xref: /dpdk/drivers/crypto/openssl/rte_openssl_pmd.c (revision 3d26a70ae33853ac4116b135e55f3d475f148939)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4 
5 #include <rte_common.h>
6 #include <rte_hexdump.h>
7 #include <rte_cryptodev.h>
8 #include <rte_cryptodev_pmd.h>
9 #include <rte_bus_vdev.h>
10 #include <rte_malloc.h>
11 #include <rte_cpuflags.h>
12 
13 #include <openssl/hmac.h>
14 #include <openssl/evp.h>
15 
16 #include "openssl_pmd_private.h"
17 #include "compat.h"
18 
19 #define DES_BLOCK_SIZE 8
20 
21 int openssl_logtype_driver;
22 static uint8_t cryptodev_driver_id;
23 
24 #if (OPENSSL_VERSION_NUMBER < 0x10100000L)
25 static HMAC_CTX *HMAC_CTX_new(void)
26 {
27 	HMAC_CTX *ctx = OPENSSL_malloc(sizeof(*ctx));
28 
29 	if (ctx != NULL)
30 		HMAC_CTX_init(ctx);
31 	return ctx;
32 }
33 
34 static void HMAC_CTX_free(HMAC_CTX *ctx)
35 {
36 	if (ctx != NULL) {
37 		HMAC_CTX_cleanup(ctx);
38 		OPENSSL_free(ctx);
39 	}
40 }
41 #endif
42 
43 static int cryptodev_openssl_remove(struct rte_vdev_device *vdev);
44 
45 /*----------------------------------------------------------------------------*/
46 
47 /**
48  * Increment counter by 1
49  * Counter is 64 bit array, big-endian
50  */
51 static void
52 ctr_inc(uint8_t *ctr)
53 {
54 	uint64_t *ctr64 = (uint64_t *)ctr;
55 
56 	*ctr64 = __builtin_bswap64(*ctr64);
57 	(*ctr64)++;
58 	*ctr64 = __builtin_bswap64(*ctr64);
59 }
60 
61 /*
62  *------------------------------------------------------------------------------
63  * Session Prepare
64  *------------------------------------------------------------------------------
65  */
66 
67 /** Get xform chain order */
68 static enum openssl_chain_order
69 openssl_get_chain_order(const struct rte_crypto_sym_xform *xform)
70 {
71 	enum openssl_chain_order res = OPENSSL_CHAIN_NOT_SUPPORTED;
72 
73 	if (xform != NULL) {
74 		if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
75 			if (xform->next == NULL)
76 				res =  OPENSSL_CHAIN_ONLY_AUTH;
77 			else if (xform->next->type ==
78 					RTE_CRYPTO_SYM_XFORM_CIPHER)
79 				res =  OPENSSL_CHAIN_AUTH_CIPHER;
80 		}
81 		if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
82 			if (xform->next == NULL)
83 				res =  OPENSSL_CHAIN_ONLY_CIPHER;
84 			else if (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH)
85 				res =  OPENSSL_CHAIN_CIPHER_AUTH;
86 		}
87 		if (xform->type == RTE_CRYPTO_SYM_XFORM_AEAD)
88 			res = OPENSSL_CHAIN_COMBINED;
89 	}
90 
91 	return res;
92 }
93 
94 /** Get session cipher key from input cipher key */
95 static void
96 get_cipher_key(const uint8_t *input_key, int keylen, uint8_t *session_key)
97 {
98 	memcpy(session_key, input_key, keylen);
99 }
100 
101 /** Get key ede 24 bytes standard from input key */
102 static int
103 get_cipher_key_ede(const uint8_t *key, int keylen, uint8_t *key_ede)
104 {
105 	int res = 0;
106 
107 	/* Initialize keys - 24 bytes: [key1-key2-key3] */
108 	switch (keylen) {
109 	case 24:
110 		memcpy(key_ede, key, 24);
111 		break;
112 	case 16:
113 		/* K3 = K1 */
114 		memcpy(key_ede, key, 16);
115 		memcpy(key_ede + 16, key, 8);
116 		break;
117 	case 8:
118 		/* K1 = K2 = K3 (DES compatibility) */
119 		memcpy(key_ede, key, 8);
120 		memcpy(key_ede + 8, key, 8);
121 		memcpy(key_ede + 16, key, 8);
122 		break;
123 	default:
124 		OPENSSL_LOG(ERR, "Unsupported key size");
125 		res = -EINVAL;
126 	}
127 
128 	return res;
129 }
130 
131 /** Get adequate openssl function for input cipher algorithm */
132 static uint8_t
133 get_cipher_algo(enum rte_crypto_cipher_algorithm sess_algo, size_t keylen,
134 		const EVP_CIPHER **algo)
135 {
136 	int res = 0;
137 
138 	if (algo != NULL) {
139 		switch (sess_algo) {
140 		case RTE_CRYPTO_CIPHER_3DES_CBC:
141 			switch (keylen) {
142 			case 8:
143 				*algo = EVP_des_cbc();
144 				break;
145 			case 16:
146 				*algo = EVP_des_ede_cbc();
147 				break;
148 			case 24:
149 				*algo = EVP_des_ede3_cbc();
150 				break;
151 			default:
152 				res = -EINVAL;
153 			}
154 			break;
155 		case RTE_CRYPTO_CIPHER_3DES_CTR:
156 			break;
157 		case RTE_CRYPTO_CIPHER_AES_CBC:
158 			switch (keylen) {
159 			case 16:
160 				*algo = EVP_aes_128_cbc();
161 				break;
162 			case 24:
163 				*algo = EVP_aes_192_cbc();
164 				break;
165 			case 32:
166 				*algo = EVP_aes_256_cbc();
167 				break;
168 			default:
169 				res = -EINVAL;
170 			}
171 			break;
172 		case RTE_CRYPTO_CIPHER_AES_CTR:
173 			switch (keylen) {
174 			case 16:
175 				*algo = EVP_aes_128_ctr();
176 				break;
177 			case 24:
178 				*algo = EVP_aes_192_ctr();
179 				break;
180 			case 32:
181 				*algo = EVP_aes_256_ctr();
182 				break;
183 			default:
184 				res = -EINVAL;
185 			}
186 			break;
187 		default:
188 			res = -EINVAL;
189 			break;
190 		}
191 	} else {
192 		res = -EINVAL;
193 	}
194 
195 	return res;
196 }
197 
198 /** Get adequate openssl function for input auth algorithm */
199 static uint8_t
200 get_auth_algo(enum rte_crypto_auth_algorithm sessalgo,
201 		const EVP_MD **algo)
202 {
203 	int res = 0;
204 
205 	if (algo != NULL) {
206 		switch (sessalgo) {
207 		case RTE_CRYPTO_AUTH_MD5:
208 		case RTE_CRYPTO_AUTH_MD5_HMAC:
209 			*algo = EVP_md5();
210 			break;
211 		case RTE_CRYPTO_AUTH_SHA1:
212 		case RTE_CRYPTO_AUTH_SHA1_HMAC:
213 			*algo = EVP_sha1();
214 			break;
215 		case RTE_CRYPTO_AUTH_SHA224:
216 		case RTE_CRYPTO_AUTH_SHA224_HMAC:
217 			*algo = EVP_sha224();
218 			break;
219 		case RTE_CRYPTO_AUTH_SHA256:
220 		case RTE_CRYPTO_AUTH_SHA256_HMAC:
221 			*algo = EVP_sha256();
222 			break;
223 		case RTE_CRYPTO_AUTH_SHA384:
224 		case RTE_CRYPTO_AUTH_SHA384_HMAC:
225 			*algo = EVP_sha384();
226 			break;
227 		case RTE_CRYPTO_AUTH_SHA512:
228 		case RTE_CRYPTO_AUTH_SHA512_HMAC:
229 			*algo = EVP_sha512();
230 			break;
231 		default:
232 			res = -EINVAL;
233 			break;
234 		}
235 	} else {
236 		res = -EINVAL;
237 	}
238 
239 	return res;
240 }
241 
242 /** Get adequate openssl function for input cipher algorithm */
243 static uint8_t
244 get_aead_algo(enum rte_crypto_aead_algorithm sess_algo, size_t keylen,
245 		const EVP_CIPHER **algo)
246 {
247 	int res = 0;
248 
249 	if (algo != NULL) {
250 		switch (sess_algo) {
251 		case RTE_CRYPTO_AEAD_AES_GCM:
252 			switch (keylen) {
253 			case 16:
254 				*algo = EVP_aes_128_gcm();
255 				break;
256 			case 24:
257 				*algo = EVP_aes_192_gcm();
258 				break;
259 			case 32:
260 				*algo = EVP_aes_256_gcm();
261 				break;
262 			default:
263 				res = -EINVAL;
264 			}
265 			break;
266 		case RTE_CRYPTO_AEAD_AES_CCM:
267 			switch (keylen) {
268 			case 16:
269 				*algo = EVP_aes_128_ccm();
270 				break;
271 			case 24:
272 				*algo = EVP_aes_192_ccm();
273 				break;
274 			case 32:
275 				*algo = EVP_aes_256_ccm();
276 				break;
277 			default:
278 				res = -EINVAL;
279 			}
280 			break;
281 		default:
282 			res = -EINVAL;
283 			break;
284 		}
285 	} else {
286 		res = -EINVAL;
287 	}
288 
289 	return res;
290 }
291 
292 /* Set session AEAD encryption parameters */
293 static int
294 openssl_set_sess_aead_enc_param(struct openssl_session *sess,
295 		enum rte_crypto_aead_algorithm algo,
296 		uint8_t tag_len, const uint8_t *key)
297 {
298 	int iv_type = 0;
299 	unsigned int do_ccm;
300 
301 	sess->cipher.direction = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
302 	sess->auth.operation = RTE_CRYPTO_AUTH_OP_GENERATE;
303 
304 	/* Select AEAD algo */
305 	switch (algo) {
306 	case RTE_CRYPTO_AEAD_AES_GCM:
307 		iv_type = EVP_CTRL_GCM_SET_IVLEN;
308 		if (tag_len != 16)
309 			return -EINVAL;
310 		do_ccm = 0;
311 		break;
312 	case RTE_CRYPTO_AEAD_AES_CCM:
313 		iv_type = EVP_CTRL_CCM_SET_IVLEN;
314 		/* Digest size can be 4, 6, 8, 10, 12, 14 or 16 bytes */
315 		if (tag_len < 4 || tag_len > 16 || (tag_len & 1) == 1)
316 			return -EINVAL;
317 		do_ccm = 1;
318 		break;
319 	default:
320 		return -ENOTSUP;
321 	}
322 
323 	sess->cipher.mode = OPENSSL_CIPHER_LIB;
324 	sess->cipher.ctx = EVP_CIPHER_CTX_new();
325 
326 	if (get_aead_algo(algo, sess->cipher.key.length,
327 			&sess->cipher.evp_algo) != 0)
328 		return -EINVAL;
329 
330 	get_cipher_key(key, sess->cipher.key.length, sess->cipher.key.data);
331 
332 	sess->chain_order = OPENSSL_CHAIN_COMBINED;
333 
334 	if (EVP_EncryptInit_ex(sess->cipher.ctx, sess->cipher.evp_algo,
335 			NULL, NULL, NULL) <= 0)
336 		return -EINVAL;
337 
338 	if (EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, iv_type, sess->iv.length,
339 			NULL) <= 0)
340 		return -EINVAL;
341 
342 	if (do_ccm)
343 		EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, EVP_CTRL_CCM_SET_TAG,
344 				tag_len, NULL);
345 
346 	if (EVP_EncryptInit_ex(sess->cipher.ctx, NULL, NULL, key, NULL) <= 0)
347 		return -EINVAL;
348 
349 	return 0;
350 }
351 
352 /* Set session AEAD decryption parameters */
353 static int
354 openssl_set_sess_aead_dec_param(struct openssl_session *sess,
355 		enum rte_crypto_aead_algorithm algo,
356 		uint8_t tag_len, const uint8_t *key)
357 {
358 	int iv_type = 0;
359 	unsigned int do_ccm = 0;
360 
361 	sess->cipher.direction = RTE_CRYPTO_CIPHER_OP_DECRYPT;
362 	sess->auth.operation = RTE_CRYPTO_AUTH_OP_VERIFY;
363 
364 	/* Select AEAD algo */
365 	switch (algo) {
366 	case RTE_CRYPTO_AEAD_AES_GCM:
367 		iv_type = EVP_CTRL_GCM_SET_IVLEN;
368 		if (tag_len != 16)
369 			return -EINVAL;
370 		break;
371 	case RTE_CRYPTO_AEAD_AES_CCM:
372 		iv_type = EVP_CTRL_CCM_SET_IVLEN;
373 		/* Digest size can be 4, 6, 8, 10, 12, 14 or 16 bytes */
374 		if (tag_len < 4 || tag_len > 16 || (tag_len & 1) == 1)
375 			return -EINVAL;
376 		do_ccm = 1;
377 		break;
378 	default:
379 		return -ENOTSUP;
380 	}
381 
382 	sess->cipher.mode = OPENSSL_CIPHER_LIB;
383 	sess->cipher.ctx = EVP_CIPHER_CTX_new();
384 
385 	if (get_aead_algo(algo, sess->cipher.key.length,
386 			&sess->cipher.evp_algo) != 0)
387 		return -EINVAL;
388 
389 	get_cipher_key(key, sess->cipher.key.length, sess->cipher.key.data);
390 
391 	sess->chain_order = OPENSSL_CHAIN_COMBINED;
392 
393 	if (EVP_DecryptInit_ex(sess->cipher.ctx, sess->cipher.evp_algo,
394 			NULL, NULL, NULL) <= 0)
395 		return -EINVAL;
396 
397 	if (EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, iv_type,
398 			sess->iv.length, NULL) <= 0)
399 		return -EINVAL;
400 
401 	if (do_ccm)
402 		EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, EVP_CTRL_CCM_SET_TAG,
403 				tag_len, NULL);
404 
405 	if (EVP_DecryptInit_ex(sess->cipher.ctx, NULL, NULL, key, NULL) <= 0)
406 		return -EINVAL;
407 
408 	return 0;
409 }
410 
411 /** Set session cipher parameters */
412 static int
413 openssl_set_session_cipher_parameters(struct openssl_session *sess,
414 		const struct rte_crypto_sym_xform *xform)
415 {
416 	/* Select cipher direction */
417 	sess->cipher.direction = xform->cipher.op;
418 	/* Select cipher key */
419 	sess->cipher.key.length = xform->cipher.key.length;
420 
421 	/* Set IV parameters */
422 	sess->iv.offset = xform->cipher.iv.offset;
423 	sess->iv.length = xform->cipher.iv.length;
424 
425 	/* Select cipher algo */
426 	switch (xform->cipher.algo) {
427 	case RTE_CRYPTO_CIPHER_3DES_CBC:
428 	case RTE_CRYPTO_CIPHER_AES_CBC:
429 	case RTE_CRYPTO_CIPHER_AES_CTR:
430 		sess->cipher.mode = OPENSSL_CIPHER_LIB;
431 		sess->cipher.algo = xform->cipher.algo;
432 		sess->cipher.ctx = EVP_CIPHER_CTX_new();
433 
434 		if (get_cipher_algo(sess->cipher.algo, sess->cipher.key.length,
435 				&sess->cipher.evp_algo) != 0)
436 			return -EINVAL;
437 
438 		get_cipher_key(xform->cipher.key.data, sess->cipher.key.length,
439 			sess->cipher.key.data);
440 		if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
441 			if (EVP_EncryptInit_ex(sess->cipher.ctx,
442 					sess->cipher.evp_algo,
443 					NULL, xform->cipher.key.data,
444 					NULL) != 1) {
445 				return -EINVAL;
446 			}
447 		} else if (sess->cipher.direction ==
448 				RTE_CRYPTO_CIPHER_OP_DECRYPT) {
449 			if (EVP_DecryptInit_ex(sess->cipher.ctx,
450 					sess->cipher.evp_algo,
451 					NULL, xform->cipher.key.data,
452 					NULL) != 1) {
453 				return -EINVAL;
454 			}
455 		}
456 
457 		break;
458 
459 	case RTE_CRYPTO_CIPHER_3DES_CTR:
460 		sess->cipher.mode = OPENSSL_CIPHER_DES3CTR;
461 		sess->cipher.ctx = EVP_CIPHER_CTX_new();
462 
463 		if (get_cipher_key_ede(xform->cipher.key.data,
464 				sess->cipher.key.length,
465 				sess->cipher.key.data) != 0)
466 			return -EINVAL;
467 		break;
468 
469 	case RTE_CRYPTO_CIPHER_DES_CBC:
470 		sess->cipher.algo = xform->cipher.algo;
471 		sess->cipher.ctx = EVP_CIPHER_CTX_new();
472 		sess->cipher.evp_algo = EVP_des_cbc();
473 
474 		get_cipher_key(xform->cipher.key.data, sess->cipher.key.length,
475 			sess->cipher.key.data);
476 		if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
477 			if (EVP_EncryptInit_ex(sess->cipher.ctx,
478 					sess->cipher.evp_algo,
479 					NULL, xform->cipher.key.data,
480 					NULL) != 1) {
481 				return -EINVAL;
482 			}
483 		} else if (sess->cipher.direction ==
484 				RTE_CRYPTO_CIPHER_OP_DECRYPT) {
485 			if (EVP_DecryptInit_ex(sess->cipher.ctx,
486 					sess->cipher.evp_algo,
487 					NULL, xform->cipher.key.data,
488 					NULL) != 1) {
489 				return -EINVAL;
490 			}
491 		}
492 
493 		break;
494 
495 	case RTE_CRYPTO_CIPHER_DES_DOCSISBPI:
496 		sess->cipher.algo = xform->cipher.algo;
497 		sess->chain_order = OPENSSL_CHAIN_CIPHER_BPI;
498 		sess->cipher.ctx = EVP_CIPHER_CTX_new();
499 		sess->cipher.evp_algo = EVP_des_cbc();
500 
501 		sess->cipher.bpi_ctx = EVP_CIPHER_CTX_new();
502 		/* IV will be ECB encrypted whether direction is encrypt or decrypt */
503 		if (EVP_EncryptInit_ex(sess->cipher.bpi_ctx, EVP_des_ecb(),
504 				NULL, xform->cipher.key.data, 0) != 1)
505 			return -EINVAL;
506 
507 		get_cipher_key(xform->cipher.key.data, sess->cipher.key.length,
508 			sess->cipher.key.data);
509 		if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
510 			if (EVP_EncryptInit_ex(sess->cipher.ctx,
511 					sess->cipher.evp_algo,
512 					NULL, xform->cipher.key.data,
513 					NULL) != 1) {
514 				return -EINVAL;
515 			}
516 		} else if (sess->cipher.direction ==
517 				RTE_CRYPTO_CIPHER_OP_DECRYPT) {
518 			if (EVP_DecryptInit_ex(sess->cipher.ctx,
519 					sess->cipher.evp_algo,
520 					NULL, xform->cipher.key.data,
521 					NULL) != 1) {
522 				return -EINVAL;
523 			}
524 		}
525 
526 		break;
527 	default:
528 		sess->cipher.algo = RTE_CRYPTO_CIPHER_NULL;
529 		return -ENOTSUP;
530 	}
531 
532 	return 0;
533 }
534 
535 /* Set session auth parameters */
536 static int
537 openssl_set_session_auth_parameters(struct openssl_session *sess,
538 		const struct rte_crypto_sym_xform *xform)
539 {
540 	/* Select auth generate/verify */
541 	sess->auth.operation = xform->auth.op;
542 	sess->auth.algo = xform->auth.algo;
543 
544 	sess->auth.digest_length = xform->auth.digest_length;
545 
546 	/* Select auth algo */
547 	switch (xform->auth.algo) {
548 	case RTE_CRYPTO_AUTH_AES_GMAC:
549 		/*
550 		 * OpenSSL requires GMAC to be a GCM operation
551 		 * with no cipher data length
552 		 */
553 		sess->cipher.key.length = xform->auth.key.length;
554 
555 		/* Set IV parameters */
556 		sess->iv.offset = xform->auth.iv.offset;
557 		sess->iv.length = xform->auth.iv.length;
558 
559 		if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_GENERATE)
560 			return openssl_set_sess_aead_enc_param(sess,
561 						RTE_CRYPTO_AEAD_AES_GCM,
562 						xform->auth.digest_length,
563 						xform->auth.key.data);
564 		else
565 			return openssl_set_sess_aead_dec_param(sess,
566 						RTE_CRYPTO_AEAD_AES_GCM,
567 						xform->auth.digest_length,
568 						xform->auth.key.data);
569 		break;
570 
571 	case RTE_CRYPTO_AUTH_MD5:
572 	case RTE_CRYPTO_AUTH_SHA1:
573 	case RTE_CRYPTO_AUTH_SHA224:
574 	case RTE_CRYPTO_AUTH_SHA256:
575 	case RTE_CRYPTO_AUTH_SHA384:
576 	case RTE_CRYPTO_AUTH_SHA512:
577 		sess->auth.mode = OPENSSL_AUTH_AS_AUTH;
578 		if (get_auth_algo(xform->auth.algo,
579 				&sess->auth.auth.evp_algo) != 0)
580 			return -EINVAL;
581 		sess->auth.auth.ctx = EVP_MD_CTX_create();
582 		break;
583 
584 	case RTE_CRYPTO_AUTH_MD5_HMAC:
585 	case RTE_CRYPTO_AUTH_SHA1_HMAC:
586 	case RTE_CRYPTO_AUTH_SHA224_HMAC:
587 	case RTE_CRYPTO_AUTH_SHA256_HMAC:
588 	case RTE_CRYPTO_AUTH_SHA384_HMAC:
589 	case RTE_CRYPTO_AUTH_SHA512_HMAC:
590 		sess->auth.mode = OPENSSL_AUTH_AS_HMAC;
591 		sess->auth.hmac.ctx = HMAC_CTX_new();
592 		if (get_auth_algo(xform->auth.algo,
593 				&sess->auth.hmac.evp_algo) != 0)
594 			return -EINVAL;
595 
596 		if (HMAC_Init_ex(sess->auth.hmac.ctx,
597 				xform->auth.key.data,
598 				xform->auth.key.length,
599 				sess->auth.hmac.evp_algo, NULL) != 1)
600 			return -EINVAL;
601 		break;
602 
603 	default:
604 		return -ENOTSUP;
605 	}
606 
607 	return 0;
608 }
609 
610 /* Set session AEAD parameters */
611 static int
612 openssl_set_session_aead_parameters(struct openssl_session *sess,
613 		const struct rte_crypto_sym_xform *xform)
614 {
615 	/* Select cipher key */
616 	sess->cipher.key.length = xform->aead.key.length;
617 
618 	/* Set IV parameters */
619 	if (xform->aead.algo == RTE_CRYPTO_AEAD_AES_CCM)
620 		/*
621 		 * For AES-CCM, the actual IV is placed
622 		 * one byte after the start of the IV field,
623 		 * according to the API.
624 		 */
625 		sess->iv.offset = xform->aead.iv.offset + 1;
626 	else
627 		sess->iv.offset = xform->aead.iv.offset;
628 
629 	sess->iv.length = xform->aead.iv.length;
630 
631 	sess->auth.aad_length = xform->aead.aad_length;
632 	sess->auth.digest_length = xform->aead.digest_length;
633 
634 	sess->aead_algo = xform->aead.algo;
635 	/* Select cipher direction */
636 	if (xform->aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT)
637 		return openssl_set_sess_aead_enc_param(sess, xform->aead.algo,
638 				xform->aead.digest_length, xform->aead.key.data);
639 	else
640 		return openssl_set_sess_aead_dec_param(sess, xform->aead.algo,
641 				xform->aead.digest_length, xform->aead.key.data);
642 }
643 
644 /** Parse crypto xform chain and set private session parameters */
645 int
646 openssl_set_session_parameters(struct openssl_session *sess,
647 		const struct rte_crypto_sym_xform *xform)
648 {
649 	const struct rte_crypto_sym_xform *cipher_xform = NULL;
650 	const struct rte_crypto_sym_xform *auth_xform = NULL;
651 	const struct rte_crypto_sym_xform *aead_xform = NULL;
652 	int ret;
653 
654 	sess->chain_order = openssl_get_chain_order(xform);
655 	switch (sess->chain_order) {
656 	case OPENSSL_CHAIN_ONLY_CIPHER:
657 		cipher_xform = xform;
658 		break;
659 	case OPENSSL_CHAIN_ONLY_AUTH:
660 		auth_xform = xform;
661 		break;
662 	case OPENSSL_CHAIN_CIPHER_AUTH:
663 		cipher_xform = xform;
664 		auth_xform = xform->next;
665 		break;
666 	case OPENSSL_CHAIN_AUTH_CIPHER:
667 		auth_xform = xform;
668 		cipher_xform = xform->next;
669 		break;
670 	case OPENSSL_CHAIN_COMBINED:
671 		aead_xform = xform;
672 		break;
673 	default:
674 		return -EINVAL;
675 	}
676 
677 	/* Default IV length = 0 */
678 	sess->iv.length = 0;
679 
680 	/* cipher_xform must be check before auth_xform */
681 	if (cipher_xform) {
682 		ret = openssl_set_session_cipher_parameters(
683 				sess, cipher_xform);
684 		if (ret != 0) {
685 			OPENSSL_LOG(ERR,
686 				"Invalid/unsupported cipher parameters");
687 			return ret;
688 		}
689 	}
690 
691 	if (auth_xform) {
692 		ret = openssl_set_session_auth_parameters(sess, auth_xform);
693 		if (ret != 0) {
694 			OPENSSL_LOG(ERR,
695 				"Invalid/unsupported auth parameters");
696 			return ret;
697 		}
698 	}
699 
700 	if (aead_xform) {
701 		ret = openssl_set_session_aead_parameters(sess, aead_xform);
702 		if (ret != 0) {
703 			OPENSSL_LOG(ERR,
704 				"Invalid/unsupported AEAD parameters");
705 			return ret;
706 		}
707 	}
708 
709 	return 0;
710 }
711 
712 /** Reset private session parameters */
713 void
714 openssl_reset_session(struct openssl_session *sess)
715 {
716 	EVP_CIPHER_CTX_free(sess->cipher.ctx);
717 
718 	if (sess->chain_order == OPENSSL_CHAIN_CIPHER_BPI)
719 		EVP_CIPHER_CTX_free(sess->cipher.bpi_ctx);
720 
721 	switch (sess->auth.mode) {
722 	case OPENSSL_AUTH_AS_AUTH:
723 		EVP_MD_CTX_destroy(sess->auth.auth.ctx);
724 		break;
725 	case OPENSSL_AUTH_AS_HMAC:
726 		EVP_PKEY_free(sess->auth.hmac.pkey);
727 		HMAC_CTX_free(sess->auth.hmac.ctx);
728 		break;
729 	default:
730 		break;
731 	}
732 }
733 
734 /** Provide session for operation */
735 static void *
736 get_session(struct openssl_qp *qp, struct rte_crypto_op *op)
737 {
738 	struct openssl_session *sess = NULL;
739 	struct openssl_asym_session *asym_sess = NULL;
740 
741 	if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
742 		if (op->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC) {
743 			/* get existing session */
744 			if (likely(op->sym->session != NULL))
745 				sess = (struct openssl_session *)
746 						get_sym_session_private_data(
747 						op->sym->session,
748 						cryptodev_driver_id);
749 		} else {
750 			if (likely(op->asym->session != NULL))
751 				asym_sess = (struct openssl_asym_session *)
752 						get_asym_session_private_data(
753 						op->asym->session,
754 						cryptodev_driver_id);
755 			if (asym_sess == NULL)
756 				op->status =
757 					RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
758 			return asym_sess;
759 		}
760 	} else {
761 		/* sessionless asymmetric not supported */
762 		if (op->type == RTE_CRYPTO_OP_TYPE_ASYMMETRIC)
763 			return NULL;
764 
765 		/* provide internal session */
766 		void *_sess = rte_cryptodev_sym_session_create(qp->sess_mp);
767 		void *_sess_private_data = NULL;
768 
769 		if (_sess == NULL)
770 			return NULL;
771 
772 		if (rte_mempool_get(qp->sess_mp_priv,
773 				(void **)&_sess_private_data))
774 			return NULL;
775 
776 		sess = (struct openssl_session *)_sess_private_data;
777 
778 		if (unlikely(openssl_set_session_parameters(sess,
779 				op->sym->xform) != 0)) {
780 			rte_mempool_put(qp->sess_mp, _sess);
781 			rte_mempool_put(qp->sess_mp_priv, _sess_private_data);
782 			sess = NULL;
783 		}
784 		op->sym->session = (struct rte_cryptodev_sym_session *)_sess;
785 		set_sym_session_private_data(op->sym->session,
786 				cryptodev_driver_id, _sess_private_data);
787 	}
788 
789 	if (sess == NULL)
790 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
791 
792 	return sess;
793 }
794 
795 /*
796  *------------------------------------------------------------------------------
797  * Process Operations
798  *------------------------------------------------------------------------------
799  */
800 static inline int
801 process_openssl_encryption_update(struct rte_mbuf *mbuf_src, int offset,
802 		uint8_t **dst, int srclen, EVP_CIPHER_CTX *ctx, uint8_t inplace)
803 {
804 	struct rte_mbuf *m;
805 	int dstlen;
806 	int l, n = srclen;
807 	uint8_t *src, temp[EVP_CIPHER_CTX_block_size(ctx)];
808 
809 	for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m);
810 			m = m->next)
811 		offset -= rte_pktmbuf_data_len(m);
812 
813 	if (m == 0)
814 		return -1;
815 
816 	src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset);
817 	if (inplace)
818 		*dst = src;
819 
820 	l = rte_pktmbuf_data_len(m) - offset;
821 	if (srclen <= l) {
822 		if (EVP_EncryptUpdate(ctx, *dst, &dstlen, src, srclen) <= 0)
823 			return -1;
824 		*dst += l;
825 		return 0;
826 	}
827 
828 	if (EVP_EncryptUpdate(ctx, *dst, &dstlen, src, l) <= 0)
829 		return -1;
830 
831 	*dst += dstlen;
832 	n -= l;
833 
834 	for (m = m->next; (m != NULL) && (n > 0); m = m->next) {
835 		uint8_t diff = l - dstlen, rem;
836 
837 		src = rte_pktmbuf_mtod(m, uint8_t *);
838 		l = RTE_MIN(rte_pktmbuf_data_len(m), n);
839 		if (diff && inplace) {
840 			rem = RTE_MIN(l,
841 				(EVP_CIPHER_CTX_block_size(ctx) - diff));
842 			if (EVP_EncryptUpdate(ctx, temp,
843 						&dstlen, src, rem) <= 0)
844 				return -1;
845 			n -= rem;
846 			rte_memcpy(*dst, temp, diff);
847 			rte_memcpy(src, temp + diff, rem);
848 			src += rem;
849 			l -= rem;
850 		}
851 		if (inplace)
852 			*dst = src;
853 		if (EVP_EncryptUpdate(ctx, *dst, &dstlen, src, l) <= 0)
854 			return -1;
855 		*dst += dstlen;
856 		n -= l;
857 	}
858 
859 	return 0;
860 }
861 
862 static inline int
863 process_openssl_decryption_update(struct rte_mbuf *mbuf_src, int offset,
864 		uint8_t **dst, int srclen, EVP_CIPHER_CTX *ctx, uint8_t inplace)
865 {
866 	struct rte_mbuf *m;
867 	int dstlen;
868 	int l, n = srclen;
869 	uint8_t *src, temp[EVP_CIPHER_CTX_block_size(ctx)];
870 
871 	for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m);
872 			m = m->next)
873 		offset -= rte_pktmbuf_data_len(m);
874 
875 	if (m == 0)
876 		return -1;
877 
878 	src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset);
879 	if (inplace)
880 		*dst = src;
881 
882 	l = rte_pktmbuf_data_len(m) - offset;
883 	if (srclen <= l) {
884 		if (EVP_DecryptUpdate(ctx, *dst, &dstlen, src, srclen) <= 0)
885 			return -1;
886 		*dst += l;
887 		return 0;
888 	}
889 
890 	if (EVP_DecryptUpdate(ctx, *dst, &dstlen, src, l) <= 0)
891 		return -1;
892 
893 	*dst += dstlen;
894 	n -= l;
895 
896 	for (m = m->next; (m != NULL) && (n > 0); m = m->next) {
897 		uint8_t diff = l - dstlen, rem;
898 
899 		src = rte_pktmbuf_mtod(m, uint8_t *);
900 		l = RTE_MIN(rte_pktmbuf_data_len(m), n);
901 		if (diff && inplace) {
902 			rem = RTE_MIN(l,
903 				(EVP_CIPHER_CTX_block_size(ctx) - diff));
904 			if (EVP_DecryptUpdate(ctx, temp,
905 						&dstlen, src, rem) <= 0)
906 				return -1;
907 			n -= rem;
908 			rte_memcpy(*dst, temp, diff);
909 			rte_memcpy(src, temp + diff, rem);
910 			src += rem;
911 			l -= rem;
912 		}
913 		if (inplace)
914 			*dst = src;
915 		if (EVP_DecryptUpdate(ctx, *dst, &dstlen, src, l) <= 0)
916 			return -1;
917 		*dst += dstlen;
918 		n -= l;
919 	}
920 
921 	return 0;
922 }
923 
924 /** Process standard openssl cipher encryption */
925 static int
926 process_openssl_cipher_encrypt(struct rte_mbuf *mbuf_src, uint8_t *dst,
927 		int offset, uint8_t *iv, int srclen, EVP_CIPHER_CTX *ctx,
928 		uint8_t inplace)
929 {
930 	int totlen;
931 
932 	if (EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
933 		goto process_cipher_encrypt_err;
934 
935 	EVP_CIPHER_CTX_set_padding(ctx, 0);
936 
937 	if (process_openssl_encryption_update(mbuf_src, offset, &dst,
938 			srclen, ctx, inplace))
939 		goto process_cipher_encrypt_err;
940 
941 	if (EVP_EncryptFinal_ex(ctx, dst, &totlen) <= 0)
942 		goto process_cipher_encrypt_err;
943 
944 	return 0;
945 
946 process_cipher_encrypt_err:
947 	OPENSSL_LOG(ERR, "Process openssl cipher encrypt failed");
948 	return -EINVAL;
949 }
950 
951 /** Process standard openssl cipher encryption */
952 static int
953 process_openssl_cipher_bpi_encrypt(uint8_t *src, uint8_t *dst,
954 		uint8_t *iv, int srclen,
955 		EVP_CIPHER_CTX *ctx)
956 {
957 	uint8_t i;
958 	uint8_t encrypted_iv[DES_BLOCK_SIZE];
959 	int encrypted_ivlen;
960 
961 	if (EVP_EncryptUpdate(ctx, encrypted_iv, &encrypted_ivlen,
962 			iv, DES_BLOCK_SIZE) <= 0)
963 		goto process_cipher_encrypt_err;
964 
965 	for (i = 0; i < srclen; i++)
966 		*(dst + i) = *(src + i) ^ (encrypted_iv[i]);
967 
968 	return 0;
969 
970 process_cipher_encrypt_err:
971 	OPENSSL_LOG(ERR, "Process openssl cipher bpi encrypt failed");
972 	return -EINVAL;
973 }
974 /** Process standard openssl cipher decryption */
975 static int
976 process_openssl_cipher_decrypt(struct rte_mbuf *mbuf_src, uint8_t *dst,
977 		int offset, uint8_t *iv, int srclen, EVP_CIPHER_CTX *ctx,
978 		uint8_t inplace)
979 {
980 	int totlen;
981 
982 	if (EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
983 		goto process_cipher_decrypt_err;
984 
985 	EVP_CIPHER_CTX_set_padding(ctx, 0);
986 
987 	if (process_openssl_decryption_update(mbuf_src, offset, &dst,
988 			srclen, ctx, inplace))
989 		goto process_cipher_decrypt_err;
990 
991 	if (EVP_DecryptFinal_ex(ctx, dst, &totlen) <= 0)
992 		goto process_cipher_decrypt_err;
993 	return 0;
994 
995 process_cipher_decrypt_err:
996 	OPENSSL_LOG(ERR, "Process openssl cipher decrypt failed");
997 	return -EINVAL;
998 }
999 
1000 /** Process cipher des 3 ctr encryption, decryption algorithm */
1001 static int
1002 process_openssl_cipher_des3ctr(struct rte_mbuf *mbuf_src, uint8_t *dst,
1003 		int offset, uint8_t *iv, uint8_t *key, int srclen,
1004 		EVP_CIPHER_CTX *ctx)
1005 {
1006 	uint8_t ebuf[8], ctr[8];
1007 	int unused, n;
1008 	struct rte_mbuf *m;
1009 	uint8_t *src;
1010 	int l;
1011 
1012 	for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m);
1013 			m = m->next)
1014 		offset -= rte_pktmbuf_data_len(m);
1015 
1016 	if (m == 0)
1017 		goto process_cipher_des3ctr_err;
1018 
1019 	src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset);
1020 	l = rte_pktmbuf_data_len(m) - offset;
1021 
1022 	/* We use 3DES encryption also for decryption.
1023 	 * IV is not important for 3DES ecb
1024 	 */
1025 	if (EVP_EncryptInit_ex(ctx, EVP_des_ede3_ecb(), NULL, key, NULL) <= 0)
1026 		goto process_cipher_des3ctr_err;
1027 
1028 	memcpy(ctr, iv, 8);
1029 
1030 	for (n = 0; n < srclen; n++) {
1031 		if (n % 8 == 0) {
1032 			if (EVP_EncryptUpdate(ctx,
1033 					(unsigned char *)&ebuf, &unused,
1034 					(const unsigned char *)&ctr, 8) <= 0)
1035 				goto process_cipher_des3ctr_err;
1036 			ctr_inc(ctr);
1037 		}
1038 		dst[n] = *(src++) ^ ebuf[n % 8];
1039 
1040 		l--;
1041 		if (!l) {
1042 			m = m->next;
1043 			if (m) {
1044 				src = rte_pktmbuf_mtod(m, uint8_t *);
1045 				l = rte_pktmbuf_data_len(m);
1046 			}
1047 		}
1048 	}
1049 
1050 	return 0;
1051 
1052 process_cipher_des3ctr_err:
1053 	OPENSSL_LOG(ERR, "Process openssl cipher des 3 ede ctr failed");
1054 	return -EINVAL;
1055 }
1056 
1057 /** Process AES-GCM encrypt algorithm */
1058 static int
1059 process_openssl_auth_encryption_gcm(struct rte_mbuf *mbuf_src, int offset,
1060 		int srclen, uint8_t *aad, int aadlen, uint8_t *iv,
1061 		uint8_t *dst, uint8_t *tag, EVP_CIPHER_CTX *ctx)
1062 {
1063 	int len = 0, unused = 0;
1064 	uint8_t empty[] = {};
1065 
1066 	if (EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
1067 		goto process_auth_encryption_gcm_err;
1068 
1069 	if (aadlen > 0)
1070 		if (EVP_EncryptUpdate(ctx, NULL, &len, aad, aadlen) <= 0)
1071 			goto process_auth_encryption_gcm_err;
1072 
1073 	if (srclen > 0)
1074 		if (process_openssl_encryption_update(mbuf_src, offset, &dst,
1075 				srclen, ctx, 0))
1076 			goto process_auth_encryption_gcm_err;
1077 
1078 	/* Workaround open ssl bug in version less then 1.0.1f */
1079 	if (EVP_EncryptUpdate(ctx, empty, &unused, empty, 0) <= 0)
1080 		goto process_auth_encryption_gcm_err;
1081 
1082 	if (EVP_EncryptFinal_ex(ctx, dst, &len) <= 0)
1083 		goto process_auth_encryption_gcm_err;
1084 
1085 	if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_GET_TAG, 16, tag) <= 0)
1086 		goto process_auth_encryption_gcm_err;
1087 
1088 	return 0;
1089 
1090 process_auth_encryption_gcm_err:
1091 	OPENSSL_LOG(ERR, "Process openssl auth encryption gcm failed");
1092 	return -EINVAL;
1093 }
1094 
1095 /** Process AES-CCM encrypt algorithm */
1096 static int
1097 process_openssl_auth_encryption_ccm(struct rte_mbuf *mbuf_src, int offset,
1098 		int srclen, uint8_t *aad, int aadlen, uint8_t *iv,
1099 		uint8_t *dst, uint8_t *tag, uint8_t taglen, EVP_CIPHER_CTX *ctx)
1100 {
1101 	int len = 0;
1102 
1103 	if (EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
1104 		goto process_auth_encryption_ccm_err;
1105 
1106 	if (EVP_EncryptUpdate(ctx, NULL, &len, NULL, srclen) <= 0)
1107 		goto process_auth_encryption_ccm_err;
1108 
1109 	if (aadlen > 0)
1110 		/*
1111 		 * For AES-CCM, the actual AAD is placed
1112 		 * 18 bytes after the start of the AAD field,
1113 		 * according to the API.
1114 		 */
1115 		if (EVP_EncryptUpdate(ctx, NULL, &len, aad + 18, aadlen) <= 0)
1116 			goto process_auth_encryption_ccm_err;
1117 
1118 	if (srclen > 0)
1119 		if (process_openssl_encryption_update(mbuf_src, offset, &dst,
1120 				srclen, ctx, 0))
1121 			goto process_auth_encryption_ccm_err;
1122 
1123 	if (EVP_EncryptFinal_ex(ctx, dst, &len) <= 0)
1124 		goto process_auth_encryption_ccm_err;
1125 
1126 	if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_GET_TAG, taglen, tag) <= 0)
1127 		goto process_auth_encryption_ccm_err;
1128 
1129 	return 0;
1130 
1131 process_auth_encryption_ccm_err:
1132 	OPENSSL_LOG(ERR, "Process openssl auth encryption ccm failed");
1133 	return -EINVAL;
1134 }
1135 
1136 /** Process AES-GCM decrypt algorithm */
1137 static int
1138 process_openssl_auth_decryption_gcm(struct rte_mbuf *mbuf_src, int offset,
1139 		int srclen, uint8_t *aad, int aadlen, uint8_t *iv,
1140 		uint8_t *dst, uint8_t *tag, EVP_CIPHER_CTX *ctx)
1141 {
1142 	int len = 0, unused = 0;
1143 	uint8_t empty[] = {};
1144 
1145 	if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_TAG, 16, tag) <= 0)
1146 		goto process_auth_decryption_gcm_err;
1147 
1148 	if (EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
1149 		goto process_auth_decryption_gcm_err;
1150 
1151 	if (aadlen > 0)
1152 		if (EVP_DecryptUpdate(ctx, NULL, &len, aad, aadlen) <= 0)
1153 			goto process_auth_decryption_gcm_err;
1154 
1155 	if (srclen > 0)
1156 		if (process_openssl_decryption_update(mbuf_src, offset, &dst,
1157 				srclen, ctx, 0))
1158 			goto process_auth_decryption_gcm_err;
1159 
1160 	/* Workaround open ssl bug in version less then 1.0.1f */
1161 	if (EVP_DecryptUpdate(ctx, empty, &unused, empty, 0) <= 0)
1162 		goto process_auth_decryption_gcm_err;
1163 
1164 	if (EVP_DecryptFinal_ex(ctx, dst, &len) <= 0)
1165 		return -EFAULT;
1166 
1167 	return 0;
1168 
1169 process_auth_decryption_gcm_err:
1170 	OPENSSL_LOG(ERR, "Process openssl auth decryption gcm failed");
1171 	return -EINVAL;
1172 }
1173 
1174 /** Process AES-CCM decrypt algorithm */
1175 static int
1176 process_openssl_auth_decryption_ccm(struct rte_mbuf *mbuf_src, int offset,
1177 		int srclen, uint8_t *aad, int aadlen, uint8_t *iv,
1178 		uint8_t *dst, uint8_t *tag, uint8_t tag_len,
1179 		EVP_CIPHER_CTX *ctx)
1180 {
1181 	int len = 0;
1182 
1183 	if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_TAG, tag_len, tag) <= 0)
1184 		goto process_auth_decryption_ccm_err;
1185 
1186 	if (EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
1187 		goto process_auth_decryption_ccm_err;
1188 
1189 	if (EVP_DecryptUpdate(ctx, NULL, &len, NULL, srclen) <= 0)
1190 		goto process_auth_decryption_ccm_err;
1191 
1192 	if (aadlen > 0)
1193 		/*
1194 		 * For AES-CCM, the actual AAD is placed
1195 		 * 18 bytes after the start of the AAD field,
1196 		 * according to the API.
1197 		 */
1198 		if (EVP_DecryptUpdate(ctx, NULL, &len, aad + 18, aadlen) <= 0)
1199 			goto process_auth_decryption_ccm_err;
1200 
1201 	if (srclen > 0)
1202 		if (process_openssl_decryption_update(mbuf_src, offset, &dst,
1203 				srclen, ctx, 0))
1204 			return -EFAULT;
1205 
1206 	return 0;
1207 
1208 process_auth_decryption_ccm_err:
1209 	OPENSSL_LOG(ERR, "Process openssl auth decryption ccm failed");
1210 	return -EINVAL;
1211 }
1212 
1213 /** Process standard openssl auth algorithms */
1214 static int
1215 process_openssl_auth(struct rte_mbuf *mbuf_src, uint8_t *dst, int offset,
1216 		__rte_unused uint8_t *iv, __rte_unused EVP_PKEY * pkey,
1217 		int srclen, EVP_MD_CTX *ctx, const EVP_MD *algo)
1218 {
1219 	size_t dstlen;
1220 	struct rte_mbuf *m;
1221 	int l, n = srclen;
1222 	uint8_t *src;
1223 
1224 	for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m);
1225 			m = m->next)
1226 		offset -= rte_pktmbuf_data_len(m);
1227 
1228 	if (m == 0)
1229 		goto process_auth_err;
1230 
1231 	if (EVP_DigestInit_ex(ctx, algo, NULL) <= 0)
1232 		goto process_auth_err;
1233 
1234 	src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset);
1235 
1236 	l = rte_pktmbuf_data_len(m) - offset;
1237 	if (srclen <= l) {
1238 		if (EVP_DigestUpdate(ctx, (char *)src, srclen) <= 0)
1239 			goto process_auth_err;
1240 		goto process_auth_final;
1241 	}
1242 
1243 	if (EVP_DigestUpdate(ctx, (char *)src, l) <= 0)
1244 		goto process_auth_err;
1245 
1246 	n -= l;
1247 
1248 	for (m = m->next; (m != NULL) && (n > 0); m = m->next) {
1249 		src = rte_pktmbuf_mtod(m, uint8_t *);
1250 		l = rte_pktmbuf_data_len(m) < n ? rte_pktmbuf_data_len(m) : n;
1251 		if (EVP_DigestUpdate(ctx, (char *)src, l) <= 0)
1252 			goto process_auth_err;
1253 		n -= l;
1254 	}
1255 
1256 process_auth_final:
1257 	if (EVP_DigestFinal_ex(ctx, dst, (unsigned int *)&dstlen) <= 0)
1258 		goto process_auth_err;
1259 	return 0;
1260 
1261 process_auth_err:
1262 	OPENSSL_LOG(ERR, "Process openssl auth failed");
1263 	return -EINVAL;
1264 }
1265 
1266 /** Process standard openssl auth algorithms with hmac */
1267 static int
1268 process_openssl_auth_hmac(struct rte_mbuf *mbuf_src, uint8_t *dst, int offset,
1269 		int srclen, HMAC_CTX *ctx)
1270 {
1271 	unsigned int dstlen;
1272 	struct rte_mbuf *m;
1273 	int l, n = srclen;
1274 	uint8_t *src;
1275 
1276 	for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m);
1277 			m = m->next)
1278 		offset -= rte_pktmbuf_data_len(m);
1279 
1280 	if (m == 0)
1281 		goto process_auth_err;
1282 
1283 	src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset);
1284 
1285 	l = rte_pktmbuf_data_len(m) - offset;
1286 	if (srclen <= l) {
1287 		if (HMAC_Update(ctx, (unsigned char *)src, srclen) != 1)
1288 			goto process_auth_err;
1289 		goto process_auth_final;
1290 	}
1291 
1292 	if (HMAC_Update(ctx, (unsigned char *)src, l) != 1)
1293 		goto process_auth_err;
1294 
1295 	n -= l;
1296 
1297 	for (m = m->next; (m != NULL) && (n > 0); m = m->next) {
1298 		src = rte_pktmbuf_mtod(m, uint8_t *);
1299 		l = rte_pktmbuf_data_len(m) < n ? rte_pktmbuf_data_len(m) : n;
1300 		if (HMAC_Update(ctx, (unsigned char *)src, l) != 1)
1301 			goto process_auth_err;
1302 		n -= l;
1303 	}
1304 
1305 process_auth_final:
1306 	if (HMAC_Final(ctx, dst, &dstlen) != 1)
1307 		goto process_auth_err;
1308 
1309 	if (unlikely(HMAC_Init_ex(ctx, NULL, 0, NULL, NULL) != 1))
1310 		goto process_auth_err;
1311 
1312 	return 0;
1313 
1314 process_auth_err:
1315 	OPENSSL_LOG(ERR, "Process openssl auth failed");
1316 	return -EINVAL;
1317 }
1318 
1319 /*----------------------------------------------------------------------------*/
1320 
1321 /** Process auth/cipher combined operation */
1322 static void
1323 process_openssl_combined_op
1324 		(struct rte_crypto_op *op, struct openssl_session *sess,
1325 		struct rte_mbuf *mbuf_src, struct rte_mbuf *mbuf_dst)
1326 {
1327 	/* cipher */
1328 	uint8_t *dst = NULL, *iv, *tag, *aad;
1329 	int srclen, aadlen, status = -1;
1330 	uint32_t offset;
1331 	uint8_t taglen;
1332 	EVP_CIPHER_CTX *ctx_copy;
1333 
1334 	/*
1335 	 * Segmented destination buffer is not supported for
1336 	 * encryption/decryption
1337 	 */
1338 	if (!rte_pktmbuf_is_contiguous(mbuf_dst)) {
1339 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1340 		return;
1341 	}
1342 
1343 	iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1344 			sess->iv.offset);
1345 	if (sess->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC) {
1346 		srclen = 0;
1347 		offset = op->sym->auth.data.offset;
1348 		aadlen = op->sym->auth.data.length;
1349 		aad = rte_pktmbuf_mtod_offset(mbuf_src, uint8_t *,
1350 				op->sym->auth.data.offset);
1351 		tag = op->sym->auth.digest.data;
1352 		if (tag == NULL)
1353 			tag = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1354 				offset + aadlen);
1355 	} else {
1356 		srclen = op->sym->aead.data.length;
1357 		dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1358 				op->sym->aead.data.offset);
1359 		offset = op->sym->aead.data.offset;
1360 		aad = op->sym->aead.aad.data;
1361 		aadlen = sess->auth.aad_length;
1362 		tag = op->sym->aead.digest.data;
1363 		if (tag == NULL)
1364 			tag = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1365 				offset + srclen);
1366 	}
1367 
1368 	taglen = sess->auth.digest_length;
1369 	ctx_copy = EVP_CIPHER_CTX_new();
1370 	EVP_CIPHER_CTX_copy(ctx_copy, sess->cipher.ctx);
1371 
1372 	if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
1373 		if (sess->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC ||
1374 				sess->aead_algo == RTE_CRYPTO_AEAD_AES_GCM)
1375 			status = process_openssl_auth_encryption_gcm(
1376 					mbuf_src, offset, srclen,
1377 					aad, aadlen, iv,
1378 					dst, tag, ctx_copy);
1379 		else
1380 			status = process_openssl_auth_encryption_ccm(
1381 					mbuf_src, offset, srclen,
1382 					aad, aadlen, iv,
1383 					dst, tag, taglen, ctx_copy);
1384 
1385 	} else {
1386 		if (sess->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC ||
1387 				sess->aead_algo == RTE_CRYPTO_AEAD_AES_GCM)
1388 			status = process_openssl_auth_decryption_gcm(
1389 					mbuf_src, offset, srclen,
1390 					aad, aadlen, iv,
1391 					dst, tag, ctx_copy);
1392 		else
1393 			status = process_openssl_auth_decryption_ccm(
1394 					mbuf_src, offset, srclen,
1395 					aad, aadlen, iv,
1396 					dst, tag, taglen, ctx_copy);
1397 	}
1398 
1399 	EVP_CIPHER_CTX_free(ctx_copy);
1400 	if (status != 0) {
1401 		if (status == (-EFAULT) &&
1402 				sess->auth.operation ==
1403 						RTE_CRYPTO_AUTH_OP_VERIFY)
1404 			op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
1405 		else
1406 			op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1407 	}
1408 }
1409 
1410 /** Process cipher operation */
1411 static void
1412 process_openssl_cipher_op
1413 		(struct rte_crypto_op *op, struct openssl_session *sess,
1414 		struct rte_mbuf *mbuf_src, struct rte_mbuf *mbuf_dst)
1415 {
1416 	uint8_t *dst, *iv;
1417 	int srclen, status;
1418 	uint8_t inplace = (mbuf_src == mbuf_dst) ? 1 : 0;
1419 	EVP_CIPHER_CTX *ctx_copy;
1420 
1421 	/*
1422 	 * Segmented OOP destination buffer is not supported for encryption/
1423 	 * decryption. In case of des3ctr, even inplace segmented buffers are
1424 	 * not supported.
1425 	 */
1426 	if (!rte_pktmbuf_is_contiguous(mbuf_dst) &&
1427 			(!inplace || sess->cipher.mode != OPENSSL_CIPHER_LIB)) {
1428 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1429 		return;
1430 	}
1431 
1432 	srclen = op->sym->cipher.data.length;
1433 	dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1434 			op->sym->cipher.data.offset);
1435 
1436 	iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1437 			sess->iv.offset);
1438 	ctx_copy = EVP_CIPHER_CTX_new();
1439 	EVP_CIPHER_CTX_copy(ctx_copy, sess->cipher.ctx);
1440 
1441 	if (sess->cipher.mode == OPENSSL_CIPHER_LIB)
1442 		if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
1443 			status = process_openssl_cipher_encrypt(mbuf_src, dst,
1444 					op->sym->cipher.data.offset, iv,
1445 					srclen, ctx_copy, inplace);
1446 		else
1447 			status = process_openssl_cipher_decrypt(mbuf_src, dst,
1448 					op->sym->cipher.data.offset, iv,
1449 					srclen, ctx_copy, inplace);
1450 	else
1451 		status = process_openssl_cipher_des3ctr(mbuf_src, dst,
1452 				op->sym->cipher.data.offset, iv,
1453 				sess->cipher.key.data, srclen,
1454 				ctx_copy);
1455 
1456 	EVP_CIPHER_CTX_free(ctx_copy);
1457 	if (status != 0)
1458 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1459 }
1460 
1461 /** Process cipher operation */
1462 static void
1463 process_openssl_docsis_bpi_op(struct rte_crypto_op *op,
1464 		struct openssl_session *sess, struct rte_mbuf *mbuf_src,
1465 		struct rte_mbuf *mbuf_dst)
1466 {
1467 	uint8_t *src, *dst, *iv;
1468 	uint8_t block_size, last_block_len;
1469 	int srclen, status = 0;
1470 
1471 	srclen = op->sym->cipher.data.length;
1472 	src = rte_pktmbuf_mtod_offset(mbuf_src, uint8_t *,
1473 			op->sym->cipher.data.offset);
1474 	dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1475 			op->sym->cipher.data.offset);
1476 
1477 	iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1478 			sess->iv.offset);
1479 
1480 	block_size = DES_BLOCK_SIZE;
1481 
1482 	last_block_len = srclen % block_size;
1483 	if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
1484 		/* Encrypt only with ECB mode XOR IV */
1485 		if (srclen < block_size) {
1486 			status = process_openssl_cipher_bpi_encrypt(src, dst,
1487 					iv, srclen,
1488 					sess->cipher.bpi_ctx);
1489 		} else {
1490 			srclen -= last_block_len;
1491 			/* Encrypt with the block aligned stream with CBC mode */
1492 			status = process_openssl_cipher_encrypt(mbuf_src, dst,
1493 					op->sym->cipher.data.offset, iv,
1494 					srclen, sess->cipher.ctx, 0);
1495 			if (last_block_len) {
1496 				/* Point at last block */
1497 				dst += srclen;
1498 				/*
1499 				 * IV is the last encrypted block from
1500 				 * the previous operation
1501 				 */
1502 				iv = dst - block_size;
1503 				src += srclen;
1504 				srclen = last_block_len;
1505 				/* Encrypt the last frame with ECB mode */
1506 				status |= process_openssl_cipher_bpi_encrypt(src,
1507 						dst, iv,
1508 						srclen, sess->cipher.bpi_ctx);
1509 			}
1510 		}
1511 	} else {
1512 		/* Decrypt only with ECB mode (encrypt, as it is same operation) */
1513 		if (srclen < block_size) {
1514 			status = process_openssl_cipher_bpi_encrypt(src, dst,
1515 					iv,
1516 					srclen,
1517 					sess->cipher.bpi_ctx);
1518 		} else {
1519 			if (last_block_len) {
1520 				/* Point at last block */
1521 				dst += srclen - last_block_len;
1522 				src += srclen - last_block_len;
1523 				/*
1524 				 * IV is the last full block
1525 				 */
1526 				iv = src - block_size;
1527 				/*
1528 				 * Decrypt the last frame with ECB mode
1529 				 * (encrypt, as it is the same operation)
1530 				 */
1531 				status = process_openssl_cipher_bpi_encrypt(src,
1532 						dst, iv,
1533 						last_block_len, sess->cipher.bpi_ctx);
1534 				/* Prepare parameters for CBC mode op */
1535 				iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1536 						sess->iv.offset);
1537 				dst += last_block_len - srclen;
1538 				srclen -= last_block_len;
1539 			}
1540 
1541 			/* Decrypt with CBC mode */
1542 			status |= process_openssl_cipher_decrypt(mbuf_src, dst,
1543 					op->sym->cipher.data.offset, iv,
1544 					srclen, sess->cipher.ctx, 0);
1545 		}
1546 	}
1547 
1548 	if (status != 0)
1549 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1550 }
1551 
1552 /** Process auth operation */
1553 static void
1554 process_openssl_auth_op(struct openssl_qp *qp, struct rte_crypto_op *op,
1555 		struct openssl_session *sess, struct rte_mbuf *mbuf_src,
1556 		struct rte_mbuf *mbuf_dst)
1557 {
1558 	uint8_t *dst;
1559 	int srclen, status;
1560 	EVP_MD_CTX *ctx_a;
1561 	HMAC_CTX *ctx_h;
1562 
1563 	srclen = op->sym->auth.data.length;
1564 
1565 	dst = qp->temp_digest;
1566 
1567 	switch (sess->auth.mode) {
1568 	case OPENSSL_AUTH_AS_AUTH:
1569 		ctx_a = EVP_MD_CTX_create();
1570 		EVP_MD_CTX_copy_ex(ctx_a, sess->auth.auth.ctx);
1571 		status = process_openssl_auth(mbuf_src, dst,
1572 				op->sym->auth.data.offset, NULL, NULL, srclen,
1573 				ctx_a, sess->auth.auth.evp_algo);
1574 		EVP_MD_CTX_destroy(ctx_a);
1575 		break;
1576 	case OPENSSL_AUTH_AS_HMAC:
1577 		ctx_h = HMAC_CTX_new();
1578 		HMAC_CTX_copy(ctx_h, sess->auth.hmac.ctx);
1579 		status = process_openssl_auth_hmac(mbuf_src, dst,
1580 				op->sym->auth.data.offset, srclen,
1581 				ctx_h);
1582 		HMAC_CTX_free(ctx_h);
1583 		break;
1584 	default:
1585 		status = -1;
1586 		break;
1587 	}
1588 
1589 	if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) {
1590 		if (CRYPTO_memcmp(dst, op->sym->auth.digest.data,
1591 				sess->auth.digest_length) != 0) {
1592 			op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
1593 		}
1594 	} else {
1595 		uint8_t *auth_dst;
1596 
1597 		auth_dst = op->sym->auth.digest.data;
1598 		if (auth_dst == NULL)
1599 			auth_dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1600 					op->sym->auth.data.offset +
1601 					op->sym->auth.data.length);
1602 		memcpy(auth_dst, dst, sess->auth.digest_length);
1603 	}
1604 
1605 	if (status != 0)
1606 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1607 }
1608 
1609 /* process dsa sign operation */
1610 static int
1611 process_openssl_dsa_sign_op(struct rte_crypto_op *cop,
1612 		struct openssl_asym_session *sess)
1613 {
1614 	struct rte_crypto_dsa_op_param *op = &cop->asym->dsa;
1615 	DSA *dsa = sess->u.s.dsa;
1616 	DSA_SIG *sign = NULL;
1617 
1618 	sign = DSA_do_sign(op->message.data,
1619 			op->message.length,
1620 			dsa);
1621 
1622 	if (sign == NULL) {
1623 		OPENSSL_LOG(ERR, "%s:%d\n", __func__, __LINE__);
1624 		cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1625 	} else {
1626 		const BIGNUM *r = NULL, *s = NULL;
1627 		get_dsa_sign(sign, &r, &s);
1628 
1629 		op->r.length = BN_bn2bin(r, op->r.data);
1630 		op->s.length = BN_bn2bin(s, op->s.data);
1631 		cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1632 	}
1633 
1634 	DSA_SIG_free(sign);
1635 
1636 	return 0;
1637 }
1638 
1639 /* process dsa verify operation */
1640 static int
1641 process_openssl_dsa_verify_op(struct rte_crypto_op *cop,
1642 		struct openssl_asym_session *sess)
1643 {
1644 	struct rte_crypto_dsa_op_param *op = &cop->asym->dsa;
1645 	DSA *dsa = sess->u.s.dsa;
1646 	int ret;
1647 	DSA_SIG *sign = DSA_SIG_new();
1648 	BIGNUM *r = NULL, *s = NULL;
1649 	BIGNUM *pub_key = NULL;
1650 
1651 	if (sign == NULL) {
1652 		OPENSSL_LOG(ERR, " %s:%d\n", __func__, __LINE__);
1653 		cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1654 		return -1;
1655 	}
1656 
1657 	r = BN_bin2bn(op->r.data,
1658 			op->r.length,
1659 			r);
1660 	s = BN_bin2bn(op->s.data,
1661 			op->s.length,
1662 			s);
1663 	pub_key = BN_bin2bn(op->y.data,
1664 			op->y.length,
1665 			pub_key);
1666 	if (!r || !s || !pub_key) {
1667 		BN_free(r);
1668 		BN_free(s);
1669 		BN_free(pub_key);
1670 
1671 		cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1672 		return -1;
1673 	}
1674 	set_dsa_sign(sign, r, s);
1675 	set_dsa_pub_key(dsa, pub_key);
1676 
1677 	ret = DSA_do_verify(op->message.data,
1678 			op->message.length,
1679 			sign,
1680 			dsa);
1681 
1682 	if (ret != 1)
1683 		cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1684 	else
1685 		cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1686 
1687 	DSA_SIG_free(sign);
1688 
1689 	return 0;
1690 }
1691 
1692 /* process dh operation */
1693 static int
1694 process_openssl_dh_op(struct rte_crypto_op *cop,
1695 		struct openssl_asym_session *sess)
1696 {
1697 	struct rte_crypto_dh_op_param *op = &cop->asym->dh;
1698 	DH *dh_key = sess->u.dh.dh_key;
1699 	BIGNUM *priv_key = NULL;
1700 	int ret = 0;
1701 
1702 	if (sess->u.dh.key_op &
1703 			(1 << RTE_CRYPTO_ASYM_OP_SHARED_SECRET_COMPUTE)) {
1704 		/* compute shared secret using peer public key
1705 		 * and current private key
1706 		 * shared secret = peer_key ^ priv_key mod p
1707 		 */
1708 		BIGNUM *peer_key = NULL;
1709 
1710 		/* copy private key and peer key and compute shared secret */
1711 		peer_key = BN_bin2bn(op->pub_key.data,
1712 				op->pub_key.length,
1713 				peer_key);
1714 		if (peer_key == NULL) {
1715 			cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1716 			return -1;
1717 		}
1718 		priv_key = BN_bin2bn(op->priv_key.data,
1719 				op->priv_key.length,
1720 				priv_key);
1721 		if (priv_key == NULL) {
1722 			BN_free(peer_key);
1723 			cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1724 			return -1;
1725 		}
1726 		ret = set_dh_priv_key(dh_key, priv_key);
1727 		if (ret) {
1728 			OPENSSL_LOG(ERR, "Failed to set private key\n");
1729 			cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1730 			BN_free(peer_key);
1731 			BN_free(priv_key);
1732 			return 0;
1733 		}
1734 
1735 		ret = DH_compute_key(
1736 				op->shared_secret.data,
1737 				peer_key, dh_key);
1738 		if (ret < 0) {
1739 			cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1740 			BN_free(peer_key);
1741 			/* priv key is already loaded into dh,
1742 			 * let's not free that directly here.
1743 			 * DH_free() will auto free it later.
1744 			 */
1745 			return 0;
1746 		}
1747 		cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1748 		op->shared_secret.length = ret;
1749 		BN_free(peer_key);
1750 		return 0;
1751 	}
1752 
1753 	/*
1754 	 * other options are public and private key generations.
1755 	 *
1756 	 * if user provides private key,
1757 	 * then first set DH with user provided private key
1758 	 */
1759 	if ((sess->u.dh.key_op &
1760 			(1 << RTE_CRYPTO_ASYM_OP_PUBLIC_KEY_GENERATE)) &&
1761 			!(sess->u.dh.key_op &
1762 			(1 << RTE_CRYPTO_ASYM_OP_PRIVATE_KEY_GENERATE))) {
1763 		/* generate public key using user-provided private key
1764 		 * pub_key = g ^ priv_key mod p
1765 		 */
1766 
1767 		/* load private key into DH */
1768 		priv_key = BN_bin2bn(op->priv_key.data,
1769 				op->priv_key.length,
1770 				priv_key);
1771 		if (priv_key == NULL) {
1772 			cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1773 			return -1;
1774 		}
1775 		ret = set_dh_priv_key(dh_key, priv_key);
1776 		if (ret) {
1777 			OPENSSL_LOG(ERR, "Failed to set private key\n");
1778 			cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1779 			BN_free(priv_key);
1780 			return 0;
1781 		}
1782 	}
1783 
1784 	/* generate public and private key pair.
1785 	 *
1786 	 * if private key already set, generates only public key.
1787 	 *
1788 	 * if private key is not already set, then set it to random value
1789 	 * and update internal private key.
1790 	 */
1791 	if (!DH_generate_key(dh_key)) {
1792 		cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1793 		return 0;
1794 	}
1795 
1796 	if (sess->u.dh.key_op & (1 << RTE_CRYPTO_ASYM_OP_PUBLIC_KEY_GENERATE)) {
1797 		const BIGNUM *pub_key = NULL;
1798 
1799 		OPENSSL_LOG(DEBUG, "%s:%d update public key\n",
1800 				__func__, __LINE__);
1801 
1802 		/* get the generated keys */
1803 		get_dh_pub_key(dh_key, &pub_key);
1804 
1805 		/* output public key */
1806 		op->pub_key.length = BN_bn2bin(pub_key,
1807 				op->pub_key.data);
1808 	}
1809 
1810 	if (sess->u.dh.key_op &
1811 			(1 << RTE_CRYPTO_ASYM_OP_PRIVATE_KEY_GENERATE)) {
1812 		const BIGNUM *priv_key = NULL;
1813 
1814 		OPENSSL_LOG(DEBUG, "%s:%d updated priv key\n",
1815 				__func__, __LINE__);
1816 
1817 		/* get the generated keys */
1818 		get_dh_priv_key(dh_key, &priv_key);
1819 
1820 		/* provide generated private key back to user */
1821 		op->priv_key.length = BN_bn2bin(priv_key,
1822 				op->priv_key.data);
1823 	}
1824 
1825 	cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1826 
1827 	return 0;
1828 }
1829 
1830 /* process modinv operation */
1831 static int
1832 process_openssl_modinv_op(struct rte_crypto_op *cop,
1833 		struct openssl_asym_session *sess)
1834 {
1835 	struct rte_crypto_asym_op *op = cop->asym;
1836 	BIGNUM *base = BN_CTX_get(sess->u.m.ctx);
1837 	BIGNUM *res = BN_CTX_get(sess->u.m.ctx);
1838 
1839 	if (unlikely(base == NULL || res == NULL)) {
1840 		BN_free(base);
1841 		BN_free(res);
1842 		cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1843 		return -1;
1844 	}
1845 
1846 	base = BN_bin2bn((const unsigned char *)op->modinv.base.data,
1847 			op->modinv.base.length, base);
1848 
1849 	if (BN_mod_inverse(res, base, sess->u.m.modulus, sess->u.m.ctx)) {
1850 		cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1851 		op->modinv.result.length = BN_bn2bin(res, op->modinv.result.data);
1852 	} else {
1853 		cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1854 	}
1855 
1856 	BN_clear(res);
1857 	BN_clear(base);
1858 
1859 	return 0;
1860 }
1861 
1862 /* process modexp operation */
1863 static int
1864 process_openssl_modexp_op(struct rte_crypto_op *cop,
1865 		struct openssl_asym_session *sess)
1866 {
1867 	struct rte_crypto_asym_op *op = cop->asym;
1868 	BIGNUM *base = BN_CTX_get(sess->u.e.ctx);
1869 	BIGNUM *res = BN_CTX_get(sess->u.e.ctx);
1870 
1871 	if (unlikely(base == NULL || res == NULL)) {
1872 		BN_free(base);
1873 		BN_free(res);
1874 		cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1875 		return -1;
1876 	}
1877 
1878 	base = BN_bin2bn((const unsigned char *)op->modex.base.data,
1879 			op->modex.base.length, base);
1880 
1881 	if (BN_mod_exp(res, base, sess->u.e.exp,
1882 				sess->u.e.mod, sess->u.e.ctx)) {
1883 		op->modex.result.length = BN_bn2bin(res, op->modex.result.data);
1884 		cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1885 	} else {
1886 		cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1887 	}
1888 
1889 	BN_clear(res);
1890 	BN_clear(base);
1891 
1892 	return 0;
1893 }
1894 
1895 /* process rsa operations */
1896 static int
1897 process_openssl_rsa_op(struct rte_crypto_op *cop,
1898 		struct openssl_asym_session *sess)
1899 {
1900 	int ret = 0;
1901 	struct rte_crypto_asym_op *op = cop->asym;
1902 	RSA *rsa = sess->u.r.rsa;
1903 	uint32_t pad = (op->rsa.pad);
1904 	uint8_t *tmp;
1905 
1906 	cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1907 
1908 	switch (pad) {
1909 	case RTE_CRYPTO_RSA_PADDING_PKCS1_5:
1910 		pad = RSA_PKCS1_PADDING;
1911 		break;
1912 	case RTE_CRYPTO_RSA_PADDING_NONE:
1913 		pad = RSA_NO_PADDING;
1914 		break;
1915 	default:
1916 		cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
1917 		OPENSSL_LOG(ERR,
1918 				"rsa pad type not supported %d\n", pad);
1919 		return 0;
1920 	}
1921 
1922 	switch (op->rsa.op_type) {
1923 	case RTE_CRYPTO_ASYM_OP_ENCRYPT:
1924 		ret = RSA_public_encrypt(op->rsa.message.length,
1925 				op->rsa.message.data,
1926 				op->rsa.cipher.data,
1927 				rsa,
1928 				pad);
1929 
1930 		if (ret > 0)
1931 			op->rsa.cipher.length = ret;
1932 		OPENSSL_LOG(DEBUG,
1933 				"length of encrypted text %d\n", ret);
1934 		break;
1935 
1936 	case RTE_CRYPTO_ASYM_OP_DECRYPT:
1937 		ret = RSA_private_decrypt(op->rsa.cipher.length,
1938 				op->rsa.cipher.data,
1939 				op->rsa.message.data,
1940 				rsa,
1941 				pad);
1942 		if (ret > 0)
1943 			op->rsa.message.length = ret;
1944 		break;
1945 
1946 	case RTE_CRYPTO_ASYM_OP_SIGN:
1947 		ret = RSA_private_encrypt(op->rsa.message.length,
1948 				op->rsa.message.data,
1949 				op->rsa.sign.data,
1950 				rsa,
1951 				pad);
1952 		if (ret > 0)
1953 			op->rsa.sign.length = ret;
1954 		break;
1955 
1956 	case RTE_CRYPTO_ASYM_OP_VERIFY:
1957 		tmp = rte_malloc(NULL, op->rsa.sign.length, 0);
1958 		if (tmp == NULL) {
1959 			OPENSSL_LOG(ERR, "Memory allocation failed");
1960 			cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1961 			break;
1962 		}
1963 		ret = RSA_public_decrypt(op->rsa.sign.length,
1964 				op->rsa.sign.data,
1965 				tmp,
1966 				rsa,
1967 				pad);
1968 
1969 		OPENSSL_LOG(DEBUG,
1970 				"Length of public_decrypt %d "
1971 				"length of message %zd\n",
1972 				ret, op->rsa.message.length);
1973 		if ((ret <= 0) || (CRYPTO_memcmp(tmp, op->rsa.message.data,
1974 				op->rsa.message.length))) {
1975 			OPENSSL_LOG(ERR, "RSA sign Verification failed");
1976 			cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1977 		}
1978 		rte_free(tmp);
1979 		break;
1980 
1981 	default:
1982 		/* allow ops with invalid args to be pushed to
1983 		 * completion queue
1984 		 */
1985 		cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
1986 		break;
1987 	}
1988 
1989 	if (ret < 0)
1990 		cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1991 
1992 	return 0;
1993 }
1994 
1995 static int
1996 process_asym_op(struct openssl_qp *qp, struct rte_crypto_op *op,
1997 		struct openssl_asym_session *sess)
1998 {
1999 	int retval = 0;
2000 
2001 	op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
2002 
2003 	switch (sess->xfrm_type) {
2004 	case RTE_CRYPTO_ASYM_XFORM_RSA:
2005 		retval = process_openssl_rsa_op(op, sess);
2006 		break;
2007 	case RTE_CRYPTO_ASYM_XFORM_MODEX:
2008 		retval = process_openssl_modexp_op(op, sess);
2009 		break;
2010 	case RTE_CRYPTO_ASYM_XFORM_MODINV:
2011 		retval = process_openssl_modinv_op(op, sess);
2012 		break;
2013 	case RTE_CRYPTO_ASYM_XFORM_DH:
2014 		retval = process_openssl_dh_op(op, sess);
2015 		break;
2016 	case RTE_CRYPTO_ASYM_XFORM_DSA:
2017 		if (op->asym->dsa.op_type == RTE_CRYPTO_ASYM_OP_SIGN)
2018 			retval = process_openssl_dsa_sign_op(op, sess);
2019 		else if (op->asym->dsa.op_type ==
2020 				RTE_CRYPTO_ASYM_OP_VERIFY)
2021 			retval =
2022 				process_openssl_dsa_verify_op(op, sess);
2023 		else
2024 			op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
2025 		break;
2026 	default:
2027 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
2028 		break;
2029 	}
2030 	if (!retval) {
2031 		/* op processed so push to completion queue as processed */
2032 		retval = rte_ring_enqueue(qp->processed_ops, (void *)op);
2033 		if (retval)
2034 			/* return error if failed to put in completion queue */
2035 			retval = -1;
2036 	}
2037 
2038 	return retval;
2039 }
2040 
2041 static void
2042 copy_plaintext(struct rte_mbuf *m_src, struct rte_mbuf *m_dst,
2043 		struct rte_crypto_op *op)
2044 {
2045 	uint8_t *p_src, *p_dst;
2046 
2047 	p_src = rte_pktmbuf_mtod(m_src, uint8_t *);
2048 	p_dst = rte_pktmbuf_mtod(m_dst, uint8_t *);
2049 
2050 	/**
2051 	 * Copy the content between cipher offset and auth offset
2052 	 * for generating correct digest.
2053 	 */
2054 	if (op->sym->cipher.data.offset > op->sym->auth.data.offset)
2055 		memcpy(p_dst + op->sym->auth.data.offset,
2056 				p_src + op->sym->auth.data.offset,
2057 				op->sym->cipher.data.offset -
2058 				op->sym->auth.data.offset);
2059 }
2060 
2061 /** Process crypto operation for mbuf */
2062 static int
2063 process_op(struct openssl_qp *qp, struct rte_crypto_op *op,
2064 		struct openssl_session *sess)
2065 {
2066 	struct rte_mbuf *msrc, *mdst;
2067 	int retval;
2068 
2069 	msrc = op->sym->m_src;
2070 	mdst = op->sym->m_dst ? op->sym->m_dst : op->sym->m_src;
2071 
2072 	op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
2073 
2074 	switch (sess->chain_order) {
2075 	case OPENSSL_CHAIN_ONLY_CIPHER:
2076 		process_openssl_cipher_op(op, sess, msrc, mdst);
2077 		break;
2078 	case OPENSSL_CHAIN_ONLY_AUTH:
2079 		process_openssl_auth_op(qp, op, sess, msrc, mdst);
2080 		break;
2081 	case OPENSSL_CHAIN_CIPHER_AUTH:
2082 		process_openssl_cipher_op(op, sess, msrc, mdst);
2083 		/* OOP */
2084 		if (msrc != mdst)
2085 			copy_plaintext(msrc, mdst, op);
2086 		process_openssl_auth_op(qp, op, sess, mdst, mdst);
2087 		break;
2088 	case OPENSSL_CHAIN_AUTH_CIPHER:
2089 		process_openssl_auth_op(qp, op, sess, msrc, mdst);
2090 		process_openssl_cipher_op(op, sess, msrc, mdst);
2091 		break;
2092 	case OPENSSL_CHAIN_COMBINED:
2093 		process_openssl_combined_op(op, sess, msrc, mdst);
2094 		break;
2095 	case OPENSSL_CHAIN_CIPHER_BPI:
2096 		process_openssl_docsis_bpi_op(op, sess, msrc, mdst);
2097 		break;
2098 	default:
2099 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
2100 		break;
2101 	}
2102 
2103 	/* Free session if a session-less crypto op */
2104 	if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) {
2105 		openssl_reset_session(sess);
2106 		memset(sess, 0, sizeof(struct openssl_session));
2107 		memset(op->sym->session, 0,
2108 			rte_cryptodev_sym_get_existing_header_session_size(
2109 				op->sym->session));
2110 		rte_mempool_put(qp->sess_mp_priv, sess);
2111 		rte_mempool_put(qp->sess_mp, op->sym->session);
2112 		op->sym->session = NULL;
2113 	}
2114 
2115 	if (op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)
2116 		op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
2117 
2118 	if (op->status != RTE_CRYPTO_OP_STATUS_ERROR)
2119 		retval = rte_ring_enqueue(qp->processed_ops, (void *)op);
2120 	else
2121 		retval = -1;
2122 
2123 	return retval;
2124 }
2125 
2126 /*
2127  *------------------------------------------------------------------------------
2128  * PMD Framework
2129  *------------------------------------------------------------------------------
2130  */
2131 
2132 /** Enqueue burst */
2133 static uint16_t
2134 openssl_pmd_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops,
2135 		uint16_t nb_ops)
2136 {
2137 	void *sess;
2138 	struct openssl_qp *qp = queue_pair;
2139 	int i, retval;
2140 
2141 	for (i = 0; i < nb_ops; i++) {
2142 		sess = get_session(qp, ops[i]);
2143 		if (unlikely(sess == NULL))
2144 			goto enqueue_err;
2145 
2146 		if (ops[i]->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC)
2147 			retval = process_op(qp, ops[i],
2148 					(struct openssl_session *) sess);
2149 		else
2150 			retval = process_asym_op(qp, ops[i],
2151 					(struct openssl_asym_session *) sess);
2152 		if (unlikely(retval < 0))
2153 			goto enqueue_err;
2154 	}
2155 
2156 	qp->stats.enqueued_count += i;
2157 	return i;
2158 
2159 enqueue_err:
2160 	qp->stats.enqueue_err_count++;
2161 	return i;
2162 }
2163 
2164 /** Dequeue burst */
2165 static uint16_t
2166 openssl_pmd_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops,
2167 		uint16_t nb_ops)
2168 {
2169 	struct openssl_qp *qp = queue_pair;
2170 
2171 	unsigned int nb_dequeued = 0;
2172 
2173 	nb_dequeued = rte_ring_dequeue_burst(qp->processed_ops,
2174 			(void **)ops, nb_ops, NULL);
2175 	qp->stats.dequeued_count += nb_dequeued;
2176 
2177 	return nb_dequeued;
2178 }
2179 
2180 /** Create OPENSSL crypto device */
2181 static int
2182 cryptodev_openssl_create(const char *name,
2183 			struct rte_vdev_device *vdev,
2184 			struct rte_cryptodev_pmd_init_params *init_params)
2185 {
2186 	struct rte_cryptodev *dev;
2187 	struct openssl_private *internals;
2188 
2189 	dev = rte_cryptodev_pmd_create(name, &vdev->device, init_params);
2190 	if (dev == NULL) {
2191 		OPENSSL_LOG(ERR, "failed to create cryptodev vdev");
2192 		goto init_error;
2193 	}
2194 
2195 	dev->driver_id = cryptodev_driver_id;
2196 	dev->dev_ops = rte_openssl_pmd_ops;
2197 
2198 	/* register rx/tx burst functions for data path */
2199 	dev->dequeue_burst = openssl_pmd_dequeue_burst;
2200 	dev->enqueue_burst = openssl_pmd_enqueue_burst;
2201 
2202 	dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
2203 			RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
2204 			RTE_CRYPTODEV_FF_CPU_AESNI |
2205 			RTE_CRYPTODEV_FF_IN_PLACE_SGL |
2206 			RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT |
2207 			RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT |
2208 			RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO |
2209 			RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_EXP |
2210 			RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_QT |
2211 			RTE_CRYPTODEV_FF_SYM_SESSIONLESS;
2212 
2213 	internals = dev->data->dev_private;
2214 
2215 	internals->max_nb_qpairs = init_params->max_nb_queue_pairs;
2216 
2217 	return 0;
2218 
2219 init_error:
2220 	OPENSSL_LOG(ERR, "driver %s: create failed",
2221 			init_params->name);
2222 
2223 	cryptodev_openssl_remove(vdev);
2224 	return -EFAULT;
2225 }
2226 
2227 /** Initialise OPENSSL crypto device */
2228 static int
2229 cryptodev_openssl_probe(struct rte_vdev_device *vdev)
2230 {
2231 	struct rte_cryptodev_pmd_init_params init_params = {
2232 		"",
2233 		sizeof(struct openssl_private),
2234 		rte_socket_id(),
2235 		RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_QUEUE_PAIRS
2236 	};
2237 	const char *name;
2238 	const char *input_args;
2239 
2240 	name = rte_vdev_device_name(vdev);
2241 	if (name == NULL)
2242 		return -EINVAL;
2243 	input_args = rte_vdev_device_args(vdev);
2244 
2245 	rte_cryptodev_pmd_parse_input_args(&init_params, input_args);
2246 
2247 	return cryptodev_openssl_create(name, vdev, &init_params);
2248 }
2249 
2250 /** Uninitialise OPENSSL crypto device */
2251 static int
2252 cryptodev_openssl_remove(struct rte_vdev_device *vdev)
2253 {
2254 	struct rte_cryptodev *cryptodev;
2255 	const char *name;
2256 
2257 	name = rte_vdev_device_name(vdev);
2258 	if (name == NULL)
2259 		return -EINVAL;
2260 
2261 	cryptodev = rte_cryptodev_pmd_get_named_dev(name);
2262 	if (cryptodev == NULL)
2263 		return -ENODEV;
2264 
2265 	return rte_cryptodev_pmd_destroy(cryptodev);
2266 }
2267 
2268 static struct rte_vdev_driver cryptodev_openssl_pmd_drv = {
2269 	.probe = cryptodev_openssl_probe,
2270 	.remove = cryptodev_openssl_remove
2271 };
2272 
2273 static struct cryptodev_driver openssl_crypto_drv;
2274 
2275 RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_OPENSSL_PMD,
2276 	cryptodev_openssl_pmd_drv);
2277 RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_OPENSSL_PMD,
2278 	"max_nb_queue_pairs=<int> "
2279 	"socket_id=<int>");
2280 RTE_PMD_REGISTER_CRYPTO_DRIVER(openssl_crypto_drv,
2281 		cryptodev_openssl_pmd_drv.driver, cryptodev_driver_id);
2282 
2283 RTE_INIT(openssl_init_log)
2284 {
2285 	openssl_logtype_driver = rte_log_register("pmd.crypto.openssl");
2286 }
2287