xref: /dpdk/drivers/crypto/openssl/rte_openssl_pmd.c (revision 1c839246f934340e8dfb8fd71bc436f81541a587)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4 
5 #include <rte_common.h>
6 #include <rte_hexdump.h>
7 #include <rte_cryptodev.h>
8 #include <cryptodev_pmd.h>
9 #include <rte_bus_vdev.h>
10 #include <rte_malloc.h>
11 #include <rte_cpuflags.h>
12 
13 #include <openssl/hmac.h>
14 #include <openssl/evp.h>
15 
16 #include "openssl_pmd_private.h"
17 #include "compat.h"
18 
19 #define DES_BLOCK_SIZE 8
20 
21 static uint8_t cryptodev_driver_id;
22 
23 #if (OPENSSL_VERSION_NUMBER < 0x10100000L)
24 static HMAC_CTX *HMAC_CTX_new(void)
25 {
26 	HMAC_CTX *ctx = OPENSSL_malloc(sizeof(*ctx));
27 
28 	if (ctx != NULL)
29 		HMAC_CTX_init(ctx);
30 	return ctx;
31 }
32 
33 static void HMAC_CTX_free(HMAC_CTX *ctx)
34 {
35 	if (ctx != NULL) {
36 		HMAC_CTX_cleanup(ctx);
37 		OPENSSL_free(ctx);
38 	}
39 }
40 #endif
41 
42 static int cryptodev_openssl_remove(struct rte_vdev_device *vdev);
43 
44 /*----------------------------------------------------------------------------*/
45 
46 /**
47  * Increment counter by 1
48  * Counter is 64 bit array, big-endian
49  */
50 static void
51 ctr_inc(uint8_t *ctr)
52 {
53 	uint64_t *ctr64 = (uint64_t *)ctr;
54 
55 	*ctr64 = __builtin_bswap64(*ctr64);
56 	(*ctr64)++;
57 	*ctr64 = __builtin_bswap64(*ctr64);
58 }
59 
60 /*
61  *------------------------------------------------------------------------------
62  * Session Prepare
63  *------------------------------------------------------------------------------
64  */
65 
66 /** Get xform chain order */
67 static enum openssl_chain_order
68 openssl_get_chain_order(const struct rte_crypto_sym_xform *xform)
69 {
70 	enum openssl_chain_order res = OPENSSL_CHAIN_NOT_SUPPORTED;
71 
72 	if (xform != NULL) {
73 		if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
74 			if (xform->next == NULL)
75 				res =  OPENSSL_CHAIN_ONLY_AUTH;
76 			else if (xform->next->type ==
77 					RTE_CRYPTO_SYM_XFORM_CIPHER)
78 				res =  OPENSSL_CHAIN_AUTH_CIPHER;
79 		}
80 		if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
81 			if (xform->next == NULL)
82 				res =  OPENSSL_CHAIN_ONLY_CIPHER;
83 			else if (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH)
84 				res =  OPENSSL_CHAIN_CIPHER_AUTH;
85 		}
86 		if (xform->type == RTE_CRYPTO_SYM_XFORM_AEAD)
87 			res = OPENSSL_CHAIN_COMBINED;
88 	}
89 
90 	return res;
91 }
92 
93 /** Get session cipher key from input cipher key */
94 static void
95 get_cipher_key(const uint8_t *input_key, int keylen, uint8_t *session_key)
96 {
97 	memcpy(session_key, input_key, keylen);
98 }
99 
100 /** Get key ede 24 bytes standard from input key */
101 static int
102 get_cipher_key_ede(const uint8_t *key, int keylen, uint8_t *key_ede)
103 {
104 	int res = 0;
105 
106 	/* Initialize keys - 24 bytes: [key1-key2-key3] */
107 	switch (keylen) {
108 	case 24:
109 		memcpy(key_ede, key, 24);
110 		break;
111 	case 16:
112 		/* K3 = K1 */
113 		memcpy(key_ede, key, 16);
114 		memcpy(key_ede + 16, key, 8);
115 		break;
116 	case 8:
117 		/* K1 = K2 = K3 (DES compatibility) */
118 		memcpy(key_ede, key, 8);
119 		memcpy(key_ede + 8, key, 8);
120 		memcpy(key_ede + 16, key, 8);
121 		break;
122 	default:
123 		OPENSSL_LOG(ERR, "Unsupported key size");
124 		res = -EINVAL;
125 	}
126 
127 	return res;
128 }
129 
130 /** Get adequate openssl function for input cipher algorithm */
131 static uint8_t
132 get_cipher_algo(enum rte_crypto_cipher_algorithm sess_algo, size_t keylen,
133 		const EVP_CIPHER **algo)
134 {
135 	int res = 0;
136 
137 	if (algo != NULL) {
138 		switch (sess_algo) {
139 		case RTE_CRYPTO_CIPHER_3DES_CBC:
140 			switch (keylen) {
141 			case 8:
142 				*algo = EVP_des_cbc();
143 				break;
144 			case 16:
145 				*algo = EVP_des_ede_cbc();
146 				break;
147 			case 24:
148 				*algo = EVP_des_ede3_cbc();
149 				break;
150 			default:
151 				res = -EINVAL;
152 			}
153 			break;
154 		case RTE_CRYPTO_CIPHER_3DES_CTR:
155 			break;
156 		case RTE_CRYPTO_CIPHER_AES_CBC:
157 			switch (keylen) {
158 			case 16:
159 				*algo = EVP_aes_128_cbc();
160 				break;
161 			case 24:
162 				*algo = EVP_aes_192_cbc();
163 				break;
164 			case 32:
165 				*algo = EVP_aes_256_cbc();
166 				break;
167 			default:
168 				res = -EINVAL;
169 			}
170 			break;
171 		case RTE_CRYPTO_CIPHER_AES_CTR:
172 			switch (keylen) {
173 			case 16:
174 				*algo = EVP_aes_128_ctr();
175 				break;
176 			case 24:
177 				*algo = EVP_aes_192_ctr();
178 				break;
179 			case 32:
180 				*algo = EVP_aes_256_ctr();
181 				break;
182 			default:
183 				res = -EINVAL;
184 			}
185 			break;
186 		default:
187 			res = -EINVAL;
188 			break;
189 		}
190 	} else {
191 		res = -EINVAL;
192 	}
193 
194 	return res;
195 }
196 
197 /** Get adequate openssl function for input auth algorithm */
198 static uint8_t
199 get_auth_algo(enum rte_crypto_auth_algorithm sessalgo,
200 		const EVP_MD **algo)
201 {
202 	int res = 0;
203 
204 	if (algo != NULL) {
205 		switch (sessalgo) {
206 		case RTE_CRYPTO_AUTH_MD5:
207 		case RTE_CRYPTO_AUTH_MD5_HMAC:
208 			*algo = EVP_md5();
209 			break;
210 		case RTE_CRYPTO_AUTH_SHA1:
211 		case RTE_CRYPTO_AUTH_SHA1_HMAC:
212 			*algo = EVP_sha1();
213 			break;
214 		case RTE_CRYPTO_AUTH_SHA224:
215 		case RTE_CRYPTO_AUTH_SHA224_HMAC:
216 			*algo = EVP_sha224();
217 			break;
218 		case RTE_CRYPTO_AUTH_SHA256:
219 		case RTE_CRYPTO_AUTH_SHA256_HMAC:
220 			*algo = EVP_sha256();
221 			break;
222 		case RTE_CRYPTO_AUTH_SHA384:
223 		case RTE_CRYPTO_AUTH_SHA384_HMAC:
224 			*algo = EVP_sha384();
225 			break;
226 		case RTE_CRYPTO_AUTH_SHA512:
227 		case RTE_CRYPTO_AUTH_SHA512_HMAC:
228 			*algo = EVP_sha512();
229 			break;
230 		default:
231 			res = -EINVAL;
232 			break;
233 		}
234 	} else {
235 		res = -EINVAL;
236 	}
237 
238 	return res;
239 }
240 
241 /** Get adequate openssl function for input cipher algorithm */
242 static uint8_t
243 get_aead_algo(enum rte_crypto_aead_algorithm sess_algo, size_t keylen,
244 		const EVP_CIPHER **algo)
245 {
246 	int res = 0;
247 
248 	if (algo != NULL) {
249 		switch (sess_algo) {
250 		case RTE_CRYPTO_AEAD_AES_GCM:
251 			switch (keylen) {
252 			case 16:
253 				*algo = EVP_aes_128_gcm();
254 				break;
255 			case 24:
256 				*algo = EVP_aes_192_gcm();
257 				break;
258 			case 32:
259 				*algo = EVP_aes_256_gcm();
260 				break;
261 			default:
262 				res = -EINVAL;
263 			}
264 			break;
265 		case RTE_CRYPTO_AEAD_AES_CCM:
266 			switch (keylen) {
267 			case 16:
268 				*algo = EVP_aes_128_ccm();
269 				break;
270 			case 24:
271 				*algo = EVP_aes_192_ccm();
272 				break;
273 			case 32:
274 				*algo = EVP_aes_256_ccm();
275 				break;
276 			default:
277 				res = -EINVAL;
278 			}
279 			break;
280 		default:
281 			res = -EINVAL;
282 			break;
283 		}
284 	} else {
285 		res = -EINVAL;
286 	}
287 
288 	return res;
289 }
290 
291 /* Set session AEAD encryption parameters */
292 static int
293 openssl_set_sess_aead_enc_param(struct openssl_session *sess,
294 		enum rte_crypto_aead_algorithm algo,
295 		uint8_t tag_len, const uint8_t *key)
296 {
297 	int iv_type = 0;
298 	unsigned int do_ccm;
299 
300 	sess->cipher.direction = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
301 	sess->auth.operation = RTE_CRYPTO_AUTH_OP_GENERATE;
302 
303 	/* Select AEAD algo */
304 	switch (algo) {
305 	case RTE_CRYPTO_AEAD_AES_GCM:
306 		iv_type = EVP_CTRL_GCM_SET_IVLEN;
307 		if (tag_len != 16)
308 			return -EINVAL;
309 		do_ccm = 0;
310 		break;
311 	case RTE_CRYPTO_AEAD_AES_CCM:
312 		iv_type = EVP_CTRL_CCM_SET_IVLEN;
313 		/* Digest size can be 4, 6, 8, 10, 12, 14 or 16 bytes */
314 		if (tag_len < 4 || tag_len > 16 || (tag_len & 1) == 1)
315 			return -EINVAL;
316 		do_ccm = 1;
317 		break;
318 	default:
319 		return -ENOTSUP;
320 	}
321 
322 	sess->cipher.mode = OPENSSL_CIPHER_LIB;
323 	sess->cipher.ctx = EVP_CIPHER_CTX_new();
324 
325 	if (get_aead_algo(algo, sess->cipher.key.length,
326 			&sess->cipher.evp_algo) != 0)
327 		return -EINVAL;
328 
329 	get_cipher_key(key, sess->cipher.key.length, sess->cipher.key.data);
330 
331 	sess->chain_order = OPENSSL_CHAIN_COMBINED;
332 
333 	if (EVP_EncryptInit_ex(sess->cipher.ctx, sess->cipher.evp_algo,
334 			NULL, NULL, NULL) <= 0)
335 		return -EINVAL;
336 
337 	if (EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, iv_type, sess->iv.length,
338 			NULL) <= 0)
339 		return -EINVAL;
340 
341 	if (do_ccm)
342 		EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, EVP_CTRL_CCM_SET_TAG,
343 				tag_len, NULL);
344 
345 	if (EVP_EncryptInit_ex(sess->cipher.ctx, NULL, NULL, key, NULL) <= 0)
346 		return -EINVAL;
347 
348 	return 0;
349 }
350 
351 /* Set session AEAD decryption parameters */
352 static int
353 openssl_set_sess_aead_dec_param(struct openssl_session *sess,
354 		enum rte_crypto_aead_algorithm algo,
355 		uint8_t tag_len, const uint8_t *key)
356 {
357 	int iv_type = 0;
358 	unsigned int do_ccm = 0;
359 
360 	sess->cipher.direction = RTE_CRYPTO_CIPHER_OP_DECRYPT;
361 	sess->auth.operation = RTE_CRYPTO_AUTH_OP_VERIFY;
362 
363 	/* Select AEAD algo */
364 	switch (algo) {
365 	case RTE_CRYPTO_AEAD_AES_GCM:
366 		iv_type = EVP_CTRL_GCM_SET_IVLEN;
367 		if (tag_len != 16)
368 			return -EINVAL;
369 		break;
370 	case RTE_CRYPTO_AEAD_AES_CCM:
371 		iv_type = EVP_CTRL_CCM_SET_IVLEN;
372 		/* Digest size can be 4, 6, 8, 10, 12, 14 or 16 bytes */
373 		if (tag_len < 4 || tag_len > 16 || (tag_len & 1) == 1)
374 			return -EINVAL;
375 		do_ccm = 1;
376 		break;
377 	default:
378 		return -ENOTSUP;
379 	}
380 
381 	sess->cipher.mode = OPENSSL_CIPHER_LIB;
382 	sess->cipher.ctx = EVP_CIPHER_CTX_new();
383 
384 	if (get_aead_algo(algo, sess->cipher.key.length,
385 			&sess->cipher.evp_algo) != 0)
386 		return -EINVAL;
387 
388 	get_cipher_key(key, sess->cipher.key.length, sess->cipher.key.data);
389 
390 	sess->chain_order = OPENSSL_CHAIN_COMBINED;
391 
392 	if (EVP_DecryptInit_ex(sess->cipher.ctx, sess->cipher.evp_algo,
393 			NULL, NULL, NULL) <= 0)
394 		return -EINVAL;
395 
396 	if (EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, iv_type,
397 			sess->iv.length, NULL) <= 0)
398 		return -EINVAL;
399 
400 	if (do_ccm)
401 		EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, EVP_CTRL_CCM_SET_TAG,
402 				tag_len, NULL);
403 
404 	if (EVP_DecryptInit_ex(sess->cipher.ctx, NULL, NULL, key, NULL) <= 0)
405 		return -EINVAL;
406 
407 	return 0;
408 }
409 
410 /** Set session cipher parameters */
411 static int
412 openssl_set_session_cipher_parameters(struct openssl_session *sess,
413 		const struct rte_crypto_sym_xform *xform)
414 {
415 	/* Select cipher direction */
416 	sess->cipher.direction = xform->cipher.op;
417 	/* Select cipher key */
418 	sess->cipher.key.length = xform->cipher.key.length;
419 
420 	/* Set IV parameters */
421 	sess->iv.offset = xform->cipher.iv.offset;
422 	sess->iv.length = xform->cipher.iv.length;
423 
424 	/* Select cipher algo */
425 	switch (xform->cipher.algo) {
426 	case RTE_CRYPTO_CIPHER_3DES_CBC:
427 	case RTE_CRYPTO_CIPHER_AES_CBC:
428 	case RTE_CRYPTO_CIPHER_AES_CTR:
429 		sess->cipher.mode = OPENSSL_CIPHER_LIB;
430 		sess->cipher.algo = xform->cipher.algo;
431 		sess->cipher.ctx = EVP_CIPHER_CTX_new();
432 
433 		if (get_cipher_algo(sess->cipher.algo, sess->cipher.key.length,
434 				&sess->cipher.evp_algo) != 0)
435 			return -EINVAL;
436 
437 		get_cipher_key(xform->cipher.key.data, sess->cipher.key.length,
438 			sess->cipher.key.data);
439 		if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
440 			if (EVP_EncryptInit_ex(sess->cipher.ctx,
441 					sess->cipher.evp_algo,
442 					NULL, xform->cipher.key.data,
443 					NULL) != 1) {
444 				return -EINVAL;
445 			}
446 		} else if (sess->cipher.direction ==
447 				RTE_CRYPTO_CIPHER_OP_DECRYPT) {
448 			if (EVP_DecryptInit_ex(sess->cipher.ctx,
449 					sess->cipher.evp_algo,
450 					NULL, xform->cipher.key.data,
451 					NULL) != 1) {
452 				return -EINVAL;
453 			}
454 		}
455 
456 		break;
457 
458 	case RTE_CRYPTO_CIPHER_3DES_CTR:
459 		sess->cipher.mode = OPENSSL_CIPHER_DES3CTR;
460 		sess->cipher.ctx = EVP_CIPHER_CTX_new();
461 
462 		if (get_cipher_key_ede(xform->cipher.key.data,
463 				sess->cipher.key.length,
464 				sess->cipher.key.data) != 0)
465 			return -EINVAL;
466 		break;
467 
468 	case RTE_CRYPTO_CIPHER_DES_CBC:
469 		sess->cipher.algo = xform->cipher.algo;
470 		sess->cipher.ctx = EVP_CIPHER_CTX_new();
471 		sess->cipher.evp_algo = EVP_des_cbc();
472 
473 		get_cipher_key(xform->cipher.key.data, sess->cipher.key.length,
474 			sess->cipher.key.data);
475 		if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
476 			if (EVP_EncryptInit_ex(sess->cipher.ctx,
477 					sess->cipher.evp_algo,
478 					NULL, xform->cipher.key.data,
479 					NULL) != 1) {
480 				return -EINVAL;
481 			}
482 		} else if (sess->cipher.direction ==
483 				RTE_CRYPTO_CIPHER_OP_DECRYPT) {
484 			if (EVP_DecryptInit_ex(sess->cipher.ctx,
485 					sess->cipher.evp_algo,
486 					NULL, xform->cipher.key.data,
487 					NULL) != 1) {
488 				return -EINVAL;
489 			}
490 		}
491 
492 		break;
493 
494 	case RTE_CRYPTO_CIPHER_DES_DOCSISBPI:
495 		sess->cipher.algo = xform->cipher.algo;
496 		sess->chain_order = OPENSSL_CHAIN_CIPHER_BPI;
497 		sess->cipher.ctx = EVP_CIPHER_CTX_new();
498 		sess->cipher.evp_algo = EVP_des_cbc();
499 
500 		sess->cipher.bpi_ctx = EVP_CIPHER_CTX_new();
501 		/* IV will be ECB encrypted whether direction is encrypt or decrypt */
502 		if (EVP_EncryptInit_ex(sess->cipher.bpi_ctx, EVP_des_ecb(),
503 				NULL, xform->cipher.key.data, 0) != 1)
504 			return -EINVAL;
505 
506 		get_cipher_key(xform->cipher.key.data, sess->cipher.key.length,
507 			sess->cipher.key.data);
508 		if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
509 			if (EVP_EncryptInit_ex(sess->cipher.ctx,
510 					sess->cipher.evp_algo,
511 					NULL, xform->cipher.key.data,
512 					NULL) != 1) {
513 				return -EINVAL;
514 			}
515 		} else if (sess->cipher.direction ==
516 				RTE_CRYPTO_CIPHER_OP_DECRYPT) {
517 			if (EVP_DecryptInit_ex(sess->cipher.ctx,
518 					sess->cipher.evp_algo,
519 					NULL, xform->cipher.key.data,
520 					NULL) != 1) {
521 				return -EINVAL;
522 			}
523 		}
524 
525 		break;
526 	default:
527 		sess->cipher.algo = RTE_CRYPTO_CIPHER_NULL;
528 		return -ENOTSUP;
529 	}
530 
531 	return 0;
532 }
533 
534 /* Set session auth parameters */
535 static int
536 openssl_set_session_auth_parameters(struct openssl_session *sess,
537 		const struct rte_crypto_sym_xform *xform)
538 {
539 	/* Select auth generate/verify */
540 	sess->auth.operation = xform->auth.op;
541 	sess->auth.algo = xform->auth.algo;
542 
543 	sess->auth.digest_length = xform->auth.digest_length;
544 
545 	/* Select auth algo */
546 	switch (xform->auth.algo) {
547 	case RTE_CRYPTO_AUTH_AES_GMAC:
548 		/*
549 		 * OpenSSL requires GMAC to be a GCM operation
550 		 * with no cipher data length
551 		 */
552 		sess->cipher.key.length = xform->auth.key.length;
553 
554 		/* Set IV parameters */
555 		sess->iv.offset = xform->auth.iv.offset;
556 		sess->iv.length = xform->auth.iv.length;
557 
558 		if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_GENERATE)
559 			return openssl_set_sess_aead_enc_param(sess,
560 						RTE_CRYPTO_AEAD_AES_GCM,
561 						xform->auth.digest_length,
562 						xform->auth.key.data);
563 		else
564 			return openssl_set_sess_aead_dec_param(sess,
565 						RTE_CRYPTO_AEAD_AES_GCM,
566 						xform->auth.digest_length,
567 						xform->auth.key.data);
568 		break;
569 
570 	case RTE_CRYPTO_AUTH_MD5:
571 	case RTE_CRYPTO_AUTH_SHA1:
572 	case RTE_CRYPTO_AUTH_SHA224:
573 	case RTE_CRYPTO_AUTH_SHA256:
574 	case RTE_CRYPTO_AUTH_SHA384:
575 	case RTE_CRYPTO_AUTH_SHA512:
576 		sess->auth.mode = OPENSSL_AUTH_AS_AUTH;
577 		if (get_auth_algo(xform->auth.algo,
578 				&sess->auth.auth.evp_algo) != 0)
579 			return -EINVAL;
580 		sess->auth.auth.ctx = EVP_MD_CTX_create();
581 		break;
582 
583 	case RTE_CRYPTO_AUTH_MD5_HMAC:
584 	case RTE_CRYPTO_AUTH_SHA1_HMAC:
585 	case RTE_CRYPTO_AUTH_SHA224_HMAC:
586 	case RTE_CRYPTO_AUTH_SHA256_HMAC:
587 	case RTE_CRYPTO_AUTH_SHA384_HMAC:
588 	case RTE_CRYPTO_AUTH_SHA512_HMAC:
589 		sess->auth.mode = OPENSSL_AUTH_AS_HMAC;
590 		sess->auth.hmac.ctx = HMAC_CTX_new();
591 		if (get_auth_algo(xform->auth.algo,
592 				&sess->auth.hmac.evp_algo) != 0)
593 			return -EINVAL;
594 
595 		if (HMAC_Init_ex(sess->auth.hmac.ctx,
596 				xform->auth.key.data,
597 				xform->auth.key.length,
598 				sess->auth.hmac.evp_algo, NULL) != 1)
599 			return -EINVAL;
600 		break;
601 
602 	default:
603 		return -ENOTSUP;
604 	}
605 
606 	return 0;
607 }
608 
609 /* Set session AEAD parameters */
610 static int
611 openssl_set_session_aead_parameters(struct openssl_session *sess,
612 		const struct rte_crypto_sym_xform *xform)
613 {
614 	/* Select cipher key */
615 	sess->cipher.key.length = xform->aead.key.length;
616 
617 	/* Set IV parameters */
618 	if (xform->aead.algo == RTE_CRYPTO_AEAD_AES_CCM)
619 		/*
620 		 * For AES-CCM, the actual IV is placed
621 		 * one byte after the start of the IV field,
622 		 * according to the API.
623 		 */
624 		sess->iv.offset = xform->aead.iv.offset + 1;
625 	else
626 		sess->iv.offset = xform->aead.iv.offset;
627 
628 	sess->iv.length = xform->aead.iv.length;
629 
630 	sess->auth.aad_length = xform->aead.aad_length;
631 	sess->auth.digest_length = xform->aead.digest_length;
632 
633 	sess->aead_algo = xform->aead.algo;
634 	/* Select cipher direction */
635 	if (xform->aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT)
636 		return openssl_set_sess_aead_enc_param(sess, xform->aead.algo,
637 				xform->aead.digest_length, xform->aead.key.data);
638 	else
639 		return openssl_set_sess_aead_dec_param(sess, xform->aead.algo,
640 				xform->aead.digest_length, xform->aead.key.data);
641 }
642 
643 /** Parse crypto xform chain and set private session parameters */
644 int
645 openssl_set_session_parameters(struct openssl_session *sess,
646 		const struct rte_crypto_sym_xform *xform)
647 {
648 	const struct rte_crypto_sym_xform *cipher_xform = NULL;
649 	const struct rte_crypto_sym_xform *auth_xform = NULL;
650 	const struct rte_crypto_sym_xform *aead_xform = NULL;
651 	int ret;
652 
653 	sess->chain_order = openssl_get_chain_order(xform);
654 	switch (sess->chain_order) {
655 	case OPENSSL_CHAIN_ONLY_CIPHER:
656 		cipher_xform = xform;
657 		break;
658 	case OPENSSL_CHAIN_ONLY_AUTH:
659 		auth_xform = xform;
660 		break;
661 	case OPENSSL_CHAIN_CIPHER_AUTH:
662 		cipher_xform = xform;
663 		auth_xform = xform->next;
664 		break;
665 	case OPENSSL_CHAIN_AUTH_CIPHER:
666 		auth_xform = xform;
667 		cipher_xform = xform->next;
668 		break;
669 	case OPENSSL_CHAIN_COMBINED:
670 		aead_xform = xform;
671 		break;
672 	default:
673 		return -EINVAL;
674 	}
675 
676 	/* Default IV length = 0 */
677 	sess->iv.length = 0;
678 
679 	/* cipher_xform must be check before auth_xform */
680 	if (cipher_xform) {
681 		ret = openssl_set_session_cipher_parameters(
682 				sess, cipher_xform);
683 		if (ret != 0) {
684 			OPENSSL_LOG(ERR,
685 				"Invalid/unsupported cipher parameters");
686 			return ret;
687 		}
688 	}
689 
690 	if (auth_xform) {
691 		ret = openssl_set_session_auth_parameters(sess, auth_xform);
692 		if (ret != 0) {
693 			OPENSSL_LOG(ERR,
694 				"Invalid/unsupported auth parameters");
695 			return ret;
696 		}
697 	}
698 
699 	if (aead_xform) {
700 		ret = openssl_set_session_aead_parameters(sess, aead_xform);
701 		if (ret != 0) {
702 			OPENSSL_LOG(ERR,
703 				"Invalid/unsupported AEAD parameters");
704 			return ret;
705 		}
706 	}
707 
708 	return 0;
709 }
710 
711 /** Reset private session parameters */
712 void
713 openssl_reset_session(struct openssl_session *sess)
714 {
715 	EVP_CIPHER_CTX_free(sess->cipher.ctx);
716 
717 	if (sess->chain_order == OPENSSL_CHAIN_CIPHER_BPI)
718 		EVP_CIPHER_CTX_free(sess->cipher.bpi_ctx);
719 
720 	switch (sess->auth.mode) {
721 	case OPENSSL_AUTH_AS_AUTH:
722 		EVP_MD_CTX_destroy(sess->auth.auth.ctx);
723 		break;
724 	case OPENSSL_AUTH_AS_HMAC:
725 		EVP_PKEY_free(sess->auth.hmac.pkey);
726 		HMAC_CTX_free(sess->auth.hmac.ctx);
727 		break;
728 	default:
729 		break;
730 	}
731 }
732 
733 /** Provide session for operation */
734 static void *
735 get_session(struct openssl_qp *qp, struct rte_crypto_op *op)
736 {
737 	struct openssl_session *sess = NULL;
738 	struct openssl_asym_session *asym_sess = NULL;
739 
740 	if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
741 		if (op->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC) {
742 			/* get existing session */
743 			if (likely(op->sym->session != NULL))
744 				sess = (struct openssl_session *)
745 						get_sym_session_private_data(
746 						op->sym->session,
747 						cryptodev_driver_id);
748 		} else {
749 			if (likely(op->asym->session != NULL))
750 				asym_sess = (struct openssl_asym_session *)
751 						op->asym->session->sess_private_data;
752 			if (asym_sess == NULL)
753 				op->status =
754 					RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
755 			return asym_sess;
756 		}
757 	} else {
758 		/* sessionless asymmetric not supported */
759 		if (op->type == RTE_CRYPTO_OP_TYPE_ASYMMETRIC)
760 			return NULL;
761 
762 		/* provide internal session */
763 		void *_sess = rte_cryptodev_sym_session_create(qp->sess_mp);
764 		void *_sess_private_data = NULL;
765 
766 		if (_sess == NULL)
767 			return NULL;
768 
769 		if (rte_mempool_get(qp->sess_mp_priv,
770 				(void **)&_sess_private_data))
771 			return NULL;
772 
773 		sess = (struct openssl_session *)_sess_private_data;
774 
775 		if (unlikely(openssl_set_session_parameters(sess,
776 				op->sym->xform) != 0)) {
777 			rte_mempool_put(qp->sess_mp, _sess);
778 			rte_mempool_put(qp->sess_mp_priv, _sess_private_data);
779 			sess = NULL;
780 		}
781 		op->sym->session = (struct rte_cryptodev_sym_session *)_sess;
782 		set_sym_session_private_data(op->sym->session,
783 				cryptodev_driver_id, _sess_private_data);
784 	}
785 
786 	if (sess == NULL)
787 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
788 
789 	return sess;
790 }
791 
792 /*
793  *------------------------------------------------------------------------------
794  * Process Operations
795  *------------------------------------------------------------------------------
796  */
797 static inline int
798 process_openssl_encryption_update(struct rte_mbuf *mbuf_src, int offset,
799 		uint8_t **dst, int srclen, EVP_CIPHER_CTX *ctx, uint8_t inplace)
800 {
801 	struct rte_mbuf *m;
802 	int dstlen;
803 	int l, n = srclen;
804 	uint8_t *src, temp[EVP_CIPHER_CTX_block_size(ctx)];
805 
806 	for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m);
807 			m = m->next)
808 		offset -= rte_pktmbuf_data_len(m);
809 
810 	if (m == 0)
811 		return -1;
812 
813 	src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset);
814 	if (inplace)
815 		*dst = src;
816 
817 	l = rte_pktmbuf_data_len(m) - offset;
818 	if (srclen <= l) {
819 		if (EVP_EncryptUpdate(ctx, *dst, &dstlen, src, srclen) <= 0)
820 			return -1;
821 		*dst += l;
822 		return 0;
823 	}
824 
825 	if (EVP_EncryptUpdate(ctx, *dst, &dstlen, src, l) <= 0)
826 		return -1;
827 
828 	*dst += dstlen;
829 	n -= l;
830 
831 	for (m = m->next; (m != NULL) && (n > 0); m = m->next) {
832 		uint8_t diff = l - dstlen, rem;
833 
834 		src = rte_pktmbuf_mtod(m, uint8_t *);
835 		l = RTE_MIN(rte_pktmbuf_data_len(m), n);
836 		if (diff && inplace) {
837 			rem = RTE_MIN(l,
838 				(EVP_CIPHER_CTX_block_size(ctx) - diff));
839 			if (EVP_EncryptUpdate(ctx, temp,
840 						&dstlen, src, rem) <= 0)
841 				return -1;
842 			n -= rem;
843 			rte_memcpy(*dst, temp, diff);
844 			rte_memcpy(src, temp + diff, rem);
845 			src += rem;
846 			l -= rem;
847 		}
848 		if (inplace)
849 			*dst = src;
850 		if (EVP_EncryptUpdate(ctx, *dst, &dstlen, src, l) <= 0)
851 			return -1;
852 		*dst += dstlen;
853 		n -= l;
854 	}
855 
856 	return 0;
857 }
858 
859 static inline int
860 process_openssl_decryption_update(struct rte_mbuf *mbuf_src, int offset,
861 		uint8_t **dst, int srclen, EVP_CIPHER_CTX *ctx, uint8_t inplace)
862 {
863 	struct rte_mbuf *m;
864 	int dstlen;
865 	int l, n = srclen;
866 	uint8_t *src, temp[EVP_CIPHER_CTX_block_size(ctx)];
867 
868 	for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m);
869 			m = m->next)
870 		offset -= rte_pktmbuf_data_len(m);
871 
872 	if (m == 0)
873 		return -1;
874 
875 	src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset);
876 	if (inplace)
877 		*dst = src;
878 
879 	l = rte_pktmbuf_data_len(m) - offset;
880 	if (srclen <= l) {
881 		if (EVP_DecryptUpdate(ctx, *dst, &dstlen, src, srclen) <= 0)
882 			return -1;
883 		*dst += l;
884 		return 0;
885 	}
886 
887 	if (EVP_DecryptUpdate(ctx, *dst, &dstlen, src, l) <= 0)
888 		return -1;
889 
890 	*dst += dstlen;
891 	n -= l;
892 
893 	for (m = m->next; (m != NULL) && (n > 0); m = m->next) {
894 		uint8_t diff = l - dstlen, rem;
895 
896 		src = rte_pktmbuf_mtod(m, uint8_t *);
897 		l = RTE_MIN(rte_pktmbuf_data_len(m), n);
898 		if (diff && inplace) {
899 			rem = RTE_MIN(l,
900 				(EVP_CIPHER_CTX_block_size(ctx) - diff));
901 			if (EVP_DecryptUpdate(ctx, temp,
902 						&dstlen, src, rem) <= 0)
903 				return -1;
904 			n -= rem;
905 			rte_memcpy(*dst, temp, diff);
906 			rte_memcpy(src, temp + diff, rem);
907 			src += rem;
908 			l -= rem;
909 		}
910 		if (inplace)
911 			*dst = src;
912 		if (EVP_DecryptUpdate(ctx, *dst, &dstlen, src, l) <= 0)
913 			return -1;
914 		*dst += dstlen;
915 		n -= l;
916 	}
917 
918 	return 0;
919 }
920 
921 /** Process standard openssl cipher encryption */
922 static int
923 process_openssl_cipher_encrypt(struct rte_mbuf *mbuf_src, uint8_t *dst,
924 		int offset, uint8_t *iv, int srclen, EVP_CIPHER_CTX *ctx,
925 		uint8_t inplace)
926 {
927 	int totlen;
928 
929 	if (EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
930 		goto process_cipher_encrypt_err;
931 
932 	EVP_CIPHER_CTX_set_padding(ctx, 0);
933 
934 	if (process_openssl_encryption_update(mbuf_src, offset, &dst,
935 			srclen, ctx, inplace))
936 		goto process_cipher_encrypt_err;
937 
938 	if (EVP_EncryptFinal_ex(ctx, dst, &totlen) <= 0)
939 		goto process_cipher_encrypt_err;
940 
941 	return 0;
942 
943 process_cipher_encrypt_err:
944 	OPENSSL_LOG(ERR, "Process openssl cipher encrypt failed");
945 	return -EINVAL;
946 }
947 
948 /** Process standard openssl cipher encryption */
949 static int
950 process_openssl_cipher_bpi_encrypt(uint8_t *src, uint8_t *dst,
951 		uint8_t *iv, int srclen,
952 		EVP_CIPHER_CTX *ctx)
953 {
954 	uint8_t i;
955 	uint8_t encrypted_iv[DES_BLOCK_SIZE];
956 	int encrypted_ivlen;
957 
958 	if (EVP_EncryptUpdate(ctx, encrypted_iv, &encrypted_ivlen,
959 			iv, DES_BLOCK_SIZE) <= 0)
960 		goto process_cipher_encrypt_err;
961 
962 	for (i = 0; i < srclen; i++)
963 		*(dst + i) = *(src + i) ^ (encrypted_iv[i]);
964 
965 	return 0;
966 
967 process_cipher_encrypt_err:
968 	OPENSSL_LOG(ERR, "Process openssl cipher bpi encrypt failed");
969 	return -EINVAL;
970 }
971 /** Process standard openssl cipher decryption */
972 static int
973 process_openssl_cipher_decrypt(struct rte_mbuf *mbuf_src, uint8_t *dst,
974 		int offset, uint8_t *iv, int srclen, EVP_CIPHER_CTX *ctx,
975 		uint8_t inplace)
976 {
977 	int totlen;
978 
979 	if (EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
980 		goto process_cipher_decrypt_err;
981 
982 	EVP_CIPHER_CTX_set_padding(ctx, 0);
983 
984 	if (process_openssl_decryption_update(mbuf_src, offset, &dst,
985 			srclen, ctx, inplace))
986 		goto process_cipher_decrypt_err;
987 
988 	if (EVP_DecryptFinal_ex(ctx, dst, &totlen) <= 0)
989 		goto process_cipher_decrypt_err;
990 	return 0;
991 
992 process_cipher_decrypt_err:
993 	OPENSSL_LOG(ERR, "Process openssl cipher decrypt failed");
994 	return -EINVAL;
995 }
996 
997 /** Process cipher des 3 ctr encryption, decryption algorithm */
998 static int
999 process_openssl_cipher_des3ctr(struct rte_mbuf *mbuf_src, uint8_t *dst,
1000 		int offset, uint8_t *iv, uint8_t *key, int srclen,
1001 		EVP_CIPHER_CTX *ctx)
1002 {
1003 	uint8_t ebuf[8], ctr[8];
1004 	int unused, n;
1005 	struct rte_mbuf *m;
1006 	uint8_t *src;
1007 	int l;
1008 
1009 	for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m);
1010 			m = m->next)
1011 		offset -= rte_pktmbuf_data_len(m);
1012 
1013 	if (m == 0)
1014 		goto process_cipher_des3ctr_err;
1015 
1016 	src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset);
1017 	l = rte_pktmbuf_data_len(m) - offset;
1018 
1019 	/* We use 3DES encryption also for decryption.
1020 	 * IV is not important for 3DES ecb
1021 	 */
1022 	if (EVP_EncryptInit_ex(ctx, EVP_des_ede3_ecb(), NULL, key, NULL) <= 0)
1023 		goto process_cipher_des3ctr_err;
1024 
1025 	memcpy(ctr, iv, 8);
1026 
1027 	for (n = 0; n < srclen; n++) {
1028 		if (n % 8 == 0) {
1029 			if (EVP_EncryptUpdate(ctx,
1030 					(unsigned char *)&ebuf, &unused,
1031 					(const unsigned char *)&ctr, 8) <= 0)
1032 				goto process_cipher_des3ctr_err;
1033 			ctr_inc(ctr);
1034 		}
1035 		dst[n] = *(src++) ^ ebuf[n % 8];
1036 
1037 		l--;
1038 		if (!l) {
1039 			m = m->next;
1040 			if (m) {
1041 				src = rte_pktmbuf_mtod(m, uint8_t *);
1042 				l = rte_pktmbuf_data_len(m);
1043 			}
1044 		}
1045 	}
1046 
1047 	return 0;
1048 
1049 process_cipher_des3ctr_err:
1050 	OPENSSL_LOG(ERR, "Process openssl cipher des 3 ede ctr failed");
1051 	return -EINVAL;
1052 }
1053 
1054 /** Process AES-GCM encrypt algorithm */
1055 static int
1056 process_openssl_auth_encryption_gcm(struct rte_mbuf *mbuf_src, int offset,
1057 		int srclen, uint8_t *aad, int aadlen, uint8_t *iv,
1058 		uint8_t *dst, uint8_t *tag, EVP_CIPHER_CTX *ctx)
1059 {
1060 	int len = 0, unused = 0;
1061 	uint8_t empty[] = {};
1062 
1063 	if (EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
1064 		goto process_auth_encryption_gcm_err;
1065 
1066 	if (aadlen > 0)
1067 		if (EVP_EncryptUpdate(ctx, NULL, &len, aad, aadlen) <= 0)
1068 			goto process_auth_encryption_gcm_err;
1069 
1070 	if (srclen > 0)
1071 		if (process_openssl_encryption_update(mbuf_src, offset, &dst,
1072 				srclen, ctx, 0))
1073 			goto process_auth_encryption_gcm_err;
1074 
1075 	/* Workaround open ssl bug in version less then 1.0.1f */
1076 	if (EVP_EncryptUpdate(ctx, empty, &unused, empty, 0) <= 0)
1077 		goto process_auth_encryption_gcm_err;
1078 
1079 	if (EVP_EncryptFinal_ex(ctx, dst, &len) <= 0)
1080 		goto process_auth_encryption_gcm_err;
1081 
1082 	if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_GET_TAG, 16, tag) <= 0)
1083 		goto process_auth_encryption_gcm_err;
1084 
1085 	return 0;
1086 
1087 process_auth_encryption_gcm_err:
1088 	OPENSSL_LOG(ERR, "Process openssl auth encryption gcm failed");
1089 	return -EINVAL;
1090 }
1091 
1092 /** Process AES-CCM encrypt algorithm */
1093 static int
1094 process_openssl_auth_encryption_ccm(struct rte_mbuf *mbuf_src, int offset,
1095 		int srclen, uint8_t *aad, int aadlen, uint8_t *iv,
1096 		uint8_t *dst, uint8_t *tag, uint8_t taglen, EVP_CIPHER_CTX *ctx)
1097 {
1098 	int len = 0;
1099 
1100 	if (EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
1101 		goto process_auth_encryption_ccm_err;
1102 
1103 	if (EVP_EncryptUpdate(ctx, NULL, &len, NULL, srclen) <= 0)
1104 		goto process_auth_encryption_ccm_err;
1105 
1106 	if (aadlen > 0)
1107 		/*
1108 		 * For AES-CCM, the actual AAD is placed
1109 		 * 18 bytes after the start of the AAD field,
1110 		 * according to the API.
1111 		 */
1112 		if (EVP_EncryptUpdate(ctx, NULL, &len, aad + 18, aadlen) <= 0)
1113 			goto process_auth_encryption_ccm_err;
1114 
1115 	if (srclen >= 0)
1116 		if (process_openssl_encryption_update(mbuf_src, offset, &dst,
1117 				srclen, ctx, 0))
1118 			goto process_auth_encryption_ccm_err;
1119 
1120 	if (EVP_EncryptFinal_ex(ctx, dst, &len) <= 0)
1121 		goto process_auth_encryption_ccm_err;
1122 
1123 	if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_GET_TAG, taglen, tag) <= 0)
1124 		goto process_auth_encryption_ccm_err;
1125 
1126 	return 0;
1127 
1128 process_auth_encryption_ccm_err:
1129 	OPENSSL_LOG(ERR, "Process openssl auth encryption ccm failed");
1130 	return -EINVAL;
1131 }
1132 
1133 /** Process AES-GCM decrypt algorithm */
1134 static int
1135 process_openssl_auth_decryption_gcm(struct rte_mbuf *mbuf_src, int offset,
1136 		int srclen, uint8_t *aad, int aadlen, uint8_t *iv,
1137 		uint8_t *dst, uint8_t *tag, EVP_CIPHER_CTX *ctx)
1138 {
1139 	int len = 0, unused = 0;
1140 	uint8_t empty[] = {};
1141 
1142 	if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_TAG, 16, tag) <= 0)
1143 		goto process_auth_decryption_gcm_err;
1144 
1145 	if (EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
1146 		goto process_auth_decryption_gcm_err;
1147 
1148 	if (aadlen > 0)
1149 		if (EVP_DecryptUpdate(ctx, NULL, &len, aad, aadlen) <= 0)
1150 			goto process_auth_decryption_gcm_err;
1151 
1152 	if (srclen > 0)
1153 		if (process_openssl_decryption_update(mbuf_src, offset, &dst,
1154 				srclen, ctx, 0))
1155 			goto process_auth_decryption_gcm_err;
1156 
1157 	/* Workaround open ssl bug in version less then 1.0.1f */
1158 	if (EVP_DecryptUpdate(ctx, empty, &unused, empty, 0) <= 0)
1159 		goto process_auth_decryption_gcm_err;
1160 
1161 	if (EVP_DecryptFinal_ex(ctx, dst, &len) <= 0)
1162 		return -EFAULT;
1163 
1164 	return 0;
1165 
1166 process_auth_decryption_gcm_err:
1167 	OPENSSL_LOG(ERR, "Process openssl auth decryption gcm failed");
1168 	return -EINVAL;
1169 }
1170 
1171 /** Process AES-CCM decrypt algorithm */
1172 static int
1173 process_openssl_auth_decryption_ccm(struct rte_mbuf *mbuf_src, int offset,
1174 		int srclen, uint8_t *aad, int aadlen, uint8_t *iv,
1175 		uint8_t *dst, uint8_t *tag, uint8_t tag_len,
1176 		EVP_CIPHER_CTX *ctx)
1177 {
1178 	int len = 0;
1179 
1180 	if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_TAG, tag_len, tag) <= 0)
1181 		goto process_auth_decryption_ccm_err;
1182 
1183 	if (EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
1184 		goto process_auth_decryption_ccm_err;
1185 
1186 	if (EVP_DecryptUpdate(ctx, NULL, &len, NULL, srclen) <= 0)
1187 		goto process_auth_decryption_ccm_err;
1188 
1189 	if (aadlen > 0)
1190 		/*
1191 		 * For AES-CCM, the actual AAD is placed
1192 		 * 18 bytes after the start of the AAD field,
1193 		 * according to the API.
1194 		 */
1195 		if (EVP_DecryptUpdate(ctx, NULL, &len, aad + 18, aadlen) <= 0)
1196 			goto process_auth_decryption_ccm_err;
1197 
1198 	if (srclen >= 0)
1199 		if (process_openssl_decryption_update(mbuf_src, offset, &dst,
1200 				srclen, ctx, 0))
1201 			return -EFAULT;
1202 
1203 	return 0;
1204 
1205 process_auth_decryption_ccm_err:
1206 	OPENSSL_LOG(ERR, "Process openssl auth decryption ccm failed");
1207 	return -EINVAL;
1208 }
1209 
1210 /** Process standard openssl auth algorithms */
1211 static int
1212 process_openssl_auth(struct rte_mbuf *mbuf_src, uint8_t *dst, int offset,
1213 		__rte_unused uint8_t *iv, __rte_unused EVP_PKEY * pkey,
1214 		int srclen, EVP_MD_CTX *ctx, const EVP_MD *algo)
1215 {
1216 	size_t dstlen;
1217 	struct rte_mbuf *m;
1218 	int l, n = srclen;
1219 	uint8_t *src;
1220 
1221 	for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m);
1222 			m = m->next)
1223 		offset -= rte_pktmbuf_data_len(m);
1224 
1225 	if (m == 0)
1226 		goto process_auth_err;
1227 
1228 	if (EVP_DigestInit_ex(ctx, algo, NULL) <= 0)
1229 		goto process_auth_err;
1230 
1231 	src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset);
1232 
1233 	l = rte_pktmbuf_data_len(m) - offset;
1234 	if (srclen <= l) {
1235 		if (EVP_DigestUpdate(ctx, (char *)src, srclen) <= 0)
1236 			goto process_auth_err;
1237 		goto process_auth_final;
1238 	}
1239 
1240 	if (EVP_DigestUpdate(ctx, (char *)src, l) <= 0)
1241 		goto process_auth_err;
1242 
1243 	n -= l;
1244 
1245 	for (m = m->next; (m != NULL) && (n > 0); m = m->next) {
1246 		src = rte_pktmbuf_mtod(m, uint8_t *);
1247 		l = rte_pktmbuf_data_len(m) < n ? rte_pktmbuf_data_len(m) : n;
1248 		if (EVP_DigestUpdate(ctx, (char *)src, l) <= 0)
1249 			goto process_auth_err;
1250 		n -= l;
1251 	}
1252 
1253 process_auth_final:
1254 	if (EVP_DigestFinal_ex(ctx, dst, (unsigned int *)&dstlen) <= 0)
1255 		goto process_auth_err;
1256 	return 0;
1257 
1258 process_auth_err:
1259 	OPENSSL_LOG(ERR, "Process openssl auth failed");
1260 	return -EINVAL;
1261 }
1262 
1263 /** Process standard openssl auth algorithms with hmac */
1264 static int
1265 process_openssl_auth_hmac(struct rte_mbuf *mbuf_src, uint8_t *dst, int offset,
1266 		int srclen, HMAC_CTX *ctx)
1267 {
1268 	unsigned int dstlen;
1269 	struct rte_mbuf *m;
1270 	int l, n = srclen;
1271 	uint8_t *src;
1272 
1273 	for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m);
1274 			m = m->next)
1275 		offset -= rte_pktmbuf_data_len(m);
1276 
1277 	if (m == 0)
1278 		goto process_auth_err;
1279 
1280 	src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset);
1281 
1282 	l = rte_pktmbuf_data_len(m) - offset;
1283 	if (srclen <= l) {
1284 		if (HMAC_Update(ctx, (unsigned char *)src, srclen) != 1)
1285 			goto process_auth_err;
1286 		goto process_auth_final;
1287 	}
1288 
1289 	if (HMAC_Update(ctx, (unsigned char *)src, l) != 1)
1290 		goto process_auth_err;
1291 
1292 	n -= l;
1293 
1294 	for (m = m->next; (m != NULL) && (n > 0); m = m->next) {
1295 		src = rte_pktmbuf_mtod(m, uint8_t *);
1296 		l = rte_pktmbuf_data_len(m) < n ? rte_pktmbuf_data_len(m) : n;
1297 		if (HMAC_Update(ctx, (unsigned char *)src, l) != 1)
1298 			goto process_auth_err;
1299 		n -= l;
1300 	}
1301 
1302 process_auth_final:
1303 	if (HMAC_Final(ctx, dst, &dstlen) != 1)
1304 		goto process_auth_err;
1305 
1306 	if (unlikely(HMAC_Init_ex(ctx, NULL, 0, NULL, NULL) != 1))
1307 		goto process_auth_err;
1308 
1309 	return 0;
1310 
1311 process_auth_err:
1312 	OPENSSL_LOG(ERR, "Process openssl auth failed");
1313 	return -EINVAL;
1314 }
1315 
1316 /*----------------------------------------------------------------------------*/
1317 
1318 /** Process auth/cipher combined operation */
1319 static void
1320 process_openssl_combined_op
1321 		(struct rte_crypto_op *op, struct openssl_session *sess,
1322 		struct rte_mbuf *mbuf_src, struct rte_mbuf *mbuf_dst)
1323 {
1324 	/* cipher */
1325 	uint8_t *dst = NULL, *iv, *tag, *aad;
1326 	int srclen, aadlen, status = -1;
1327 	uint32_t offset;
1328 	uint8_t taglen;
1329 	EVP_CIPHER_CTX *ctx_copy;
1330 
1331 	/*
1332 	 * Segmented destination buffer is not supported for
1333 	 * encryption/decryption
1334 	 */
1335 	if (!rte_pktmbuf_is_contiguous(mbuf_dst)) {
1336 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1337 		return;
1338 	}
1339 
1340 	iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1341 			sess->iv.offset);
1342 	if (sess->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC) {
1343 		srclen = 0;
1344 		offset = op->sym->auth.data.offset;
1345 		aadlen = op->sym->auth.data.length;
1346 		aad = rte_pktmbuf_mtod_offset(mbuf_src, uint8_t *,
1347 				op->sym->auth.data.offset);
1348 		tag = op->sym->auth.digest.data;
1349 		if (tag == NULL)
1350 			tag = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1351 				offset + aadlen);
1352 	} else {
1353 		srclen = op->sym->aead.data.length;
1354 		dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1355 				op->sym->aead.data.offset);
1356 		offset = op->sym->aead.data.offset;
1357 		aad = op->sym->aead.aad.data;
1358 		aadlen = sess->auth.aad_length;
1359 		tag = op->sym->aead.digest.data;
1360 		if (tag == NULL)
1361 			tag = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1362 				offset + srclen);
1363 	}
1364 
1365 	taglen = sess->auth.digest_length;
1366 	ctx_copy = EVP_CIPHER_CTX_new();
1367 	EVP_CIPHER_CTX_copy(ctx_copy, sess->cipher.ctx);
1368 
1369 	if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
1370 		if (sess->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC ||
1371 				sess->aead_algo == RTE_CRYPTO_AEAD_AES_GCM)
1372 			status = process_openssl_auth_encryption_gcm(
1373 					mbuf_src, offset, srclen,
1374 					aad, aadlen, iv,
1375 					dst, tag, ctx_copy);
1376 		else
1377 			status = process_openssl_auth_encryption_ccm(
1378 					mbuf_src, offset, srclen,
1379 					aad, aadlen, iv,
1380 					dst, tag, taglen, ctx_copy);
1381 
1382 	} else {
1383 		if (sess->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC ||
1384 				sess->aead_algo == RTE_CRYPTO_AEAD_AES_GCM)
1385 			status = process_openssl_auth_decryption_gcm(
1386 					mbuf_src, offset, srclen,
1387 					aad, aadlen, iv,
1388 					dst, tag, ctx_copy);
1389 		else
1390 			status = process_openssl_auth_decryption_ccm(
1391 					mbuf_src, offset, srclen,
1392 					aad, aadlen, iv,
1393 					dst, tag, taglen, ctx_copy);
1394 	}
1395 
1396 	EVP_CIPHER_CTX_free(ctx_copy);
1397 	if (status != 0) {
1398 		if (status == (-EFAULT) &&
1399 				sess->auth.operation ==
1400 						RTE_CRYPTO_AUTH_OP_VERIFY)
1401 			op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
1402 		else
1403 			op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1404 	}
1405 }
1406 
1407 /** Process cipher operation */
1408 static void
1409 process_openssl_cipher_op
1410 		(struct rte_crypto_op *op, struct openssl_session *sess,
1411 		struct rte_mbuf *mbuf_src, struct rte_mbuf *mbuf_dst)
1412 {
1413 	uint8_t *dst, *iv;
1414 	int srclen, status;
1415 	uint8_t inplace = (mbuf_src == mbuf_dst) ? 1 : 0;
1416 	EVP_CIPHER_CTX *ctx_copy;
1417 
1418 	/*
1419 	 * Segmented OOP destination buffer is not supported for encryption/
1420 	 * decryption. In case of des3ctr, even inplace segmented buffers are
1421 	 * not supported.
1422 	 */
1423 	if (!rte_pktmbuf_is_contiguous(mbuf_dst) &&
1424 			(!inplace || sess->cipher.mode != OPENSSL_CIPHER_LIB)) {
1425 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1426 		return;
1427 	}
1428 
1429 	srclen = op->sym->cipher.data.length;
1430 	dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1431 			op->sym->cipher.data.offset);
1432 
1433 	iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1434 			sess->iv.offset);
1435 	ctx_copy = EVP_CIPHER_CTX_new();
1436 	EVP_CIPHER_CTX_copy(ctx_copy, sess->cipher.ctx);
1437 
1438 	if (sess->cipher.mode == OPENSSL_CIPHER_LIB)
1439 		if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
1440 			status = process_openssl_cipher_encrypt(mbuf_src, dst,
1441 					op->sym->cipher.data.offset, iv,
1442 					srclen, ctx_copy, inplace);
1443 		else
1444 			status = process_openssl_cipher_decrypt(mbuf_src, dst,
1445 					op->sym->cipher.data.offset, iv,
1446 					srclen, ctx_copy, inplace);
1447 	else
1448 		status = process_openssl_cipher_des3ctr(mbuf_src, dst,
1449 				op->sym->cipher.data.offset, iv,
1450 				sess->cipher.key.data, srclen,
1451 				ctx_copy);
1452 
1453 	EVP_CIPHER_CTX_free(ctx_copy);
1454 	if (status != 0)
1455 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1456 }
1457 
1458 /** Process cipher operation */
1459 static void
1460 process_openssl_docsis_bpi_op(struct rte_crypto_op *op,
1461 		struct openssl_session *sess, struct rte_mbuf *mbuf_src,
1462 		struct rte_mbuf *mbuf_dst)
1463 {
1464 	uint8_t *src, *dst, *iv;
1465 	uint8_t block_size, last_block_len;
1466 	int srclen, status = 0;
1467 
1468 	srclen = op->sym->cipher.data.length;
1469 	src = rte_pktmbuf_mtod_offset(mbuf_src, uint8_t *,
1470 			op->sym->cipher.data.offset);
1471 	dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1472 			op->sym->cipher.data.offset);
1473 
1474 	iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1475 			sess->iv.offset);
1476 
1477 	block_size = DES_BLOCK_SIZE;
1478 
1479 	last_block_len = srclen % block_size;
1480 	if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
1481 		/* Encrypt only with ECB mode XOR IV */
1482 		if (srclen < block_size) {
1483 			status = process_openssl_cipher_bpi_encrypt(src, dst,
1484 					iv, srclen,
1485 					sess->cipher.bpi_ctx);
1486 		} else {
1487 			srclen -= last_block_len;
1488 			/* Encrypt with the block aligned stream with CBC mode */
1489 			status = process_openssl_cipher_encrypt(mbuf_src, dst,
1490 					op->sym->cipher.data.offset, iv,
1491 					srclen, sess->cipher.ctx, 0);
1492 			if (last_block_len) {
1493 				/* Point at last block */
1494 				dst += srclen;
1495 				/*
1496 				 * IV is the last encrypted block from
1497 				 * the previous operation
1498 				 */
1499 				iv = dst - block_size;
1500 				src += srclen;
1501 				srclen = last_block_len;
1502 				/* Encrypt the last frame with ECB mode */
1503 				status |= process_openssl_cipher_bpi_encrypt(src,
1504 						dst, iv,
1505 						srclen, sess->cipher.bpi_ctx);
1506 			}
1507 		}
1508 	} else {
1509 		/* Decrypt only with ECB mode (encrypt, as it is same operation) */
1510 		if (srclen < block_size) {
1511 			status = process_openssl_cipher_bpi_encrypt(src, dst,
1512 					iv,
1513 					srclen,
1514 					sess->cipher.bpi_ctx);
1515 		} else {
1516 			if (last_block_len) {
1517 				/* Point at last block */
1518 				dst += srclen - last_block_len;
1519 				src += srclen - last_block_len;
1520 				/*
1521 				 * IV is the last full block
1522 				 */
1523 				iv = src - block_size;
1524 				/*
1525 				 * Decrypt the last frame with ECB mode
1526 				 * (encrypt, as it is the same operation)
1527 				 */
1528 				status = process_openssl_cipher_bpi_encrypt(src,
1529 						dst, iv,
1530 						last_block_len, sess->cipher.bpi_ctx);
1531 				/* Prepare parameters for CBC mode op */
1532 				iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1533 						sess->iv.offset);
1534 				dst += last_block_len - srclen;
1535 				srclen -= last_block_len;
1536 			}
1537 
1538 			/* Decrypt with CBC mode */
1539 			status |= process_openssl_cipher_decrypt(mbuf_src, dst,
1540 					op->sym->cipher.data.offset, iv,
1541 					srclen, sess->cipher.ctx, 0);
1542 		}
1543 	}
1544 
1545 	if (status != 0)
1546 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1547 }
1548 
1549 /** Process auth operation */
1550 static void
1551 process_openssl_auth_op(struct openssl_qp *qp, struct rte_crypto_op *op,
1552 		struct openssl_session *sess, struct rte_mbuf *mbuf_src,
1553 		struct rte_mbuf *mbuf_dst)
1554 {
1555 	uint8_t *dst;
1556 	int srclen, status;
1557 	EVP_MD_CTX *ctx_a;
1558 	HMAC_CTX *ctx_h;
1559 
1560 	srclen = op->sym->auth.data.length;
1561 
1562 	dst = qp->temp_digest;
1563 
1564 	switch (sess->auth.mode) {
1565 	case OPENSSL_AUTH_AS_AUTH:
1566 		ctx_a = EVP_MD_CTX_create();
1567 		EVP_MD_CTX_copy_ex(ctx_a, sess->auth.auth.ctx);
1568 		status = process_openssl_auth(mbuf_src, dst,
1569 				op->sym->auth.data.offset, NULL, NULL, srclen,
1570 				ctx_a, sess->auth.auth.evp_algo);
1571 		EVP_MD_CTX_destroy(ctx_a);
1572 		break;
1573 	case OPENSSL_AUTH_AS_HMAC:
1574 		ctx_h = HMAC_CTX_new();
1575 		HMAC_CTX_copy(ctx_h, sess->auth.hmac.ctx);
1576 		status = process_openssl_auth_hmac(mbuf_src, dst,
1577 				op->sym->auth.data.offset, srclen,
1578 				ctx_h);
1579 		HMAC_CTX_free(ctx_h);
1580 		break;
1581 	default:
1582 		status = -1;
1583 		break;
1584 	}
1585 
1586 	if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) {
1587 		if (CRYPTO_memcmp(dst, op->sym->auth.digest.data,
1588 				sess->auth.digest_length) != 0) {
1589 			op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
1590 		}
1591 	} else {
1592 		uint8_t *auth_dst;
1593 
1594 		auth_dst = op->sym->auth.digest.data;
1595 		if (auth_dst == NULL)
1596 			auth_dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1597 					op->sym->auth.data.offset +
1598 					op->sym->auth.data.length);
1599 		memcpy(auth_dst, dst, sess->auth.digest_length);
1600 	}
1601 
1602 	if (status != 0)
1603 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1604 }
1605 
1606 /* process dsa sign operation */
1607 static int
1608 process_openssl_dsa_sign_op(struct rte_crypto_op *cop,
1609 		struct openssl_asym_session *sess)
1610 {
1611 	struct rte_crypto_dsa_op_param *op = &cop->asym->dsa;
1612 	DSA *dsa = sess->u.s.dsa;
1613 	DSA_SIG *sign = NULL;
1614 
1615 	sign = DSA_do_sign(op->message.data,
1616 			op->message.length,
1617 			dsa);
1618 
1619 	if (sign == NULL) {
1620 		OPENSSL_LOG(ERR, "%s:%d\n", __func__, __LINE__);
1621 		cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1622 	} else {
1623 		const BIGNUM *r = NULL, *s = NULL;
1624 		get_dsa_sign(sign, &r, &s);
1625 
1626 		op->r.length = BN_bn2bin(r, op->r.data);
1627 		op->s.length = BN_bn2bin(s, op->s.data);
1628 		cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1629 	}
1630 
1631 	DSA_SIG_free(sign);
1632 
1633 	return 0;
1634 }
1635 
1636 /* process dsa verify operation */
1637 static int
1638 process_openssl_dsa_verify_op(struct rte_crypto_op *cop,
1639 		struct openssl_asym_session *sess)
1640 {
1641 	struct rte_crypto_dsa_op_param *op = &cop->asym->dsa;
1642 	DSA *dsa = sess->u.s.dsa;
1643 	int ret;
1644 	DSA_SIG *sign = DSA_SIG_new();
1645 	BIGNUM *r = NULL, *s = NULL;
1646 	BIGNUM *pub_key = NULL;
1647 
1648 	if (sign == NULL) {
1649 		OPENSSL_LOG(ERR, " %s:%d\n", __func__, __LINE__);
1650 		cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1651 		return -1;
1652 	}
1653 
1654 	r = BN_bin2bn(op->r.data,
1655 			op->r.length,
1656 			r);
1657 	s = BN_bin2bn(op->s.data,
1658 			op->s.length,
1659 			s);
1660 	pub_key = BN_bin2bn(op->y.data,
1661 			op->y.length,
1662 			pub_key);
1663 	if (!r || !s || !pub_key) {
1664 		BN_free(r);
1665 		BN_free(s);
1666 		BN_free(pub_key);
1667 
1668 		cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1669 		return -1;
1670 	}
1671 	set_dsa_sign(sign, r, s);
1672 	set_dsa_pub_key(dsa, pub_key);
1673 
1674 	ret = DSA_do_verify(op->message.data,
1675 			op->message.length,
1676 			sign,
1677 			dsa);
1678 
1679 	if (ret != 1)
1680 		cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1681 	else
1682 		cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1683 
1684 	DSA_SIG_free(sign);
1685 
1686 	return 0;
1687 }
1688 
1689 /* process dh operation */
1690 static int
1691 process_openssl_dh_op(struct rte_crypto_op *cop,
1692 		struct openssl_asym_session *sess)
1693 {
1694 	struct rte_crypto_dh_op_param *op = &cop->asym->dh;
1695 	DH *dh_key = sess->u.dh.dh_key;
1696 	BIGNUM *priv_key = NULL;
1697 	int ret = 0;
1698 
1699 	if (sess->u.dh.key_op &
1700 			(1 << RTE_CRYPTO_ASYM_OP_SHARED_SECRET_COMPUTE)) {
1701 		/* compute shared secret using peer public key
1702 		 * and current private key
1703 		 * shared secret = peer_key ^ priv_key mod p
1704 		 */
1705 		BIGNUM *peer_key = NULL;
1706 
1707 		/* copy private key and peer key and compute shared secret */
1708 		peer_key = BN_bin2bn(op->pub_key.data,
1709 				op->pub_key.length,
1710 				peer_key);
1711 		if (peer_key == NULL) {
1712 			cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1713 			return -1;
1714 		}
1715 		priv_key = BN_bin2bn(op->priv_key.data,
1716 				op->priv_key.length,
1717 				priv_key);
1718 		if (priv_key == NULL) {
1719 			BN_free(peer_key);
1720 			cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1721 			return -1;
1722 		}
1723 		ret = set_dh_priv_key(dh_key, priv_key);
1724 		if (ret) {
1725 			OPENSSL_LOG(ERR, "Failed to set private key\n");
1726 			cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1727 			BN_free(peer_key);
1728 			BN_free(priv_key);
1729 			return 0;
1730 		}
1731 
1732 		ret = DH_compute_key(
1733 				op->shared_secret.data,
1734 				peer_key, dh_key);
1735 		if (ret < 0) {
1736 			cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1737 			BN_free(peer_key);
1738 			/* priv key is already loaded into dh,
1739 			 * let's not free that directly here.
1740 			 * DH_free() will auto free it later.
1741 			 */
1742 			return 0;
1743 		}
1744 		cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1745 		op->shared_secret.length = ret;
1746 		BN_free(peer_key);
1747 		return 0;
1748 	}
1749 
1750 	/*
1751 	 * other options are public and private key generations.
1752 	 *
1753 	 * if user provides private key,
1754 	 * then first set DH with user provided private key
1755 	 */
1756 	if ((sess->u.dh.key_op &
1757 			(1 << RTE_CRYPTO_ASYM_OP_PUBLIC_KEY_GENERATE)) &&
1758 			!(sess->u.dh.key_op &
1759 			(1 << RTE_CRYPTO_ASYM_OP_PRIVATE_KEY_GENERATE))) {
1760 		/* generate public key using user-provided private key
1761 		 * pub_key = g ^ priv_key mod p
1762 		 */
1763 
1764 		/* load private key into DH */
1765 		priv_key = BN_bin2bn(op->priv_key.data,
1766 				op->priv_key.length,
1767 				priv_key);
1768 		if (priv_key == NULL) {
1769 			cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1770 			return -1;
1771 		}
1772 		ret = set_dh_priv_key(dh_key, priv_key);
1773 		if (ret) {
1774 			OPENSSL_LOG(ERR, "Failed to set private key\n");
1775 			cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1776 			BN_free(priv_key);
1777 			return 0;
1778 		}
1779 	}
1780 
1781 	/* generate public and private key pair.
1782 	 *
1783 	 * if private key already set, generates only public key.
1784 	 *
1785 	 * if private key is not already set, then set it to random value
1786 	 * and update internal private key.
1787 	 */
1788 	if (!DH_generate_key(dh_key)) {
1789 		cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1790 		return 0;
1791 	}
1792 
1793 	if (sess->u.dh.key_op & (1 << RTE_CRYPTO_ASYM_OP_PUBLIC_KEY_GENERATE)) {
1794 		const BIGNUM *pub_key = NULL;
1795 
1796 		OPENSSL_LOG(DEBUG, "%s:%d update public key\n",
1797 				__func__, __LINE__);
1798 
1799 		/* get the generated keys */
1800 		get_dh_pub_key(dh_key, &pub_key);
1801 
1802 		/* output public key */
1803 		op->pub_key.length = BN_bn2bin(pub_key,
1804 				op->pub_key.data);
1805 	}
1806 
1807 	if (sess->u.dh.key_op &
1808 			(1 << RTE_CRYPTO_ASYM_OP_PRIVATE_KEY_GENERATE)) {
1809 		const BIGNUM *priv_key = NULL;
1810 
1811 		OPENSSL_LOG(DEBUG, "%s:%d updated priv key\n",
1812 				__func__, __LINE__);
1813 
1814 		/* get the generated keys */
1815 		get_dh_priv_key(dh_key, &priv_key);
1816 
1817 		/* provide generated private key back to user */
1818 		op->priv_key.length = BN_bn2bin(priv_key,
1819 				op->priv_key.data);
1820 	}
1821 
1822 	cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1823 
1824 	return 0;
1825 }
1826 
1827 /* process modinv operation */
1828 static int
1829 process_openssl_modinv_op(struct rte_crypto_op *cop,
1830 		struct openssl_asym_session *sess)
1831 {
1832 	struct rte_crypto_asym_op *op = cop->asym;
1833 	BIGNUM *base = BN_CTX_get(sess->u.m.ctx);
1834 	BIGNUM *res = BN_CTX_get(sess->u.m.ctx);
1835 
1836 	if (unlikely(base == NULL || res == NULL)) {
1837 		BN_free(base);
1838 		BN_free(res);
1839 		cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1840 		return -1;
1841 	}
1842 
1843 	base = BN_bin2bn((const unsigned char *)op->modinv.base.data,
1844 			op->modinv.base.length, base);
1845 
1846 	if (BN_mod_inverse(res, base, sess->u.m.modulus, sess->u.m.ctx)) {
1847 		cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1848 		op->modinv.result.length = BN_bn2bin(res, op->modinv.result.data);
1849 	} else {
1850 		cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1851 	}
1852 
1853 	BN_clear(res);
1854 	BN_clear(base);
1855 
1856 	return 0;
1857 }
1858 
1859 /* process modexp operation */
1860 static int
1861 process_openssl_modexp_op(struct rte_crypto_op *cop,
1862 		struct openssl_asym_session *sess)
1863 {
1864 	struct rte_crypto_asym_op *op = cop->asym;
1865 	BIGNUM *base = BN_CTX_get(sess->u.e.ctx);
1866 	BIGNUM *res = BN_CTX_get(sess->u.e.ctx);
1867 
1868 	if (unlikely(base == NULL || res == NULL)) {
1869 		BN_free(base);
1870 		BN_free(res);
1871 		cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1872 		return -1;
1873 	}
1874 
1875 	base = BN_bin2bn((const unsigned char *)op->modex.base.data,
1876 			op->modex.base.length, base);
1877 
1878 	if (BN_mod_exp(res, base, sess->u.e.exp,
1879 				sess->u.e.mod, sess->u.e.ctx)) {
1880 		op->modex.result.length = BN_bn2bin(res, op->modex.result.data);
1881 		cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1882 	} else {
1883 		cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1884 	}
1885 
1886 	BN_clear(res);
1887 	BN_clear(base);
1888 
1889 	return 0;
1890 }
1891 
1892 /* process rsa operations */
1893 static int
1894 process_openssl_rsa_op(struct rte_crypto_op *cop,
1895 		struct openssl_asym_session *sess)
1896 {
1897 	int ret = 0;
1898 	struct rte_crypto_asym_op *op = cop->asym;
1899 	RSA *rsa = sess->u.r.rsa;
1900 	uint32_t pad = (op->rsa.pad);
1901 	uint8_t *tmp;
1902 
1903 	cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1904 
1905 	switch (pad) {
1906 	case RTE_CRYPTO_RSA_PADDING_PKCS1_5:
1907 		pad = RSA_PKCS1_PADDING;
1908 		break;
1909 	case RTE_CRYPTO_RSA_PADDING_NONE:
1910 		pad = RSA_NO_PADDING;
1911 		break;
1912 	default:
1913 		cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
1914 		OPENSSL_LOG(ERR,
1915 				"rsa pad type not supported %d\n", pad);
1916 		return 0;
1917 	}
1918 
1919 	switch (op->rsa.op_type) {
1920 	case RTE_CRYPTO_ASYM_OP_ENCRYPT:
1921 		ret = RSA_public_encrypt(op->rsa.message.length,
1922 				op->rsa.message.data,
1923 				op->rsa.cipher.data,
1924 				rsa,
1925 				pad);
1926 
1927 		if (ret > 0)
1928 			op->rsa.cipher.length = ret;
1929 		OPENSSL_LOG(DEBUG,
1930 				"length of encrypted text %d\n", ret);
1931 		break;
1932 
1933 	case RTE_CRYPTO_ASYM_OP_DECRYPT:
1934 		ret = RSA_private_decrypt(op->rsa.cipher.length,
1935 				op->rsa.cipher.data,
1936 				op->rsa.message.data,
1937 				rsa,
1938 				pad);
1939 		if (ret > 0)
1940 			op->rsa.message.length = ret;
1941 		break;
1942 
1943 	case RTE_CRYPTO_ASYM_OP_SIGN:
1944 		ret = RSA_private_encrypt(op->rsa.message.length,
1945 				op->rsa.message.data,
1946 				op->rsa.sign.data,
1947 				rsa,
1948 				pad);
1949 		if (ret > 0)
1950 			op->rsa.sign.length = ret;
1951 		break;
1952 
1953 	case RTE_CRYPTO_ASYM_OP_VERIFY:
1954 		tmp = rte_malloc(NULL, op->rsa.sign.length, 0);
1955 		if (tmp == NULL) {
1956 			OPENSSL_LOG(ERR, "Memory allocation failed");
1957 			cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1958 			break;
1959 		}
1960 		ret = RSA_public_decrypt(op->rsa.sign.length,
1961 				op->rsa.sign.data,
1962 				tmp,
1963 				rsa,
1964 				pad);
1965 
1966 		OPENSSL_LOG(DEBUG,
1967 				"Length of public_decrypt %d "
1968 				"length of message %zd\n",
1969 				ret, op->rsa.message.length);
1970 		if ((ret <= 0) || (CRYPTO_memcmp(tmp, op->rsa.message.data,
1971 				op->rsa.message.length))) {
1972 			OPENSSL_LOG(ERR, "RSA sign Verification failed");
1973 			cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1974 		}
1975 		rte_free(tmp);
1976 		break;
1977 
1978 	default:
1979 		/* allow ops with invalid args to be pushed to
1980 		 * completion queue
1981 		 */
1982 		cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
1983 		break;
1984 	}
1985 
1986 	if (ret < 0)
1987 		cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1988 
1989 	return 0;
1990 }
1991 
1992 static int
1993 process_asym_op(struct openssl_qp *qp, struct rte_crypto_op *op,
1994 		struct openssl_asym_session *sess)
1995 {
1996 	int retval = 0;
1997 
1998 	op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1999 
2000 	switch (sess->xfrm_type) {
2001 	case RTE_CRYPTO_ASYM_XFORM_RSA:
2002 		retval = process_openssl_rsa_op(op, sess);
2003 		break;
2004 	case RTE_CRYPTO_ASYM_XFORM_MODEX:
2005 		retval = process_openssl_modexp_op(op, sess);
2006 		break;
2007 	case RTE_CRYPTO_ASYM_XFORM_MODINV:
2008 		retval = process_openssl_modinv_op(op, sess);
2009 		break;
2010 	case RTE_CRYPTO_ASYM_XFORM_DH:
2011 		retval = process_openssl_dh_op(op, sess);
2012 		break;
2013 	case RTE_CRYPTO_ASYM_XFORM_DSA:
2014 		if (op->asym->dsa.op_type == RTE_CRYPTO_ASYM_OP_SIGN)
2015 			retval = process_openssl_dsa_sign_op(op, sess);
2016 		else if (op->asym->dsa.op_type ==
2017 				RTE_CRYPTO_ASYM_OP_VERIFY)
2018 			retval =
2019 				process_openssl_dsa_verify_op(op, sess);
2020 		else
2021 			op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
2022 		break;
2023 	default:
2024 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
2025 		break;
2026 	}
2027 	if (!retval) {
2028 		/* op processed so push to completion queue as processed */
2029 		retval = rte_ring_enqueue(qp->processed_ops, (void *)op);
2030 		if (retval)
2031 			/* return error if failed to put in completion queue */
2032 			retval = -1;
2033 	}
2034 
2035 	return retval;
2036 }
2037 
2038 static void
2039 copy_plaintext(struct rte_mbuf *m_src, struct rte_mbuf *m_dst,
2040 		struct rte_crypto_op *op)
2041 {
2042 	uint8_t *p_src, *p_dst;
2043 
2044 	p_src = rte_pktmbuf_mtod(m_src, uint8_t *);
2045 	p_dst = rte_pktmbuf_mtod(m_dst, uint8_t *);
2046 
2047 	/**
2048 	 * Copy the content between cipher offset and auth offset
2049 	 * for generating correct digest.
2050 	 */
2051 	if (op->sym->cipher.data.offset > op->sym->auth.data.offset)
2052 		memcpy(p_dst + op->sym->auth.data.offset,
2053 				p_src + op->sym->auth.data.offset,
2054 				op->sym->cipher.data.offset -
2055 				op->sym->auth.data.offset);
2056 }
2057 
2058 /** Process crypto operation for mbuf */
2059 static int
2060 process_op(struct openssl_qp *qp, struct rte_crypto_op *op,
2061 		struct openssl_session *sess)
2062 {
2063 	struct rte_mbuf *msrc, *mdst;
2064 	int retval;
2065 
2066 	msrc = op->sym->m_src;
2067 	mdst = op->sym->m_dst ? op->sym->m_dst : op->sym->m_src;
2068 
2069 	op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
2070 
2071 	switch (sess->chain_order) {
2072 	case OPENSSL_CHAIN_ONLY_CIPHER:
2073 		process_openssl_cipher_op(op, sess, msrc, mdst);
2074 		break;
2075 	case OPENSSL_CHAIN_ONLY_AUTH:
2076 		process_openssl_auth_op(qp, op, sess, msrc, mdst);
2077 		break;
2078 	case OPENSSL_CHAIN_CIPHER_AUTH:
2079 		process_openssl_cipher_op(op, sess, msrc, mdst);
2080 		/* OOP */
2081 		if (msrc != mdst)
2082 			copy_plaintext(msrc, mdst, op);
2083 		process_openssl_auth_op(qp, op, sess, mdst, mdst);
2084 		break;
2085 	case OPENSSL_CHAIN_AUTH_CIPHER:
2086 		process_openssl_auth_op(qp, op, sess, msrc, mdst);
2087 		process_openssl_cipher_op(op, sess, msrc, mdst);
2088 		break;
2089 	case OPENSSL_CHAIN_COMBINED:
2090 		process_openssl_combined_op(op, sess, msrc, mdst);
2091 		break;
2092 	case OPENSSL_CHAIN_CIPHER_BPI:
2093 		process_openssl_docsis_bpi_op(op, sess, msrc, mdst);
2094 		break;
2095 	default:
2096 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
2097 		break;
2098 	}
2099 
2100 	/* Free session if a session-less crypto op */
2101 	if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) {
2102 		openssl_reset_session(sess);
2103 		memset(sess, 0, sizeof(struct openssl_session));
2104 		memset(op->sym->session, 0,
2105 			rte_cryptodev_sym_get_existing_header_session_size(
2106 				op->sym->session));
2107 		rte_mempool_put(qp->sess_mp_priv, sess);
2108 		rte_mempool_put(qp->sess_mp, op->sym->session);
2109 		op->sym->session = NULL;
2110 	}
2111 
2112 	if (op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)
2113 		op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
2114 
2115 	if (op->status != RTE_CRYPTO_OP_STATUS_ERROR)
2116 		retval = rte_ring_enqueue(qp->processed_ops, (void *)op);
2117 	else
2118 		retval = -1;
2119 
2120 	return retval;
2121 }
2122 
2123 /*
2124  *------------------------------------------------------------------------------
2125  * PMD Framework
2126  *------------------------------------------------------------------------------
2127  */
2128 
2129 /** Enqueue burst */
2130 static uint16_t
2131 openssl_pmd_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops,
2132 		uint16_t nb_ops)
2133 {
2134 	void *sess;
2135 	struct openssl_qp *qp = queue_pair;
2136 	int i, retval;
2137 
2138 	for (i = 0; i < nb_ops; i++) {
2139 		sess = get_session(qp, ops[i]);
2140 		if (unlikely(sess == NULL))
2141 			goto enqueue_err;
2142 
2143 		if (ops[i]->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC)
2144 			retval = process_op(qp, ops[i],
2145 					(struct openssl_session *) sess);
2146 		else
2147 			retval = process_asym_op(qp, ops[i],
2148 					(struct openssl_asym_session *) sess);
2149 		if (unlikely(retval < 0))
2150 			goto enqueue_err;
2151 	}
2152 
2153 	qp->stats.enqueued_count += i;
2154 	return i;
2155 
2156 enqueue_err:
2157 	qp->stats.enqueue_err_count++;
2158 	return i;
2159 }
2160 
2161 /** Dequeue burst */
2162 static uint16_t
2163 openssl_pmd_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops,
2164 		uint16_t nb_ops)
2165 {
2166 	struct openssl_qp *qp = queue_pair;
2167 
2168 	unsigned int nb_dequeued = 0;
2169 
2170 	nb_dequeued = rte_ring_dequeue_burst(qp->processed_ops,
2171 			(void **)ops, nb_ops, NULL);
2172 	qp->stats.dequeued_count += nb_dequeued;
2173 
2174 	return nb_dequeued;
2175 }
2176 
2177 /** Create OPENSSL crypto device */
2178 static int
2179 cryptodev_openssl_create(const char *name,
2180 			struct rte_vdev_device *vdev,
2181 			struct rte_cryptodev_pmd_init_params *init_params)
2182 {
2183 	struct rte_cryptodev *dev;
2184 	struct openssl_private *internals;
2185 
2186 	dev = rte_cryptodev_pmd_create(name, &vdev->device, init_params);
2187 	if (dev == NULL) {
2188 		OPENSSL_LOG(ERR, "failed to create cryptodev vdev");
2189 		goto init_error;
2190 	}
2191 
2192 	dev->driver_id = cryptodev_driver_id;
2193 	dev->dev_ops = rte_openssl_pmd_ops;
2194 
2195 	/* register rx/tx burst functions for data path */
2196 	dev->dequeue_burst = openssl_pmd_dequeue_burst;
2197 	dev->enqueue_burst = openssl_pmd_enqueue_burst;
2198 
2199 	dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
2200 			RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
2201 			RTE_CRYPTODEV_FF_CPU_AESNI |
2202 			RTE_CRYPTODEV_FF_IN_PLACE_SGL |
2203 			RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT |
2204 			RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT |
2205 			RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO |
2206 			RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_EXP |
2207 			RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_QT |
2208 			RTE_CRYPTODEV_FF_SYM_SESSIONLESS;
2209 
2210 	internals = dev->data->dev_private;
2211 
2212 	internals->max_nb_qpairs = init_params->max_nb_queue_pairs;
2213 
2214 	rte_cryptodev_pmd_probing_finish(dev);
2215 
2216 	return 0;
2217 
2218 init_error:
2219 	OPENSSL_LOG(ERR, "driver %s: create failed",
2220 			init_params->name);
2221 
2222 	cryptodev_openssl_remove(vdev);
2223 	return -EFAULT;
2224 }
2225 
2226 /** Initialise OPENSSL crypto device */
2227 static int
2228 cryptodev_openssl_probe(struct rte_vdev_device *vdev)
2229 {
2230 	struct rte_cryptodev_pmd_init_params init_params = {
2231 		"",
2232 		sizeof(struct openssl_private),
2233 		rte_socket_id(),
2234 		RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_QUEUE_PAIRS
2235 	};
2236 	const char *name;
2237 	const char *input_args;
2238 
2239 	name = rte_vdev_device_name(vdev);
2240 	if (name == NULL)
2241 		return -EINVAL;
2242 	input_args = rte_vdev_device_args(vdev);
2243 
2244 	rte_cryptodev_pmd_parse_input_args(&init_params, input_args);
2245 
2246 	return cryptodev_openssl_create(name, vdev, &init_params);
2247 }
2248 
2249 /** Uninitialise OPENSSL crypto device */
2250 static int
2251 cryptodev_openssl_remove(struct rte_vdev_device *vdev)
2252 {
2253 	struct rte_cryptodev *cryptodev;
2254 	const char *name;
2255 
2256 	name = rte_vdev_device_name(vdev);
2257 	if (name == NULL)
2258 		return -EINVAL;
2259 
2260 	cryptodev = rte_cryptodev_pmd_get_named_dev(name);
2261 	if (cryptodev == NULL)
2262 		return -ENODEV;
2263 
2264 	return rte_cryptodev_pmd_destroy(cryptodev);
2265 }
2266 
2267 static struct rte_vdev_driver cryptodev_openssl_pmd_drv = {
2268 	.probe = cryptodev_openssl_probe,
2269 	.remove = cryptodev_openssl_remove
2270 };
2271 
2272 static struct cryptodev_driver openssl_crypto_drv;
2273 
2274 RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_OPENSSL_PMD,
2275 	cryptodev_openssl_pmd_drv);
2276 RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_OPENSSL_PMD,
2277 	"max_nb_queue_pairs=<int> "
2278 	"socket_id=<int>");
2279 RTE_PMD_REGISTER_CRYPTO_DRIVER(openssl_crypto_drv,
2280 		cryptodev_openssl_pmd_drv.driver, cryptodev_driver_id);
2281 RTE_LOG_REGISTER_DEFAULT(openssl_logtype_driver, INFO);
2282