1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2016-2017 Intel Corporation. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 10 * * Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * * Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in 14 * the documentation and/or other materials provided with the 15 * distribution. 16 * * Neither the name of Intel Corporation nor the names of its 17 * contributors may be used to endorse or promote products derived 18 * from this software without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 24 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 25 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 26 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 30 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 #include <rte_common.h> 34 #include <rte_hexdump.h> 35 #include <rte_cryptodev.h> 36 #include <rte_cryptodev_pmd.h> 37 #include <rte_cryptodev_vdev.h> 38 #include <rte_vdev.h> 39 #include <rte_malloc.h> 40 #include <rte_cpuflags.h> 41 42 #include <openssl/hmac.h> 43 #include <openssl/evp.h> 44 45 #include "rte_openssl_pmd_private.h" 46 47 #define DES_BLOCK_SIZE 8 48 49 static uint8_t cryptodev_driver_id; 50 51 #if (OPENSSL_VERSION_NUMBER < 0x10100000L) 52 static HMAC_CTX *HMAC_CTX_new(void) 53 { 54 HMAC_CTX *ctx = OPENSSL_malloc(sizeof(*ctx)); 55 56 if (ctx != NULL) 57 HMAC_CTX_init(ctx); 58 return ctx; 59 } 60 61 static void HMAC_CTX_free(HMAC_CTX *ctx) 62 { 63 if (ctx != NULL) { 64 HMAC_CTX_cleanup(ctx); 65 OPENSSL_free(ctx); 66 } 67 } 68 #endif 69 70 static int cryptodev_openssl_remove(struct rte_vdev_device *vdev); 71 72 /*----------------------------------------------------------------------------*/ 73 74 /** 75 * Increment counter by 1 76 * Counter is 64 bit array, big-endian 77 */ 78 static void 79 ctr_inc(uint8_t *ctr) 80 { 81 uint64_t *ctr64 = (uint64_t *)ctr; 82 83 *ctr64 = __builtin_bswap64(*ctr64); 84 (*ctr64)++; 85 *ctr64 = __builtin_bswap64(*ctr64); 86 } 87 88 /* 89 *------------------------------------------------------------------------------ 90 * Session Prepare 91 *------------------------------------------------------------------------------ 92 */ 93 94 /** Get xform chain order */ 95 static enum openssl_chain_order 96 openssl_get_chain_order(const struct rte_crypto_sym_xform *xform) 97 { 98 enum openssl_chain_order res = OPENSSL_CHAIN_NOT_SUPPORTED; 99 100 if (xform != NULL) { 101 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) { 102 if (xform->next == NULL) 103 res = OPENSSL_CHAIN_ONLY_AUTH; 104 else if (xform->next->type == 105 RTE_CRYPTO_SYM_XFORM_CIPHER) 106 res = OPENSSL_CHAIN_AUTH_CIPHER; 107 } 108 if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) { 109 if (xform->next == NULL) 110 res = OPENSSL_CHAIN_ONLY_CIPHER; 111 else if (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH) 112 res = OPENSSL_CHAIN_CIPHER_AUTH; 113 } 114 if (xform->type == RTE_CRYPTO_SYM_XFORM_AEAD) 115 res = OPENSSL_CHAIN_COMBINED; 116 } 117 118 return res; 119 } 120 121 /** Get session cipher key from input cipher key */ 122 static void 123 get_cipher_key(uint8_t *input_key, int keylen, uint8_t *session_key) 124 { 125 memcpy(session_key, input_key, keylen); 126 } 127 128 /** Get key ede 24 bytes standard from input key */ 129 static int 130 get_cipher_key_ede(uint8_t *key, int keylen, uint8_t *key_ede) 131 { 132 int res = 0; 133 134 /* Initialize keys - 24 bytes: [key1-key2-key3] */ 135 switch (keylen) { 136 case 24: 137 memcpy(key_ede, key, 24); 138 break; 139 case 16: 140 /* K3 = K1 */ 141 memcpy(key_ede, key, 16); 142 memcpy(key_ede + 16, key, 8); 143 break; 144 case 8: 145 /* K1 = K2 = K3 (DES compatibility) */ 146 memcpy(key_ede, key, 8); 147 memcpy(key_ede + 8, key, 8); 148 memcpy(key_ede + 16, key, 8); 149 break; 150 default: 151 OPENSSL_LOG_ERR("Unsupported key size"); 152 res = -EINVAL; 153 } 154 155 return res; 156 } 157 158 /** Get adequate openssl function for input cipher algorithm */ 159 static uint8_t 160 get_cipher_algo(enum rte_crypto_cipher_algorithm sess_algo, size_t keylen, 161 const EVP_CIPHER **algo) 162 { 163 int res = 0; 164 165 if (algo != NULL) { 166 switch (sess_algo) { 167 case RTE_CRYPTO_CIPHER_3DES_CBC: 168 switch (keylen) { 169 case 16: 170 *algo = EVP_des_ede_cbc(); 171 break; 172 case 24: 173 *algo = EVP_des_ede3_cbc(); 174 break; 175 default: 176 res = -EINVAL; 177 } 178 break; 179 case RTE_CRYPTO_CIPHER_3DES_CTR: 180 break; 181 case RTE_CRYPTO_CIPHER_AES_CBC: 182 switch (keylen) { 183 case 16: 184 *algo = EVP_aes_128_cbc(); 185 break; 186 case 24: 187 *algo = EVP_aes_192_cbc(); 188 break; 189 case 32: 190 *algo = EVP_aes_256_cbc(); 191 break; 192 default: 193 res = -EINVAL; 194 } 195 break; 196 case RTE_CRYPTO_CIPHER_AES_CTR: 197 switch (keylen) { 198 case 16: 199 *algo = EVP_aes_128_ctr(); 200 break; 201 case 24: 202 *algo = EVP_aes_192_ctr(); 203 break; 204 case 32: 205 *algo = EVP_aes_256_ctr(); 206 break; 207 default: 208 res = -EINVAL; 209 } 210 break; 211 default: 212 res = -EINVAL; 213 break; 214 } 215 } else { 216 res = -EINVAL; 217 } 218 219 return res; 220 } 221 222 /** Get adequate openssl function for input auth algorithm */ 223 static uint8_t 224 get_auth_algo(enum rte_crypto_auth_algorithm sessalgo, 225 const EVP_MD **algo) 226 { 227 int res = 0; 228 229 if (algo != NULL) { 230 switch (sessalgo) { 231 case RTE_CRYPTO_AUTH_MD5: 232 case RTE_CRYPTO_AUTH_MD5_HMAC: 233 *algo = EVP_md5(); 234 break; 235 case RTE_CRYPTO_AUTH_SHA1: 236 case RTE_CRYPTO_AUTH_SHA1_HMAC: 237 *algo = EVP_sha1(); 238 break; 239 case RTE_CRYPTO_AUTH_SHA224: 240 case RTE_CRYPTO_AUTH_SHA224_HMAC: 241 *algo = EVP_sha224(); 242 break; 243 case RTE_CRYPTO_AUTH_SHA256: 244 case RTE_CRYPTO_AUTH_SHA256_HMAC: 245 *algo = EVP_sha256(); 246 break; 247 case RTE_CRYPTO_AUTH_SHA384: 248 case RTE_CRYPTO_AUTH_SHA384_HMAC: 249 *algo = EVP_sha384(); 250 break; 251 case RTE_CRYPTO_AUTH_SHA512: 252 case RTE_CRYPTO_AUTH_SHA512_HMAC: 253 *algo = EVP_sha512(); 254 break; 255 default: 256 res = -EINVAL; 257 break; 258 } 259 } else { 260 res = -EINVAL; 261 } 262 263 return res; 264 } 265 266 /** Get adequate openssl function for input cipher algorithm */ 267 static uint8_t 268 get_aead_algo(enum rte_crypto_aead_algorithm sess_algo, size_t keylen, 269 const EVP_CIPHER **algo) 270 { 271 int res = 0; 272 273 if (algo != NULL) { 274 switch (sess_algo) { 275 case RTE_CRYPTO_AEAD_AES_GCM: 276 switch (keylen) { 277 case 16: 278 *algo = EVP_aes_128_gcm(); 279 break; 280 case 24: 281 *algo = EVP_aes_192_gcm(); 282 break; 283 case 32: 284 *algo = EVP_aes_256_gcm(); 285 break; 286 default: 287 res = -EINVAL; 288 } 289 break; 290 case RTE_CRYPTO_AEAD_AES_CCM: 291 switch (keylen) { 292 case 16: 293 *algo = EVP_aes_128_ccm(); 294 break; 295 case 24: 296 *algo = EVP_aes_192_ccm(); 297 break; 298 case 32: 299 *algo = EVP_aes_256_ccm(); 300 break; 301 default: 302 res = -EINVAL; 303 } 304 break; 305 default: 306 res = -EINVAL; 307 break; 308 } 309 } else { 310 res = -EINVAL; 311 } 312 313 return res; 314 } 315 316 /* Set session AEAD encryption parameters */ 317 static int 318 openssl_set_sess_aead_enc_param(struct openssl_session *sess, 319 enum rte_crypto_aead_algorithm algo, 320 uint8_t tag_len, uint8_t *key) 321 { 322 int iv_type = 0; 323 unsigned int do_ccm; 324 325 sess->cipher.direction = RTE_CRYPTO_CIPHER_OP_ENCRYPT; 326 sess->auth.operation = RTE_CRYPTO_AUTH_OP_GENERATE; 327 328 /* Select AEAD algo */ 329 switch (algo) { 330 case RTE_CRYPTO_AEAD_AES_GCM: 331 iv_type = EVP_CTRL_GCM_SET_IVLEN; 332 if (tag_len != 16) 333 return -EINVAL; 334 do_ccm = 0; 335 break; 336 case RTE_CRYPTO_AEAD_AES_CCM: 337 iv_type = EVP_CTRL_CCM_SET_IVLEN; 338 /* Digest size can be 4, 6, 8, 10, 12, 14 or 16 bytes */ 339 if (tag_len < 4 || tag_len > 16 || (tag_len & 1) == 1) 340 return -EINVAL; 341 do_ccm = 1; 342 break; 343 default: 344 return -ENOTSUP; 345 } 346 347 sess->cipher.mode = OPENSSL_CIPHER_LIB; 348 sess->cipher.ctx = EVP_CIPHER_CTX_new(); 349 350 if (get_aead_algo(algo, sess->cipher.key.length, 351 &sess->cipher.evp_algo) != 0) 352 return -EINVAL; 353 354 get_cipher_key(key, sess->cipher.key.length, sess->cipher.key.data); 355 356 sess->chain_order = OPENSSL_CHAIN_COMBINED; 357 358 if (EVP_EncryptInit_ex(sess->cipher.ctx, sess->cipher.evp_algo, 359 NULL, NULL, NULL) <= 0) 360 return -EINVAL; 361 362 if (EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, iv_type, sess->iv.length, 363 NULL) <= 0) 364 return -EINVAL; 365 366 if (do_ccm) 367 EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, EVP_CTRL_CCM_SET_TAG, 368 tag_len, NULL); 369 370 if (EVP_EncryptInit_ex(sess->cipher.ctx, NULL, NULL, key, NULL) <= 0) 371 return -EINVAL; 372 373 return 0; 374 } 375 376 /* Set session AEAD decryption parameters */ 377 static int 378 openssl_set_sess_aead_dec_param(struct openssl_session *sess, 379 enum rte_crypto_aead_algorithm algo, 380 uint8_t tag_len, uint8_t *key) 381 { 382 int iv_type = 0; 383 unsigned int do_ccm = 0; 384 385 sess->cipher.direction = RTE_CRYPTO_CIPHER_OP_DECRYPT; 386 sess->auth.operation = RTE_CRYPTO_AUTH_OP_VERIFY; 387 388 /* Select AEAD algo */ 389 switch (algo) { 390 case RTE_CRYPTO_AEAD_AES_GCM: 391 iv_type = EVP_CTRL_GCM_SET_IVLEN; 392 if (tag_len != 16) 393 return -EINVAL; 394 break; 395 case RTE_CRYPTO_AEAD_AES_CCM: 396 iv_type = EVP_CTRL_CCM_SET_IVLEN; 397 /* Digest size can be 4, 6, 8, 10, 12, 14 or 16 bytes */ 398 if (tag_len < 4 || tag_len > 16 || (tag_len & 1) == 1) 399 return -EINVAL; 400 do_ccm = 1; 401 break; 402 default: 403 return -ENOTSUP; 404 } 405 406 sess->cipher.mode = OPENSSL_CIPHER_LIB; 407 sess->cipher.ctx = EVP_CIPHER_CTX_new(); 408 409 if (get_aead_algo(algo, sess->cipher.key.length, 410 &sess->cipher.evp_algo) != 0) 411 return -EINVAL; 412 413 get_cipher_key(key, sess->cipher.key.length, sess->cipher.key.data); 414 415 sess->chain_order = OPENSSL_CHAIN_COMBINED; 416 417 if (EVP_DecryptInit_ex(sess->cipher.ctx, sess->cipher.evp_algo, 418 NULL, NULL, NULL) <= 0) 419 return -EINVAL; 420 421 if (EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, iv_type, 422 sess->iv.length, NULL) <= 0) 423 return -EINVAL; 424 425 if (do_ccm) 426 EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, EVP_CTRL_CCM_SET_TAG, 427 tag_len, NULL); 428 429 if (EVP_DecryptInit_ex(sess->cipher.ctx, NULL, NULL, key, NULL) <= 0) 430 return -EINVAL; 431 432 return 0; 433 } 434 435 /** Set session cipher parameters */ 436 static int 437 openssl_set_session_cipher_parameters(struct openssl_session *sess, 438 const struct rte_crypto_sym_xform *xform) 439 { 440 /* Select cipher direction */ 441 sess->cipher.direction = xform->cipher.op; 442 /* Select cipher key */ 443 sess->cipher.key.length = xform->cipher.key.length; 444 445 /* Set IV parameters */ 446 sess->iv.offset = xform->cipher.iv.offset; 447 sess->iv.length = xform->cipher.iv.length; 448 449 /* Select cipher algo */ 450 switch (xform->cipher.algo) { 451 case RTE_CRYPTO_CIPHER_3DES_CBC: 452 case RTE_CRYPTO_CIPHER_AES_CBC: 453 case RTE_CRYPTO_CIPHER_AES_CTR: 454 sess->cipher.mode = OPENSSL_CIPHER_LIB; 455 sess->cipher.algo = xform->cipher.algo; 456 sess->cipher.ctx = EVP_CIPHER_CTX_new(); 457 458 if (get_cipher_algo(sess->cipher.algo, sess->cipher.key.length, 459 &sess->cipher.evp_algo) != 0) 460 return -EINVAL; 461 462 get_cipher_key(xform->cipher.key.data, sess->cipher.key.length, 463 sess->cipher.key.data); 464 if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) { 465 if (EVP_EncryptInit_ex(sess->cipher.ctx, 466 sess->cipher.evp_algo, 467 NULL, xform->cipher.key.data, 468 NULL) != 1) { 469 return -EINVAL; 470 } 471 } else if (sess->cipher.direction == 472 RTE_CRYPTO_CIPHER_OP_DECRYPT) { 473 if (EVP_DecryptInit_ex(sess->cipher.ctx, 474 sess->cipher.evp_algo, 475 NULL, xform->cipher.key.data, 476 NULL) != 1) { 477 return -EINVAL; 478 } 479 } 480 481 break; 482 483 case RTE_CRYPTO_CIPHER_3DES_CTR: 484 sess->cipher.mode = OPENSSL_CIPHER_DES3CTR; 485 sess->cipher.ctx = EVP_CIPHER_CTX_new(); 486 487 if (get_cipher_key_ede(xform->cipher.key.data, 488 sess->cipher.key.length, 489 sess->cipher.key.data) != 0) 490 return -EINVAL; 491 break; 492 493 case RTE_CRYPTO_CIPHER_DES_CBC: 494 sess->cipher.algo = xform->cipher.algo; 495 sess->cipher.ctx = EVP_CIPHER_CTX_new(); 496 sess->cipher.evp_algo = EVP_des_cbc(); 497 498 get_cipher_key(xform->cipher.key.data, sess->cipher.key.length, 499 sess->cipher.key.data); 500 if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) { 501 if (EVP_EncryptInit_ex(sess->cipher.ctx, 502 sess->cipher.evp_algo, 503 NULL, xform->cipher.key.data, 504 NULL) != 1) { 505 return -EINVAL; 506 } 507 } else if (sess->cipher.direction == 508 RTE_CRYPTO_CIPHER_OP_DECRYPT) { 509 if (EVP_DecryptInit_ex(sess->cipher.ctx, 510 sess->cipher.evp_algo, 511 NULL, xform->cipher.key.data, 512 NULL) != 1) { 513 return -EINVAL; 514 } 515 } 516 517 break; 518 519 case RTE_CRYPTO_CIPHER_DES_DOCSISBPI: 520 sess->cipher.algo = xform->cipher.algo; 521 sess->chain_order = OPENSSL_CHAIN_CIPHER_BPI; 522 sess->cipher.ctx = EVP_CIPHER_CTX_new(); 523 sess->cipher.evp_algo = EVP_des_cbc(); 524 525 sess->cipher.bpi_ctx = EVP_CIPHER_CTX_new(); 526 /* IV will be ECB encrypted whether direction is encrypt or decrypt */ 527 if (EVP_EncryptInit_ex(sess->cipher.bpi_ctx, EVP_des_ecb(), 528 NULL, xform->cipher.key.data, 0) != 1) 529 return -EINVAL; 530 531 get_cipher_key(xform->cipher.key.data, sess->cipher.key.length, 532 sess->cipher.key.data); 533 if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) { 534 if (EVP_EncryptInit_ex(sess->cipher.ctx, 535 sess->cipher.evp_algo, 536 NULL, xform->cipher.key.data, 537 NULL) != 1) { 538 return -EINVAL; 539 } 540 } else if (sess->cipher.direction == 541 RTE_CRYPTO_CIPHER_OP_DECRYPT) { 542 if (EVP_DecryptInit_ex(sess->cipher.ctx, 543 sess->cipher.evp_algo, 544 NULL, xform->cipher.key.data, 545 NULL) != 1) { 546 return -EINVAL; 547 } 548 } 549 550 break; 551 default: 552 sess->cipher.algo = RTE_CRYPTO_CIPHER_NULL; 553 return -ENOTSUP; 554 } 555 556 return 0; 557 } 558 559 /* Set session auth parameters */ 560 static int 561 openssl_set_session_auth_parameters(struct openssl_session *sess, 562 const struct rte_crypto_sym_xform *xform) 563 { 564 /* Select auth generate/verify */ 565 sess->auth.operation = xform->auth.op; 566 sess->auth.algo = xform->auth.algo; 567 568 sess->auth.digest_length = xform->auth.digest_length; 569 570 /* Select auth algo */ 571 switch (xform->auth.algo) { 572 case RTE_CRYPTO_AUTH_AES_GMAC: 573 /* 574 * OpenSSL requires GMAC to be a GCM operation 575 * with no cipher data length 576 */ 577 sess->cipher.key.length = xform->auth.key.length; 578 579 /* Set IV parameters */ 580 sess->iv.offset = xform->auth.iv.offset; 581 sess->iv.length = xform->auth.iv.length; 582 583 if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_GENERATE) 584 return openssl_set_sess_aead_enc_param(sess, 585 RTE_CRYPTO_AEAD_AES_GCM, 586 xform->auth.digest_length, 587 xform->auth.key.data); 588 else 589 return openssl_set_sess_aead_dec_param(sess, 590 RTE_CRYPTO_AEAD_AES_GCM, 591 xform->auth.digest_length, 592 xform->auth.key.data); 593 break; 594 595 case RTE_CRYPTO_AUTH_MD5: 596 case RTE_CRYPTO_AUTH_SHA1: 597 case RTE_CRYPTO_AUTH_SHA224: 598 case RTE_CRYPTO_AUTH_SHA256: 599 case RTE_CRYPTO_AUTH_SHA384: 600 case RTE_CRYPTO_AUTH_SHA512: 601 sess->auth.mode = OPENSSL_AUTH_AS_AUTH; 602 if (get_auth_algo(xform->auth.algo, 603 &sess->auth.auth.evp_algo) != 0) 604 return -EINVAL; 605 sess->auth.auth.ctx = EVP_MD_CTX_create(); 606 break; 607 608 case RTE_CRYPTO_AUTH_MD5_HMAC: 609 case RTE_CRYPTO_AUTH_SHA1_HMAC: 610 case RTE_CRYPTO_AUTH_SHA224_HMAC: 611 case RTE_CRYPTO_AUTH_SHA256_HMAC: 612 case RTE_CRYPTO_AUTH_SHA384_HMAC: 613 case RTE_CRYPTO_AUTH_SHA512_HMAC: 614 sess->auth.mode = OPENSSL_AUTH_AS_HMAC; 615 sess->auth.hmac.ctx = HMAC_CTX_new(); 616 if (get_auth_algo(xform->auth.algo, 617 &sess->auth.hmac.evp_algo) != 0) 618 return -EINVAL; 619 620 if (HMAC_Init_ex(sess->auth.hmac.ctx, 621 xform->auth.key.data, 622 xform->auth.key.length, 623 sess->auth.hmac.evp_algo, NULL) != 1) 624 return -EINVAL; 625 break; 626 627 default: 628 return -ENOTSUP; 629 } 630 631 return 0; 632 } 633 634 /* Set session AEAD parameters */ 635 static int 636 openssl_set_session_aead_parameters(struct openssl_session *sess, 637 const struct rte_crypto_sym_xform *xform) 638 { 639 /* Select cipher key */ 640 sess->cipher.key.length = xform->aead.key.length; 641 642 /* Set IV parameters */ 643 if (xform->aead.algo == RTE_CRYPTO_AEAD_AES_CCM) 644 /* 645 * For AES-CCM, the actual IV is placed 646 * one byte after the start of the IV field, 647 * according to the API. 648 */ 649 sess->iv.offset = xform->aead.iv.offset + 1; 650 else 651 sess->iv.offset = xform->aead.iv.offset; 652 653 sess->iv.length = xform->aead.iv.length; 654 655 sess->auth.aad_length = xform->aead.aad_length; 656 sess->auth.digest_length = xform->aead.digest_length; 657 658 sess->aead_algo = xform->aead.algo; 659 /* Select cipher direction */ 660 if (xform->aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT) 661 return openssl_set_sess_aead_enc_param(sess, xform->aead.algo, 662 xform->aead.digest_length, xform->aead.key.data); 663 else 664 return openssl_set_sess_aead_dec_param(sess, xform->aead.algo, 665 xform->aead.digest_length, xform->aead.key.data); 666 } 667 668 /** Parse crypto xform chain and set private session parameters */ 669 int 670 openssl_set_session_parameters(struct openssl_session *sess, 671 const struct rte_crypto_sym_xform *xform) 672 { 673 const struct rte_crypto_sym_xform *cipher_xform = NULL; 674 const struct rte_crypto_sym_xform *auth_xform = NULL; 675 const struct rte_crypto_sym_xform *aead_xform = NULL; 676 int ret; 677 678 sess->chain_order = openssl_get_chain_order(xform); 679 switch (sess->chain_order) { 680 case OPENSSL_CHAIN_ONLY_CIPHER: 681 cipher_xform = xform; 682 break; 683 case OPENSSL_CHAIN_ONLY_AUTH: 684 auth_xform = xform; 685 break; 686 case OPENSSL_CHAIN_CIPHER_AUTH: 687 cipher_xform = xform; 688 auth_xform = xform->next; 689 break; 690 case OPENSSL_CHAIN_AUTH_CIPHER: 691 auth_xform = xform; 692 cipher_xform = xform->next; 693 break; 694 case OPENSSL_CHAIN_COMBINED: 695 aead_xform = xform; 696 break; 697 default: 698 return -EINVAL; 699 } 700 701 /* Default IV length = 0 */ 702 sess->iv.length = 0; 703 704 /* cipher_xform must be check before auth_xform */ 705 if (cipher_xform) { 706 ret = openssl_set_session_cipher_parameters( 707 sess, cipher_xform); 708 if (ret != 0) { 709 OPENSSL_LOG_ERR( 710 "Invalid/unsupported cipher parameters"); 711 return ret; 712 } 713 } 714 715 if (auth_xform) { 716 ret = openssl_set_session_auth_parameters(sess, auth_xform); 717 if (ret != 0) { 718 OPENSSL_LOG_ERR( 719 "Invalid/unsupported auth parameters"); 720 return ret; 721 } 722 } 723 724 if (aead_xform) { 725 ret = openssl_set_session_aead_parameters(sess, aead_xform); 726 if (ret != 0) { 727 OPENSSL_LOG_ERR( 728 "Invalid/unsupported AEAD parameters"); 729 return ret; 730 } 731 } 732 733 return 0; 734 } 735 736 /** Reset private session parameters */ 737 void 738 openssl_reset_session(struct openssl_session *sess) 739 { 740 EVP_CIPHER_CTX_free(sess->cipher.ctx); 741 742 if (sess->chain_order == OPENSSL_CHAIN_CIPHER_BPI) 743 EVP_CIPHER_CTX_free(sess->cipher.bpi_ctx); 744 745 switch (sess->auth.mode) { 746 case OPENSSL_AUTH_AS_AUTH: 747 EVP_MD_CTX_destroy(sess->auth.auth.ctx); 748 break; 749 case OPENSSL_AUTH_AS_HMAC: 750 EVP_PKEY_free(sess->auth.hmac.pkey); 751 HMAC_CTX_free(sess->auth.hmac.ctx); 752 break; 753 default: 754 break; 755 } 756 } 757 758 /** Provide session for operation */ 759 static struct openssl_session * 760 get_session(struct openssl_qp *qp, struct rte_crypto_op *op) 761 { 762 struct openssl_session *sess = NULL; 763 764 if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) { 765 /* get existing session */ 766 if (likely(op->sym->session != NULL)) 767 sess = (struct openssl_session *) 768 get_session_private_data( 769 op->sym->session, 770 cryptodev_driver_id); 771 } else { 772 /* provide internal session */ 773 void *_sess = NULL; 774 void *_sess_private_data = NULL; 775 776 if (rte_mempool_get(qp->sess_mp, (void **)&_sess)) 777 return NULL; 778 779 if (rte_mempool_get(qp->sess_mp, (void **)&_sess_private_data)) 780 return NULL; 781 782 sess = (struct openssl_session *)_sess_private_data; 783 784 if (unlikely(openssl_set_session_parameters(sess, 785 op->sym->xform) != 0)) { 786 rte_mempool_put(qp->sess_mp, _sess); 787 rte_mempool_put(qp->sess_mp, _sess_private_data); 788 sess = NULL; 789 } 790 op->sym->session = (struct rte_cryptodev_sym_session *)_sess; 791 set_session_private_data(op->sym->session, cryptodev_driver_id, 792 _sess_private_data); 793 } 794 795 if (sess == NULL) 796 op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION; 797 798 return sess; 799 } 800 801 /* 802 *------------------------------------------------------------------------------ 803 * Process Operations 804 *------------------------------------------------------------------------------ 805 */ 806 static inline int 807 process_openssl_encryption_update(struct rte_mbuf *mbuf_src, int offset, 808 uint8_t **dst, int srclen, EVP_CIPHER_CTX *ctx) 809 { 810 struct rte_mbuf *m; 811 int dstlen; 812 int l, n = srclen; 813 uint8_t *src; 814 815 for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m); 816 m = m->next) 817 offset -= rte_pktmbuf_data_len(m); 818 819 if (m == 0) 820 return -1; 821 822 src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset); 823 824 l = rte_pktmbuf_data_len(m) - offset; 825 if (srclen <= l) { 826 if (EVP_EncryptUpdate(ctx, *dst, &dstlen, src, srclen) <= 0) 827 return -1; 828 *dst += l; 829 return 0; 830 } 831 832 if (EVP_EncryptUpdate(ctx, *dst, &dstlen, src, l) <= 0) 833 return -1; 834 835 *dst += dstlen; 836 n -= l; 837 838 for (m = m->next; (m != NULL) && (n > 0); m = m->next) { 839 src = rte_pktmbuf_mtod(m, uint8_t *); 840 l = rte_pktmbuf_data_len(m) < n ? rte_pktmbuf_data_len(m) : n; 841 if (EVP_EncryptUpdate(ctx, *dst, &dstlen, src, l) <= 0) 842 return -1; 843 *dst += dstlen; 844 n -= l; 845 } 846 847 return 0; 848 } 849 850 static inline int 851 process_openssl_decryption_update(struct rte_mbuf *mbuf_src, int offset, 852 uint8_t **dst, int srclen, EVP_CIPHER_CTX *ctx) 853 { 854 struct rte_mbuf *m; 855 int dstlen; 856 int l, n = srclen; 857 uint8_t *src; 858 859 for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m); 860 m = m->next) 861 offset -= rte_pktmbuf_data_len(m); 862 863 if (m == 0) 864 return -1; 865 866 src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset); 867 868 l = rte_pktmbuf_data_len(m) - offset; 869 if (srclen <= l) { 870 if (EVP_DecryptUpdate(ctx, *dst, &dstlen, src, srclen) <= 0) 871 return -1; 872 *dst += l; 873 return 0; 874 } 875 876 if (EVP_DecryptUpdate(ctx, *dst, &dstlen, src, l) <= 0) 877 return -1; 878 879 *dst += dstlen; 880 n -= l; 881 882 for (m = m->next; (m != NULL) && (n > 0); m = m->next) { 883 src = rte_pktmbuf_mtod(m, uint8_t *); 884 l = rte_pktmbuf_data_len(m) < n ? rte_pktmbuf_data_len(m) : n; 885 if (EVP_DecryptUpdate(ctx, *dst, &dstlen, src, l) <= 0) 886 return -1; 887 *dst += dstlen; 888 n -= l; 889 } 890 891 return 0; 892 } 893 894 /** Process standard openssl cipher encryption */ 895 static int 896 process_openssl_cipher_encrypt(struct rte_mbuf *mbuf_src, uint8_t *dst, 897 int offset, uint8_t *iv, int srclen, EVP_CIPHER_CTX *ctx) 898 { 899 int totlen; 900 901 if (EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0) 902 goto process_cipher_encrypt_err; 903 904 EVP_CIPHER_CTX_set_padding(ctx, 0); 905 906 if (process_openssl_encryption_update(mbuf_src, offset, &dst, 907 srclen, ctx)) 908 goto process_cipher_encrypt_err; 909 910 if (EVP_EncryptFinal_ex(ctx, dst, &totlen) <= 0) 911 goto process_cipher_encrypt_err; 912 913 return 0; 914 915 process_cipher_encrypt_err: 916 OPENSSL_LOG_ERR("Process openssl cipher encrypt failed"); 917 return -EINVAL; 918 } 919 920 /** Process standard openssl cipher encryption */ 921 static int 922 process_openssl_cipher_bpi_encrypt(uint8_t *src, uint8_t *dst, 923 uint8_t *iv, int srclen, 924 EVP_CIPHER_CTX *ctx) 925 { 926 uint8_t i; 927 uint8_t encrypted_iv[DES_BLOCK_SIZE]; 928 int encrypted_ivlen; 929 930 if (EVP_EncryptUpdate(ctx, encrypted_iv, &encrypted_ivlen, 931 iv, DES_BLOCK_SIZE) <= 0) 932 goto process_cipher_encrypt_err; 933 934 for (i = 0; i < srclen; i++) 935 *(dst + i) = *(src + i) ^ (encrypted_iv[i]); 936 937 return 0; 938 939 process_cipher_encrypt_err: 940 OPENSSL_LOG_ERR("Process openssl cipher bpi encrypt failed"); 941 return -EINVAL; 942 } 943 /** Process standard openssl cipher decryption */ 944 static int 945 process_openssl_cipher_decrypt(struct rte_mbuf *mbuf_src, uint8_t *dst, 946 int offset, uint8_t *iv, int srclen, EVP_CIPHER_CTX *ctx) 947 { 948 int totlen; 949 950 if (EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0) 951 goto process_cipher_decrypt_err; 952 953 EVP_CIPHER_CTX_set_padding(ctx, 0); 954 955 if (process_openssl_decryption_update(mbuf_src, offset, &dst, 956 srclen, ctx)) 957 goto process_cipher_decrypt_err; 958 959 if (EVP_DecryptFinal_ex(ctx, dst, &totlen) <= 0) 960 goto process_cipher_decrypt_err; 961 return 0; 962 963 process_cipher_decrypt_err: 964 OPENSSL_LOG_ERR("Process openssl cipher decrypt failed"); 965 return -EINVAL; 966 } 967 968 /** Process cipher des 3 ctr encryption, decryption algorithm */ 969 static int 970 process_openssl_cipher_des3ctr(struct rte_mbuf *mbuf_src, uint8_t *dst, 971 int offset, uint8_t *iv, uint8_t *key, int srclen, 972 EVP_CIPHER_CTX *ctx) 973 { 974 uint8_t ebuf[8], ctr[8]; 975 int unused, n; 976 struct rte_mbuf *m; 977 uint8_t *src; 978 int l; 979 980 for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m); 981 m = m->next) 982 offset -= rte_pktmbuf_data_len(m); 983 984 if (m == 0) 985 goto process_cipher_des3ctr_err; 986 987 src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset); 988 l = rte_pktmbuf_data_len(m) - offset; 989 990 /* We use 3DES encryption also for decryption. 991 * IV is not important for 3DES ecb 992 */ 993 if (EVP_EncryptInit_ex(ctx, EVP_des_ede3_ecb(), NULL, key, NULL) <= 0) 994 goto process_cipher_des3ctr_err; 995 996 memcpy(ctr, iv, 8); 997 998 for (n = 0; n < srclen; n++) { 999 if (n % 8 == 0) { 1000 if (EVP_EncryptUpdate(ctx, 1001 (unsigned char *)&ebuf, &unused, 1002 (const unsigned char *)&ctr, 8) <= 0) 1003 goto process_cipher_des3ctr_err; 1004 ctr_inc(ctr); 1005 } 1006 dst[n] = *(src++) ^ ebuf[n % 8]; 1007 1008 l--; 1009 if (!l) { 1010 m = m->next; 1011 if (m) { 1012 src = rte_pktmbuf_mtod(m, uint8_t *); 1013 l = rte_pktmbuf_data_len(m); 1014 } 1015 } 1016 } 1017 1018 return 0; 1019 1020 process_cipher_des3ctr_err: 1021 OPENSSL_LOG_ERR("Process openssl cipher des 3 ede ctr failed"); 1022 return -EINVAL; 1023 } 1024 1025 /** Process AES-GCM encrypt algorithm */ 1026 static int 1027 process_openssl_auth_encryption_gcm(struct rte_mbuf *mbuf_src, int offset, 1028 int srclen, uint8_t *aad, int aadlen, uint8_t *iv, 1029 uint8_t *dst, uint8_t *tag, EVP_CIPHER_CTX *ctx) 1030 { 1031 int len = 0, unused = 0; 1032 uint8_t empty[] = {}; 1033 1034 if (EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0) 1035 goto process_auth_encryption_gcm_err; 1036 1037 if (aadlen > 0) 1038 if (EVP_EncryptUpdate(ctx, NULL, &len, aad, aadlen) <= 0) 1039 goto process_auth_encryption_gcm_err; 1040 1041 if (srclen > 0) 1042 if (process_openssl_encryption_update(mbuf_src, offset, &dst, 1043 srclen, ctx)) 1044 goto process_auth_encryption_gcm_err; 1045 1046 /* Workaround open ssl bug in version less then 1.0.1f */ 1047 if (EVP_EncryptUpdate(ctx, empty, &unused, empty, 0) <= 0) 1048 goto process_auth_encryption_gcm_err; 1049 1050 if (EVP_EncryptFinal_ex(ctx, dst, &len) <= 0) 1051 goto process_auth_encryption_gcm_err; 1052 1053 if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_GET_TAG, 16, tag) <= 0) 1054 goto process_auth_encryption_gcm_err; 1055 1056 return 0; 1057 1058 process_auth_encryption_gcm_err: 1059 OPENSSL_LOG_ERR("Process openssl auth encryption gcm failed"); 1060 return -EINVAL; 1061 } 1062 1063 /** Process AES-CCM encrypt algorithm */ 1064 static int 1065 process_openssl_auth_encryption_ccm(struct rte_mbuf *mbuf_src, int offset, 1066 int srclen, uint8_t *aad, int aadlen, uint8_t *iv, 1067 uint8_t *dst, uint8_t *tag, uint8_t taglen, EVP_CIPHER_CTX *ctx) 1068 { 1069 int len = 0; 1070 1071 if (EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0) 1072 goto process_auth_encryption_ccm_err; 1073 1074 if (EVP_EncryptUpdate(ctx, NULL, &len, NULL, srclen) <= 0) 1075 goto process_auth_encryption_ccm_err; 1076 1077 if (aadlen > 0) 1078 /* 1079 * For AES-CCM, the actual AAD is placed 1080 * 18 bytes after the start of the AAD field, 1081 * according to the API. 1082 */ 1083 if (EVP_EncryptUpdate(ctx, NULL, &len, aad + 18, aadlen) <= 0) 1084 goto process_auth_encryption_ccm_err; 1085 1086 if (srclen > 0) 1087 if (process_openssl_encryption_update(mbuf_src, offset, &dst, 1088 srclen, ctx)) 1089 goto process_auth_encryption_ccm_err; 1090 1091 if (EVP_EncryptFinal_ex(ctx, dst, &len) <= 0) 1092 goto process_auth_encryption_ccm_err; 1093 1094 if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_GET_TAG, taglen, tag) <= 0) 1095 goto process_auth_encryption_ccm_err; 1096 1097 return 0; 1098 1099 process_auth_encryption_ccm_err: 1100 OPENSSL_LOG_ERR("Process openssl auth encryption ccm failed"); 1101 return -EINVAL; 1102 } 1103 1104 /** Process AES-GCM decrypt algorithm */ 1105 static int 1106 process_openssl_auth_decryption_gcm(struct rte_mbuf *mbuf_src, int offset, 1107 int srclen, uint8_t *aad, int aadlen, uint8_t *iv, 1108 uint8_t *dst, uint8_t *tag, EVP_CIPHER_CTX *ctx) 1109 { 1110 int len = 0, unused = 0; 1111 uint8_t empty[] = {}; 1112 1113 if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_TAG, 16, tag) <= 0) 1114 goto process_auth_decryption_gcm_err; 1115 1116 if (EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0) 1117 goto process_auth_decryption_gcm_err; 1118 1119 if (aadlen > 0) 1120 if (EVP_DecryptUpdate(ctx, NULL, &len, aad, aadlen) <= 0) 1121 goto process_auth_decryption_gcm_err; 1122 1123 if (srclen > 0) 1124 if (process_openssl_decryption_update(mbuf_src, offset, &dst, 1125 srclen, ctx)) 1126 goto process_auth_decryption_gcm_err; 1127 1128 /* Workaround open ssl bug in version less then 1.0.1f */ 1129 if (EVP_DecryptUpdate(ctx, empty, &unused, empty, 0) <= 0) 1130 goto process_auth_decryption_gcm_err; 1131 1132 if (EVP_DecryptFinal_ex(ctx, dst, &len) <= 0) 1133 return -EFAULT; 1134 1135 return 0; 1136 1137 process_auth_decryption_gcm_err: 1138 OPENSSL_LOG_ERR("Process openssl auth decryption gcm failed"); 1139 return -EINVAL; 1140 } 1141 1142 /** Process AES-CCM decrypt algorithm */ 1143 static int 1144 process_openssl_auth_decryption_ccm(struct rte_mbuf *mbuf_src, int offset, 1145 int srclen, uint8_t *aad, int aadlen, uint8_t *iv, 1146 uint8_t *dst, uint8_t *tag, uint8_t tag_len, 1147 EVP_CIPHER_CTX *ctx) 1148 { 1149 int len = 0; 1150 1151 if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_TAG, tag_len, tag) <= 0) 1152 goto process_auth_decryption_ccm_err; 1153 1154 if (EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0) 1155 goto process_auth_decryption_ccm_err; 1156 1157 if (EVP_DecryptUpdate(ctx, NULL, &len, NULL, srclen) <= 0) 1158 goto process_auth_decryption_ccm_err; 1159 1160 if (aadlen > 0) 1161 /* 1162 * For AES-CCM, the actual AAD is placed 1163 * 18 bytes after the start of the AAD field, 1164 * according to the API. 1165 */ 1166 if (EVP_DecryptUpdate(ctx, NULL, &len, aad + 18, aadlen) <= 0) 1167 goto process_auth_decryption_ccm_err; 1168 1169 if (srclen > 0) 1170 if (process_openssl_decryption_update(mbuf_src, offset, &dst, 1171 srclen, ctx)) 1172 return -EFAULT; 1173 1174 return 0; 1175 1176 process_auth_decryption_ccm_err: 1177 OPENSSL_LOG_ERR("Process openssl auth decryption ccm failed"); 1178 return -EINVAL; 1179 } 1180 1181 /** Process standard openssl auth algorithms */ 1182 static int 1183 process_openssl_auth(struct rte_mbuf *mbuf_src, uint8_t *dst, int offset, 1184 __rte_unused uint8_t *iv, __rte_unused EVP_PKEY * pkey, 1185 int srclen, EVP_MD_CTX *ctx, const EVP_MD *algo) 1186 { 1187 size_t dstlen; 1188 struct rte_mbuf *m; 1189 int l, n = srclen; 1190 uint8_t *src; 1191 1192 for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m); 1193 m = m->next) 1194 offset -= rte_pktmbuf_data_len(m); 1195 1196 if (m == 0) 1197 goto process_auth_err; 1198 1199 if (EVP_DigestInit_ex(ctx, algo, NULL) <= 0) 1200 goto process_auth_err; 1201 1202 src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset); 1203 1204 l = rte_pktmbuf_data_len(m) - offset; 1205 if (srclen <= l) { 1206 if (EVP_DigestUpdate(ctx, (char *)src, srclen) <= 0) 1207 goto process_auth_err; 1208 goto process_auth_final; 1209 } 1210 1211 if (EVP_DigestUpdate(ctx, (char *)src, l) <= 0) 1212 goto process_auth_err; 1213 1214 n -= l; 1215 1216 for (m = m->next; (m != NULL) && (n > 0); m = m->next) { 1217 src = rte_pktmbuf_mtod(m, uint8_t *); 1218 l = rte_pktmbuf_data_len(m) < n ? rte_pktmbuf_data_len(m) : n; 1219 if (EVP_DigestUpdate(ctx, (char *)src, l) <= 0) 1220 goto process_auth_err; 1221 n -= l; 1222 } 1223 1224 process_auth_final: 1225 if (EVP_DigestFinal_ex(ctx, dst, (unsigned int *)&dstlen) <= 0) 1226 goto process_auth_err; 1227 return 0; 1228 1229 process_auth_err: 1230 OPENSSL_LOG_ERR("Process openssl auth failed"); 1231 return -EINVAL; 1232 } 1233 1234 /** Process standard openssl auth algorithms with hmac */ 1235 static int 1236 process_openssl_auth_hmac(struct rte_mbuf *mbuf_src, uint8_t *dst, int offset, 1237 int srclen, HMAC_CTX *ctx) 1238 { 1239 unsigned int dstlen; 1240 struct rte_mbuf *m; 1241 int l, n = srclen; 1242 uint8_t *src; 1243 1244 for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m); 1245 m = m->next) 1246 offset -= rte_pktmbuf_data_len(m); 1247 1248 if (m == 0) 1249 goto process_auth_err; 1250 1251 src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset); 1252 1253 l = rte_pktmbuf_data_len(m) - offset; 1254 if (srclen <= l) { 1255 if (HMAC_Update(ctx, (unsigned char *)src, srclen) != 1) 1256 goto process_auth_err; 1257 goto process_auth_final; 1258 } 1259 1260 if (HMAC_Update(ctx, (unsigned char *)src, l) != 1) 1261 goto process_auth_err; 1262 1263 n -= l; 1264 1265 for (m = m->next; (m != NULL) && (n > 0); m = m->next) { 1266 src = rte_pktmbuf_mtod(m, uint8_t *); 1267 l = rte_pktmbuf_data_len(m) < n ? rte_pktmbuf_data_len(m) : n; 1268 if (HMAC_Update(ctx, (unsigned char *)src, l) != 1) 1269 goto process_auth_err; 1270 n -= l; 1271 } 1272 1273 process_auth_final: 1274 if (HMAC_Final(ctx, dst, &dstlen) != 1) 1275 goto process_auth_err; 1276 1277 if (unlikely(HMAC_Init_ex(ctx, NULL, 0, NULL, NULL) != 1)) 1278 goto process_auth_err; 1279 1280 return 0; 1281 1282 process_auth_err: 1283 OPENSSL_LOG_ERR("Process openssl auth failed"); 1284 return -EINVAL; 1285 } 1286 1287 /*----------------------------------------------------------------------------*/ 1288 1289 /** Process auth/cipher combined operation */ 1290 static void 1291 process_openssl_combined_op 1292 (struct rte_crypto_op *op, struct openssl_session *sess, 1293 struct rte_mbuf *mbuf_src, struct rte_mbuf *mbuf_dst) 1294 { 1295 /* cipher */ 1296 uint8_t *dst = NULL, *iv, *tag, *aad; 1297 int srclen, aadlen, status = -1; 1298 uint32_t offset; 1299 uint8_t taglen; 1300 1301 /* 1302 * Segmented destination buffer is not supported for 1303 * encryption/decryption 1304 */ 1305 if (!rte_pktmbuf_is_contiguous(mbuf_dst)) { 1306 op->status = RTE_CRYPTO_OP_STATUS_ERROR; 1307 return; 1308 } 1309 1310 iv = rte_crypto_op_ctod_offset(op, uint8_t *, 1311 sess->iv.offset); 1312 if (sess->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC) { 1313 srclen = 0; 1314 offset = op->sym->auth.data.offset; 1315 aadlen = op->sym->auth.data.length; 1316 aad = rte_pktmbuf_mtod_offset(mbuf_src, uint8_t *, 1317 op->sym->auth.data.offset); 1318 tag = op->sym->auth.digest.data; 1319 if (tag == NULL) 1320 tag = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *, 1321 offset + aadlen); 1322 } else { 1323 srclen = op->sym->aead.data.length; 1324 dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *, 1325 op->sym->aead.data.offset); 1326 offset = op->sym->aead.data.offset; 1327 aad = op->sym->aead.aad.data; 1328 aadlen = sess->auth.aad_length; 1329 tag = op->sym->aead.digest.data; 1330 if (tag == NULL) 1331 tag = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *, 1332 offset + srclen); 1333 } 1334 1335 taglen = sess->auth.digest_length; 1336 1337 if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) { 1338 if (sess->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC || 1339 sess->aead_algo == RTE_CRYPTO_AEAD_AES_GCM) 1340 status = process_openssl_auth_encryption_gcm( 1341 mbuf_src, offset, srclen, 1342 aad, aadlen, iv, 1343 dst, tag, sess->cipher.ctx); 1344 else 1345 status = process_openssl_auth_encryption_ccm( 1346 mbuf_src, offset, srclen, 1347 aad, aadlen, iv, 1348 dst, tag, taglen, sess->cipher.ctx); 1349 1350 } else { 1351 if (sess->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC || 1352 sess->aead_algo == RTE_CRYPTO_AEAD_AES_GCM) 1353 status = process_openssl_auth_decryption_gcm( 1354 mbuf_src, offset, srclen, 1355 aad, aadlen, iv, 1356 dst, tag, sess->cipher.ctx); 1357 else 1358 status = process_openssl_auth_decryption_ccm( 1359 mbuf_src, offset, srclen, 1360 aad, aadlen, iv, 1361 dst, tag, taglen, sess->cipher.ctx); 1362 } 1363 1364 if (status != 0) { 1365 if (status == (-EFAULT) && 1366 sess->auth.operation == 1367 RTE_CRYPTO_AUTH_OP_VERIFY) 1368 op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED; 1369 else 1370 op->status = RTE_CRYPTO_OP_STATUS_ERROR; 1371 } 1372 } 1373 1374 /** Process cipher operation */ 1375 static void 1376 process_openssl_cipher_op 1377 (struct rte_crypto_op *op, struct openssl_session *sess, 1378 struct rte_mbuf *mbuf_src, struct rte_mbuf *mbuf_dst) 1379 { 1380 uint8_t *dst, *iv; 1381 int srclen, status; 1382 1383 /* 1384 * Segmented destination buffer is not supported for 1385 * encryption/decryption 1386 */ 1387 if (!rte_pktmbuf_is_contiguous(mbuf_dst)) { 1388 op->status = RTE_CRYPTO_OP_STATUS_ERROR; 1389 return; 1390 } 1391 1392 srclen = op->sym->cipher.data.length; 1393 dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *, 1394 op->sym->cipher.data.offset); 1395 1396 iv = rte_crypto_op_ctod_offset(op, uint8_t *, 1397 sess->iv.offset); 1398 1399 if (sess->cipher.mode == OPENSSL_CIPHER_LIB) 1400 if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) 1401 status = process_openssl_cipher_encrypt(mbuf_src, dst, 1402 op->sym->cipher.data.offset, iv, 1403 srclen, sess->cipher.ctx); 1404 else 1405 status = process_openssl_cipher_decrypt(mbuf_src, dst, 1406 op->sym->cipher.data.offset, iv, 1407 srclen, sess->cipher.ctx); 1408 else 1409 status = process_openssl_cipher_des3ctr(mbuf_src, dst, 1410 op->sym->cipher.data.offset, iv, 1411 sess->cipher.key.data, srclen, 1412 sess->cipher.ctx); 1413 1414 if (status != 0) 1415 op->status = RTE_CRYPTO_OP_STATUS_ERROR; 1416 } 1417 1418 /** Process cipher operation */ 1419 static void 1420 process_openssl_docsis_bpi_op(struct rte_crypto_op *op, 1421 struct openssl_session *sess, struct rte_mbuf *mbuf_src, 1422 struct rte_mbuf *mbuf_dst) 1423 { 1424 uint8_t *src, *dst, *iv; 1425 uint8_t block_size, last_block_len; 1426 int srclen, status = 0; 1427 1428 srclen = op->sym->cipher.data.length; 1429 src = rte_pktmbuf_mtod_offset(mbuf_src, uint8_t *, 1430 op->sym->cipher.data.offset); 1431 dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *, 1432 op->sym->cipher.data.offset); 1433 1434 iv = rte_crypto_op_ctod_offset(op, uint8_t *, 1435 sess->iv.offset); 1436 1437 block_size = DES_BLOCK_SIZE; 1438 1439 last_block_len = srclen % block_size; 1440 if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) { 1441 /* Encrypt only with ECB mode XOR IV */ 1442 if (srclen < block_size) { 1443 status = process_openssl_cipher_bpi_encrypt(src, dst, 1444 iv, srclen, 1445 sess->cipher.bpi_ctx); 1446 } else { 1447 srclen -= last_block_len; 1448 /* Encrypt with the block aligned stream with CBC mode */ 1449 status = process_openssl_cipher_encrypt(mbuf_src, dst, 1450 op->sym->cipher.data.offset, iv, 1451 srclen, sess->cipher.ctx); 1452 if (last_block_len) { 1453 /* Point at last block */ 1454 dst += srclen; 1455 /* 1456 * IV is the last encrypted block from 1457 * the previous operation 1458 */ 1459 iv = dst - block_size; 1460 src += srclen; 1461 srclen = last_block_len; 1462 /* Encrypt the last frame with ECB mode */ 1463 status |= process_openssl_cipher_bpi_encrypt(src, 1464 dst, iv, 1465 srclen, sess->cipher.bpi_ctx); 1466 } 1467 } 1468 } else { 1469 /* Decrypt only with ECB mode (encrypt, as it is same operation) */ 1470 if (srclen < block_size) { 1471 status = process_openssl_cipher_bpi_encrypt(src, dst, 1472 iv, 1473 srclen, 1474 sess->cipher.bpi_ctx); 1475 } else { 1476 if (last_block_len) { 1477 /* Point at last block */ 1478 dst += srclen - last_block_len; 1479 src += srclen - last_block_len; 1480 /* 1481 * IV is the last full block 1482 */ 1483 iv = src - block_size; 1484 /* 1485 * Decrypt the last frame with ECB mode 1486 * (encrypt, as it is the same operation) 1487 */ 1488 status = process_openssl_cipher_bpi_encrypt(src, 1489 dst, iv, 1490 last_block_len, sess->cipher.bpi_ctx); 1491 /* Prepare parameters for CBC mode op */ 1492 iv = rte_crypto_op_ctod_offset(op, uint8_t *, 1493 sess->iv.offset); 1494 dst += last_block_len - srclen; 1495 srclen -= last_block_len; 1496 } 1497 1498 /* Decrypt with CBC mode */ 1499 status |= process_openssl_cipher_decrypt(mbuf_src, dst, 1500 op->sym->cipher.data.offset, iv, 1501 srclen, sess->cipher.ctx); 1502 } 1503 } 1504 1505 if (status != 0) 1506 op->status = RTE_CRYPTO_OP_STATUS_ERROR; 1507 } 1508 1509 /** Process auth operation */ 1510 static void 1511 process_openssl_auth_op(struct openssl_qp *qp, struct rte_crypto_op *op, 1512 struct openssl_session *sess, struct rte_mbuf *mbuf_src, 1513 struct rte_mbuf *mbuf_dst) 1514 { 1515 uint8_t *dst; 1516 int srclen, status; 1517 1518 srclen = op->sym->auth.data.length; 1519 1520 if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) 1521 dst = qp->temp_digest; 1522 else { 1523 dst = op->sym->auth.digest.data; 1524 if (dst == NULL) 1525 dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *, 1526 op->sym->auth.data.offset + 1527 op->sym->auth.data.length); 1528 } 1529 1530 switch (sess->auth.mode) { 1531 case OPENSSL_AUTH_AS_AUTH: 1532 status = process_openssl_auth(mbuf_src, dst, 1533 op->sym->auth.data.offset, NULL, NULL, srclen, 1534 sess->auth.auth.ctx, sess->auth.auth.evp_algo); 1535 break; 1536 case OPENSSL_AUTH_AS_HMAC: 1537 status = process_openssl_auth_hmac(mbuf_src, dst, 1538 op->sym->auth.data.offset, srclen, 1539 sess->auth.hmac.ctx); 1540 break; 1541 default: 1542 status = -1; 1543 break; 1544 } 1545 1546 if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) { 1547 if (memcmp(dst, op->sym->auth.digest.data, 1548 sess->auth.digest_length) != 0) { 1549 op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED; 1550 } 1551 } 1552 1553 if (status != 0) 1554 op->status = RTE_CRYPTO_OP_STATUS_ERROR; 1555 } 1556 1557 /** Process crypto operation for mbuf */ 1558 static int 1559 process_op(struct openssl_qp *qp, struct rte_crypto_op *op, 1560 struct openssl_session *sess) 1561 { 1562 struct rte_mbuf *msrc, *mdst; 1563 int retval; 1564 1565 msrc = op->sym->m_src; 1566 mdst = op->sym->m_dst ? op->sym->m_dst : op->sym->m_src; 1567 1568 op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED; 1569 1570 switch (sess->chain_order) { 1571 case OPENSSL_CHAIN_ONLY_CIPHER: 1572 process_openssl_cipher_op(op, sess, msrc, mdst); 1573 break; 1574 case OPENSSL_CHAIN_ONLY_AUTH: 1575 process_openssl_auth_op(qp, op, sess, msrc, mdst); 1576 break; 1577 case OPENSSL_CHAIN_CIPHER_AUTH: 1578 process_openssl_cipher_op(op, sess, msrc, mdst); 1579 process_openssl_auth_op(qp, op, sess, mdst, mdst); 1580 break; 1581 case OPENSSL_CHAIN_AUTH_CIPHER: 1582 process_openssl_auth_op(qp, op, sess, msrc, mdst); 1583 process_openssl_cipher_op(op, sess, msrc, mdst); 1584 break; 1585 case OPENSSL_CHAIN_COMBINED: 1586 process_openssl_combined_op(op, sess, msrc, mdst); 1587 break; 1588 case OPENSSL_CHAIN_CIPHER_BPI: 1589 process_openssl_docsis_bpi_op(op, sess, msrc, mdst); 1590 break; 1591 default: 1592 op->status = RTE_CRYPTO_OP_STATUS_ERROR; 1593 break; 1594 } 1595 1596 /* Free session if a session-less crypto op */ 1597 if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) { 1598 openssl_reset_session(sess); 1599 memset(sess, 0, sizeof(struct openssl_session)); 1600 memset(op->sym->session, 0, 1601 rte_cryptodev_get_header_session_size()); 1602 rte_mempool_put(qp->sess_mp, sess); 1603 rte_mempool_put(qp->sess_mp, op->sym->session); 1604 op->sym->session = NULL; 1605 } 1606 1607 if (op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED) 1608 op->status = RTE_CRYPTO_OP_STATUS_SUCCESS; 1609 1610 if (op->status != RTE_CRYPTO_OP_STATUS_ERROR) 1611 retval = rte_ring_enqueue(qp->processed_ops, (void *)op); 1612 else 1613 retval = -1; 1614 1615 return retval; 1616 } 1617 1618 /* 1619 *------------------------------------------------------------------------------ 1620 * PMD Framework 1621 *------------------------------------------------------------------------------ 1622 */ 1623 1624 /** Enqueue burst */ 1625 static uint16_t 1626 openssl_pmd_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops, 1627 uint16_t nb_ops) 1628 { 1629 struct openssl_session *sess; 1630 struct openssl_qp *qp = queue_pair; 1631 int i, retval; 1632 1633 for (i = 0; i < nb_ops; i++) { 1634 sess = get_session(qp, ops[i]); 1635 if (unlikely(sess == NULL)) 1636 goto enqueue_err; 1637 1638 retval = process_op(qp, ops[i], sess); 1639 if (unlikely(retval < 0)) 1640 goto enqueue_err; 1641 } 1642 1643 qp->stats.enqueued_count += i; 1644 return i; 1645 1646 enqueue_err: 1647 qp->stats.enqueue_err_count++; 1648 return i; 1649 } 1650 1651 /** Dequeue burst */ 1652 static uint16_t 1653 openssl_pmd_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops, 1654 uint16_t nb_ops) 1655 { 1656 struct openssl_qp *qp = queue_pair; 1657 1658 unsigned int nb_dequeued = 0; 1659 1660 nb_dequeued = rte_ring_dequeue_burst(qp->processed_ops, 1661 (void **)ops, nb_ops, NULL); 1662 qp->stats.dequeued_count += nb_dequeued; 1663 1664 return nb_dequeued; 1665 } 1666 1667 /** Create OPENSSL crypto device */ 1668 static int 1669 cryptodev_openssl_create(const char *name, 1670 struct rte_vdev_device *vdev, 1671 struct rte_crypto_vdev_init_params *init_params) 1672 { 1673 struct rte_cryptodev *dev; 1674 struct openssl_private *internals; 1675 1676 if (init_params->name[0] == '\0') 1677 snprintf(init_params->name, sizeof(init_params->name), 1678 "%s", name); 1679 1680 dev = rte_cryptodev_vdev_pmd_init(init_params->name, 1681 sizeof(struct openssl_private), 1682 init_params->socket_id, 1683 vdev); 1684 if (dev == NULL) { 1685 OPENSSL_LOG_ERR("failed to create cryptodev vdev"); 1686 goto init_error; 1687 } 1688 1689 dev->driver_id = cryptodev_driver_id; 1690 dev->dev_ops = rte_openssl_pmd_ops; 1691 1692 /* register rx/tx burst functions for data path */ 1693 dev->dequeue_burst = openssl_pmd_dequeue_burst; 1694 dev->enqueue_burst = openssl_pmd_enqueue_burst; 1695 1696 dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO | 1697 RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING | 1698 RTE_CRYPTODEV_FF_CPU_AESNI | 1699 RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER; 1700 1701 /* Set vector instructions mode supported */ 1702 internals = dev->data->dev_private; 1703 1704 internals->max_nb_qpairs = init_params->max_nb_queue_pairs; 1705 internals->max_nb_sessions = init_params->max_nb_sessions; 1706 1707 return 0; 1708 1709 init_error: 1710 OPENSSL_LOG_ERR("driver %s: cryptodev_openssl_create failed", 1711 init_params->name); 1712 1713 cryptodev_openssl_remove(vdev); 1714 return -EFAULT; 1715 } 1716 1717 /** Initialise OPENSSL crypto device */ 1718 static int 1719 cryptodev_openssl_probe(struct rte_vdev_device *vdev) 1720 { 1721 struct rte_crypto_vdev_init_params init_params = { 1722 RTE_CRYPTODEV_VDEV_DEFAULT_MAX_NB_QUEUE_PAIRS, 1723 RTE_CRYPTODEV_VDEV_DEFAULT_MAX_NB_SESSIONS, 1724 rte_socket_id(), 1725 {0} 1726 }; 1727 const char *name; 1728 const char *input_args; 1729 1730 name = rte_vdev_device_name(vdev); 1731 if (name == NULL) 1732 return -EINVAL; 1733 input_args = rte_vdev_device_args(vdev); 1734 1735 rte_cryptodev_vdev_parse_init_params(&init_params, input_args); 1736 1737 RTE_LOG(INFO, PMD, "Initialising %s on NUMA node %d\n", name, 1738 init_params.socket_id); 1739 if (init_params.name[0] != '\0') 1740 RTE_LOG(INFO, PMD, " User defined name = %s\n", 1741 init_params.name); 1742 RTE_LOG(INFO, PMD, " Max number of queue pairs = %d\n", 1743 init_params.max_nb_queue_pairs); 1744 RTE_LOG(INFO, PMD, " Max number of sessions = %d\n", 1745 init_params.max_nb_sessions); 1746 1747 return cryptodev_openssl_create(name, vdev, &init_params); 1748 } 1749 1750 /** Uninitialise OPENSSL crypto device */ 1751 static int 1752 cryptodev_openssl_remove(struct rte_vdev_device *vdev) 1753 { 1754 const char *name; 1755 1756 name = rte_vdev_device_name(vdev); 1757 if (name == NULL) 1758 return -EINVAL; 1759 1760 RTE_LOG(INFO, PMD, 1761 "Closing OPENSSL crypto device %s on numa socket %u\n", 1762 name, rte_socket_id()); 1763 1764 return 0; 1765 } 1766 1767 static struct rte_vdev_driver cryptodev_openssl_pmd_drv = { 1768 .probe = cryptodev_openssl_probe, 1769 .remove = cryptodev_openssl_remove 1770 }; 1771 1772 static struct cryptodev_driver openssl_crypto_drv; 1773 1774 RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_OPENSSL_PMD, 1775 cryptodev_openssl_pmd_drv); 1776 RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_OPENSSL_PMD, 1777 "max_nb_queue_pairs=<int> " 1778 "max_nb_sessions=<int> " 1779 "socket_id=<int>"); 1780 RTE_PMD_REGISTER_CRYPTO_DRIVER(openssl_crypto_drv, cryptodev_openssl_pmd_drv, 1781 cryptodev_driver_id); 1782