xref: /dpdk/drivers/crypto/openssl/rte_openssl_pmd.c (revision 21f46d5f194ee475de622caa1cad54a91d1effb1)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4 
5 #include <rte_common.h>
6 #include <rte_hexdump.h>
7 #include <rte_cryptodev.h>
8 #include <rte_cryptodev_pmd.h>
9 #include <rte_bus_vdev.h>
10 #include <rte_malloc.h>
11 #include <rte_cpuflags.h>
12 
13 #include <openssl/hmac.h>
14 #include <openssl/evp.h>
15 
16 #include "openssl_pmd_private.h"
17 #include "compat.h"
18 
19 #define DES_BLOCK_SIZE 8
20 
21 static uint8_t cryptodev_driver_id;
22 
23 #if (OPENSSL_VERSION_NUMBER < 0x10100000L)
24 static HMAC_CTX *HMAC_CTX_new(void)
25 {
26 	HMAC_CTX *ctx = OPENSSL_malloc(sizeof(*ctx));
27 
28 	if (ctx != NULL)
29 		HMAC_CTX_init(ctx);
30 	return ctx;
31 }
32 
33 static void HMAC_CTX_free(HMAC_CTX *ctx)
34 {
35 	if (ctx != NULL) {
36 		HMAC_CTX_cleanup(ctx);
37 		OPENSSL_free(ctx);
38 	}
39 }
40 #endif
41 
42 static int cryptodev_openssl_remove(struct rte_vdev_device *vdev);
43 
44 /*----------------------------------------------------------------------------*/
45 
46 /**
47  * Increment counter by 1
48  * Counter is 64 bit array, big-endian
49  */
50 static void
51 ctr_inc(uint8_t *ctr)
52 {
53 	uint64_t *ctr64 = (uint64_t *)ctr;
54 
55 	*ctr64 = __builtin_bswap64(*ctr64);
56 	(*ctr64)++;
57 	*ctr64 = __builtin_bswap64(*ctr64);
58 }
59 
60 /*
61  *------------------------------------------------------------------------------
62  * Session Prepare
63  *------------------------------------------------------------------------------
64  */
65 
66 /** Get xform chain order */
67 static enum openssl_chain_order
68 openssl_get_chain_order(const struct rte_crypto_sym_xform *xform)
69 {
70 	enum openssl_chain_order res = OPENSSL_CHAIN_NOT_SUPPORTED;
71 
72 	if (xform != NULL) {
73 		if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
74 			if (xform->next == NULL)
75 				res =  OPENSSL_CHAIN_ONLY_AUTH;
76 			else if (xform->next->type ==
77 					RTE_CRYPTO_SYM_XFORM_CIPHER)
78 				res =  OPENSSL_CHAIN_AUTH_CIPHER;
79 		}
80 		if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
81 			if (xform->next == NULL)
82 				res =  OPENSSL_CHAIN_ONLY_CIPHER;
83 			else if (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH)
84 				res =  OPENSSL_CHAIN_CIPHER_AUTH;
85 		}
86 		if (xform->type == RTE_CRYPTO_SYM_XFORM_AEAD)
87 			res = OPENSSL_CHAIN_COMBINED;
88 	}
89 
90 	return res;
91 }
92 
93 /** Get session cipher key from input cipher key */
94 static void
95 get_cipher_key(const uint8_t *input_key, int keylen, uint8_t *session_key)
96 {
97 	memcpy(session_key, input_key, keylen);
98 }
99 
100 /** Get key ede 24 bytes standard from input key */
101 static int
102 get_cipher_key_ede(const uint8_t *key, int keylen, uint8_t *key_ede)
103 {
104 	int res = 0;
105 
106 	/* Initialize keys - 24 bytes: [key1-key2-key3] */
107 	switch (keylen) {
108 	case 24:
109 		memcpy(key_ede, key, 24);
110 		break;
111 	case 16:
112 		/* K3 = K1 */
113 		memcpy(key_ede, key, 16);
114 		memcpy(key_ede + 16, key, 8);
115 		break;
116 	case 8:
117 		/* K1 = K2 = K3 (DES compatibility) */
118 		memcpy(key_ede, key, 8);
119 		memcpy(key_ede + 8, key, 8);
120 		memcpy(key_ede + 16, key, 8);
121 		break;
122 	default:
123 		OPENSSL_LOG(ERR, "Unsupported key size");
124 		res = -EINVAL;
125 	}
126 
127 	return res;
128 }
129 
130 /** Get adequate openssl function for input cipher algorithm */
131 static uint8_t
132 get_cipher_algo(enum rte_crypto_cipher_algorithm sess_algo, size_t keylen,
133 		const EVP_CIPHER **algo)
134 {
135 	int res = 0;
136 
137 	if (algo != NULL) {
138 		switch (sess_algo) {
139 		case RTE_CRYPTO_CIPHER_3DES_CBC:
140 			switch (keylen) {
141 			case 8:
142 				*algo = EVP_des_cbc();
143 				break;
144 			case 16:
145 				*algo = EVP_des_ede_cbc();
146 				break;
147 			case 24:
148 				*algo = EVP_des_ede3_cbc();
149 				break;
150 			default:
151 				res = -EINVAL;
152 			}
153 			break;
154 		case RTE_CRYPTO_CIPHER_3DES_CTR:
155 			break;
156 		case RTE_CRYPTO_CIPHER_AES_CBC:
157 			switch (keylen) {
158 			case 16:
159 				*algo = EVP_aes_128_cbc();
160 				break;
161 			case 24:
162 				*algo = EVP_aes_192_cbc();
163 				break;
164 			case 32:
165 				*algo = EVP_aes_256_cbc();
166 				break;
167 			default:
168 				res = -EINVAL;
169 			}
170 			break;
171 		case RTE_CRYPTO_CIPHER_AES_CTR:
172 			switch (keylen) {
173 			case 16:
174 				*algo = EVP_aes_128_ctr();
175 				break;
176 			case 24:
177 				*algo = EVP_aes_192_ctr();
178 				break;
179 			case 32:
180 				*algo = EVP_aes_256_ctr();
181 				break;
182 			default:
183 				res = -EINVAL;
184 			}
185 			break;
186 		default:
187 			res = -EINVAL;
188 			break;
189 		}
190 	} else {
191 		res = -EINVAL;
192 	}
193 
194 	return res;
195 }
196 
197 /** Get adequate openssl function for input auth algorithm */
198 static uint8_t
199 get_auth_algo(enum rte_crypto_auth_algorithm sessalgo,
200 		const EVP_MD **algo)
201 {
202 	int res = 0;
203 
204 	if (algo != NULL) {
205 		switch (sessalgo) {
206 		case RTE_CRYPTO_AUTH_MD5:
207 		case RTE_CRYPTO_AUTH_MD5_HMAC:
208 			*algo = EVP_md5();
209 			break;
210 		case RTE_CRYPTO_AUTH_SHA1:
211 		case RTE_CRYPTO_AUTH_SHA1_HMAC:
212 			*algo = EVP_sha1();
213 			break;
214 		case RTE_CRYPTO_AUTH_SHA224:
215 		case RTE_CRYPTO_AUTH_SHA224_HMAC:
216 			*algo = EVP_sha224();
217 			break;
218 		case RTE_CRYPTO_AUTH_SHA256:
219 		case RTE_CRYPTO_AUTH_SHA256_HMAC:
220 			*algo = EVP_sha256();
221 			break;
222 		case RTE_CRYPTO_AUTH_SHA384:
223 		case RTE_CRYPTO_AUTH_SHA384_HMAC:
224 			*algo = EVP_sha384();
225 			break;
226 		case RTE_CRYPTO_AUTH_SHA512:
227 		case RTE_CRYPTO_AUTH_SHA512_HMAC:
228 			*algo = EVP_sha512();
229 			break;
230 		default:
231 			res = -EINVAL;
232 			break;
233 		}
234 	} else {
235 		res = -EINVAL;
236 	}
237 
238 	return res;
239 }
240 
241 /** Get adequate openssl function for input cipher algorithm */
242 static uint8_t
243 get_aead_algo(enum rte_crypto_aead_algorithm sess_algo, size_t keylen,
244 		const EVP_CIPHER **algo)
245 {
246 	int res = 0;
247 
248 	if (algo != NULL) {
249 		switch (sess_algo) {
250 		case RTE_CRYPTO_AEAD_AES_GCM:
251 			switch (keylen) {
252 			case 16:
253 				*algo = EVP_aes_128_gcm();
254 				break;
255 			case 24:
256 				*algo = EVP_aes_192_gcm();
257 				break;
258 			case 32:
259 				*algo = EVP_aes_256_gcm();
260 				break;
261 			default:
262 				res = -EINVAL;
263 			}
264 			break;
265 		case RTE_CRYPTO_AEAD_AES_CCM:
266 			switch (keylen) {
267 			case 16:
268 				*algo = EVP_aes_128_ccm();
269 				break;
270 			case 24:
271 				*algo = EVP_aes_192_ccm();
272 				break;
273 			case 32:
274 				*algo = EVP_aes_256_ccm();
275 				break;
276 			default:
277 				res = -EINVAL;
278 			}
279 			break;
280 		default:
281 			res = -EINVAL;
282 			break;
283 		}
284 	} else {
285 		res = -EINVAL;
286 	}
287 
288 	return res;
289 }
290 
291 /* Set session AEAD encryption parameters */
292 static int
293 openssl_set_sess_aead_enc_param(struct openssl_session *sess,
294 		enum rte_crypto_aead_algorithm algo,
295 		uint8_t tag_len, const uint8_t *key)
296 {
297 	int iv_type = 0;
298 	unsigned int do_ccm;
299 
300 	sess->cipher.direction = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
301 	sess->auth.operation = RTE_CRYPTO_AUTH_OP_GENERATE;
302 
303 	/* Select AEAD algo */
304 	switch (algo) {
305 	case RTE_CRYPTO_AEAD_AES_GCM:
306 		iv_type = EVP_CTRL_GCM_SET_IVLEN;
307 		if (tag_len != 16)
308 			return -EINVAL;
309 		do_ccm = 0;
310 		break;
311 	case RTE_CRYPTO_AEAD_AES_CCM:
312 		iv_type = EVP_CTRL_CCM_SET_IVLEN;
313 		/* Digest size can be 4, 6, 8, 10, 12, 14 or 16 bytes */
314 		if (tag_len < 4 || tag_len > 16 || (tag_len & 1) == 1)
315 			return -EINVAL;
316 		do_ccm = 1;
317 		break;
318 	default:
319 		return -ENOTSUP;
320 	}
321 
322 	sess->cipher.mode = OPENSSL_CIPHER_LIB;
323 	sess->cipher.ctx = EVP_CIPHER_CTX_new();
324 
325 	if (get_aead_algo(algo, sess->cipher.key.length,
326 			&sess->cipher.evp_algo) != 0)
327 		return -EINVAL;
328 
329 	get_cipher_key(key, sess->cipher.key.length, sess->cipher.key.data);
330 
331 	sess->chain_order = OPENSSL_CHAIN_COMBINED;
332 
333 	if (EVP_EncryptInit_ex(sess->cipher.ctx, sess->cipher.evp_algo,
334 			NULL, NULL, NULL) <= 0)
335 		return -EINVAL;
336 
337 	if (EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, iv_type, sess->iv.length,
338 			NULL) <= 0)
339 		return -EINVAL;
340 
341 	if (do_ccm)
342 		EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, EVP_CTRL_CCM_SET_TAG,
343 				tag_len, NULL);
344 
345 	if (EVP_EncryptInit_ex(sess->cipher.ctx, NULL, NULL, key, NULL) <= 0)
346 		return -EINVAL;
347 
348 	return 0;
349 }
350 
351 /* Set session AEAD decryption parameters */
352 static int
353 openssl_set_sess_aead_dec_param(struct openssl_session *sess,
354 		enum rte_crypto_aead_algorithm algo,
355 		uint8_t tag_len, const uint8_t *key)
356 {
357 	int iv_type = 0;
358 	unsigned int do_ccm = 0;
359 
360 	sess->cipher.direction = RTE_CRYPTO_CIPHER_OP_DECRYPT;
361 	sess->auth.operation = RTE_CRYPTO_AUTH_OP_VERIFY;
362 
363 	/* Select AEAD algo */
364 	switch (algo) {
365 	case RTE_CRYPTO_AEAD_AES_GCM:
366 		iv_type = EVP_CTRL_GCM_SET_IVLEN;
367 		if (tag_len != 16)
368 			return -EINVAL;
369 		break;
370 	case RTE_CRYPTO_AEAD_AES_CCM:
371 		iv_type = EVP_CTRL_CCM_SET_IVLEN;
372 		/* Digest size can be 4, 6, 8, 10, 12, 14 or 16 bytes */
373 		if (tag_len < 4 || tag_len > 16 || (tag_len & 1) == 1)
374 			return -EINVAL;
375 		do_ccm = 1;
376 		break;
377 	default:
378 		return -ENOTSUP;
379 	}
380 
381 	sess->cipher.mode = OPENSSL_CIPHER_LIB;
382 	sess->cipher.ctx = EVP_CIPHER_CTX_new();
383 
384 	if (get_aead_algo(algo, sess->cipher.key.length,
385 			&sess->cipher.evp_algo) != 0)
386 		return -EINVAL;
387 
388 	get_cipher_key(key, sess->cipher.key.length, sess->cipher.key.data);
389 
390 	sess->chain_order = OPENSSL_CHAIN_COMBINED;
391 
392 	if (EVP_DecryptInit_ex(sess->cipher.ctx, sess->cipher.evp_algo,
393 			NULL, NULL, NULL) <= 0)
394 		return -EINVAL;
395 
396 	if (EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, iv_type,
397 			sess->iv.length, NULL) <= 0)
398 		return -EINVAL;
399 
400 	if (do_ccm)
401 		EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, EVP_CTRL_CCM_SET_TAG,
402 				tag_len, NULL);
403 
404 	if (EVP_DecryptInit_ex(sess->cipher.ctx, NULL, NULL, key, NULL) <= 0)
405 		return -EINVAL;
406 
407 	return 0;
408 }
409 
410 /** Set session cipher parameters */
411 static int
412 openssl_set_session_cipher_parameters(struct openssl_session *sess,
413 		const struct rte_crypto_sym_xform *xform)
414 {
415 	/* Select cipher direction */
416 	sess->cipher.direction = xform->cipher.op;
417 	/* Select cipher key */
418 	sess->cipher.key.length = xform->cipher.key.length;
419 
420 	/* Set IV parameters */
421 	sess->iv.offset = xform->cipher.iv.offset;
422 	sess->iv.length = xform->cipher.iv.length;
423 
424 	/* Select cipher algo */
425 	switch (xform->cipher.algo) {
426 	case RTE_CRYPTO_CIPHER_3DES_CBC:
427 	case RTE_CRYPTO_CIPHER_AES_CBC:
428 	case RTE_CRYPTO_CIPHER_AES_CTR:
429 		sess->cipher.mode = OPENSSL_CIPHER_LIB;
430 		sess->cipher.algo = xform->cipher.algo;
431 		sess->cipher.ctx = EVP_CIPHER_CTX_new();
432 
433 		if (get_cipher_algo(sess->cipher.algo, sess->cipher.key.length,
434 				&sess->cipher.evp_algo) != 0)
435 			return -EINVAL;
436 
437 		get_cipher_key(xform->cipher.key.data, sess->cipher.key.length,
438 			sess->cipher.key.data);
439 		if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
440 			if (EVP_EncryptInit_ex(sess->cipher.ctx,
441 					sess->cipher.evp_algo,
442 					NULL, xform->cipher.key.data,
443 					NULL) != 1) {
444 				return -EINVAL;
445 			}
446 		} else if (sess->cipher.direction ==
447 				RTE_CRYPTO_CIPHER_OP_DECRYPT) {
448 			if (EVP_DecryptInit_ex(sess->cipher.ctx,
449 					sess->cipher.evp_algo,
450 					NULL, xform->cipher.key.data,
451 					NULL) != 1) {
452 				return -EINVAL;
453 			}
454 		}
455 
456 		break;
457 
458 	case RTE_CRYPTO_CIPHER_3DES_CTR:
459 		sess->cipher.mode = OPENSSL_CIPHER_DES3CTR;
460 		sess->cipher.ctx = EVP_CIPHER_CTX_new();
461 
462 		if (get_cipher_key_ede(xform->cipher.key.data,
463 				sess->cipher.key.length,
464 				sess->cipher.key.data) != 0)
465 			return -EINVAL;
466 		break;
467 
468 	case RTE_CRYPTO_CIPHER_DES_CBC:
469 		sess->cipher.algo = xform->cipher.algo;
470 		sess->cipher.ctx = EVP_CIPHER_CTX_new();
471 		sess->cipher.evp_algo = EVP_des_cbc();
472 
473 		get_cipher_key(xform->cipher.key.data, sess->cipher.key.length,
474 			sess->cipher.key.data);
475 		if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
476 			if (EVP_EncryptInit_ex(sess->cipher.ctx,
477 					sess->cipher.evp_algo,
478 					NULL, xform->cipher.key.data,
479 					NULL) != 1) {
480 				return -EINVAL;
481 			}
482 		} else if (sess->cipher.direction ==
483 				RTE_CRYPTO_CIPHER_OP_DECRYPT) {
484 			if (EVP_DecryptInit_ex(sess->cipher.ctx,
485 					sess->cipher.evp_algo,
486 					NULL, xform->cipher.key.data,
487 					NULL) != 1) {
488 				return -EINVAL;
489 			}
490 		}
491 
492 		break;
493 
494 	case RTE_CRYPTO_CIPHER_DES_DOCSISBPI:
495 		sess->cipher.algo = xform->cipher.algo;
496 		sess->chain_order = OPENSSL_CHAIN_CIPHER_BPI;
497 		sess->cipher.ctx = EVP_CIPHER_CTX_new();
498 		sess->cipher.evp_algo = EVP_des_cbc();
499 
500 		sess->cipher.bpi_ctx = EVP_CIPHER_CTX_new();
501 		/* IV will be ECB encrypted whether direction is encrypt or decrypt */
502 		if (EVP_EncryptInit_ex(sess->cipher.bpi_ctx, EVP_des_ecb(),
503 				NULL, xform->cipher.key.data, 0) != 1)
504 			return -EINVAL;
505 
506 		get_cipher_key(xform->cipher.key.data, sess->cipher.key.length,
507 			sess->cipher.key.data);
508 		if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
509 			if (EVP_EncryptInit_ex(sess->cipher.ctx,
510 					sess->cipher.evp_algo,
511 					NULL, xform->cipher.key.data,
512 					NULL) != 1) {
513 				return -EINVAL;
514 			}
515 		} else if (sess->cipher.direction ==
516 				RTE_CRYPTO_CIPHER_OP_DECRYPT) {
517 			if (EVP_DecryptInit_ex(sess->cipher.ctx,
518 					sess->cipher.evp_algo,
519 					NULL, xform->cipher.key.data,
520 					NULL) != 1) {
521 				return -EINVAL;
522 			}
523 		}
524 
525 		break;
526 	default:
527 		sess->cipher.algo = RTE_CRYPTO_CIPHER_NULL;
528 		return -ENOTSUP;
529 	}
530 
531 	return 0;
532 }
533 
534 /* Set session auth parameters */
535 static int
536 openssl_set_session_auth_parameters(struct openssl_session *sess,
537 		const struct rte_crypto_sym_xform *xform)
538 {
539 	/* Select auth generate/verify */
540 	sess->auth.operation = xform->auth.op;
541 	sess->auth.algo = xform->auth.algo;
542 
543 	sess->auth.digest_length = xform->auth.digest_length;
544 
545 	/* Select auth algo */
546 	switch (xform->auth.algo) {
547 	case RTE_CRYPTO_AUTH_AES_GMAC:
548 		/*
549 		 * OpenSSL requires GMAC to be a GCM operation
550 		 * with no cipher data length
551 		 */
552 		sess->cipher.key.length = xform->auth.key.length;
553 
554 		/* Set IV parameters */
555 		sess->iv.offset = xform->auth.iv.offset;
556 		sess->iv.length = xform->auth.iv.length;
557 
558 		if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_GENERATE)
559 			return openssl_set_sess_aead_enc_param(sess,
560 						RTE_CRYPTO_AEAD_AES_GCM,
561 						xform->auth.digest_length,
562 						xform->auth.key.data);
563 		else
564 			return openssl_set_sess_aead_dec_param(sess,
565 						RTE_CRYPTO_AEAD_AES_GCM,
566 						xform->auth.digest_length,
567 						xform->auth.key.data);
568 		break;
569 
570 	case RTE_CRYPTO_AUTH_MD5:
571 	case RTE_CRYPTO_AUTH_SHA1:
572 	case RTE_CRYPTO_AUTH_SHA224:
573 	case RTE_CRYPTO_AUTH_SHA256:
574 	case RTE_CRYPTO_AUTH_SHA384:
575 	case RTE_CRYPTO_AUTH_SHA512:
576 		sess->auth.mode = OPENSSL_AUTH_AS_AUTH;
577 		if (get_auth_algo(xform->auth.algo,
578 				&sess->auth.auth.evp_algo) != 0)
579 			return -EINVAL;
580 		sess->auth.auth.ctx = EVP_MD_CTX_create();
581 		break;
582 
583 	case RTE_CRYPTO_AUTH_MD5_HMAC:
584 	case RTE_CRYPTO_AUTH_SHA1_HMAC:
585 	case RTE_CRYPTO_AUTH_SHA224_HMAC:
586 	case RTE_CRYPTO_AUTH_SHA256_HMAC:
587 	case RTE_CRYPTO_AUTH_SHA384_HMAC:
588 	case RTE_CRYPTO_AUTH_SHA512_HMAC:
589 		sess->auth.mode = OPENSSL_AUTH_AS_HMAC;
590 		sess->auth.hmac.ctx = HMAC_CTX_new();
591 		if (get_auth_algo(xform->auth.algo,
592 				&sess->auth.hmac.evp_algo) != 0)
593 			return -EINVAL;
594 
595 		if (HMAC_Init_ex(sess->auth.hmac.ctx,
596 				xform->auth.key.data,
597 				xform->auth.key.length,
598 				sess->auth.hmac.evp_algo, NULL) != 1)
599 			return -EINVAL;
600 		break;
601 
602 	default:
603 		return -ENOTSUP;
604 	}
605 
606 	return 0;
607 }
608 
609 /* Set session AEAD parameters */
610 static int
611 openssl_set_session_aead_parameters(struct openssl_session *sess,
612 		const struct rte_crypto_sym_xform *xform)
613 {
614 	/* Select cipher key */
615 	sess->cipher.key.length = xform->aead.key.length;
616 
617 	/* Set IV parameters */
618 	if (xform->aead.algo == RTE_CRYPTO_AEAD_AES_CCM)
619 		/*
620 		 * For AES-CCM, the actual IV is placed
621 		 * one byte after the start of the IV field,
622 		 * according to the API.
623 		 */
624 		sess->iv.offset = xform->aead.iv.offset + 1;
625 	else
626 		sess->iv.offset = xform->aead.iv.offset;
627 
628 	sess->iv.length = xform->aead.iv.length;
629 
630 	sess->auth.aad_length = xform->aead.aad_length;
631 	sess->auth.digest_length = xform->aead.digest_length;
632 
633 	sess->aead_algo = xform->aead.algo;
634 	/* Select cipher direction */
635 	if (xform->aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT)
636 		return openssl_set_sess_aead_enc_param(sess, xform->aead.algo,
637 				xform->aead.digest_length, xform->aead.key.data);
638 	else
639 		return openssl_set_sess_aead_dec_param(sess, xform->aead.algo,
640 				xform->aead.digest_length, xform->aead.key.data);
641 }
642 
643 /** Parse crypto xform chain and set private session parameters */
644 int
645 openssl_set_session_parameters(struct openssl_session *sess,
646 		const struct rte_crypto_sym_xform *xform)
647 {
648 	const struct rte_crypto_sym_xform *cipher_xform = NULL;
649 	const struct rte_crypto_sym_xform *auth_xform = NULL;
650 	const struct rte_crypto_sym_xform *aead_xform = NULL;
651 	int ret;
652 
653 	sess->chain_order = openssl_get_chain_order(xform);
654 	switch (sess->chain_order) {
655 	case OPENSSL_CHAIN_ONLY_CIPHER:
656 		cipher_xform = xform;
657 		break;
658 	case OPENSSL_CHAIN_ONLY_AUTH:
659 		auth_xform = xform;
660 		break;
661 	case OPENSSL_CHAIN_CIPHER_AUTH:
662 		cipher_xform = xform;
663 		auth_xform = xform->next;
664 		break;
665 	case OPENSSL_CHAIN_AUTH_CIPHER:
666 		auth_xform = xform;
667 		cipher_xform = xform->next;
668 		break;
669 	case OPENSSL_CHAIN_COMBINED:
670 		aead_xform = xform;
671 		break;
672 	default:
673 		return -EINVAL;
674 	}
675 
676 	/* Default IV length = 0 */
677 	sess->iv.length = 0;
678 
679 	/* cipher_xform must be check before auth_xform */
680 	if (cipher_xform) {
681 		ret = openssl_set_session_cipher_parameters(
682 				sess, cipher_xform);
683 		if (ret != 0) {
684 			OPENSSL_LOG(ERR,
685 				"Invalid/unsupported cipher parameters");
686 			return ret;
687 		}
688 	}
689 
690 	if (auth_xform) {
691 		ret = openssl_set_session_auth_parameters(sess, auth_xform);
692 		if (ret != 0) {
693 			OPENSSL_LOG(ERR,
694 				"Invalid/unsupported auth parameters");
695 			return ret;
696 		}
697 	}
698 
699 	if (aead_xform) {
700 		ret = openssl_set_session_aead_parameters(sess, aead_xform);
701 		if (ret != 0) {
702 			OPENSSL_LOG(ERR,
703 				"Invalid/unsupported AEAD parameters");
704 			return ret;
705 		}
706 	}
707 
708 	return 0;
709 }
710 
711 /** Reset private session parameters */
712 void
713 openssl_reset_session(struct openssl_session *sess)
714 {
715 	EVP_CIPHER_CTX_free(sess->cipher.ctx);
716 
717 	if (sess->chain_order == OPENSSL_CHAIN_CIPHER_BPI)
718 		EVP_CIPHER_CTX_free(sess->cipher.bpi_ctx);
719 
720 	switch (sess->auth.mode) {
721 	case OPENSSL_AUTH_AS_AUTH:
722 		EVP_MD_CTX_destroy(sess->auth.auth.ctx);
723 		break;
724 	case OPENSSL_AUTH_AS_HMAC:
725 		EVP_PKEY_free(sess->auth.hmac.pkey);
726 		HMAC_CTX_free(sess->auth.hmac.ctx);
727 		break;
728 	default:
729 		break;
730 	}
731 }
732 
733 /** Provide session for operation */
734 static void *
735 get_session(struct openssl_qp *qp, struct rte_crypto_op *op)
736 {
737 	struct openssl_session *sess = NULL;
738 	struct openssl_asym_session *asym_sess = NULL;
739 
740 	if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
741 		if (op->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC) {
742 			/* get existing session */
743 			if (likely(op->sym->session != NULL))
744 				sess = (struct openssl_session *)
745 						get_sym_session_private_data(
746 						op->sym->session,
747 						cryptodev_driver_id);
748 		} else {
749 			if (likely(op->asym->session != NULL))
750 				asym_sess = (struct openssl_asym_session *)
751 						get_asym_session_private_data(
752 						op->asym->session,
753 						cryptodev_driver_id);
754 			if (asym_sess == NULL)
755 				op->status =
756 					RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
757 			return asym_sess;
758 		}
759 	} else {
760 		/* sessionless asymmetric not supported */
761 		if (op->type == RTE_CRYPTO_OP_TYPE_ASYMMETRIC)
762 			return NULL;
763 
764 		/* provide internal session */
765 		void *_sess = NULL;
766 		void *_sess_private_data = NULL;
767 
768 		if (rte_mempool_get(qp->sess_mp, (void **)&_sess))
769 			return NULL;
770 
771 		if (rte_mempool_get(qp->sess_mp_priv,
772 				(void **)&_sess_private_data))
773 			return NULL;
774 
775 		sess = (struct openssl_session *)_sess_private_data;
776 
777 		if (unlikely(openssl_set_session_parameters(sess,
778 				op->sym->xform) != 0)) {
779 			rte_mempool_put(qp->sess_mp, _sess);
780 			rte_mempool_put(qp->sess_mp_priv, _sess_private_data);
781 			sess = NULL;
782 		}
783 		op->sym->session = (struct rte_cryptodev_sym_session *)_sess;
784 		set_sym_session_private_data(op->sym->session,
785 				cryptodev_driver_id, _sess_private_data);
786 	}
787 
788 	if (sess == NULL)
789 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
790 
791 	return sess;
792 }
793 
794 /*
795  *------------------------------------------------------------------------------
796  * Process Operations
797  *------------------------------------------------------------------------------
798  */
799 static inline int
800 process_openssl_encryption_update(struct rte_mbuf *mbuf_src, int offset,
801 		uint8_t **dst, int srclen, EVP_CIPHER_CTX *ctx)
802 {
803 	struct rte_mbuf *m;
804 	int dstlen;
805 	int l, n = srclen;
806 	uint8_t *src;
807 
808 	for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m);
809 			m = m->next)
810 		offset -= rte_pktmbuf_data_len(m);
811 
812 	if (m == 0)
813 		return -1;
814 
815 	src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset);
816 
817 	l = rte_pktmbuf_data_len(m) - offset;
818 	if (srclen <= l) {
819 		if (EVP_EncryptUpdate(ctx, *dst, &dstlen, src, srclen) <= 0)
820 			return -1;
821 		*dst += l;
822 		return 0;
823 	}
824 
825 	if (EVP_EncryptUpdate(ctx, *dst, &dstlen, src, l) <= 0)
826 		return -1;
827 
828 	*dst += dstlen;
829 	n -= l;
830 
831 	for (m = m->next; (m != NULL) && (n > 0); m = m->next) {
832 		src = rte_pktmbuf_mtod(m, uint8_t *);
833 		l = rte_pktmbuf_data_len(m) < n ? rte_pktmbuf_data_len(m) : n;
834 		if (EVP_EncryptUpdate(ctx, *dst, &dstlen, src, l) <= 0)
835 			return -1;
836 		*dst += dstlen;
837 		n -= l;
838 	}
839 
840 	return 0;
841 }
842 
843 static inline int
844 process_openssl_decryption_update(struct rte_mbuf *mbuf_src, int offset,
845 		uint8_t **dst, int srclen, EVP_CIPHER_CTX *ctx)
846 {
847 	struct rte_mbuf *m;
848 	int dstlen;
849 	int l, n = srclen;
850 	uint8_t *src;
851 
852 	for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m);
853 			m = m->next)
854 		offset -= rte_pktmbuf_data_len(m);
855 
856 	if (m == 0)
857 		return -1;
858 
859 	src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset);
860 
861 	l = rte_pktmbuf_data_len(m) - offset;
862 	if (srclen <= l) {
863 		if (EVP_DecryptUpdate(ctx, *dst, &dstlen, src, srclen) <= 0)
864 			return -1;
865 		*dst += l;
866 		return 0;
867 	}
868 
869 	if (EVP_DecryptUpdate(ctx, *dst, &dstlen, src, l) <= 0)
870 		return -1;
871 
872 	*dst += dstlen;
873 	n -= l;
874 
875 	for (m = m->next; (m != NULL) && (n > 0); m = m->next) {
876 		src = rte_pktmbuf_mtod(m, uint8_t *);
877 		l = rte_pktmbuf_data_len(m) < n ? rte_pktmbuf_data_len(m) : n;
878 		if (EVP_DecryptUpdate(ctx, *dst, &dstlen, src, l) <= 0)
879 			return -1;
880 		*dst += dstlen;
881 		n -= l;
882 	}
883 
884 	return 0;
885 }
886 
887 /** Process standard openssl cipher encryption */
888 static int
889 process_openssl_cipher_encrypt(struct rte_mbuf *mbuf_src, uint8_t *dst,
890 		int offset, uint8_t *iv, int srclen, EVP_CIPHER_CTX *ctx)
891 {
892 	int totlen;
893 
894 	if (EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
895 		goto process_cipher_encrypt_err;
896 
897 	EVP_CIPHER_CTX_set_padding(ctx, 0);
898 
899 	if (process_openssl_encryption_update(mbuf_src, offset, &dst,
900 			srclen, ctx))
901 		goto process_cipher_encrypt_err;
902 
903 	if (EVP_EncryptFinal_ex(ctx, dst, &totlen) <= 0)
904 		goto process_cipher_encrypt_err;
905 
906 	return 0;
907 
908 process_cipher_encrypt_err:
909 	OPENSSL_LOG(ERR, "Process openssl cipher encrypt failed");
910 	return -EINVAL;
911 }
912 
913 /** Process standard openssl cipher encryption */
914 static int
915 process_openssl_cipher_bpi_encrypt(uint8_t *src, uint8_t *dst,
916 		uint8_t *iv, int srclen,
917 		EVP_CIPHER_CTX *ctx)
918 {
919 	uint8_t i;
920 	uint8_t encrypted_iv[DES_BLOCK_SIZE];
921 	int encrypted_ivlen;
922 
923 	if (EVP_EncryptUpdate(ctx, encrypted_iv, &encrypted_ivlen,
924 			iv, DES_BLOCK_SIZE) <= 0)
925 		goto process_cipher_encrypt_err;
926 
927 	for (i = 0; i < srclen; i++)
928 		*(dst + i) = *(src + i) ^ (encrypted_iv[i]);
929 
930 	return 0;
931 
932 process_cipher_encrypt_err:
933 	OPENSSL_LOG(ERR, "Process openssl cipher bpi encrypt failed");
934 	return -EINVAL;
935 }
936 /** Process standard openssl cipher decryption */
937 static int
938 process_openssl_cipher_decrypt(struct rte_mbuf *mbuf_src, uint8_t *dst,
939 		int offset, uint8_t *iv, int srclen, EVP_CIPHER_CTX *ctx)
940 {
941 	int totlen;
942 
943 	if (EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
944 		goto process_cipher_decrypt_err;
945 
946 	EVP_CIPHER_CTX_set_padding(ctx, 0);
947 
948 	if (process_openssl_decryption_update(mbuf_src, offset, &dst,
949 			srclen, ctx))
950 		goto process_cipher_decrypt_err;
951 
952 	if (EVP_DecryptFinal_ex(ctx, dst, &totlen) <= 0)
953 		goto process_cipher_decrypt_err;
954 	return 0;
955 
956 process_cipher_decrypt_err:
957 	OPENSSL_LOG(ERR, "Process openssl cipher decrypt failed");
958 	return -EINVAL;
959 }
960 
961 /** Process cipher des 3 ctr encryption, decryption algorithm */
962 static int
963 process_openssl_cipher_des3ctr(struct rte_mbuf *mbuf_src, uint8_t *dst,
964 		int offset, uint8_t *iv, uint8_t *key, int srclen,
965 		EVP_CIPHER_CTX *ctx)
966 {
967 	uint8_t ebuf[8], ctr[8];
968 	int unused, n;
969 	struct rte_mbuf *m;
970 	uint8_t *src;
971 	int l;
972 
973 	for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m);
974 			m = m->next)
975 		offset -= rte_pktmbuf_data_len(m);
976 
977 	if (m == 0)
978 		goto process_cipher_des3ctr_err;
979 
980 	src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset);
981 	l = rte_pktmbuf_data_len(m) - offset;
982 
983 	/* We use 3DES encryption also for decryption.
984 	 * IV is not important for 3DES ecb
985 	 */
986 	if (EVP_EncryptInit_ex(ctx, EVP_des_ede3_ecb(), NULL, key, NULL) <= 0)
987 		goto process_cipher_des3ctr_err;
988 
989 	memcpy(ctr, iv, 8);
990 
991 	for (n = 0; n < srclen; n++) {
992 		if (n % 8 == 0) {
993 			if (EVP_EncryptUpdate(ctx,
994 					(unsigned char *)&ebuf, &unused,
995 					(const unsigned char *)&ctr, 8) <= 0)
996 				goto process_cipher_des3ctr_err;
997 			ctr_inc(ctr);
998 		}
999 		dst[n] = *(src++) ^ ebuf[n % 8];
1000 
1001 		l--;
1002 		if (!l) {
1003 			m = m->next;
1004 			if (m) {
1005 				src = rte_pktmbuf_mtod(m, uint8_t *);
1006 				l = rte_pktmbuf_data_len(m);
1007 			}
1008 		}
1009 	}
1010 
1011 	return 0;
1012 
1013 process_cipher_des3ctr_err:
1014 	OPENSSL_LOG(ERR, "Process openssl cipher des 3 ede ctr failed");
1015 	return -EINVAL;
1016 }
1017 
1018 /** Process AES-GCM encrypt algorithm */
1019 static int
1020 process_openssl_auth_encryption_gcm(struct rte_mbuf *mbuf_src, int offset,
1021 		int srclen, uint8_t *aad, int aadlen, uint8_t *iv,
1022 		uint8_t *dst, uint8_t *tag, EVP_CIPHER_CTX *ctx)
1023 {
1024 	int len = 0, unused = 0;
1025 	uint8_t empty[] = {};
1026 
1027 	if (EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
1028 		goto process_auth_encryption_gcm_err;
1029 
1030 	if (aadlen > 0)
1031 		if (EVP_EncryptUpdate(ctx, NULL, &len, aad, aadlen) <= 0)
1032 			goto process_auth_encryption_gcm_err;
1033 
1034 	if (srclen > 0)
1035 		if (process_openssl_encryption_update(mbuf_src, offset, &dst,
1036 				srclen, ctx))
1037 			goto process_auth_encryption_gcm_err;
1038 
1039 	/* Workaround open ssl bug in version less then 1.0.1f */
1040 	if (EVP_EncryptUpdate(ctx, empty, &unused, empty, 0) <= 0)
1041 		goto process_auth_encryption_gcm_err;
1042 
1043 	if (EVP_EncryptFinal_ex(ctx, dst, &len) <= 0)
1044 		goto process_auth_encryption_gcm_err;
1045 
1046 	if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_GET_TAG, 16, tag) <= 0)
1047 		goto process_auth_encryption_gcm_err;
1048 
1049 	return 0;
1050 
1051 process_auth_encryption_gcm_err:
1052 	OPENSSL_LOG(ERR, "Process openssl auth encryption gcm failed");
1053 	return -EINVAL;
1054 }
1055 
1056 /** Process AES-CCM encrypt algorithm */
1057 static int
1058 process_openssl_auth_encryption_ccm(struct rte_mbuf *mbuf_src, int offset,
1059 		int srclen, uint8_t *aad, int aadlen, uint8_t *iv,
1060 		uint8_t *dst, uint8_t *tag, uint8_t taglen, EVP_CIPHER_CTX *ctx)
1061 {
1062 	int len = 0;
1063 
1064 	if (EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
1065 		goto process_auth_encryption_ccm_err;
1066 
1067 	if (EVP_EncryptUpdate(ctx, NULL, &len, NULL, srclen) <= 0)
1068 		goto process_auth_encryption_ccm_err;
1069 
1070 	if (aadlen > 0)
1071 		/*
1072 		 * For AES-CCM, the actual AAD is placed
1073 		 * 18 bytes after the start of the AAD field,
1074 		 * according to the API.
1075 		 */
1076 		if (EVP_EncryptUpdate(ctx, NULL, &len, aad + 18, aadlen) <= 0)
1077 			goto process_auth_encryption_ccm_err;
1078 
1079 	if (srclen > 0)
1080 		if (process_openssl_encryption_update(mbuf_src, offset, &dst,
1081 				srclen, ctx))
1082 			goto process_auth_encryption_ccm_err;
1083 
1084 	if (EVP_EncryptFinal_ex(ctx, dst, &len) <= 0)
1085 		goto process_auth_encryption_ccm_err;
1086 
1087 	if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_GET_TAG, taglen, tag) <= 0)
1088 		goto process_auth_encryption_ccm_err;
1089 
1090 	return 0;
1091 
1092 process_auth_encryption_ccm_err:
1093 	OPENSSL_LOG(ERR, "Process openssl auth encryption ccm failed");
1094 	return -EINVAL;
1095 }
1096 
1097 /** Process AES-GCM decrypt algorithm */
1098 static int
1099 process_openssl_auth_decryption_gcm(struct rte_mbuf *mbuf_src, int offset,
1100 		int srclen, uint8_t *aad, int aadlen, uint8_t *iv,
1101 		uint8_t *dst, uint8_t *tag, EVP_CIPHER_CTX *ctx)
1102 {
1103 	int len = 0, unused = 0;
1104 	uint8_t empty[] = {};
1105 
1106 	if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_TAG, 16, tag) <= 0)
1107 		goto process_auth_decryption_gcm_err;
1108 
1109 	if (EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
1110 		goto process_auth_decryption_gcm_err;
1111 
1112 	if (aadlen > 0)
1113 		if (EVP_DecryptUpdate(ctx, NULL, &len, aad, aadlen) <= 0)
1114 			goto process_auth_decryption_gcm_err;
1115 
1116 	if (srclen > 0)
1117 		if (process_openssl_decryption_update(mbuf_src, offset, &dst,
1118 				srclen, ctx))
1119 			goto process_auth_decryption_gcm_err;
1120 
1121 	/* Workaround open ssl bug in version less then 1.0.1f */
1122 	if (EVP_DecryptUpdate(ctx, empty, &unused, empty, 0) <= 0)
1123 		goto process_auth_decryption_gcm_err;
1124 
1125 	if (EVP_DecryptFinal_ex(ctx, dst, &len) <= 0)
1126 		return -EFAULT;
1127 
1128 	return 0;
1129 
1130 process_auth_decryption_gcm_err:
1131 	OPENSSL_LOG(ERR, "Process openssl auth decryption gcm failed");
1132 	return -EINVAL;
1133 }
1134 
1135 /** Process AES-CCM decrypt algorithm */
1136 static int
1137 process_openssl_auth_decryption_ccm(struct rte_mbuf *mbuf_src, int offset,
1138 		int srclen, uint8_t *aad, int aadlen, uint8_t *iv,
1139 		uint8_t *dst, uint8_t *tag, uint8_t tag_len,
1140 		EVP_CIPHER_CTX *ctx)
1141 {
1142 	int len = 0;
1143 
1144 	if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_TAG, tag_len, tag) <= 0)
1145 		goto process_auth_decryption_ccm_err;
1146 
1147 	if (EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
1148 		goto process_auth_decryption_ccm_err;
1149 
1150 	if (EVP_DecryptUpdate(ctx, NULL, &len, NULL, srclen) <= 0)
1151 		goto process_auth_decryption_ccm_err;
1152 
1153 	if (aadlen > 0)
1154 		/*
1155 		 * For AES-CCM, the actual AAD is placed
1156 		 * 18 bytes after the start of the AAD field,
1157 		 * according to the API.
1158 		 */
1159 		if (EVP_DecryptUpdate(ctx, NULL, &len, aad + 18, aadlen) <= 0)
1160 			goto process_auth_decryption_ccm_err;
1161 
1162 	if (srclen > 0)
1163 		if (process_openssl_decryption_update(mbuf_src, offset, &dst,
1164 				srclen, ctx))
1165 			return -EFAULT;
1166 
1167 	return 0;
1168 
1169 process_auth_decryption_ccm_err:
1170 	OPENSSL_LOG(ERR, "Process openssl auth decryption ccm failed");
1171 	return -EINVAL;
1172 }
1173 
1174 /** Process standard openssl auth algorithms */
1175 static int
1176 process_openssl_auth(struct rte_mbuf *mbuf_src, uint8_t *dst, int offset,
1177 		__rte_unused uint8_t *iv, __rte_unused EVP_PKEY * pkey,
1178 		int srclen, EVP_MD_CTX *ctx, const EVP_MD *algo)
1179 {
1180 	size_t dstlen;
1181 	struct rte_mbuf *m;
1182 	int l, n = srclen;
1183 	uint8_t *src;
1184 
1185 	for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m);
1186 			m = m->next)
1187 		offset -= rte_pktmbuf_data_len(m);
1188 
1189 	if (m == 0)
1190 		goto process_auth_err;
1191 
1192 	if (EVP_DigestInit_ex(ctx, algo, NULL) <= 0)
1193 		goto process_auth_err;
1194 
1195 	src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset);
1196 
1197 	l = rte_pktmbuf_data_len(m) - offset;
1198 	if (srclen <= l) {
1199 		if (EVP_DigestUpdate(ctx, (char *)src, srclen) <= 0)
1200 			goto process_auth_err;
1201 		goto process_auth_final;
1202 	}
1203 
1204 	if (EVP_DigestUpdate(ctx, (char *)src, l) <= 0)
1205 		goto process_auth_err;
1206 
1207 	n -= l;
1208 
1209 	for (m = m->next; (m != NULL) && (n > 0); m = m->next) {
1210 		src = rte_pktmbuf_mtod(m, uint8_t *);
1211 		l = rte_pktmbuf_data_len(m) < n ? rte_pktmbuf_data_len(m) : n;
1212 		if (EVP_DigestUpdate(ctx, (char *)src, l) <= 0)
1213 			goto process_auth_err;
1214 		n -= l;
1215 	}
1216 
1217 process_auth_final:
1218 	if (EVP_DigestFinal_ex(ctx, dst, (unsigned int *)&dstlen) <= 0)
1219 		goto process_auth_err;
1220 	return 0;
1221 
1222 process_auth_err:
1223 	OPENSSL_LOG(ERR, "Process openssl auth failed");
1224 	return -EINVAL;
1225 }
1226 
1227 /** Process standard openssl auth algorithms with hmac */
1228 static int
1229 process_openssl_auth_hmac(struct rte_mbuf *mbuf_src, uint8_t *dst, int offset,
1230 		int srclen, HMAC_CTX *ctx)
1231 {
1232 	unsigned int dstlen;
1233 	struct rte_mbuf *m;
1234 	int l, n = srclen;
1235 	uint8_t *src;
1236 
1237 	for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m);
1238 			m = m->next)
1239 		offset -= rte_pktmbuf_data_len(m);
1240 
1241 	if (m == 0)
1242 		goto process_auth_err;
1243 
1244 	src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset);
1245 
1246 	l = rte_pktmbuf_data_len(m) - offset;
1247 	if (srclen <= l) {
1248 		if (HMAC_Update(ctx, (unsigned char *)src, srclen) != 1)
1249 			goto process_auth_err;
1250 		goto process_auth_final;
1251 	}
1252 
1253 	if (HMAC_Update(ctx, (unsigned char *)src, l) != 1)
1254 		goto process_auth_err;
1255 
1256 	n -= l;
1257 
1258 	for (m = m->next; (m != NULL) && (n > 0); m = m->next) {
1259 		src = rte_pktmbuf_mtod(m, uint8_t *);
1260 		l = rte_pktmbuf_data_len(m) < n ? rte_pktmbuf_data_len(m) : n;
1261 		if (HMAC_Update(ctx, (unsigned char *)src, l) != 1)
1262 			goto process_auth_err;
1263 		n -= l;
1264 	}
1265 
1266 process_auth_final:
1267 	if (HMAC_Final(ctx, dst, &dstlen) != 1)
1268 		goto process_auth_err;
1269 
1270 	if (unlikely(HMAC_Init_ex(ctx, NULL, 0, NULL, NULL) != 1))
1271 		goto process_auth_err;
1272 
1273 	return 0;
1274 
1275 process_auth_err:
1276 	OPENSSL_LOG(ERR, "Process openssl auth failed");
1277 	return -EINVAL;
1278 }
1279 
1280 /*----------------------------------------------------------------------------*/
1281 
1282 /** Process auth/cipher combined operation */
1283 static void
1284 process_openssl_combined_op
1285 		(struct rte_crypto_op *op, struct openssl_session *sess,
1286 		struct rte_mbuf *mbuf_src, struct rte_mbuf *mbuf_dst)
1287 {
1288 	/* cipher */
1289 	uint8_t *dst = NULL, *iv, *tag, *aad;
1290 	int srclen, aadlen, status = -1;
1291 	uint32_t offset;
1292 	uint8_t taglen;
1293 	EVP_CIPHER_CTX *ctx_copy;
1294 
1295 	/*
1296 	 * Segmented destination buffer is not supported for
1297 	 * encryption/decryption
1298 	 */
1299 	if (!rte_pktmbuf_is_contiguous(mbuf_dst)) {
1300 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1301 		return;
1302 	}
1303 
1304 	iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1305 			sess->iv.offset);
1306 	if (sess->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC) {
1307 		srclen = 0;
1308 		offset = op->sym->auth.data.offset;
1309 		aadlen = op->sym->auth.data.length;
1310 		aad = rte_pktmbuf_mtod_offset(mbuf_src, uint8_t *,
1311 				op->sym->auth.data.offset);
1312 		tag = op->sym->auth.digest.data;
1313 		if (tag == NULL)
1314 			tag = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1315 				offset + aadlen);
1316 	} else {
1317 		srclen = op->sym->aead.data.length;
1318 		dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1319 				op->sym->aead.data.offset);
1320 		offset = op->sym->aead.data.offset;
1321 		aad = op->sym->aead.aad.data;
1322 		aadlen = sess->auth.aad_length;
1323 		tag = op->sym->aead.digest.data;
1324 		if (tag == NULL)
1325 			tag = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1326 				offset + srclen);
1327 	}
1328 
1329 	taglen = sess->auth.digest_length;
1330 	ctx_copy = EVP_CIPHER_CTX_new();
1331 	EVP_CIPHER_CTX_copy(ctx_copy, sess->cipher.ctx);
1332 
1333 	if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
1334 		if (sess->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC ||
1335 				sess->aead_algo == RTE_CRYPTO_AEAD_AES_GCM)
1336 			status = process_openssl_auth_encryption_gcm(
1337 					mbuf_src, offset, srclen,
1338 					aad, aadlen, iv,
1339 					dst, tag, ctx_copy);
1340 		else
1341 			status = process_openssl_auth_encryption_ccm(
1342 					mbuf_src, offset, srclen,
1343 					aad, aadlen, iv,
1344 					dst, tag, taglen, ctx_copy);
1345 
1346 	} else {
1347 		if (sess->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC ||
1348 				sess->aead_algo == RTE_CRYPTO_AEAD_AES_GCM)
1349 			status = process_openssl_auth_decryption_gcm(
1350 					mbuf_src, offset, srclen,
1351 					aad, aadlen, iv,
1352 					dst, tag, ctx_copy);
1353 		else
1354 			status = process_openssl_auth_decryption_ccm(
1355 					mbuf_src, offset, srclen,
1356 					aad, aadlen, iv,
1357 					dst, tag, taglen, ctx_copy);
1358 	}
1359 
1360 	EVP_CIPHER_CTX_free(ctx_copy);
1361 	if (status != 0) {
1362 		if (status == (-EFAULT) &&
1363 				sess->auth.operation ==
1364 						RTE_CRYPTO_AUTH_OP_VERIFY)
1365 			op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
1366 		else
1367 			op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1368 	}
1369 }
1370 
1371 /** Process cipher operation */
1372 static void
1373 process_openssl_cipher_op
1374 		(struct rte_crypto_op *op, struct openssl_session *sess,
1375 		struct rte_mbuf *mbuf_src, struct rte_mbuf *mbuf_dst)
1376 {
1377 	uint8_t *dst, *iv;
1378 	int srclen, status;
1379 	EVP_CIPHER_CTX *ctx_copy;
1380 
1381 	/*
1382 	 * Segmented destination buffer is not supported for
1383 	 * encryption/decryption
1384 	 */
1385 	if (!rte_pktmbuf_is_contiguous(mbuf_dst)) {
1386 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1387 		return;
1388 	}
1389 
1390 	srclen = op->sym->cipher.data.length;
1391 	dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1392 			op->sym->cipher.data.offset);
1393 
1394 	iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1395 			sess->iv.offset);
1396 	ctx_copy = EVP_CIPHER_CTX_new();
1397 	EVP_CIPHER_CTX_copy(ctx_copy, sess->cipher.ctx);
1398 
1399 	if (sess->cipher.mode == OPENSSL_CIPHER_LIB)
1400 		if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
1401 			status = process_openssl_cipher_encrypt(mbuf_src, dst,
1402 					op->sym->cipher.data.offset, iv,
1403 					srclen, ctx_copy);
1404 		else
1405 			status = process_openssl_cipher_decrypt(mbuf_src, dst,
1406 					op->sym->cipher.data.offset, iv,
1407 					srclen, ctx_copy);
1408 	else
1409 		status = process_openssl_cipher_des3ctr(mbuf_src, dst,
1410 				op->sym->cipher.data.offset, iv,
1411 				sess->cipher.key.data, srclen,
1412 				ctx_copy);
1413 
1414 	EVP_CIPHER_CTX_free(ctx_copy);
1415 	if (status != 0)
1416 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1417 }
1418 
1419 /** Process cipher operation */
1420 static void
1421 process_openssl_docsis_bpi_op(struct rte_crypto_op *op,
1422 		struct openssl_session *sess, struct rte_mbuf *mbuf_src,
1423 		struct rte_mbuf *mbuf_dst)
1424 {
1425 	uint8_t *src, *dst, *iv;
1426 	uint8_t block_size, last_block_len;
1427 	int srclen, status = 0;
1428 
1429 	srclen = op->sym->cipher.data.length;
1430 	src = rte_pktmbuf_mtod_offset(mbuf_src, uint8_t *,
1431 			op->sym->cipher.data.offset);
1432 	dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1433 			op->sym->cipher.data.offset);
1434 
1435 	iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1436 			sess->iv.offset);
1437 
1438 	block_size = DES_BLOCK_SIZE;
1439 
1440 	last_block_len = srclen % block_size;
1441 	if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
1442 		/* Encrypt only with ECB mode XOR IV */
1443 		if (srclen < block_size) {
1444 			status = process_openssl_cipher_bpi_encrypt(src, dst,
1445 					iv, srclen,
1446 					sess->cipher.bpi_ctx);
1447 		} else {
1448 			srclen -= last_block_len;
1449 			/* Encrypt with the block aligned stream with CBC mode */
1450 			status = process_openssl_cipher_encrypt(mbuf_src, dst,
1451 					op->sym->cipher.data.offset, iv,
1452 					srclen, sess->cipher.ctx);
1453 			if (last_block_len) {
1454 				/* Point at last block */
1455 				dst += srclen;
1456 				/*
1457 				 * IV is the last encrypted block from
1458 				 * the previous operation
1459 				 */
1460 				iv = dst - block_size;
1461 				src += srclen;
1462 				srclen = last_block_len;
1463 				/* Encrypt the last frame with ECB mode */
1464 				status |= process_openssl_cipher_bpi_encrypt(src,
1465 						dst, iv,
1466 						srclen, sess->cipher.bpi_ctx);
1467 			}
1468 		}
1469 	} else {
1470 		/* Decrypt only with ECB mode (encrypt, as it is same operation) */
1471 		if (srclen < block_size) {
1472 			status = process_openssl_cipher_bpi_encrypt(src, dst,
1473 					iv,
1474 					srclen,
1475 					sess->cipher.bpi_ctx);
1476 		} else {
1477 			if (last_block_len) {
1478 				/* Point at last block */
1479 				dst += srclen - last_block_len;
1480 				src += srclen - last_block_len;
1481 				/*
1482 				 * IV is the last full block
1483 				 */
1484 				iv = src - block_size;
1485 				/*
1486 				 * Decrypt the last frame with ECB mode
1487 				 * (encrypt, as it is the same operation)
1488 				 */
1489 				status = process_openssl_cipher_bpi_encrypt(src,
1490 						dst, iv,
1491 						last_block_len, sess->cipher.bpi_ctx);
1492 				/* Prepare parameters for CBC mode op */
1493 				iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1494 						sess->iv.offset);
1495 				dst += last_block_len - srclen;
1496 				srclen -= last_block_len;
1497 			}
1498 
1499 			/* Decrypt with CBC mode */
1500 			status |= process_openssl_cipher_decrypt(mbuf_src, dst,
1501 					op->sym->cipher.data.offset, iv,
1502 					srclen, sess->cipher.ctx);
1503 		}
1504 	}
1505 
1506 	if (status != 0)
1507 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1508 }
1509 
1510 /** Process auth operation */
1511 static void
1512 process_openssl_auth_op(struct openssl_qp *qp, struct rte_crypto_op *op,
1513 		struct openssl_session *sess, struct rte_mbuf *mbuf_src,
1514 		struct rte_mbuf *mbuf_dst)
1515 {
1516 	uint8_t *dst;
1517 	int srclen, status;
1518 	EVP_MD_CTX *ctx_a;
1519 	HMAC_CTX *ctx_h;
1520 
1521 	srclen = op->sym->auth.data.length;
1522 
1523 	dst = qp->temp_digest;
1524 
1525 	switch (sess->auth.mode) {
1526 	case OPENSSL_AUTH_AS_AUTH:
1527 		ctx_a = EVP_MD_CTX_create();
1528 		EVP_MD_CTX_copy_ex(ctx_a, sess->auth.auth.ctx);
1529 		status = process_openssl_auth(mbuf_src, dst,
1530 				op->sym->auth.data.offset, NULL, NULL, srclen,
1531 				ctx_a, sess->auth.auth.evp_algo);
1532 		EVP_MD_CTX_destroy(ctx_a);
1533 		break;
1534 	case OPENSSL_AUTH_AS_HMAC:
1535 		ctx_h = HMAC_CTX_new();
1536 		HMAC_CTX_copy(ctx_h, sess->auth.hmac.ctx);
1537 		status = process_openssl_auth_hmac(mbuf_src, dst,
1538 				op->sym->auth.data.offset, srclen,
1539 				ctx_h);
1540 		HMAC_CTX_free(ctx_h);
1541 		break;
1542 	default:
1543 		status = -1;
1544 		break;
1545 	}
1546 
1547 	if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) {
1548 		if (CRYPTO_memcmp(dst, op->sym->auth.digest.data,
1549 				sess->auth.digest_length) != 0) {
1550 			op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
1551 		}
1552 	} else {
1553 		uint8_t *auth_dst;
1554 
1555 		auth_dst = op->sym->auth.digest.data;
1556 		if (auth_dst == NULL)
1557 			auth_dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1558 					op->sym->auth.data.offset +
1559 					op->sym->auth.data.length);
1560 		memcpy(auth_dst, dst, sess->auth.digest_length);
1561 	}
1562 
1563 	if (status != 0)
1564 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1565 }
1566 
1567 /* process dsa sign operation */
1568 static int
1569 process_openssl_dsa_sign_op(struct rte_crypto_op *cop,
1570 		struct openssl_asym_session *sess)
1571 {
1572 	struct rte_crypto_dsa_op_param *op = &cop->asym->dsa;
1573 	DSA *dsa = sess->u.s.dsa;
1574 	DSA_SIG *sign = NULL;
1575 
1576 	sign = DSA_do_sign(op->message.data,
1577 			op->message.length,
1578 			dsa);
1579 
1580 	if (sign == NULL) {
1581 		OPENSSL_LOG(ERR, "%s:%d\n", __func__, __LINE__);
1582 		cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1583 	} else {
1584 		const BIGNUM *r = NULL, *s = NULL;
1585 		get_dsa_sign(sign, &r, &s);
1586 
1587 		op->r.length = BN_bn2bin(r, op->r.data);
1588 		op->s.length = BN_bn2bin(s, op->s.data);
1589 		cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1590 	}
1591 
1592 	DSA_SIG_free(sign);
1593 
1594 	return 0;
1595 }
1596 
1597 /* process dsa verify operation */
1598 static int
1599 process_openssl_dsa_verify_op(struct rte_crypto_op *cop,
1600 		struct openssl_asym_session *sess)
1601 {
1602 	struct rte_crypto_dsa_op_param *op = &cop->asym->dsa;
1603 	DSA *dsa = sess->u.s.dsa;
1604 	int ret;
1605 	DSA_SIG *sign = DSA_SIG_new();
1606 	BIGNUM *r = NULL, *s = NULL;
1607 	BIGNUM *pub_key = NULL;
1608 
1609 	if (sign == NULL) {
1610 		OPENSSL_LOG(ERR, " %s:%d\n", __func__, __LINE__);
1611 		cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1612 		return -1;
1613 	}
1614 
1615 	r = BN_bin2bn(op->r.data,
1616 			op->r.length,
1617 			r);
1618 	s = BN_bin2bn(op->s.data,
1619 			op->s.length,
1620 			s);
1621 	pub_key = BN_bin2bn(op->y.data,
1622 			op->y.length,
1623 			pub_key);
1624 	if (!r || !s || !pub_key) {
1625 		BN_free(r);
1626 		BN_free(s);
1627 		BN_free(pub_key);
1628 
1629 		cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1630 		return -1;
1631 	}
1632 	set_dsa_sign(sign, r, s);
1633 	set_dsa_pub_key(dsa, pub_key);
1634 
1635 	ret = DSA_do_verify(op->message.data,
1636 			op->message.length,
1637 			sign,
1638 			dsa);
1639 
1640 	if (ret != 1)
1641 		cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1642 	else
1643 		cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1644 
1645 	DSA_SIG_free(sign);
1646 
1647 	return 0;
1648 }
1649 
1650 /* process dh operation */
1651 static int
1652 process_openssl_dh_op(struct rte_crypto_op *cop,
1653 		struct openssl_asym_session *sess)
1654 {
1655 	struct rte_crypto_dh_op_param *op = &cop->asym->dh;
1656 	DH *dh_key = sess->u.dh.dh_key;
1657 	BIGNUM *priv_key = NULL;
1658 	int ret = 0;
1659 
1660 	if (sess->u.dh.key_op &
1661 			(1 << RTE_CRYPTO_ASYM_OP_SHARED_SECRET_COMPUTE)) {
1662 		/* compute shared secret using peer public key
1663 		 * and current private key
1664 		 * shared secret = peer_key ^ priv_key mod p
1665 		 */
1666 		BIGNUM *peer_key = NULL;
1667 
1668 		/* copy private key and peer key and compute shared secret */
1669 		peer_key = BN_bin2bn(op->pub_key.data,
1670 				op->pub_key.length,
1671 				peer_key);
1672 		if (peer_key == NULL) {
1673 			cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1674 			return -1;
1675 		}
1676 		priv_key = BN_bin2bn(op->priv_key.data,
1677 				op->priv_key.length,
1678 				priv_key);
1679 		if (priv_key == NULL) {
1680 			BN_free(peer_key);
1681 			cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1682 			return -1;
1683 		}
1684 		ret = set_dh_priv_key(dh_key, priv_key);
1685 		if (ret) {
1686 			OPENSSL_LOG(ERR, "Failed to set private key\n");
1687 			cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1688 			BN_free(peer_key);
1689 			BN_free(priv_key);
1690 			return 0;
1691 		}
1692 
1693 		ret = DH_compute_key(
1694 				op->shared_secret.data,
1695 				peer_key, dh_key);
1696 		if (ret < 0) {
1697 			cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1698 			BN_free(peer_key);
1699 			/* priv key is already loaded into dh,
1700 			 * let's not free that directly here.
1701 			 * DH_free() will auto free it later.
1702 			 */
1703 			return 0;
1704 		}
1705 		cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1706 		op->shared_secret.length = ret;
1707 		BN_free(peer_key);
1708 		return 0;
1709 	}
1710 
1711 	/*
1712 	 * other options are public and private key generations.
1713 	 *
1714 	 * if user provides private key,
1715 	 * then first set DH with user provided private key
1716 	 */
1717 	if ((sess->u.dh.key_op &
1718 			(1 << RTE_CRYPTO_ASYM_OP_PUBLIC_KEY_GENERATE)) &&
1719 			!(sess->u.dh.key_op &
1720 			(1 << RTE_CRYPTO_ASYM_OP_PRIVATE_KEY_GENERATE))) {
1721 		/* generate public key using user-provided private key
1722 		 * pub_key = g ^ priv_key mod p
1723 		 */
1724 
1725 		/* load private key into DH */
1726 		priv_key = BN_bin2bn(op->priv_key.data,
1727 				op->priv_key.length,
1728 				priv_key);
1729 		if (priv_key == NULL) {
1730 			cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1731 			return -1;
1732 		}
1733 		ret = set_dh_priv_key(dh_key, priv_key);
1734 		if (ret) {
1735 			OPENSSL_LOG(ERR, "Failed to set private key\n");
1736 			cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1737 			BN_free(priv_key);
1738 			return 0;
1739 		}
1740 	}
1741 
1742 	/* generate public and private key pair.
1743 	 *
1744 	 * if private key already set, generates only public key.
1745 	 *
1746 	 * if private key is not already set, then set it to random value
1747 	 * and update internal private key.
1748 	 */
1749 	if (!DH_generate_key(dh_key)) {
1750 		cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1751 		return 0;
1752 	}
1753 
1754 	if (sess->u.dh.key_op & (1 << RTE_CRYPTO_ASYM_OP_PUBLIC_KEY_GENERATE)) {
1755 		const BIGNUM *pub_key = NULL;
1756 
1757 		OPENSSL_LOG(DEBUG, "%s:%d update public key\n",
1758 				__func__, __LINE__);
1759 
1760 		/* get the generated keys */
1761 		get_dh_pub_key(dh_key, &pub_key);
1762 
1763 		/* output public key */
1764 		op->pub_key.length = BN_bn2bin(pub_key,
1765 				op->pub_key.data);
1766 	}
1767 
1768 	if (sess->u.dh.key_op &
1769 			(1 << RTE_CRYPTO_ASYM_OP_PRIVATE_KEY_GENERATE)) {
1770 		const BIGNUM *priv_key = NULL;
1771 
1772 		OPENSSL_LOG(DEBUG, "%s:%d updated priv key\n",
1773 				__func__, __LINE__);
1774 
1775 		/* get the generated keys */
1776 		get_dh_priv_key(dh_key, &priv_key);
1777 
1778 		/* provide generated private key back to user */
1779 		op->priv_key.length = BN_bn2bin(priv_key,
1780 				op->priv_key.data);
1781 	}
1782 
1783 	cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1784 
1785 	return 0;
1786 }
1787 
1788 /* process modinv operation */
1789 static int
1790 process_openssl_modinv_op(struct rte_crypto_op *cop,
1791 		struct openssl_asym_session *sess)
1792 {
1793 	struct rte_crypto_asym_op *op = cop->asym;
1794 	BIGNUM *base = BN_CTX_get(sess->u.m.ctx);
1795 	BIGNUM *res = BN_CTX_get(sess->u.m.ctx);
1796 
1797 	if (unlikely(base == NULL || res == NULL)) {
1798 		BN_free(base);
1799 		BN_free(res);
1800 		cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1801 		return -1;
1802 	}
1803 
1804 	base = BN_bin2bn((const unsigned char *)op->modinv.base.data,
1805 			op->modinv.base.length, base);
1806 
1807 	if (BN_mod_inverse(res, base, sess->u.m.modulus, sess->u.m.ctx)) {
1808 		cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1809 		op->modinv.result.length = BN_bn2bin(res, op->modinv.result.data);
1810 	} else {
1811 		cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1812 	}
1813 
1814 	BN_clear(res);
1815 	BN_clear(base);
1816 
1817 	return 0;
1818 }
1819 
1820 /* process modexp operation */
1821 static int
1822 process_openssl_modexp_op(struct rte_crypto_op *cop,
1823 		struct openssl_asym_session *sess)
1824 {
1825 	struct rte_crypto_asym_op *op = cop->asym;
1826 	BIGNUM *base = BN_CTX_get(sess->u.e.ctx);
1827 	BIGNUM *res = BN_CTX_get(sess->u.e.ctx);
1828 
1829 	if (unlikely(base == NULL || res == NULL)) {
1830 		BN_free(base);
1831 		BN_free(res);
1832 		cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1833 		return -1;
1834 	}
1835 
1836 	base = BN_bin2bn((const unsigned char *)op->modex.base.data,
1837 			op->modex.base.length, base);
1838 
1839 	if (BN_mod_exp(res, base, sess->u.e.exp,
1840 				sess->u.e.mod, sess->u.e.ctx)) {
1841 		op->modex.result.length = BN_bn2bin(res, op->modex.result.data);
1842 		cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1843 	} else {
1844 		cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1845 	}
1846 
1847 	BN_clear(res);
1848 	BN_clear(base);
1849 
1850 	return 0;
1851 }
1852 
1853 /* process rsa operations */
1854 static int
1855 process_openssl_rsa_op(struct rte_crypto_op *cop,
1856 		struct openssl_asym_session *sess)
1857 {
1858 	int ret = 0;
1859 	struct rte_crypto_asym_op *op = cop->asym;
1860 	RSA *rsa = sess->u.r.rsa;
1861 	uint32_t pad = (op->rsa.pad);
1862 	uint8_t *tmp;
1863 
1864 	cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1865 
1866 	switch (pad) {
1867 	case RTE_CRYPTO_RSA_PADDING_PKCS1_5:
1868 		pad = RSA_PKCS1_PADDING;
1869 		break;
1870 	case RTE_CRYPTO_RSA_PADDING_NONE:
1871 		pad = RSA_NO_PADDING;
1872 		break;
1873 	default:
1874 		cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
1875 		OPENSSL_LOG(ERR,
1876 				"rsa pad type not supported %d\n", pad);
1877 		return 0;
1878 	}
1879 
1880 	switch (op->rsa.op_type) {
1881 	case RTE_CRYPTO_ASYM_OP_ENCRYPT:
1882 		ret = RSA_public_encrypt(op->rsa.message.length,
1883 				op->rsa.message.data,
1884 				op->rsa.cipher.data,
1885 				rsa,
1886 				pad);
1887 
1888 		if (ret > 0)
1889 			op->rsa.cipher.length = ret;
1890 		OPENSSL_LOG(DEBUG,
1891 				"length of encrypted text %d\n", ret);
1892 		break;
1893 
1894 	case RTE_CRYPTO_ASYM_OP_DECRYPT:
1895 		ret = RSA_private_decrypt(op->rsa.cipher.length,
1896 				op->rsa.cipher.data,
1897 				op->rsa.message.data,
1898 				rsa,
1899 				pad);
1900 		if (ret > 0)
1901 			op->rsa.message.length = ret;
1902 		break;
1903 
1904 	case RTE_CRYPTO_ASYM_OP_SIGN:
1905 		ret = RSA_private_encrypt(op->rsa.message.length,
1906 				op->rsa.message.data,
1907 				op->rsa.sign.data,
1908 				rsa,
1909 				pad);
1910 		if (ret > 0)
1911 			op->rsa.sign.length = ret;
1912 		break;
1913 
1914 	case RTE_CRYPTO_ASYM_OP_VERIFY:
1915 		tmp = rte_malloc(NULL, op->rsa.sign.length, 0);
1916 		if (tmp == NULL) {
1917 			OPENSSL_LOG(ERR, "Memory allocation failed");
1918 			cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1919 			break;
1920 		}
1921 		ret = RSA_public_decrypt(op->rsa.sign.length,
1922 				op->rsa.sign.data,
1923 				tmp,
1924 				rsa,
1925 				pad);
1926 
1927 		OPENSSL_LOG(DEBUG,
1928 				"Length of public_decrypt %d "
1929 				"length of message %zd\n",
1930 				ret, op->rsa.message.length);
1931 		if ((ret <= 0) || (CRYPTO_memcmp(tmp, op->rsa.message.data,
1932 				op->rsa.message.length))) {
1933 			OPENSSL_LOG(ERR, "RSA sign Verification failed");
1934 			cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1935 		}
1936 		rte_free(tmp);
1937 		break;
1938 
1939 	default:
1940 		/* allow ops with invalid args to be pushed to
1941 		 * completion queue
1942 		 */
1943 		cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
1944 		break;
1945 	}
1946 
1947 	if (ret < 0)
1948 		cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1949 
1950 	return 0;
1951 }
1952 
1953 static int
1954 process_asym_op(struct openssl_qp *qp, struct rte_crypto_op *op,
1955 		struct openssl_asym_session *sess)
1956 {
1957 	int retval = 0;
1958 
1959 	op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1960 
1961 	switch (sess->xfrm_type) {
1962 	case RTE_CRYPTO_ASYM_XFORM_RSA:
1963 		retval = process_openssl_rsa_op(op, sess);
1964 		break;
1965 	case RTE_CRYPTO_ASYM_XFORM_MODEX:
1966 		retval = process_openssl_modexp_op(op, sess);
1967 		break;
1968 	case RTE_CRYPTO_ASYM_XFORM_MODINV:
1969 		retval = process_openssl_modinv_op(op, sess);
1970 		break;
1971 	case RTE_CRYPTO_ASYM_XFORM_DH:
1972 		retval = process_openssl_dh_op(op, sess);
1973 		break;
1974 	case RTE_CRYPTO_ASYM_XFORM_DSA:
1975 		if (op->asym->dsa.op_type == RTE_CRYPTO_ASYM_OP_SIGN)
1976 			retval = process_openssl_dsa_sign_op(op, sess);
1977 		else if (op->asym->dsa.op_type ==
1978 				RTE_CRYPTO_ASYM_OP_VERIFY)
1979 			retval =
1980 				process_openssl_dsa_verify_op(op, sess);
1981 		else
1982 			op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
1983 		break;
1984 	default:
1985 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
1986 		break;
1987 	}
1988 	if (!retval) {
1989 		/* op processed so push to completion queue as processed */
1990 		retval = rte_ring_enqueue(qp->processed_ops, (void *)op);
1991 		if (retval)
1992 			/* return error if failed to put in completion queue */
1993 			retval = -1;
1994 	}
1995 
1996 	return retval;
1997 }
1998 
1999 /** Process crypto operation for mbuf */
2000 static int
2001 process_op(struct openssl_qp *qp, struct rte_crypto_op *op,
2002 		struct openssl_session *sess)
2003 {
2004 	struct rte_mbuf *msrc, *mdst;
2005 	int retval;
2006 
2007 	msrc = op->sym->m_src;
2008 	mdst = op->sym->m_dst ? op->sym->m_dst : op->sym->m_src;
2009 
2010 	op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
2011 
2012 	switch (sess->chain_order) {
2013 	case OPENSSL_CHAIN_ONLY_CIPHER:
2014 		process_openssl_cipher_op(op, sess, msrc, mdst);
2015 		break;
2016 	case OPENSSL_CHAIN_ONLY_AUTH:
2017 		process_openssl_auth_op(qp, op, sess, msrc, mdst);
2018 		break;
2019 	case OPENSSL_CHAIN_CIPHER_AUTH:
2020 		process_openssl_cipher_op(op, sess, msrc, mdst);
2021 		process_openssl_auth_op(qp, op, sess, mdst, mdst);
2022 		break;
2023 	case OPENSSL_CHAIN_AUTH_CIPHER:
2024 		process_openssl_auth_op(qp, op, sess, msrc, mdst);
2025 		process_openssl_cipher_op(op, sess, msrc, mdst);
2026 		break;
2027 	case OPENSSL_CHAIN_COMBINED:
2028 		process_openssl_combined_op(op, sess, msrc, mdst);
2029 		break;
2030 	case OPENSSL_CHAIN_CIPHER_BPI:
2031 		process_openssl_docsis_bpi_op(op, sess, msrc, mdst);
2032 		break;
2033 	default:
2034 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
2035 		break;
2036 	}
2037 
2038 	/* Free session if a session-less crypto op */
2039 	if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) {
2040 		openssl_reset_session(sess);
2041 		memset(sess, 0, sizeof(struct openssl_session));
2042 		memset(op->sym->session, 0,
2043 			rte_cryptodev_sym_get_existing_header_session_size(
2044 				op->sym->session));
2045 		rte_mempool_put(qp->sess_mp_priv, sess);
2046 		rte_mempool_put(qp->sess_mp, op->sym->session);
2047 		op->sym->session = NULL;
2048 	}
2049 
2050 	if (op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)
2051 		op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
2052 
2053 	if (op->status != RTE_CRYPTO_OP_STATUS_ERROR)
2054 		retval = rte_ring_enqueue(qp->processed_ops, (void *)op);
2055 	else
2056 		retval = -1;
2057 
2058 	return retval;
2059 }
2060 
2061 /*
2062  *------------------------------------------------------------------------------
2063  * PMD Framework
2064  *------------------------------------------------------------------------------
2065  */
2066 
2067 /** Enqueue burst */
2068 static uint16_t
2069 openssl_pmd_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops,
2070 		uint16_t nb_ops)
2071 {
2072 	void *sess;
2073 	struct openssl_qp *qp = queue_pair;
2074 	int i, retval;
2075 
2076 	for (i = 0; i < nb_ops; i++) {
2077 		sess = get_session(qp, ops[i]);
2078 		if (unlikely(sess == NULL))
2079 			goto enqueue_err;
2080 
2081 		if (ops[i]->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC)
2082 			retval = process_op(qp, ops[i],
2083 					(struct openssl_session *) sess);
2084 		else
2085 			retval = process_asym_op(qp, ops[i],
2086 					(struct openssl_asym_session *) sess);
2087 		if (unlikely(retval < 0))
2088 			goto enqueue_err;
2089 	}
2090 
2091 	qp->stats.enqueued_count += i;
2092 	return i;
2093 
2094 enqueue_err:
2095 	qp->stats.enqueue_err_count++;
2096 	return i;
2097 }
2098 
2099 /** Dequeue burst */
2100 static uint16_t
2101 openssl_pmd_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops,
2102 		uint16_t nb_ops)
2103 {
2104 	struct openssl_qp *qp = queue_pair;
2105 
2106 	unsigned int nb_dequeued = 0;
2107 
2108 	nb_dequeued = rte_ring_dequeue_burst(qp->processed_ops,
2109 			(void **)ops, nb_ops, NULL);
2110 	qp->stats.dequeued_count += nb_dequeued;
2111 
2112 	return nb_dequeued;
2113 }
2114 
2115 /** Create OPENSSL crypto device */
2116 static int
2117 cryptodev_openssl_create(const char *name,
2118 			struct rte_vdev_device *vdev,
2119 			struct rte_cryptodev_pmd_init_params *init_params)
2120 {
2121 	struct rte_cryptodev *dev;
2122 	struct openssl_private *internals;
2123 
2124 	dev = rte_cryptodev_pmd_create(name, &vdev->device, init_params);
2125 	if (dev == NULL) {
2126 		OPENSSL_LOG(ERR, "failed to create cryptodev vdev");
2127 		goto init_error;
2128 	}
2129 
2130 	dev->driver_id = cryptodev_driver_id;
2131 	dev->dev_ops = rte_openssl_pmd_ops;
2132 
2133 	/* register rx/tx burst functions for data path */
2134 	dev->dequeue_burst = openssl_pmd_dequeue_burst;
2135 	dev->enqueue_burst = openssl_pmd_enqueue_burst;
2136 
2137 	dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
2138 			RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
2139 			RTE_CRYPTODEV_FF_CPU_AESNI |
2140 			RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT |
2141 			RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT |
2142 			RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO |
2143 			RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_EXP |
2144 			RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_QT;
2145 
2146 	internals = dev->data->dev_private;
2147 
2148 	internals->max_nb_qpairs = init_params->max_nb_queue_pairs;
2149 
2150 	return 0;
2151 
2152 init_error:
2153 	OPENSSL_LOG(ERR, "driver %s: create failed",
2154 			init_params->name);
2155 
2156 	cryptodev_openssl_remove(vdev);
2157 	return -EFAULT;
2158 }
2159 
2160 /** Initialise OPENSSL crypto device */
2161 static int
2162 cryptodev_openssl_probe(struct rte_vdev_device *vdev)
2163 {
2164 	struct rte_cryptodev_pmd_init_params init_params = {
2165 		"",
2166 		sizeof(struct openssl_private),
2167 		rte_socket_id(),
2168 		RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_QUEUE_PAIRS
2169 	};
2170 	const char *name;
2171 	const char *input_args;
2172 
2173 	name = rte_vdev_device_name(vdev);
2174 	if (name == NULL)
2175 		return -EINVAL;
2176 	input_args = rte_vdev_device_args(vdev);
2177 
2178 	rte_cryptodev_pmd_parse_input_args(&init_params, input_args);
2179 
2180 	return cryptodev_openssl_create(name, vdev, &init_params);
2181 }
2182 
2183 /** Uninitialise OPENSSL crypto device */
2184 static int
2185 cryptodev_openssl_remove(struct rte_vdev_device *vdev)
2186 {
2187 	struct rte_cryptodev *cryptodev;
2188 	const char *name;
2189 
2190 	name = rte_vdev_device_name(vdev);
2191 	if (name == NULL)
2192 		return -EINVAL;
2193 
2194 	cryptodev = rte_cryptodev_pmd_get_named_dev(name);
2195 	if (cryptodev == NULL)
2196 		return -ENODEV;
2197 
2198 	return rte_cryptodev_pmd_destroy(cryptodev);
2199 }
2200 
2201 static struct rte_vdev_driver cryptodev_openssl_pmd_drv = {
2202 	.probe = cryptodev_openssl_probe,
2203 	.remove = cryptodev_openssl_remove
2204 };
2205 
2206 static struct cryptodev_driver openssl_crypto_drv;
2207 
2208 RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_OPENSSL_PMD,
2209 	cryptodev_openssl_pmd_drv);
2210 RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_OPENSSL_PMD,
2211 	"max_nb_queue_pairs=<int> "
2212 	"socket_id=<int>");
2213 RTE_PMD_REGISTER_CRYPTO_DRIVER(openssl_crypto_drv,
2214 		cryptodev_openssl_pmd_drv.driver, cryptodev_driver_id);
2215 
2216 RTE_INIT(openssl_init_log)
2217 {
2218 	openssl_logtype_driver = rte_log_register("pmd.crypto.openssl");
2219 }
2220