PCI_CAPABILITY_LIST, &pci_cap.next, 1);
9615 #else
9616 	pci_read(sc, PCIR_CAP_PTR, &pci_cap.next, 1);
9617 #endif
9618 	while (pci_cap.next) {
9619 		cap->addr = pci_cap.next & ~3;
9620 		pci_read(sc, pci_cap.next & ~3, &pci_cap, 2);
9621 		if (pci_cap.id == 0xff)
9622 			break;
9623 		cap->id = pci_cap.id;
9624 		cap->type = BNX2X_PCI_CAP;
9625 		cap->next = rte_zmalloc("pci_cap",
9626 					sizeof(struct bnx2x_pci_cap),
9627 					RTE_CACHE_LINE_SIZE);
9628 		if (!cap->next) {
9629 			PMD_DRV_LOG(NOTICE, sc, "Failed to allocate memory");
9630 			return -ENOMEM;
9631 		}
9632 		cap = cap->next;
9633 	}
9634 
9635 	return 0;
9636 }
9637 
9638 static void bnx2x_init_rte(struct bnx2x_softc *sc)
9639 {
9640 	if (IS_VF(sc)) {
9641 		sc->max_tx_queues = min(BNX2X_VF_MAX_QUEUES_PER_VF,
9642 					sc->igu_sb_cnt);
9643 		sc->max_rx_queues = min(BNX2X_VF_MAX_QUEUES_PER_VF,
9644 					sc->igu_sb_cnt);
9645 	} else {
9646 		sc->max_rx_queues = BNX2X_MAX_RSS_COUNT(sc);
9647 		sc->max_tx_queues = sc->max_rx_queues;
9648 	}
9649 }
9650 
9651 #define FW_HEADER_LEN 104
9652 #define FW_NAME_57711 "/lib/firmware/bnx2x/bnx2x-e1h-7.2.51.0.fw"
9653 #define FW_NAME_57810 "/lib/firmware/bnx2x/bnx2x-e2-7.2.51.0.fw"
9654 
9655 void bnx2x_load_firmware(struct bnx2x_softc *sc)
9656 {
9657 	const char *fwname;
9658 	int f;
9659 	struct stat st;
9660 
9661 	fwname = sc->devinfo.device_id == CHIP_NUM_57711
9662 		? FW_NAME_57711 : FW_NAME_57810;
9663 	f = open(fwname, O_RDONLY);
9664 	if (f < 0) {
9665 		PMD_DRV_LOG(NOTICE, sc, "Can't open firmware file");
9666 		return;
9667 	}
9668 
9669 	if (fstat(f, &st) < 0) {
9670 		PMD_DRV_LOG(NOTICE, sc, "Can't stat firmware file");
9671 		close(f);
9672 		return;
9673 	}
9674 
9675 	sc->firmware = rte_zmalloc("bnx2x_fw", st.st_size, RTE_CACHE_LINE_SIZE);
9676 	if (!sc->firmware) {
9677 		PMD_DRV_LOG(NOTICE, sc, "Can't allocate memory for firmware");
9678 		close(f);
9679 		return;
9680 	}
9681 
9682 	if (read(f, sc->firmware, st.st_size) != st.st_size) {
9683 		PMD_DRV_LOG(NOTICE, sc, "Can't read firmware data");
9684 		close(f);
9685 		return;
9686 	}
9687 	close(f);
9688 
9689 	sc->fw_len = st.st_size;
9690 	if (sc->fw_len < FW_HEADER_LEN) {
9691 		PMD_DRV_LOG(NOTICE, sc,
9692 			    "Invalid fw size: %" PRIu64, sc->fw_len);
9693 		return;
9694 	}
9695 	PMD_DRV_LOG(DEBUG, sc, "fw_len = %" PRIu64, sc->fw_len);
9696 }
9697 
9698 static void
9699 bnx2x_data_to_init_ops(uint8_t * data, struct raw_op *dst, uint32_t len)
9700 {
9701 	uint32_t *src = (uint32_t *) data;
9702 	uint32_t i, j, tmp;
9703 
9704 	for (i = 0, j = 0; i < len / 8; ++i, j += 2) {
9705 		tmp = rte_be_to_cpu_32(src[j]);
9706 		dst[i].op = (tmp >> 24) & 0xFF;
9707 		dst[i].offset = tmp & 0xFFFFFF;
9708 		dst[i].raw_data = rte_be_to_cpu_32(src[j + 1]);
9709 	}
9710 }
9711 
9712 static void
9713 bnx2x_data_to_init_offsets(uint8_t * data, uint16_t * dst, uint32_t len)
9714 {
9715 	uint16_t *src = (uint16_t *) data;
9716 	uint32_t i;
9717 
9718 	for (i = 0; i < len / 2; ++i)
9719 		dst[i] = rte_be_to_cpu_16(src[i]);
9720 }
9721 
9722 static void bnx2x_data_to_init_data(uint8_t * data, uint32_t * dst, uint32_t len)
9723 {
9724 	uint32_t *src = (uint32_t *) data;
9725 	uint32_t i;
9726 
9727 	for (i = 0; i < len / 4; ++i)
9728 		dst[i] = rte_be_to_cpu_32(src[i]);
9729 }
9730 
9731 static void bnx2x_data_to_iro_array(uint8_t * data, struct iro *dst, uint32_t len)
9732 {
9733 	uint32_t *src = (uint32_t *) data;
9734 	uint32_t i, j, tmp;
9735 
9736 	for (i = 0, j = 0; i < len / sizeof(struct iro); ++i, ++j) {
9737 		dst[i].base = rte_be_to_cpu_32(src[j++]);
9738 		tmp = rte_be_to_cpu_32(src[j]);
9739 		dst[i].m1 = (tmp >> 16) & 0xFFFF;
9740 		dst[i].m2 = tmp & 0xFFFF;
9741 		++j;
9742 		tmp = rte_be_to_cpu_32(src[j]);
9743 		dst[i].m3 = (tmp >> 16) & 0xFFFF;
9744 		dst[i].size = tmp & 0xFFFF;
9745 	}
9746 }
9747 
9748 /*
9749 * Device attach function.
9750 *
9751 * Allocates device resources, performs secondary chip identification, and
9752 * initializes driver instance variables. This function is called from driver
9753 * load after a successful probe.
9754 *
9755 * Returns:
9756 *   0 = Success, >0 = Failure
9757 */
9758 int bnx2x_attach(struct bnx2x_softc *sc)
9759 {
9760 	int rc;
9761 
9762 	PMD_DRV_LOG(DEBUG, sc, "Starting attach...");
9763 
9764 	rc = bnx2x_pci_get_caps(sc);
9765 	if (rc) {
9766 		PMD_DRV_LOG(NOTICE, sc, "PCIe caps reading was failed");
9767 		return rc;
9768 	}
9769 
9770 	sc->state = BNX2X_STATE_CLOSED;
9771 
9772 	pci_write_long(sc, PCICFG_GRC_ADDRESS, PCICFG_VENDOR_ID_OFFSET);
9773 
9774 	sc->igu_base_addr = IS_VF(sc) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
9775 
9776 	/* get PCI capabilites */
9777 	bnx2x_probe_pci_caps(sc);
9778 
9779 	if (sc->devinfo.pcie_msix_cap_reg != 0) {
9780 		uint32_t val;
9781 		pci_read(sc,
9782 			 (sc->devinfo.pcie_msix_cap_reg + PCIR_MSIX_CTRL), &val,
9783 			 2);
9784 		sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE) + 1;
9785 	} else {
9786 		sc->igu_sb_cnt = 1;
9787 	}
9788 
9789 	/* Init RTE stuff */
9790 	bnx2x_init_rte(sc);
9791 
9792 	if (IS_PF(sc)) {
9793 		/* Enable internal target-read (in case we are probed after PF
9794 		 * FLR). Must be done prior to any BAR read access. Only for
9795 		 * 57712 and up
9796 		 */
9797 		if (!CHIP_IS_E1x(sc)) {
9798 			REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ,
9799 			       1);
9800 			DELAY(200000);
9801 		}
9802 
9803 		/* get device info and set params */
9804 		if (bnx2x_get_device_info(sc) != 0) {
9805 			PMD_DRV_LOG(NOTICE, sc, "getting device info");
9806 			return -ENXIO;
9807 		}
9808 
9809 /* get phy settings from shmem and 'and' against admin settings */
9810 		bnx2x_get_phy_info(sc);
9811 	} else {
9812 		/* Left mac of VF unfilled, PF should set it for VF */
9813 		memset(sc->link_params.mac_addr, 0, RTE_ETHER_ADDR_LEN);
9814 	}
9815 
9816 	sc->wol = 0;
9817 
9818 	/* set the default MTU (changed via ifconfig) */
9819 	sc->mtu = RTE_ETHER_MTU;
9820 
9821 	bnx2x_set_modes_bitmap(sc);
9822 
9823 	/* need to reset chip if UNDI was active */
9824 	if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
9825 /* init fw_seq */
9826 		sc->fw_seq =
9827 		    (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
9828 		     DRV_MSG_SEQ_NUMBER_MASK);
9829 		PMD_DRV_LOG(DEBUG, sc, "prev unload fw_seq 0x%04x",
9830 			    sc->fw_seq);
9831 		bnx2x_prev_unload(sc);
9832 	}
9833 
9834 	bnx2x_dcbx_set_state(sc, FALSE, BNX2X_DCBX_ENABLED_OFF);
9835 
9836 	/* calculate qm_cid_count */
9837 	sc->qm_cid_count = bnx2x_set_qm_cid_count(sc);
9838 
9839 	sc->max_cos = 1;
9840 	bnx2x_init_multi_cos(sc);
9841 
9842 	return 0;
9843 }
9844 
9845 static void
9846 bnx2x_igu_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id, uint8_t segment,
9847 	       uint16_t index, uint8_t op, uint8_t update)
9848 {
9849 	uint32_t igu_addr = sc->igu_base_addr;
9850 	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id) * 8;
9851 	bnx2x_igu_ack_sb_gen(sc, segment, index, op, update, igu_addr);
9852 }
9853 
9854 static void
9855 bnx2x_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id, uint8_t storm,
9856 	   uint16_t index, uint8_t op, uint8_t update)
9857 {
9858 	if (unlikely(sc->devinfo.int_block == INT_BLOCK_HC))
9859 		bnx2x_hc_ack_sb(sc, igu_sb_id, storm, index, op, update);
9860 	else {
9861 		uint8_t segment;
9862 		if (CHIP_INT_MODE_IS_BC(sc)) {
9863 			segment = storm;
9864 		} else if (igu_sb_id != sc->igu_dsb_id) {
9865 			segment = IGU_SEG_ACCESS_DEF;
9866 		} else if (storm == ATTENTION_ID) {
9867 			segment = IGU_SEG_ACCESS_ATTN;
9868 		} else {
9869 			segment = IGU_SEG_ACCESS_DEF;
9870 		}
9871 		bnx2x_igu_ack_sb(sc, igu_sb_id, segment, index, op, update);
9872 	}
9873 }
9874 
9875 static void
9876 bnx2x_igu_clear_sb_gen(struct bnx2x_softc *sc, uint8_t func, uint8_t idu_sb_id,
9877 		     uint8_t is_pf)
9878 {
9879 	uint32_t data, ctl, cnt = 100;
9880 	uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
9881 	uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
9882 	uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP +
9883 	    (idu_sb_id / 32) * 4;
9884 	uint32_t sb_bit = 1 << (idu_sb_id % 32);
9885 	uint32_t func_encode = func |
9886 	    (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
9887 	uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
9888 
9889 	/* Not supported in BC mode */
9890 	if (CHIP_INT_MODE_IS_BC(sc)) {
9891 		return;
9892 	}
9893 
9894 	data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
9895 		 IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
9896 		IGU_REGULAR_CLEANUP_SET | IGU_REGULAR_BCLEANUP);
9897 
9898 	ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
9899 	       (func_encode << IGU_CTRL_REG_FID_SHIFT) |
9900 	       (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
9901 
9902 	REG_WR(sc, igu_addr_data, data);
9903 
9904 	mb();
9905 
9906 	PMD_DRV_LOG(DEBUG, sc, "write 0x%08x to IGU(via GRC) addr 0x%x",
9907 		    ctl, igu_addr_ctl);
9908 	REG_WR(sc, igu_addr_ctl, ctl);
9909 
9910 	mb();
9911 
9912 	/* wait for clean up to finish */
9913 	while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
9914 		DELAY(20000);
9915 	}
9916 
9917 	if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
9918 		PMD_DRV_LOG(DEBUG, sc,
9919 			    "Unable to finish IGU cleanup: "
9920 			    "idu_sb_id %d offset %d bit %d (cnt %d)",
9921 			    idu_sb_id, idu_sb_id / 32, idu_sb_id % 32, cnt);
9922 	}
9923 }
9924 
9925 static void bnx2x_igu_clear_sb(struct bnx2x_softc *sc, uint8_t idu_sb_id)
9926 {
9927 	bnx2x_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
9928 }
9929 
9930 /*******************/
9931 /* ECORE CALLBACKS */
9932 /*******************/
9933 
9934 static void bnx2x_reset_common(struct bnx2x_softc *sc)
9935 {
9936 	uint32_t val = 0x1400;
9937 
9938 	PMD_INIT_FUNC_TRACE(sc);
9939 
9940 	/* reset_common */
9941 	REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR),
9942 	       0xd3ffff7f);
9943 
9944 	if (CHIP_IS_E3(sc)) {
9945 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
9946 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
9947 	}
9948 
9949 	REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
9950 }
9951 
9952 static void bnx2x_common_init_phy(struct bnx2x_softc *sc)
9953 {
9954 	uint32_t shmem_base[2];
9955 	uint32_t shmem2_base[2];
9956 
9957 	/* Avoid common init in case MFW supports LFA */
9958 	if (SHMEM2_RD(sc, size) >
9959 	    (uint32_t) offsetof(struct shmem2_region,
9960 				lfa_host_addr[SC_PORT(sc)])) {
9961 		return;
9962 	}
9963 
9964 	shmem_base[0] = sc->devinfo.shmem_base;
9965 	shmem2_base[0] = sc->devinfo.shmem2_base;
9966 
9967 	if (!CHIP_IS_E1x(sc)) {
9968 		shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr);
9969 		shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
9970 	}
9971 
9972 	bnx2x_acquire_phy_lock(sc);
9973 	elink_common_init_phy(sc, shmem_base, shmem2_base,
9974 			      sc->devinfo.chip_id, 0);
9975 	bnx2x_release_phy_lock(sc);
9976 }
9977 
9978 static void bnx2x_pf_disable(struct bnx2x_softc *sc)
9979 {
9980 	uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
9981 
9982 	val &= ~IGU_PF_CONF_FUNC_EN;
9983 
9984 	REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
9985 	REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
9986 	REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
9987 }
9988 
9989 static void bnx2x_init_pxp(struct bnx2x_softc *sc)
9990 {
9991 	uint16_t devctl;
9992 	int r_order, w_order;
9993 
9994 	devctl = bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL);
9995 
9996 	w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
9997 	r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
9998 
9999 	ecore_init_pxp_arb(sc, r_order, w_order);
10000 }
10001 
10002 static uint32_t bnx2x_get_pretend_reg(struct bnx2x_softc *sc)
10003 {
10004 	uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10005 	uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
10006 	return base + (SC_ABS_FUNC(sc)) * stride;
10007 }
10008 
10009 /*
10010  * Called only on E1H or E2.
10011  * When pretending to be PF, the pretend value is the function number 0..7.
10012  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
10013  * combination.
10014  */
10015 static int bnx2x_pretend_func(struct bnx2x_softc *sc, uint16_t pretend_func_val)
10016 {
10017 	uint32_t pretend_reg;
10018 
10019 	if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX))
10020 		return -1;
10021 
10022 	/* get my own pretend register */
10023 	pretend_reg = bnx2x_get_pretend_reg(sc);
10024 	REG_WR(sc, pretend_reg, pretend_func_val);
10025 	REG_RD(sc, pretend_reg);
10026 	return 0;
10027 }
10028 
10029 static void bnx2x_setup_fan_failure_detection(struct bnx2x_softc *sc)
10030 {
10031 	int is_required;
10032 	uint32_t val;
10033 	int port;
10034 
10035 	is_required = 0;
10036 	val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
10037 	       SHARED_HW_CFG_FAN_FAILURE_MASK);
10038 
10039 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
10040 		is_required = 1;
10041 	}
10042 	/*
10043 	 * The fan failure mechanism is usually related to the PHY type since
10044 	 * the power consumption of the board is affected by the PHY. Currently,
10045 	 * fan is required for most designs with SFX7101, BNX2X8727 and BNX2X8481.
10046 	 */
10047 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
10048 		for (port = PORT_0; port < PORT_MAX; port++) {
10049 			is_required |= elink_fan_failure_det_req(sc,
10050 								 sc->
10051 								 devinfo.shmem_base,
10052 								 sc->
10053 								 devinfo.shmem2_base,
10054 								 port);
10055 		}
10056 	}
10057 
10058 	if (is_required == 0) {
10059 		return;
10060 	}
10061 
10062 	/* Fan failure is indicated by SPIO 5 */
10063 	bnx2x_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
10064 
10065 	/* set to active low mode */
10066 	val = REG_RD(sc, MISC_REG_SPIO_INT);
10067 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
10068 	REG_WR(sc, MISC_REG_SPIO_INT, val);
10069 
10070 	/* enable interrupt to signal the IGU */
10071 	val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
10072 	val |= MISC_SPIO_SPIO5;
10073 	REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
10074 }
10075 
10076 static void bnx2x_enable_blocks_attention(struct bnx2x_softc *sc)
10077 {
10078 	uint32_t val;
10079 
10080 	REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
10081 	if (!CHIP_IS_E1x(sc)) {
10082 		REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
10083 	} else {
10084 		REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
10085 	}
10086 	REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
10087 	REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
10088 	/*
10089 	 * mask read length error interrupts in brb for parser
10090 	 * (parsing unit and 'checksum and crc' unit)
10091 	 * these errors are legal (PU reads fixed length and CAC can cause
10092 	 * read length error on truncated packets)
10093 	 */
10094 	REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
10095 	REG_WR(sc, QM_REG_QM_INT_MASK, 0);
10096 	REG_WR(sc, TM_REG_TM_INT_MASK, 0);
10097 	REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
10098 	REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
10099 	REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
10100 	/*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
10101 	/*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
10102 	REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
10103 	REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
10104 	REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
10105 	/*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
10106 	/*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
10107 	REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
10108 	REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
10109 	REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
10110 	REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
10111 	/*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
10112 	/*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
10113 
10114 	val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
10115 	       PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
10116 	       PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
10117 	if (!CHIP_IS_E1x(sc)) {
10118 		val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
10119 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
10120 	}
10121 	REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
10122 
10123 	REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
10124 	REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
10125 	REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
10126 	/*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
10127 
10128 	if (!CHIP_IS_E1x(sc)) {
10129 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
10130 		REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
10131 	}
10132 
10133 	REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
10134 	REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
10135 	/*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
10136 	REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);	/* bit 3,4 masked */
10137 }
10138 
10139 /**
10140  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
10141  *
10142  * @sc:     driver handle
10143  */
10144 static int bnx2x_init_hw_common(struct bnx2x_softc *sc)
10145 {
10146 	uint8_t abs_func_id;
10147 	uint32_t val;
10148 
10149 	PMD_DRV_LOG(DEBUG, sc,
10150 		    "starting common init for func %d", SC_ABS_FUNC(sc));
10151 
10152 	/*
10153 	 * take the RESET lock to protect undi_unload flow from accessing
10154 	 * registers while we are resetting the chip
10155 	 */
10156 	bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
10157 
10158 	bnx2x_reset_common(sc);
10159 
10160 	REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
10161 
10162 	val = 0xfffc;
10163 	if (CHIP_IS_E3(sc)) {
10164 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
10165 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
10166 	}
10167 
10168 	REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
10169 
10170 	bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
10171 
10172 	ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
10173 
10174 	if (!CHIP_IS_E1x(sc)) {
10175 /*
10176  * 4-port mode or 2-port mode we need to turn off master-enable for
10177  * everyone. After that we turn it back on for self. So, we disregard
10178  * multi-function, and always disable all functions on the given path,
10179  * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
10180  */
10181 		for (abs_func_id = SC_PATH(sc);
10182 		     abs_func_id < (E2_FUNC_MAX * 2); abs_func_id += 2) {
10183 			if (abs_func_id == SC_ABS_FUNC(sc)) {
10184 				REG_WR(sc,
10185 				       PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
10186 				       1);
10187 				continue;
10188 			}
10189 
10190 			bnx2x_pretend_func(sc, abs_func_id);
10191 
10192 			/* clear pf enable */
10193 			bnx2x_pf_disable(sc);
10194 
10195 			bnx2x_pretend_func(sc, SC_ABS_FUNC(sc));
10196 		}
10197 	}
10198 
10199 	ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
10200 
10201 	ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
10202 	bnx2x_init_pxp(sc);
10203 
10204 #ifdef __BIG_ENDIAN
10205 	REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
10206 	REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
10207 	REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
10208 	REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
10209 	REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
10210 	/* make sure this value is 0 */
10211 	REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
10212 
10213 	//REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
10214 	REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
10215 	REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
10216 	REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
10217 	REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
10218 #endif
10219 
10220 	ecore_ilt_init_page_size(sc, INITOP_SET);
10221 
10222 	if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
10223 		REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
10224 	}
10225 
10226 	/* let the HW do it's magic... */
10227 	DELAY(100000);
10228 
10229 	/* finish PXP init */
10230 
10231 	val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
10232 	if (val != 1) {
10233 		PMD_DRV_LOG(NOTICE, sc, "PXP2 CFG failed");
10234 		return -1;
10235 	}
10236 	val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
10237 	if (val != 1) {
10238 		PMD_DRV_LOG(NOTICE, sc, "PXP2 RD_INIT failed");
10239 		return -1;
10240 	}
10241 
10242 	/*
10243 	 * Timer bug workaround for E2 only. We need to set the entire ILT to have
10244 	 * entries with value "0" and valid bit on. This needs to be done by the
10245 	 * first PF that is loaded in a path (i.e. common phase)
10246 	 */
10247 	if (!CHIP_IS_E1x(sc)) {
10248 /*
10249  * In E2 there is a bug in the timers block that can cause function 6 / 7
10250  * (i.e. vnic3) to start even if it is marked as "scan-off".
10251  * This occurs when a different function (func2,3) is being marked
10252  * as "scan-off". Real-life scenario for example: if a driver is being
10253  * load-unloaded while func6,7 are down. This will cause the timer to access
10254  * the ilt, translate to a logical address and send a request to read/write.
10255  * Since the ilt for the function that is down is not valid, this will cause
10256  * a translation error which is unrecoverable.
10257  * The Workaround is intended to make sure that when this happens nothing
10258  * fatal will occur. The workaround:
10259  *  1.  First PF driver which loads on a path will:
10260  *      a.  After taking the chip out of reset, by using pretend,
10261  *          it will write "0" to the following registers of
10262  *          the other vnics.
10263  *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10264  *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
10265  *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
10266  *          And for itself it will write '1' to
10267  *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
10268  *          dmae-operations (writing to pram for example.)
10269  *          note: can be done for only function 6,7 but cleaner this
10270  *            way.
10271  *      b.  Write zero+valid to the entire ILT.
10272  *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
10273  *          VNIC3 (of that port). The range allocated will be the
10274  *          entire ILT. This is needed to prevent  ILT range error.
10275  *  2.  Any PF driver load flow:
10276  *      a.  ILT update with the physical addresses of the allocated
10277  *          logical pages.
10278  *      b.  Wait 20msec. - note that this timeout is needed to make
10279  *          sure there are no requests in one of the PXP internal
10280  *          queues with "old" ILT addresses.
10281  *      c.  PF enable in the PGLC.
10282  *      d.  Clear the was_error of the PF in the PGLC. (could have
10283  *          occurred while driver was down)
10284  *      e.  PF enable in the CFC (WEAK + STRONG)
10285  *      f.  Timers scan enable
10286  *  3.  PF driver unload flow:
10287  *      a.  Clear the Timers scan_en.
10288  *      b.  Polling for scan_on=0 for that PF.
10289  *      c.  Clear the PF enable bit in the PXP.
10290  *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
10291  *      e.  Write zero+valid to all ILT entries (The valid bit must
10292  *          stay set)
10293  *      f.  If this is VNIC 3 of a port then also init
10294  *          first_timers_ilt_entry to zero and last_timers_ilt_entry
10295  *          to the last enrty in the ILT.
10296  *
10297  *      Notes:
10298  *      Currently the PF error in the PGLC is non recoverable.
10299  *      In the future the there will be a recovery routine for this error.
10300  *      Currently attention is masked.
10301  *      Having an MCP lock on the load/unload process does not guarantee that
10302  *      there is no Timer disable during Func6/7 enable. This is because the
10303  *      Timers scan is currently being cleared by the MCP on FLR.
10304  *      Step 2.d can be done only for PF6/7 and the driver can also check if
10305  *      there is error before clearing it. But the flow above is simpler and
10306  *      more general.
10307  *      All ILT entries are written by zero+valid and not just PF6/7
10308  *      ILT entries since in the future the ILT entries allocation for
10309  *      PF-s might be dynamic.
10310  */
10311 		struct ilt_client_info ilt_cli;
10312 		struct ecore_ilt ilt;
10313 
10314 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
10315 		memset(&ilt, 0, sizeof(struct ecore_ilt));
10316 
10317 /* initialize dummy TM client */
10318 		ilt_cli.start = 0;
10319 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
10320 		ilt_cli.client_num = ILT_CLIENT_TM;
10321 
10322 /*
10323  * Step 1: set zeroes to all ilt page entries with valid bit on
10324  * Step 2: set the timers first/last ilt entry to point
10325  * to the entire range to prevent ILT range error for 3rd/4th
10326  * vnic (this code assumes existence of the vnic)
10327  *
10328  * both steps performed by call to ecore_ilt_client_init_op()
10329  * with dummy TM client
10330  *
10331  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
10332  * and his brother are split registers
10333  */
10334 
10335 		bnx2x_pretend_func(sc, (SC_PATH(sc) + 6));
10336 		ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
10337 		bnx2x_pretend_func(sc, SC_ABS_FUNC(sc));
10338 
10339 		REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
10340 		REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
10341 		REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
10342 	}
10343 
10344 	REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
10345 	REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
10346 
10347 	if (!CHIP_IS_E1x(sc)) {
10348 		int factor = 0;
10349 
10350 		ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
10351 		ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
10352 
10353 /* let the HW do it's magic... */
10354 		do {
10355 			DELAY(200000);
10356 			val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
10357 		} while (factor-- && (val != 1));
10358 
10359 		if (val != 1) {
10360 			PMD_DRV_LOG(NOTICE, sc, "ATC_INIT failed");
10361 			return -1;
10362 		}
10363 	}
10364 
10365 	ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
10366 
10367 	/* clean the DMAE memory */
10368 	sc->dmae_ready = 1;
10369 	ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8);
10370 
10371 	ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
10372 
10373 	ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
10374 
10375 	ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
10376 
10377 	ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
10378 
10379 	bnx2x_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
10380 	bnx2x_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
10381 	bnx2x_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
10382 	bnx2x_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
10383 
10384 	ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
10385 
10386 	/* QM queues pointers table */
10387 	ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
10388 
10389 	/* soft reset pulse */
10390 	REG_WR(sc, QM_REG_SOFT_RESET, 1);
10391 	REG_WR(sc, QM_REG_SOFT_RESET, 0);
10392 
10393 	if (CNIC_SUPPORT(sc))
10394 		ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
10395 
10396 	ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
10397 	REG_WR(sc, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
10398 
10399 	if (!CHIP_REV_IS_SLOW(sc)) {
10400 /* enable hw interrupt from doorbell Q */
10401 		REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
10402 	}
10403 
10404 	ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
10405 
10406 	ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
10407 	REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
10408 	REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
10409 
10410 	if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
10411 		if (IS_MF_AFEX(sc)) {
10412 			/*
10413 			 * configure that AFEX and VLAN headers must be
10414 			 * received in AFEX mode
10415 			 */
10416 			REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
10417 			REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
10418 			REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
10419 			REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
10420 			REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
10421 		} else {
10422 			/*
10423 			 * Bit-map indicating which L2 hdrs may appear
10424 			 * after the basic Ethernet header
10425 			 */
10426 			REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
10427 			       sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
10428 		}
10429 	}
10430 
10431 	ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
10432 	ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
10433 	ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
10434 	ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
10435 
10436 	if (!CHIP_IS_E1x(sc)) {
10437 /* reset VFC memories */
10438 		REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
10439 		       VFC_MEMORIES_RST_REG_CAM_RST |
10440 		       VFC_MEMORIES_RST_REG_RAM_RST);
10441 		REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
10442 		       VFC_MEMORIES_RST_REG_CAM_RST |
10443 		       VFC_MEMORIES_RST_REG_RAM_RST);
10444 
10445 		DELAY(20000);
10446 	}
10447 
10448 	ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
10449 	ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
10450 	ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
10451 	ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
10452 
10453 	/* sync semi rtc */
10454 	REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x80000000);
10455 	REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x80000000);
10456 
10457 	ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
10458 	ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
10459 	ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
10460 
10461 	if (!CHIP_IS_E1x(sc)) {
10462 		if (IS_MF_AFEX(sc)) {
10463 			/*
10464 			 * configure that AFEX and VLAN headers must be
10465 			 * sent in AFEX mode
10466 			 */
10467 			REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
10468 			REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
10469 			REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
10470 			REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
10471 			REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
10472 		} else {
10473 			REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
10474 			       sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
10475 		}
10476 	}
10477 
10478 	REG_WR(sc, SRC_REG_SOFT_RST, 1);
10479 
10480 	ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
10481 
10482 	if (CNIC_SUPPORT(sc)) {
10483 		REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
10484 		REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
10485 		REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
10486 		REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
10487 		REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
10488 		REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
10489 		REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
10490 		REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
10491 		REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
10492 		REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
10493 	}
10494 	REG_WR(sc, SRC_REG_SOFT_RST, 0);
10495 
10496 	if (sizeof(union cdu_context) != 1024) {
10497 /* we currently assume that a context is 1024 bytes */
10498 		PMD_DRV_LOG(NOTICE, sc,
10499 			    "please adjust the size of cdu_context(%ld)",
10500 			    (long)sizeof(union cdu_context));
10501 	}
10502 
10503 	ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
10504 	val = (4 << 24) + (0 << 12) + 1024;
10505 	REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
10506 
10507 	ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
10508 
10509 	REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
10510 	/* enable context validation interrupt from CFC */
10511 	REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
10512 
10513 	/* set the thresholds to prevent CFC/CDU race */
10514 	REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
10515 	ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
10516 
10517 	if (!CHIP_IS_E1x(sc) && BNX2X_NOMCP(sc)) {
10518 		REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
10519 	}
10520 
10521 	ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
10522 	ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
10523 
10524 	/* Reset PCIE errors for debug */
10525 	REG_WR(sc, 0x2814, 0xffffffff);
10526 	REG_WR(sc, 0x3820, 0xffffffff);
10527 
10528 	if (!CHIP_IS_E1x(sc)) {
10529 		REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
10530 		       (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
10531 			PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
10532 		REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
10533 		       (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
10534 			PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
10535 			PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
10536 		REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
10537 		       (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
10538 			PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
10539 			PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
10540 	}
10541 
10542 	ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
10543 
10544 	/* in E3 this done in per-port section */
10545 	if (!CHIP_IS_E3(sc))
10546 		REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
10547 
10548 	if (CHIP_IS_E1H(sc)) {
10549 /* not applicable for E2 (and above ...) */
10550 		REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
10551 	}
10552 
10553 	if (CHIP_REV_IS_SLOW(sc)) {
10554 		DELAY(200000);
10555 	}
10556 
10557 	/* finish CFC init */
10558 	val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
10559 	if (val != 1) {
10560 		PMD_DRV_LOG(NOTICE, sc, "CFC LL_INIT failed");
10561 		return -1;
10562 	}
10563 	val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
10564 	if (val != 1) {
10565 		PMD_DRV_LOG(NOTICE, sc, "CFC AC_INIT failed");
10566 		return -1;
10567 	}
10568 	val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
10569 	if (val != 1) {
10570 		PMD_DRV_LOG(NOTICE, sc, "CFC CAM_INIT failed");
10571 		return -1;
10572 	}
10573 	REG_WR(sc, CFC_REG_DEBUG0, 0);
10574 
10575 	bnx2x_setup_fan_failure_detection(sc);
10576 
10577 	/* clear PXP2 attentions */
10578 	REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
10579 
10580 	bnx2x_enable_blocks_attention(sc);
10581 
10582 	if (!CHIP_REV_IS_SLOW(sc)) {
10583 		ecore_enable_blocks_parity(sc);
10584 	}
10585 
10586 	if (!BNX2X_NOMCP(sc)) {
10587 		if (CHIP_IS_E1x(sc)) {
10588 			bnx2x_common_init_phy(sc);
10589 		}
10590 	}
10591 
10592 	return 0;
10593 }
10594 
10595 /**
10596  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
10597  *
10598  * @sc:     driver handle
10599  */
10600 static int bnx2x_init_hw_common_chip(struct bnx2x_softc *sc)
10601 {
10602 	int rc = bnx2x_init_hw_common(sc);
10603 
10604 	if (rc) {
10605 		return rc;
10606 	}
10607 
10608 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
10609 	if (!BNX2X_NOMCP(sc)) {
10610 		bnx2x_common_init_phy(sc);
10611 	}
10612 
10613 	return 0;
10614 }
10615 
10616 static int bnx2x_init_hw_port(struct bnx2x_softc *sc)
10617 {
10618 	int port = SC_PORT(sc);
10619 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
10620 	uint32_t low, high;
10621 	uint32_t val;
10622 
10623 	PMD_DRV_LOG(DEBUG, sc, "starting port init for port %d", port);
10624 
10625 	REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port * 4, 0);
10626 
10627 	ecore_init_block(sc, BLOCK_MISC, init_phase);
10628 	ecore_init_block(sc, BLOCK_PXP, init_phase);
10629 	ecore_init_block(sc, BLOCK_PXP2, init_phase);
10630 
10631 	/*
10632 	 * Timers bug workaround: disables the pf_master bit in pglue at
10633 	 * common phase, we need to enable it here before any dmae access are
10634 	 * attempted. Therefore we manually added the enable-master to the
10635 	 * port phase (it also happens in the function phase)
10636 	 */
10637 	if (!CHIP_IS_E1x(sc)) {
10638 		REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
10639 	}
10640 
10641 	ecore_init_block(sc, BLOCK_ATC, init_phase);
10642 	ecore_init_block(sc, BLOCK_DMAE, init_phase);
10643 	ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
10644 	ecore_init_block(sc, BLOCK_QM, init_phase);
10645 
10646 	ecore_init_block(sc, BLOCK_TCM, init_phase);
10647 	ecore_init_block(sc, BLOCK_UCM, init_phase);
10648 	ecore_init_block(sc, BLOCK_CCM, init_phase);
10649 	ecore_init_block(sc, BLOCK_XCM, init_phase);
10650 
10651 	/* QM cid (connection) count */
10652 	ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
10653 
10654 	if (CNIC_SUPPORT(sc)) {
10655 		ecore_init_block(sc, BLOCK_TM, init_phase);
10656 		REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port * 4, 20);
10657 		REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port * 4, 31);
10658 	}
10659 
10660 	ecore_init_block(sc, BLOCK_DORQ, init_phase);
10661 
10662 	ecore_init_block(sc, BLOCK_BRB1, init_phase);
10663 
10664 	if (CHIP_IS_E1H(sc)) {
10665 		if (IS_MF(sc)) {
10666 			low = (BNX2X_ONE_PORT(sc) ? 160 : 246);
10667 		} else if (sc->mtu > 4096) {
10668 			if (BNX2X_ONE_PORT(sc)) {
10669 				low = 160;
10670 			} else {
10671 				val = sc->mtu;
10672 				/* (24*1024 + val*4)/256 */
10673 				low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
10674 			}
10675 		} else {
10676 			low = (BNX2X_ONE_PORT(sc) ? 80 : 160);
10677 		}
10678 		high = (low + 56);	/* 14*1024/256 */
10679 		REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port * 4, low);
10680 		REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port * 4, high);
10681 	}
10682 
10683 	if (CHIP_IS_MODE_4_PORT(sc)) {
10684 		REG_WR(sc, SC_PORT(sc) ?
10685 		       BRB1_REG_MAC_GUARANTIED_1 :
10686 		       BRB1_REG_MAC_GUARANTIED_0, 40);
10687 	}
10688 
10689 	ecore_init_block(sc, BLOCK_PRS, init_phase);
10690 	if (CHIP_IS_E3B0(sc)) {
10691 		if (IS_MF_AFEX(sc)) {
10692 			/* configure headers for AFEX mode */
10693 			if (SC_PORT(sc)) {
10694 				REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC_PORT_1,
10695 				       0xE);
10696 				REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0_PORT_1,
10697 				       0x6);
10698 				REG_WR(sc, PRS_REG_MUST_HAVE_HDRS_PORT_1, 0xA);
10699 			} else {
10700 				REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC_PORT_0,
10701 				       0xE);
10702 				REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0_PORT_0,
10703 				       0x6);
10704 				REG_WR(sc, PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
10705 			}
10706 		} else {
10707 			/* Ovlan exists only if we are in multi-function +
10708 			 * switch-dependent mode, in switch-independent there
10709 			 * is no ovlan headers
10710 			 */
10711 			REG_WR(sc, SC_PORT(sc) ?
10712 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
10713 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
10714 			       (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
10715 		}
10716 	}
10717 
10718 	ecore_init_block(sc, BLOCK_TSDM, init_phase);
10719 	ecore_init_block(sc, BLOCK_CSDM, init_phase);
10720 	ecore_init_block(sc, BLOCK_USDM, init_phase);
10721 	ecore_init_block(sc, BLOCK_XSDM, init_phase);
10722 
10723 	ecore_init_block(sc, BLOCK_TSEM, init_phase);
10724 	ecore_init_block(sc, BLOCK_USEM, init_phase);
10725 	ecore_init_block(sc, BLOCK_CSEM, init_phase);
10726 	ecore_init_block(sc, BLOCK_XSEM, init_phase);
10727 
10728 	ecore_init_block(sc, BLOCK_UPB, init_phase);
10729 	ecore_init_block(sc, BLOCK_XPB, init_phase);
10730 
10731 	ecore_init_block(sc, BLOCK_PBF, init_phase);
10732 
10733 	if (CHIP_IS_E1x(sc)) {
10734 /* configure PBF to work without PAUSE mtu 9000 */
10735 		REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port * 4, 0);
10736 
10737 /* update threshold */
10738 		REG_WR(sc, PBF_REG_P0_ARB_THRSH + port * 4, (9040 / 16));
10739 /* update init credit */
10740 		REG_WR(sc, PBF_REG_P0_INIT_CRD + port * 4,
10741 		       (9040 / 16) + 553 - 22);
10742 
10743 /* probe changes */
10744 		REG_WR(sc, PBF_REG_INIT_P0 + port * 4, 1);
10745 		DELAY(50);
10746 		REG_WR(sc, PBF_REG_INIT_P0 + port * 4, 0);
10747 	}
10748 
10749 	if (CNIC_SUPPORT(sc)) {
10750 		ecore_init_block(sc, BLOCK_SRC, init_phase);
10751 	}
10752 
10753 	ecore_init_block(sc, BLOCK_CDU, init_phase);
10754 	ecore_init_block(sc, BLOCK_CFC, init_phase);
10755 	ecore_init_block(sc, BLOCK_HC, init_phase);
10756 	ecore_init_block(sc, BLOCK_IGU, init_phase);
10757 	ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
10758 	/* init aeu_mask_attn_func_0/1:
10759 	 *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
10760 	 *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
10761 	 *             bits 4-7 are used for "per vn group attention" */
10762 	val = IS_MF(sc) ? 0xF7 : 0x7;
10763 	val |= 0x10;
10764 	REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port * 4, val);
10765 
10766 	ecore_init_block(sc, BLOCK_NIG, init_phase);
10767 
10768 	if (!CHIP_IS_E1x(sc)) {
10769 /* Bit-map indicating which L2 hdrs may appear after the
10770  * basic Ethernet header
10771  */
10772 		if (IS_MF_AFEX(sc)) {
10773 			REG_WR(sc, SC_PORT(sc) ?
10774 			       NIG_REG_P1_HDRS_AFTER_BASIC :
10775 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
10776 		} else {
10777 			REG_WR(sc, SC_PORT(sc) ?
10778 			       NIG_REG_P1_HDRS_AFTER_BASIC :
10779 			       NIG_REG_P0_HDRS_AFTER_BASIC,
10780 			       IS_MF_SD(sc) ? 7 : 6);
10781 		}
10782 
10783 		if (CHIP_IS_E3(sc)) {
10784 			REG_WR(sc, SC_PORT(sc) ?
10785 			       NIG_REG_LLH1_MF_MODE :
10786 			       NIG_REG_LLH_MF_MODE, IS_MF(sc));
10787 		}
10788 	}
10789 	if (!CHIP_IS_E3(sc)) {
10790 		REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port * 4, 1);
10791 	}
10792 
10793 	/* 0x2 disable mf_ov, 0x1 enable */
10794 	REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port * 4,
10795 	       (IS_MF_SD(sc) ? 0x1 : 0x2));
10796 
10797 	if (!CHIP_IS_E1x(sc)) {
10798 		val = 0;
10799 		switch (sc->devinfo.mf_info.mf_mode) {
10800 		case MULTI_FUNCTION_SD:
10801 			val = 1;
10802 			break;
10803 		case MULTI_FUNCTION_SI:
10804 		case MULTI_FUNCTION_AFEX:
10805 			val = 2;
10806 			break;
10807 		}
10808 
10809 		REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
10810 			    NIG_REG_LLH0_CLS_TYPE), val);
10811 	}
10812 	REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port * 4, 0);
10813 	REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port * 4, 0);
10814 	REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port * 4, 1);
10815 
10816 	/* If SPIO5 is set to generate interrupts, enable it for this port */
10817 	val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
10818 	if (val & MISC_SPIO_SPIO5) {
10819 		uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
10820 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
10821 		val = REG_RD(sc, reg_addr);
10822 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
10823 		REG_WR(sc, reg_addr, val);
10824 	}
10825 
10826 	return 0;
10827 }
10828 
10829 static uint32_t
10830 bnx2x_flr_clnup_reg_poll(struct bnx2x_softc *sc, uint32_t reg,
10831 		       uint32_t expected, uint32_t poll_count)
10832 {
10833 	uint32_t cur_cnt = poll_count;
10834 	uint32_t val;
10835 
10836 	while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
10837 		DELAY(FLR_WAIT_INTERVAL);
10838 	}
10839 
10840 	return val;
10841 }
10842 
10843 static int
10844 bnx2x_flr_clnup_poll_hw_counter(struct bnx2x_softc *sc, uint32_t reg,
10845 			      __rte_unused const char *msg, uint32_t poll_cnt)
10846 {
10847 	uint32_t val = bnx2x_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
10848 
10849 	if (val != 0) {
10850 		PMD_DRV_LOG(NOTICE, sc, "%s usage count=%d", msg, val);
10851 		return -1;
10852 	}
10853 
10854 	return 0;
10855 }
10856 
10857 /* Common routines with VF FLR cleanup */
10858 static uint32_t bnx2x_flr_clnup_poll_count(struct bnx2x_softc *sc)
10859 {
10860 	/* adjust polling timeout */
10861 	if (CHIP_REV_IS_EMUL(sc)) {
10862 		return FLR_POLL_CNT * 2000;
10863 	}
10864 
10865 	if (CHIP_REV_IS_FPGA(sc)) {
10866 		return FLR_POLL_CNT * 120;
10867 	}
10868 
10869 	return FLR_POLL_CNT;
10870 }
10871 
10872 static int bnx2x_poll_hw_usage_counters(struct bnx2x_softc *sc, uint32_t poll_cnt)
10873 {
10874 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
10875 	if (bnx2x_flr_clnup_poll_hw_counter(sc,
10876 					  CFC_REG_NUM_LCIDS_INSIDE_PF,
10877 					  "CFC PF usage counter timed out",
10878 					  poll_cnt)) {
10879 		return -1;
10880 	}
10881 
10882 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
10883 	if (bnx2x_flr_clnup_poll_hw_counter(sc,
10884 					  DORQ_REG_PF_USAGE_CNT,
10885 					  "DQ PF usage counter timed out",
10886 					  poll_cnt)) {
10887 		return -1;
10888 	}
10889 
10890 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
10891 	if (bnx2x_flr_clnup_poll_hw_counter(sc,
10892 					  QM_REG_PF_USG_CNT_0 + 4 * SC_FUNC(sc),
10893 					  "QM PF usage counter timed out",
10894 					  poll_cnt)) {
10895 		return -1;
10896 	}
10897 
10898 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
10899 	if (bnx2x_flr_clnup_poll_hw_counter(sc,
10900 					  TM_REG_LIN0_VNIC_UC + 4 * SC_PORT(sc),
10901 					  "Timers VNIC usage counter timed out",
10902 					  poll_cnt)) {
10903 		return -1;
10904 	}
10905 
10906 	if (bnx2x_flr_clnup_poll_hw_counter(sc,
10907 					  TM_REG_LIN0_NUM_SCANS +
10908 					  4 * SC_PORT(sc),
10909 					  "Timers NUM_SCANS usage counter timed out",
10910 					  poll_cnt)) {
10911 		return -1;
10912 	}
10913 
10914 	/* Wait DMAE PF usage counter to zero */
10915 	if (bnx2x_flr_clnup_poll_hw_counter(sc,
10916 					  dmae_reg_go_c[INIT_DMAE_C(sc)],
10917 					  "DMAE dommand register timed out",
10918 					  poll_cnt)) {
10919 		return -1;
10920 	}
10921 
10922 	return 0;
10923 }
10924 
10925 #define OP_GEN_PARAM(param)                                            \
10926 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
10927 #define OP_GEN_TYPE(type)                                           \
10928 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
10929 #define OP_GEN_AGG_VECT(index)                                             \
10930 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
10931 
10932 static int
10933 bnx2x_send_final_clnup(struct bnx2x_softc *sc, uint8_t clnup_func,
10934 		     uint32_t poll_cnt)
10935 {
10936 	uint32_t op_gen_command = 0;
10937 	uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
10938 			      CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
10939 	int ret = 0;
10940 
10941 	if (REG_RD(sc, comp_addr)) {
10942 		PMD_DRV_LOG(NOTICE, sc,
10943 			    "Cleanup complete was not 0 before sending");
10944 		return -1;
10945 	}
10946 
10947 	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
10948 	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
10949 	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
10950 	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
10951 
10952 	REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
10953 
10954 	if (bnx2x_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
10955 		PMD_DRV_LOG(NOTICE, sc, "FW final cleanup did not succeed");
10956 		PMD_DRV_LOG(DEBUG, sc, "At timeout completion address contained %x",
10957 			    (REG_RD(sc, comp_addr)));
10958 		rte_panic("FLR cleanup failed");
10959 		return -1;
10960 	}
10961 
10962 	/* Zero completion for nxt FLR */
10963 	REG_WR(sc, comp_addr, 0);
10964 
10965 	return ret;
10966 }
10967 
10968 static void
10969 bnx2x_pbf_pN_buf_flushed(struct bnx2x_softc *sc, struct pbf_pN_buf_regs *regs,
10970 		       uint32_t poll_count)
10971 {
10972 	uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
10973 	uint32_t cur_cnt = poll_count;
10974 
10975 	crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
10976 	crd = crd_start = REG_RD(sc, regs->crd);
10977 	init_crd = REG_RD(sc, regs->init_crd);
10978 
10979 	while ((crd != init_crd) &&
10980 	       ((uint32_t) ((int32_t) crd_freed - (int32_t) crd_freed_start) <
10981 		(init_crd - crd_start))) {
10982 		if (cur_cnt--) {
10983 			DELAY(FLR_WAIT_INTERVAL);
10984 			crd = REG_RD(sc, regs->crd);
10985 			crd_freed = REG_RD(sc, regs->crd_freed);
10986 		} else {
10987 			break;
10988 		}
10989 	}
10990 }
10991 
10992 static void
10993 bnx2x_pbf_pN_cmd_flushed(struct bnx2x_softc *sc, struct pbf_pN_cmd_regs *regs,
10994 		       uint32_t poll_count)
10995 {
10996 	uint32_t occup, to_free, freed, freed_start;
10997 	uint32_t cur_cnt = poll_count;
10998 
10999 	occup = to_free = REG_RD(sc, regs->lines_occup);
11000 	freed = freed_start = REG_RD(sc, regs->lines_freed);
11001 
11002 	while (occup &&
11003 	       ((uint32_t) ((int32_t) freed - (int32_t) freed_start) <
11004 		to_free)) {
11005 		if (cur_cnt--) {
11006 			DELAY(FLR_WAIT_INTERVAL);
11007 			occup = REG_RD(sc, regs->lines_occup);
11008 			freed = REG_RD(sc, regs->lines_freed);
11009 		} else {
11010 			break;
11011 		}
11012 	}
11013 }
11014 
11015 static void bnx2x_tx_hw_flushed(struct bnx2x_softc *sc, uint32_t poll_count)
11016 {
11017 	struct pbf_pN_cmd_regs cmd_regs[] = {
11018 		{0, (CHIP_IS_E3B0(sc)) ?
11019 		 PBF_REG_TQ_OCCUPANCY_Q0 : PBF_REG_P0_TQ_OCCUPANCY,
11020 		 (CHIP_IS_E3B0(sc)) ?
11021 		 PBF_REG_TQ_LINES_FREED_CNT_Q0 : PBF_REG_P0_TQ_LINES_FREED_CNT},
11022 		{1, (CHIP_IS_E3B0(sc)) ?
11023 		 PBF_REG_TQ_OCCUPANCY_Q1 : PBF_REG_P1_TQ_OCCUPANCY,
11024 		 (CHIP_IS_E3B0(sc)) ?
11025 		 PBF_REG_TQ_LINES_FREED_CNT_Q1 : PBF_REG_P1_TQ_LINES_FREED_CNT},
11026 		{4, (CHIP_IS_E3B0(sc)) ?
11027 		 PBF_REG_TQ_OCCUPANCY_LB_Q : PBF_REG_P4_TQ_OCCUPANCY,
11028 		 (CHIP_IS_E3B0(sc)) ?
11029 		 PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
11030 		 PBF_REG_P4_TQ_LINES_FREED_CNT}
11031 	};
11032 
11033 	struct pbf_pN_buf_regs buf_regs[] = {
11034 		{0, (CHIP_IS_E3B0(sc)) ?
11035 		 PBF_REG_INIT_CRD_Q0 : PBF_REG_P0_INIT_CRD,
11036 		 (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_Q0 : PBF_REG_P0_CREDIT,
11037 		 (CHIP_IS_E3B0(sc)) ?
11038 		 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
11039 		 PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
11040 		{1, (CHIP_IS_E3B0(sc)) ?
11041 		 PBF_REG_INIT_CRD_Q1 : PBF_REG_P1_INIT_CRD,
11042 		 (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_Q1 : PBF_REG_P1_CREDIT,
11043 		 (CHIP_IS_E3B0(sc)) ?
11044 		 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
11045 		 PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
11046 		{4, (CHIP_IS_E3B0(sc)) ?
11047 		 PBF_REG_INIT_CRD_LB_Q : PBF_REG_P4_INIT_CRD,
11048 		 (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_LB_Q : PBF_REG_P4_CREDIT,
11049 		 (CHIP_IS_E3B0(sc)) ?
11050 		 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
11051 		 PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
11052 	};
11053 
11054 	uint32_t i;
11055 
11056 	/* Verify the command queues are flushed P0, P1, P4 */
11057 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
11058 		bnx2x_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
11059 	}
11060 
11061 	/* Verify the transmission buffers are flushed P0, P1, P4 */
11062 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
11063 		bnx2x_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
11064 	}
11065 }
11066 
11067 static void bnx2x_hw_enable_status(struct bnx2x_softc *sc)
11068 {
11069 	__rte_unused uint32_t val;
11070 
11071 	val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
11072 	PMD_DRV_LOG(DEBUG, sc, "CFC_REG_WEAK_ENABLE_PF is 0x%x", val);
11073 
11074 	val = REG_RD(sc, PBF_REG_DISABLE_PF);
11075 	PMD_DRV_LOG(DEBUG, sc, "PBF_REG_DISABLE_PF is 0x%x", val);
11076 
11077 	val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
11078 	PMD_DRV_LOG(DEBUG, sc, "IGU_REG_PCI_PF_MSI_EN is 0x%x", val);
11079 
11080 	val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
11081 	PMD_DRV_LOG(DEBUG, sc, "IGU_REG_PCI_PF_MSIX_EN is 0x%x", val);
11082 
11083 	val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
11084 	PMD_DRV_LOG(DEBUG, sc, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x", val);
11085 
11086 	val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
11087 	PMD_DRV_LOG(DEBUG, sc,
11088 		    "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x", val);
11089 
11090 	val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
11091 	PMD_DRV_LOG(DEBUG, sc,
11092 		    "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x", val);
11093 
11094 	val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
11095 	PMD_DRV_LOG(DEBUG, sc, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x",
11096 		    val);
11097 }
11098 
11099 /**
11100  *	bnx2x_pf_flr_clnup
11101  *	a. re-enable target read on the PF
11102  *	b. poll cfc per function usgae counter
11103  *	c. poll the qm perfunction usage counter
11104  *	d. poll the tm per function usage counter
11105  *	e. poll the tm per function scan-done indication
11106  *	f. clear the dmae channel associated wit hthe PF
11107  *	g. zero the igu 'trailing edge' and 'leading edge' regs (attentions)
11108  *	h. call the common flr cleanup code with -1 (pf indication)
11109  */
11110 static int bnx2x_pf_flr_clnup(struct bnx2x_softc *sc)
11111 {
11112 	uint32_t poll_cnt = bnx2x_flr_clnup_poll_count(sc);
11113 
11114 	/* Re-enable PF target read access */
11115 	REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
11116 
11117 	/* Poll HW usage counters */
11118 	if (bnx2x_poll_hw_usage_counters(sc, poll_cnt)) {
11119 		return -1;
11120 	}
11121 
11122 	/* Zero the igu 'trailing edge' and 'leading edge' */
11123 
11124 	/* Send the FW cleanup command */
11125 	if (bnx2x_send_final_clnup(sc, (uint8_t) SC_FUNC(sc), poll_cnt)) {
11126 		return -1;
11127 	}
11128 
11129 	/* ATC cleanup */
11130 
11131 	/* Verify TX hw is flushed */
11132 	bnx2x_tx_hw_flushed(sc, poll_cnt);
11133 
11134 	/* Wait 100ms (not adjusted according to platform) */
11135 	DELAY(100000);
11136 
11137 	/* Verify no pending pci transactions */
11138 	if (bnx2x_is_pcie_pending(sc)) {
11139 		PMD_DRV_LOG(NOTICE, sc, "PCIE Transactions still pending");
11140 	}
11141 
11142 	/* Debug */
11143 	bnx2x_hw_enable_status(sc);
11144 
11145 	/*
11146 	 * Master enable - Due to WB DMAE writes performed before this
11147 	 * register is re-initialized as part of the regular function init
11148 	 */
11149 	REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
11150 
11151 	return 0;
11152 }
11153 
11154 static int bnx2x_init_hw_func(struct bnx2x_softc *sc)
11155 {
11156 	int port = SC_PORT(sc);
11157 	int func = SC_FUNC(sc);
11158 	int init_phase = PHASE_PF0 + func;
11159 	struct ecore_ilt *ilt = sc->ilt;
11160 	uint16_t cdu_ilt_start;
11161 	uint32_t addr, val;
11162 	uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
11163 	int main_mem_width, rc;
11164 	uint32_t i;
11165 
11166 	PMD_DRV_LOG(DEBUG, sc, "starting func init for func %d", func);
11167 
11168 	/* FLR cleanup */
11169 	if (!CHIP_IS_E1x(sc)) {
11170 		rc = bnx2x_pf_flr_clnup(sc);
11171 		if (rc) {
11172 			PMD_DRV_LOG(NOTICE, sc, "FLR cleanup failed!");
11173 			return rc;
11174 		}
11175 	}
11176 
11177 	/* set MSI reconfigure capability */
11178 	if (sc->devinfo.int_block == INT_BLOCK_HC) {
11179 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
11180 		val = REG_RD(sc, addr);
11181 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
11182 		REG_WR(sc, addr, val);
11183 	}
11184 
11185 	ecore_init_block(sc, BLOCK_PXP, init_phase);
11186 	ecore_init_block(sc, BLOCK_PXP2, init_phase);
11187 
11188 	ilt = sc->ilt;
11189 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
11190 
11191 	for (i = 0; i < L2_ILT_LINES(sc); i++) {
11192 		ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
11193 		ilt->lines[cdu_ilt_start + i].page_mapping =
11194 		    (rte_iova_t)sc->context[i].vcxt_dma.paddr;
11195 		ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
11196 	}
11197 	ecore_ilt_init_op(sc, INITOP_SET);
11198 
11199 	REG_WR(sc, PRS_REG_NIC_MODE, 1);
11200 
11201 	if (!CHIP_IS_E1x(sc)) {
11202 		uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
11203 
11204 /* Turn on a single ISR mode in IGU if driver is going to use
11205  * INT#x or MSI
11206  */
11207 		if ((sc->interrupt_mode != INTR_MODE_MSIX)
11208 		    || (sc->interrupt_mode != INTR_MODE_SINGLE_MSIX)) {
11209 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
11210 		}
11211 
11212 /*
11213  * Timers workaround bug: function init part.
11214  * Need to wait 20msec after initializing ILT,
11215  * needed to make sure there are no requests in
11216  * one of the PXP internal queues with "old" ILT addresses
11217  */
11218 		DELAY(20000);
11219 
11220 /*
11221  * Master enable - Due to WB DMAE writes performed before this
11222  * register is re-initialized as part of the regular function
11223  * init
11224  */
11225 		REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
11226 /* Enable the function in IGU */
11227 		REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
11228 	}
11229 
11230 	sc->dmae_ready = 1;
11231 
11232 	ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
11233 
11234 	if (!CHIP_IS_E1x(sc))
11235 		REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
11236 
11237 	ecore_init_block(sc, BLOCK_ATC, init_phase);
11238 	ecore_init_block(sc, BLOCK_DMAE, init_phase);
11239 	ecore_init_block(sc, BLOCK_NIG, init_phase);
11240 	ecore_init_block(sc, BLOCK_SRC, init_phase);
11241 	ecore_init_block(sc, BLOCK_MISC, init_phase);
11242 	ecore_init_block(sc, BLOCK_TCM, init_phase);
11243 	ecore_init_block(sc, BLOCK_UCM, init_phase);
11244 	ecore_init_block(sc, BLOCK_CCM, init_phase);
11245 	ecore_init_block(sc, BLOCK_XCM, init_phase);
11246 	ecore_init_block(sc, BLOCK_TSEM, init_phase);
11247 	ecore_init_block(sc, BLOCK_USEM, init_phase);
11248 	ecore_init_block(sc, BLOCK_CSEM, init_phase);
11249 	ecore_init_block(sc, BLOCK_XSEM, init_phase);
11250 
11251 	if (!CHIP_IS_E1x(sc))
11252 		REG_WR(sc, QM_REG_PF_EN, 1);
11253 
11254 	if (!CHIP_IS_E1x(sc)) {
11255 		REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11256 		REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11257 		REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11258 		REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11259 	}
11260 	ecore_init_block(sc, BLOCK_QM, init_phase);
11261 
11262 	ecore_init_block(sc, BLOCK_TM, init_phase);
11263 	ecore_init_block(sc, BLOCK_DORQ, init_phase);
11264 
11265 	ecore_init_block(sc, BLOCK_BRB1, init_phase);
11266 	ecore_init_block(sc, BLOCK_PRS, init_phase);
11267 	ecore_init_block(sc, BLOCK_TSDM, init_phase);
11268 	ecore_init_block(sc, BLOCK_CSDM, init_phase);
11269 	ecore_init_block(sc, BLOCK_USDM, init_phase);
11270 	ecore_init_block(sc, BLOCK_XSDM, init_phase);
11271 	ecore_init_block(sc, BLOCK_UPB, init_phase);
11272 	ecore_init_block(sc, BLOCK_XPB, init_phase);
11273 	ecore_init_block(sc, BLOCK_PBF, init_phase);
11274 	if (!CHIP_IS_E1x(sc))
11275 		REG_WR(sc, PBF_REG_DISABLE_PF, 0);
11276 
11277 	ecore_init_block(sc, BLOCK_CDU, init_phase);
11278 
11279 	ecore_init_block(sc, BLOCK_CFC, init_phase);
11280 
11281 	if (!CHIP_IS_E1x(sc))
11282 		REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
11283 
11284 	if (IS_MF(sc)) {
11285 		REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
11286 		REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8, OVLAN(sc));
11287 	}
11288 
11289 	ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
11290 
11291 	/* HC init per function */
11292 	if (sc->devinfo.int_block == INT_BLOCK_HC) {
11293 		if (CHIP_IS_E1H(sc)) {
11294 			REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
11295 
11296 			REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0);
11297 			REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0);
11298 		}
11299 		ecore_init_block(sc, BLOCK_HC, init_phase);
11300 
11301 	} else {
11302 		uint32_t num_segs, sb_idx, prod_offset;
11303 
11304 		REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
11305 
11306 		if (!CHIP_IS_E1x(sc)) {
11307 			REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
11308 			REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
11309 		}
11310 
11311 		ecore_init_block(sc, BLOCK_IGU, init_phase);
11312 
11313 		if (!CHIP_IS_E1x(sc)) {
11314 			int dsb_idx = 0;
11315 	/**
11316 	 * Producer memory:
11317 	 * E2 mode: address 0-135 match to the mapping memory;
11318 	 * 136 - PF0 default prod; 137 - PF1 default prod;
11319 	 * 138 - PF2 default prod; 139 - PF3 default prod;
11320 	 * 140 - PF0 attn prod;    141 - PF1 attn prod;
11321 	 * 142 - PF2 attn prod;    143 - PF3 attn prod;
11322 	 * 144-147 reserved.
11323 	 *
11324 	 * E1.5 mode - In backward compatible mode;
11325 	 * for non default SB; each even line in the memory
11326 	 * holds the U producer and each odd line hold
11327 	 * the C producer. The first 128 producers are for
11328 	 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
11329 	 * producers are for the DSB for each PF.
11330 	 * Each PF has five segments: (the order inside each
11331 	 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
11332 	 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
11333 	 * 144-147 attn prods;
11334 	 */
11335 			/* non-default-status-blocks */
11336 			num_segs = CHIP_INT_MODE_IS_BC(sc) ?
11337 			    IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
11338 			for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
11339 				prod_offset = (sc->igu_base_sb + sb_idx) *
11340 				    num_segs;
11341 
11342 				for (i = 0; i < num_segs; i++) {
11343 					addr = IGU_REG_PROD_CONS_MEMORY +
11344 					    (prod_offset + i) * 4;
11345 					REG_WR(sc, addr, 0);
11346 				}
11347 				/* send consumer update with value 0 */
11348 				bnx2x_ack_sb(sc, sc->igu_base_sb + sb_idx,
11349 					   USTORM_ID, 0, IGU_INT_NOP, 1);
11350 				bnx2x_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
11351 			}
11352 
11353 			/* default-status-blocks */
11354 			num_segs = CHIP_INT_MODE_IS_BC(sc) ?
11355 			    IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
11356 
11357 			if (CHIP_IS_MODE_4_PORT(sc))
11358 				dsb_idx = SC_FUNC(sc);
11359 			else
11360 				dsb_idx = SC_VN(sc);
11361 
11362 			prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
11363 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
11364 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
11365 
11366 			/*
11367 			 * igu prods come in chunks of E1HVN_MAX (4) -
11368 			 * does not matters what is the current chip mode
11369 			 */
11370 			for (i = 0; i < (num_segs * E1HVN_MAX); i += E1HVN_MAX) {
11371 				addr = IGU_REG_PROD_CONS_MEMORY +
11372 				    (prod_offset + i) * 4;
11373 				REG_WR(sc, addr, 0);
11374 			}
11375 			/* send consumer update with 0 */
11376 			if (CHIP_INT_MODE_IS_BC(sc)) {
11377 				bnx2x_ack_sb(sc, sc->igu_dsb_id,
11378 					   USTORM_ID, 0, IGU_INT_NOP, 1);
11379 				bnx2x_ack_sb(sc, sc->igu_dsb_id,
11380 					   CSTORM_ID, 0, IGU_INT_NOP, 1);
11381 				bnx2x_ack_sb(sc, sc->igu_dsb_id,
11382 					   XSTORM_ID, 0, IGU_INT_NOP, 1);
11383 				bnx2x_ack_sb(sc, sc->igu_dsb_id,
11384 					   TSTORM_ID, 0, IGU_INT_NOP, 1);
11385 				bnx2x_ack_sb(sc, sc->igu_dsb_id,
11386 					   ATTENTION_ID, 0, IGU_INT_NOP, 1);
11387 			} else {
11388 				bnx2x_ack_sb(sc, sc->igu_dsb_id,
11389 					   USTORM_ID, 0, IGU_INT_NOP, 1);
11390 				bnx2x_ack_sb(sc, sc->igu_dsb_id,
11391 					   ATTENTION_ID, 0, IGU_INT_NOP, 1);
11392 			}
11393 			bnx2x_igu_clear_sb(sc, sc->igu_dsb_id);
11394 
11395 			/* !!! these should become driver const once
11396 			   rf-tool supports split-68 const */
11397 			REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
11398 			REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
11399 			REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
11400 			REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
11401 			REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
11402 			REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
11403 		}
11404 	}
11405 
11406 	/* Reset PCIE errors for debug */
11407 	REG_WR(sc, 0x2114, 0xffffffff);
11408 	REG_WR(sc, 0x2120, 0xffffffff);
11409 
11410 	if (CHIP_IS_E1x(sc)) {
11411 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2;	/*dwords */
11412 		main_mem_base = HC_REG_MAIN_MEMORY +
11413 		    SC_PORT(sc) * (main_mem_size * 4);
11414 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
11415 		main_mem_width = 8;
11416 
11417 		val = REG_RD(sc, main_mem_prty_clr);
11418 		if (val) {
11419 			PMD_DRV_LOG(DEBUG, sc,
11420 				    "Parity errors in HC block during function init (0x%x)!",
11421 				    val);
11422 		}
11423 
11424 /* Clear "false" parity errors in MSI-X table */
11425 		for (i = main_mem_base;
11426 		     i < main_mem_base + main_mem_size * 4;
11427 		     i += main_mem_width) {
11428 			bnx2x_read_dmae(sc, i, main_mem_width / 4);
11429 			bnx2x_write_dmae(sc, BNX2X_SP_MAPPING(sc, wb_data),
11430 				       i, main_mem_width / 4);
11431 		}
11432 /* Clear HC parity attention */
11433 		REG_RD(sc, main_mem_prty_clr);
11434 	}
11435 
11436 	/* Enable STORMs SP logging */
11437 	REG_WR8(sc, BAR_USTRORM_INTMEM +
11438 		USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11439 	REG_WR8(sc, BAR_TSTRORM_INTMEM +
11440 		TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11441 	REG_WR8(sc, BAR_CSTRORM_INTMEM +
11442 		CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11443 	REG_WR8(sc, BAR_XSTRORM_INTMEM +
11444 		XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11445 
11446 	elink_phy_probe(&sc->link_params);
11447 
11448 	return 0;
11449 }
11450 
11451 static void bnx2x_link_reset(struct bnx2x_softc *sc)
11452 {
11453 	if (!BNX2X_NOMCP(sc)) {
11454 		bnx2x_acquire_phy_lock(sc);
11455 		elink_lfa_reset(&sc->link_params, &sc->link_vars);
11456 		bnx2x_release_phy_lock(sc);
11457 	} else {
11458 		if (!CHIP_REV_IS_SLOW(sc)) {
11459 			PMD_DRV_LOG(WARNING, sc,
11460 				    "Bootcode is missing - cannot reset link");
11461 		}
11462 	}
11463 }
11464 
11465 static void bnx2x_reset_port(struct bnx2x_softc *sc)
11466 {
11467 	int port = SC_PORT(sc);
11468 	uint32_t val;
11469 
11470 	/* reset physical Link */
11471 	bnx2x_link_reset(sc);
11472 
11473 	REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port * 4, 0);
11474 
11475 	/* Do not rcv packets to BRB */
11476 	REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port * 4, 0x0);
11477 	/* Do not direct rcv packets that are not for MCP to the BRB */
11478 	REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
11479 		    NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
11480 
11481 	/* Configure AEU */
11482 	REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port * 4, 0);
11483 
11484 	DELAY(100000);
11485 
11486 	/* Check for BRB port occupancy */
11487 	val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port * 4);
11488 	if (val) {
11489 		PMD_DRV_LOG(DEBUG, sc,
11490 			    "BRB1 is not empty, %d blocks are occupied", val);
11491 	}
11492 }
11493 
11494 static void bnx2x_ilt_wr(struct bnx2x_softc *sc, uint32_t index, rte_iova_t addr)
11495 {
11496 	int reg;
11497 	uint32_t wb_write[2];
11498 
11499 	reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index * 8;
11500 
11501 	wb_write[0] = ONCHIP_ADDR1(addr);
11502 	wb_write[1] = ONCHIP_ADDR2(addr);
11503 	REG_WR_DMAE(sc, reg, wb_write, 2);
11504 }
11505 
11506 static void bnx2x_clear_func_ilt(struct bnx2x_softc *sc, uint32_t func)
11507 {
11508 	uint32_t i, base = FUNC_ILT_BASE(func);
11509 	for (i = base; i < base + ILT_PER_FUNC; i++) {
11510 		bnx2x_ilt_wr(sc, i, 0);
11511 	}
11512 }
11513 
11514 static void bnx2x_reset_func(struct bnx2x_softc *sc)
11515 {
11516 	struct bnx2x_fastpath *fp;
11517 	int port = SC_PORT(sc);
11518 	int func = SC_FUNC(sc);
11519 	int i;
11520 
11521 	/* Disable the function in the FW */
11522 	REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
11523 	REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
11524 	REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
11525 	REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
11526 
11527 	/* FP SBs */
11528 	FOR_EACH_ETH_QUEUE(sc, i) {
11529 		fp = &sc->fp[i];
11530 		REG_WR8(sc, BAR_CSTRORM_INTMEM +
11531 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
11532 			SB_DISABLED);
11533 	}
11534 
11535 	/* SP SB */
11536 	REG_WR8(sc, BAR_CSTRORM_INTMEM +
11537 		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), SB_DISABLED);
11538 
11539 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
11540 		REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
11541 		       0);
11542 	}
11543 
11544 	/* Configure IGU */
11545 	if (sc->devinfo.int_block == INT_BLOCK_HC) {
11546 		REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0);
11547 		REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0);
11548 	} else {
11549 		REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
11550 		REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
11551 	}
11552 
11553 	if (CNIC_LOADED(sc)) {
11554 /* Disable Timer scan */
11555 		REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port * 4, 0);
11556 /*
11557  * Wait for at least 10ms and up to 2 second for the timers
11558  * scan to complete
11559  */
11560 		for (i = 0; i < 200; i++) {
11561 			DELAY(10000);
11562 			if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port * 4))
11563 				break;
11564 		}
11565 	}
11566 
11567 	/* Clear ILT */
11568 	bnx2x_clear_func_ilt(sc, func);
11569 
11570 	/*
11571 	 * Timers workaround bug for E2: if this is vnic-3,
11572 	 * we need to set the entire ilt range for this timers.
11573 	 */
11574 	if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
11575 		struct ilt_client_info ilt_cli;
11576 /* use dummy TM client */
11577 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
11578 		ilt_cli.start = 0;
11579 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
11580 		ilt_cli.client_num = ILT_CLIENT_TM;
11581 
11582 		ecore_ilt_boundry_init_op(sc, &ilt_cli, 0);
11583 	}
11584 
11585 	/* this assumes that reset_port() called before reset_func() */
11586 	if (!CHIP_IS_E1x(sc)) {
11587 		bnx2x_pf_disable(sc);
11588 	}
11589 
11590 	sc->dmae_ready = 0;
11591 }
11592 
11593 static void bnx2x_release_firmware(struct bnx2x_softc *sc)
11594 {
11595 	rte_free(sc->init_ops);
11596 	rte_free(sc->init_ops_offsets);
11597 	rte_free(sc->init_data);
11598 	rte_free(sc->iro_array);
11599 }
11600 
11601 static int bnx2x_init_firmware(struct bnx2x_softc *sc)
11602 {
11603 	uint32_t len, i;
11604 	uint8_t *p = sc->firmware;
11605 	uint32_t off[24];
11606 
11607 	for (i = 0; i < 24; ++i)
11608 		off[i] = rte_be_to_cpu_32(*((uint32_t *) sc->firmware + i));
11609 
11610 	len = off[0];
11611 	sc->init_ops = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11612 	if (!sc->init_ops)
11613 		goto alloc_failed;
11614 	bnx2x_data_to_init_ops(p + off[1], sc->init_ops, len);
11615 
11616 	len = off[2];
11617 	sc->init_ops_offsets = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11618 	if (!sc->init_ops_offsets)
11619 		goto alloc_failed;
11620 	bnx2x_data_to_init_offsets(p + off[3], sc->init_ops_offsets, len);
11621 
11622 	len = off[4];
11623 	sc->init_data = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11624 	if (!sc->init_data)
11625 		goto alloc_failed;
11626 	bnx2x_data_to_init_data(p + off[5], sc->init_data, len);
11627 
11628 	sc->tsem_int_table_data = p + off[7];
11629 	sc->tsem_pram_data = p + off[9];
11630 	sc->usem_int_table_data = p + off[11];
11631 	sc->usem_pram_data = p + off[13];
11632 	sc->csem_int_table_data = p + off[15];
11633 	sc->csem_pram_data = p + off[17];
11634 	sc->xsem_int_table_data = p + off[19];
11635 	sc->xsem_pram_data = p + off[21];
11636 
11637 	len = off[22];
11638 	sc->iro_array = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11639 	if (!sc->iro_array)
11640 		goto alloc_failed;
11641 	bnx2x_data_to_iro_array(p + off[23], sc->iro_array, len);
11642 
11643 	return 0;
11644 
11645 alloc_failed:
11646 	bnx2x_release_firmware(sc);
11647 	return -1;
11648 }
11649 
11650 static int cut_gzip_prefix(const uint8_t * zbuf, int len)
11651 {
11652 #define MIN_PREFIX_SIZE (10)
11653 
11654 	int n = MIN_PREFIX_SIZE;
11655 	uint16_t xlen;
11656 
11657 	if (!(zbuf[0] == 0x1f && zbuf[1] == 0x8b && zbuf[2] == Z_DEFLATED) ||
11658 	    len <= MIN_PREFIX_SIZE) {
11659 		return -1;
11660 	}
11661 
11662 	/* optional extra fields are present */
11663 	if (zbuf[3] & 0x4) {
11664 		xlen = zbuf[13];
11665 		xlen <<= 8;
11666 		xlen += zbuf[12];
11667 
11668 		n += xlen;
11669 	}
11670 	/* file name is present */
11671 	if (zbuf[3] & 0x8) {
11672 		while ((zbuf[n++] != 0) && (n < len)) ;
11673 	}
11674 
11675 	return n;
11676 }
11677 
11678 static int ecore_gunzip(struct bnx2x_softc *sc, const uint8_t * zbuf, int len)
11679 {
11680 	int ret;
11681 	int data_begin = cut_gzip_prefix(zbuf, len);
11682 
11683 	PMD_DRV_LOG(DEBUG, sc, "ecore_gunzip %d", len);
11684 
11685 	if (data_begin <= 0) {
11686 		PMD_DRV_LOG(NOTICE, sc, "bad gzip prefix");
11687 		return -1;
11688 	}
11689 
11690 	memset(&zlib_stream, 0, sizeof(zlib_stream));
11691 	zlib_stream.next_in = zbuf + data_begin;
11692 	zlib_stream.avail_in = len - data_begin;
11693 	zlib_stream.next_out = sc->gz_buf;
11694 	zlib_stream.avail_out = FW_BUF_SIZE;
11695 
11696 	ret = inflateInit2(&zlib_stream, -MAX_WBITS);
11697 	if (ret != Z_OK) {
11698 		PMD_DRV_LOG(NOTICE, sc, "zlib inflateInit2 error");
11699 		return ret;
11700 	}
11701 
11702 	ret = inflate(&zlib_stream, Z_FINISH);
11703 	if ((ret != Z_STREAM_END) && (ret != Z_OK)) {
11704 		PMD_DRV_LOG(NOTICE, sc, "zlib inflate error: %d %s", ret,
11705 			    zlib_stream.msg);
11706 	}
11707 
11708 	sc->gz_outlen = zlib_stream.total_out;
11709 	if (sc->gz_outlen & 0x3) {
11710 		PMD_DRV_LOG(NOTICE, sc, "firmware is not aligned. gz_outlen == %d",
11711 			    sc->gz_outlen);
11712 	}
11713 	sc->gz_outlen >>= 2;
11714 
11715 	inflateEnd(&zlib_stream);
11716 
11717 	if (ret == Z_STREAM_END)
11718 		return 0;
11719 
11720 	return ret;
11721 }
11722 
11723 static void
11724 ecore_write_dmae_phys_len(struct bnx2x_softc *sc, rte_iova_t phys_addr,
11725 			  uint32_t addr, uint32_t len)
11726 {
11727 	bnx2x_write_dmae_phys_len(sc, phys_addr, addr, len);
11728 }
11729 
11730 void
11731 ecore_storm_memset_struct(struct bnx2x_softc *sc, uint32_t addr, size_t size,
11732 			  uint32_t * data)
11733 {
11734 	uint8_t i;
11735 	for (i = 0; i < size / 4; i++) {
11736 		REG_WR(sc, addr + (i * 4), data[i]);
11737 	}
11738 }
11739 
11740 static const char *get_ext_phy_type(uint32_t ext_phy_type)
11741 {
11742 	uint32_t phy_type_idx = ext_phy_type >> 8;
11743 	static const char *types[] =
11744 	    { "DIRECT", "BNX2X-8071", "BNX2X-8072", "BNX2X-8073",
11745 		"BNX2X-8705", "BNX2X-8706", "BNX2X-8726", "BNX2X-8481", "SFX-7101",
11746 		"BNX2X-8727",
11747 		"BNX2X-8727-NOC", "BNX2X-84823", "NOT_CONN", "FAILURE"
11748 	};
11749 
11750 	if (phy_type_idx < 12)
11751 		return types[phy_type_idx];
11752 	else if (PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN == ext_phy_type)
11753 		return types[12];
11754 	else
11755 		return types[13];
11756 }
11757 
11758 static const char *get_state(uint32_t state)
11759 {
11760 	uint32_t state_idx = state >> 12;
11761 	static const char *states[] = { "CLOSED", "OPENING_WAIT4_LOAD",
11762 		"OPENING_WAIT4_PORT", "OPEN", "CLOSING_WAIT4_HALT",
11763 		"CLOSING_WAIT4_DELETE", "CLOSING_WAIT4_UNLOAD",
11764 		"UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN",
11765 		"UNKNOWN", "DISABLED", "DIAG", "ERROR", "UNDEFINED"
11766 	};
11767 
11768 	if (state_idx <= 0xF)
11769 		return states[state_idx];
11770 	else
11771 		return states[0x10];
11772 }
11773 
11774 static const char *get_recovery_state(uint32_t state)
11775 {
11776 	static const char *states[] = { "NONE", "DONE", "INIT",
11777 		"WAIT", "FAILED", "NIC_LOADING"
11778 	};
11779 	return states[state];
11780 }
11781 
11782 static const char *get_rx_mode(uint32_t mode)
11783 {
11784 	static const char *modes[] = { "NONE", "NORMAL", "ALLMULTI",
11785 		"PROMISC", "MAX_MULTICAST", "ERROR"
11786 	};
11787 
11788 	if (mode < 0x4)
11789 		return modes[mode];
11790 	else if (BNX2X_MAX_MULTICAST == mode)
11791 		return modes[4];
11792 	else
11793 		return modes[5];
11794 }
11795 
11796 #define BNX2X_INFO_STR_MAX 256
11797 static const char *get_bnx2x_flags(uint32_t flags)
11798 {
11799 	int i;
11800 	static const char *flag[] = { "ONE_PORT ", "NO_ISCSI ",
11801 		"NO_FCOE ", "NO_WOL ", "USING_DAC ", "USING_MSIX ",
11802 		"USING_MSI ", "DISABLE_MSI ", "UNKNOWN ", "NO_MCP ",
11803 		"SAFC_TX_FLAG ", "MF_FUNC_DIS ", "TX_SWITCHING "
11804 	};
11805 	static char flag_str[BNX2X_INFO_STR_MAX];
11806 	memset(flag_str, 0, BNX2X_INFO_STR_MAX);
11807 
11808 	for (i = 0; i < 5; i++)
11809 		if (flags & (1 << i)) {
11810 			strlcat(flag_str, flag[i], sizeof(flag_str));
11811 			flags ^= (1 << i);
11812 		}
11813 	if (flags) {
11814 		static char unknown[BNX2X_INFO_STR_MAX];
11815 		snprintf(unknown, 32, "Unknown flag mask %x", flags);
11816 		strlcat(flag_str, unknown, sizeof(flag_str));
11817 	}
11818 	return flag_str;
11819 }
11820 
11821 /* Prints useful adapter info. */
11822 void bnx2x_print_adapter_info(struct bnx2x_softc *sc)
11823 {
11824 	int i = 0;
11825 
11826 	PMD_DRV_LOG(INFO, sc, "========================================");
11827 	/* DPDK and Driver versions */
11828 	PMD_DRV_LOG(INFO, sc, "%12s : %s", "DPDK",
11829 			rte_version());
11830 	PMD_DRV_LOG(INFO, sc, "%12s : %s", "Driver",
11831 			bnx2x_pmd_version());
11832 	/* Firmware versions. */
11833 	PMD_DRV_LOG(INFO, sc, "%12s : %d.%d.%d",
11834 		     "Firmware",
11835 		     BNX2X_5710_FW_MAJOR_VERSION,
11836 		     BNX2X_5710_FW_MINOR_VERSION,
11837 		     BNX2X_5710_FW_REVISION_VERSION);
11838 	PMD_DRV_LOG(INFO, sc, "%12s : %s",
11839 		     "Bootcode", sc->devinfo.bc_ver_str);
11840 	/* Hardware chip info. */
11841 	PMD_DRV_LOG(INFO, sc, "%12s : %#08x", "ASIC", sc->devinfo.chip_id);
11842 	PMD_DRV_LOG(INFO, sc, "%12s : %c%d", "Rev", (CHIP_REV(sc) >> 12) + 'A',
11843 		     (CHIP_METAL(sc) >> 4));
11844 	/* Bus PCIe info. */
11845 	PMD_DRV_LOG(INFO, sc, "%12s : 0x%x", "Vendor Id",
11846 		    sc->devinfo.vendor_id);
11847 	PMD_DRV_LOG(INFO, sc, "%12s : 0x%x", "Device Id",
11848 		    sc->devinfo.device_id);
11849 	PMD_DRV_LOG(INFO, sc, "%12s : width x%d, ", "Bus PCIe",
11850 		    sc->devinfo.pcie_link_width);
11851 	switch (sc->devinfo.pcie_link_speed) {
11852 	case 1:
11853 		PMD_DRV_LOG(INFO, sc, "%23s", "2.5 Gbps");
11854 		break;
11855 	case 2:
11856 		PMD_DRV_LOG(INFO, sc, "%21s", "5 Gbps");
11857 		break;
11858 	case 4:
11859 		PMD_DRV_LOG(INFO, sc, "%21s", "8 Gbps");
11860 		break;
11861 	default:
11862 		PMD_DRV_LOG(INFO, sc, "%33s", "Unknown link speed");
11863 	}
11864 	/* Device features. */
11865 	PMD_DRV_LOG(INFO, sc, "%12s : ", "Flags");
11866 	/* Miscellaneous flags. */
11867 	if (sc->devinfo.pcie_cap_flags & BNX2X_MSI_CAPABLE_FLAG) {
11868 		PMD_DRV_LOG(INFO, sc, "%18s", "MSI");
11869 		i++;
11870 	}
11871 	if (sc->devinfo.pcie_cap_flags & BNX2X_MSIX_CAPABLE_FLAG) {
11872 		if (i > 0)
11873 			PMD_DRV_LOG(INFO, sc, "|");
11874 		PMD_DRV_LOG(INFO, sc, "%20s", "MSI-X");
11875 		i++;
11876 	}
11877 	PMD_DRV_LOG(INFO, sc, "%12s : %s", "OVLAN", (OVLAN(sc) ? "YES" : "NO"));
11878 	PMD_DRV_LOG(INFO, sc, "%12s : %s", "MF", (IS_MF(sc) ? "YES" : "NO"));
11879 	PMD_DRV_LOG(INFO, sc, "========================================");
11880 }
11881 
11882 /* Prints useful device info. */
11883 void bnx2x_print_device_info(struct bnx2x_softc *sc)
11884 {
11885 	__rte_unused uint32_t ext_phy_type;
11886 	uint32_t offset, reg_val;
11887 
11888 	PMD_INIT_FUNC_TRACE(sc);
11889 	offset = offsetof(struct shmem_region,
11890 			  dev_info.port_hw_config[0].external_phy_config);
11891 	reg_val = REG_RD(sc, sc->devinfo.shmem_base + offset);
11892 	if (sc->link_vars.phy_flags & PHY_XGXS_FLAG)
11893 		ext_phy_type = ELINK_XGXS_EXT_PHY_TYPE(reg_val);
11894 	else
11895 		ext_phy_type = ELINK_SERDES_EXT_PHY_TYPE(reg_val);
11896 
11897 	/* Device features. */
11898 	PMD_DRV_LOG(INFO, sc, "%12s : %u", "Bnx2x Func", sc->pcie_func);
11899 	PMD_DRV_LOG(INFO, sc,
11900 		    "%12s : %s", "Bnx2x Flags", get_bnx2x_flags(sc->flags));
11901 	PMD_DRV_LOG(INFO, sc, "%12s : %s", "DMAE Is",
11902 		     (sc->dmae_ready ? "Ready" : "Not Ready"));
11903 	PMD_DRV_LOG(INFO, sc, "%12s : %u", "MTU", sc->mtu);
11904 	PMD_DRV_LOG(INFO, sc,
11905 		    "%12s : %s", "PHY Type", get_ext_phy_type(ext_phy_type));
11906 	PMD_DRV_LOG(INFO, sc, "%12s : %x:%x:%x:%x:%x:%x", "MAC Addr",
11907 			sc->link_params.mac_addr[0],
11908 			sc->link_params.mac_addr[1],
11909 			sc->link_params.mac_addr[2],
11910 			sc->link_params.mac_addr[3],
11911 			sc->link_params.mac_addr[4],
11912 			sc->link_params.mac_addr[5]);
11913 	PMD_DRV_LOG(INFO, sc, "%12s : %s", "RX Mode", get_rx_mode(sc->rx_mode));
11914 	PMD_DRV_LOG(INFO, sc, "%12s : %s", "State", get_state(sc->state));
11915 	if (sc->recovery_state)
11916 		PMD_DRV_LOG(INFO, sc, "%12s : %s", "Recovery",
11917 			     get_recovery_state(sc->recovery_state));
11918 	/* Queue info. */
11919 	if (IS_PF(sc)) {
11920 		switch (sc->sp->rss_rdata.rss_mode) {
11921 		case ETH_RSS_MODE_DISABLED:
11922 			PMD_DRV_LOG(INFO, sc, "%12s : %s", "Queues", "RSS mode - None");
11923 			break;
11924 		case ETH_RSS_MODE_REGULAR:
11925 			PMD_DRV_LOG(INFO, sc, "%12s : %s,", "Queues", "RSS mode - Regular");
11926 			PMD_DRV_LOG(INFO, sc, "%16d", sc->num_queues);
11927 			break;
11928 		default:
11929 			PMD_DRV_LOG(INFO, sc, "%12s : %s", "Queues", "RSS mode - Unknown");
11930 			break;
11931 		}
11932 	}
11933 	PMD_DRV_LOG(INFO, sc, "%12s : CQ = %lx,  EQ = %lx", "SPQ Left",
11934 		     sc->cq_spq_left, sc->eq_spq_left);
11935 
11936 	PMD_DRV_LOG(INFO, sc,
11937 		    "%12s : %x", "Switch", sc->link_params.switch_cfg);
11938 	PMD_DRV_LOG(INFO, sc, "pcie_bus=%d, pcie_device=%d",
11939 			sc->pcie_bus, sc->pcie_device);
11940 	PMD_DRV_LOG(INFO, sc, "bar0.addr=%p, bar1.addr=%p",
11941 			sc->bar[BAR0].base_addr, sc->bar[BAR1].base_addr);
11942 	PMD_DRV_LOG(INFO, sc, "port=%d, path=%d, vnic=%d, func=%d",
11943 			PORT_ID(sc), PATH_ID(sc), VNIC_ID(sc), FUNC_ID(sc));
11944 }
11945