1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2016-2017 Intel Corporation 3 */ 4 5 #include <rte_common.h> 6 #include <rte_hexdump.h> 7 #include <rte_cryptodev.h> 8 #include <rte_cryptodev_pmd.h> 9 #include <rte_bus_vdev.h> 10 #include <rte_malloc.h> 11 #include <rte_cpuflags.h> 12 13 #include <openssl/hmac.h> 14 #include <openssl/evp.h> 15 16 #include "openssl_pmd_private.h" 17 #include "compat.h" 18 19 #define DES_BLOCK_SIZE 8 20 21 static uint8_t cryptodev_driver_id; 22 23 #if (OPENSSL_VERSION_NUMBER < 0x10100000L) 24 static HMAC_CTX *HMAC_CTX_new(void) 25 { 26 HMAC_CTX *ctx = OPENSSL_malloc(sizeof(*ctx)); 27 28 if (ctx != NULL) 29 HMAC_CTX_init(ctx); 30 return ctx; 31 } 32 33 static void HMAC_CTX_free(HMAC_CTX *ctx) 34 { 35 if (ctx != NULL) { 36 HMAC_CTX_cleanup(ctx); 37 OPENSSL_free(ctx); 38 } 39 } 40 #endif 41 42 static int cryptodev_openssl_remove(struct rte_vdev_device *vdev); 43 44 /*----------------------------------------------------------------------------*/ 45 46 /** 47 * Increment counter by 1 48 * Counter is 64 bit array, big-endian 49 */ 50 static void 51 ctr_inc(uint8_t *ctr) 52 { 53 uint64_t *ctr64 = (uint64_t *)ctr; 54 55 *ctr64 = __builtin_bswap64(*ctr64); 56 (*ctr64)++; 57 *ctr64 = __builtin_bswap64(*ctr64); 58 } 59 60 /* 61 *------------------------------------------------------------------------------ 62 * Session Prepare 63 *------------------------------------------------------------------------------ 64 */ 65 66 /** Get xform chain order */ 67 static enum openssl_chain_order 68 openssl_get_chain_order(const struct rte_crypto_sym_xform *xform) 69 { 70 enum openssl_chain_order res = OPENSSL_CHAIN_NOT_SUPPORTED; 71 72 if (xform != NULL) { 73 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) { 74 if (xform->next == NULL) 75 res = OPENSSL_CHAIN_ONLY_AUTH; 76 else if (xform->next->type == 77 RTE_CRYPTO_SYM_XFORM_CIPHER) 78 res = OPENSSL_CHAIN_AUTH_CIPHER; 79 } 80 if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) { 81 if (xform->next == NULL) 82 res = OPENSSL_CHAIN_ONLY_CIPHER; 83 else if (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH) 84 res = OPENSSL_CHAIN_CIPHER_AUTH; 85 } 86 if (xform->type == RTE_CRYPTO_SYM_XFORM_AEAD) 87 res = OPENSSL_CHAIN_COMBINED; 88 } 89 90 return res; 91 } 92 93 /** Get session cipher key from input cipher key */ 94 static void 95 get_cipher_key(const uint8_t *input_key, int keylen, uint8_t *session_key) 96 { 97 memcpy(session_key, input_key, keylen); 98 } 99 100 /** Get key ede 24 bytes standard from input key */ 101 static int 102 get_cipher_key_ede(const uint8_t *key, int keylen, uint8_t *key_ede) 103 { 104 int res = 0; 105 106 /* Initialize keys - 24 bytes: [key1-key2-key3] */ 107 switch (keylen) { 108 case 24: 109 memcpy(key_ede, key, 24); 110 break; 111 case 16: 112 /* K3 = K1 */ 113 memcpy(key_ede, key, 16); 114 memcpy(key_ede + 16, key, 8); 115 break; 116 case 8: 117 /* K1 = K2 = K3 (DES compatibility) */ 118 memcpy(key_ede, key, 8); 119 memcpy(key_ede + 8, key, 8); 120 memcpy(key_ede + 16, key, 8); 121 break; 122 default: 123 OPENSSL_LOG(ERR, "Unsupported key size"); 124 res = -EINVAL; 125 } 126 127 return res; 128 } 129 130 /** Get adequate openssl function for input cipher algorithm */ 131 static uint8_t 132 get_cipher_algo(enum rte_crypto_cipher_algorithm sess_algo, size_t keylen, 133 const EVP_CIPHER **algo) 134 { 135 int res = 0; 136 137 if (algo != NULL) { 138 switch (sess_algo) { 139 case RTE_CRYPTO_CIPHER_3DES_CBC: 140 switch (keylen) { 141 case 8: 142 *algo = EVP_des_cbc(); 143 break; 144 case 16: 145 *algo = EVP_des_ede_cbc(); 146 break; 147 case 24: 148 *algo = EVP_des_ede3_cbc(); 149 break; 150 default: 151 res = -EINVAL; 152 } 153 break; 154 case RTE_CRYPTO_CIPHER_3DES_CTR: 155 break; 156 case RTE_CRYPTO_CIPHER_AES_CBC: 157 switch (keylen) { 158 case 16: 159 *algo = EVP_aes_128_cbc(); 160 break; 161 case 24: 162 *algo = EVP_aes_192_cbc(); 163 break; 164 case 32: 165 *algo = EVP_aes_256_cbc(); 166 break; 167 default: 168 res = -EINVAL; 169 } 170 break; 171 case RTE_CRYPTO_CIPHER_AES_CTR: 172 switch (keylen) { 173 case 16: 174 *algo = EVP_aes_128_ctr(); 175 break; 176 case 24: 177 *algo = EVP_aes_192_ctr(); 178 break; 179 case 32: 180 *algo = EVP_aes_256_ctr(); 181 break; 182 default: 183 res = -EINVAL; 184 } 185 break; 186 default: 187 res = -EINVAL; 188 break; 189 } 190 } else { 191 res = -EINVAL; 192 } 193 194 return res; 195 } 196 197 /** Get adequate openssl function for input auth algorithm */ 198 static uint8_t 199 get_auth_algo(enum rte_crypto_auth_algorithm sessalgo, 200 const EVP_MD **algo) 201 { 202 int res = 0; 203 204 if (algo != NULL) { 205 switch (sessalgo) { 206 case RTE_CRYPTO_AUTH_MD5: 207 case RTE_CRYPTO_AUTH_MD5_HMAC: 208 *algo = EVP_md5(); 209 break; 210 case RTE_CRYPTO_AUTH_SHA1: 211 case RTE_CRYPTO_AUTH_SHA1_HMAC: 212 *algo = EVP_sha1(); 213 break; 214 case RTE_CRYPTO_AUTH_SHA224: 215 case RTE_CRYPTO_AUTH_SHA224_HMAC: 216 *algo = EVP_sha224(); 217 break; 218 case RTE_CRYPTO_AUTH_SHA256: 219 case RTE_CRYPTO_AUTH_SHA256_HMAC: 220 *algo = EVP_sha256(); 221 break; 222 case RTE_CRYPTO_AUTH_SHA384: 223 case RTE_CRYPTO_AUTH_SHA384_HMAC: 224 *algo = EVP_sha384(); 225 break; 226 case RTE_CRYPTO_AUTH_SHA512: 227 case RTE_CRYPTO_AUTH_SHA512_HMAC: 228 *algo = EVP_sha512(); 229 break; 230 default: 231 res = -EINVAL; 232 break; 233 } 234 } else { 235 res = -EINVAL; 236 } 237 238 return res; 239 } 240 241 /** Get adequate openssl function for input cipher algorithm */ 242 static uint8_t 243 get_aead_algo(enum rte_crypto_aead_algorithm sess_algo, size_t keylen, 244 const EVP_CIPHER **algo) 245 { 246 int res = 0; 247 248 if (algo != NULL) { 249 switch (sess_algo) { 250 case RTE_CRYPTO_AEAD_AES_GCM: 251 switch (keylen) { 252 case 16: 253 *algo = EVP_aes_128_gcm(); 254 break; 255 case 24: 256 *algo = EVP_aes_192_gcm(); 257 break; 258 case 32: 259 *algo = EVP_aes_256_gcm(); 260 break; 261 default: 262 res = -EINVAL; 263 } 264 break; 265 case RTE_CRYPTO_AEAD_AES_CCM: 266 switch (keylen) { 267 case 16: 268 *algo = EVP_aes_128_ccm(); 269 break; 270 case 24: 271 *algo = EVP_aes_192_ccm(); 272 break; 273 case 32: 274 *algo = EVP_aes_256_ccm(); 275 break; 276 default: 277 res = -EINVAL; 278 } 279 break; 280 default: 281 res = -EINVAL; 282 break; 283 } 284 } else { 285 res = -EINVAL; 286 } 287 288 return res; 289 } 290 291 /* Set session AEAD encryption parameters */ 292 static int 293 openssl_set_sess_aead_enc_param(struct openssl_session *sess, 294 enum rte_crypto_aead_algorithm algo, 295 uint8_t tag_len, const uint8_t *key) 296 { 297 int iv_type = 0; 298 unsigned int do_ccm; 299 300 sess->cipher.direction = RTE_CRYPTO_CIPHER_OP_ENCRYPT; 301 sess->auth.operation = RTE_CRYPTO_AUTH_OP_GENERATE; 302 303 /* Select AEAD algo */ 304 switch (algo) { 305 case RTE_CRYPTO_AEAD_AES_GCM: 306 iv_type = EVP_CTRL_GCM_SET_IVLEN; 307 if (tag_len != 16) 308 return -EINVAL; 309 do_ccm = 0; 310 break; 311 case RTE_CRYPTO_AEAD_AES_CCM: 312 iv_type = EVP_CTRL_CCM_SET_IVLEN; 313 /* Digest size can be 4, 6, 8, 10, 12, 14 or 16 bytes */ 314 if (tag_len < 4 || tag_len > 16 || (tag_len & 1) == 1) 315 return -EINVAL; 316 do_ccm = 1; 317 break; 318 default: 319 return -ENOTSUP; 320 } 321 322 sess->cipher.mode = OPENSSL_CIPHER_LIB; 323 sess->cipher.ctx = EVP_CIPHER_CTX_new(); 324 325 if (get_aead_algo(algo, sess->cipher.key.length, 326 &sess->cipher.evp_algo) != 0) 327 return -EINVAL; 328 329 get_cipher_key(key, sess->cipher.key.length, sess->cipher.key.data); 330 331 sess->chain_order = OPENSSL_CHAIN_COMBINED; 332 333 if (EVP_EncryptInit_ex(sess->cipher.ctx, sess->cipher.evp_algo, 334 NULL, NULL, NULL) <= 0) 335 return -EINVAL; 336 337 if (EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, iv_type, sess->iv.length, 338 NULL) <= 0) 339 return -EINVAL; 340 341 if (do_ccm) 342 EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, EVP_CTRL_CCM_SET_TAG, 343 tag_len, NULL); 344 345 if (EVP_EncryptInit_ex(sess->cipher.ctx, NULL, NULL, key, NULL) <= 0) 346 return -EINVAL; 347 348 return 0; 349 } 350 351 /* Set session AEAD decryption parameters */ 352 static int 353 openssl_set_sess_aead_dec_param(struct openssl_session *sess, 354 enum rte_crypto_aead_algorithm algo, 355 uint8_t tag_len, const uint8_t *key) 356 { 357 int iv_type = 0; 358 unsigned int do_ccm = 0; 359 360 sess->cipher.direction = RTE_CRYPTO_CIPHER_OP_DECRYPT; 361 sess->auth.operation = RTE_CRYPTO_AUTH_OP_VERIFY; 362 363 /* Select AEAD algo */ 364 switch (algo) { 365 case RTE_CRYPTO_AEAD_AES_GCM: 366 iv_type = EVP_CTRL_GCM_SET_IVLEN; 367 if (tag_len != 16) 368 return -EINVAL; 369 break; 370 case RTE_CRYPTO_AEAD_AES_CCM: 371 iv_type = EVP_CTRL_CCM_SET_IVLEN; 372 /* Digest size can be 4, 6, 8, 10, 12, 14 or 16 bytes */ 373 if (tag_len < 4 || tag_len > 16 || (tag_len & 1) == 1) 374 return -EINVAL; 375 do_ccm = 1; 376 break; 377 default: 378 return -ENOTSUP; 379 } 380 381 sess->cipher.mode = OPENSSL_CIPHER_LIB; 382 sess->cipher.ctx = EVP_CIPHER_CTX_new(); 383 384 if (get_aead_algo(algo, sess->cipher.key.length, 385 &sess->cipher.evp_algo) != 0) 386 return -EINVAL; 387 388 get_cipher_key(key, sess->cipher.key.length, sess->cipher.key.data); 389 390 sess->chain_order = OPENSSL_CHAIN_COMBINED; 391 392 if (EVP_DecryptInit_ex(sess->cipher.ctx, sess->cipher.evp_algo, 393 NULL, NULL, NULL) <= 0) 394 return -EINVAL; 395 396 if (EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, iv_type, 397 sess->iv.length, NULL) <= 0) 398 return -EINVAL; 399 400 if (do_ccm) 401 EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, EVP_CTRL_CCM_SET_TAG, 402 tag_len, NULL); 403 404 if (EVP_DecryptInit_ex(sess->cipher.ctx, NULL, NULL, key, NULL) <= 0) 405 return -EINVAL; 406 407 return 0; 408 } 409 410 /** Set session cipher parameters */ 411 static int 412 openssl_set_session_cipher_parameters(struct openssl_session *sess, 413 const struct rte_crypto_sym_xform *xform) 414 { 415 /* Select cipher direction */ 416 sess->cipher.direction = xform->cipher.op; 417 /* Select cipher key */ 418 sess->cipher.key.length = xform->cipher.key.length; 419 420 /* Set IV parameters */ 421 sess->iv.offset = xform->cipher.iv.offset; 422 sess->iv.length = xform->cipher.iv.length; 423 424 /* Select cipher algo */ 425 switch (xform->cipher.algo) { 426 case RTE_CRYPTO_CIPHER_3DES_CBC: 427 case RTE_CRYPTO_CIPHER_AES_CBC: 428 case RTE_CRYPTO_CIPHER_AES_CTR: 429 sess->cipher.mode = OPENSSL_CIPHER_LIB; 430 sess->cipher.algo = xform->cipher.algo; 431 sess->cipher.ctx = EVP_CIPHER_CTX_new(); 432 433 if (get_cipher_algo(sess->cipher.algo, sess->cipher.key.length, 434 &sess->cipher.evp_algo) != 0) 435 return -EINVAL; 436 437 get_cipher_key(xform->cipher.key.data, sess->cipher.key.length, 438 sess->cipher.key.data); 439 if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) { 440 if (EVP_EncryptInit_ex(sess->cipher.ctx, 441 sess->cipher.evp_algo, 442 NULL, xform->cipher.key.data, 443 NULL) != 1) { 444 return -EINVAL; 445 } 446 } else if (sess->cipher.direction == 447 RTE_CRYPTO_CIPHER_OP_DECRYPT) { 448 if (EVP_DecryptInit_ex(sess->cipher.ctx, 449 sess->cipher.evp_algo, 450 NULL, xform->cipher.key.data, 451 NULL) != 1) { 452 return -EINVAL; 453 } 454 } 455 456 break; 457 458 case RTE_CRYPTO_CIPHER_3DES_CTR: 459 sess->cipher.mode = OPENSSL_CIPHER_DES3CTR; 460 sess->cipher.ctx = EVP_CIPHER_CTX_new(); 461 462 if (get_cipher_key_ede(xform->cipher.key.data, 463 sess->cipher.key.length, 464 sess->cipher.key.data) != 0) 465 return -EINVAL; 466 break; 467 468 case RTE_CRYPTO_CIPHER_DES_CBC: 469 sess->cipher.algo = xform->cipher.algo; 470 sess->cipher.ctx = EVP_CIPHER_CTX_new(); 471 sess->cipher.evp_algo = EVP_des_cbc(); 472 473 get_cipher_key(xform->cipher.key.data, sess->cipher.key.length, 474 sess->cipher.key.data); 475 if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) { 476 if (EVP_EncryptInit_ex(sess->cipher.ctx, 477 sess->cipher.evp_algo, 478 NULL, xform->cipher.key.data, 479 NULL) != 1) { 480 return -EINVAL; 481 } 482 } else if (sess->cipher.direction == 483 RTE_CRYPTO_CIPHER_OP_DECRYPT) { 484 if (EVP_DecryptInit_ex(sess->cipher.ctx, 485 sess->cipher.evp_algo, 486 NULL, xform->cipher.key.data, 487 NULL) != 1) { 488 return -EINVAL; 489 } 490 } 491 492 break; 493 494 case RTE_CRYPTO_CIPHER_DES_DOCSISBPI: 495 sess->cipher.algo = xform->cipher.algo; 496 sess->chain_order = OPENSSL_CHAIN_CIPHER_BPI; 497 sess->cipher.ctx = EVP_CIPHER_CTX_new(); 498 sess->cipher.evp_algo = EVP_des_cbc(); 499 500 sess->cipher.bpi_ctx = EVP_CIPHER_CTX_new(); 501 /* IV will be ECB encrypted whether direction is encrypt or decrypt */ 502 if (EVP_EncryptInit_ex(sess->cipher.bpi_ctx, EVP_des_ecb(), 503 NULL, xform->cipher.key.data, 0) != 1) 504 return -EINVAL; 505 506 get_cipher_key(xform->cipher.key.data, sess->cipher.key.length, 507 sess->cipher.key.data); 508 if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) { 509 if (EVP_EncryptInit_ex(sess->cipher.ctx, 510 sess->cipher.evp_algo, 511 NULL, xform->cipher.key.data, 512 NULL) != 1) { 513 return -EINVAL; 514 } 515 } else if (sess->cipher.direction == 516 RTE_CRYPTO_CIPHER_OP_DECRYPT) { 517 if (EVP_DecryptInit_ex(sess->cipher.ctx, 518 sess->cipher.evp_algo, 519 NULL, xform->cipher.key.data, 520 NULL) != 1) { 521 return -EINVAL; 522 } 523 } 524 525 break; 526 default: 527 sess->cipher.algo = RTE_CRYPTO_CIPHER_NULL; 528 return -ENOTSUP; 529 } 530 531 return 0; 532 } 533 534 /* Set session auth parameters */ 535 static int 536 openssl_set_session_auth_parameters(struct openssl_session *sess, 537 const struct rte_crypto_sym_xform *xform) 538 { 539 /* Select auth generate/verify */ 540 sess->auth.operation = xform->auth.op; 541 sess->auth.algo = xform->auth.algo; 542 543 sess->auth.digest_length = xform->auth.digest_length; 544 545 /* Select auth algo */ 546 switch (xform->auth.algo) { 547 case RTE_CRYPTO_AUTH_AES_GMAC: 548 /* 549 * OpenSSL requires GMAC to be a GCM operation 550 * with no cipher data length 551 */ 552 sess->cipher.key.length = xform->auth.key.length; 553 554 /* Set IV parameters */ 555 sess->iv.offset = xform->auth.iv.offset; 556 sess->iv.length = xform->auth.iv.length; 557 558 if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_GENERATE) 559 return openssl_set_sess_aead_enc_param(sess, 560 RTE_CRYPTO_AEAD_AES_GCM, 561 xform->auth.digest_length, 562 xform->auth.key.data); 563 else 564 return openssl_set_sess_aead_dec_param(sess, 565 RTE_CRYPTO_AEAD_AES_GCM, 566 xform->auth.digest_length, 567 xform->auth.key.data); 568 break; 569 570 case RTE_CRYPTO_AUTH_MD5: 571 case RTE_CRYPTO_AUTH_SHA1: 572 case RTE_CRYPTO_AUTH_SHA224: 573 case RTE_CRYPTO_AUTH_SHA256: 574 case RTE_CRYPTO_AUTH_SHA384: 575 case RTE_CRYPTO_AUTH_SHA512: 576 sess->auth.mode = OPENSSL_AUTH_AS_AUTH; 577 if (get_auth_algo(xform->auth.algo, 578 &sess->auth.auth.evp_algo) != 0) 579 return -EINVAL; 580 sess->auth.auth.ctx = EVP_MD_CTX_create(); 581 break; 582 583 case RTE_CRYPTO_AUTH_MD5_HMAC: 584 case RTE_CRYPTO_AUTH_SHA1_HMAC: 585 case RTE_CRYPTO_AUTH_SHA224_HMAC: 586 case RTE_CRYPTO_AUTH_SHA256_HMAC: 587 case RTE_CRYPTO_AUTH_SHA384_HMAC: 588 case RTE_CRYPTO_AUTH_SHA512_HMAC: 589 sess->auth.mode = OPENSSL_AUTH_AS_HMAC; 590 sess->auth.hmac.ctx = HMAC_CTX_new(); 591 if (get_auth_algo(xform->auth.algo, 592 &sess->auth.hmac.evp_algo) != 0) 593 return -EINVAL; 594 595 if (HMAC_Init_ex(sess->auth.hmac.ctx, 596 xform->auth.key.data, 597 xform->auth.key.length, 598 sess->auth.hmac.evp_algo, NULL) != 1) 599 return -EINVAL; 600 break; 601 602 default: 603 return -ENOTSUP; 604 } 605 606 return 0; 607 } 608 609 /* Set session AEAD parameters */ 610 static int 611 openssl_set_session_aead_parameters(struct openssl_session *sess, 612 const struct rte_crypto_sym_xform *xform) 613 { 614 /* Select cipher key */ 615 sess->cipher.key.length = xform->aead.key.length; 616 617 /* Set IV parameters */ 618 if (xform->aead.algo == RTE_CRYPTO_AEAD_AES_CCM) 619 /* 620 * For AES-CCM, the actual IV is placed 621 * one byte after the start of the IV field, 622 * according to the API. 623 */ 624 sess->iv.offset = xform->aead.iv.offset + 1; 625 else 626 sess->iv.offset = xform->aead.iv.offset; 627 628 sess->iv.length = xform->aead.iv.length; 629 630 sess->auth.aad_length = xform->aead.aad_length; 631 sess->auth.digest_length = xform->aead.digest_length; 632 633 sess->aead_algo = xform->aead.algo; 634 /* Select cipher direction */ 635 if (xform->aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT) 636 return openssl_set_sess_aead_enc_param(sess, xform->aead.algo, 637 xform->aead.digest_length, xform->aead.key.data); 638 else 639 return openssl_set_sess_aead_dec_param(sess, xform->aead.algo, 640 xform->aead.digest_length, xform->aead.key.data); 641 } 642 643 /** Parse crypto xform chain and set private session parameters */ 644 int 645 openssl_set_session_parameters(struct openssl_session *sess, 646 const struct rte_crypto_sym_xform *xform) 647 { 648 const struct rte_crypto_sym_xform *cipher_xform = NULL; 649 const struct rte_crypto_sym_xform *auth_xform = NULL; 650 const struct rte_crypto_sym_xform *aead_xform = NULL; 651 int ret; 652 653 sess->chain_order = openssl_get_chain_order(xform); 654 switch (sess->chain_order) { 655 case OPENSSL_CHAIN_ONLY_CIPHER: 656 cipher_xform = xform; 657 break; 658 case OPENSSL_CHAIN_ONLY_AUTH: 659 auth_xform = xform; 660 break; 661 case OPENSSL_CHAIN_CIPHER_AUTH: 662 cipher_xform = xform; 663 auth_xform = xform->next; 664 break; 665 case OPENSSL_CHAIN_AUTH_CIPHER: 666 auth_xform = xform; 667 cipher_xform = xform->next; 668 break; 669 case OPENSSL_CHAIN_COMBINED: 670 aead_xform = xform; 671 break; 672 default: 673 return -EINVAL; 674 } 675 676 /* Default IV length = 0 */ 677 sess->iv.length = 0; 678 679 /* cipher_xform must be check before auth_xform */ 680 if (cipher_xform) { 681 ret = openssl_set_session_cipher_parameters( 682 sess, cipher_xform); 683 if (ret != 0) { 684 OPENSSL_LOG(ERR, 685 "Invalid/unsupported cipher parameters"); 686 return ret; 687 } 688 } 689 690 if (auth_xform) { 691 ret = openssl_set_session_auth_parameters(sess, auth_xform); 692 if (ret != 0) { 693 OPENSSL_LOG(ERR, 694 "Invalid/unsupported auth parameters"); 695 return ret; 696 } 697 } 698 699 if (aead_xform) { 700 ret = openssl_set_session_aead_parameters(sess, aead_xform); 701 if (ret != 0) { 702 OPENSSL_LOG(ERR, 703 "Invalid/unsupported AEAD parameters"); 704 return ret; 705 } 706 } 707 708 return 0; 709 } 710 711 /** Reset private session parameters */ 712 void 713 openssl_reset_session(struct openssl_session *sess) 714 { 715 EVP_CIPHER_CTX_free(sess->cipher.ctx); 716 717 if (sess->chain_order == OPENSSL_CHAIN_CIPHER_BPI) 718 EVP_CIPHER_CTX_free(sess->cipher.bpi_ctx); 719 720 switch (sess->auth.mode) { 721 case OPENSSL_AUTH_AS_AUTH: 722 EVP_MD_CTX_destroy(sess->auth.auth.ctx); 723 break; 724 case OPENSSL_AUTH_AS_HMAC: 725 EVP_PKEY_free(sess->auth.hmac.pkey); 726 HMAC_CTX_free(sess->auth.hmac.ctx); 727 break; 728 default: 729 break; 730 } 731 } 732 733 /** Provide session for operation */ 734 static void * 735 get_session(struct openssl_qp *qp, struct rte_crypto_op *op) 736 { 737 struct openssl_session *sess = NULL; 738 struct openssl_asym_session *asym_sess = NULL; 739 740 if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) { 741 if (op->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC) { 742 /* get existing session */ 743 if (likely(op->sym->session != NULL)) 744 sess = (struct openssl_session *) 745 get_sym_session_private_data( 746 op->sym->session, 747 cryptodev_driver_id); 748 } else { 749 if (likely(op->asym->session != NULL)) 750 asym_sess = (struct openssl_asym_session *) 751 get_asym_session_private_data( 752 op->asym->session, 753 cryptodev_driver_id); 754 if (asym_sess == NULL) 755 op->status = 756 RTE_CRYPTO_OP_STATUS_INVALID_SESSION; 757 return asym_sess; 758 } 759 } else { 760 /* sessionless asymmetric not supported */ 761 if (op->type == RTE_CRYPTO_OP_TYPE_ASYMMETRIC) 762 return NULL; 763 764 /* provide internal session */ 765 void *_sess = rte_cryptodev_sym_session_create(qp->sess_mp); 766 void *_sess_private_data = NULL; 767 768 if (_sess == NULL) 769 return NULL; 770 771 if (rte_mempool_get(qp->sess_mp_priv, 772 (void **)&_sess_private_data)) 773 return NULL; 774 775 sess = (struct openssl_session *)_sess_private_data; 776 777 if (unlikely(openssl_set_session_parameters(sess, 778 op->sym->xform) != 0)) { 779 rte_mempool_put(qp->sess_mp, _sess); 780 rte_mempool_put(qp->sess_mp_priv, _sess_private_data); 781 sess = NULL; 782 } 783 op->sym->session = (struct rte_cryptodev_sym_session *)_sess; 784 set_sym_session_private_data(op->sym->session, 785 cryptodev_driver_id, _sess_private_data); 786 } 787 788 if (sess == NULL) 789 op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION; 790 791 return sess; 792 } 793 794 /* 795 *------------------------------------------------------------------------------ 796 * Process Operations 797 *------------------------------------------------------------------------------ 798 */ 799 static inline int 800 process_openssl_encryption_update(struct rte_mbuf *mbuf_src, int offset, 801 uint8_t **dst, int srclen, EVP_CIPHER_CTX *ctx, uint8_t inplace) 802 { 803 struct rte_mbuf *m; 804 int dstlen; 805 int l, n = srclen; 806 uint8_t *src, temp[EVP_CIPHER_CTX_block_size(ctx)]; 807 808 for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m); 809 m = m->next) 810 offset -= rte_pktmbuf_data_len(m); 811 812 if (m == 0) 813 return -1; 814 815 src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset); 816 if (inplace) 817 *dst = src; 818 819 l = rte_pktmbuf_data_len(m) - offset; 820 if (srclen <= l) { 821 if (EVP_EncryptUpdate(ctx, *dst, &dstlen, src, srclen) <= 0) 822 return -1; 823 *dst += l; 824 return 0; 825 } 826 827 if (EVP_EncryptUpdate(ctx, *dst, &dstlen, src, l) <= 0) 828 return -1; 829 830 *dst += dstlen; 831 n -= l; 832 833 for (m = m->next; (m != NULL) && (n > 0); m = m->next) { 834 uint8_t diff = l - dstlen, rem; 835 836 src = rte_pktmbuf_mtod(m, uint8_t *); 837 l = RTE_MIN(rte_pktmbuf_data_len(m), n); 838 if (diff && inplace) { 839 rem = RTE_MIN(l, 840 (EVP_CIPHER_CTX_block_size(ctx) - diff)); 841 if (EVP_EncryptUpdate(ctx, temp, 842 &dstlen, src, rem) <= 0) 843 return -1; 844 n -= rem; 845 rte_memcpy(*dst, temp, diff); 846 rte_memcpy(src, temp + diff, rem); 847 src += rem; 848 l -= rem; 849 } 850 if (inplace) 851 *dst = src; 852 if (EVP_EncryptUpdate(ctx, *dst, &dstlen, src, l) <= 0) 853 return -1; 854 *dst += dstlen; 855 n -= l; 856 } 857 858 return 0; 859 } 860 861 static inline int 862 process_openssl_decryption_update(struct rte_mbuf *mbuf_src, int offset, 863 uint8_t **dst, int srclen, EVP_CIPHER_CTX *ctx, uint8_t inplace) 864 { 865 struct rte_mbuf *m; 866 int dstlen; 867 int l, n = srclen; 868 uint8_t *src, temp[EVP_CIPHER_CTX_block_size(ctx)]; 869 870 for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m); 871 m = m->next) 872 offset -= rte_pktmbuf_data_len(m); 873 874 if (m == 0) 875 return -1; 876 877 src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset); 878 if (inplace) 879 *dst = src; 880 881 l = rte_pktmbuf_data_len(m) - offset; 882 if (srclen <= l) { 883 if (EVP_DecryptUpdate(ctx, *dst, &dstlen, src, srclen) <= 0) 884 return -1; 885 *dst += l; 886 return 0; 887 } 888 889 if (EVP_DecryptUpdate(ctx, *dst, &dstlen, src, l) <= 0) 890 return -1; 891 892 *dst += dstlen; 893 n -= l; 894 895 for (m = m->next; (m != NULL) && (n > 0); m = m->next) { 896 uint8_t diff = l - dstlen, rem; 897 898 src = rte_pktmbuf_mtod(m, uint8_t *); 899 l = RTE_MIN(rte_pktmbuf_data_len(m), n); 900 if (diff && inplace) { 901 rem = RTE_MIN(l, 902 (EVP_CIPHER_CTX_block_size(ctx) - diff)); 903 if (EVP_DecryptUpdate(ctx, temp, 904 &dstlen, src, rem) <= 0) 905 return -1; 906 n -= rem; 907 rte_memcpy(*dst, temp, diff); 908 rte_memcpy(src, temp + diff, rem); 909 src += rem; 910 l -= rem; 911 } 912 if (inplace) 913 *dst = src; 914 if (EVP_DecryptUpdate(ctx, *dst, &dstlen, src, l) <= 0) 915 return -1; 916 *dst += dstlen; 917 n -= l; 918 } 919 920 return 0; 921 } 922 923 /** Process standard openssl cipher encryption */ 924 static int 925 process_openssl_cipher_encrypt(struct rte_mbuf *mbuf_src, uint8_t *dst, 926 int offset, uint8_t *iv, int srclen, EVP_CIPHER_CTX *ctx, 927 uint8_t inplace) 928 { 929 int totlen; 930 931 if (EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0) 932 goto process_cipher_encrypt_err; 933 934 EVP_CIPHER_CTX_set_padding(ctx, 0); 935 936 if (process_openssl_encryption_update(mbuf_src, offset, &dst, 937 srclen, ctx, inplace)) 938 goto process_cipher_encrypt_err; 939 940 if (EVP_EncryptFinal_ex(ctx, dst, &totlen) <= 0) 941 goto process_cipher_encrypt_err; 942 943 return 0; 944 945 process_cipher_encrypt_err: 946 OPENSSL_LOG(ERR, "Process openssl cipher encrypt failed"); 947 return -EINVAL; 948 } 949 950 /** Process standard openssl cipher encryption */ 951 static int 952 process_openssl_cipher_bpi_encrypt(uint8_t *src, uint8_t *dst, 953 uint8_t *iv, int srclen, 954 EVP_CIPHER_CTX *ctx) 955 { 956 uint8_t i; 957 uint8_t encrypted_iv[DES_BLOCK_SIZE]; 958 int encrypted_ivlen; 959 960 if (EVP_EncryptUpdate(ctx, encrypted_iv, &encrypted_ivlen, 961 iv, DES_BLOCK_SIZE) <= 0) 962 goto process_cipher_encrypt_err; 963 964 for (i = 0; i < srclen; i++) 965 *(dst + i) = *(src + i) ^ (encrypted_iv[i]); 966 967 return 0; 968 969 process_cipher_encrypt_err: 970 OPENSSL_LOG(ERR, "Process openssl cipher bpi encrypt failed"); 971 return -EINVAL; 972 } 973 /** Process standard openssl cipher decryption */ 974 static int 975 process_openssl_cipher_decrypt(struct rte_mbuf *mbuf_src, uint8_t *dst, 976 int offset, uint8_t *iv, int srclen, EVP_CIPHER_CTX *ctx, 977 uint8_t inplace) 978 { 979 int totlen; 980 981 if (EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0) 982 goto process_cipher_decrypt_err; 983 984 EVP_CIPHER_CTX_set_padding(ctx, 0); 985 986 if (process_openssl_decryption_update(mbuf_src, offset, &dst, 987 srclen, ctx, inplace)) 988 goto process_cipher_decrypt_err; 989 990 if (EVP_DecryptFinal_ex(ctx, dst, &totlen) <= 0) 991 goto process_cipher_decrypt_err; 992 return 0; 993 994 process_cipher_decrypt_err: 995 OPENSSL_LOG(ERR, "Process openssl cipher decrypt failed"); 996 return -EINVAL; 997 } 998 999 /** Process cipher des 3 ctr encryption, decryption algorithm */ 1000 static int 1001 process_openssl_cipher_des3ctr(struct rte_mbuf *mbuf_src, uint8_t *dst, 1002 int offset, uint8_t *iv, uint8_t *key, int srclen, 1003 EVP_CIPHER_CTX *ctx) 1004 { 1005 uint8_t ebuf[8], ctr[8]; 1006 int unused, n; 1007 struct rte_mbuf *m; 1008 uint8_t *src; 1009 int l; 1010 1011 for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m); 1012 m = m->next) 1013 offset -= rte_pktmbuf_data_len(m); 1014 1015 if (m == 0) 1016 goto process_cipher_des3ctr_err; 1017 1018 src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset); 1019 l = rte_pktmbuf_data_len(m) - offset; 1020 1021 /* We use 3DES encryption also for decryption. 1022 * IV is not important for 3DES ecb 1023 */ 1024 if (EVP_EncryptInit_ex(ctx, EVP_des_ede3_ecb(), NULL, key, NULL) <= 0) 1025 goto process_cipher_des3ctr_err; 1026 1027 memcpy(ctr, iv, 8); 1028 1029 for (n = 0; n < srclen; n++) { 1030 if (n % 8 == 0) { 1031 if (EVP_EncryptUpdate(ctx, 1032 (unsigned char *)&ebuf, &unused, 1033 (const unsigned char *)&ctr, 8) <= 0) 1034 goto process_cipher_des3ctr_err; 1035 ctr_inc(ctr); 1036 } 1037 dst[n] = *(src++) ^ ebuf[n % 8]; 1038 1039 l--; 1040 if (!l) { 1041 m = m->next; 1042 if (m) { 1043 src = rte_pktmbuf_mtod(m, uint8_t *); 1044 l = rte_pktmbuf_data_len(m); 1045 } 1046 } 1047 } 1048 1049 return 0; 1050 1051 process_cipher_des3ctr_err: 1052 OPENSSL_LOG(ERR, "Process openssl cipher des 3 ede ctr failed"); 1053 return -EINVAL; 1054 } 1055 1056 /** Process AES-GCM encrypt algorithm */ 1057 static int 1058 process_openssl_auth_encryption_gcm(struct rte_mbuf *mbuf_src, int offset, 1059 int srclen, uint8_t *aad, int aadlen, uint8_t *iv, 1060 uint8_t *dst, uint8_t *tag, EVP_CIPHER_CTX *ctx) 1061 { 1062 int len = 0, unused = 0; 1063 uint8_t empty[] = {}; 1064 1065 if (EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0) 1066 goto process_auth_encryption_gcm_err; 1067 1068 if (aadlen > 0) 1069 if (EVP_EncryptUpdate(ctx, NULL, &len, aad, aadlen) <= 0) 1070 goto process_auth_encryption_gcm_err; 1071 1072 if (srclen > 0) 1073 if (process_openssl_encryption_update(mbuf_src, offset, &dst, 1074 srclen, ctx, 0)) 1075 goto process_auth_encryption_gcm_err; 1076 1077 /* Workaround open ssl bug in version less then 1.0.1f */ 1078 if (EVP_EncryptUpdate(ctx, empty, &unused, empty, 0) <= 0) 1079 goto process_auth_encryption_gcm_err; 1080 1081 if (EVP_EncryptFinal_ex(ctx, dst, &len) <= 0) 1082 goto process_auth_encryption_gcm_err; 1083 1084 if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_GET_TAG, 16, tag) <= 0) 1085 goto process_auth_encryption_gcm_err; 1086 1087 return 0; 1088 1089 process_auth_encryption_gcm_err: 1090 OPENSSL_LOG(ERR, "Process openssl auth encryption gcm failed"); 1091 return -EINVAL; 1092 } 1093 1094 /** Process AES-CCM encrypt algorithm */ 1095 static int 1096 process_openssl_auth_encryption_ccm(struct rte_mbuf *mbuf_src, int offset, 1097 int srclen, uint8_t *aad, int aadlen, uint8_t *iv, 1098 uint8_t *dst, uint8_t *tag, uint8_t taglen, EVP_CIPHER_CTX *ctx) 1099 { 1100 int len = 0; 1101 1102 if (EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0) 1103 goto process_auth_encryption_ccm_err; 1104 1105 if (EVP_EncryptUpdate(ctx, NULL, &len, NULL, srclen) <= 0) 1106 goto process_auth_encryption_ccm_err; 1107 1108 if (aadlen > 0) 1109 /* 1110 * For AES-CCM, the actual AAD is placed 1111 * 18 bytes after the start of the AAD field, 1112 * according to the API. 1113 */ 1114 if (EVP_EncryptUpdate(ctx, NULL, &len, aad + 18, aadlen) <= 0) 1115 goto process_auth_encryption_ccm_err; 1116 1117 if (srclen > 0) 1118 if (process_openssl_encryption_update(mbuf_src, offset, &dst, 1119 srclen, ctx, 0)) 1120 goto process_auth_encryption_ccm_err; 1121 1122 if (EVP_EncryptFinal_ex(ctx, dst, &len) <= 0) 1123 goto process_auth_encryption_ccm_err; 1124 1125 if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_GET_TAG, taglen, tag) <= 0) 1126 goto process_auth_encryption_ccm_err; 1127 1128 return 0; 1129 1130 process_auth_encryption_ccm_err: 1131 OPENSSL_LOG(ERR, "Process openssl auth encryption ccm failed"); 1132 return -EINVAL; 1133 } 1134 1135 /** Process AES-GCM decrypt algorithm */ 1136 static int 1137 process_openssl_auth_decryption_gcm(struct rte_mbuf *mbuf_src, int offset, 1138 int srclen, uint8_t *aad, int aadlen, uint8_t *iv, 1139 uint8_t *dst, uint8_t *tag, EVP_CIPHER_CTX *ctx) 1140 { 1141 int len = 0, unused = 0; 1142 uint8_t empty[] = {}; 1143 1144 if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_TAG, 16, tag) <= 0) 1145 goto process_auth_decryption_gcm_err; 1146 1147 if (EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0) 1148 goto process_auth_decryption_gcm_err; 1149 1150 if (aadlen > 0) 1151 if (EVP_DecryptUpdate(ctx, NULL, &len, aad, aadlen) <= 0) 1152 goto process_auth_decryption_gcm_err; 1153 1154 if (srclen > 0) 1155 if (process_openssl_decryption_update(mbuf_src, offset, &dst, 1156 srclen, ctx, 0)) 1157 goto process_auth_decryption_gcm_err; 1158 1159 /* Workaround open ssl bug in version less then 1.0.1f */ 1160 if (EVP_DecryptUpdate(ctx, empty, &unused, empty, 0) <= 0) 1161 goto process_auth_decryption_gcm_err; 1162 1163 if (EVP_DecryptFinal_ex(ctx, dst, &len) <= 0) 1164 return -EFAULT; 1165 1166 return 0; 1167 1168 process_auth_decryption_gcm_err: 1169 OPENSSL_LOG(ERR, "Process openssl auth decryption gcm failed"); 1170 return -EINVAL; 1171 } 1172 1173 /** Process AES-CCM decrypt algorithm */ 1174 static int 1175 process_openssl_auth_decryption_ccm(struct rte_mbuf *mbuf_src, int offset, 1176 int srclen, uint8_t *aad, int aadlen, uint8_t *iv, 1177 uint8_t *dst, uint8_t *tag, uint8_t tag_len, 1178 EVP_CIPHER_CTX *ctx) 1179 { 1180 int len = 0; 1181 1182 if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_TAG, tag_len, tag) <= 0) 1183 goto process_auth_decryption_ccm_err; 1184 1185 if (EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0) 1186 goto process_auth_decryption_ccm_err; 1187 1188 if (EVP_DecryptUpdate(ctx, NULL, &len, NULL, srclen) <= 0) 1189 goto process_auth_decryption_ccm_err; 1190 1191 if (aadlen > 0) 1192 /* 1193 * For AES-CCM, the actual AAD is placed 1194 * 18 bytes after the start of the AAD field, 1195 * according to the API. 1196 */ 1197 if (EVP_DecryptUpdate(ctx, NULL, &len, aad + 18, aadlen) <= 0) 1198 goto process_auth_decryption_ccm_err; 1199 1200 if (srclen > 0) 1201 if (process_openssl_decryption_update(mbuf_src, offset, &dst, 1202 srclen, ctx, 0)) 1203 return -EFAULT; 1204 1205 return 0; 1206 1207 process_auth_decryption_ccm_err: 1208 OPENSSL_LOG(ERR, "Process openssl auth decryption ccm failed"); 1209 return -EINVAL; 1210 } 1211 1212 /** Process standard openssl auth algorithms */ 1213 static int 1214 process_openssl_auth(struct rte_mbuf *mbuf_src, uint8_t *dst, int offset, 1215 __rte_unused uint8_t *iv, __rte_unused EVP_PKEY * pkey, 1216 int srclen, EVP_MD_CTX *ctx, const EVP_MD *algo) 1217 { 1218 size_t dstlen; 1219 struct rte_mbuf *m; 1220 int l, n = srclen; 1221 uint8_t *src; 1222 1223 for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m); 1224 m = m->next) 1225 offset -= rte_pktmbuf_data_len(m); 1226 1227 if (m == 0) 1228 goto process_auth_err; 1229 1230 if (EVP_DigestInit_ex(ctx, algo, NULL) <= 0) 1231 goto process_auth_err; 1232 1233 src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset); 1234 1235 l = rte_pktmbuf_data_len(m) - offset; 1236 if (srclen <= l) { 1237 if (EVP_DigestUpdate(ctx, (char *)src, srclen) <= 0) 1238 goto process_auth_err; 1239 goto process_auth_final; 1240 } 1241 1242 if (EVP_DigestUpdate(ctx, (char *)src, l) <= 0) 1243 goto process_auth_err; 1244 1245 n -= l; 1246 1247 for (m = m->next; (m != NULL) && (n > 0); m = m->next) { 1248 src = rte_pktmbuf_mtod(m, uint8_t *); 1249 l = rte_pktmbuf_data_len(m) < n ? rte_pktmbuf_data_len(m) : n; 1250 if (EVP_DigestUpdate(ctx, (char *)src, l) <= 0) 1251 goto process_auth_err; 1252 n -= l; 1253 } 1254 1255 process_auth_final: 1256 if (EVP_DigestFinal_ex(ctx, dst, (unsigned int *)&dstlen) <= 0) 1257 goto process_auth_err; 1258 return 0; 1259 1260 process_auth_err: 1261 OPENSSL_LOG(ERR, "Process openssl auth failed"); 1262 return -EINVAL; 1263 } 1264 1265 /** Process standard openssl auth algorithms with hmac */ 1266 static int 1267 process_openssl_auth_hmac(struct rte_mbuf *mbuf_src, uint8_t *dst, int offset, 1268 int srclen, HMAC_CTX *ctx) 1269 { 1270 unsigned int dstlen; 1271 struct rte_mbuf *m; 1272 int l, n = srclen; 1273 uint8_t *src; 1274 1275 for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m); 1276 m = m->next) 1277 offset -= rte_pktmbuf_data_len(m); 1278 1279 if (m == 0) 1280 goto process_auth_err; 1281 1282 src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset); 1283 1284 l = rte_pktmbuf_data_len(m) - offset; 1285 if (srclen <= l) { 1286 if (HMAC_Update(ctx, (unsigned char *)src, srclen) != 1) 1287 goto process_auth_err; 1288 goto process_auth_final; 1289 } 1290 1291 if (HMAC_Update(ctx, (unsigned char *)src, l) != 1) 1292 goto process_auth_err; 1293 1294 n -= l; 1295 1296 for (m = m->next; (m != NULL) && (n > 0); m = m->next) { 1297 src = rte_pktmbuf_mtod(m, uint8_t *); 1298 l = rte_pktmbuf_data_len(m) < n ? rte_pktmbuf_data_len(m) : n; 1299 if (HMAC_Update(ctx, (unsigned char *)src, l) != 1) 1300 goto process_auth_err; 1301 n -= l; 1302 } 1303 1304 process_auth_final: 1305 if (HMAC_Final(ctx, dst, &dstlen) != 1) 1306 goto process_auth_err; 1307 1308 if (unlikely(HMAC_Init_ex(ctx, NULL, 0, NULL, NULL) != 1)) 1309 goto process_auth_err; 1310 1311 return 0; 1312 1313 process_auth_err: 1314 OPENSSL_LOG(ERR, "Process openssl auth failed"); 1315 return -EINVAL; 1316 } 1317 1318 /*----------------------------------------------------------------------------*/ 1319 1320 /** Process auth/cipher combined operation */ 1321 static void 1322 process_openssl_combined_op 1323 (struct rte_crypto_op *op, struct openssl_session *sess, 1324 struct rte_mbuf *mbuf_src, struct rte_mbuf *mbuf_dst) 1325 { 1326 /* cipher */ 1327 uint8_t *dst = NULL, *iv, *tag, *aad; 1328 int srclen, aadlen, status = -1; 1329 uint32_t offset; 1330 uint8_t taglen; 1331 EVP_CIPHER_CTX *ctx_copy; 1332 1333 /* 1334 * Segmented destination buffer is not supported for 1335 * encryption/decryption 1336 */ 1337 if (!rte_pktmbuf_is_contiguous(mbuf_dst)) { 1338 op->status = RTE_CRYPTO_OP_STATUS_ERROR; 1339 return; 1340 } 1341 1342 iv = rte_crypto_op_ctod_offset(op, uint8_t *, 1343 sess->iv.offset); 1344 if (sess->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC) { 1345 srclen = 0; 1346 offset = op->sym->auth.data.offset; 1347 aadlen = op->sym->auth.data.length; 1348 aad = rte_pktmbuf_mtod_offset(mbuf_src, uint8_t *, 1349 op->sym->auth.data.offset); 1350 tag = op->sym->auth.digest.data; 1351 if (tag == NULL) 1352 tag = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *, 1353 offset + aadlen); 1354 } else { 1355 srclen = op->sym->aead.data.length; 1356 dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *, 1357 op->sym->aead.data.offset); 1358 offset = op->sym->aead.data.offset; 1359 aad = op->sym->aead.aad.data; 1360 aadlen = sess->auth.aad_length; 1361 tag = op->sym->aead.digest.data; 1362 if (tag == NULL) 1363 tag = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *, 1364 offset + srclen); 1365 } 1366 1367 taglen = sess->auth.digest_length; 1368 ctx_copy = EVP_CIPHER_CTX_new(); 1369 EVP_CIPHER_CTX_copy(ctx_copy, sess->cipher.ctx); 1370 1371 if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) { 1372 if (sess->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC || 1373 sess->aead_algo == RTE_CRYPTO_AEAD_AES_GCM) 1374 status = process_openssl_auth_encryption_gcm( 1375 mbuf_src, offset, srclen, 1376 aad, aadlen, iv, 1377 dst, tag, ctx_copy); 1378 else 1379 status = process_openssl_auth_encryption_ccm( 1380 mbuf_src, offset, srclen, 1381 aad, aadlen, iv, 1382 dst, tag, taglen, ctx_copy); 1383 1384 } else { 1385 if (sess->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC || 1386 sess->aead_algo == RTE_CRYPTO_AEAD_AES_GCM) 1387 status = process_openssl_auth_decryption_gcm( 1388 mbuf_src, offset, srclen, 1389 aad, aadlen, iv, 1390 dst, tag, ctx_copy); 1391 else 1392 status = process_openssl_auth_decryption_ccm( 1393 mbuf_src, offset, srclen, 1394 aad, aadlen, iv, 1395 dst, tag, taglen, ctx_copy); 1396 } 1397 1398 EVP_CIPHER_CTX_free(ctx_copy); 1399 if (status != 0) { 1400 if (status == (-EFAULT) && 1401 sess->auth.operation == 1402 RTE_CRYPTO_AUTH_OP_VERIFY) 1403 op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED; 1404 else 1405 op->status = RTE_CRYPTO_OP_STATUS_ERROR; 1406 } 1407 } 1408 1409 /** Process cipher operation */ 1410 static void 1411 process_openssl_cipher_op 1412 (struct rte_crypto_op *op, struct openssl_session *sess, 1413 struct rte_mbuf *mbuf_src, struct rte_mbuf *mbuf_dst) 1414 { 1415 uint8_t *dst, *iv; 1416 int srclen, status; 1417 uint8_t inplace = (mbuf_src == mbuf_dst) ? 1 : 0; 1418 EVP_CIPHER_CTX *ctx_copy; 1419 1420 /* 1421 * Segmented OOP destination buffer is not supported for encryption/ 1422 * decryption. In case of des3ctr, even inplace segmented buffers are 1423 * not supported. 1424 */ 1425 if (!rte_pktmbuf_is_contiguous(mbuf_dst) && 1426 (!inplace || sess->cipher.mode != OPENSSL_CIPHER_LIB)) { 1427 op->status = RTE_CRYPTO_OP_STATUS_ERROR; 1428 return; 1429 } 1430 1431 srclen = op->sym->cipher.data.length; 1432 dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *, 1433 op->sym->cipher.data.offset); 1434 1435 iv = rte_crypto_op_ctod_offset(op, uint8_t *, 1436 sess->iv.offset); 1437 ctx_copy = EVP_CIPHER_CTX_new(); 1438 EVP_CIPHER_CTX_copy(ctx_copy, sess->cipher.ctx); 1439 1440 if (sess->cipher.mode == OPENSSL_CIPHER_LIB) 1441 if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) 1442 status = process_openssl_cipher_encrypt(mbuf_src, dst, 1443 op->sym->cipher.data.offset, iv, 1444 srclen, ctx_copy, inplace); 1445 else 1446 status = process_openssl_cipher_decrypt(mbuf_src, dst, 1447 op->sym->cipher.data.offset, iv, 1448 srclen, ctx_copy, inplace); 1449 else 1450 status = process_openssl_cipher_des3ctr(mbuf_src, dst, 1451 op->sym->cipher.data.offset, iv, 1452 sess->cipher.key.data, srclen, 1453 ctx_copy); 1454 1455 EVP_CIPHER_CTX_free(ctx_copy); 1456 if (status != 0) 1457 op->status = RTE_CRYPTO_OP_STATUS_ERROR; 1458 } 1459 1460 /** Process cipher operation */ 1461 static void 1462 process_openssl_docsis_bpi_op(struct rte_crypto_op *op, 1463 struct openssl_session *sess, struct rte_mbuf *mbuf_src, 1464 struct rte_mbuf *mbuf_dst) 1465 { 1466 uint8_t *src, *dst, *iv; 1467 uint8_t block_size, last_block_len; 1468 int srclen, status = 0; 1469 1470 srclen = op->sym->cipher.data.length; 1471 src = rte_pktmbuf_mtod_offset(mbuf_src, uint8_t *, 1472 op->sym->cipher.data.offset); 1473 dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *, 1474 op->sym->cipher.data.offset); 1475 1476 iv = rte_crypto_op_ctod_offset(op, uint8_t *, 1477 sess->iv.offset); 1478 1479 block_size = DES_BLOCK_SIZE; 1480 1481 last_block_len = srclen % block_size; 1482 if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) { 1483 /* Encrypt only with ECB mode XOR IV */ 1484 if (srclen < block_size) { 1485 status = process_openssl_cipher_bpi_encrypt(src, dst, 1486 iv, srclen, 1487 sess->cipher.bpi_ctx); 1488 } else { 1489 srclen -= last_block_len; 1490 /* Encrypt with the block aligned stream with CBC mode */ 1491 status = process_openssl_cipher_encrypt(mbuf_src, dst, 1492 op->sym->cipher.data.offset, iv, 1493 srclen, sess->cipher.ctx, 0); 1494 if (last_block_len) { 1495 /* Point at last block */ 1496 dst += srclen; 1497 /* 1498 * IV is the last encrypted block from 1499 * the previous operation 1500 */ 1501 iv = dst - block_size; 1502 src += srclen; 1503 srclen = last_block_len; 1504 /* Encrypt the last frame with ECB mode */ 1505 status |= process_openssl_cipher_bpi_encrypt(src, 1506 dst, iv, 1507 srclen, sess->cipher.bpi_ctx); 1508 } 1509 } 1510 } else { 1511 /* Decrypt only with ECB mode (encrypt, as it is same operation) */ 1512 if (srclen < block_size) { 1513 status = process_openssl_cipher_bpi_encrypt(src, dst, 1514 iv, 1515 srclen, 1516 sess->cipher.bpi_ctx); 1517 } else { 1518 if (last_block_len) { 1519 /* Point at last block */ 1520 dst += srclen - last_block_len; 1521 src += srclen - last_block_len; 1522 /* 1523 * IV is the last full block 1524 */ 1525 iv = src - block_size; 1526 /* 1527 * Decrypt the last frame with ECB mode 1528 * (encrypt, as it is the same operation) 1529 */ 1530 status = process_openssl_cipher_bpi_encrypt(src, 1531 dst, iv, 1532 last_block_len, sess->cipher.bpi_ctx); 1533 /* Prepare parameters for CBC mode op */ 1534 iv = rte_crypto_op_ctod_offset(op, uint8_t *, 1535 sess->iv.offset); 1536 dst += last_block_len - srclen; 1537 srclen -= last_block_len; 1538 } 1539 1540 /* Decrypt with CBC mode */ 1541 status |= process_openssl_cipher_decrypt(mbuf_src, dst, 1542 op->sym->cipher.data.offset, iv, 1543 srclen, sess->cipher.ctx, 0); 1544 } 1545 } 1546 1547 if (status != 0) 1548 op->status = RTE_CRYPTO_OP_STATUS_ERROR; 1549 } 1550 1551 /** Process auth operation */ 1552 static void 1553 process_openssl_auth_op(struct openssl_qp *qp, struct rte_crypto_op *op, 1554 struct openssl_session *sess, struct rte_mbuf *mbuf_src, 1555 struct rte_mbuf *mbuf_dst) 1556 { 1557 uint8_t *dst; 1558 int srclen, status; 1559 EVP_MD_CTX *ctx_a; 1560 HMAC_CTX *ctx_h; 1561 1562 srclen = op->sym->auth.data.length; 1563 1564 dst = qp->temp_digest; 1565 1566 switch (sess->auth.mode) { 1567 case OPENSSL_AUTH_AS_AUTH: 1568 ctx_a = EVP_MD_CTX_create(); 1569 EVP_MD_CTX_copy_ex(ctx_a, sess->auth.auth.ctx); 1570 status = process_openssl_auth(mbuf_src, dst, 1571 op->sym->auth.data.offset, NULL, NULL, srclen, 1572 ctx_a, sess->auth.auth.evp_algo); 1573 EVP_MD_CTX_destroy(ctx_a); 1574 break; 1575 case OPENSSL_AUTH_AS_HMAC: 1576 ctx_h = HMAC_CTX_new(); 1577 HMAC_CTX_copy(ctx_h, sess->auth.hmac.ctx); 1578 status = process_openssl_auth_hmac(mbuf_src, dst, 1579 op->sym->auth.data.offset, srclen, 1580 ctx_h); 1581 HMAC_CTX_free(ctx_h); 1582 break; 1583 default: 1584 status = -1; 1585 break; 1586 } 1587 1588 if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) { 1589 if (CRYPTO_memcmp(dst, op->sym->auth.digest.data, 1590 sess->auth.digest_length) != 0) { 1591 op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED; 1592 } 1593 } else { 1594 uint8_t *auth_dst; 1595 1596 auth_dst = op->sym->auth.digest.data; 1597 if (auth_dst == NULL) 1598 auth_dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *, 1599 op->sym->auth.data.offset + 1600 op->sym->auth.data.length); 1601 memcpy(auth_dst, dst, sess->auth.digest_length); 1602 } 1603 1604 if (status != 0) 1605 op->status = RTE_CRYPTO_OP_STATUS_ERROR; 1606 } 1607 1608 /* process dsa sign operation */ 1609 static int 1610 process_openssl_dsa_sign_op(struct rte_crypto_op *cop, 1611 struct openssl_asym_session *sess) 1612 { 1613 struct rte_crypto_dsa_op_param *op = &cop->asym->dsa; 1614 DSA *dsa = sess->u.s.dsa; 1615 DSA_SIG *sign = NULL; 1616 1617 sign = DSA_do_sign(op->message.data, 1618 op->message.length, 1619 dsa); 1620 1621 if (sign == NULL) { 1622 OPENSSL_LOG(ERR, "%s:%d\n", __func__, __LINE__); 1623 cop->status = RTE_CRYPTO_OP_STATUS_ERROR; 1624 } else { 1625 const BIGNUM *r = NULL, *s = NULL; 1626 get_dsa_sign(sign, &r, &s); 1627 1628 op->r.length = BN_bn2bin(r, op->r.data); 1629 op->s.length = BN_bn2bin(s, op->s.data); 1630 cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS; 1631 } 1632 1633 DSA_SIG_free(sign); 1634 1635 return 0; 1636 } 1637 1638 /* process dsa verify operation */ 1639 static int 1640 process_openssl_dsa_verify_op(struct rte_crypto_op *cop, 1641 struct openssl_asym_session *sess) 1642 { 1643 struct rte_crypto_dsa_op_param *op = &cop->asym->dsa; 1644 DSA *dsa = sess->u.s.dsa; 1645 int ret; 1646 DSA_SIG *sign = DSA_SIG_new(); 1647 BIGNUM *r = NULL, *s = NULL; 1648 BIGNUM *pub_key = NULL; 1649 1650 if (sign == NULL) { 1651 OPENSSL_LOG(ERR, " %s:%d\n", __func__, __LINE__); 1652 cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED; 1653 return -1; 1654 } 1655 1656 r = BN_bin2bn(op->r.data, 1657 op->r.length, 1658 r); 1659 s = BN_bin2bn(op->s.data, 1660 op->s.length, 1661 s); 1662 pub_key = BN_bin2bn(op->y.data, 1663 op->y.length, 1664 pub_key); 1665 if (!r || !s || !pub_key) { 1666 BN_free(r); 1667 BN_free(s); 1668 BN_free(pub_key); 1669 1670 cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED; 1671 return -1; 1672 } 1673 set_dsa_sign(sign, r, s); 1674 set_dsa_pub_key(dsa, pub_key); 1675 1676 ret = DSA_do_verify(op->message.data, 1677 op->message.length, 1678 sign, 1679 dsa); 1680 1681 if (ret != 1) 1682 cop->status = RTE_CRYPTO_OP_STATUS_ERROR; 1683 else 1684 cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS; 1685 1686 DSA_SIG_free(sign); 1687 1688 return 0; 1689 } 1690 1691 /* process dh operation */ 1692 static int 1693 process_openssl_dh_op(struct rte_crypto_op *cop, 1694 struct openssl_asym_session *sess) 1695 { 1696 struct rte_crypto_dh_op_param *op = &cop->asym->dh; 1697 DH *dh_key = sess->u.dh.dh_key; 1698 BIGNUM *priv_key = NULL; 1699 int ret = 0; 1700 1701 if (sess->u.dh.key_op & 1702 (1 << RTE_CRYPTO_ASYM_OP_SHARED_SECRET_COMPUTE)) { 1703 /* compute shared secret using peer public key 1704 * and current private key 1705 * shared secret = peer_key ^ priv_key mod p 1706 */ 1707 BIGNUM *peer_key = NULL; 1708 1709 /* copy private key and peer key and compute shared secret */ 1710 peer_key = BN_bin2bn(op->pub_key.data, 1711 op->pub_key.length, 1712 peer_key); 1713 if (peer_key == NULL) { 1714 cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED; 1715 return -1; 1716 } 1717 priv_key = BN_bin2bn(op->priv_key.data, 1718 op->priv_key.length, 1719 priv_key); 1720 if (priv_key == NULL) { 1721 BN_free(peer_key); 1722 cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED; 1723 return -1; 1724 } 1725 ret = set_dh_priv_key(dh_key, priv_key); 1726 if (ret) { 1727 OPENSSL_LOG(ERR, "Failed to set private key\n"); 1728 cop->status = RTE_CRYPTO_OP_STATUS_ERROR; 1729 BN_free(peer_key); 1730 BN_free(priv_key); 1731 return 0; 1732 } 1733 1734 ret = DH_compute_key( 1735 op->shared_secret.data, 1736 peer_key, dh_key); 1737 if (ret < 0) { 1738 cop->status = RTE_CRYPTO_OP_STATUS_ERROR; 1739 BN_free(peer_key); 1740 /* priv key is already loaded into dh, 1741 * let's not free that directly here. 1742 * DH_free() will auto free it later. 1743 */ 1744 return 0; 1745 } 1746 cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS; 1747 op->shared_secret.length = ret; 1748 BN_free(peer_key); 1749 return 0; 1750 } 1751 1752 /* 1753 * other options are public and private key generations. 1754 * 1755 * if user provides private key, 1756 * then first set DH with user provided private key 1757 */ 1758 if ((sess->u.dh.key_op & 1759 (1 << RTE_CRYPTO_ASYM_OP_PUBLIC_KEY_GENERATE)) && 1760 !(sess->u.dh.key_op & 1761 (1 << RTE_CRYPTO_ASYM_OP_PRIVATE_KEY_GENERATE))) { 1762 /* generate public key using user-provided private key 1763 * pub_key = g ^ priv_key mod p 1764 */ 1765 1766 /* load private key into DH */ 1767 priv_key = BN_bin2bn(op->priv_key.data, 1768 op->priv_key.length, 1769 priv_key); 1770 if (priv_key == NULL) { 1771 cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED; 1772 return -1; 1773 } 1774 ret = set_dh_priv_key(dh_key, priv_key); 1775 if (ret) { 1776 OPENSSL_LOG(ERR, "Failed to set private key\n"); 1777 cop->status = RTE_CRYPTO_OP_STATUS_ERROR; 1778 BN_free(priv_key); 1779 return 0; 1780 } 1781 } 1782 1783 /* generate public and private key pair. 1784 * 1785 * if private key already set, generates only public key. 1786 * 1787 * if private key is not already set, then set it to random value 1788 * and update internal private key. 1789 */ 1790 if (!DH_generate_key(dh_key)) { 1791 cop->status = RTE_CRYPTO_OP_STATUS_ERROR; 1792 return 0; 1793 } 1794 1795 if (sess->u.dh.key_op & (1 << RTE_CRYPTO_ASYM_OP_PUBLIC_KEY_GENERATE)) { 1796 const BIGNUM *pub_key = NULL; 1797 1798 OPENSSL_LOG(DEBUG, "%s:%d update public key\n", 1799 __func__, __LINE__); 1800 1801 /* get the generated keys */ 1802 get_dh_pub_key(dh_key, &pub_key); 1803 1804 /* output public key */ 1805 op->pub_key.length = BN_bn2bin(pub_key, 1806 op->pub_key.data); 1807 } 1808 1809 if (sess->u.dh.key_op & 1810 (1 << RTE_CRYPTO_ASYM_OP_PRIVATE_KEY_GENERATE)) { 1811 const BIGNUM *priv_key = NULL; 1812 1813 OPENSSL_LOG(DEBUG, "%s:%d updated priv key\n", 1814 __func__, __LINE__); 1815 1816 /* get the generated keys */ 1817 get_dh_priv_key(dh_key, &priv_key); 1818 1819 /* provide generated private key back to user */ 1820 op->priv_key.length = BN_bn2bin(priv_key, 1821 op->priv_key.data); 1822 } 1823 1824 cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS; 1825 1826 return 0; 1827 } 1828 1829 /* process modinv operation */ 1830 static int 1831 process_openssl_modinv_op(struct rte_crypto_op *cop, 1832 struct openssl_asym_session *sess) 1833 { 1834 struct rte_crypto_asym_op *op = cop->asym; 1835 BIGNUM *base = BN_CTX_get(sess->u.m.ctx); 1836 BIGNUM *res = BN_CTX_get(sess->u.m.ctx); 1837 1838 if (unlikely(base == NULL || res == NULL)) { 1839 BN_free(base); 1840 BN_free(res); 1841 cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED; 1842 return -1; 1843 } 1844 1845 base = BN_bin2bn((const unsigned char *)op->modinv.base.data, 1846 op->modinv.base.length, base); 1847 1848 if (BN_mod_inverse(res, base, sess->u.m.modulus, sess->u.m.ctx)) { 1849 cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS; 1850 op->modinv.result.length = BN_bn2bin(res, op->modinv.result.data); 1851 } else { 1852 cop->status = RTE_CRYPTO_OP_STATUS_ERROR; 1853 } 1854 1855 BN_clear(res); 1856 BN_clear(base); 1857 1858 return 0; 1859 } 1860 1861 /* process modexp operation */ 1862 static int 1863 process_openssl_modexp_op(struct rte_crypto_op *cop, 1864 struct openssl_asym_session *sess) 1865 { 1866 struct rte_crypto_asym_op *op = cop->asym; 1867 BIGNUM *base = BN_CTX_get(sess->u.e.ctx); 1868 BIGNUM *res = BN_CTX_get(sess->u.e.ctx); 1869 1870 if (unlikely(base == NULL || res == NULL)) { 1871 BN_free(base); 1872 BN_free(res); 1873 cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED; 1874 return -1; 1875 } 1876 1877 base = BN_bin2bn((const unsigned char *)op->modex.base.data, 1878 op->modex.base.length, base); 1879 1880 if (BN_mod_exp(res, base, sess->u.e.exp, 1881 sess->u.e.mod, sess->u.e.ctx)) { 1882 op->modex.result.length = BN_bn2bin(res, op->modex.result.data); 1883 cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS; 1884 } else { 1885 cop->status = RTE_CRYPTO_OP_STATUS_ERROR; 1886 } 1887 1888 BN_clear(res); 1889 BN_clear(base); 1890 1891 return 0; 1892 } 1893 1894 /* process rsa operations */ 1895 static int 1896 process_openssl_rsa_op(struct rte_crypto_op *cop, 1897 struct openssl_asym_session *sess) 1898 { 1899 int ret = 0; 1900 struct rte_crypto_asym_op *op = cop->asym; 1901 RSA *rsa = sess->u.r.rsa; 1902 uint32_t pad = (op->rsa.pad); 1903 uint8_t *tmp; 1904 1905 cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS; 1906 1907 switch (pad) { 1908 case RTE_CRYPTO_RSA_PADDING_PKCS1_5: 1909 pad = RSA_PKCS1_PADDING; 1910 break; 1911 case RTE_CRYPTO_RSA_PADDING_NONE: 1912 pad = RSA_NO_PADDING; 1913 break; 1914 default: 1915 cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS; 1916 OPENSSL_LOG(ERR, 1917 "rsa pad type not supported %d\n", pad); 1918 return 0; 1919 } 1920 1921 switch (op->rsa.op_type) { 1922 case RTE_CRYPTO_ASYM_OP_ENCRYPT: 1923 ret = RSA_public_encrypt(op->rsa.message.length, 1924 op->rsa.message.data, 1925 op->rsa.cipher.data, 1926 rsa, 1927 pad); 1928 1929 if (ret > 0) 1930 op->rsa.cipher.length = ret; 1931 OPENSSL_LOG(DEBUG, 1932 "length of encrypted text %d\n", ret); 1933 break; 1934 1935 case RTE_CRYPTO_ASYM_OP_DECRYPT: 1936 ret = RSA_private_decrypt(op->rsa.cipher.length, 1937 op->rsa.cipher.data, 1938 op->rsa.message.data, 1939 rsa, 1940 pad); 1941 if (ret > 0) 1942 op->rsa.message.length = ret; 1943 break; 1944 1945 case RTE_CRYPTO_ASYM_OP_SIGN: 1946 ret = RSA_private_encrypt(op->rsa.message.length, 1947 op->rsa.message.data, 1948 op->rsa.sign.data, 1949 rsa, 1950 pad); 1951 if (ret > 0) 1952 op->rsa.sign.length = ret; 1953 break; 1954 1955 case RTE_CRYPTO_ASYM_OP_VERIFY: 1956 tmp = rte_malloc(NULL, op->rsa.sign.length, 0); 1957 if (tmp == NULL) { 1958 OPENSSL_LOG(ERR, "Memory allocation failed"); 1959 cop->status = RTE_CRYPTO_OP_STATUS_ERROR; 1960 break; 1961 } 1962 ret = RSA_public_decrypt(op->rsa.sign.length, 1963 op->rsa.sign.data, 1964 tmp, 1965 rsa, 1966 pad); 1967 1968 OPENSSL_LOG(DEBUG, 1969 "Length of public_decrypt %d " 1970 "length of message %zd\n", 1971 ret, op->rsa.message.length); 1972 if ((ret <= 0) || (CRYPTO_memcmp(tmp, op->rsa.message.data, 1973 op->rsa.message.length))) { 1974 OPENSSL_LOG(ERR, "RSA sign Verification failed"); 1975 cop->status = RTE_CRYPTO_OP_STATUS_ERROR; 1976 } 1977 rte_free(tmp); 1978 break; 1979 1980 default: 1981 /* allow ops with invalid args to be pushed to 1982 * completion queue 1983 */ 1984 cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS; 1985 break; 1986 } 1987 1988 if (ret < 0) 1989 cop->status = RTE_CRYPTO_OP_STATUS_ERROR; 1990 1991 return 0; 1992 } 1993 1994 static int 1995 process_asym_op(struct openssl_qp *qp, struct rte_crypto_op *op, 1996 struct openssl_asym_session *sess) 1997 { 1998 int retval = 0; 1999 2000 op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED; 2001 2002 switch (sess->xfrm_type) { 2003 case RTE_CRYPTO_ASYM_XFORM_RSA: 2004 retval = process_openssl_rsa_op(op, sess); 2005 break; 2006 case RTE_CRYPTO_ASYM_XFORM_MODEX: 2007 retval = process_openssl_modexp_op(op, sess); 2008 break; 2009 case RTE_CRYPTO_ASYM_XFORM_MODINV: 2010 retval = process_openssl_modinv_op(op, sess); 2011 break; 2012 case RTE_CRYPTO_ASYM_XFORM_DH: 2013 retval = process_openssl_dh_op(op, sess); 2014 break; 2015 case RTE_CRYPTO_ASYM_XFORM_DSA: 2016 if (op->asym->dsa.op_type == RTE_CRYPTO_ASYM_OP_SIGN) 2017 retval = process_openssl_dsa_sign_op(op, sess); 2018 else if (op->asym->dsa.op_type == 2019 RTE_CRYPTO_ASYM_OP_VERIFY) 2020 retval = 2021 process_openssl_dsa_verify_op(op, sess); 2022 else 2023 op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS; 2024 break; 2025 default: 2026 op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS; 2027 break; 2028 } 2029 if (!retval) { 2030 /* op processed so push to completion queue as processed */ 2031 retval = rte_ring_enqueue(qp->processed_ops, (void *)op); 2032 if (retval) 2033 /* return error if failed to put in completion queue */ 2034 retval = -1; 2035 } 2036 2037 return retval; 2038 } 2039 2040 static void 2041 copy_plaintext(struct rte_mbuf *m_src, struct rte_mbuf *m_dst, 2042 struct rte_crypto_op *op) 2043 { 2044 uint8_t *p_src, *p_dst; 2045 2046 p_src = rte_pktmbuf_mtod(m_src, uint8_t *); 2047 p_dst = rte_pktmbuf_mtod(m_dst, uint8_t *); 2048 2049 /** 2050 * Copy the content between cipher offset and auth offset 2051 * for generating correct digest. 2052 */ 2053 if (op->sym->cipher.data.offset > op->sym->auth.data.offset) 2054 memcpy(p_dst + op->sym->auth.data.offset, 2055 p_src + op->sym->auth.data.offset, 2056 op->sym->cipher.data.offset - 2057 op->sym->auth.data.offset); 2058 } 2059 2060 /** Process crypto operation for mbuf */ 2061 static int 2062 process_op(struct openssl_qp *qp, struct rte_crypto_op *op, 2063 struct openssl_session *sess) 2064 { 2065 struct rte_mbuf *msrc, *mdst; 2066 int retval; 2067 2068 msrc = op->sym->m_src; 2069 mdst = op->sym->m_dst ? op->sym->m_dst : op->sym->m_src; 2070 2071 op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED; 2072 2073 switch (sess->chain_order) { 2074 case OPENSSL_CHAIN_ONLY_CIPHER: 2075 process_openssl_cipher_op(op, sess, msrc, mdst); 2076 break; 2077 case OPENSSL_CHAIN_ONLY_AUTH: 2078 process_openssl_auth_op(qp, op, sess, msrc, mdst); 2079 break; 2080 case OPENSSL_CHAIN_CIPHER_AUTH: 2081 process_openssl_cipher_op(op, sess, msrc, mdst); 2082 /* OOP */ 2083 if (msrc != mdst) 2084 copy_plaintext(msrc, mdst, op); 2085 process_openssl_auth_op(qp, op, sess, mdst, mdst); 2086 break; 2087 case OPENSSL_CHAIN_AUTH_CIPHER: 2088 process_openssl_auth_op(qp, op, sess, msrc, mdst); 2089 process_openssl_cipher_op(op, sess, msrc, mdst); 2090 break; 2091 case OPENSSL_CHAIN_COMBINED: 2092 process_openssl_combined_op(op, sess, msrc, mdst); 2093 break; 2094 case OPENSSL_CHAIN_CIPHER_BPI: 2095 process_openssl_docsis_bpi_op(op, sess, msrc, mdst); 2096 break; 2097 default: 2098 op->status = RTE_CRYPTO_OP_STATUS_ERROR; 2099 break; 2100 } 2101 2102 /* Free session if a session-less crypto op */ 2103 if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) { 2104 openssl_reset_session(sess); 2105 memset(sess, 0, sizeof(struct openssl_session)); 2106 memset(op->sym->session, 0, 2107 rte_cryptodev_sym_get_existing_header_session_size( 2108 op->sym->session)); 2109 rte_mempool_put(qp->sess_mp_priv, sess); 2110 rte_mempool_put(qp->sess_mp, op->sym->session); 2111 op->sym->session = NULL; 2112 } 2113 2114 if (op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED) 2115 op->status = RTE_CRYPTO_OP_STATUS_SUCCESS; 2116 2117 if (op->status != RTE_CRYPTO_OP_STATUS_ERROR) 2118 retval = rte_ring_enqueue(qp->processed_ops, (void *)op); 2119 else 2120 retval = -1; 2121 2122 return retval; 2123 } 2124 2125 /* 2126 *------------------------------------------------------------------------------ 2127 * PMD Framework 2128 *------------------------------------------------------------------------------ 2129 */ 2130 2131 /** Enqueue burst */ 2132 static uint16_t 2133 openssl_pmd_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops, 2134 uint16_t nb_ops) 2135 { 2136 void *sess; 2137 struct openssl_qp *qp = queue_pair; 2138 int i, retval; 2139 2140 for (i = 0; i < nb_ops; i++) { 2141 sess = get_session(qp, ops[i]); 2142 if (unlikely(sess == NULL)) 2143 goto enqueue_err; 2144 2145 if (ops[i]->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC) 2146 retval = process_op(qp, ops[i], 2147 (struct openssl_session *) sess); 2148 else 2149 retval = process_asym_op(qp, ops[i], 2150 (struct openssl_asym_session *) sess); 2151 if (unlikely(retval < 0)) 2152 goto enqueue_err; 2153 } 2154 2155 qp->stats.enqueued_count += i; 2156 return i; 2157 2158 enqueue_err: 2159 qp->stats.enqueue_err_count++; 2160 return i; 2161 } 2162 2163 /** Dequeue burst */ 2164 static uint16_t 2165 openssl_pmd_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops, 2166 uint16_t nb_ops) 2167 { 2168 struct openssl_qp *qp = queue_pair; 2169 2170 unsigned int nb_dequeued = 0; 2171 2172 nb_dequeued = rte_ring_dequeue_burst(qp->processed_ops, 2173 (void **)ops, nb_ops, NULL); 2174 qp->stats.dequeued_count += nb_dequeued; 2175 2176 return nb_dequeued; 2177 } 2178 2179 /** Create OPENSSL crypto device */ 2180 static int 2181 cryptodev_openssl_create(const char *name, 2182 struct rte_vdev_device *vdev, 2183 struct rte_cryptodev_pmd_init_params *init_params) 2184 { 2185 struct rte_cryptodev *dev; 2186 struct openssl_private *internals; 2187 2188 dev = rte_cryptodev_pmd_create(name, &vdev->device, init_params); 2189 if (dev == NULL) { 2190 OPENSSL_LOG(ERR, "failed to create cryptodev vdev"); 2191 goto init_error; 2192 } 2193 2194 dev->driver_id = cryptodev_driver_id; 2195 dev->dev_ops = rte_openssl_pmd_ops; 2196 2197 /* register rx/tx burst functions for data path */ 2198 dev->dequeue_burst = openssl_pmd_dequeue_burst; 2199 dev->enqueue_burst = openssl_pmd_enqueue_burst; 2200 2201 dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO | 2202 RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING | 2203 RTE_CRYPTODEV_FF_CPU_AESNI | 2204 RTE_CRYPTODEV_FF_IN_PLACE_SGL | 2205 RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT | 2206 RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT | 2207 RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO | 2208 RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_EXP | 2209 RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_QT | 2210 RTE_CRYPTODEV_FF_SYM_SESSIONLESS; 2211 2212 internals = dev->data->dev_private; 2213 2214 internals->max_nb_qpairs = init_params->max_nb_queue_pairs; 2215 2216 return 0; 2217 2218 init_error: 2219 OPENSSL_LOG(ERR, "driver %s: create failed", 2220 init_params->name); 2221 2222 cryptodev_openssl_remove(vdev); 2223 return -EFAULT; 2224 } 2225 2226 /** Initialise OPENSSL crypto device */ 2227 static int 2228 cryptodev_openssl_probe(struct rte_vdev_device *vdev) 2229 { 2230 struct rte_cryptodev_pmd_init_params init_params = { 2231 "", 2232 sizeof(struct openssl_private), 2233 rte_socket_id(), 2234 RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_QUEUE_PAIRS 2235 }; 2236 const char *name; 2237 const char *input_args; 2238 2239 name = rte_vdev_device_name(vdev); 2240 if (name == NULL) 2241 return -EINVAL; 2242 input_args = rte_vdev_device_args(vdev); 2243 2244 rte_cryptodev_pmd_parse_input_args(&init_params, input_args); 2245 2246 return cryptodev_openssl_create(name, vdev, &init_params); 2247 } 2248 2249 /** Uninitialise OPENSSL crypto device */ 2250 static int 2251 cryptodev_openssl_remove(struct rte_vdev_device *vdev) 2252 { 2253 struct rte_cryptodev *cryptodev; 2254 const char *name; 2255 2256 name = rte_vdev_device_name(vdev); 2257 if (name == NULL) 2258 return -EINVAL; 2259 2260 cryptodev = rte_cryptodev_pmd_get_named_dev(name); 2261 if (cryptodev == NULL) 2262 return -ENODEV; 2263 2264 return rte_cryptodev_pmd_destroy(cryptodev); 2265 } 2266 2267 static struct rte_vdev_driver cryptodev_openssl_pmd_drv = { 2268 .probe = cryptodev_openssl_probe, 2269 .remove = cryptodev_openssl_remove 2270 }; 2271 2272 static struct cryptodev_driver openssl_crypto_drv; 2273 2274 RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_OPENSSL_PMD, 2275 cryptodev_openssl_pmd_drv); 2276 RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_OPENSSL_PMD, 2277 "max_nb_queue_pairs=<int> " 2278 "socket_id=<int>"); 2279 RTE_PMD_REGISTER_CRYPTO_DRIVER(openssl_crypto_drv, 2280 cryptodev_openssl_pmd_drv.driver, cryptodev_driver_id); 2281 RTE_LOG_REGISTER(openssl_logtype_driver, pmd.crypto.openssl, INFO); 2282