xref: /dpdk/drivers/crypto/openssl/rte_openssl_pmd.c (revision f23c977d0362dd428f396d6ba932ad02cd47443c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4 
5 #include <rte_common.h>
6 #include <rte_hexdump.h>
7 #include <rte_cryptodev.h>
8 #include <rte_cryptodev_pmd.h>
9 #include <rte_bus_vdev.h>
10 #include <rte_malloc.h>
11 #include <rte_cpuflags.h>
12 
13 #include <openssl/hmac.h>
14 #include <openssl/evp.h>
15 
16 #include "rte_openssl_pmd_private.h"
17 #include "compat.h"
18 
19 #define DES_BLOCK_SIZE 8
20 
21 static uint8_t cryptodev_driver_id;
22 
23 #if (OPENSSL_VERSION_NUMBER < 0x10100000L)
24 static HMAC_CTX *HMAC_CTX_new(void)
25 {
26 	HMAC_CTX *ctx = OPENSSL_malloc(sizeof(*ctx));
27 
28 	if (ctx != NULL)
29 		HMAC_CTX_init(ctx);
30 	return ctx;
31 }
32 
33 static void HMAC_CTX_free(HMAC_CTX *ctx)
34 {
35 	if (ctx != NULL) {
36 		HMAC_CTX_cleanup(ctx);
37 		OPENSSL_free(ctx);
38 	}
39 }
40 #endif
41 
42 static int cryptodev_openssl_remove(struct rte_vdev_device *vdev);
43 
44 /*----------------------------------------------------------------------------*/
45 
46 /**
47  * Increment counter by 1
48  * Counter is 64 bit array, big-endian
49  */
50 static void
51 ctr_inc(uint8_t *ctr)
52 {
53 	uint64_t *ctr64 = (uint64_t *)ctr;
54 
55 	*ctr64 = __builtin_bswap64(*ctr64);
56 	(*ctr64)++;
57 	*ctr64 = __builtin_bswap64(*ctr64);
58 }
59 
60 /*
61  *------------------------------------------------------------------------------
62  * Session Prepare
63  *------------------------------------------------------------------------------
64  */
65 
66 /** Get xform chain order */
67 static enum openssl_chain_order
68 openssl_get_chain_order(const struct rte_crypto_sym_xform *xform)
69 {
70 	enum openssl_chain_order res = OPENSSL_CHAIN_NOT_SUPPORTED;
71 
72 	if (xform != NULL) {
73 		if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
74 			if (xform->next == NULL)
75 				res =  OPENSSL_CHAIN_ONLY_AUTH;
76 			else if (xform->next->type ==
77 					RTE_CRYPTO_SYM_XFORM_CIPHER)
78 				res =  OPENSSL_CHAIN_AUTH_CIPHER;
79 		}
80 		if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
81 			if (xform->next == NULL)
82 				res =  OPENSSL_CHAIN_ONLY_CIPHER;
83 			else if (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH)
84 				res =  OPENSSL_CHAIN_CIPHER_AUTH;
85 		}
86 		if (xform->type == RTE_CRYPTO_SYM_XFORM_AEAD)
87 			res = OPENSSL_CHAIN_COMBINED;
88 	}
89 
90 	return res;
91 }
92 
93 /** Get session cipher key from input cipher key */
94 static void
95 get_cipher_key(uint8_t *input_key, int keylen, uint8_t *session_key)
96 {
97 	memcpy(session_key, input_key, keylen);
98 }
99 
100 /** Get key ede 24 bytes standard from input key */
101 static int
102 get_cipher_key_ede(uint8_t *key, int keylen, uint8_t *key_ede)
103 {
104 	int res = 0;
105 
106 	/* Initialize keys - 24 bytes: [key1-key2-key3] */
107 	switch (keylen) {
108 	case 24:
109 		memcpy(key_ede, key, 24);
110 		break;
111 	case 16:
112 		/* K3 = K1 */
113 		memcpy(key_ede, key, 16);
114 		memcpy(key_ede + 16, key, 8);
115 		break;
116 	case 8:
117 		/* K1 = K2 = K3 (DES compatibility) */
118 		memcpy(key_ede, key, 8);
119 		memcpy(key_ede + 8, key, 8);
120 		memcpy(key_ede + 16, key, 8);
121 		break;
122 	default:
123 		OPENSSL_LOG(ERR, "Unsupported key size");
124 		res = -EINVAL;
125 	}
126 
127 	return res;
128 }
129 
130 /** Get adequate openssl function for input cipher algorithm */
131 static uint8_t
132 get_cipher_algo(enum rte_crypto_cipher_algorithm sess_algo, size_t keylen,
133 		const EVP_CIPHER **algo)
134 {
135 	int res = 0;
136 
137 	if (algo != NULL) {
138 		switch (sess_algo) {
139 		case RTE_CRYPTO_CIPHER_3DES_CBC:
140 			switch (keylen) {
141 			case 8:
142 				*algo = EVP_des_cbc();
143 				break;
144 			case 16:
145 				*algo = EVP_des_ede_cbc();
146 				break;
147 			case 24:
148 				*algo = EVP_des_ede3_cbc();
149 				break;
150 			default:
151 				res = -EINVAL;
152 			}
153 			break;
154 		case RTE_CRYPTO_CIPHER_3DES_CTR:
155 			break;
156 		case RTE_CRYPTO_CIPHER_AES_CBC:
157 			switch (keylen) {
158 			case 16:
159 				*algo = EVP_aes_128_cbc();
160 				break;
161 			case 24:
162 				*algo = EVP_aes_192_cbc();
163 				break;
164 			case 32:
165 				*algo = EVP_aes_256_cbc();
166 				break;
167 			default:
168 				res = -EINVAL;
169 			}
170 			break;
171 		case RTE_CRYPTO_CIPHER_AES_CTR:
172 			switch (keylen) {
173 			case 16:
174 				*algo = EVP_aes_128_ctr();
175 				break;
176 			case 24:
177 				*algo = EVP_aes_192_ctr();
178 				break;
179 			case 32:
180 				*algo = EVP_aes_256_ctr();
181 				break;
182 			default:
183 				res = -EINVAL;
184 			}
185 			break;
186 		default:
187 			res = -EINVAL;
188 			break;
189 		}
190 	} else {
191 		res = -EINVAL;
192 	}
193 
194 	return res;
195 }
196 
197 /** Get adequate openssl function for input auth algorithm */
198 static uint8_t
199 get_auth_algo(enum rte_crypto_auth_algorithm sessalgo,
200 		const EVP_MD **algo)
201 {
202 	int res = 0;
203 
204 	if (algo != NULL) {
205 		switch (sessalgo) {
206 		case RTE_CRYPTO_AUTH_MD5:
207 		case RTE_CRYPTO_AUTH_MD5_HMAC:
208 			*algo = EVP_md5();
209 			break;
210 		case RTE_CRYPTO_AUTH_SHA1:
211 		case RTE_CRYPTO_AUTH_SHA1_HMAC:
212 			*algo = EVP_sha1();
213 			break;
214 		case RTE_CRYPTO_AUTH_SHA224:
215 		case RTE_CRYPTO_AUTH_SHA224_HMAC:
216 			*algo = EVP_sha224();
217 			break;
218 		case RTE_CRYPTO_AUTH_SHA256:
219 		case RTE_CRYPTO_AUTH_SHA256_HMAC:
220 			*algo = EVP_sha256();
221 			break;
222 		case RTE_CRYPTO_AUTH_SHA384:
223 		case RTE_CRYPTO_AUTH_SHA384_HMAC:
224 			*algo = EVP_sha384();
225 			break;
226 		case RTE_CRYPTO_AUTH_SHA512:
227 		case RTE_CRYPTO_AUTH_SHA512_HMAC:
228 			*algo = EVP_sha512();
229 			break;
230 		default:
231 			res = -EINVAL;
232 			break;
233 		}
234 	} else {
235 		res = -EINVAL;
236 	}
237 
238 	return res;
239 }
240 
241 /** Get adequate openssl function for input cipher algorithm */
242 static uint8_t
243 get_aead_algo(enum rte_crypto_aead_algorithm sess_algo, size_t keylen,
244 		const EVP_CIPHER **algo)
245 {
246 	int res = 0;
247 
248 	if (algo != NULL) {
249 		switch (sess_algo) {
250 		case RTE_CRYPTO_AEAD_AES_GCM:
251 			switch (keylen) {
252 			case 16:
253 				*algo = EVP_aes_128_gcm();
254 				break;
255 			case 24:
256 				*algo = EVP_aes_192_gcm();
257 				break;
258 			case 32:
259 				*algo = EVP_aes_256_gcm();
260 				break;
261 			default:
262 				res = -EINVAL;
263 			}
264 			break;
265 		case RTE_CRYPTO_AEAD_AES_CCM:
266 			switch (keylen) {
267 			case 16:
268 				*algo = EVP_aes_128_ccm();
269 				break;
270 			case 24:
271 				*algo = EVP_aes_192_ccm();
272 				break;
273 			case 32:
274 				*algo = EVP_aes_256_ccm();
275 				break;
276 			default:
277 				res = -EINVAL;
278 			}
279 			break;
280 		default:
281 			res = -EINVAL;
282 			break;
283 		}
284 	} else {
285 		res = -EINVAL;
286 	}
287 
288 	return res;
289 }
290 
291 /* Set session AEAD encryption parameters */
292 static int
293 openssl_set_sess_aead_enc_param(struct openssl_session *sess,
294 		enum rte_crypto_aead_algorithm algo,
295 		uint8_t tag_len, uint8_t *key)
296 {
297 	int iv_type = 0;
298 	unsigned int do_ccm;
299 
300 	sess->cipher.direction = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
301 	sess->auth.operation = RTE_CRYPTO_AUTH_OP_GENERATE;
302 
303 	/* Select AEAD algo */
304 	switch (algo) {
305 	case RTE_CRYPTO_AEAD_AES_GCM:
306 		iv_type = EVP_CTRL_GCM_SET_IVLEN;
307 		if (tag_len != 16)
308 			return -EINVAL;
309 		do_ccm = 0;
310 		break;
311 	case RTE_CRYPTO_AEAD_AES_CCM:
312 		iv_type = EVP_CTRL_CCM_SET_IVLEN;
313 		/* Digest size can be 4, 6, 8, 10, 12, 14 or 16 bytes */
314 		if (tag_len < 4 || tag_len > 16 || (tag_len & 1) == 1)
315 			return -EINVAL;
316 		do_ccm = 1;
317 		break;
318 	default:
319 		return -ENOTSUP;
320 	}
321 
322 	sess->cipher.mode = OPENSSL_CIPHER_LIB;
323 	sess->cipher.ctx = EVP_CIPHER_CTX_new();
324 
325 	if (get_aead_algo(algo, sess->cipher.key.length,
326 			&sess->cipher.evp_algo) != 0)
327 		return -EINVAL;
328 
329 	get_cipher_key(key, sess->cipher.key.length, sess->cipher.key.data);
330 
331 	sess->chain_order = OPENSSL_CHAIN_COMBINED;
332 
333 	if (EVP_EncryptInit_ex(sess->cipher.ctx, sess->cipher.evp_algo,
334 			NULL, NULL, NULL) <= 0)
335 		return -EINVAL;
336 
337 	if (EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, iv_type, sess->iv.length,
338 			NULL) <= 0)
339 		return -EINVAL;
340 
341 	if (do_ccm)
342 		EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, EVP_CTRL_CCM_SET_TAG,
343 				tag_len, NULL);
344 
345 	if (EVP_EncryptInit_ex(sess->cipher.ctx, NULL, NULL, key, NULL) <= 0)
346 		return -EINVAL;
347 
348 	return 0;
349 }
350 
351 /* Set session AEAD decryption parameters */
352 static int
353 openssl_set_sess_aead_dec_param(struct openssl_session *sess,
354 		enum rte_crypto_aead_algorithm algo,
355 		uint8_t tag_len, uint8_t *key)
356 {
357 	int iv_type = 0;
358 	unsigned int do_ccm = 0;
359 
360 	sess->cipher.direction = RTE_CRYPTO_CIPHER_OP_DECRYPT;
361 	sess->auth.operation = RTE_CRYPTO_AUTH_OP_VERIFY;
362 
363 	/* Select AEAD algo */
364 	switch (algo) {
365 	case RTE_CRYPTO_AEAD_AES_GCM:
366 		iv_type = EVP_CTRL_GCM_SET_IVLEN;
367 		if (tag_len != 16)
368 			return -EINVAL;
369 		break;
370 	case RTE_CRYPTO_AEAD_AES_CCM:
371 		iv_type = EVP_CTRL_CCM_SET_IVLEN;
372 		/* Digest size can be 4, 6, 8, 10, 12, 14 or 16 bytes */
373 		if (tag_len < 4 || tag_len > 16 || (tag_len & 1) == 1)
374 			return -EINVAL;
375 		do_ccm = 1;
376 		break;
377 	default:
378 		return -ENOTSUP;
379 	}
380 
381 	sess->cipher.mode = OPENSSL_CIPHER_LIB;
382 	sess->cipher.ctx = EVP_CIPHER_CTX_new();
383 
384 	if (get_aead_algo(algo, sess->cipher.key.length,
385 			&sess->cipher.evp_algo) != 0)
386 		return -EINVAL;
387 
388 	get_cipher_key(key, sess->cipher.key.length, sess->cipher.key.data);
389 
390 	sess->chain_order = OPENSSL_CHAIN_COMBINED;
391 
392 	if (EVP_DecryptInit_ex(sess->cipher.ctx, sess->cipher.evp_algo,
393 			NULL, NULL, NULL) <= 0)
394 		return -EINVAL;
395 
396 	if (EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, iv_type,
397 			sess->iv.length, NULL) <= 0)
398 		return -EINVAL;
399 
400 	if (do_ccm)
401 		EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, EVP_CTRL_CCM_SET_TAG,
402 				tag_len, NULL);
403 
404 	if (EVP_DecryptInit_ex(sess->cipher.ctx, NULL, NULL, key, NULL) <= 0)
405 		return -EINVAL;
406 
407 	return 0;
408 }
409 
410 /** Set session cipher parameters */
411 static int
412 openssl_set_session_cipher_parameters(struct openssl_session *sess,
413 		const struct rte_crypto_sym_xform *xform)
414 {
415 	/* Select cipher direction */
416 	sess->cipher.direction = xform->cipher.op;
417 	/* Select cipher key */
418 	sess->cipher.key.length = xform->cipher.key.length;
419 
420 	/* Set IV parameters */
421 	sess->iv.offset = xform->cipher.iv.offset;
422 	sess->iv.length = xform->cipher.iv.length;
423 
424 	/* Select cipher algo */
425 	switch (xform->cipher.algo) {
426 	case RTE_CRYPTO_CIPHER_3DES_CBC:
427 	case RTE_CRYPTO_CIPHER_AES_CBC:
428 	case RTE_CRYPTO_CIPHER_AES_CTR:
429 		sess->cipher.mode = OPENSSL_CIPHER_LIB;
430 		sess->cipher.algo = xform->cipher.algo;
431 		sess->cipher.ctx = EVP_CIPHER_CTX_new();
432 
433 		if (get_cipher_algo(sess->cipher.algo, sess->cipher.key.length,
434 				&sess->cipher.evp_algo) != 0)
435 			return -EINVAL;
436 
437 		get_cipher_key(xform->cipher.key.data, sess->cipher.key.length,
438 			sess->cipher.key.data);
439 		if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
440 			if (EVP_EncryptInit_ex(sess->cipher.ctx,
441 					sess->cipher.evp_algo,
442 					NULL, xform->cipher.key.data,
443 					NULL) != 1) {
444 				return -EINVAL;
445 			}
446 		} else if (sess->cipher.direction ==
447 				RTE_CRYPTO_CIPHER_OP_DECRYPT) {
448 			if (EVP_DecryptInit_ex(sess->cipher.ctx,
449 					sess->cipher.evp_algo,
450 					NULL, xform->cipher.key.data,
451 					NULL) != 1) {
452 				return -EINVAL;
453 			}
454 		}
455 
456 		break;
457 
458 	case RTE_CRYPTO_CIPHER_3DES_CTR:
459 		sess->cipher.mode = OPENSSL_CIPHER_DES3CTR;
460 		sess->cipher.ctx = EVP_CIPHER_CTX_new();
461 
462 		if (get_cipher_key_ede(xform->cipher.key.data,
463 				sess->cipher.key.length,
464 				sess->cipher.key.data) != 0)
465 			return -EINVAL;
466 		break;
467 
468 	case RTE_CRYPTO_CIPHER_DES_CBC:
469 		sess->cipher.algo = xform->cipher.algo;
470 		sess->cipher.ctx = EVP_CIPHER_CTX_new();
471 		sess->cipher.evp_algo = EVP_des_cbc();
472 
473 		get_cipher_key(xform->cipher.key.data, sess->cipher.key.length,
474 			sess->cipher.key.data);
475 		if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
476 			if (EVP_EncryptInit_ex(sess->cipher.ctx,
477 					sess->cipher.evp_algo,
478 					NULL, xform->cipher.key.data,
479 					NULL) != 1) {
480 				return -EINVAL;
481 			}
482 		} else if (sess->cipher.direction ==
483 				RTE_CRYPTO_CIPHER_OP_DECRYPT) {
484 			if (EVP_DecryptInit_ex(sess->cipher.ctx,
485 					sess->cipher.evp_algo,
486 					NULL, xform->cipher.key.data,
487 					NULL) != 1) {
488 				return -EINVAL;
489 			}
490 		}
491 
492 		break;
493 
494 	case RTE_CRYPTO_CIPHER_DES_DOCSISBPI:
495 		sess->cipher.algo = xform->cipher.algo;
496 		sess->chain_order = OPENSSL_CHAIN_CIPHER_BPI;
497 		sess->cipher.ctx = EVP_CIPHER_CTX_new();
498 		sess->cipher.evp_algo = EVP_des_cbc();
499 
500 		sess->cipher.bpi_ctx = EVP_CIPHER_CTX_new();
501 		/* IV will be ECB encrypted whether direction is encrypt or decrypt */
502 		if (EVP_EncryptInit_ex(sess->cipher.bpi_ctx, EVP_des_ecb(),
503 				NULL, xform->cipher.key.data, 0) != 1)
504 			return -EINVAL;
505 
506 		get_cipher_key(xform->cipher.key.data, sess->cipher.key.length,
507 			sess->cipher.key.data);
508 		if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
509 			if (EVP_EncryptInit_ex(sess->cipher.ctx,
510 					sess->cipher.evp_algo,
511 					NULL, xform->cipher.key.data,
512 					NULL) != 1) {
513 				return -EINVAL;
514 			}
515 		} else if (sess->cipher.direction ==
516 				RTE_CRYPTO_CIPHER_OP_DECRYPT) {
517 			if (EVP_DecryptInit_ex(sess->cipher.ctx,
518 					sess->cipher.evp_algo,
519 					NULL, xform->cipher.key.data,
520 					NULL) != 1) {
521 				return -EINVAL;
522 			}
523 		}
524 
525 		break;
526 	default:
527 		sess->cipher.algo = RTE_CRYPTO_CIPHER_NULL;
528 		return -ENOTSUP;
529 	}
530 
531 	return 0;
532 }
533 
534 /* Set session auth parameters */
535 static int
536 openssl_set_session_auth_parameters(struct openssl_session *sess,
537 		const struct rte_crypto_sym_xform *xform)
538 {
539 	/* Select auth generate/verify */
540 	sess->auth.operation = xform->auth.op;
541 	sess->auth.algo = xform->auth.algo;
542 
543 	sess->auth.digest_length = xform->auth.digest_length;
544 
545 	/* Select auth algo */
546 	switch (xform->auth.algo) {
547 	case RTE_CRYPTO_AUTH_AES_GMAC:
548 		/*
549 		 * OpenSSL requires GMAC to be a GCM operation
550 		 * with no cipher data length
551 		 */
552 		sess->cipher.key.length = xform->auth.key.length;
553 
554 		/* Set IV parameters */
555 		sess->iv.offset = xform->auth.iv.offset;
556 		sess->iv.length = xform->auth.iv.length;
557 
558 		if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_GENERATE)
559 			return openssl_set_sess_aead_enc_param(sess,
560 						RTE_CRYPTO_AEAD_AES_GCM,
561 						xform->auth.digest_length,
562 						xform->auth.key.data);
563 		else
564 			return openssl_set_sess_aead_dec_param(sess,
565 						RTE_CRYPTO_AEAD_AES_GCM,
566 						xform->auth.digest_length,
567 						xform->auth.key.data);
568 		break;
569 
570 	case RTE_CRYPTO_AUTH_MD5:
571 	case RTE_CRYPTO_AUTH_SHA1:
572 	case RTE_CRYPTO_AUTH_SHA224:
573 	case RTE_CRYPTO_AUTH_SHA256:
574 	case RTE_CRYPTO_AUTH_SHA384:
575 	case RTE_CRYPTO_AUTH_SHA512:
576 		sess->auth.mode = OPENSSL_AUTH_AS_AUTH;
577 		if (get_auth_algo(xform->auth.algo,
578 				&sess->auth.auth.evp_algo) != 0)
579 			return -EINVAL;
580 		sess->auth.auth.ctx = EVP_MD_CTX_create();
581 		break;
582 
583 	case RTE_CRYPTO_AUTH_MD5_HMAC:
584 	case RTE_CRYPTO_AUTH_SHA1_HMAC:
585 	case RTE_CRYPTO_AUTH_SHA224_HMAC:
586 	case RTE_CRYPTO_AUTH_SHA256_HMAC:
587 	case RTE_CRYPTO_AUTH_SHA384_HMAC:
588 	case RTE_CRYPTO_AUTH_SHA512_HMAC:
589 		sess->auth.mode = OPENSSL_AUTH_AS_HMAC;
590 		sess->auth.hmac.ctx = HMAC_CTX_new();
591 		if (get_auth_algo(xform->auth.algo,
592 				&sess->auth.hmac.evp_algo) != 0)
593 			return -EINVAL;
594 
595 		if (HMAC_Init_ex(sess->auth.hmac.ctx,
596 				xform->auth.key.data,
597 				xform->auth.key.length,
598 				sess->auth.hmac.evp_algo, NULL) != 1)
599 			return -EINVAL;
600 		break;
601 
602 	default:
603 		return -ENOTSUP;
604 	}
605 
606 	return 0;
607 }
608 
609 /* Set session AEAD parameters */
610 static int
611 openssl_set_session_aead_parameters(struct openssl_session *sess,
612 		const struct rte_crypto_sym_xform *xform)
613 {
614 	/* Select cipher key */
615 	sess->cipher.key.length = xform->aead.key.length;
616 
617 	/* Set IV parameters */
618 	if (xform->aead.algo == RTE_CRYPTO_AEAD_AES_CCM)
619 		/*
620 		 * For AES-CCM, the actual IV is placed
621 		 * one byte after the start of the IV field,
622 		 * according to the API.
623 		 */
624 		sess->iv.offset = xform->aead.iv.offset + 1;
625 	else
626 		sess->iv.offset = xform->aead.iv.offset;
627 
628 	sess->iv.length = xform->aead.iv.length;
629 
630 	sess->auth.aad_length = xform->aead.aad_length;
631 	sess->auth.digest_length = xform->aead.digest_length;
632 
633 	sess->aead_algo = xform->aead.algo;
634 	/* Select cipher direction */
635 	if (xform->aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT)
636 		return openssl_set_sess_aead_enc_param(sess, xform->aead.algo,
637 				xform->aead.digest_length, xform->aead.key.data);
638 	else
639 		return openssl_set_sess_aead_dec_param(sess, xform->aead.algo,
640 				xform->aead.digest_length, xform->aead.key.data);
641 }
642 
643 /** Parse crypto xform chain and set private session parameters */
644 int
645 openssl_set_session_parameters(struct openssl_session *sess,
646 		const struct rte_crypto_sym_xform *xform)
647 {
648 	const struct rte_crypto_sym_xform *cipher_xform = NULL;
649 	const struct rte_crypto_sym_xform *auth_xform = NULL;
650 	const struct rte_crypto_sym_xform *aead_xform = NULL;
651 	int ret;
652 
653 	sess->chain_order = openssl_get_chain_order(xform);
654 	switch (sess->chain_order) {
655 	case OPENSSL_CHAIN_ONLY_CIPHER:
656 		cipher_xform = xform;
657 		break;
658 	case OPENSSL_CHAIN_ONLY_AUTH:
659 		auth_xform = xform;
660 		break;
661 	case OPENSSL_CHAIN_CIPHER_AUTH:
662 		cipher_xform = xform;
663 		auth_xform = xform->next;
664 		break;
665 	case OPENSSL_CHAIN_AUTH_CIPHER:
666 		auth_xform = xform;
667 		cipher_xform = xform->next;
668 		break;
669 	case OPENSSL_CHAIN_COMBINED:
670 		aead_xform = xform;
671 		break;
672 	default:
673 		return -EINVAL;
674 	}
675 
676 	/* Default IV length = 0 */
677 	sess->iv.length = 0;
678 
679 	/* cipher_xform must be check before auth_xform */
680 	if (cipher_xform) {
681 		ret = openssl_set_session_cipher_parameters(
682 				sess, cipher_xform);
683 		if (ret != 0) {
684 			OPENSSL_LOG(ERR,
685 				"Invalid/unsupported cipher parameters");
686 			return ret;
687 		}
688 	}
689 
690 	if (auth_xform) {
691 		ret = openssl_set_session_auth_parameters(sess, auth_xform);
692 		if (ret != 0) {
693 			OPENSSL_LOG(ERR,
694 				"Invalid/unsupported auth parameters");
695 			return ret;
696 		}
697 	}
698 
699 	if (aead_xform) {
700 		ret = openssl_set_session_aead_parameters(sess, aead_xform);
701 		if (ret != 0) {
702 			OPENSSL_LOG(ERR,
703 				"Invalid/unsupported AEAD parameters");
704 			return ret;
705 		}
706 	}
707 
708 	return 0;
709 }
710 
711 /** Reset private session parameters */
712 void
713 openssl_reset_session(struct openssl_session *sess)
714 {
715 	EVP_CIPHER_CTX_free(sess->cipher.ctx);
716 
717 	if (sess->chain_order == OPENSSL_CHAIN_CIPHER_BPI)
718 		EVP_CIPHER_CTX_free(sess->cipher.bpi_ctx);
719 
720 	switch (sess->auth.mode) {
721 	case OPENSSL_AUTH_AS_AUTH:
722 		EVP_MD_CTX_destroy(sess->auth.auth.ctx);
723 		break;
724 	case OPENSSL_AUTH_AS_HMAC:
725 		EVP_PKEY_free(sess->auth.hmac.pkey);
726 		HMAC_CTX_free(sess->auth.hmac.ctx);
727 		break;
728 	default:
729 		break;
730 	}
731 }
732 
733 /** Provide session for operation */
734 static void *
735 get_session(struct openssl_qp *qp, struct rte_crypto_op *op)
736 {
737 	struct openssl_session *sess = NULL;
738 	struct openssl_asym_session *asym_sess = NULL;
739 
740 	if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
741 		if (op->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC) {
742 			/* get existing session */
743 			if (likely(op->sym->session != NULL))
744 				sess = (struct openssl_session *)
745 						get_sym_session_private_data(
746 						op->sym->session,
747 						cryptodev_driver_id);
748 		} else {
749 			if (likely(op->asym->session != NULL))
750 				asym_sess = (struct openssl_asym_session *)
751 						get_asym_session_private_data(
752 						op->asym->session,
753 						cryptodev_driver_id);
754 			if (asym_sess == NULL)
755 				op->status =
756 					RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
757 			return asym_sess;
758 		}
759 	} else {
760 		/* sessionless asymmetric not supported */
761 		if (op->type == RTE_CRYPTO_OP_TYPE_ASYMMETRIC)
762 			return NULL;
763 
764 		/* provide internal session */
765 		void *_sess = NULL;
766 		void *_sess_private_data = NULL;
767 
768 		if (rte_mempool_get(qp->sess_mp, (void **)&_sess))
769 			return NULL;
770 
771 		if (rte_mempool_get(qp->sess_mp, (void **)&_sess_private_data))
772 			return NULL;
773 
774 		sess = (struct openssl_session *)_sess_private_data;
775 
776 		if (unlikely(openssl_set_session_parameters(sess,
777 				op->sym->xform) != 0)) {
778 			rte_mempool_put(qp->sess_mp, _sess);
779 			rte_mempool_put(qp->sess_mp, _sess_private_data);
780 			sess = NULL;
781 		}
782 		op->sym->session = (struct rte_cryptodev_sym_session *)_sess;
783 		set_sym_session_private_data(op->sym->session,
784 				cryptodev_driver_id, _sess_private_data);
785 	}
786 
787 	if (sess == NULL)
788 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
789 
790 	return sess;
791 }
792 
793 /*
794  *------------------------------------------------------------------------------
795  * Process Operations
796  *------------------------------------------------------------------------------
797  */
798 static inline int
799 process_openssl_encryption_update(struct rte_mbuf *mbuf_src, int offset,
800 		uint8_t **dst, int srclen, EVP_CIPHER_CTX *ctx)
801 {
802 	struct rte_mbuf *m;
803 	int dstlen;
804 	int l, n = srclen;
805 	uint8_t *src;
806 
807 	for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m);
808 			m = m->next)
809 		offset -= rte_pktmbuf_data_len(m);
810 
811 	if (m == 0)
812 		return -1;
813 
814 	src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset);
815 
816 	l = rte_pktmbuf_data_len(m) - offset;
817 	if (srclen <= l) {
818 		if (EVP_EncryptUpdate(ctx, *dst, &dstlen, src, srclen) <= 0)
819 			return -1;
820 		*dst += l;
821 		return 0;
822 	}
823 
824 	if (EVP_EncryptUpdate(ctx, *dst, &dstlen, src, l) <= 0)
825 		return -1;
826 
827 	*dst += dstlen;
828 	n -= l;
829 
830 	for (m = m->next; (m != NULL) && (n > 0); m = m->next) {
831 		src = rte_pktmbuf_mtod(m, uint8_t *);
832 		l = rte_pktmbuf_data_len(m) < n ? rte_pktmbuf_data_len(m) : n;
833 		if (EVP_EncryptUpdate(ctx, *dst, &dstlen, src, l) <= 0)
834 			return -1;
835 		*dst += dstlen;
836 		n -= l;
837 	}
838 
839 	return 0;
840 }
841 
842 static inline int
843 process_openssl_decryption_update(struct rte_mbuf *mbuf_src, int offset,
844 		uint8_t **dst, int srclen, EVP_CIPHER_CTX *ctx)
845 {
846 	struct rte_mbuf *m;
847 	int dstlen;
848 	int l, n = srclen;
849 	uint8_t *src;
850 
851 	for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m);
852 			m = m->next)
853 		offset -= rte_pktmbuf_data_len(m);
854 
855 	if (m == 0)
856 		return -1;
857 
858 	src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset);
859 
860 	l = rte_pktmbuf_data_len(m) - offset;
861 	if (srclen <= l) {
862 		if (EVP_DecryptUpdate(ctx, *dst, &dstlen, src, srclen) <= 0)
863 			return -1;
864 		*dst += l;
865 		return 0;
866 	}
867 
868 	if (EVP_DecryptUpdate(ctx, *dst, &dstlen, src, l) <= 0)
869 		return -1;
870 
871 	*dst += dstlen;
872 	n -= l;
873 
874 	for (m = m->next; (m != NULL) && (n > 0); m = m->next) {
875 		src = rte_pktmbuf_mtod(m, uint8_t *);
876 		l = rte_pktmbuf_data_len(m) < n ? rte_pktmbuf_data_len(m) : n;
877 		if (EVP_DecryptUpdate(ctx, *dst, &dstlen, src, l) <= 0)
878 			return -1;
879 		*dst += dstlen;
880 		n -= l;
881 	}
882 
883 	return 0;
884 }
885 
886 /** Process standard openssl cipher encryption */
887 static int
888 process_openssl_cipher_encrypt(struct rte_mbuf *mbuf_src, uint8_t *dst,
889 		int offset, uint8_t *iv, int srclen, EVP_CIPHER_CTX *ctx)
890 {
891 	int totlen;
892 
893 	if (EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
894 		goto process_cipher_encrypt_err;
895 
896 	EVP_CIPHER_CTX_set_padding(ctx, 0);
897 
898 	if (process_openssl_encryption_update(mbuf_src, offset, &dst,
899 			srclen, ctx))
900 		goto process_cipher_encrypt_err;
901 
902 	if (EVP_EncryptFinal_ex(ctx, dst, &totlen) <= 0)
903 		goto process_cipher_encrypt_err;
904 
905 	return 0;
906 
907 process_cipher_encrypt_err:
908 	OPENSSL_LOG(ERR, "Process openssl cipher encrypt failed");
909 	return -EINVAL;
910 }
911 
912 /** Process standard openssl cipher encryption */
913 static int
914 process_openssl_cipher_bpi_encrypt(uint8_t *src, uint8_t *dst,
915 		uint8_t *iv, int srclen,
916 		EVP_CIPHER_CTX *ctx)
917 {
918 	uint8_t i;
919 	uint8_t encrypted_iv[DES_BLOCK_SIZE];
920 	int encrypted_ivlen;
921 
922 	if (EVP_EncryptUpdate(ctx, encrypted_iv, &encrypted_ivlen,
923 			iv, DES_BLOCK_SIZE) <= 0)
924 		goto process_cipher_encrypt_err;
925 
926 	for (i = 0; i < srclen; i++)
927 		*(dst + i) = *(src + i) ^ (encrypted_iv[i]);
928 
929 	return 0;
930 
931 process_cipher_encrypt_err:
932 	OPENSSL_LOG(ERR, "Process openssl cipher bpi encrypt failed");
933 	return -EINVAL;
934 }
935 /** Process standard openssl cipher decryption */
936 static int
937 process_openssl_cipher_decrypt(struct rte_mbuf *mbuf_src, uint8_t *dst,
938 		int offset, uint8_t *iv, int srclen, EVP_CIPHER_CTX *ctx)
939 {
940 	int totlen;
941 
942 	if (EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
943 		goto process_cipher_decrypt_err;
944 
945 	EVP_CIPHER_CTX_set_padding(ctx, 0);
946 
947 	if (process_openssl_decryption_update(mbuf_src, offset, &dst,
948 			srclen, ctx))
949 		goto process_cipher_decrypt_err;
950 
951 	if (EVP_DecryptFinal_ex(ctx, dst, &totlen) <= 0)
952 		goto process_cipher_decrypt_err;
953 	return 0;
954 
955 process_cipher_decrypt_err:
956 	OPENSSL_LOG(ERR, "Process openssl cipher decrypt failed");
957 	return -EINVAL;
958 }
959 
960 /** Process cipher des 3 ctr encryption, decryption algorithm */
961 static int
962 process_openssl_cipher_des3ctr(struct rte_mbuf *mbuf_src, uint8_t *dst,
963 		int offset, uint8_t *iv, uint8_t *key, int srclen,
964 		EVP_CIPHER_CTX *ctx)
965 {
966 	uint8_t ebuf[8], ctr[8];
967 	int unused, n;
968 	struct rte_mbuf *m;
969 	uint8_t *src;
970 	int l;
971 
972 	for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m);
973 			m = m->next)
974 		offset -= rte_pktmbuf_data_len(m);
975 
976 	if (m == 0)
977 		goto process_cipher_des3ctr_err;
978 
979 	src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset);
980 	l = rte_pktmbuf_data_len(m) - offset;
981 
982 	/* We use 3DES encryption also for decryption.
983 	 * IV is not important for 3DES ecb
984 	 */
985 	if (EVP_EncryptInit_ex(ctx, EVP_des_ede3_ecb(), NULL, key, NULL) <= 0)
986 		goto process_cipher_des3ctr_err;
987 
988 	memcpy(ctr, iv, 8);
989 
990 	for (n = 0; n < srclen; n++) {
991 		if (n % 8 == 0) {
992 			if (EVP_EncryptUpdate(ctx,
993 					(unsigned char *)&ebuf, &unused,
994 					(const unsigned char *)&ctr, 8) <= 0)
995 				goto process_cipher_des3ctr_err;
996 			ctr_inc(ctr);
997 		}
998 		dst[n] = *(src++) ^ ebuf[n % 8];
999 
1000 		l--;
1001 		if (!l) {
1002 			m = m->next;
1003 			if (m) {
1004 				src = rte_pktmbuf_mtod(m, uint8_t *);
1005 				l = rte_pktmbuf_data_len(m);
1006 			}
1007 		}
1008 	}
1009 
1010 	return 0;
1011 
1012 process_cipher_des3ctr_err:
1013 	OPENSSL_LOG(ERR, "Process openssl cipher des 3 ede ctr failed");
1014 	return -EINVAL;
1015 }
1016 
1017 /** Process AES-GCM encrypt algorithm */
1018 static int
1019 process_openssl_auth_encryption_gcm(struct rte_mbuf *mbuf_src, int offset,
1020 		int srclen, uint8_t *aad, int aadlen, uint8_t *iv,
1021 		uint8_t *dst, uint8_t *tag, EVP_CIPHER_CTX *ctx)
1022 {
1023 	int len = 0, unused = 0;
1024 	uint8_t empty[] = {};
1025 
1026 	if (EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
1027 		goto process_auth_encryption_gcm_err;
1028 
1029 	if (aadlen > 0)
1030 		if (EVP_EncryptUpdate(ctx, NULL, &len, aad, aadlen) <= 0)
1031 			goto process_auth_encryption_gcm_err;
1032 
1033 	if (srclen > 0)
1034 		if (process_openssl_encryption_update(mbuf_src, offset, &dst,
1035 				srclen, ctx))
1036 			goto process_auth_encryption_gcm_err;
1037 
1038 	/* Workaround open ssl bug in version less then 1.0.1f */
1039 	if (EVP_EncryptUpdate(ctx, empty, &unused, empty, 0) <= 0)
1040 		goto process_auth_encryption_gcm_err;
1041 
1042 	if (EVP_EncryptFinal_ex(ctx, dst, &len) <= 0)
1043 		goto process_auth_encryption_gcm_err;
1044 
1045 	if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_GET_TAG, 16, tag) <= 0)
1046 		goto process_auth_encryption_gcm_err;
1047 
1048 	return 0;
1049 
1050 process_auth_encryption_gcm_err:
1051 	OPENSSL_LOG(ERR, "Process openssl auth encryption gcm failed");
1052 	return -EINVAL;
1053 }
1054 
1055 /** Process AES-CCM encrypt algorithm */
1056 static int
1057 process_openssl_auth_encryption_ccm(struct rte_mbuf *mbuf_src, int offset,
1058 		int srclen, uint8_t *aad, int aadlen, uint8_t *iv,
1059 		uint8_t *dst, uint8_t *tag, uint8_t taglen, EVP_CIPHER_CTX *ctx)
1060 {
1061 	int len = 0;
1062 
1063 	if (EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
1064 		goto process_auth_encryption_ccm_err;
1065 
1066 	if (EVP_EncryptUpdate(ctx, NULL, &len, NULL, srclen) <= 0)
1067 		goto process_auth_encryption_ccm_err;
1068 
1069 	if (aadlen > 0)
1070 		/*
1071 		 * For AES-CCM, the actual AAD is placed
1072 		 * 18 bytes after the start of the AAD field,
1073 		 * according to the API.
1074 		 */
1075 		if (EVP_EncryptUpdate(ctx, NULL, &len, aad + 18, aadlen) <= 0)
1076 			goto process_auth_encryption_ccm_err;
1077 
1078 	if (srclen > 0)
1079 		if (process_openssl_encryption_update(mbuf_src, offset, &dst,
1080 				srclen, ctx))
1081 			goto process_auth_encryption_ccm_err;
1082 
1083 	if (EVP_EncryptFinal_ex(ctx, dst, &len) <= 0)
1084 		goto process_auth_encryption_ccm_err;
1085 
1086 	if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_GET_TAG, taglen, tag) <= 0)
1087 		goto process_auth_encryption_ccm_err;
1088 
1089 	return 0;
1090 
1091 process_auth_encryption_ccm_err:
1092 	OPENSSL_LOG(ERR, "Process openssl auth encryption ccm failed");
1093 	return -EINVAL;
1094 }
1095 
1096 /** Process AES-GCM decrypt algorithm */
1097 static int
1098 process_openssl_auth_decryption_gcm(struct rte_mbuf *mbuf_src, int offset,
1099 		int srclen, uint8_t *aad, int aadlen, uint8_t *iv,
1100 		uint8_t *dst, uint8_t *tag, EVP_CIPHER_CTX *ctx)
1101 {
1102 	int len = 0, unused = 0;
1103 	uint8_t empty[] = {};
1104 
1105 	if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_TAG, 16, tag) <= 0)
1106 		goto process_auth_decryption_gcm_err;
1107 
1108 	if (EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
1109 		goto process_auth_decryption_gcm_err;
1110 
1111 	if (aadlen > 0)
1112 		if (EVP_DecryptUpdate(ctx, NULL, &len, aad, aadlen) <= 0)
1113 			goto process_auth_decryption_gcm_err;
1114 
1115 	if (srclen > 0)
1116 		if (process_openssl_decryption_update(mbuf_src, offset, &dst,
1117 				srclen, ctx))
1118 			goto process_auth_decryption_gcm_err;
1119 
1120 	/* Workaround open ssl bug in version less then 1.0.1f */
1121 	if (EVP_DecryptUpdate(ctx, empty, &unused, empty, 0) <= 0)
1122 		goto process_auth_decryption_gcm_err;
1123 
1124 	if (EVP_DecryptFinal_ex(ctx, dst, &len) <= 0)
1125 		return -EFAULT;
1126 
1127 	return 0;
1128 
1129 process_auth_decryption_gcm_err:
1130 	OPENSSL_LOG(ERR, "Process openssl auth decryption gcm failed");
1131 	return -EINVAL;
1132 }
1133 
1134 /** Process AES-CCM decrypt algorithm */
1135 static int
1136 process_openssl_auth_decryption_ccm(struct rte_mbuf *mbuf_src, int offset,
1137 		int srclen, uint8_t *aad, int aadlen, uint8_t *iv,
1138 		uint8_t *dst, uint8_t *tag, uint8_t tag_len,
1139 		EVP_CIPHER_CTX *ctx)
1140 {
1141 	int len = 0;
1142 
1143 	if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_TAG, tag_len, tag) <= 0)
1144 		goto process_auth_decryption_ccm_err;
1145 
1146 	if (EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
1147 		goto process_auth_decryption_ccm_err;
1148 
1149 	if (EVP_DecryptUpdate(ctx, NULL, &len, NULL, srclen) <= 0)
1150 		goto process_auth_decryption_ccm_err;
1151 
1152 	if (aadlen > 0)
1153 		/*
1154 		 * For AES-CCM, the actual AAD is placed
1155 		 * 18 bytes after the start of the AAD field,
1156 		 * according to the API.
1157 		 */
1158 		if (EVP_DecryptUpdate(ctx, NULL, &len, aad + 18, aadlen) <= 0)
1159 			goto process_auth_decryption_ccm_err;
1160 
1161 	if (srclen > 0)
1162 		if (process_openssl_decryption_update(mbuf_src, offset, &dst,
1163 				srclen, ctx))
1164 			return -EFAULT;
1165 
1166 	return 0;
1167 
1168 process_auth_decryption_ccm_err:
1169 	OPENSSL_LOG(ERR, "Process openssl auth decryption ccm failed");
1170 	return -EINVAL;
1171 }
1172 
1173 /** Process standard openssl auth algorithms */
1174 static int
1175 process_openssl_auth(struct rte_mbuf *mbuf_src, uint8_t *dst, int offset,
1176 		__rte_unused uint8_t *iv, __rte_unused EVP_PKEY * pkey,
1177 		int srclen, EVP_MD_CTX *ctx, const EVP_MD *algo)
1178 {
1179 	size_t dstlen;
1180 	struct rte_mbuf *m;
1181 	int l, n = srclen;
1182 	uint8_t *src;
1183 
1184 	for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m);
1185 			m = m->next)
1186 		offset -= rte_pktmbuf_data_len(m);
1187 
1188 	if (m == 0)
1189 		goto process_auth_err;
1190 
1191 	if (EVP_DigestInit_ex(ctx, algo, NULL) <= 0)
1192 		goto process_auth_err;
1193 
1194 	src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset);
1195 
1196 	l = rte_pktmbuf_data_len(m) - offset;
1197 	if (srclen <= l) {
1198 		if (EVP_DigestUpdate(ctx, (char *)src, srclen) <= 0)
1199 			goto process_auth_err;
1200 		goto process_auth_final;
1201 	}
1202 
1203 	if (EVP_DigestUpdate(ctx, (char *)src, l) <= 0)
1204 		goto process_auth_err;
1205 
1206 	n -= l;
1207 
1208 	for (m = m->next; (m != NULL) && (n > 0); m = m->next) {
1209 		src = rte_pktmbuf_mtod(m, uint8_t *);
1210 		l = rte_pktmbuf_data_len(m) < n ? rte_pktmbuf_data_len(m) : n;
1211 		if (EVP_DigestUpdate(ctx, (char *)src, l) <= 0)
1212 			goto process_auth_err;
1213 		n -= l;
1214 	}
1215 
1216 process_auth_final:
1217 	if (EVP_DigestFinal_ex(ctx, dst, (unsigned int *)&dstlen) <= 0)
1218 		goto process_auth_err;
1219 	return 0;
1220 
1221 process_auth_err:
1222 	OPENSSL_LOG(ERR, "Process openssl auth failed");
1223 	return -EINVAL;
1224 }
1225 
1226 /** Process standard openssl auth algorithms with hmac */
1227 static int
1228 process_openssl_auth_hmac(struct rte_mbuf *mbuf_src, uint8_t *dst, int offset,
1229 		int srclen, HMAC_CTX *ctx)
1230 {
1231 	unsigned int dstlen;
1232 	struct rte_mbuf *m;
1233 	int l, n = srclen;
1234 	uint8_t *src;
1235 
1236 	for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m);
1237 			m = m->next)
1238 		offset -= rte_pktmbuf_data_len(m);
1239 
1240 	if (m == 0)
1241 		goto process_auth_err;
1242 
1243 	src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset);
1244 
1245 	l = rte_pktmbuf_data_len(m) - offset;
1246 	if (srclen <= l) {
1247 		if (HMAC_Update(ctx, (unsigned char *)src, srclen) != 1)
1248 			goto process_auth_err;
1249 		goto process_auth_final;
1250 	}
1251 
1252 	if (HMAC_Update(ctx, (unsigned char *)src, l) != 1)
1253 		goto process_auth_err;
1254 
1255 	n -= l;
1256 
1257 	for (m = m->next; (m != NULL) && (n > 0); m = m->next) {
1258 		src = rte_pktmbuf_mtod(m, uint8_t *);
1259 		l = rte_pktmbuf_data_len(m) < n ? rte_pktmbuf_data_len(m) : n;
1260 		if (HMAC_Update(ctx, (unsigned char *)src, l) != 1)
1261 			goto process_auth_err;
1262 		n -= l;
1263 	}
1264 
1265 process_auth_final:
1266 	if (HMAC_Final(ctx, dst, &dstlen) != 1)
1267 		goto process_auth_err;
1268 
1269 	if (unlikely(HMAC_Init_ex(ctx, NULL, 0, NULL, NULL) != 1))
1270 		goto process_auth_err;
1271 
1272 	return 0;
1273 
1274 process_auth_err:
1275 	OPENSSL_LOG(ERR, "Process openssl auth failed");
1276 	return -EINVAL;
1277 }
1278 
1279 /*----------------------------------------------------------------------------*/
1280 
1281 /** Process auth/cipher combined operation */
1282 static void
1283 process_openssl_combined_op
1284 		(struct rte_crypto_op *op, struct openssl_session *sess,
1285 		struct rte_mbuf *mbuf_src, struct rte_mbuf *mbuf_dst)
1286 {
1287 	/* cipher */
1288 	uint8_t *dst = NULL, *iv, *tag, *aad;
1289 	int srclen, aadlen, status = -1;
1290 	uint32_t offset;
1291 	uint8_t taglen;
1292 
1293 	/*
1294 	 * Segmented destination buffer is not supported for
1295 	 * encryption/decryption
1296 	 */
1297 	if (!rte_pktmbuf_is_contiguous(mbuf_dst)) {
1298 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1299 		return;
1300 	}
1301 
1302 	iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1303 			sess->iv.offset);
1304 	if (sess->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC) {
1305 		srclen = 0;
1306 		offset = op->sym->auth.data.offset;
1307 		aadlen = op->sym->auth.data.length;
1308 		aad = rte_pktmbuf_mtod_offset(mbuf_src, uint8_t *,
1309 				op->sym->auth.data.offset);
1310 		tag = op->sym->auth.digest.data;
1311 		if (tag == NULL)
1312 			tag = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1313 				offset + aadlen);
1314 	} else {
1315 		srclen = op->sym->aead.data.length;
1316 		dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1317 				op->sym->aead.data.offset);
1318 		offset = op->sym->aead.data.offset;
1319 		aad = op->sym->aead.aad.data;
1320 		aadlen = sess->auth.aad_length;
1321 		tag = op->sym->aead.digest.data;
1322 		if (tag == NULL)
1323 			tag = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1324 				offset + srclen);
1325 	}
1326 
1327 	taglen = sess->auth.digest_length;
1328 
1329 	if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
1330 		if (sess->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC ||
1331 				sess->aead_algo == RTE_CRYPTO_AEAD_AES_GCM)
1332 			status = process_openssl_auth_encryption_gcm(
1333 					mbuf_src, offset, srclen,
1334 					aad, aadlen, iv,
1335 					dst, tag, sess->cipher.ctx);
1336 		else
1337 			status = process_openssl_auth_encryption_ccm(
1338 					mbuf_src, offset, srclen,
1339 					aad, aadlen, iv,
1340 					dst, tag, taglen, sess->cipher.ctx);
1341 
1342 	} else {
1343 		if (sess->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC ||
1344 				sess->aead_algo == RTE_CRYPTO_AEAD_AES_GCM)
1345 			status = process_openssl_auth_decryption_gcm(
1346 					mbuf_src, offset, srclen,
1347 					aad, aadlen, iv,
1348 					dst, tag, sess->cipher.ctx);
1349 		else
1350 			status = process_openssl_auth_decryption_ccm(
1351 					mbuf_src, offset, srclen,
1352 					aad, aadlen, iv,
1353 					dst, tag, taglen, sess->cipher.ctx);
1354 	}
1355 
1356 	if (status != 0) {
1357 		if (status == (-EFAULT) &&
1358 				sess->auth.operation ==
1359 						RTE_CRYPTO_AUTH_OP_VERIFY)
1360 			op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
1361 		else
1362 			op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1363 	}
1364 }
1365 
1366 /** Process cipher operation */
1367 static void
1368 process_openssl_cipher_op
1369 		(struct rte_crypto_op *op, struct openssl_session *sess,
1370 		struct rte_mbuf *mbuf_src, struct rte_mbuf *mbuf_dst)
1371 {
1372 	uint8_t *dst, *iv;
1373 	int srclen, status;
1374 
1375 	/*
1376 	 * Segmented destination buffer is not supported for
1377 	 * encryption/decryption
1378 	 */
1379 	if (!rte_pktmbuf_is_contiguous(mbuf_dst)) {
1380 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1381 		return;
1382 	}
1383 
1384 	srclen = op->sym->cipher.data.length;
1385 	dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1386 			op->sym->cipher.data.offset);
1387 
1388 	iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1389 			sess->iv.offset);
1390 
1391 	if (sess->cipher.mode == OPENSSL_CIPHER_LIB)
1392 		if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
1393 			status = process_openssl_cipher_encrypt(mbuf_src, dst,
1394 					op->sym->cipher.data.offset, iv,
1395 					srclen, sess->cipher.ctx);
1396 		else
1397 			status = process_openssl_cipher_decrypt(mbuf_src, dst,
1398 					op->sym->cipher.data.offset, iv,
1399 					srclen, sess->cipher.ctx);
1400 	else
1401 		status = process_openssl_cipher_des3ctr(mbuf_src, dst,
1402 				op->sym->cipher.data.offset, iv,
1403 				sess->cipher.key.data, srclen,
1404 				sess->cipher.ctx);
1405 
1406 	if (status != 0)
1407 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1408 }
1409 
1410 /** Process cipher operation */
1411 static void
1412 process_openssl_docsis_bpi_op(struct rte_crypto_op *op,
1413 		struct openssl_session *sess, struct rte_mbuf *mbuf_src,
1414 		struct rte_mbuf *mbuf_dst)
1415 {
1416 	uint8_t *src, *dst, *iv;
1417 	uint8_t block_size, last_block_len;
1418 	int srclen, status = 0;
1419 
1420 	srclen = op->sym->cipher.data.length;
1421 	src = rte_pktmbuf_mtod_offset(mbuf_src, uint8_t *,
1422 			op->sym->cipher.data.offset);
1423 	dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1424 			op->sym->cipher.data.offset);
1425 
1426 	iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1427 			sess->iv.offset);
1428 
1429 	block_size = DES_BLOCK_SIZE;
1430 
1431 	last_block_len = srclen % block_size;
1432 	if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
1433 		/* Encrypt only with ECB mode XOR IV */
1434 		if (srclen < block_size) {
1435 			status = process_openssl_cipher_bpi_encrypt(src, dst,
1436 					iv, srclen,
1437 					sess->cipher.bpi_ctx);
1438 		} else {
1439 			srclen -= last_block_len;
1440 			/* Encrypt with the block aligned stream with CBC mode */
1441 			status = process_openssl_cipher_encrypt(mbuf_src, dst,
1442 					op->sym->cipher.data.offset, iv,
1443 					srclen, sess->cipher.ctx);
1444 			if (last_block_len) {
1445 				/* Point at last block */
1446 				dst += srclen;
1447 				/*
1448 				 * IV is the last encrypted block from
1449 				 * the previous operation
1450 				 */
1451 				iv = dst - block_size;
1452 				src += srclen;
1453 				srclen = last_block_len;
1454 				/* Encrypt the last frame with ECB mode */
1455 				status |= process_openssl_cipher_bpi_encrypt(src,
1456 						dst, iv,
1457 						srclen, sess->cipher.bpi_ctx);
1458 			}
1459 		}
1460 	} else {
1461 		/* Decrypt only with ECB mode (encrypt, as it is same operation) */
1462 		if (srclen < block_size) {
1463 			status = process_openssl_cipher_bpi_encrypt(src, dst,
1464 					iv,
1465 					srclen,
1466 					sess->cipher.bpi_ctx);
1467 		} else {
1468 			if (last_block_len) {
1469 				/* Point at last block */
1470 				dst += srclen - last_block_len;
1471 				src += srclen - last_block_len;
1472 				/*
1473 				 * IV is the last full block
1474 				 */
1475 				iv = src - block_size;
1476 				/*
1477 				 * Decrypt the last frame with ECB mode
1478 				 * (encrypt, as it is the same operation)
1479 				 */
1480 				status = process_openssl_cipher_bpi_encrypt(src,
1481 						dst, iv,
1482 						last_block_len, sess->cipher.bpi_ctx);
1483 				/* Prepare parameters for CBC mode op */
1484 				iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1485 						sess->iv.offset);
1486 				dst += last_block_len - srclen;
1487 				srclen -= last_block_len;
1488 			}
1489 
1490 			/* Decrypt with CBC mode */
1491 			status |= process_openssl_cipher_decrypt(mbuf_src, dst,
1492 					op->sym->cipher.data.offset, iv,
1493 					srclen, sess->cipher.ctx);
1494 		}
1495 	}
1496 
1497 	if (status != 0)
1498 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1499 }
1500 
1501 /** Process auth operation */
1502 static void
1503 process_openssl_auth_op(struct openssl_qp *qp, struct rte_crypto_op *op,
1504 		struct openssl_session *sess, struct rte_mbuf *mbuf_src,
1505 		struct rte_mbuf *mbuf_dst)
1506 {
1507 	uint8_t *dst;
1508 	int srclen, status;
1509 
1510 	srclen = op->sym->auth.data.length;
1511 
1512 	if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY)
1513 		dst = qp->temp_digest;
1514 	else {
1515 		dst = op->sym->auth.digest.data;
1516 		if (dst == NULL)
1517 			dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1518 					op->sym->auth.data.offset +
1519 					op->sym->auth.data.length);
1520 	}
1521 
1522 	switch (sess->auth.mode) {
1523 	case OPENSSL_AUTH_AS_AUTH:
1524 		status = process_openssl_auth(mbuf_src, dst,
1525 				op->sym->auth.data.offset, NULL, NULL, srclen,
1526 				sess->auth.auth.ctx, sess->auth.auth.evp_algo);
1527 		break;
1528 	case OPENSSL_AUTH_AS_HMAC:
1529 		status = process_openssl_auth_hmac(mbuf_src, dst,
1530 				op->sym->auth.data.offset, srclen,
1531 				sess->auth.hmac.ctx);
1532 		break;
1533 	default:
1534 		status = -1;
1535 		break;
1536 	}
1537 
1538 	if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) {
1539 		if (memcmp(dst, op->sym->auth.digest.data,
1540 				sess->auth.digest_length) != 0) {
1541 			op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
1542 		}
1543 	}
1544 
1545 	if (status != 0)
1546 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1547 }
1548 
1549 /* process dsa sign operation */
1550 static int
1551 process_openssl_dsa_sign_op(struct rte_crypto_op *cop,
1552 		struct openssl_asym_session *sess)
1553 {
1554 	struct rte_crypto_dsa_op_param *op = &cop->asym->dsa;
1555 	DSA *dsa = sess->u.s.dsa;
1556 	DSA_SIG *sign = NULL;
1557 
1558 	sign = DSA_do_sign(op->message.data,
1559 			op->message.length,
1560 			dsa);
1561 
1562 	if (sign == NULL) {
1563 		OPENSSL_LOG(ERR, "%s:%d\n", __func__, __LINE__);
1564 		cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1565 	} else {
1566 		const BIGNUM *r = NULL, *s = NULL;
1567 		get_dsa_sign(sign, r, s);
1568 
1569 		op->r.length = BN_bn2bin(r, op->r.data);
1570 		op->s.length = BN_bn2bin(s, op->s.data);
1571 		cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1572 	}
1573 
1574 	DSA_SIG_free(sign);
1575 
1576 	return 0;
1577 }
1578 
1579 /* process dsa verify operation */
1580 static int
1581 process_openssl_dsa_verify_op(struct rte_crypto_op *cop,
1582 		struct openssl_asym_session *sess)
1583 {
1584 	struct rte_crypto_dsa_op_param *op = &cop->asym->dsa;
1585 	DSA *dsa = sess->u.s.dsa;
1586 	int ret;
1587 	DSA_SIG *sign = DSA_SIG_new();
1588 	BIGNUM *r = NULL, *s = NULL;
1589 	BIGNUM *pub_key = NULL;
1590 
1591 	if (sign == NULL) {
1592 		OPENSSL_LOG(ERR, " %s:%d\n", __func__, __LINE__);
1593 		cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1594 		return -1;
1595 	}
1596 
1597 	r = BN_bin2bn(op->r.data,
1598 			op->r.length,
1599 			r);
1600 	s = BN_bin2bn(op->s.data,
1601 			op->s.length,
1602 			s);
1603 	pub_key = BN_bin2bn(op->y.data,
1604 			op->y.length,
1605 			pub_key);
1606 	if (!r || !s || !pub_key) {
1607 		if (r)
1608 			BN_free(r);
1609 		if (s)
1610 			BN_free(s);
1611 		if (pub_key)
1612 			BN_free(pub_key);
1613 
1614 		cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1615 		return -1;
1616 	}
1617 	set_dsa_sign(sign, r, s);
1618 	set_dsa_pub_key(dsa, pub_key);
1619 
1620 	ret = DSA_do_verify(op->message.data,
1621 			op->message.length,
1622 			sign,
1623 			dsa);
1624 
1625 	if (ret != 1)
1626 		cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1627 	else
1628 		cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1629 
1630 	DSA_SIG_free(sign);
1631 
1632 	return 0;
1633 }
1634 
1635 /* process dh operation */
1636 static int
1637 process_openssl_dh_op(struct rte_crypto_op *cop,
1638 		struct openssl_asym_session *sess)
1639 {
1640 	struct rte_crypto_dh_op_param *op = &cop->asym->dh;
1641 	DH *dh_key = sess->u.dh.dh_key;
1642 	BIGNUM *priv_key = NULL;
1643 	int ret = 0;
1644 
1645 	if (sess->u.dh.key_op &
1646 			(1 << RTE_CRYPTO_ASYM_OP_SHARED_SECRET_COMPUTE)) {
1647 		/* compute shared secret using peer public key
1648 		 * and current private key
1649 		 * shared secret = peer_key ^ priv_key mod p
1650 		 */
1651 		BIGNUM *peer_key = NULL;
1652 
1653 		/* copy private key and peer key and compute shared secret */
1654 		peer_key = BN_bin2bn(op->pub_key.data,
1655 				op->pub_key.length,
1656 				peer_key);
1657 		if (peer_key == NULL) {
1658 			cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1659 			return -1;
1660 		}
1661 		priv_key = BN_bin2bn(op->priv_key.data,
1662 				op->priv_key.length,
1663 				priv_key);
1664 		if (priv_key == NULL) {
1665 			BN_free(peer_key);
1666 			cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1667 			return -1;
1668 		}
1669 		set_dh_priv_key(dh_key, priv_key, ret);
1670 		if (ret) {
1671 			OPENSSL_LOG(ERR, "Failed to set private key\n");
1672 			cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1673 			BN_free(peer_key);
1674 			BN_free(priv_key);
1675 			return 0;
1676 		}
1677 
1678 		ret = DH_compute_key(
1679 				op->shared_secret.data,
1680 				peer_key, dh_key);
1681 		if (ret < 0) {
1682 			cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1683 			BN_free(peer_key);
1684 			/* priv key is already loaded into dh,
1685 			 * let's not free that directly here.
1686 			 * DH_free() will auto free it later.
1687 			 */
1688 			return 0;
1689 		}
1690 		cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1691 		op->shared_secret.length = ret;
1692 		BN_free(peer_key);
1693 		return 0;
1694 	}
1695 
1696 	/*
1697 	 * other options are public and private key generations.
1698 	 *
1699 	 * if user provides private key,
1700 	 * then first set DH with user provided private key
1701 	 */
1702 	if ((sess->u.dh.key_op &
1703 			(1 << RTE_CRYPTO_ASYM_OP_PUBLIC_KEY_GENERATE)) &&
1704 			!(sess->u.dh.key_op &
1705 			(1 << RTE_CRYPTO_ASYM_OP_PRIVATE_KEY_GENERATE))) {
1706 		/* generate public key using user-provided private key
1707 		 * pub_key = g ^ priv_key mod p
1708 		 */
1709 
1710 		/* load private key into DH */
1711 		priv_key = BN_bin2bn(op->priv_key.data,
1712 				op->priv_key.length,
1713 				priv_key);
1714 		if (priv_key == NULL) {
1715 			cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1716 			return -1;
1717 		}
1718 		set_dh_priv_key(dh_key, priv_key, ret);
1719 		if (ret) {
1720 			OPENSSL_LOG(ERR, "Failed to set private key\n");
1721 			cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1722 			BN_free(priv_key);
1723 			return 0;
1724 		}
1725 	}
1726 
1727 	/* generate public and private key pair.
1728 	 *
1729 	 * if private key already set, generates only public key.
1730 	 *
1731 	 * if private key is not already set, then set it to random value
1732 	 * and update internal private key.
1733 	 */
1734 	if (!DH_generate_key(dh_key)) {
1735 		cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1736 		return 0;
1737 	}
1738 
1739 	if (sess->u.dh.key_op & (1 << RTE_CRYPTO_ASYM_OP_PUBLIC_KEY_GENERATE)) {
1740 		const BIGNUM *pub_key = NULL;
1741 
1742 		OPENSSL_LOG(DEBUG, "%s:%d update public key\n",
1743 				__func__, __LINE__);
1744 
1745 		/* get the generated keys */
1746 		get_dh_pub_key(dh_key, pub_key);
1747 
1748 		/* output public key */
1749 		op->pub_key.length = BN_bn2bin(pub_key,
1750 				op->pub_key.data);
1751 	}
1752 
1753 	if (sess->u.dh.key_op &
1754 			(1 << RTE_CRYPTO_ASYM_OP_PRIVATE_KEY_GENERATE)) {
1755 		const BIGNUM *priv_key = NULL;
1756 
1757 		OPENSSL_LOG(DEBUG, "%s:%d updated priv key\n",
1758 				__func__, __LINE__);
1759 
1760 		/* get the generated keys */
1761 		get_dh_priv_key(dh_key, priv_key);
1762 
1763 		/* provide generated private key back to user */
1764 		op->priv_key.length = BN_bn2bin(priv_key,
1765 				op->priv_key.data);
1766 	}
1767 
1768 	cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1769 
1770 	return 0;
1771 }
1772 
1773 /* process modinv operation */
1774 static int
1775 process_openssl_modinv_op(struct rte_crypto_op *cop,
1776 		struct openssl_asym_session *sess)
1777 {
1778 	struct rte_crypto_asym_op *op = cop->asym;
1779 	BIGNUM *base = BN_CTX_get(sess->u.m.ctx);
1780 	BIGNUM *res = BN_CTX_get(sess->u.m.ctx);
1781 
1782 	if (unlikely(base == NULL || res == NULL)) {
1783 		if (base)
1784 			BN_free(base);
1785 		if (res)
1786 			BN_free(res);
1787 		cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1788 		return -1;
1789 	}
1790 
1791 	base = BN_bin2bn((const unsigned char *)op->modinv.base.data,
1792 			op->modinv.base.length, base);
1793 
1794 	if (BN_mod_inverse(res, base, sess->u.m.modulus, sess->u.m.ctx)) {
1795 		cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1796 		op->modinv.base.length = BN_bn2bin(res, op->modinv.base.data);
1797 	} else {
1798 		cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1799 	}
1800 
1801 	return 0;
1802 }
1803 
1804 /* process modexp operation */
1805 static int
1806 process_openssl_modexp_op(struct rte_crypto_op *cop,
1807 		struct openssl_asym_session *sess)
1808 {
1809 	struct rte_crypto_asym_op *op = cop->asym;
1810 	BIGNUM *base = BN_CTX_get(sess->u.e.ctx);
1811 	BIGNUM *res = BN_CTX_get(sess->u.e.ctx);
1812 
1813 	if (unlikely(base == NULL || res == NULL)) {
1814 		if (base)
1815 			BN_free(base);
1816 		if (res)
1817 			BN_free(res);
1818 		cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1819 		return -1;
1820 	}
1821 
1822 	base = BN_bin2bn((const unsigned char *)op->modinv.base.data,
1823 			op->modinv.base.length, base);
1824 
1825 	if (BN_mod_exp(res, base, sess->u.e.exp,
1826 				sess->u.e.mod, sess->u.e.ctx)) {
1827 		op->modinv.base.length = BN_bn2bin(res, op->modinv.base.data);
1828 		cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1829 	} else {
1830 		cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1831 	}
1832 
1833 	return 0;
1834 }
1835 
1836 /* process rsa operations */
1837 static int
1838 process_openssl_rsa_op(struct rte_crypto_op *cop,
1839 		struct openssl_asym_session *sess)
1840 {
1841 	int ret = 0;
1842 	struct rte_crypto_asym_op *op = cop->asym;
1843 	RSA *rsa = sess->u.r.rsa;
1844 	uint32_t pad = (op->rsa.pad);
1845 
1846 	switch (pad) {
1847 	case RTE_CRYPTO_RSA_PKCS1_V1_5_BT0:
1848 	case RTE_CRYPTO_RSA_PKCS1_V1_5_BT1:
1849 	case RTE_CRYPTO_RSA_PKCS1_V1_5_BT2:
1850 		pad = RSA_PKCS1_PADDING;
1851 		break;
1852 	case RTE_CRYPTO_RSA_PADDING_NONE:
1853 		pad = RSA_NO_PADDING;
1854 		break;
1855 	default:
1856 		cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
1857 		OPENSSL_LOG(ERR,
1858 				"rsa pad type not supported %d\n", pad);
1859 		return 0;
1860 	}
1861 
1862 	switch (op->rsa.op_type) {
1863 	case RTE_CRYPTO_ASYM_OP_ENCRYPT:
1864 		ret = RSA_public_encrypt(op->rsa.message.length,
1865 				op->rsa.message.data,
1866 				op->rsa.message.data,
1867 				rsa,
1868 				pad);
1869 
1870 		if (ret > 0)
1871 			op->rsa.message.length = ret;
1872 		OPENSSL_LOG(DEBUG,
1873 				"length of encrypted text %d\n", ret);
1874 		break;
1875 
1876 	case RTE_CRYPTO_ASYM_OP_DECRYPT:
1877 		ret = RSA_private_decrypt(op->rsa.message.length,
1878 				op->rsa.message.data,
1879 				op->rsa.message.data,
1880 				rsa,
1881 				pad);
1882 		if (ret > 0)
1883 			op->rsa.message.length = ret;
1884 		break;
1885 
1886 	case RTE_CRYPTO_ASYM_OP_SIGN:
1887 		ret = RSA_private_encrypt(op->rsa.message.length,
1888 				op->rsa.message.data,
1889 				op->rsa.sign.data,
1890 				rsa,
1891 				pad);
1892 		if (ret > 0)
1893 			op->rsa.sign.length = ret;
1894 		break;
1895 
1896 	case RTE_CRYPTO_ASYM_OP_VERIFY:
1897 		ret = RSA_public_decrypt(op->rsa.sign.length,
1898 				op->rsa.sign.data,
1899 				op->rsa.sign.data,
1900 				rsa,
1901 				pad);
1902 
1903 		OPENSSL_LOG(DEBUG,
1904 				"Length of public_decrypt %d "
1905 				"length of message %zd\n",
1906 				ret, op->rsa.message.length);
1907 
1908 		if (memcmp(op->rsa.sign.data, op->rsa.message.data,
1909 					op->rsa.message.length)) {
1910 			OPENSSL_LOG(ERR,
1911 					"RSA sign Verification failed");
1912 			return -1;
1913 		}
1914 		break;
1915 
1916 	default:
1917 		/* allow ops with invalid args to be pushed to
1918 		 * completion queue
1919 		 */
1920 		cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
1921 		break;
1922 	}
1923 
1924 	if (ret < 0)
1925 		cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1926 
1927 	return 0;
1928 }
1929 
1930 static int
1931 process_asym_op(struct openssl_qp *qp, struct rte_crypto_op *op,
1932 		struct openssl_asym_session *sess)
1933 {
1934 	int retval = 0;
1935 
1936 	op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1937 
1938 	switch (sess->xfrm_type) {
1939 	case RTE_CRYPTO_ASYM_XFORM_RSA:
1940 		retval = process_openssl_rsa_op(op, sess);
1941 		break;
1942 	case RTE_CRYPTO_ASYM_XFORM_MODEX:
1943 		retval = process_openssl_modexp_op(op, sess);
1944 		break;
1945 	case RTE_CRYPTO_ASYM_XFORM_MODINV:
1946 		retval = process_openssl_modinv_op(op, sess);
1947 		break;
1948 	case RTE_CRYPTO_ASYM_XFORM_DH:
1949 		retval = process_openssl_dh_op(op, sess);
1950 		break;
1951 	case RTE_CRYPTO_ASYM_XFORM_DSA:
1952 		if (op->asym->dsa.op_type == RTE_CRYPTO_ASYM_OP_SIGN)
1953 			retval = process_openssl_dsa_sign_op(op, sess);
1954 		else if (op->asym->dsa.op_type ==
1955 				RTE_CRYPTO_ASYM_OP_VERIFY)
1956 			retval =
1957 				process_openssl_dsa_verify_op(op, sess);
1958 		else
1959 			op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
1960 		break;
1961 	default:
1962 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
1963 		break;
1964 	}
1965 	if (!retval) {
1966 		/* op processed so push to completion queue as processed */
1967 		retval = rte_ring_enqueue(qp->processed_ops, (void *)op);
1968 		if (retval)
1969 			/* return error if failed to put in completion queue */
1970 			retval = -1;
1971 	}
1972 
1973 	return retval;
1974 }
1975 
1976 /** Process crypto operation for mbuf */
1977 static int
1978 process_op(struct openssl_qp *qp, struct rte_crypto_op *op,
1979 		struct openssl_session *sess)
1980 {
1981 	struct rte_mbuf *msrc, *mdst;
1982 	int retval;
1983 
1984 	msrc = op->sym->m_src;
1985 	mdst = op->sym->m_dst ? op->sym->m_dst : op->sym->m_src;
1986 
1987 	op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1988 
1989 	switch (sess->chain_order) {
1990 	case OPENSSL_CHAIN_ONLY_CIPHER:
1991 		process_openssl_cipher_op(op, sess, msrc, mdst);
1992 		break;
1993 	case OPENSSL_CHAIN_ONLY_AUTH:
1994 		process_openssl_auth_op(qp, op, sess, msrc, mdst);
1995 		break;
1996 	case OPENSSL_CHAIN_CIPHER_AUTH:
1997 		process_openssl_cipher_op(op, sess, msrc, mdst);
1998 		process_openssl_auth_op(qp, op, sess, mdst, mdst);
1999 		break;
2000 	case OPENSSL_CHAIN_AUTH_CIPHER:
2001 		process_openssl_auth_op(qp, op, sess, msrc, mdst);
2002 		process_openssl_cipher_op(op, sess, msrc, mdst);
2003 		break;
2004 	case OPENSSL_CHAIN_COMBINED:
2005 		process_openssl_combined_op(op, sess, msrc, mdst);
2006 		break;
2007 	case OPENSSL_CHAIN_CIPHER_BPI:
2008 		process_openssl_docsis_bpi_op(op, sess, msrc, mdst);
2009 		break;
2010 	default:
2011 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
2012 		break;
2013 	}
2014 
2015 	/* Free session if a session-less crypto op */
2016 	if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) {
2017 		openssl_reset_session(sess);
2018 		memset(sess, 0, sizeof(struct openssl_session));
2019 		memset(op->sym->session, 0,
2020 				rte_cryptodev_sym_get_header_session_size());
2021 		rte_mempool_put(qp->sess_mp, sess);
2022 		rte_mempool_put(qp->sess_mp, op->sym->session);
2023 		op->sym->session = NULL;
2024 	}
2025 
2026 	if (op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)
2027 		op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
2028 
2029 	if (op->status != RTE_CRYPTO_OP_STATUS_ERROR)
2030 		retval = rte_ring_enqueue(qp->processed_ops, (void *)op);
2031 	else
2032 		retval = -1;
2033 
2034 	return retval;
2035 }
2036 
2037 /*
2038  *------------------------------------------------------------------------------
2039  * PMD Framework
2040  *------------------------------------------------------------------------------
2041  */
2042 
2043 /** Enqueue burst */
2044 static uint16_t
2045 openssl_pmd_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops,
2046 		uint16_t nb_ops)
2047 {
2048 	void *sess;
2049 	struct openssl_qp *qp = queue_pair;
2050 	int i, retval;
2051 
2052 	for (i = 0; i < nb_ops; i++) {
2053 		sess = get_session(qp, ops[i]);
2054 		if (unlikely(sess == NULL))
2055 			goto enqueue_err;
2056 
2057 		if (ops[i]->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC)
2058 			retval = process_op(qp, ops[i],
2059 					(struct openssl_session *) sess);
2060 		else
2061 			retval = process_asym_op(qp, ops[i],
2062 					(struct openssl_asym_session *) sess);
2063 		if (unlikely(retval < 0))
2064 			goto enqueue_err;
2065 	}
2066 
2067 	qp->stats.enqueued_count += i;
2068 	return i;
2069 
2070 enqueue_err:
2071 	qp->stats.enqueue_err_count++;
2072 	return i;
2073 }
2074 
2075 /** Dequeue burst */
2076 static uint16_t
2077 openssl_pmd_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops,
2078 		uint16_t nb_ops)
2079 {
2080 	struct openssl_qp *qp = queue_pair;
2081 
2082 	unsigned int nb_dequeued = 0;
2083 
2084 	nb_dequeued = rte_ring_dequeue_burst(qp->processed_ops,
2085 			(void **)ops, nb_ops, NULL);
2086 	qp->stats.dequeued_count += nb_dequeued;
2087 
2088 	return nb_dequeued;
2089 }
2090 
2091 /** Create OPENSSL crypto device */
2092 static int
2093 cryptodev_openssl_create(const char *name,
2094 			struct rte_vdev_device *vdev,
2095 			struct rte_cryptodev_pmd_init_params *init_params)
2096 {
2097 	struct rte_cryptodev *dev;
2098 	struct openssl_private *internals;
2099 
2100 	dev = rte_cryptodev_pmd_create(name, &vdev->device, init_params);
2101 	if (dev == NULL) {
2102 		OPENSSL_LOG(ERR, "failed to create cryptodev vdev");
2103 		goto init_error;
2104 	}
2105 
2106 	dev->driver_id = cryptodev_driver_id;
2107 	dev->dev_ops = rte_openssl_pmd_ops;
2108 
2109 	/* register rx/tx burst functions for data path */
2110 	dev->dequeue_burst = openssl_pmd_dequeue_burst;
2111 	dev->enqueue_burst = openssl_pmd_enqueue_burst;
2112 
2113 	dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
2114 			RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
2115 			RTE_CRYPTODEV_FF_CPU_AESNI |
2116 			RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT |
2117 			RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT |
2118 			RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO;
2119 
2120 	/* Set vector instructions mode supported */
2121 	internals = dev->data->dev_private;
2122 
2123 	internals->max_nb_qpairs = init_params->max_nb_queue_pairs;
2124 
2125 	return 0;
2126 
2127 init_error:
2128 	OPENSSL_LOG(ERR, "driver %s: create failed",
2129 			init_params->name);
2130 
2131 	cryptodev_openssl_remove(vdev);
2132 	return -EFAULT;
2133 }
2134 
2135 /** Initialise OPENSSL crypto device */
2136 static int
2137 cryptodev_openssl_probe(struct rte_vdev_device *vdev)
2138 {
2139 	struct rte_cryptodev_pmd_init_params init_params = {
2140 		"",
2141 		sizeof(struct openssl_private),
2142 		rte_socket_id(),
2143 		RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_QUEUE_PAIRS
2144 	};
2145 	const char *name;
2146 	const char *input_args;
2147 
2148 	name = rte_vdev_device_name(vdev);
2149 	if (name == NULL)
2150 		return -EINVAL;
2151 	input_args = rte_vdev_device_args(vdev);
2152 
2153 	rte_cryptodev_pmd_parse_input_args(&init_params, input_args);
2154 
2155 	return cryptodev_openssl_create(name, vdev, &init_params);
2156 }
2157 
2158 /** Uninitialise OPENSSL crypto device */
2159 static int
2160 cryptodev_openssl_remove(struct rte_vdev_device *vdev)
2161 {
2162 	struct rte_cryptodev *cryptodev;
2163 	const char *name;
2164 
2165 	name = rte_vdev_device_name(vdev);
2166 	if (name == NULL)
2167 		return -EINVAL;
2168 
2169 	cryptodev = rte_cryptodev_pmd_get_named_dev(name);
2170 	if (cryptodev == NULL)
2171 		return -ENODEV;
2172 
2173 	return rte_cryptodev_pmd_destroy(cryptodev);
2174 }
2175 
2176 static struct rte_vdev_driver cryptodev_openssl_pmd_drv = {
2177 	.probe = cryptodev_openssl_probe,
2178 	.remove = cryptodev_openssl_remove
2179 };
2180 
2181 static struct cryptodev_driver openssl_crypto_drv;
2182 
2183 RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_OPENSSL_PMD,
2184 	cryptodev_openssl_pmd_drv);
2185 RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_OPENSSL_PMD,
2186 	"max_nb_queue_pairs=<int> "
2187 	"socket_id=<int>");
2188 RTE_PMD_REGISTER_CRYPTO_DRIVER(openssl_crypto_drv,
2189 		cryptodev_openssl_pmd_drv.driver, cryptodev_driver_id);
2190 
2191 RTE_INIT(openssl_init_log)
2192 {
2193 	openssl_logtype_driver = rte_log_register("pmd.crypto.openssl");
2194 }
2195