1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2016-2017 Intel Corporation 3 */ 4 5 #include <rte_common.h> 6 #include <rte_hexdump.h> 7 #include <rte_cryptodev.h> 8 #include <cryptodev_pmd.h> 9 #include <rte_bus_vdev.h> 10 #include <rte_malloc.h> 11 #include <rte_cpuflags.h> 12 13 #include <openssl/hmac.h> 14 #include <openssl/evp.h> 15 16 #include "openssl_pmd_private.h" 17 #include "compat.h" 18 19 #define DES_BLOCK_SIZE 8 20 21 static uint8_t cryptodev_driver_id; 22 23 #if (OPENSSL_VERSION_NUMBER < 0x10100000L) 24 static HMAC_CTX *HMAC_CTX_new(void) 25 { 26 HMAC_CTX *ctx = OPENSSL_malloc(sizeof(*ctx)); 27 28 if (ctx != NULL) 29 HMAC_CTX_init(ctx); 30 return ctx; 31 } 32 33 static void HMAC_CTX_free(HMAC_CTX *ctx) 34 { 35 if (ctx != NULL) { 36 HMAC_CTX_cleanup(ctx); 37 OPENSSL_free(ctx); 38 } 39 } 40 #endif 41 42 static int cryptodev_openssl_remove(struct rte_vdev_device *vdev); 43 44 /*----------------------------------------------------------------------------*/ 45 46 /** 47 * Increment counter by 1 48 * Counter is 64 bit array, big-endian 49 */ 50 static void 51 ctr_inc(uint8_t *ctr) 52 { 53 uint64_t *ctr64 = (uint64_t *)ctr; 54 55 *ctr64 = __builtin_bswap64(*ctr64); 56 (*ctr64)++; 57 *ctr64 = __builtin_bswap64(*ctr64); 58 } 59 60 /* 61 *------------------------------------------------------------------------------ 62 * Session Prepare 63 *------------------------------------------------------------------------------ 64 */ 65 66 /** Get xform chain order */ 67 static enum openssl_chain_order 68 openssl_get_chain_order(const struct rte_crypto_sym_xform *xform) 69 { 70 enum openssl_chain_order res = OPENSSL_CHAIN_NOT_SUPPORTED; 71 72 if (xform != NULL) { 73 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) { 74 if (xform->next == NULL) 75 res = OPENSSL_CHAIN_ONLY_AUTH; 76 else if (xform->next->type == 77 RTE_CRYPTO_SYM_XFORM_CIPHER) 78 res = OPENSSL_CHAIN_AUTH_CIPHER; 79 } 80 if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) { 81 if (xform->next == NULL) 82 res = OPENSSL_CHAIN_ONLY_CIPHER; 83 else if (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH) 84 res = OPENSSL_CHAIN_CIPHER_AUTH; 85 } 86 if (xform->type == RTE_CRYPTO_SYM_XFORM_AEAD) 87 res = OPENSSL_CHAIN_COMBINED; 88 } 89 90 return res; 91 } 92 93 /** Get session cipher key from input cipher key */ 94 static void 95 get_cipher_key(const uint8_t *input_key, int keylen, uint8_t *session_key) 96 { 97 memcpy(session_key, input_key, keylen); 98 } 99 100 /** Get key ede 24 bytes standard from input key */ 101 static int 102 get_cipher_key_ede(const uint8_t *key, int keylen, uint8_t *key_ede) 103 { 104 int res = 0; 105 106 /* Initialize keys - 24 bytes: [key1-key2-key3] */ 107 switch (keylen) { 108 case 24: 109 memcpy(key_ede, key, 24); 110 break; 111 case 16: 112 /* K3 = K1 */ 113 memcpy(key_ede, key, 16); 114 memcpy(key_ede + 16, key, 8); 115 break; 116 case 8: 117 /* K1 = K2 = K3 (DES compatibility) */ 118 memcpy(key_ede, key, 8); 119 memcpy(key_ede + 8, key, 8); 120 memcpy(key_ede + 16, key, 8); 121 break; 122 default: 123 OPENSSL_LOG(ERR, "Unsupported key size"); 124 res = -EINVAL; 125 } 126 127 return res; 128 } 129 130 /** Get adequate openssl function for input cipher algorithm */ 131 static uint8_t 132 get_cipher_algo(enum rte_crypto_cipher_algorithm sess_algo, size_t keylen, 133 const EVP_CIPHER **algo) 134 { 135 int res = 0; 136 137 if (algo != NULL) { 138 switch (sess_algo) { 139 case RTE_CRYPTO_CIPHER_3DES_CBC: 140 switch (keylen) { 141 case 8: 142 *algo = EVP_des_cbc(); 143 break; 144 case 16: 145 *algo = EVP_des_ede_cbc(); 146 break; 147 case 24: 148 *algo = EVP_des_ede3_cbc(); 149 break; 150 default: 151 res = -EINVAL; 152 } 153 break; 154 case RTE_CRYPTO_CIPHER_3DES_CTR: 155 break; 156 case RTE_CRYPTO_CIPHER_AES_CBC: 157 switch (keylen) { 158 case 16: 159 *algo = EVP_aes_128_cbc(); 160 break; 161 case 24: 162 *algo = EVP_aes_192_cbc(); 163 break; 164 case 32: 165 *algo = EVP_aes_256_cbc(); 166 break; 167 default: 168 res = -EINVAL; 169 } 170 break; 171 case RTE_CRYPTO_CIPHER_AES_CTR: 172 switch (keylen) { 173 case 16: 174 *algo = EVP_aes_128_ctr(); 175 break; 176 case 24: 177 *algo = EVP_aes_192_ctr(); 178 break; 179 case 32: 180 *algo = EVP_aes_256_ctr(); 181 break; 182 default: 183 res = -EINVAL; 184 } 185 break; 186 default: 187 res = -EINVAL; 188 break; 189 } 190 } else { 191 res = -EINVAL; 192 } 193 194 return res; 195 } 196 197 /** Get adequate openssl function for input auth algorithm */ 198 static uint8_t 199 get_auth_algo(enum rte_crypto_auth_algorithm sessalgo, 200 const EVP_MD **algo) 201 { 202 int res = 0; 203 204 if (algo != NULL) { 205 switch (sessalgo) { 206 case RTE_CRYPTO_AUTH_MD5: 207 case RTE_CRYPTO_AUTH_MD5_HMAC: 208 *algo = EVP_md5(); 209 break; 210 case RTE_CRYPTO_AUTH_SHA1: 211 case RTE_CRYPTO_AUTH_SHA1_HMAC: 212 *algo = EVP_sha1(); 213 break; 214 case RTE_CRYPTO_AUTH_SHA224: 215 case RTE_CRYPTO_AUTH_SHA224_HMAC: 216 *algo = EVP_sha224(); 217 break; 218 case RTE_CRYPTO_AUTH_SHA256: 219 case RTE_CRYPTO_AUTH_SHA256_HMAC: 220 *algo = EVP_sha256(); 221 break; 222 case RTE_CRYPTO_AUTH_SHA384: 223 case RTE_CRYPTO_AUTH_SHA384_HMAC: 224 *algo = EVP_sha384(); 225 break; 226 case RTE_CRYPTO_AUTH_SHA512: 227 case RTE_CRYPTO_AUTH_SHA512_HMAC: 228 *algo = EVP_sha512(); 229 break; 230 default: 231 res = -EINVAL; 232 break; 233 } 234 } else { 235 res = -EINVAL; 236 } 237 238 return res; 239 } 240 241 /** Get adequate openssl function for input cipher algorithm */ 242 static uint8_t 243 get_aead_algo(enum rte_crypto_aead_algorithm sess_algo, size_t keylen, 244 const EVP_CIPHER **algo) 245 { 246 int res = 0; 247 248 if (algo != NULL) { 249 switch (sess_algo) { 250 case RTE_CRYPTO_AEAD_AES_GCM: 251 switch (keylen) { 252 case 16: 253 *algo = EVP_aes_128_gcm(); 254 break; 255 case 24: 256 *algo = EVP_aes_192_gcm(); 257 break; 258 case 32: 259 *algo = EVP_aes_256_gcm(); 260 break; 261 default: 262 res = -EINVAL; 263 } 264 break; 265 case RTE_CRYPTO_AEAD_AES_CCM: 266 switch (keylen) { 267 case 16: 268 *algo = EVP_aes_128_ccm(); 269 break; 270 case 24: 271 *algo = EVP_aes_192_ccm(); 272 break; 273 case 32: 274 *algo = EVP_aes_256_ccm(); 275 break; 276 default: 277 res = -EINVAL; 278 } 279 break; 280 default: 281 res = -EINVAL; 282 break; 283 } 284 } else { 285 res = -EINVAL; 286 } 287 288 return res; 289 } 290 291 /* Set session AEAD encryption parameters */ 292 static int 293 openssl_set_sess_aead_enc_param(struct openssl_session *sess, 294 enum rte_crypto_aead_algorithm algo, 295 uint8_t tag_len, const uint8_t *key) 296 { 297 int iv_type = 0; 298 unsigned int do_ccm; 299 300 sess->cipher.direction = RTE_CRYPTO_CIPHER_OP_ENCRYPT; 301 sess->auth.operation = RTE_CRYPTO_AUTH_OP_GENERATE; 302 303 /* Select AEAD algo */ 304 switch (algo) { 305 case RTE_CRYPTO_AEAD_AES_GCM: 306 iv_type = EVP_CTRL_GCM_SET_IVLEN; 307 if (tag_len != 16) 308 return -EINVAL; 309 do_ccm = 0; 310 break; 311 case RTE_CRYPTO_AEAD_AES_CCM: 312 iv_type = EVP_CTRL_CCM_SET_IVLEN; 313 /* Digest size can be 4, 6, 8, 10, 12, 14 or 16 bytes */ 314 if (tag_len < 4 || tag_len > 16 || (tag_len & 1) == 1) 315 return -EINVAL; 316 do_ccm = 1; 317 break; 318 default: 319 return -ENOTSUP; 320 } 321 322 sess->cipher.mode = OPENSSL_CIPHER_LIB; 323 sess->cipher.ctx = EVP_CIPHER_CTX_new(); 324 325 if (get_aead_algo(algo, sess->cipher.key.length, 326 &sess->cipher.evp_algo) != 0) 327 return -EINVAL; 328 329 get_cipher_key(key, sess->cipher.key.length, sess->cipher.key.data); 330 331 sess->chain_order = OPENSSL_CHAIN_COMBINED; 332 333 if (EVP_EncryptInit_ex(sess->cipher.ctx, sess->cipher.evp_algo, 334 NULL, NULL, NULL) <= 0) 335 return -EINVAL; 336 337 if (EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, iv_type, sess->iv.length, 338 NULL) <= 0) 339 return -EINVAL; 340 341 if (do_ccm) 342 EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, EVP_CTRL_CCM_SET_TAG, 343 tag_len, NULL); 344 345 if (EVP_EncryptInit_ex(sess->cipher.ctx, NULL, NULL, key, NULL) <= 0) 346 return -EINVAL; 347 348 return 0; 349 } 350 351 /* Set session AEAD decryption parameters */ 352 static int 353 openssl_set_sess_aead_dec_param(struct openssl_session *sess, 354 enum rte_crypto_aead_algorithm algo, 355 uint8_t tag_len, const uint8_t *key) 356 { 357 int iv_type = 0; 358 unsigned int do_ccm = 0; 359 360 sess->cipher.direction = RTE_CRYPTO_CIPHER_OP_DECRYPT; 361 sess->auth.operation = RTE_CRYPTO_AUTH_OP_VERIFY; 362 363 /* Select AEAD algo */ 364 switch (algo) { 365 case RTE_CRYPTO_AEAD_AES_GCM: 366 iv_type = EVP_CTRL_GCM_SET_IVLEN; 367 if (tag_len != 16) 368 return -EINVAL; 369 break; 370 case RTE_CRYPTO_AEAD_AES_CCM: 371 iv_type = EVP_CTRL_CCM_SET_IVLEN; 372 /* Digest size can be 4, 6, 8, 10, 12, 14 or 16 bytes */ 373 if (tag_len < 4 || tag_len > 16 || (tag_len & 1) == 1) 374 return -EINVAL; 375 do_ccm = 1; 376 break; 377 default: 378 return -ENOTSUP; 379 } 380 381 sess->cipher.mode = OPENSSL_CIPHER_LIB; 382 sess->cipher.ctx = EVP_CIPHER_CTX_new(); 383 384 if (get_aead_algo(algo, sess->cipher.key.length, 385 &sess->cipher.evp_algo) != 0) 386 return -EINVAL; 387 388 get_cipher_key(key, sess->cipher.key.length, sess->cipher.key.data); 389 390 sess->chain_order = OPENSSL_CHAIN_COMBINED; 391 392 if (EVP_DecryptInit_ex(sess->cipher.ctx, sess->cipher.evp_algo, 393 NULL, NULL, NULL) <= 0) 394 return -EINVAL; 395 396 if (EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, iv_type, 397 sess->iv.length, NULL) <= 0) 398 return -EINVAL; 399 400 if (do_ccm) 401 EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, EVP_CTRL_CCM_SET_TAG, 402 tag_len, NULL); 403 404 if (EVP_DecryptInit_ex(sess->cipher.ctx, NULL, NULL, key, NULL) <= 0) 405 return -EINVAL; 406 407 return 0; 408 } 409 410 /** Set session cipher parameters */ 411 static int 412 openssl_set_session_cipher_parameters(struct openssl_session *sess, 413 const struct rte_crypto_sym_xform *xform) 414 { 415 /* Select cipher direction */ 416 sess->cipher.direction = xform->cipher.op; 417 /* Select cipher key */ 418 sess->cipher.key.length = xform->cipher.key.length; 419 420 /* Set IV parameters */ 421 sess->iv.offset = xform->cipher.iv.offset; 422 sess->iv.length = xform->cipher.iv.length; 423 424 /* Select cipher algo */ 425 switch (xform->cipher.algo) { 426 case RTE_CRYPTO_CIPHER_3DES_CBC: 427 case RTE_CRYPTO_CIPHER_AES_CBC: 428 case RTE_CRYPTO_CIPHER_AES_CTR: 429 sess->cipher.mode = OPENSSL_CIPHER_LIB; 430 sess->cipher.algo = xform->cipher.algo; 431 sess->cipher.ctx = EVP_CIPHER_CTX_new(); 432 433 if (get_cipher_algo(sess->cipher.algo, sess->cipher.key.length, 434 &sess->cipher.evp_algo) != 0) 435 return -EINVAL; 436 437 get_cipher_key(xform->cipher.key.data, sess->cipher.key.length, 438 sess->cipher.key.data); 439 if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) { 440 if (EVP_EncryptInit_ex(sess->cipher.ctx, 441 sess->cipher.evp_algo, 442 NULL, xform->cipher.key.data, 443 NULL) != 1) { 444 return -EINVAL; 445 } 446 } else if (sess->cipher.direction == 447 RTE_CRYPTO_CIPHER_OP_DECRYPT) { 448 if (EVP_DecryptInit_ex(sess->cipher.ctx, 449 sess->cipher.evp_algo, 450 NULL, xform->cipher.key.data, 451 NULL) != 1) { 452 return -EINVAL; 453 } 454 } 455 456 break; 457 458 case RTE_CRYPTO_CIPHER_3DES_CTR: 459 sess->cipher.mode = OPENSSL_CIPHER_DES3CTR; 460 sess->cipher.ctx = EVP_CIPHER_CTX_new(); 461 462 if (get_cipher_key_ede(xform->cipher.key.data, 463 sess->cipher.key.length, 464 sess->cipher.key.data) != 0) 465 return -EINVAL; 466 break; 467 468 case RTE_CRYPTO_CIPHER_DES_CBC: 469 sess->cipher.algo = xform->cipher.algo; 470 sess->cipher.ctx = EVP_CIPHER_CTX_new(); 471 sess->cipher.evp_algo = EVP_des_cbc(); 472 473 get_cipher_key(xform->cipher.key.data, sess->cipher.key.length, 474 sess->cipher.key.data); 475 if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) { 476 if (EVP_EncryptInit_ex(sess->cipher.ctx, 477 sess->cipher.evp_algo, 478 NULL, xform->cipher.key.data, 479 NULL) != 1) { 480 return -EINVAL; 481 } 482 } else if (sess->cipher.direction == 483 RTE_CRYPTO_CIPHER_OP_DECRYPT) { 484 if (EVP_DecryptInit_ex(sess->cipher.ctx, 485 sess->cipher.evp_algo, 486 NULL, xform->cipher.key.data, 487 NULL) != 1) { 488 return -EINVAL; 489 } 490 } 491 492 break; 493 494 case RTE_CRYPTO_CIPHER_DES_DOCSISBPI: 495 sess->cipher.algo = xform->cipher.algo; 496 sess->chain_order = OPENSSL_CHAIN_CIPHER_BPI; 497 sess->cipher.ctx = EVP_CIPHER_CTX_new(); 498 sess->cipher.evp_algo = EVP_des_cbc(); 499 500 sess->cipher.bpi_ctx = EVP_CIPHER_CTX_new(); 501 /* IV will be ECB encrypted whether direction is encrypt or decrypt */ 502 if (EVP_EncryptInit_ex(sess->cipher.bpi_ctx, EVP_des_ecb(), 503 NULL, xform->cipher.key.data, 0) != 1) 504 return -EINVAL; 505 506 get_cipher_key(xform->cipher.key.data, sess->cipher.key.length, 507 sess->cipher.key.data); 508 if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) { 509 if (EVP_EncryptInit_ex(sess->cipher.ctx, 510 sess->cipher.evp_algo, 511 NULL, xform->cipher.key.data, 512 NULL) != 1) { 513 return -EINVAL; 514 } 515 } else if (sess->cipher.direction == 516 RTE_CRYPTO_CIPHER_OP_DECRYPT) { 517 if (EVP_DecryptInit_ex(sess->cipher.ctx, 518 sess->cipher.evp_algo, 519 NULL, xform->cipher.key.data, 520 NULL) != 1) { 521 return -EINVAL; 522 } 523 } 524 525 break; 526 default: 527 sess->cipher.algo = RTE_CRYPTO_CIPHER_NULL; 528 return -ENOTSUP; 529 } 530 531 return 0; 532 } 533 534 /* Set session auth parameters */ 535 static int 536 openssl_set_session_auth_parameters(struct openssl_session *sess, 537 const struct rte_crypto_sym_xform *xform) 538 { 539 /* Select auth generate/verify */ 540 sess->auth.operation = xform->auth.op; 541 sess->auth.algo = xform->auth.algo; 542 543 sess->auth.digest_length = xform->auth.digest_length; 544 545 /* Select auth algo */ 546 switch (xform->auth.algo) { 547 case RTE_CRYPTO_AUTH_AES_GMAC: 548 /* 549 * OpenSSL requires GMAC to be a GCM operation 550 * with no cipher data length 551 */ 552 sess->cipher.key.length = xform->auth.key.length; 553 554 /* Set IV parameters */ 555 sess->iv.offset = xform->auth.iv.offset; 556 sess->iv.length = xform->auth.iv.length; 557 558 if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_GENERATE) 559 return openssl_set_sess_aead_enc_param(sess, 560 RTE_CRYPTO_AEAD_AES_GCM, 561 xform->auth.digest_length, 562 xform->auth.key.data); 563 else 564 return openssl_set_sess_aead_dec_param(sess, 565 RTE_CRYPTO_AEAD_AES_GCM, 566 xform->auth.digest_length, 567 xform->auth.key.data); 568 break; 569 570 case RTE_CRYPTO_AUTH_MD5: 571 case RTE_CRYPTO_AUTH_SHA1: 572 case RTE_CRYPTO_AUTH_SHA224: 573 case RTE_CRYPTO_AUTH_SHA256: 574 case RTE_CRYPTO_AUTH_SHA384: 575 case RTE_CRYPTO_AUTH_SHA512: 576 sess->auth.mode = OPENSSL_AUTH_AS_AUTH; 577 if (get_auth_algo(xform->auth.algo, 578 &sess->auth.auth.evp_algo) != 0) 579 return -EINVAL; 580 sess->auth.auth.ctx = EVP_MD_CTX_create(); 581 break; 582 583 case RTE_CRYPTO_AUTH_MD5_HMAC: 584 case RTE_CRYPTO_AUTH_SHA1_HMAC: 585 case RTE_CRYPTO_AUTH_SHA224_HMAC: 586 case RTE_CRYPTO_AUTH_SHA256_HMAC: 587 case RTE_CRYPTO_AUTH_SHA384_HMAC: 588 case RTE_CRYPTO_AUTH_SHA512_HMAC: 589 sess->auth.mode = OPENSSL_AUTH_AS_HMAC; 590 sess->auth.hmac.ctx = HMAC_CTX_new(); 591 if (get_auth_algo(xform->auth.algo, 592 &sess->auth.hmac.evp_algo) != 0) 593 return -EINVAL; 594 595 if (HMAC_Init_ex(sess->auth.hmac.ctx, 596 xform->auth.key.data, 597 xform->auth.key.length, 598 sess->auth.hmac.evp_algo, NULL) != 1) 599 return -EINVAL; 600 break; 601 602 default: 603 return -ENOTSUP; 604 } 605 606 return 0; 607 } 608 609 /* Set session AEAD parameters */ 610 static int 611 openssl_set_session_aead_parameters(struct openssl_session *sess, 612 const struct rte_crypto_sym_xform *xform) 613 { 614 /* Select cipher key */ 615 sess->cipher.key.length = xform->aead.key.length; 616 617 /* Set IV parameters */ 618 if (xform->aead.algo == RTE_CRYPTO_AEAD_AES_CCM) 619 /* 620 * For AES-CCM, the actual IV is placed 621 * one byte after the start of the IV field, 622 * according to the API. 623 */ 624 sess->iv.offset = xform->aead.iv.offset + 1; 625 else 626 sess->iv.offset = xform->aead.iv.offset; 627 628 sess->iv.length = xform->aead.iv.length; 629 630 sess->auth.aad_length = xform->aead.aad_length; 631 sess->auth.digest_length = xform->aead.digest_length; 632 633 sess->aead_algo = xform->aead.algo; 634 /* Select cipher direction */ 635 if (xform->aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT) 636 return openssl_set_sess_aead_enc_param(sess, xform->aead.algo, 637 xform->aead.digest_length, xform->aead.key.data); 638 else 639 return openssl_set_sess_aead_dec_param(sess, xform->aead.algo, 640 xform->aead.digest_length, xform->aead.key.data); 641 } 642 643 /** Parse crypto xform chain and set private session parameters */ 644 int 645 openssl_set_session_parameters(struct openssl_session *sess, 646 const struct rte_crypto_sym_xform *xform) 647 { 648 const struct rte_crypto_sym_xform *cipher_xform = NULL; 649 const struct rte_crypto_sym_xform *auth_xform = NULL; 650 const struct rte_crypto_sym_xform *aead_xform = NULL; 651 int ret; 652 653 sess->chain_order = openssl_get_chain_order(xform); 654 switch (sess->chain_order) { 655 case OPENSSL_CHAIN_ONLY_CIPHER: 656 cipher_xform = xform; 657 break; 658 case OPENSSL_CHAIN_ONLY_AUTH: 659 auth_xform = xform; 660 break; 661 case OPENSSL_CHAIN_CIPHER_AUTH: 662 cipher_xform = xform; 663 auth_xform = xform->next; 664 break; 665 case OPENSSL_CHAIN_AUTH_CIPHER: 666 auth_xform = xform; 667 cipher_xform = xform->next; 668 break; 669 case OPENSSL_CHAIN_COMBINED: 670 aead_xform = xform; 671 break; 672 default: 673 return -EINVAL; 674 } 675 676 /* Default IV length = 0 */ 677 sess->iv.length = 0; 678 679 /* cipher_xform must be check before auth_xform */ 680 if (cipher_xform) { 681 ret = openssl_set_session_cipher_parameters( 682 sess, cipher_xform); 683 if (ret != 0) { 684 OPENSSL_LOG(ERR, 685 "Invalid/unsupported cipher parameters"); 686 return ret; 687 } 688 } 689 690 if (auth_xform) { 691 ret = openssl_set_session_auth_parameters(sess, auth_xform); 692 if (ret != 0) { 693 OPENSSL_LOG(ERR, 694 "Invalid/unsupported auth parameters"); 695 return ret; 696 } 697 } 698 699 if (aead_xform) { 700 ret = openssl_set_session_aead_parameters(sess, aead_xform); 701 if (ret != 0) { 702 OPENSSL_LOG(ERR, 703 "Invalid/unsupported AEAD parameters"); 704 return ret; 705 } 706 } 707 708 return 0; 709 } 710 711 /** Reset private session parameters */ 712 void 713 openssl_reset_session(struct openssl_session *sess) 714 { 715 EVP_CIPHER_CTX_free(sess->cipher.ctx); 716 717 if (sess->chain_order == OPENSSL_CHAIN_CIPHER_BPI) 718 EVP_CIPHER_CTX_free(sess->cipher.bpi_ctx); 719 720 switch (sess->auth.mode) { 721 case OPENSSL_AUTH_AS_AUTH: 722 EVP_MD_CTX_destroy(sess->auth.auth.ctx); 723 break; 724 case OPENSSL_AUTH_AS_HMAC: 725 EVP_PKEY_free(sess->auth.hmac.pkey); 726 HMAC_CTX_free(sess->auth.hmac.ctx); 727 break; 728 default: 729 break; 730 } 731 } 732 733 /** Provide session for operation */ 734 static void * 735 get_session(struct openssl_qp *qp, struct rte_crypto_op *op) 736 { 737 struct openssl_session *sess = NULL; 738 struct openssl_asym_session *asym_sess = NULL; 739 740 if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) { 741 if (op->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC) { 742 /* get existing session */ 743 if (likely(op->sym->session != NULL)) 744 sess = (struct openssl_session *) 745 get_sym_session_private_data( 746 op->sym->session, 747 cryptodev_driver_id); 748 } else { 749 if (likely(op->asym->session != NULL)) 750 asym_sess = (struct openssl_asym_session *) 751 op->asym->session->sess_private_data; 752 if (asym_sess == NULL) 753 op->status = 754 RTE_CRYPTO_OP_STATUS_INVALID_SESSION; 755 return asym_sess; 756 } 757 } else { 758 /* sessionless asymmetric not supported */ 759 if (op->type == RTE_CRYPTO_OP_TYPE_ASYMMETRIC) 760 return NULL; 761 762 /* provide internal session */ 763 void *_sess = rte_cryptodev_sym_session_create(qp->sess_mp); 764 void *_sess_private_data = NULL; 765 766 if (_sess == NULL) 767 return NULL; 768 769 if (rte_mempool_get(qp->sess_mp_priv, 770 (void **)&_sess_private_data)) 771 return NULL; 772 773 sess = (struct openssl_session *)_sess_private_data; 774 775 if (unlikely(openssl_set_session_parameters(sess, 776 op->sym->xform) != 0)) { 777 rte_mempool_put(qp->sess_mp, _sess); 778 rte_mempool_put(qp->sess_mp_priv, _sess_private_data); 779 sess = NULL; 780 } 781 op->sym->session = (struct rte_cryptodev_sym_session *)_sess; 782 set_sym_session_private_data(op->sym->session, 783 cryptodev_driver_id, _sess_private_data); 784 } 785 786 if (sess == NULL) 787 op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION; 788 789 return sess; 790 } 791 792 /* 793 *------------------------------------------------------------------------------ 794 * Process Operations 795 *------------------------------------------------------------------------------ 796 */ 797 static inline int 798 process_openssl_encryption_update(struct rte_mbuf *mbuf_src, int offset, 799 uint8_t **dst, int srclen, EVP_CIPHER_CTX *ctx, uint8_t inplace) 800 { 801 struct rte_mbuf *m; 802 int dstlen; 803 int l, n = srclen; 804 uint8_t *src, temp[EVP_CIPHER_CTX_block_size(ctx)]; 805 806 for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m); 807 m = m->next) 808 offset -= rte_pktmbuf_data_len(m); 809 810 if (m == 0) 811 return -1; 812 813 src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset); 814 if (inplace) 815 *dst = src; 816 817 l = rte_pktmbuf_data_len(m) - offset; 818 if (srclen <= l) { 819 if (EVP_EncryptUpdate(ctx, *dst, &dstlen, src, srclen) <= 0) 820 return -1; 821 *dst += l; 822 return 0; 823 } 824 825 if (EVP_EncryptUpdate(ctx, *dst, &dstlen, src, l) <= 0) 826 return -1; 827 828 *dst += dstlen; 829 n -= l; 830 831 for (m = m->next; (m != NULL) && (n > 0); m = m->next) { 832 uint8_t diff = l - dstlen, rem; 833 834 src = rte_pktmbuf_mtod(m, uint8_t *); 835 l = RTE_MIN(rte_pktmbuf_data_len(m), n); 836 if (diff && inplace) { 837 rem = RTE_MIN(l, 838 (EVP_CIPHER_CTX_block_size(ctx) - diff)); 839 if (EVP_EncryptUpdate(ctx, temp, 840 &dstlen, src, rem) <= 0) 841 return -1; 842 n -= rem; 843 rte_memcpy(*dst, temp, diff); 844 rte_memcpy(src, temp + diff, rem); 845 src += rem; 846 l -= rem; 847 } 848 if (inplace) 849 *dst = src; 850 if (EVP_EncryptUpdate(ctx, *dst, &dstlen, src, l) <= 0) 851 return -1; 852 *dst += dstlen; 853 n -= l; 854 } 855 856 return 0; 857 } 858 859 static inline int 860 process_openssl_decryption_update(struct rte_mbuf *mbuf_src, int offset, 861 uint8_t **dst, int srclen, EVP_CIPHER_CTX *ctx, uint8_t inplace) 862 { 863 struct rte_mbuf *m; 864 int dstlen; 865 int l, n = srclen; 866 uint8_t *src, temp[EVP_CIPHER_CTX_block_size(ctx)]; 867 868 for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m); 869 m = m->next) 870 offset -= rte_pktmbuf_data_len(m); 871 872 if (m == 0) 873 return -1; 874 875 src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset); 876 if (inplace) 877 *dst = src; 878 879 l = rte_pktmbuf_data_len(m) - offset; 880 if (srclen <= l) { 881 if (EVP_DecryptUpdate(ctx, *dst, &dstlen, src, srclen) <= 0) 882 return -1; 883 *dst += l; 884 return 0; 885 } 886 887 if (EVP_DecryptUpdate(ctx, *dst, &dstlen, src, l) <= 0) 888 return -1; 889 890 *dst += dstlen; 891 n -= l; 892 893 for (m = m->next; (m != NULL) && (n > 0); m = m->next) { 894 uint8_t diff = l - dstlen, rem; 895 896 src = rte_pktmbuf_mtod(m, uint8_t *); 897 l = RTE_MIN(rte_pktmbuf_data_len(m), n); 898 if (diff && inplace) { 899 rem = RTE_MIN(l, 900 (EVP_CIPHER_CTX_block_size(ctx) - diff)); 901 if (EVP_DecryptUpdate(ctx, temp, 902 &dstlen, src, rem) <= 0) 903 return -1; 904 n -= rem; 905 rte_memcpy(*dst, temp, diff); 906 rte_memcpy(src, temp + diff, rem); 907 src += rem; 908 l -= rem; 909 } 910 if (inplace) 911 *dst = src; 912 if (EVP_DecryptUpdate(ctx, *dst, &dstlen, src, l) <= 0) 913 return -1; 914 *dst += dstlen; 915 n -= l; 916 } 917 918 return 0; 919 } 920 921 /** Process standard openssl cipher encryption */ 922 static int 923 process_openssl_cipher_encrypt(struct rte_mbuf *mbuf_src, uint8_t *dst, 924 int offset, uint8_t *iv, int srclen, EVP_CIPHER_CTX *ctx, 925 uint8_t inplace) 926 { 927 int totlen; 928 929 if (EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0) 930 goto process_cipher_encrypt_err; 931 932 EVP_CIPHER_CTX_set_padding(ctx, 0); 933 934 if (process_openssl_encryption_update(mbuf_src, offset, &dst, 935 srclen, ctx, inplace)) 936 goto process_cipher_encrypt_err; 937 938 if (EVP_EncryptFinal_ex(ctx, dst, &totlen) <= 0) 939 goto process_cipher_encrypt_err; 940 941 return 0; 942 943 process_cipher_encrypt_err: 944 OPENSSL_LOG(ERR, "Process openssl cipher encrypt failed"); 945 return -EINVAL; 946 } 947 948 /** Process standard openssl cipher encryption */ 949 static int 950 process_openssl_cipher_bpi_encrypt(uint8_t *src, uint8_t *dst, 951 uint8_t *iv, int srclen, 952 EVP_CIPHER_CTX *ctx) 953 { 954 uint8_t i; 955 uint8_t encrypted_iv[DES_BLOCK_SIZE]; 956 int encrypted_ivlen; 957 958 if (EVP_EncryptUpdate(ctx, encrypted_iv, &encrypted_ivlen, 959 iv, DES_BLOCK_SIZE) <= 0) 960 goto process_cipher_encrypt_err; 961 962 for (i = 0; i < srclen; i++) 963 *(dst + i) = *(src + i) ^ (encrypted_iv[i]); 964 965 return 0; 966 967 process_cipher_encrypt_err: 968 OPENSSL_LOG(ERR, "Process openssl cipher bpi encrypt failed"); 969 return -EINVAL; 970 } 971 /** Process standard openssl cipher decryption */ 972 static int 973 process_openssl_cipher_decrypt(struct rte_mbuf *mbuf_src, uint8_t *dst, 974 int offset, uint8_t *iv, int srclen, EVP_CIPHER_CTX *ctx, 975 uint8_t inplace) 976 { 977 int totlen; 978 979 if (EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0) 980 goto process_cipher_decrypt_err; 981 982 EVP_CIPHER_CTX_set_padding(ctx, 0); 983 984 if (process_openssl_decryption_update(mbuf_src, offset, &dst, 985 srclen, ctx, inplace)) 986 goto process_cipher_decrypt_err; 987 988 if (EVP_DecryptFinal_ex(ctx, dst, &totlen) <= 0) 989 goto process_cipher_decrypt_err; 990 return 0; 991 992 process_cipher_decrypt_err: 993 OPENSSL_LOG(ERR, "Process openssl cipher decrypt failed"); 994 return -EINVAL; 995 } 996 997 /** Process cipher des 3 ctr encryption, decryption algorithm */ 998 static int 999 process_openssl_cipher_des3ctr(struct rte_mbuf *mbuf_src, uint8_t *dst, 1000 int offset, uint8_t *iv, uint8_t *key, int srclen, 1001 EVP_CIPHER_CTX *ctx) 1002 { 1003 uint8_t ebuf[8], ctr[8]; 1004 int unused, n; 1005 struct rte_mbuf *m; 1006 uint8_t *src; 1007 int l; 1008 1009 for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m); 1010 m = m->next) 1011 offset -= rte_pktmbuf_data_len(m); 1012 1013 if (m == 0) 1014 goto process_cipher_des3ctr_err; 1015 1016 src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset); 1017 l = rte_pktmbuf_data_len(m) - offset; 1018 1019 /* We use 3DES encryption also for decryption. 1020 * IV is not important for 3DES ecb 1021 */ 1022 if (EVP_EncryptInit_ex(ctx, EVP_des_ede3_ecb(), NULL, key, NULL) <= 0) 1023 goto process_cipher_des3ctr_err; 1024 1025 memcpy(ctr, iv, 8); 1026 1027 for (n = 0; n < srclen; n++) { 1028 if (n % 8 == 0) { 1029 if (EVP_EncryptUpdate(ctx, 1030 (unsigned char *)&ebuf, &unused, 1031 (const unsigned char *)&ctr, 8) <= 0) 1032 goto process_cipher_des3ctr_err; 1033 ctr_inc(ctr); 1034 } 1035 dst[n] = *(src++) ^ ebuf[n % 8]; 1036 1037 l--; 1038 if (!l) { 1039 m = m->next; 1040 if (m) { 1041 src = rte_pktmbuf_mtod(m, uint8_t *); 1042 l = rte_pktmbuf_data_len(m); 1043 } 1044 } 1045 } 1046 1047 return 0; 1048 1049 process_cipher_des3ctr_err: 1050 OPENSSL_LOG(ERR, "Process openssl cipher des 3 ede ctr failed"); 1051 return -EINVAL; 1052 } 1053 1054 /** Process AES-GCM encrypt algorithm */ 1055 static int 1056 process_openssl_auth_encryption_gcm(struct rte_mbuf *mbuf_src, int offset, 1057 int srclen, uint8_t *aad, int aadlen, uint8_t *iv, 1058 uint8_t *dst, uint8_t *tag, EVP_CIPHER_CTX *ctx) 1059 { 1060 int len = 0, unused = 0; 1061 uint8_t empty[] = {}; 1062 1063 if (EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0) 1064 goto process_auth_encryption_gcm_err; 1065 1066 if (aadlen > 0) 1067 if (EVP_EncryptUpdate(ctx, NULL, &len, aad, aadlen) <= 0) 1068 goto process_auth_encryption_gcm_err; 1069 1070 if (srclen > 0) 1071 if (process_openssl_encryption_update(mbuf_src, offset, &dst, 1072 srclen, ctx, 0)) 1073 goto process_auth_encryption_gcm_err; 1074 1075 /* Workaround open ssl bug in version less then 1.0.1f */ 1076 if (EVP_EncryptUpdate(ctx, empty, &unused, empty, 0) <= 0) 1077 goto process_auth_encryption_gcm_err; 1078 1079 if (EVP_EncryptFinal_ex(ctx, dst, &len) <= 0) 1080 goto process_auth_encryption_gcm_err; 1081 1082 if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_GET_TAG, 16, tag) <= 0) 1083 goto process_auth_encryption_gcm_err; 1084 1085 return 0; 1086 1087 process_auth_encryption_gcm_err: 1088 OPENSSL_LOG(ERR, "Process openssl auth encryption gcm failed"); 1089 return -EINVAL; 1090 } 1091 1092 /** Process AES-CCM encrypt algorithm */ 1093 static int 1094 process_openssl_auth_encryption_ccm(struct rte_mbuf *mbuf_src, int offset, 1095 int srclen, uint8_t *aad, int aadlen, uint8_t *iv, 1096 uint8_t *dst, uint8_t *tag, uint8_t taglen, EVP_CIPHER_CTX *ctx) 1097 { 1098 int len = 0; 1099 1100 if (EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0) 1101 goto process_auth_encryption_ccm_err; 1102 1103 if (EVP_EncryptUpdate(ctx, NULL, &len, NULL, srclen) <= 0) 1104 goto process_auth_encryption_ccm_err; 1105 1106 if (aadlen > 0) 1107 /* 1108 * For AES-CCM, the actual AAD is placed 1109 * 18 bytes after the start of the AAD field, 1110 * according to the API. 1111 */ 1112 if (EVP_EncryptUpdate(ctx, NULL, &len, aad + 18, aadlen) <= 0) 1113 goto process_auth_encryption_ccm_err; 1114 1115 if (srclen >= 0) 1116 if (process_openssl_encryption_update(mbuf_src, offset, &dst, 1117 srclen, ctx, 0)) 1118 goto process_auth_encryption_ccm_err; 1119 1120 if (EVP_EncryptFinal_ex(ctx, dst, &len) <= 0) 1121 goto process_auth_encryption_ccm_err; 1122 1123 if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_GET_TAG, taglen, tag) <= 0) 1124 goto process_auth_encryption_ccm_err; 1125 1126 return 0; 1127 1128 process_auth_encryption_ccm_err: 1129 OPENSSL_LOG(ERR, "Process openssl auth encryption ccm failed"); 1130 return -EINVAL; 1131 } 1132 1133 /** Process AES-GCM decrypt algorithm */ 1134 static int 1135 process_openssl_auth_decryption_gcm(struct rte_mbuf *mbuf_src, int offset, 1136 int srclen, uint8_t *aad, int aadlen, uint8_t *iv, 1137 uint8_t *dst, uint8_t *tag, EVP_CIPHER_CTX *ctx) 1138 { 1139 int len = 0, unused = 0; 1140 uint8_t empty[] = {}; 1141 1142 if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_TAG, 16, tag) <= 0) 1143 goto process_auth_decryption_gcm_err; 1144 1145 if (EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0) 1146 goto process_auth_decryption_gcm_err; 1147 1148 if (aadlen > 0) 1149 if (EVP_DecryptUpdate(ctx, NULL, &len, aad, aadlen) <= 0) 1150 goto process_auth_decryption_gcm_err; 1151 1152 if (srclen > 0) 1153 if (process_openssl_decryption_update(mbuf_src, offset, &dst, 1154 srclen, ctx, 0)) 1155 goto process_auth_decryption_gcm_err; 1156 1157 /* Workaround open ssl bug in version less then 1.0.1f */ 1158 if (EVP_DecryptUpdate(ctx, empty, &unused, empty, 0) <= 0) 1159 goto process_auth_decryption_gcm_err; 1160 1161 if (EVP_DecryptFinal_ex(ctx, dst, &len) <= 0) 1162 return -EFAULT; 1163 1164 return 0; 1165 1166 process_auth_decryption_gcm_err: 1167 OPENSSL_LOG(ERR, "Process openssl auth decryption gcm failed"); 1168 return -EINVAL; 1169 } 1170 1171 /** Process AES-CCM decrypt algorithm */ 1172 static int 1173 process_openssl_auth_decryption_ccm(struct rte_mbuf *mbuf_src, int offset, 1174 int srclen, uint8_t *aad, int aadlen, uint8_t *iv, 1175 uint8_t *dst, uint8_t *tag, uint8_t tag_len, 1176 EVP_CIPHER_CTX *ctx) 1177 { 1178 int len = 0; 1179 1180 if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_TAG, tag_len, tag) <= 0) 1181 goto process_auth_decryption_ccm_err; 1182 1183 if (EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0) 1184 goto process_auth_decryption_ccm_err; 1185 1186 if (EVP_DecryptUpdate(ctx, NULL, &len, NULL, srclen) <= 0) 1187 goto process_auth_decryption_ccm_err; 1188 1189 if (aadlen > 0) 1190 /* 1191 * For AES-CCM, the actual AAD is placed 1192 * 18 bytes after the start of the AAD field, 1193 * according to the API. 1194 */ 1195 if (EVP_DecryptUpdate(ctx, NULL, &len, aad + 18, aadlen) <= 0) 1196 goto process_auth_decryption_ccm_err; 1197 1198 if (srclen >= 0) 1199 if (process_openssl_decryption_update(mbuf_src, offset, &dst, 1200 srclen, ctx, 0)) 1201 return -EFAULT; 1202 1203 return 0; 1204 1205 process_auth_decryption_ccm_err: 1206 OPENSSL_LOG(ERR, "Process openssl auth decryption ccm failed"); 1207 return -EINVAL; 1208 } 1209 1210 /** Process standard openssl auth algorithms */ 1211 static int 1212 process_openssl_auth(struct rte_mbuf *mbuf_src, uint8_t *dst, int offset, 1213 __rte_unused uint8_t *iv, __rte_unused EVP_PKEY * pkey, 1214 int srclen, EVP_MD_CTX *ctx, const EVP_MD *algo) 1215 { 1216 size_t dstlen; 1217 struct rte_mbuf *m; 1218 int l, n = srclen; 1219 uint8_t *src; 1220 1221 for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m); 1222 m = m->next) 1223 offset -= rte_pktmbuf_data_len(m); 1224 1225 if (m == 0) 1226 goto process_auth_err; 1227 1228 if (EVP_DigestInit_ex(ctx, algo, NULL) <= 0) 1229 goto process_auth_err; 1230 1231 src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset); 1232 1233 l = rte_pktmbuf_data_len(m) - offset; 1234 if (srclen <= l) { 1235 if (EVP_DigestUpdate(ctx, (char *)src, srclen) <= 0) 1236 goto process_auth_err; 1237 goto process_auth_final; 1238 } 1239 1240 if (EVP_DigestUpdate(ctx, (char *)src, l) <= 0) 1241 goto process_auth_err; 1242 1243 n -= l; 1244 1245 for (m = m->next; (m != NULL) && (n > 0); m = m->next) { 1246 src = rte_pktmbuf_mtod(m, uint8_t *); 1247 l = rte_pktmbuf_data_len(m) < n ? rte_pktmbuf_data_len(m) : n; 1248 if (EVP_DigestUpdate(ctx, (char *)src, l) <= 0) 1249 goto process_auth_err; 1250 n -= l; 1251 } 1252 1253 process_auth_final: 1254 if (EVP_DigestFinal_ex(ctx, dst, (unsigned int *)&dstlen) <= 0) 1255 goto process_auth_err; 1256 return 0; 1257 1258 process_auth_err: 1259 OPENSSL_LOG(ERR, "Process openssl auth failed"); 1260 return -EINVAL; 1261 } 1262 1263 /** Process standard openssl auth algorithms with hmac */ 1264 static int 1265 process_openssl_auth_hmac(struct rte_mbuf *mbuf_src, uint8_t *dst, int offset, 1266 int srclen, HMAC_CTX *ctx) 1267 { 1268 unsigned int dstlen; 1269 struct rte_mbuf *m; 1270 int l, n = srclen; 1271 uint8_t *src; 1272 1273 for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m); 1274 m = m->next) 1275 offset -= rte_pktmbuf_data_len(m); 1276 1277 if (m == 0) 1278 goto process_auth_err; 1279 1280 src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset); 1281 1282 l = rte_pktmbuf_data_len(m) - offset; 1283 if (srclen <= l) { 1284 if (HMAC_Update(ctx, (unsigned char *)src, srclen) != 1) 1285 goto process_auth_err; 1286 goto process_auth_final; 1287 } 1288 1289 if (HMAC_Update(ctx, (unsigned char *)src, l) != 1) 1290 goto process_auth_err; 1291 1292 n -= l; 1293 1294 for (m = m->next; (m != NULL) && (n > 0); m = m->next) { 1295 src = rte_pktmbuf_mtod(m, uint8_t *); 1296 l = rte_pktmbuf_data_len(m) < n ? rte_pktmbuf_data_len(m) : n; 1297 if (HMAC_Update(ctx, (unsigned char *)src, l) != 1) 1298 goto process_auth_err; 1299 n -= l; 1300 } 1301 1302 process_auth_final: 1303 if (HMAC_Final(ctx, dst, &dstlen) != 1) 1304 goto process_auth_err; 1305 1306 if (unlikely(HMAC_Init_ex(ctx, NULL, 0, NULL, NULL) != 1)) 1307 goto process_auth_err; 1308 1309 return 0; 1310 1311 process_auth_err: 1312 OPENSSL_LOG(ERR, "Process openssl auth failed"); 1313 return -EINVAL; 1314 } 1315 1316 /*----------------------------------------------------------------------------*/ 1317 1318 /** Process auth/cipher combined operation */ 1319 static void 1320 process_openssl_combined_op 1321 (struct rte_crypto_op *op, struct openssl_session *sess, 1322 struct rte_mbuf *mbuf_src, struct rte_mbuf *mbuf_dst) 1323 { 1324 /* cipher */ 1325 uint8_t *dst = NULL, *iv, *tag, *aad; 1326 int srclen, aadlen, status = -1; 1327 uint32_t offset; 1328 uint8_t taglen; 1329 EVP_CIPHER_CTX *ctx_copy; 1330 1331 /* 1332 * Segmented destination buffer is not supported for 1333 * encryption/decryption 1334 */ 1335 if (!rte_pktmbuf_is_contiguous(mbuf_dst)) { 1336 op->status = RTE_CRYPTO_OP_STATUS_ERROR; 1337 return; 1338 } 1339 1340 iv = rte_crypto_op_ctod_offset(op, uint8_t *, 1341 sess->iv.offset); 1342 if (sess->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC) { 1343 srclen = 0; 1344 offset = op->sym->auth.data.offset; 1345 aadlen = op->sym->auth.data.length; 1346 aad = rte_pktmbuf_mtod_offset(mbuf_src, uint8_t *, 1347 op->sym->auth.data.offset); 1348 tag = op->sym->auth.digest.data; 1349 if (tag == NULL) 1350 tag = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *, 1351 offset + aadlen); 1352 } else { 1353 srclen = op->sym->aead.data.length; 1354 dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *, 1355 op->sym->aead.data.offset); 1356 offset = op->sym->aead.data.offset; 1357 aad = op->sym->aead.aad.data; 1358 aadlen = sess->auth.aad_length; 1359 tag = op->sym->aead.digest.data; 1360 if (tag == NULL) 1361 tag = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *, 1362 offset + srclen); 1363 } 1364 1365 taglen = sess->auth.digest_length; 1366 ctx_copy = EVP_CIPHER_CTX_new(); 1367 EVP_CIPHER_CTX_copy(ctx_copy, sess->cipher.ctx); 1368 1369 if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) { 1370 if (sess->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC || 1371 sess->aead_algo == RTE_CRYPTO_AEAD_AES_GCM) 1372 status = process_openssl_auth_encryption_gcm( 1373 mbuf_src, offset, srclen, 1374 aad, aadlen, iv, 1375 dst, tag, ctx_copy); 1376 else 1377 status = process_openssl_auth_encryption_ccm( 1378 mbuf_src, offset, srclen, 1379 aad, aadlen, iv, 1380 dst, tag, taglen, ctx_copy); 1381 1382 } else { 1383 if (sess->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC || 1384 sess->aead_algo == RTE_CRYPTO_AEAD_AES_GCM) 1385 status = process_openssl_auth_decryption_gcm( 1386 mbuf_src, offset, srclen, 1387 aad, aadlen, iv, 1388 dst, tag, ctx_copy); 1389 else 1390 status = process_openssl_auth_decryption_ccm( 1391 mbuf_src, offset, srclen, 1392 aad, aadlen, iv, 1393 dst, tag, taglen, ctx_copy); 1394 } 1395 1396 EVP_CIPHER_CTX_free(ctx_copy); 1397 if (status != 0) { 1398 if (status == (-EFAULT) && 1399 sess->auth.operation == 1400 RTE_CRYPTO_AUTH_OP_VERIFY) 1401 op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED; 1402 else 1403 op->status = RTE_CRYPTO_OP_STATUS_ERROR; 1404 } 1405 } 1406 1407 /** Process cipher operation */ 1408 static void 1409 process_openssl_cipher_op 1410 (struct rte_crypto_op *op, struct openssl_session *sess, 1411 struct rte_mbuf *mbuf_src, struct rte_mbuf *mbuf_dst) 1412 { 1413 uint8_t *dst, *iv; 1414 int srclen, status; 1415 uint8_t inplace = (mbuf_src == mbuf_dst) ? 1 : 0; 1416 EVP_CIPHER_CTX *ctx_copy; 1417 1418 /* 1419 * Segmented OOP destination buffer is not supported for encryption/ 1420 * decryption. In case of des3ctr, even inplace segmented buffers are 1421 * not supported. 1422 */ 1423 if (!rte_pktmbuf_is_contiguous(mbuf_dst) && 1424 (!inplace || sess->cipher.mode != OPENSSL_CIPHER_LIB)) { 1425 op->status = RTE_CRYPTO_OP_STATUS_ERROR; 1426 return; 1427 } 1428 1429 srclen = op->sym->cipher.data.length; 1430 dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *, 1431 op->sym->cipher.data.offset); 1432 1433 iv = rte_crypto_op_ctod_offset(op, uint8_t *, 1434 sess->iv.offset); 1435 ctx_copy = EVP_CIPHER_CTX_new(); 1436 EVP_CIPHER_CTX_copy(ctx_copy, sess->cipher.ctx); 1437 1438 if (sess->cipher.mode == OPENSSL_CIPHER_LIB) 1439 if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) 1440 status = process_openssl_cipher_encrypt(mbuf_src, dst, 1441 op->sym->cipher.data.offset, iv, 1442 srclen, ctx_copy, inplace); 1443 else 1444 status = process_openssl_cipher_decrypt(mbuf_src, dst, 1445 op->sym->cipher.data.offset, iv, 1446 srclen, ctx_copy, inplace); 1447 else 1448 status = process_openssl_cipher_des3ctr(mbuf_src, dst, 1449 op->sym->cipher.data.offset, iv, 1450 sess->cipher.key.data, srclen, 1451 ctx_copy); 1452 1453 EVP_CIPHER_CTX_free(ctx_copy); 1454 if (status != 0) 1455 op->status = RTE_CRYPTO_OP_STATUS_ERROR; 1456 } 1457 1458 /** Process cipher operation */ 1459 static void 1460 process_openssl_docsis_bpi_op(struct rte_crypto_op *op, 1461 struct openssl_session *sess, struct rte_mbuf *mbuf_src, 1462 struct rte_mbuf *mbuf_dst) 1463 { 1464 uint8_t *src, *dst, *iv; 1465 uint8_t block_size, last_block_len; 1466 int srclen, status = 0; 1467 1468 srclen = op->sym->cipher.data.length; 1469 src = rte_pktmbuf_mtod_offset(mbuf_src, uint8_t *, 1470 op->sym->cipher.data.offset); 1471 dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *, 1472 op->sym->cipher.data.offset); 1473 1474 iv = rte_crypto_op_ctod_offset(op, uint8_t *, 1475 sess->iv.offset); 1476 1477 block_size = DES_BLOCK_SIZE; 1478 1479 last_block_len = srclen % block_size; 1480 if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) { 1481 /* Encrypt only with ECB mode XOR IV */ 1482 if (srclen < block_size) { 1483 status = process_openssl_cipher_bpi_encrypt(src, dst, 1484 iv, srclen, 1485 sess->cipher.bpi_ctx); 1486 } else { 1487 srclen -= last_block_len; 1488 /* Encrypt with the block aligned stream with CBC mode */ 1489 status = process_openssl_cipher_encrypt(mbuf_src, dst, 1490 op->sym->cipher.data.offset, iv, 1491 srclen, sess->cipher.ctx, 0); 1492 if (last_block_len) { 1493 /* Point at last block */ 1494 dst += srclen; 1495 /* 1496 * IV is the last encrypted block from 1497 * the previous operation 1498 */ 1499 iv = dst - block_size; 1500 src += srclen; 1501 srclen = last_block_len; 1502 /* Encrypt the last frame with ECB mode */ 1503 status |= process_openssl_cipher_bpi_encrypt(src, 1504 dst, iv, 1505 srclen, sess->cipher.bpi_ctx); 1506 } 1507 } 1508 } else { 1509 /* Decrypt only with ECB mode (encrypt, as it is same operation) */ 1510 if (srclen < block_size) { 1511 status = process_openssl_cipher_bpi_encrypt(src, dst, 1512 iv, 1513 srclen, 1514 sess->cipher.bpi_ctx); 1515 } else { 1516 if (last_block_len) { 1517 /* Point at last block */ 1518 dst += srclen - last_block_len; 1519 src += srclen - last_block_len; 1520 /* 1521 * IV is the last full block 1522 */ 1523 iv = src - block_size; 1524 /* 1525 * Decrypt the last frame with ECB mode 1526 * (encrypt, as it is the same operation) 1527 */ 1528 status = process_openssl_cipher_bpi_encrypt(src, 1529 dst, iv, 1530 last_block_len, sess->cipher.bpi_ctx); 1531 /* Prepare parameters for CBC mode op */ 1532 iv = rte_crypto_op_ctod_offset(op, uint8_t *, 1533 sess->iv.offset); 1534 dst += last_block_len - srclen; 1535 srclen -= last_block_len; 1536 } 1537 1538 /* Decrypt with CBC mode */ 1539 status |= process_openssl_cipher_decrypt(mbuf_src, dst, 1540 op->sym->cipher.data.offset, iv, 1541 srclen, sess->cipher.ctx, 0); 1542 } 1543 } 1544 1545 if (status != 0) 1546 op->status = RTE_CRYPTO_OP_STATUS_ERROR; 1547 } 1548 1549 /** Process auth operation */ 1550 static void 1551 process_openssl_auth_op(struct openssl_qp *qp, struct rte_crypto_op *op, 1552 struct openssl_session *sess, struct rte_mbuf *mbuf_src, 1553 struct rte_mbuf *mbuf_dst) 1554 { 1555 uint8_t *dst; 1556 int srclen, status; 1557 EVP_MD_CTX *ctx_a; 1558 HMAC_CTX *ctx_h; 1559 1560 srclen = op->sym->auth.data.length; 1561 1562 dst = qp->temp_digest; 1563 1564 switch (sess->auth.mode) { 1565 case OPENSSL_AUTH_AS_AUTH: 1566 ctx_a = EVP_MD_CTX_create(); 1567 EVP_MD_CTX_copy_ex(ctx_a, sess->auth.auth.ctx); 1568 status = process_openssl_auth(mbuf_src, dst, 1569 op->sym->auth.data.offset, NULL, NULL, srclen, 1570 ctx_a, sess->auth.auth.evp_algo); 1571 EVP_MD_CTX_destroy(ctx_a); 1572 break; 1573 case OPENSSL_AUTH_AS_HMAC: 1574 ctx_h = HMAC_CTX_new(); 1575 HMAC_CTX_copy(ctx_h, sess->auth.hmac.ctx); 1576 status = process_openssl_auth_hmac(mbuf_src, dst, 1577 op->sym->auth.data.offset, srclen, 1578 ctx_h); 1579 HMAC_CTX_free(ctx_h); 1580 break; 1581 default: 1582 status = -1; 1583 break; 1584 } 1585 1586 if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) { 1587 if (CRYPTO_memcmp(dst, op->sym->auth.digest.data, 1588 sess->auth.digest_length) != 0) { 1589 op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED; 1590 } 1591 } else { 1592 uint8_t *auth_dst; 1593 1594 auth_dst = op->sym->auth.digest.data; 1595 if (auth_dst == NULL) 1596 auth_dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *, 1597 op->sym->auth.data.offset + 1598 op->sym->auth.data.length); 1599 memcpy(auth_dst, dst, sess->auth.digest_length); 1600 } 1601 1602 if (status != 0) 1603 op->status = RTE_CRYPTO_OP_STATUS_ERROR; 1604 } 1605 1606 /* process dsa sign operation */ 1607 static int 1608 process_openssl_dsa_sign_op(struct rte_crypto_op *cop, 1609 struct openssl_asym_session *sess) 1610 { 1611 struct rte_crypto_dsa_op_param *op = &cop->asym->dsa; 1612 DSA *dsa = sess->u.s.dsa; 1613 DSA_SIG *sign = NULL; 1614 1615 sign = DSA_do_sign(op->message.data, 1616 op->message.length, 1617 dsa); 1618 1619 if (sign == NULL) { 1620 OPENSSL_LOG(ERR, "%s:%d\n", __func__, __LINE__); 1621 cop->status = RTE_CRYPTO_OP_STATUS_ERROR; 1622 } else { 1623 const BIGNUM *r = NULL, *s = NULL; 1624 get_dsa_sign(sign, &r, &s); 1625 1626 op->r.length = BN_bn2bin(r, op->r.data); 1627 op->s.length = BN_bn2bin(s, op->s.data); 1628 cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS; 1629 } 1630 1631 DSA_SIG_free(sign); 1632 1633 return 0; 1634 } 1635 1636 /* process dsa verify operation */ 1637 static int 1638 process_openssl_dsa_verify_op(struct rte_crypto_op *cop, 1639 struct openssl_asym_session *sess) 1640 { 1641 struct rte_crypto_dsa_op_param *op = &cop->asym->dsa; 1642 DSA *dsa = sess->u.s.dsa; 1643 int ret; 1644 DSA_SIG *sign = DSA_SIG_new(); 1645 BIGNUM *r = NULL, *s = NULL; 1646 BIGNUM *pub_key = NULL; 1647 1648 if (sign == NULL) { 1649 OPENSSL_LOG(ERR, " %s:%d\n", __func__, __LINE__); 1650 cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED; 1651 return -1; 1652 } 1653 1654 r = BN_bin2bn(op->r.data, 1655 op->r.length, 1656 r); 1657 s = BN_bin2bn(op->s.data, 1658 op->s.length, 1659 s); 1660 pub_key = BN_bin2bn(op->y.data, 1661 op->y.length, 1662 pub_key); 1663 if (!r || !s || !pub_key) { 1664 BN_free(r); 1665 BN_free(s); 1666 BN_free(pub_key); 1667 1668 cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED; 1669 return -1; 1670 } 1671 set_dsa_sign(sign, r, s); 1672 set_dsa_pub_key(dsa, pub_key); 1673 1674 ret = DSA_do_verify(op->message.data, 1675 op->message.length, 1676 sign, 1677 dsa); 1678 1679 if (ret != 1) 1680 cop->status = RTE_CRYPTO_OP_STATUS_ERROR; 1681 else 1682 cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS; 1683 1684 DSA_SIG_free(sign); 1685 1686 return 0; 1687 } 1688 1689 /* process dh operation */ 1690 static int 1691 process_openssl_dh_op(struct rte_crypto_op *cop, 1692 struct openssl_asym_session *sess) 1693 { 1694 struct rte_crypto_dh_op_param *op = &cop->asym->dh; 1695 DH *dh_key = sess->u.dh.dh_key; 1696 BIGNUM *priv_key = NULL; 1697 int ret = 0; 1698 1699 if (sess->u.dh.key_op & 1700 (1 << RTE_CRYPTO_ASYM_OP_SHARED_SECRET_COMPUTE)) { 1701 /* compute shared secret using peer public key 1702 * and current private key 1703 * shared secret = peer_key ^ priv_key mod p 1704 */ 1705 BIGNUM *peer_key = NULL; 1706 1707 /* copy private key and peer key and compute shared secret */ 1708 peer_key = BN_bin2bn(op->pub_key.data, 1709 op->pub_key.length, 1710 peer_key); 1711 if (peer_key == NULL) { 1712 cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED; 1713 return -1; 1714 } 1715 priv_key = BN_bin2bn(op->priv_key.data, 1716 op->priv_key.length, 1717 priv_key); 1718 if (priv_key == NULL) { 1719 BN_free(peer_key); 1720 cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED; 1721 return -1; 1722 } 1723 ret = set_dh_priv_key(dh_key, priv_key); 1724 if (ret) { 1725 OPENSSL_LOG(ERR, "Failed to set private key\n"); 1726 cop->status = RTE_CRYPTO_OP_STATUS_ERROR; 1727 BN_free(peer_key); 1728 BN_free(priv_key); 1729 return 0; 1730 } 1731 1732 ret = DH_compute_key( 1733 op->shared_secret.data, 1734 peer_key, dh_key); 1735 if (ret < 0) { 1736 cop->status = RTE_CRYPTO_OP_STATUS_ERROR; 1737 BN_free(peer_key); 1738 /* priv key is already loaded into dh, 1739 * let's not free that directly here. 1740 * DH_free() will auto free it later. 1741 */ 1742 return 0; 1743 } 1744 cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS; 1745 op->shared_secret.length = ret; 1746 BN_free(peer_key); 1747 return 0; 1748 } 1749 1750 /* 1751 * other options are public and private key generations. 1752 * 1753 * if user provides private key, 1754 * then first set DH with user provided private key 1755 */ 1756 if ((sess->u.dh.key_op & 1757 (1 << RTE_CRYPTO_ASYM_OP_PUBLIC_KEY_GENERATE)) && 1758 !(sess->u.dh.key_op & 1759 (1 << RTE_CRYPTO_ASYM_OP_PRIVATE_KEY_GENERATE))) { 1760 /* generate public key using user-provided private key 1761 * pub_key = g ^ priv_key mod p 1762 */ 1763 1764 /* load private key into DH */ 1765 priv_key = BN_bin2bn(op->priv_key.data, 1766 op->priv_key.length, 1767 priv_key); 1768 if (priv_key == NULL) { 1769 cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED; 1770 return -1; 1771 } 1772 ret = set_dh_priv_key(dh_key, priv_key); 1773 if (ret) { 1774 OPENSSL_LOG(ERR, "Failed to set private key\n"); 1775 cop->status = RTE_CRYPTO_OP_STATUS_ERROR; 1776 BN_free(priv_key); 1777 return 0; 1778 } 1779 } 1780 1781 /* generate public and private key pair. 1782 * 1783 * if private key already set, generates only public key. 1784 * 1785 * if private key is not already set, then set it to random value 1786 * and update internal private key. 1787 */ 1788 if (!DH_generate_key(dh_key)) { 1789 cop->status = RTE_CRYPTO_OP_STATUS_ERROR; 1790 return 0; 1791 } 1792 1793 if (sess->u.dh.key_op & (1 << RTE_CRYPTO_ASYM_OP_PUBLIC_KEY_GENERATE)) { 1794 const BIGNUM *pub_key = NULL; 1795 1796 OPENSSL_LOG(DEBUG, "%s:%d update public key\n", 1797 __func__, __LINE__); 1798 1799 /* get the generated keys */ 1800 get_dh_pub_key(dh_key, &pub_key); 1801 1802 /* output public key */ 1803 op->pub_key.length = BN_bn2bin(pub_key, 1804 op->pub_key.data); 1805 } 1806 1807 if (sess->u.dh.key_op & 1808 (1 << RTE_CRYPTO_ASYM_OP_PRIVATE_KEY_GENERATE)) { 1809 const BIGNUM *priv_key = NULL; 1810 1811 OPENSSL_LOG(DEBUG, "%s:%d updated priv key\n", 1812 __func__, __LINE__); 1813 1814 /* get the generated keys */ 1815 get_dh_priv_key(dh_key, &priv_key); 1816 1817 /* provide generated private key back to user */ 1818 op->priv_key.length = BN_bn2bin(priv_key, 1819 op->priv_key.data); 1820 } 1821 1822 cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS; 1823 1824 return 0; 1825 } 1826 1827 /* process modinv operation */ 1828 static int 1829 process_openssl_modinv_op(struct rte_crypto_op *cop, 1830 struct openssl_asym_session *sess) 1831 { 1832 struct rte_crypto_asym_op *op = cop->asym; 1833 BIGNUM *base = BN_CTX_get(sess->u.m.ctx); 1834 BIGNUM *res = BN_CTX_get(sess->u.m.ctx); 1835 1836 if (unlikely(base == NULL || res == NULL)) { 1837 BN_free(base); 1838 BN_free(res); 1839 cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED; 1840 return -1; 1841 } 1842 1843 base = BN_bin2bn((const unsigned char *)op->modinv.base.data, 1844 op->modinv.base.length, base); 1845 1846 if (BN_mod_inverse(res, base, sess->u.m.modulus, sess->u.m.ctx)) { 1847 cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS; 1848 op->modinv.result.length = BN_bn2bin(res, op->modinv.result.data); 1849 } else { 1850 cop->status = RTE_CRYPTO_OP_STATUS_ERROR; 1851 } 1852 1853 BN_clear(res); 1854 BN_clear(base); 1855 1856 return 0; 1857 } 1858 1859 /* process modexp operation */ 1860 static int 1861 process_openssl_modexp_op(struct rte_crypto_op *cop, 1862 struct openssl_asym_session *sess) 1863 { 1864 struct rte_crypto_asym_op *op = cop->asym; 1865 BIGNUM *base = BN_CTX_get(sess->u.e.ctx); 1866 BIGNUM *res = BN_CTX_get(sess->u.e.ctx); 1867 1868 if (unlikely(base == NULL || res == NULL)) { 1869 BN_free(base); 1870 BN_free(res); 1871 cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED; 1872 return -1; 1873 } 1874 1875 base = BN_bin2bn((const unsigned char *)op->modex.base.data, 1876 op->modex.base.length, base); 1877 1878 if (BN_mod_exp(res, base, sess->u.e.exp, 1879 sess->u.e.mod, sess->u.e.ctx)) { 1880 op->modex.result.length = BN_bn2bin(res, op->modex.result.data); 1881 cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS; 1882 } else { 1883 cop->status = RTE_CRYPTO_OP_STATUS_ERROR; 1884 } 1885 1886 BN_clear(res); 1887 BN_clear(base); 1888 1889 return 0; 1890 } 1891 1892 /* process rsa operations */ 1893 static int 1894 process_openssl_rsa_op(struct rte_crypto_op *cop, 1895 struct openssl_asym_session *sess) 1896 { 1897 int ret = 0; 1898 struct rte_crypto_asym_op *op = cop->asym; 1899 RSA *rsa = sess->u.r.rsa; 1900 uint32_t pad = (op->rsa.pad); 1901 uint8_t *tmp; 1902 1903 cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS; 1904 1905 switch (pad) { 1906 case RTE_CRYPTO_RSA_PADDING_PKCS1_5: 1907 pad = RSA_PKCS1_PADDING; 1908 break; 1909 case RTE_CRYPTO_RSA_PADDING_NONE: 1910 pad = RSA_NO_PADDING; 1911 break; 1912 default: 1913 cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS; 1914 OPENSSL_LOG(ERR, 1915 "rsa pad type not supported %d\n", pad); 1916 return 0; 1917 } 1918 1919 switch (op->rsa.op_type) { 1920 case RTE_CRYPTO_ASYM_OP_ENCRYPT: 1921 ret = RSA_public_encrypt(op->rsa.message.length, 1922 op->rsa.message.data, 1923 op->rsa.cipher.data, 1924 rsa, 1925 pad); 1926 1927 if (ret > 0) 1928 op->rsa.cipher.length = ret; 1929 OPENSSL_LOG(DEBUG, 1930 "length of encrypted text %d\n", ret); 1931 break; 1932 1933 case RTE_CRYPTO_ASYM_OP_DECRYPT: 1934 ret = RSA_private_decrypt(op->rsa.cipher.length, 1935 op->rsa.cipher.data, 1936 op->rsa.message.data, 1937 rsa, 1938 pad); 1939 if (ret > 0) 1940 op->rsa.message.length = ret; 1941 break; 1942 1943 case RTE_CRYPTO_ASYM_OP_SIGN: 1944 ret = RSA_private_encrypt(op->rsa.message.length, 1945 op->rsa.message.data, 1946 op->rsa.sign.data, 1947 rsa, 1948 pad); 1949 if (ret > 0) 1950 op->rsa.sign.length = ret; 1951 break; 1952 1953 case RTE_CRYPTO_ASYM_OP_VERIFY: 1954 tmp = rte_malloc(NULL, op->rsa.sign.length, 0); 1955 if (tmp == NULL) { 1956 OPENSSL_LOG(ERR, "Memory allocation failed"); 1957 cop->status = RTE_CRYPTO_OP_STATUS_ERROR; 1958 break; 1959 } 1960 ret = RSA_public_decrypt(op->rsa.sign.length, 1961 op->rsa.sign.data, 1962 tmp, 1963 rsa, 1964 pad); 1965 1966 OPENSSL_LOG(DEBUG, 1967 "Length of public_decrypt %d " 1968 "length of message %zd\n", 1969 ret, op->rsa.message.length); 1970 if ((ret <= 0) || (CRYPTO_memcmp(tmp, op->rsa.message.data, 1971 op->rsa.message.length))) { 1972 OPENSSL_LOG(ERR, "RSA sign Verification failed"); 1973 cop->status = RTE_CRYPTO_OP_STATUS_ERROR; 1974 } 1975 rte_free(tmp); 1976 break; 1977 1978 default: 1979 /* allow ops with invalid args to be pushed to 1980 * completion queue 1981 */ 1982 cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS; 1983 break; 1984 } 1985 1986 if (ret < 0) 1987 cop->status = RTE_CRYPTO_OP_STATUS_ERROR; 1988 1989 return 0; 1990 } 1991 1992 static int 1993 process_asym_op(struct openssl_qp *qp, struct rte_crypto_op *op, 1994 struct openssl_asym_session *sess) 1995 { 1996 int retval = 0; 1997 1998 op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED; 1999 2000 switch (sess->xfrm_type) { 2001 case RTE_CRYPTO_ASYM_XFORM_RSA: 2002 retval = process_openssl_rsa_op(op, sess); 2003 break; 2004 case RTE_CRYPTO_ASYM_XFORM_MODEX: 2005 retval = process_openssl_modexp_op(op, sess); 2006 break; 2007 case RTE_CRYPTO_ASYM_XFORM_MODINV: 2008 retval = process_openssl_modinv_op(op, sess); 2009 break; 2010 case RTE_CRYPTO_ASYM_XFORM_DH: 2011 retval = process_openssl_dh_op(op, sess); 2012 break; 2013 case RTE_CRYPTO_ASYM_XFORM_DSA: 2014 if (op->asym->dsa.op_type == RTE_CRYPTO_ASYM_OP_SIGN) 2015 retval = process_openssl_dsa_sign_op(op, sess); 2016 else if (op->asym->dsa.op_type == 2017 RTE_CRYPTO_ASYM_OP_VERIFY) 2018 retval = 2019 process_openssl_dsa_verify_op(op, sess); 2020 else 2021 op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS; 2022 break; 2023 default: 2024 op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS; 2025 break; 2026 } 2027 if (!retval) { 2028 /* op processed so push to completion queue as processed */ 2029 retval = rte_ring_enqueue(qp->processed_ops, (void *)op); 2030 if (retval) 2031 /* return error if failed to put in completion queue */ 2032 retval = -1; 2033 } 2034 2035 return retval; 2036 } 2037 2038 static void 2039 copy_plaintext(struct rte_mbuf *m_src, struct rte_mbuf *m_dst, 2040 struct rte_crypto_op *op) 2041 { 2042 uint8_t *p_src, *p_dst; 2043 2044 p_src = rte_pktmbuf_mtod(m_src, uint8_t *); 2045 p_dst = rte_pktmbuf_mtod(m_dst, uint8_t *); 2046 2047 /** 2048 * Copy the content between cipher offset and auth offset 2049 * for generating correct digest. 2050 */ 2051 if (op->sym->cipher.data.offset > op->sym->auth.data.offset) 2052 memcpy(p_dst + op->sym->auth.data.offset, 2053 p_src + op->sym->auth.data.offset, 2054 op->sym->cipher.data.offset - 2055 op->sym->auth.data.offset); 2056 } 2057 2058 /** Process crypto operation for mbuf */ 2059 static int 2060 process_op(struct openssl_qp *qp, struct rte_crypto_op *op, 2061 struct openssl_session *sess) 2062 { 2063 struct rte_mbuf *msrc, *mdst; 2064 int retval; 2065 2066 msrc = op->sym->m_src; 2067 mdst = op->sym->m_dst ? op->sym->m_dst : op->sym->m_src; 2068 2069 op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED; 2070 2071 switch (sess->chain_order) { 2072 case OPENSSL_CHAIN_ONLY_CIPHER: 2073 process_openssl_cipher_op(op, sess, msrc, mdst); 2074 break; 2075 case OPENSSL_CHAIN_ONLY_AUTH: 2076 process_openssl_auth_op(qp, op, sess, msrc, mdst); 2077 break; 2078 case OPENSSL_CHAIN_CIPHER_AUTH: 2079 process_openssl_cipher_op(op, sess, msrc, mdst); 2080 /* OOP */ 2081 if (msrc != mdst) 2082 copy_plaintext(msrc, mdst, op); 2083 process_openssl_auth_op(qp, op, sess, mdst, mdst); 2084 break; 2085 case OPENSSL_CHAIN_AUTH_CIPHER: 2086 process_openssl_auth_op(qp, op, sess, msrc, mdst); 2087 process_openssl_cipher_op(op, sess, msrc, mdst); 2088 break; 2089 case OPENSSL_CHAIN_COMBINED: 2090 process_openssl_combined_op(op, sess, msrc, mdst); 2091 break; 2092 case OPENSSL_CHAIN_CIPHER_BPI: 2093 process_openssl_docsis_bpi_op(op, sess, msrc, mdst); 2094 break; 2095 default: 2096 op->status = RTE_CRYPTO_OP_STATUS_ERROR; 2097 break; 2098 } 2099 2100 /* Free session if a session-less crypto op */ 2101 if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) { 2102 openssl_reset_session(sess); 2103 memset(sess, 0, sizeof(struct openssl_session)); 2104 memset(op->sym->session, 0, 2105 rte_cryptodev_sym_get_existing_header_session_size( 2106 op->sym->session)); 2107 rte_mempool_put(qp->sess_mp_priv, sess); 2108 rte_mempool_put(qp->sess_mp, op->sym->session); 2109 op->sym->session = NULL; 2110 } 2111 2112 if (op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED) 2113 op->status = RTE_CRYPTO_OP_STATUS_SUCCESS; 2114 2115 if (op->status != RTE_CRYPTO_OP_STATUS_ERROR) 2116 retval = rte_ring_enqueue(qp->processed_ops, (void *)op); 2117 else 2118 retval = -1; 2119 2120 return retval; 2121 } 2122 2123 /* 2124 *------------------------------------------------------------------------------ 2125 * PMD Framework 2126 *------------------------------------------------------------------------------ 2127 */ 2128 2129 /** Enqueue burst */ 2130 static uint16_t 2131 openssl_pmd_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops, 2132 uint16_t nb_ops) 2133 { 2134 void *sess; 2135 struct openssl_qp *qp = queue_pair; 2136 int i, retval; 2137 2138 for (i = 0; i < nb_ops; i++) { 2139 sess = get_session(qp, ops[i]); 2140 if (unlikely(sess == NULL)) 2141 goto enqueue_err; 2142 2143 if (ops[i]->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC) 2144 retval = process_op(qp, ops[i], 2145 (struct openssl_session *) sess); 2146 else 2147 retval = process_asym_op(qp, ops[i], 2148 (struct openssl_asym_session *) sess); 2149 if (unlikely(retval < 0)) 2150 goto enqueue_err; 2151 } 2152 2153 qp->stats.enqueued_count += i; 2154 return i; 2155 2156 enqueue_err: 2157 qp->stats.enqueue_err_count++; 2158 return i; 2159 } 2160 2161 /** Dequeue burst */ 2162 static uint16_t 2163 openssl_pmd_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops, 2164 uint16_t nb_ops) 2165 { 2166 struct openssl_qp *qp = queue_pair; 2167 2168 unsigned int nb_dequeued = 0; 2169 2170 nb_dequeued = rte_ring_dequeue_burst(qp->processed_ops, 2171 (void **)ops, nb_ops, NULL); 2172 qp->stats.dequeued_count += nb_dequeued; 2173 2174 return nb_dequeued; 2175 } 2176 2177 /** Create OPENSSL crypto device */ 2178 static int 2179 cryptodev_openssl_create(const char *name, 2180 struct rte_vdev_device *vdev, 2181 struct rte_cryptodev_pmd_init_params *init_params) 2182 { 2183 struct rte_cryptodev *dev; 2184 struct openssl_private *internals; 2185 2186 dev = rte_cryptodev_pmd_create(name, &vdev->device, init_params); 2187 if (dev == NULL) { 2188 OPENSSL_LOG(ERR, "failed to create cryptodev vdev"); 2189 goto init_error; 2190 } 2191 2192 dev->driver_id = cryptodev_driver_id; 2193 dev->dev_ops = rte_openssl_pmd_ops; 2194 2195 /* register rx/tx burst functions for data path */ 2196 dev->dequeue_burst = openssl_pmd_dequeue_burst; 2197 dev->enqueue_burst = openssl_pmd_enqueue_burst; 2198 2199 dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO | 2200 RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING | 2201 RTE_CRYPTODEV_FF_CPU_AESNI | 2202 RTE_CRYPTODEV_FF_IN_PLACE_SGL | 2203 RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT | 2204 RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT | 2205 RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO | 2206 RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_EXP | 2207 RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_QT | 2208 RTE_CRYPTODEV_FF_SYM_SESSIONLESS; 2209 2210 internals = dev->data->dev_private; 2211 2212 internals->max_nb_qpairs = init_params->max_nb_queue_pairs; 2213 2214 rte_cryptodev_pmd_probing_finish(dev); 2215 2216 return 0; 2217 2218 init_error: 2219 OPENSSL_LOG(ERR, "driver %s: create failed", 2220 init_params->name); 2221 2222 cryptodev_openssl_remove(vdev); 2223 return -EFAULT; 2224 } 2225 2226 /** Initialise OPENSSL crypto device */ 2227 static int 2228 cryptodev_openssl_probe(struct rte_vdev_device *vdev) 2229 { 2230 struct rte_cryptodev_pmd_init_params init_params = { 2231 "", 2232 sizeof(struct openssl_private), 2233 rte_socket_id(), 2234 RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_QUEUE_PAIRS 2235 }; 2236 const char *name; 2237 const char *input_args; 2238 2239 name = rte_vdev_device_name(vdev); 2240 if (name == NULL) 2241 return -EINVAL; 2242 input_args = rte_vdev_device_args(vdev); 2243 2244 rte_cryptodev_pmd_parse_input_args(&init_params, input_args); 2245 2246 return cryptodev_openssl_create(name, vdev, &init_params); 2247 } 2248 2249 /** Uninitialise OPENSSL crypto device */ 2250 static int 2251 cryptodev_openssl_remove(struct rte_vdev_device *vdev) 2252 { 2253 struct rte_cryptodev *cryptodev; 2254 const char *name; 2255 2256 name = rte_vdev_device_name(vdev); 2257 if (name == NULL) 2258 return -EINVAL; 2259 2260 cryptodev = rte_cryptodev_pmd_get_named_dev(name); 2261 if (cryptodev == NULL) 2262 return -ENODEV; 2263 2264 return rte_cryptodev_pmd_destroy(cryptodev); 2265 } 2266 2267 static struct rte_vdev_driver cryptodev_openssl_pmd_drv = { 2268 .probe = cryptodev_openssl_probe, 2269 .remove = cryptodev_openssl_remove 2270 }; 2271 2272 static struct cryptodev_driver openssl_crypto_drv; 2273 2274 RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_OPENSSL_PMD, 2275 cryptodev_openssl_pmd_drv); 2276 RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_OPENSSL_PMD, 2277 "max_nb_queue_pairs=<int> " 2278 "socket_id=<int>"); 2279 RTE_PMD_REGISTER_CRYPTO_DRIVER(openssl_crypto_drv, 2280 cryptodev_openssl_pmd_drv.driver, cryptodev_driver_id); 2281 RTE_LOG_REGISTER_DEFAULT(openssl_logtype_driver, INFO); 2282